
POLITECNICO DI TORINO, EURECOM
Master degree course in COMMUNICATIONS AND COMPUTER NETWORKS

ENGINEERING

Master Degree Thesis

Clustering of Categorical Data for
Anonymization and Anomaly Detection

Supervisors
prof. Elena Baralis
prof. Paolo Papotti

Candidate
Riccardo Cappuzzo

matricola: 231643

Internship Tutor
Anderson Santana De Oliveira

Anno accademico 2017-2018

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 State of the art . 3
1.3 Table of contents . 5

2 ROCK 7
2.1 Overview of ROCK . 7
2.2 Clustering paradigm . 8

2.2.1 Similarity function . 9
2.2.2 Criterion function . 10
2.2.3 Goodness function . 12

2.3 Data preparation . 13
2.4 The algorithm . 14

2.4.1 Clustering phase . 14
2.4.2 Labeling phase . 16
2.4.3 Complexity . 18

3 My contributions 21
3.1 Motivation . 21
3.2 eROCK (enhanced ROCK) . 22

3.2.1 Design of f(θ) . 22
3.2.2 GDSTOP . 24
3.2.3 Introducing parallelization . 27
3.2.4 Improvements to labeling . 31
3.2.5 Weighing features . 31

3.3 Hierarchical distance . 32
3.4 Notes on the implementation . 33

4 Applications 35
4.1 Generic clustering . 35
4.2 Anonymization . 36

4.2.1 Background . 36
4.2.2 Algorithm . 39

4.3 Anomaly detection . 40

ii

4.3.1 Clustering as an anomaly detection tool 41
4.3.2 My approach . 41

5 Results 43
5.1 Datasets and accuracy measures . 43

5.1.1 Datasets . 43
5.1.2 Quality measures . 44

5.2 General results . 47
5.2.1 Comparing eROCK and original ROCK 47

5.3 Anonymization . 53
5.4 Anomaly detection . 56

6 Conclusions 61

Bibliography 65

iii

Abstract

The field of data analysis has exploded in recent years thanks to the huge wealth of
information that can be collected through the Internet and other similar ways of gathering
data. Machine learning is often employed to study this data, as well as for modeling and
predicting future behaviors in many different fields. One of the techniques employed when
performing machine learning is clustering: grouping objects such that objects that belong
to a group are closer to members of that group compared to members of other groups.
To perform clustering, it is necessary to use a distance function able to assign points
to clusters: this is especially problematic when categorical data is involved. Algorithms
suitable to perform clustering of categorical data are available, but most implementations
are not efficient when working with large datasets. ROCK (RObust Clustering using linKs)
avoids the need for a global distance matrix by introducing a step called “labeling”, this
allows achieving a good clustering accuracy by using only a sample of the complete data
set, which in turns makes tackling larger datasets possible. ROCK, however, has some
drawbacks of its own: it performs poorly when records in a dataset are very homogeneous
or most features are numeric, it is fairly slow and estimating of the number of clusters is
hard to do. With my contributions, I fixed most of these issues: to help the algorithm
with handling homogeneous data I designed new versions of f(θ), a function that is used
as a criterion for choosing the best clusters to merge; this allowed me to prevent ROCK
from generating very large clusters and improved the execution time in some cases, while
improving the results in general. To estimate the number of clusters I introduced a new
termination condition, GDSTOP, that stops the execution once further merge operations
would worsen the result (even if they could still be performed). Parallelization can be
implemented in some regions of the code to remove some of the constraints on memory and
time. I also implemented a hierarchical distance, trying to preserve more information when
features have some semantic similarity that can be accounted for. I tested the algorithm’s
performances when clustering different datasets and under two more use cases: anomaly
detection and anonymization. For what concerns the first, the results were unsatisfactory
for various reasons, the datasets I used being one of them: finding suitable data is a
very hard task. For the latter, instead, I used ROCK as a preprocessing step in an
algorithm that applies k-anonymity to categorical data. This was done with the objective
of achieving a higher utility than traditional algorithms: anonymization is performed on a
cluster-by-cluster basis (rather than considering the entire dataset) to reduce the number
of transformations needed to achieve anonymity.Here the algorithm performed quite well:
the utility loss was not as pronounced as with other algorithms and the anonymity property
was preserved despite that.

Chapter 1

Introduction

1.1 Motivation

The huge growth of data analysis recent years, due to the immense wealth of information
that can be collected thanks to the diffusion of the Internet and other similar ways of
gathering data, made accessing personal information much easier than before. Businesses
are becoming more and more interested in the field as it becomes evident how having
some insight into customer trends allows having a better idea of the future course of
action. Predictive analysis and machine learning are widely used for studying this data,
generating models and predicting future behaviors.

Machine learning has become increasingly prevalent in recent days thanks to the devel-
opment of platforms able to handle Big Data, and to its efficiency in extracting patterns
from the huge “data lakes” that companies and agencies generate. One of the techniques
employed when performing machine learning is clustering: grouping objects such that ob-
jects that belong to a group are more similar to the members of that group compared
to members of other groups. Clustering is employed in a wide range of disciplines and
applications, thanks to the fact that it can be performed without supervision, so that re-
sults may be produced without the need for an analyst to train the algorithm beforehand.
In clustering, a core concept in common among many algorithms is the idea of distance
between items: indeed, to assign a point to a cluster rather than another, it is necessary
to find what are the closest points to it according to some kind of measure. Be it hi-
erarchical, density-based or centroid-based, most clustering algorithms will employ some
kind of distance function to discriminate between clusters. This is a major issue when it is
necessary to perform analysis of categorical data, i.e. data that assumes a finite number of
possible values (such as names): finding the distance between point (0, 3) and point (2, 4)
is different from finding the distance between the term “married” and the term “divorced”.
Unfortunately, datasets that contain this kind of mixed data are extremely widespread and
cannot be handled trivially by using traditional distances such as Euclidean distance or
Manhattan distance: this prevents most “standard” clustering algorithms from being used
in such cases.

To cluster categorical data, two different approaches may be used: either categorical
features are encoded (e.g. using one-hot encoding) or suppressed, or algorithms able

1

1 – Introduction

to handle generalized metrics must be employed. Intuitively, the first approach is quite
impractical since dropping features causes an irreversible and maybe very significant loss
of information. For what concerns categorical data, a critical problem is caused by the
presence of IDs or similar features that are mostly unique (but may nonetheless assume a
wide range of values) and that may be very important during the analysis: these features
cannot be encoded because this would increase exponentially the number of features to
consider, nor can they be treated as integers since two consecutive IDs should in principle
be as far from each other as any two other IDs in the set. Many algorithms able to handle
categorical data, thus solving the issues described above, were suggested. Unfortunately,
their public implementations fail at clustering some datasets because they often require a
complete distance matrix: when the number of records is too large, this approach becomes
too costly from the memory and time point of view.

ROCK [15] mitigates this issue by introducing a step called “labeling”, instead of
using a global distance matrix. This allows achieving a good clustering accuracy by using
only a sample of the complete dataset, thus allowing to tackle much bigger datasets than
what can be handled by comparable algorithms of public use, such as Affinity Propagation
[14].

My search for an algorithm able to cluster categorical data was initially motivated by
the idea of employing such a clustering algorithm to improve the utility of data anonymized
using k-anonymity. k-anonymity is a very widely employed method for performing per-
sonal data anonymization, but has some very important drawbacks: firstly, it is not secure
since records can easily be de-anonymized (this point will be described more thoroughly in
later sections); secondly, to enforce the k-anonymity property (each record must be indis-
tinguishable from at least k − 1 other records in the dataset) irreversible transformations
must be performed and this worsens noticeably the utility of the dataset for data mining
purposes. My idea was employing a clustering algorithm to reduce this loss in utility:
anonymization is applied on a cluster basis since records in each cluster should be close
enough to each other that the number of transformations needed to reach k-anonymity
should not be so large that the quality would degrade too much.

Another idea that I considered was performing anomaly detection using ROCK: cat-
egorical data remains a major issue in this field since strings and nominal attributes are
present in most log files. This requires data exploration to understand whether such fields
can be dropped or, if this is not possible, they must be encoded in a suitable way for
algorithms that rely on numerical features to work. This approach is often impractical
due to the fact that encoding (e.g. one-hot) of categorical attributes leads to an explosion
in the number of dimensions of the dataset.

Finally, to improve clustering performances in an environment that can be generalized
I tested a Hierarchical distance, i.e. a distance function able to take into consideration the
semantic distance present between two records. This produces good results and is espe-
cially useful when considering the anonymization case, in which generalization, together
with suppression, is one of the two possible transformations.

2

1.2 – State of the art

1.2 State of the art

Clustering The subject of clustering has been widely studied in the literature, and the
large number of proposed clustering algorithms sparked the need for surveys such as [13],
or [41]. Their aim was understanding the criteria that should be taken into considera-
tion when choosing the correct algorithm for an application. Clustering is an important
technique to perform machine learning and has the advantage of being completely unsu-
pervised: a clustering algorithm does not require intervention from the user to perform
its task, and can be used as a primer for further machine learning application, or may
produce results that can be analyzed immediately.

Clustering methods can be categorized depending on the cluster model, i.e. the “idea”
that an algorithm has of how a cluster should be, and how points should be assigned to a
cluster. Depending on the cluster model, clustering algorithms may roughly be split into
four categories: connectivity-based clustering, where it is assumed that the closer two points
are to each other, the more related they are; centroid-based clustering, where each cluster
is represented by a centroid and each point in the dataset will be assigned to the cluster
with the closest centroid (k-means is one such algorithm); distribution-based clustering
where clusters are defined as objects that belong to the same probability distribution;
density-based clustering where clusters are defined as regions where the density of points
is larger than that in the remainder of the dataset [12].

In my work, I started by focusing on plain clustering of categorical data, so I searched
for publicly available libraries able to perform this operation: I tried to employ k-means by
using one-hot encoding, but this approach was not practical in most cases. I found some
implementations of PAM [3], that didn’t behave as well as I hoped. Affinity Propagation
[14] was also available online. All these implementations were not successful for different
reasons: some accepted only numerical data, even though the algorithm is in principle able
to employ any kind of data; most implementations required a complete distance matrix,
which is impractical for very large sets.

Since one of my objectives was performing clustering of large datasets, I initially chose
ROCK [15] because it was the only algorithm that provided the concept of labeling, and
that was thus able to handle much larger datasets than what could be possible by using only
the distance matrix. Some improvements to ROCK have been developed after the original
algorithm was proposed, such as QROCK [10] and IROCK [33]. The first one, QROCK
(from Quick ROCK) was developed to be a much quicker version of ROCK (hence the
name), and it achieves this result by removing one of the phases of the algorithm (this point
will be described more thoroughly in Section 2.2.3), but has the very important drawback
of producing worse clusters when records are not well distinct. This case, unfortunately,
happens fairly frequently so I decided to go back to the original version of ROCK. For what
concerns IROCK, instead, the only change that the paper applies to ROCK is employing
a link matrix (see Section 2.3) that contains real numbers instead of integers: this was
necessary because the paper employed the algorithm to study documents and having a
real matrix was necessary for the novel distance function that was introduced there. For
my purposes, switching from an integer-based link matrix to a real-based one didn’t yield
noticeable results so, in this case, I decided to use the original approach simply because

3

1 – Introduction

this would allow me to compare the results to what was produced by the original ROCK.

Hierarchical distance Very often, categorical data has some kind of semantics intrinsic
in some or all its features: this means that different records may share some degree of
similarity that goes beyond the “same value/different value” approach that is often taken
with measures such as the Cosine Similarity or the Jaccard Coefficient. When considering
personal data, a good example would be the Education level: two people that have a
Bachelor’s and a Master’s degree are intuitively closer to each other than to someone
who didn’t go beyond a High School Diploma. The idea of taking this information into
consideration by means of a hierarchical distance has been considered in other papers (e.g.
[25], [32]); its application in this environment, however, should be quite novel (particularly
for what concerns anonymization). The obvious drawback of this approach is that it clearly
does not apply to all possible categorical attributes: city names, for example, cannot be
generalized by means of a simple semantic classification; while IDs and names cannot be
generalized at all.

Anonymization Anonymization is another field that is becoming more and more per-
vasive in recent days, due to the huge amount of personal information available online.
Companies very often have a huge wealth of information that, if mined, would yield even
more valuable data that may help driving business (e.g. advertisements aimed at a certain
category of customers, depending on personal information [17]). Just as often, however,
companies do not have the means (or the competences) to perform meaningful data mining
on data and have thus to publicly release the data they have in competitions or provide it
to specialized agencies that can perform data analysis. Given that data is strictly personal,
and that sensitive attributes may be contained in the data (e.g. race, religion, healthcare
information), legislative bodies moved to produce regulations to protect this data (such
as the EU GDPR [30]). Data protection implies performing anonymization of records so
that they cannot be re-identified after being released. [9] summarizes well what the differ-
ent techniques used are, their advantages and drawbacks. Nowadays, k-anonymity [35] is,
together with differential privacy [11], one of the main methods used to anonymize data
so that records cannot be re-identified by an attacker. k-anonymity is heavily flawed for
multiple reasons both from the security [20], [36] and the utility [5] points of view. Due
to lack of time, I wasn’t able to devise a completely novel anonymization algorithm, so
what I attempted to do was improving the second problem by following the idea suggested
in [34], where k-anonymity was implemented after a clustering operation was performed:
this allows applying anonymization on a cluster-by-cluster basis instead of considering the
entire dataset to build equivalence classes.

Anomaly detection Finally, for what concerns anomaly detection, [8] is a very good
survey of different anomaly detection techniques and the measures that can be employed
in this field. According to it, multiple different techniques can be used to perform anomaly
detection: classification, nearest neighbor, statistical analysis, information theoretic analy-
sis, spectral analysis are all, together with clustering, valid techniques to perform anomaly
detection. The latter is advantageous because it is unsupervised and it doesn’t require

4

1.3 – Table of contents

a long time to perform observations. It has, however some important drawbacks: clus-
tering algorithms often are not optimized to perform anomaly detection, in some cases
anomalies may be merged with normal data and more importantly, anomaly detection
using clustering fails if anomalies form significant clusters by themselves (this happened
in some situation, as I will describe briefly in Chapter 5). Very often, before performing
anomaly detection, Exploratory Data Analysis (EDA) is carried out on a dataset of inter-
est to extract additional useful features and to drop unimportant ones (see [26], [18]). I
attempted to use ROCK after performing only a lightweight EDA phase during which I
dropped useless fields because I was interested in finding out if it would be able to produce
good results with an almost “stock” dataset (further discussion will be reported in Section
4.3). The reason why I tried to use ROCK to perform anomaly detection is that it has
the interesting property of leaving points out of clusters if they’re too dissimilar from all
formed groups to be merged with one of them.

Accuracy measures To test my results, I employed different quality measures depend-
ing on what was the purpose of the trial and on the application. When performing general
clustering (with the aim of classifying records) I employed Homogeneity, Completeness
and V -measure [31], as well as Adjusted Mutual Information [37]. When possible, I did
the same when performing anomaly detection, and when the measures were not applica-
ble I reported other results. Finally, for the anonymization part, the literature contains a
plethora of measures for assessing the risk [38]. Among them, I chose two measures that
would be able to describe the re-identification risk as well as the utility loss caused by the
transformation: they are, respectively, the Estimated number of Correct Matches [7] and
the Global Certainty Penalty [40].

1.3 Table of contents
In this document, Chapter 1 contains the motivations behind my study and a description
of the state of the art in the field of clustering and data mining. Chapter 2 describes
the algorithm I chose to perform my studies, how it is prepared, how it executes and the
observations I made on its original implementation. Chapter 3 contains my contributions:
a method for designing f(θ), a new termination condition that allows the algorithm to
stop the execution once the cluster quality is too low, new labeling techniques, studies
on parallelization and a hierarchical distance that allows taking into consideration the
semantic properties of data that can be generalized in a hierarchy. Chapter 4 describes
the applications I considered for the algorithm, i.e. standard clustering, anonymization
and anomaly detection. Finally, Chapter 5 reports the results I’ve achieved and Chapter
6 wraps them up together with my conclusions and suggestions for future work.

5

6

Chapter 2

ROCK

Here, I will describe how the ROCK (RObust Clustering using linKs) [15] algorithm
proceeds, its execution phases and the functions it employs. Observations on complexity
and choice of parameters will also be made in this section.

2.1 Overview of ROCK

Typically, clustering can be classified in partitional or hierarchical: algorithms that per-
form partitional clustering subdivide the entire space of points in a fixed number of subsets,
points are then assigned to one according to their distance from the centroid of the subset;
hierarchical algorithms execute clustering by partitioning clusters or merging points until
a certain number of groups has been created (i.e. when the desired height on the den-
drogram has been reached) Partitional algorithms have the major drawback of requiring
the number of clusters before executing the clustering operation: finding this number is a
problem on its own, which is usually solved by using the elbow method, or similar proce-
dures. They are, however, very fast and have a much lower complexity than hierarchical
algorithms. In turn, hierarchical algorithms do not require the number of clusters to ex-
ecute, but are much more computationally expensive (agglomerative algorithms have a
complexity in the general case of O(n2 log(n)), while divisive algorithms have complexity
O(2n) in the worst case).

ROCK is an agglomerative hierarchical clustering algorithm that relies on splitting the
computation in clustering and labeling to handle large numbers of records. More precisely,
the clustering phase is a traditional agglomerative algorithm whose novelty lies in the
method used to choose the best clusters to merge at each iteration; only a sample of the
complete data set can be used when performing clustering, so that the overall complexity
of the algorithm is reduced without a major loss in the quality of final clusters. Figure
2.1 shows the operations performed by ROCK, together with the parameters that can be
tweaked at each step.

7

2 – ROCK

Data
preparation

Algorithm
preparation

Clustering
phase

Labeling
phase

Data Samples

Threshold

Link
matrix Clusters

Cluster
number

Clustered
data

Distance
measure

Unsampled data

Figure 2.1: The general workflow of ROCK is presented here.

2.2 Clustering paradigm

As introduced before, ROCK is agglomerative and hierarchical, which means that clusters
are built by merging together smaller clusters. To choose the best clusters to merge at
each iteration, the paper [15] introduces two new concepts: neighbors and links.

Given a point pi, a point pj is said to be a neighbor of pi if the following holds:

sim(pi, pj) ≥ θ (2.1)

where sim(pi, pj) is any similarity function that assumes values between 0 and 1,
with equal points having similarity 1.

A link lij is a path of length 2 between points pi and pj such that every pair of
consecutive points on the path are neighbors. link(pi, pj) describes the number of
common neighbors between pi and pj .

Intuitively, if link(pi, pj) is large, the points are well connected to each other and should
belong to the same cluster. This is advantageous compared to traditional approaches, that
rely on the pairwise similarity between points to decide which clusters should be merged: it
may happen that clusters contain outliers that are pairwise very close to each other, while
not representing the actual general behavior of their respective cluster. Using the number
of links instead of the pairwise similarity allows for a higher degree of generality and gives
the algorithm a more global view of relationships between points, thanks to the knowledge
of paths of length 2. In [15], length 2 was chosen for three reasons: firstly, computing
paths of length 2 is much more efficient than computing paths of higher lengths; secondly,
this length produces a tighter representation of how points are distributed compared to
higher degrees and, lastly, using higher degrees does not noticeably increase the amount
of information obtained.

8

2.2 – Clustering paradigm

2.2.1 Similarity function

ROCK uses a “similarity” function rather than a distance one, so that two items that are
equal to each other have similarity 1 and distance 0; since both are normalized, d = 1 − s
where d is the distance and s is the similarity. It’s important to note that the function
sim(pi, pj) introduced in Eqn. (2.1) can be any kind of distance function, even a non-
metric one: this allows ROCK to be used when it is not possible to define a purely numeric
distance function such as the Euclidean distance or the Manhattan distance. In order
to handle mixed datasets (i.e. datasets whose records both numerical and categorical
features), I chose Gower’s similarity coefficient [1] (shown below, in Eqn. (2.2)) as a
distance function for general datasets where it was not possible to use numeric distance
functions.

d(i, j) =
∑Nattr

k=1 δ
(k)
ij · d

(k)
ij∑Nattr

k=1 δ
(k)
ij

(2.2)

The similarity measure of two attributes is computed in different ways depending on
whether they are numeric or nominal, as shown here:

d
(k)
ij =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 −

⏐⏐⏐x(k)
i −x

(k)
j

⏐⏐⏐
maxh x

(k)
h

−minh x
(k)
h

in numeric case

0 if x
(k)
i = x

(k)
j

1 otherwise

}
in nominal case

(2.3)

δij is used to decide whether an attribute is valid or not, so that missing points are ignored:

δ
(k)
ij =

{
0 if x

(k)
i or x

(k)
j is missing

w(k) otherwise
(2.4)

w(k) is an arbitrary weight given to attribute k, such that ∑nattr
k=1 w(k) = nattr (in the

simplest case, w(k) = 1∀k). This allows the user to tweak how each attribute will influence
the clustering result: for example, given a set of personal data, it may be important to
highlight the marital status over the age. When all attributes are treated like nominal
values and weights are the same for all features, Gower’s similarity coefficient is equivalent
to Jaccard’s similarity.

Observation on the effect of missing values Eqn. (2.2) works well in a general
case, but has some issues when multiple attributes are missing: since features are skipped
altogether when they contain missing values, the similarity between two items may be
inflated in case the surviving attributes are equal. Examples 2.2.1 and 2.2.2 explain this
issue more thoroughly:

Example 2.2.1. Consider Table 2.1, where each Ai is a feature and “?” indicates a
missing value. Applying Eqn. (2.2) to records 1 and 2 will result in similarity 1, since
all attributes but one are missing, and the surviving one is the same for both tuples (the
same will happen for records 2 and 3). Compare now this to what happens if we apply

9

2 – ROCK

Eqn. (2.2) to records 1 and 3: the corresponding similarity will be 4/5 instead, lower than
the previous case. The similarity function will, therefore, consider the first two lines closer
to each other than the first and the last, when in reality it should not be possible to tell
given the large number of missing features.

Record A1 A2 A3 A4 A5

r1 a b c d e
r2 ? ? c ? ?
r3 b b c d e

Table 2.1: Example of problematic case with distance function.

Indeed, the solution to this issue depends on the use case: the analyst will have to take
into account this problem during the data preparation phase and choose how to approach
it. In my opinion, however, Eqn. (2.2) is still valid and is still behaving as it is supposed
to be. Moreover, trying to ignore (2.4) altogether has the opposite result:

Example 2.2.2. Consider the same situation as in Example 2.2.1. Here, using Eqn. (2.2)
will yield similarity 1 for records 1 and 2. Dividing by the total number of records instead
of the number of valid records would result in similarity 4/5 instead of 1.

Record A1 A2 A3 A4 A5

r1 ? b c d e
r2 ? b c d e

Table 2.2: Further example of problematic case.

Concluding, this is a drawback of Gower’s similarity that should be kept into consider-
ation when the dataset under study contains a large number of missing values. A possible
solution may be removing problematic records (maybe records that contain more than a
certain fraction of missing attributes), or by adding “dummy values” to missing values,
so that they will still be counted as “different” for the purposes of distance measurement.
An easy implementation of the latter approach for categorical attributes is setting missing
values to an alphanumeric ID equal to the ID of the record: in this way, the value will for
sure be different from any other feature. Missing numeric values may be filled with the
average, the median, or more advanced techniques that can avoid introducing bias.

2.2.2 Criterion function

Characterizing “good clusters” is of paramount importance because an accurate model
allows developing algorithms that can, given a suitable criterion function, maximize said
function to produce the best possible outcome. In this case, the objective is generating
clusters that have a high degree of connectivity (i.e. members of each cluster should have

10

2.2 – Clustering paradigm

many links among each other), so the idea would be maximizing the sum of link(pq, pr)
for all points pq, pr belonging to a single cluster, while minimizing the sum when pq and
pr belong to different clusters. The resulting criterion function is the following:

El =
k∑

i=1
ni ·

∑
pq ,pr∈Ci

link(pq, pr)
n

1+2f(θ)
i

(2.5)

where Ci denotes cluster i of size ni. Although it may seem that maximizing the number
of links by using a function like El = ∑k

i=1 ni ·
∑

pq ,pr∈Ci
link(pq, pr) would be enough to

find the best clusters, this is a naïve approach that leads to favoring large clusters over
small ones. Example 2.2.3 shows such a situation.

Example 2.2.3. Assume an iteration where it is necessary to find the best candidates
among three clusters: C1 contains 400 points, C2 contains 30 points and C3 contains 20
points. Each cell (i, j) in Table 2.3 contains the number of links between cluster Ci and
cluster Cj .

C1 C2 C3
C1 380 20 10
C2 20 28 15
C3 10 15 18

Table 2.3: Example: table of links between clusters

In this case, the naïve approach would choose clusters C1 and C2, even though the
number of links present between the two clusters is, proportionally, much smaller than the
number of links between C2 and C3 (respectively, 20/410 and 15/50).

This is the reason why the denominator in Eqn. (2.5) is introduced: n
1+2f(θ)
i is the

estimated number of links present in cluster Ci with size ni. f(θ) is a function dependent
on the data set and on the kind of clusters desired by the user, and such that each point
belonging to Ci has approximately n

f(θ)
i neighbors in Ci. Assuming that points outside Ci

have very few links in Ci (an assumption that improves as the algorithm progresses), each
point in cluster Ci generates n

f(θ)
i · n

f(θ)
i = n

2f(θ)
i links, one for each pair of its neighbors.

Given that cluster Ci contains ni such points, the overall expected number of links will be
ni · n

2f(θ)
i = n

1+2f(θ)
i , i.e. the denominator of Eqn. (2.5).

Estimating f(θ) is not easy, and in [15] the choice fell on Eqn. 2.6: this decision was
made because the paper focused mostly on basket case data, and this function reflected
well that particular application.

f(θ) = 1 − θ

1 + θ
(2.6)

In [15], it is affirmed that that finding a good f(θ) is not easy; however, in case clusters
are well-defined, an inaccurate but reasonable estimate for f(θ) may work well in practice.
Moreover, the fact that every cluster is normalized by n1+2f(θ) should mean that an error
in the estimation of f(θ) should influence all clusters, thus reducing the bias.

11

2 – ROCK

In my tests, I observed that when records are not well distinguishable this is not true
and that performances drop. In Chapter 3 I’ll introduce methods for defining a valid
f(θ), while in Chapter 5 I’ll show how poor choices for f(θ) may lead to underwhelming
clustering results when data is not well defined.

2.2.3 Goodness function

To characterize the best clusters a criterion function was introduced in [15]: the objective
of this function is maximizing the number of links between points belonging to the same
cluster while keeping the number of cross-cluster links as low as possible. As already said,
choosing a function that simply maximizes the number of links is a naïve approach: there
would be a very strong bias towards large clusters, which become too attractive and start
“absorbing” smaller clusters. Thus, it is necessary to normalize the total number of links
between two clusters by their size. This is achieved through the goodness measure, a score
given to every pair of clusters and that represents how close they are to each other: the
pair with the largest goodness during each iteration will be merged. In [15], the goodness
measure is defined as follows:

g(Ci, Cj) = links[Ci, Cj]
(ni + nj)1+2f(θ) − (ni)1+2f(θ) − (nj)1+2f(θ) (2.7)

The threshold θ is, together with the desired number of clusters k, one of the two param-
eters that determine how the clustering algorithm will behave. The choice of θ should be
made by the user: choosing a value very close to 0 will often lead to a very large cluster
that contains the majority of records, with some outliers left aside depending on the data
set. Choosing a value of θ that is too close to 1, instead, will lead to an early stop in
the clustering operation, which often will terminate before reaching the desired number
of clusters: this happens because at a certain point there will be no more cross-links (i.e.
links that connect two clusters), thus records will be contained by connected components
only.

This is the principle upon which QROCK [10] works: this algorithm skips completely
the computation of the goodness function, relying on the threshold only to perform clus-
tering. This results in a much shorter execution time, but, at the same time, the accuracy
of the final result degrades noticeably for some data sets. This issue is caused by the
fact that looking for perfectly disjointed connected components is not always the right
approach: indeed, very often clustering produces better results when cross-links are still
present, since perfectly disjoint components are reached when the only remaining clusters
are outliers. In short, looser clustering may lead in some cases to better results than what
can be achieved considering connected components only.

In the following sections, I’ll show the different phases of ROCK and how it adapts
hierarchical clustering to employ Eqn. (2.5) as a criterion for choosing the best clusters
to merge at each iteration.

12

2.3 – Data preparation

2.3 Data preparation
The data preparation phase is not strictly a part of ROCK: indeed, it simply consists in
parsing files in such a way that the ROCK algorithm can handle them. Specifically, each
feature is classified as either categorical or numerical and then sampling is performed:
a subset of the entire data set is used during the clustering phase, and the remaining
portion will be handled by the labeling step. The number of samples to be chosen has
a large influence on the quality of the final result, but it is a bottleneck due to memory
constraints: if n is the number of chosen samples, to perform clustering it is necessary to
build a matrix of size n2, which is extremely costly. This subject will be analyzed more
thoroughly in section 2.4.1.

Once samples have been extracted, the link matrix ML used during the clustering
phase is built: firstly, the similarity matrix MS that contains the pairwise similarity of
each couple of points is created using Eqn. (2.2); the neighbor matrix MN is then built by
setting all the entries of MS so that (i, j) = 1 if sim(i, j) ≥ θ and 0 otherwise. Finally,
ML is obtained by squaring MN : this will produce a matrix that contains the number of
undirected paths of length 2 that have points i and j as their ends, and such that all the
points belonging to a path are neighbors. The need for building matrices that contain all
possible pairs means that the complexity in memory is O(n2), where n is the size of the
sample set; this explains why it is not possible in general to perform clustering on the
entire data set, and why labeling is needed.

Example 2.3.1. To better explain this phase, consider a very simple dataset S that
contains the points A, B, C, D. The pairwise similarity between each of these points is
shown in Figure 2.2a and in Table 2.4. The value of the threshold is θ = 0.5. During
the data preparation step, the algorithm will first build MS by applying the distance
function defined in Section 2.2.1, to obtain Table 2.4. Once MS has been built, entries
with similarity lower than θ are suppressed, while the remaining ones are set to 1 to obtain
MN shown in Table 2.5 (also see Figure 2.2b). Finally, MN is squared to generate ML,
shown in Table 2.6. This last matrix will then be fed to the clustering algorithm, which
will then use it to compute the goodness function.

A B C D
A 1 0.6 0.1 0
B 0.6 1 0.7 0.2
C 0.1 0.7 1 0.8
D 0 0.2 0.8 1

Table 2.4: MS(S).

A B C D
A 1 1 0 0
B 1 1 1 0
C 0 1 1 1
D 0 0 1 1

Table 2.5: MN (S).

A B C D
A 2 2 1 0
B 2 3 2 1
C 1 2 3 2
D 0 0 2 2

Table 2.6: ML(S).

Due to the limitations of my machine, it was not possible to employ more than 5000
samples for my tests: depending on the size of the data set, I would very often get memory
errors. In most cases, the time required to build the link matrix was still much shorter
than both clustering and labeling (if necessary): this means that – given a distributed
matrix – it would be possible to scale better and achieve a better accuracy in clustering.

13

2 – ROCK

A

B

C

D

0.6

0.70.8
0.1

0.2

0
1

(a) Starting condition.

A

B

C

D

1

11

2

(b) Arcs with similarity < θ are
removed, surviving arcs are set to
1.

The size of the sample set, in fact, influences the final clustering result heavily, mostly by
reducing the number of outliers produced by the algorithm.

In IROCK [33], the neighbor matrix is not built at all: similarities smaller than θ are
still suppressed, but the link matrix is built by squaring the similarity matrix itself; this
means that the resulting matrix will not contain integers anymore: this is done to include
the similarity measure proposed by the paper. I didn’t employ that similarity because it
was specific to text analysis on documents; when using the standard ROCK procedure,
however, results present negligible differences. I decided to keep the original approach to
better compare my results with the original implementation.

2.4 The algorithm

After the first processing step, an additional data structure must be built before the exe-
cution starts: since this is an aggregative hierarchical algorithm, clusters initially contain
only a single element and during each iteration two of them are merged together. To
this end, the goodness (2.7) of each pair of clusters is computed and a heap that contains
the pair (goodness, other_cluster) together with all other pairs is created; this list is ac-
companied by another list that contains the points that belong to the cluster. After this
last preliminary step is executed, the actual algorithm described in Section 2.4.1 begins.
Figure 2.3 shows all execution steps.

2.4.1 Clustering phase

The clustering phase is the core of ROCK and the only mandatory part, given an im-
plementation that can bypass the bottleneck caused by the memory occupancy. The
operations performed by the algorithm are shown in Figure 2.3 and in Algorithm 2.4.1:

Let S be a sample of the original data set

14

2.4 – The algorithm

Algorithm
preparation

Build cluster
heaps

Clustering
complete?

Find best
candidates

Start

End

Merge best
candidates

Update
goodness
measure

Yes

No

Figure 2.3: A flowchart of ROCK is presented here, showing the data preparation phase
and the construction of data structures.

Let k be the minimum number of clusters
link := compute_links(S)
for all s ∈ S do

q[s] := build_local_heap(link, s)
end for
Q := build_global_heap(S, q)
while size(Q) ≥ k do

u := extract_max(Q)
v := max(q[u])
delete(Q, v)
w := merge(u, v)
for all x ∈ q[u] ∪ q[v] do

link[x, w] := link[x, u] + link[x, v]
delete(q[x], u); delete(q[x], v)
insert(q[x], w, g(x, w)); insert(q[w], x, g(x, w))
update(Q, x, q[x])

end for
insert(Q, w, q[w])
deallocate(q[u]); deallocate(q[v])

end while

compute_links(s) produces the link matrix defined in Section 2.3. build_local_heap

15

2 – ROCK

and build_global_heap represent the preliminary step described at the start of this
section. Heaps are used for improving performance: there is a local heap for each cluster
and a global heap that contains the top of each local heap. Each local heap contains all
the clusters whose goodness measure computed with respect to the “heap owner" is larger
than 0.

The merge step is what characterizes ROCK as a hierarchical algorithm: indeed, each
iteration can be seen as a level in the dendrogram and, in principle, the algorithm may
end at any step (this is the reason for using k). During each iteration, the best clusters to
merge are found looking at the top of the heap; a new cluster that combines the elements
of the two best clusters is formed and the goodness measure for every involved cluster is
updated. Finally, heaps are updated with the inclusion of the newest cluster. The other
possible termination condition is reached when mergers would not increase the number of
links inside a cluster, i.e. all clusters are already well distinct and correspond to connected
components [10]: no goodness measures are larger than 0. Very importantly, this does
not mean that the optimal result has been reached: in fact, this point may be reached
after a single cluster absorbed most other clusters. This situation usually occurs when the
threshold is close to 1 and, while choosing a suitable number of clusters may help prevent
it, it may still occur when it’s not as high.

The update(Q, x, q[x]) step consists in computing the value of the goodness mea-
sure of clusters w and x: this is done for each cluster involved in the merge, i.e. for each
cluster present in the similarity matrix of either cluster u or cluster v. This is done by
computing the sum

links(Ci, Cj) =
∑
i∈Ci

∑
j∈C2

link(i, j) (2.8)

After the clustering phase terminates labeling may be executed in case a sample was taken.
If the entire dataset was clustered, no further action is performed.

Example 2.4.1. To better explain the goodness update phase performed by the step
update(Q, x, q[x]), consider the Link matrix obtained in 2.3.1 and reported here in
Table 2.7 for simplicity. Suppose the iteration step requires to compute the goodness of
two clusters C1 and C2, such that C1 = {A, B} and C2 = {C}. Given Eqn. (2.7), to
obtain g(C1, C2) it’s necessary to first compute the number of links between C1 and C2:
this can be done by finding the intersection of the rows corresponding to points A and
B, and the column corresponding to point C. In this case, the cells are (A, C) = 1 and
(B, C) = 2, so the total number of links is 3. With f(θ) = 1−θ

1+θ = 1/3, the final value of the
goodness is obtained by inserting the values in Eqn. (2.7), whose result is 1.452468
This is the value that will be assigned to both cluster C1 and cluster C2.

2.4.2 Labeling phase

The labeling phase attempts to assign each unlabeled point to a cluster or marks the point
as an outlier in case this were not possible. To choose the best cluster for each point, a
subset of size Li = min(|Ci|, L), where |Ci| is the cardinality of Ci, is extracted from
cluster Ci and the number of neighbors of the unlabeled point present in the L points
is computed. Chapter 5 contains in-depth observations on the result of choosing one of

16

2.4 – The algorithm

A B C D

A 2 2 1 0
B 2 3 2 1
C 1 2 1 2
D 0 0 1 2

Table 2.7: Link matrix of S with, highlighted, the rows and column affected in Example
2.4.1.

two different methods, sequential sampling or random sampling. This number Ni is then
normalized by the number of points in the subset, to once again normalize the score by
the expected number of neighbors:

ri = Ni

(|Li| + 1)f(θ) (2.9)

where |Li| is the number of points in subset Li of cluster Ci. f(θ) is used to estimate the
number of links present in a cluster of size |Li|. Once the value ri has been computed
for all clusters, the highest value is chosen and the point is assigned to the corresponding
cluster. The sequence of operations performed for every unlabeled point is shown in Figure
2.4.

In [15], labeling is not described thoroughly, so I implemented three different versions:
L0, where only the points belonging to the cluster at the start of the labeling operation
(L0 for simplicity) are considered; L1, where any points that are added to the cluster may
be employed in later iterations and L3, where outliers are considered as valid clusters and
may be used during further labeling iterations.

Going back to the sampling phase, it’s important to note that the size of the sample
set influences the result of the labeling phase: indeed, if the sample set is very large,
there will be more potential “cluster seeds” that can be used by unlabeled points to get
assigned to. Ideally, the labeling phase shouldn’t be necessary and clustering should be
done on the entire dataset. As already said, however, this is not possible due to the large
complexity in time and memory of the clustering phase. The size of L has a large effect on
both execution time and accuracy, since using 40 points instead of 100 results in shorter
execution time but, at the same time, more outliers. This is caused by the fact that
taking more points from each cluster gives more “chances” to each unlabeled point to find
at least a single neighbors in at least a cluster and when L is small, this chance is much
smaller. The value of L is another parameter that should be chosen on a use case basis:
it’s a tradeoff between the cost of handling more points for each cluster (which results in
a longer execution time) and obtaining a smaller number of outliers. Further observations
on the effect of labeling will be made in Section 5.2.

Labeling is less accurate than clustering because each point is assigned considering
only a subset of each cluster, and it does not use links at all: only pairwise similarity
is employed in this phase. However, the clusters produced in the hierarchical phase are

17

2 – ROCK

usually very homogeneous. This means that taking only a sample from each cluster does
not result in a big loss in accuracy, so the gain in performance largely offsets this drawback.
When studying the literature, ROCK was considered to be a fully hierarchical clustering
algorithm with complexity n2 because of the matrix cost, so the labeling phase was very
often forgotten. In my opinion, labeling is a very interesting feature of ROCK since it
allows achieving good performances without the need for very large distance matrices.

Start

Any cluster
left?

Select
point i

Select a
cluster

Extract up
to L points

Compute
r

Mark point
as outlier

End

Yes

No

Any
r > 0?

Assign point
to cluster
with best r

Yes

No

Figure 2.4: Here is shown the inner loop in the labeling phase, where it is decided whether
the unlabeled point will be assigned to a cluster or not.

2.4.3 Complexity

Consider the following nomenclature:

• N : number of elements in the complete dataset

• n: number of elements in the sample dataset

• k: minimum number of clusters

• l: number of points considered from each cluster to perform labeling

• t: iteration counter

• z: size of the largest cluster

The most expensive operations performed by ROCK are generating the link matrix, up-
dating the similarity lists and performing labeling.

Building the similarity matrix is an operation with complexity O(n2), while the multi-
plication needed to generate the link matrix has complexity O(n3) (or lower, depending on

18

2.4 – The algorithm

the algorithm used to perform the operation). Updating the similarity has a complexity
that varies greatly depending on the size of the largest cluster. The snippet of code below
has complexity O((n − t) · z + t + z) (where cluster_y is the cluster that has been built
during the current iteration). In the worst case, all points will be assigned to a single
cluster so that, at iteration t, its size will be n − t = z. The final complexity will then
become O((n − t) · (n − t) + (n − t))), which is close to quadratic in case t is small enough.
Furthermore, this step must be repeated once for each iteration, therefore another factor
n − k needs to be added to the equation to obtain

O(((n − t) · z + t + z) · (n − k)) ≈ O((n · n + n) · (n)) ≈ O(n3) (2.10)

100 300 500 700 900 1100 1300 1500 1700 1900
z

1

2

3

4

5

6

7
Nu

m
be

r o
f o

pe
ra

tio
ns

1e9

Figure 2.5: Complexity as function of z (size of the
largest cluster) for 2000 samples.

Finally, labeling is performed
on the entire dataset, so the num-
ber of iterations is fixed and equal
to N − n, and each iteration con-
tains the computation of neigh-
bors present in each cluster: in
the worst case, there will be n
clusters (this would be a patho-
logical case where each point is
completely different from all other
points). To compute the number
of neighbors in a cluster, the num-
ber of iterations is l (in case there
are s clusters, l = 1 ∀si ∈ s).
Here, the worst case complexity
is reached when all clusters have
size l, which means that on aver-
age n/l clusters must be consid-
ered in each iteration. In this situation, the complexity is O(N · l). This gives an overall
complexity of

O(N · l + n3) (2.11)

This means that, while on average labeling dominates the cost of clustering, it may happen
that in the worst case and with a large sample the clustering operation may be more
expensive enough to be comparable to the labeling step. The complexity as a function of
the size of the largest cluster is shown in Figure 2.5.

1 for c lus ter_x in sim (c lus ter_y) :
2 for i i in c lus ter_x . r e co rd s :
3 for j j in c lus ter_y :
4 n_links = sum(l ink_matrix [i i] [j j])
5 goodness = compute_goodness (n_links ,
6 len (c lus ter_x) ,
7 len (c lus ter_y))

19

2 – ROCK

In the next section, I will explain the improvements I made to ROCK and how they fix
some of the issues described so far.

20

Chapter 3

My contributions

In this section, I will describe the reasoning behind my improvements to ROCK, what
they do and how they can improve the behavior of the original algorithm in various appli-
cations. Firstly, in Section 3.2.1 I present an empirical method for designing a function of
θ able to handle datasets whose records are not well distinct from each other. After doing
so, in Section 2.2.3 I introduce a completely new termination condition for the clustering
phase, that allows the algorithm to stop once merging clusters becomes counterproduc-
tive, providing an estimate of the number of clusters that will be needed. Section 3.2.3
reports the studies I made to understand whether a parallel execution in the code could
be introduced, Section 3.2.4 describes the different versions of labeling I developed and
Section 3.2.5 describes the use of weights in the algorithm. Hierarchical distance is de-
scribed in Section 3.3. It is a stand-alone concept: it can be used the standard ROCK
implementation, or in any other clustering algorithm that can handle arbitrary distance
measures, so it is not part of eROCK.

3.1 Motivation

While I was performing tests with ROCK I noticed that at times clusters were extremely
asymmetric: a single cluster contained most points in the dataset, while few other outliers
were left out in clusters that contained only a single point and results didn’t improve by
changing the threshold. This was especially noticeable with datasets such as the adult
or the IHIS one, while it didn’t happen when I was testing the agaricus-lepiota dataset.
This was a very large issue when the purpose of clustering was performing anonymization:
having a very large cluster to anonymize reduces the utility of the result since more records
will be taken into consideration to perform generalization and suppression. To solve this
issue, I focused on how the algorithm handles its parameters, trying to introduce further
ways to tweak the computation of parameters. GDSTOP modifies the execution means of
the algorithm so it is a somewhat more radical addition to the original program.

21

3 – My contributions

3.2 eROCK (enhanced ROCK)
This section describes the studies I made on ROCK, i.e. improving f(θ), introducing
GDSTOP, studying parallelization, modifying labeling and weighing parameters.

3.2.1 Design of f(θ)
As explained in Section 2.2.2, f(θ) has the purpose of estimating in a heuristic way the
number of links contained by cluster Ci (a quantity needed to compute the value of the
goodness) without the overhead required in case the number of links had to be evaluated
exhaustively. In the original paper, [15], Eqn. 3.1 was chosen to perform this task, with
the reasoning that it can describe well the market basket case.

f0(θ) = 1 − θ

1 + θ
(3.1)

During my experimentation with ROCK, I noticed that, while the basic algorithm worked
well on some datasets (generating homogeneous and pure clusters), it did not perform quite
as well in other cases; this was especially evident with datasets whose records were not well
distinct from each other (mostly datasets that contained personal data, such as the Adult
data set from [21], or the IHIS dataset [29]). In these cases, a single cluster contained
most items in the data set, with some outliers left out: this may be the desired behavior
for anomaly detection, but it is a concern if the objective is performing anonymization.
In the latter case, to achieve a high utility clusters must be homogeneous; a large cluster
that contains the majority of records is too heterogeneous and the resulting equivalence
classes will need more transformations to achieve k-anonymity. Moreover, whenever this
imbalanced situation occurred, many points were left out without a cluster.

My intuition was that large clusters were overly favored when they were considered as
merge candidates because the normalization function wasn’t able to score clusters inde-
pendently of their size, which is the idea behind the goodness measure. Indeed, since large
clusters tend to have many links between them, their score should be normalized by the
number of links expected to be found between the clusters. Therefore, if two clusters have
more links between each other than all other clusters, but have fewer links than what is
expected to be found in clusters of their size, they should be penalized. Often, this did not
happen with Eqn. (3.1): the largest cluster remained the most attractive one even when
further mergers reduced its quality. To solve this problem, the idea I had was changing
the normalization performed by the denominator in such a way that it would be able to
perform better in these more demanding cases. To my knowledge, this approach was not
considered in other variations of ROCK: the ones I found still use (3.1).

Initially, I approached the issue of choosing a new f(θ) thinking that what I needed to
obtain a larger denominator was simply a larger exponent: my first attempts suggested
functions such as f(θ) = n · θ n > 0 as a simple (and incorrect) solution to the problem.
The issue with this kind of functions is the fact that I didn’t consider that two constraints
must be satisfied by any valid f(θ): by definition (see Section 2.2.2), f(θ) is a function
such that each point belonging to a cluster Ci has nf(θ) neighbors in Ci; thus, when θ = 1,
the only neighbor of a point pi is the point itself (since nf(θ) = 1). Conversely, when θ = 0

22

3.2 – eROCK (enhanced ROCK)

every point in Ci will have ni neighbors and nf(θ) = n. This means that f(θ) must be
defined in [0,1] and should be decreasing in the range [0,1].

My first solution did not satisfy either constraint: given a n large enough, a point in a
cluster of size n could have more than n neighbors in the cluster; other than that, using a
function that increases in the range [0,1] leads to inconsistent results, since for large values
of θ the estimated number of neighbors would be, would have, impossibly, larger than the
estimate for low values of θ.

In the second iteration, I designed a series of functions of θ that satisfied the two
constraints and were able to handle homogeneous data sets more effectively: all of them
share the same trait of remaining close to 1 much longer than Eqn. (3.1). They also all
depend on an additional parameter t ∈ [0,1] that allows the user to tweak the slope
according to the use case. Functions f1(θ), f2(θ), f3(θ) will be referenced throughout my
report as I performed most of my tests with all of them.

f1(θ) =
1
t · (1 − θ)

1
t − θ

t ∈ (0,1] (3.2)

f2(θ) = cos(θ · π

2)1−t t ∈ [0,1] (3.3)

f3(θ) = (log2(2 − θ))1−t t ∈ [0,1] (3.4)

Figure 3.1 shows the behavior all the functions introduced above, given t = 0.85, while
Figure 3.2 shows the behavior of the same functions with t = 0.5. Table 3.1 presents
an excerpt of the values of f(θ) with t = 0.85. It’s important to note that f(θ) is an
exponent in Eqn. (2.7), so if it increases its effect on the denominator will be very large
(see Example 3.2.1). This proved to be very effective at preventing large clusters from
absorbing small ones and improved the results when clustering data sets such as the UCI
adult one. Yet another example of the huge difference caused by changing f(θ) is shown in
Figure 3.3, where the behavior of the goodness function itself is shown. In the figure, on
the x and y axes lie n1 and n2 (both in the range [10,20]), while on the z-axis the value of
the goodness function when the algorithm is using f0(θ) is shown. Interestingly, the value
of the goodness when using f0(θ) is so much larger than the other cases that the function
looks like a 2D “sheet”. Figure 3.4 shows that this is due to the scaling of the plot.

Example 3.2.1. When computing the value of the goodness measure, a cluster Ci will
have size ni. ni will be raised to power g = 1+2f(θ) as per Eqn. (2.7). Given θ = 0.70, the
value of the exponent g will be 1 + 2f0(0.70) = 1.1622 for f0(θ) and 1 + 2f1(0.70) = 2.573
for f1(θ). This is a huge change: the exponent more than doubles so, instead of a slight
increase, the denominator is more than squared as a consequence.

It is important to note that the choice of f(θ) should be made while keeping the in-
tended use case in mind: for example, when performing fraud and anomaly detection,
obtaining balanced clusters has a much lower importance than being able to identify and
isolate outliers; when studying how records are grouped or when performing anonymiza-
tion, however, obtaining homogeneous clusters is, instead, more significant. From practical
experience, however, using stronger functions produced better results in general, and has

23

3 – My contributions

the additional advantage of reducing the execution time and making the worst case less
likely: since large clusters are heavily penalized, the value of z remains “manageable”,
thus reducing the complexity.

θ f1(θ) f2(θ) f3(θ) f4(θ)
0.70 0.0811 0.5405 0.7865 0.8039
0.85 0.1765 0.7407 0.8644 0.8883

Table 3.1: Value of the exponent with different f(θ) and values of θ.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

f(
)

f0 ()
f1 ()
f2 ()
f3 ()

Figure 3.1: Some different behaviors of f(θ)
are shown here, given t = 0.85.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

f(
)

f0 ()
f1 ()
f2 ()
f3 ()

Figure 3.2: A different example of the differ-
ent behaviors of f(θ), here with t = 0.5.

3.2.2 GDSTOP

In the original paper [15], there were two possible conditions for the algorithm to stop
iterating: either the number of clusters specified by the user was reached (ROCK is a hi-
erarchical clustering algorithm), or no cross-links could be found between any two clusters
(so there was not a single connected component that spanned the entire similarity graph).
There are two major problems with this approach:

• It is very hard to decide the number of clusters before starting the clustering oper-
ation. This is a common issue among clustering algorithms.

• When clustering some data sets, cross-links may remain present for the entire dura-
tion of the clustering phase, thus leading to cluster mergers that worsen the clustering
accuracy.

The first point can be described by the question “at what height in the dendrogram should
I stop to obtain the best clusters?” for hierarchical algorithms, or “how many centroids
should I generate before starting the execution?” for partitional algorithms: to answer to

24

3.2 – eROCK (enhanced ROCK)

n1

1e1
1.0 1.2 1.4 1.6

1.8
n2

1e1

1.0
1.2

1.4
1.6

1.8

go
od

ne
ss
(n

1,n
2) 1

e
4

0.5
1.0
1.5
2.0
2.5
3.0

Figure 3.3: Behavior of the goodness function
with different f(θ). Here, f0(θ) is in grey,
f1(θ) is in red.

n1

1e1
1.0 1.2 1.4 1.6

1.8
n2

1e1

1.0
1.2

1.4
1.6

1.8

go
od

ne
ss
(n

1,n
2) 1

e
7

1
2
3
4
5
6

Figure 3.4: Close in of the goodness function
with f1(θ), f2(θ), f3(θ) respectively in red,
green and blue.

either question, the elbow method or some equivalents is often used. This means observing
the variance presented by the clusters as a function of the number of clusters: the point
at which the increase is variance is not as large as in the previous will be the “elbow” and
will define the number of clusters that should be used.

In the following section, I introduce a new termination condition to add to the two
above, called GDSTOP. Using GDSTOP, the clustering algorithm terminates once the
maximum goodness value is lower than a certain threshold: this means that the algorithm
has a mean for understanding whether further merges would worsen the result or not.
This is especially helpful in a preliminary study of the data set: since this operation is
confined to the clustering phase, it is possible to repeat this operation multiple times and
analyze the clustering result, without performing labeling. The results obtained in this
way may give a good insight into how many clusters should be chosen when the labeling
phase is executed. It can be seen as a “soft” version of the termination reached when all
clusters are distinct: in this case, although links between clusters may still be present,
their number is low and mergers may be counterproductive.

Choosing the termination value

The choice of the termination value influences heavily the moment when the algorithm
stops clustering, and consequently the quality of the final clusters. Initially, my approach
was to terminate the execution once the goodness was lower than the threshold:

fg(θ) = θ (3.5)

However, I noticed that this approach failed when the threshold was close to 1 since, de-
pending on what f(θ) is, the optimal result may require further merging operations. Even
with lower values of θ, however, clustering would often stop too early to reach a “good”
number of clusters, so I looked for a better definition. Once again, this happened with

25

3 – My contributions

problematic clusters. In a similar fashion to what I did with f(θ), I identified some con-
straints that fg(θ) must satisfy: it must depend on θ, it must be defined in the range [0,1]
and it should decrease monotonically in the range [0,1]. Additionally, it should result in a
lower bound for gmax than Eqn. (3.5). I needed the first constraint to avoid increasing the
number of parameters required by the algorithm. Having a decreasing function is needed
to balance the larger number of links that will be present when the value of θ is low: if
the threshold decreases, the number of links will increase and to counteract this behavior
the execution should stop earlier.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8
f g
(
)

Figure 3.5: The behavior of fg(θ) is shown in the pic-
ture above.

Functions similar in shape to
1 − θ satisfied the requirements,
but the lower bound they pro-
duced was too large. Eventually, I
decided to use the following equa-
tion to produce the termination
value:

fg = 1 − θ
1

1−θ + f(θ)
(3.6)

where f(θ) is the same equa-
tion used to compute the good-
ness (e.g. those defined in sec-
tion 3.2.1). This function was able
to produce good results for most
data sets and, unlike what happened with previous functions, without the issue of stop-
ping too early; in some cases, execution stopped when it reached the optimal number of
clusters (agaricus-lepiota, dummy). Figure 3.5 shows the behavior of Eqn. (3.6).

When performing tests on this approach, however, I noticed that GDSTOP does not
always yield optimal results. It may happen that the clustering phase will end before
reaching the optimal number of clusters: this means that Eqn. (3.6) is not appropriate
for any dataset. When this happens, a good approach is observing the number of clusters
produced by GDSTOP and then force the algorithm to use the standard termination with
k equal to this value, or lower than it. The advantage of GDSTOP is having a good idea
of the number of clusters that should be used by the clustering algorithm on a certain
dataset: indeed, in some cases datasets with similar sizes required wide range of different
values of k (e.g. around 100 for the adult dataset, 30 for the IHIS dataset, 250 for the
clickfraud dataset, 9 for the dummy dataset). Regardless of the quality of the result,
GDSTOP is a simple indication of the number of clusters that can be used, but it does
not replace the termination with k: after all, the exact same result may be achieved by
setting k to be the same number of clusters produced using GDSTOP. Still, it remains
a useful tool for estimating the cluster number before more in-depth analysis and a finer
tuning of the number of clusters.

In my opinion, the best procedure consists in running the clustering algorithm once

26

3.2 – eROCK (enhanced ROCK)

with k = 1 to understand the minimum number of clusters that may be formed given the
parameters chosen in the run and then running again the algorithm using GDSTOP: in
this way it is possible to obtain a range of possible values of k, with the number of clusters
produced using GDSTOP being the upper bound and the number of clusters present when
k = 1 as the lower bound. In some cases, the result may not be optimal, however the need
for only two runs to obtain a good estimate of the number of clusters is very encouraging
given how many more runs are often needed by techniques such as the elbow method.

Observations on the termination condition

As explained in Section 2.4.1, there are two possible termination conditions in the original
algorithm. GDSTOP acts as a “fuzzy” version of the termination caused by the threshold:
depending on the value of the maximum goodness during the last iteration it is possible
to understand what caused the algorithm to stop. In fact, if GDSTOP is not in use and
the goodness is 0 then clusters are completely distinct, with no links connecting any two
clusters; when the number of clusters reaches k, the value of the goodness is usually larger
than 1 and further merging operations could be performed (this does not mean that they
would necessarily improve the result). When GDSTOP is used and the number of clusters
is small enough, the goodness will be very small but still larger than 0. The value of the
goodness depends heavily on what θ was.

3.2.3 Introducing parallelization

While trying to improve the performances of the algorithm, I studied how parallel execu-
tion could be introduced. Unfortunately, ROCK is intrinsically sequential: each iteration
depends on the result produced by the previous step both during clustering the clustering
phase and during the labeling phase. I identified four phases that may be executed in par-
allel: performing matrix multiplication, searching the best cluster, updating the goodness
measure and labeling.

For what concerns the first, the computation of the link matrix can easily be paral-
lelized by distributing operations on different nodes.

For what concerns clustering, it is still possible to introduce some degree of paralleliza-
tion within each iteration, although to a limited degree. The research of the maximum
goodness can be parallelized by splitting the collection of heaps and distributing it on
different nodes; similarly, once the merger has been completed, the goodness update for
all involved clusters can be performed in parallel since operations on each pair of clusters
are independent of each other. The code that performs the search is shown below: the
first snippet shows the standard operation, where each cluster in the heap is studied by
the processor to find what the maximum goodness is over the entire set of clusters, while
the second presents the parallel version.

1 def f i nd_bes t_c lu s t e r s (c luster_heap) :
2 # I n i t i a l i z e v a r i a b l e s
3 best_key = −1
4 best_simi lar_key = −1

27

3 – My contributions

5 best_goodness = 0 .0
6 for index in c luster_heap :
7 c l u s t e r = cluster_heap [index]
8 # Find the top o f the heap
9 max_gd = c l u s t e r . sim_map . goodness

10 best_candidate = c l u s t e r . sim_map . index
11 # Update b e s t goodness i f needed
12 i f best_goodness < max_gd :
13 best_goodness = max_gd
14 best_key = index
15 best_simi lar_key = best_candidate
16 # Return IDs o f the b e s t c l u s t e r s
17 return (best_key , best_simi lar_key)

In the parallel case, the cluster heap is distributed over a pool of nodes, each of which
executes the code described in the fully sequential case on a fraction of the heap. Here,
the pool function returns a list that contains the best cluster according to a node and
the corresponding goodness. After the computation has been completed, the actual best
goodness is found by calling the max function and extracting the corresponding keys.

1 def f ind_best (c luster_heap) :
2 # I n i t i a l i z e v a r i a b l e s
3 best_key = −1
4 best_simi lar_key = −1
5 best_goodness = 0 .0
6 for index in c luster_heap :
7 # S e l e c t curren t c l u s t e r
8 c l u s t e r = cluster_heap [index]
9 # Find the top o f the heap

10 max_gd = c l u s t e r . sim_map . goodness
11 best_candidate = c l u s t e r . sim_map . index
12 # Update b e s t goodness i f needed
13 i f best_goodness < max_gd :
14 best_goodness = max_gd
15 best_key = index
16 best_simi lar_key = best_candidate
17 # Return IDs o f the b e s t c l u s t e r s
18 return (best_key , best_simi lar_key) , best_goodness
19
20 def p a r a l l e l _ f i n d _ b e s t _ c l u s t e r s (c luster_heap) :
21 # D i s t r i b u t e c l u s t e r s among nodes
22 c lus te r_groups = s p l i t _ c l u s t e r s (c luster_heap , number_nodes)
23 max_gd = 0
24 # Find b e s t pa i r o f c l u s t e r s in a subgroup
25 (bk , bsk) , gd = pool (f ind_best , group)

28

3.2 – eROCK (enhanced ROCK)

26 # Find b e s t c l u s t e r s o v e r a l l
27 max_gd = max(gd)
28 best_key = bk [gd . index]
29 best_simi lar_key = bsk [gd . index]
30 # Return IDs o f the b e s t c l u s t e r s
31 return (best_key , best_simi lar_key)

Labeling is more problematic: since the cluster set is updated at the end of each
iteration by adding a point to an already present cluster, or by creating a new cluster
that contains an outlier, introducing parallelization cannot be done in a simple way: in
fact, choosing to process unlabeled points in batches of a generic size n would lead to an
unacceptable drop in precision, since a large part of the batch would not see the “current”
situation, thus leading to results that are biased towards what was the situation before
the start of the execution. The following snippet shows how the labeling operation is
performed during the sequential case.

1 def labe l_data (c l u s t e r s , complete_data , th , l_po ints) :
2 for po int in unlabe led_points :
3 best_c = −1
4 max_ratio = 0 .0
5 for index in o r i g i n a l _ c l u s t e r s : # For L_2
6 # fo r index in c l u s t e r s : # For L_3
7 n_neighbors = 0 .0
8 c l u s t e r = c l u s t e r s [index] . r e co rd s
9 # Find L

10 chosen_points = min ([len (c l u s t e r) , l_po ints])
11 for po int in c l u s t e r [: chosen_points] : # S e q u e n t i a l sampling
12 n_neighbors += f ind_neighbors (
13 complete_data [po int] ,
14 unlabeled_point , th)
15 r = norma l i za t i on (n_neighbors ,
16 chosen_points , th)
17 i f r > max_ratio :
18 max_ratio = r
19 best_c = index
20 i f best_c in c l u s t e r s . keys () :
21 # Add po in t to c l u s t e r
22 c l u s t e r s [best_c] . r e co rd s . append (idx)
23 else :
24 # Create a new c l u s t e r t h a t con ta ins the po in t
25 next_key = max(c l u s t e r s . keys ()) + 1
26 c l u s t e r s [next_key] = RockCluster ()
27 c l u s t e r s [next_key] . r e co rd s = [idx]

It is possible to take a “milder” approach by using small batches whose size is equal

29

3 – My contributions

to the number of nodes and then splitting this smaller batch. Unfortunately, the accuracy
of the result will decrease in both cases, although an argument may be made on whether
an increase in performances warrants a possible drop in quality. This idea is proposed in
the following snippet of code.

1 def ass ign_point ()
2 best_c = −1
3 max_ratio = 0 .0
4 for index in o r i g i n a l _ c l u s t e r s : # For L_2
5 # fo r index in c l u s t e r s : # For L_3
6 n_neighbors = 0 .0
7 c l u s t e r = c l u s t e r s [index] . r e co rd s
8 # Find and s e l e c t L po in t s
9 chosen_points = min ([len (c l u s t e r) , l_po ints])

10 for po int in c l u s t e r [: chosen_points] : # S e q u e n t i a l sampling
11 n_neighbors += f ind_neighbors (
12 complete_data [po int] ,
13 unlabeled_point , th)
14 r = norma l i za t i on (n_neighbors ,
15 chosen_points , th)
16 i f r > max_ratio :
17 max_ratio = r
18 best_c = index
19 i f best_c in c l u s t e r s . keys () :
20 # Add po in t to c l u s t e r
21 c l u s t e r s [best_c] . r e co rd s . append (idx)
22 else :
23 # Create a new c l u s t e r t h a t con ta ins the po in t
24 next_key = max(c l u s t e r s . keys ()) + 1
25 c l u s t e r s [next_key] = RockCluster ()
26 c l u s t e r s [next_key] . r e co rd s = [idx]
27
28
29 def para l l e l_ labe l_data (c l u s t e r s , complete_data , th , l_po ints) :
30 for idx in unlabe led_points :
31 # Extrac t a batch o f po ints , then
32 # ass i gn each po in t to a d i f f e r e n t node
33 batch = unlabe led_points [idx : idx+n_nodes]
34 pool (ass ign_point , batch)

Due to a lack of time, I couldn’t perform tests on this subject and so I don’t have
any conclusive result that can favor a side rather than the other. Moreover, since my
implementation was realized in Python I could not use a multithreaded approach because
of the Global Interpreter Lock (GIL). Attempting to use multiprocessing did not improve
the situation due to the slowdown caused by the need for synchronization. Moving the

30

3.2 – eROCK (enhanced ROCK)

code to a different language and finding a solution for this problem will be future work.

3.2.4 Improvements to labeling

As briefly described in Section 2.4.2, labeling was described very concisely in [15], so I
realized three versions of it. The first one (L0 for simplicity) can actually be parallelized
with no issue at all: any unlabeled point that has been added to a cluster will be ignored,
so only the initial condition will be considered during the entire operation. Intuitively,
this method is deeply flawed and the results proved it: the number of resulting outliers
was very large since the algorithm cannot take advantage of new points once they have
been added to a cluster. To solve this issue, I implemented two incremental variations: in
the first (L1), when a point is added to a cluster, it will be considered in the successive
iterations (as long as it falls within the L chosen points), while outliers become clusters
that contain only a single point; in the last version L3, these outliers are considered as
valid clusters by any yet-to-label point. Both second and third versions reduced noticeably
the number of outliers resulting from the labeling phase compared to the previous version.

From the performance point of view, the first two approaches differ slightly (the execu-
tion of L1 will take longer because clusters may increase in size and thus more points may
be considered as the labeling operation progresses), while the third may heavily encumber
the execution: since every outlier becomes a valid cluster, in a worst case scenario every
single point may become an outlier and an unlabeled point n will have to browse through
the previous n − 1 points. This leads to a complexity which is quadratic with respect
to the size of the complete dataset: this is problematic with very large sets that produce
many outliers, so this approach should not be used in every case. In those situations where
the number of outliers remained manageable, L2 resulted in a lower number of outliers;
observing the number of outliers produced by L1 is a good indication of whether L2 can
be applied to the use case or not.

A somewhat surprising result is the fact that, although labeling is intrinsically less
accurate than clustering (since it considers only a fraction of each cluster and considers
pairwise distances between points only, instead of employing links), the quality of clusters
didn’t decline noticeably when I started considering outliers as valid clusters.

3.2.5 Weighing features

A very simple addition that was described in Section 2.2 consists in introducing weights
to features: this allows to favor certain attributes over others so that two records that are
similar (or dissimilar) in that particular attribute will “feel” it more than they would in a
different case. Doing so has the result of obtaining clusters that combine records with the
same values for certain features. Therefore, it may be possible to produce clusters that are
particularly homogeneous: for example, when clustering census data it may be important
to preserve the marital status over the ZIP code; this can be done by increasing the weight
of the marital status so that records that differ in that are seen as “more distant” from
each other than what would happen with no weights. Being able to tweak the importance
of a given feature, moreover, allows achieving better results when clustering a dataset with
an objective in mind.

31

3 – My contributions

3.3 Hierarchical distance

The final concept I considered during my studies is a way for preserving some of the
information contained by the attributes that can be generalized hierarchically or that
show some semantic similarity (e.g. professions, or education level): an example of such
attribute is shown in Figure 3.6. Taking the hierarchy into consideration allows doing so,
unlike what is achieved through a simple string comparison. This field has already been
considered in the literature [32] [25]; I introduce a slight variation that lets the user the
distance depending on the set, and more interestingly I use it to perform anonymization.
For this reason, the discussion relative to its effectiveness is in Section 4.2.

Still, while it’s definitely an interesting approach for some applications, this cannot be
applied to just any categorical attribute, or attribute in general. Some attributes, although
categorical, cannot be placed in a hierarchy in a trivial way: for example, if an attribute
contains a city name, the criterion with which it should be placed on a hierarchy is not
obvious. Similarly, ID’s, proper nouns and similar features cannot be generalized at all.

For those cases where this method is viable, it is necessary to devise the correct hi-
erarchical tree for each of the available attributes: this is not a trivial task, as I noticed
when performing anonymization. Having a deeper tree allows for a finer-grained scoring of
similarities so that it is possible to better classify different records; in the anonymization
case, this means that the size of the transformations that must be performed is smaller
than in a coarser hierarchy.

The similarity measure I employed and slightly tweaked is the one introduced in [32]. It
uses a log function to produce a score that decreases sharply as two nodes move on further
branches, and is based on the height of the Lowest Common Ancestor (LCA) between any
two values, where the LCA of nodes pi and pj is the lowest (i.e. deepest) node that has
both pi and pj among its descendants. The function is the following:

sim(pi, pj) = 1 − log2

(
1 + h − d

h

)
(3.7)

Here, I am measuring the similarity between points pi and pj , hence the score increases as
the value of the logarithm decreases. h is the height of the tree (i.e. the distance between
root and leaves), while d is the height of the LCA. This function behaves in such a way
that, if the attribute has the same value for two records the similarity is 1; if the attribute
is different, the similarity decreases accordingly.

A possible way for tweaking the similarity is adding an exponent to the logarithm as
follows:

sim(pi, pj) = 1 − log2

(
1 + h − d

h

)1−t

(3.8)

Adding the 1 − t parameter allows changing the similarity value given to points pi and pj

depending on their distance. Figure 3.7 shows some examples of the behavior of Eqn. (3.7)
as t increases. Having a lower similarity value may be important for some applications,
although I couldn’t find a criterion for choosing an optimal value of t. This is a part of
future work.

32

3.4 – Notes on the implementation

Example 3.3.1. To measure the similarity between two records that have the feature
marital status, it’s necessary to find the LCA for that attribute in relation to the two
records. Then, Eqn. (3.7) can be applied to compute the similarity between them. The
MARSTAT LCA of records 1 and 2 is Spouse present, and its depth is 1. Therefore,
sim(r1, r2) = 1 − log2

(
1 + 2−1

2

)
= 0.4150. If, instead, we consider records 1 and 3,

the LCA is the root (for which d = 0), so the similarity becomes sim(r1, r3) = 1 −
log2

(
1 + 2−0

2

)
= 0 as expected.

3.4 Notes on the implementation
All the functions and algorithms included so far (and in Chapter 4) were implemented using
Python 3 and the libraries included in it. Some additional open source libraries were used
for more advanced tasks. Numpy [39] was used for matrix multiplications and most of
the “heavier” operations, and is needed by many other libraries; I used Matplotlib [16] for
building all plots in this report; the AMI, V-Measure, Precision, AUPRC metrics (when
used) were taken from Scikit-learn [28]; the Pandas [24] library was employed to perform
data analysis and to modify larger datasets; Cython [6] was used to recompile eROCK to
achieve better performances by using a C implementation.

33

3 – My contributions

Marital
status

Spouse
present

Married
-civ-

spouse

Married
-AF-

spouse

Spouse
not

present

Married-
spouse
absent Widowed Divorced Separated

Never
married

Figure 3.6: Example of hierarchical attribute representing the marital status hierarchy in
the adult dataset.

0 1 2 3 4
d

0.0

0.2

0.4

0.6

0.8

1.0

si
m

(p
i,p

j)

t=0
t=0.5
t=0.8
t=0.95

Figure 3.7: Behavior of Eqn: (3.8) as a function of t. h = 4.

34

Chapter 4

Applications

The main motivation behind the development of eROCK and its improvements was anonymiza-
tion. Indeed, the paper [34] was what led me to considering clustering as a preliminary
step in an anonymization procedure that should be able to preserve utility better than tra-
ditional techniques. The second application that was taken into consideration is anomaly
detection, mostly in two fields: classification of anomalies and fraud detection.

The two applications have vastly different requirements for what an “ideal” result may
look like: anonymization requires clusters whose records are very homogeneous, so that
records that belong to the same cluster do not have a large variance in their attributes;
for anomaly detection, on the other hand, the homogeneity of clusters is not as important,
while as pinpointing which records behave differently from “normal” has a much larger
significance.

I also performed simple cluster analysis to understand what were the results of my
improvements, so a description of what I’ve done will be reported here, while the actual
results will be in Chapter 5.

4.1 Generic clustering
While debugging the implementation and tweaking the results I performed multiple tests
and observed how both eROCK and eeROCK behaved with different parameters and when
applied to different datasets. Besides using accuracy measures to have a quantitative
measure of the clustering quality, I focused on the number of outliers and on the size of
the largest clusters produced by the algorithm. This helped with shedding some light on
what some of the drawbacks of the original eROCK implementation are, and how to fix
them. In particular, I noticed that, depending on the dataset, the performances may drop
noticeably in quality: more specifically, datasets whose entries tend to be "homogeneous"
(i.e. whose records tend to have links towards potentially every other entry in the set) are
harder to cluster than other, more “well-defined” ones. “Hard” datasets tend to produce
a large number of outliers and, in some cases, a very large cluster. With these datasets,
tweaking the value of the threshold does not help much, and setting too high a threshold
results in a single connected component and a large number of outliers that could not be
added to it.

35

4 – Applications

Other observations were relative to the effect of different labeling methods, and to
the choice of the number of samples. Some of the results I observed were somewhat
counterintuitive, while others confirmed my original thoughts. More importantly, using
different f(θ) showed how the functions I designed produced the same, if not noticeably
better results in most conditions.

4.2 Anonymization

4.2.1 Background

As described in Chapter 1, anonymization has become a major field of interest for com-
panies that work with Big Data due to the need for protecting the privacy of personal
information. Another necessity is being able to perform data mining on the same personal
information. Multiple techniques have been devised to this end (a good survey is [9]), and
many of them are variants of either k-anonymity or differential privacy.

k-anonymity

Definition 4.2.1 (k-anonymity). Given a dataset X with attributes A1, A2, . . . , Ak and a
subset of Quasi-Identifiers QI, X is said to satisfy the k-anonymity property for the subset
of attributes QI if all records belonging to X share with k − 1 other records the same
value for each attribute belonging to QI. Quasi-identifiers are all attributes that can be
used to re-identify an individual. Different anonymized versions of the same dataset may
be produced depending on what subset of QI has been chosen; the choice of QI depends
on the dataset and on the target use case.

k-anonymity is widely diffused because of its simplicity: to apply k-anonymity it is
sufficient to transform the dataset in such a way that the property is satisfied by means of
generalizations and suppressions. The first kind of transformation consists in “climbing”
a hierarchical tree akin to what is shown in Figure 3.6 until the LCA has been reached
(this procedure suggested me the idea of using the hierarchical distance); with the latter,
an attribute is simply removed. Generalization and suppression are always used when
an attribute is categorical; when it is numerical, instead, the value is substituted by the
range of the in that class: in every equivalence class, each value of numeric attribute a
will be substituted by the range [min(a1 · · · ak), max(a1 · · · ak)] (e.g. if an equivalence
class contains age values that range from 25 to 33, all ages will be substituted by the
string [25,33]). What can be considered a Quasi-Identifier depends on the dataset, on the
desired level of privacy and on what the background knowledge of an attacker may be:
estimating the latter is very hard and represents an active field of research [20]. In my
tests, I considered all attributes except the sensitive one as Quasi-Identifiers.

Example 4.2.1. Table 4.1 is an example of personal data that must be anonymized, where
all identifying attributes have been removed (e.g. proper nouns, address, SSN, unique
identifier etc.). The RACE attribute is sensitive and so it shouldn’t be anonymized, while
all other attributes are treated as Quasi-Identifiers so they must undergo transformations

36

4.2 – Anonymization

to satisfy the k-anonymity property. For each equivalence class of size 3, a generalization
is performed for each QI, and a “*” is used to denote a local suppression of the attribute.
The resulting dataset is shown in Table 4.2.

Record RACE EDUCATION MARSTAT SEX AGE
r1 White Doctorate Married M 32
r2 White Doctorate Married M 45
r3 Black Masters Married M 24
r4 Asian College Married F 55
r5 Other Prof-school Never married M 16
r6 White Prof-school Separated F 40
r7 Black College Divorced M 33
r8 Black Bachelors Separated M 55
r9 Black Bachelors Widowed F 84

Table 4.1: This table contains another example of personal records that must be
anonymized with 3-anonymity.

Eq. Class Record RACE EDUCATION MARSTAT SEX AGE

EQ1

r1 White Graduate Married M 24-45
r2 White Graduate Married M 24-45
r3 Black Graduate Married M 24-45

EQ2

r4 Asian Higher education * * 16-55
r5 Other Higher education * * 16-55
r6 White Higher education * * 16-55

EQ3

r7 Black Undergraduate Spouse not present * 33-84
r8 Black Undergraduate Spouse not present * 33-84
r9 Black Undergraduate Spouse not present * 33-84

Table 4.2: This is the 3-anonymized version of Table 4.1.

k-anonymity is flawed both from the security point of view and from the utility point of
view. Multiple attacks can be performed on a k-anonymized dataset; two examples are the
homogeneity attack and the background knowledge attack. In the first case, the sensitive
attribute is shared among all the elements in the equivalence class (see EQ3 in Table 4.1,
where the RACE attribute is the same for all records). This makes it impossible to protect
the result from information disclosure since an attacker able to identify the equivalence
class to which a victim belongs to would immediately be able to learn the value of the
confidential value. The second attack is based on the idea that an attacker may have
some kind of background knowledge relative to individuals included in the dataset: for
example, they may know that their target is 32 years old and has a Doctorate. This

37

4 – Applications

allows pinpointing EQ1 as the best candidate for containing the victim. A further issue
of k-anonymity is that, once an attacker is able to identify the equivalence class a victim
belongs to, they would obtain further information about the subject (in this case, that the
victim is male and married).

Variations of k-anonymity were proposed to solve some of these issues, such as l-
diversity [23] or t-closeness [19]. l-diversity forces each sensitive attribute in an equivalence
class to be “well represented”: the meaning of “well represented” is vague, and different
interpretations as possible (a strict definition requires each class to contain at least l
different attributes, while entropy-based definitions require the content of the equivalence
class to reflect the distribution of attributes in that class). t-closeness was designed as an
improvement over l-diversity, and it requires sensitive attributes in an equivalence class to
be distributed in such a way that the distance between the distribution of the attribute
in the class and the distribution of the attribute in the entire dataset is smaller than a
certain value t.

In my studies, I didn’t consider either version and focused on plain k-anonymity,
trying to optimize the utility that can be achieved by reducing as much as possible the
number of transformations that must be performed to satisfy the k-anonymity property.
In [34], it is suggested how to achieve better utility by applying k-anonymity to a data
set that has undergone clustering: instead of building equivalence classes from randomly
picked records, they are built starting from clusters. This reduces the distortion thanks
to how the content of clusters tends to be more homogeneous and this results in a smaller
number of generalizations/suppressions to be performed. This choice was motivated by
the fact that, despite all its flaws, k-anonymity is still widely used; it was also chosen to
understand whether using clustering as a preprocessing step was worth the effort, so that
in future work better algorithms than k-anonymity may be employed. I used my eeROCK
implementation coupled with a simpler algorithm to test if there were improvements: this
is explained in Section 4.2.2.

Differential privacy

Definition 4.2.2 ((ε, δ)-differential privacy). A function κ is said to be (ε, δ)-differentially
private with S being the image of κ if, for all data sets X1 and X2 that differ in one record,
the following is satisfied:

Pr(κ(X1) ∈ S) ≤ exp(ε) × Pr(κ(X2) ∈ S) + δ

In simple terms, Def. 4.2.2 can be explained as, given the question “Does record R
have attribute A?”, the probability that the answer is truthful depends on an exponential
distribution with factor ε. Differential privacy has been proven to be secure, although it
can only be applied to queries: function κ is used to fetch records from an unmodified
database, and it does not perform any kind of transformation on it. Like with k-anonymity,
multiple variations of differential privacy have been proposed and implemented, but all of
them have the same problem of being applicable to queries only. Because of this, I didn’t
consider differential privacy for my studies and it won’t be a matter for future works since
it cannot benefit from the clustering performed by eROCK.

38

4.2 – Anonymization

4.2.2 Algorithm

The algorithm I developed applies k-anonymity by performing two passes of the eROCK
algorithm (the second uses lowered threshold) and then applying a weaker algorithm that
enforces the k-anonymity property on the resulting outliers. The reason why I chose two
passes is that, often, eROCK was unable to produce clusters larger than k after the second
execution: further use of the algorithm would then result in a waste of resources. Here,
eROCK is used to perform pre-processing on the data set. Figure 4.1 shows the operations
performed by Algorithm 4.2.2.

Let S(0) be the original data set
Let k be the minimum number size of an equivalence class
C(1) := eROCK(S(0))
for all c ∈ C(1) do

if size(c) < k then
add(c, S(1))
remove(c, S(0))

end if
end for
θ := θ − θ/10
C(2) := eROCK(S(1))
for all c ∈ C(2) do

if size(c) < k then
add(c, S(2))
remove(c, S(1))

end if
end for
C(3) := SHORT_CLUSTERING(S(1))
C(4) := C(1) + C(2) + C(3)

SA := ANONYMIZE(C(4), k)
The short_clustering function calls a lighter algorithm than eROCK, which forces

the “leftovers” from the previous two clustering operations into equivalence classes of
size k. The algorithm is highly simplified to lower execution time to the detriment of
accuracy: the rationale behind its use rests on the assumption that records that couldn’t
be assigned to a cluster during the previous two steps are very peculiar, so having a very
high clustering accuracy would not help because of the large number of generalizations
and suppressions required to guarantee the k-anonymity property. The short algorithm
Algo. 4.2.2 is described below:

Let S be the set of records to assign to a cluster
Let C be the set of clusters
Let k be the anonymization degree
Let n = 0 be the iteration counter
while n < |S| − k + 1 do

cn = build_cluster(S)
remove(S, cn)

39

4 – Applications

n = n + 1
end while
c0 = c0 + S

When the last iteration is complete, less than k elements will be left in set S, so elements
are arbitrarily assigned to cluster c0. In function build_cluster(S) the distance between
a record and all other records is computed and put in an array; the array is then sorted in
descending order and the first k records are extracted to form an equivalence class. Since
the equivalence class is removed from S, this results in skipping k items at each iteration.
The final result is obtaining equivalence classes of size k (with the exception of c0, which
may contain more than k elements). Afterwards, anonymization is achieved by taking
subsets of size k or more from each cluster and performing generalization and suppression.

Execute
ROCK

Execute
ROCK

Combine
results

Start
Extract
small

clusters

Short
clustering

Perform
anonymization

Prepare
data

Reduce
threshold

Extract
small

clusters
End

Figure 4.1: The workflow of the anonymization algorithm is presented here.

The results of this algorithm will be presented in Section 5.3. In short, while the quality
of the anonymized result was good, performances remain the main issue: the number of
outliers may be very large and this results in having to perform clustering on a large
number of items in the second and maybe third step. For this application, outliers were
kept as such and were not considered as valid clusters when labeling was performed.

4.3 Anomaly detection

The second major application that was considered for clustering is anomaly detection,
both in system security and fraud detection. For what concerns system security I was
considering intrusion detection, i.e. identifying anomalous traffic that may be caused
by an attacker or spotting unauthorized access to functions; fraud detection consisted
in flagging fraudulent behaviors in credit card transactions and online advertising. The
reason why I used clustering as an anomaly detection tool was in part motivated by papers
such as [8], in part due to the behavior of eROCK when outliers were found: the fact it
flags outliers as such, instead of forcibly merging them with other clusters appeared to be
a very strong point of the algorithm. Unfortunately, this encouraging behavior occurred
only in some very specific (and fairly simple) cases, such as a synthetic dataset I used to
do some preliminary tests; when I tried to apply my approach to datasets that required a

40

4.3 – Anomaly detection

deeper analysis, the results I obtained showed the limitations of my method.

4.3.1 Clustering as an anomaly detection tool

As already explained, clustering is done to group similar records in clusters: as already
explained in Section sec:stateart, clustering algorithms are characterized by the criterion
used to assign points to a cluster. Depending on the behavior of the algorithm, there
may be three different categories of clustering algorithms that rely on three different
assumptions:

• Normal data instances belong to a cluster, while anomalies do not belong to any
cluster.

• Normal data instances are close to cluster centroids, while anomalies lie far from
centroids.

• Normal data belong to large and dense clusters, while anomalies belong to small or
disperse clusters.

eROCK belongs to the first category: when a record is too far from any other cluster to
be merged, it is simply skipped. It is possible to do so because, from the start, records
are treated as fully-fledged clusters regardless of their size.

4.3.2 My approach

One of the main advantages of clustering as an anomaly detection tool is the fact that
clustering is an unsupervised technique, so it can proceed even without preliminary ob-
servations, nor training: this is the assumption I was working on during my analyses. In
particular, I was trying to understand what results could be achieved by eROCK with
a minimal Exploratory Data Analysis (EDA). In general, I did not look for additional
features through EDA: I simply studied the dataset and tried to understand whether
keeping some features would cause a deterioration of the results, or whether an attribute
was simply useless. Unfortunately, I overestimated the performances of the algorithm and
expected it to achieve better results than what could be done through such a shallow
study.

I observed that categorical attributes that may assume a very large number of different
values (such as IDs) tend to harm the result of the clustering operations because the
similarity score of two records will be reduced. For this reason, before performing the
clustering operation I dropped columns that contained features that showed this behavior.
Other problematic features are those that contain a very large number of missing values:
these can be handled by inserting “dummy values”, or by removing the feature altogether.
In my studies, I never attempted to add more features for the algorithm to work on
(differently from what is done in the literature) to understand what the performances of
the algorithm were when clustering was done on the “bare” dataset.

A major issue of eROCK is that it performs quite poorly when a large fraction of the
features is numerical, or when there are no categorical attributes at all. In these cases,

41

4 – Applications

eROCK does not behave nearly as well as traditional algorithms: this is one of the reasons
why I attempted to perform clustering without additional features. In fact, attempting to
add new numeric features to the dataset does not help the algorithm. I did not attempt
to build additional categorical features (this may be a part of future work).

The main reason why eROCK performs poorly is that anomalies in real datasets require
a higher level of analysis for which a training step is necessary: while eROCK can identify
records whose features differ heavily from others, anomalous records may need to be
recognized through patterns that eROCK does not notice. How eROCK behaves may still
be of use in some cases where extracting records with strongly anomalous features may
be beneficial; for example, during anonymization outliers are very problematic because
they would force an algorithm to introduce stronger generalizations than what would be
necessary if they were not present. By identifying those outliers, an analyst may decide
to drop them altogether in order to reduce the drop in utility they would cause.

42

Chapter 5

Results

This chapter will be divided into three parts: firstly I will report the results and the
observations I made while clustering data without considering either anomaly detection
or anonymization; in the second part I will talk about the results I obtained using my
k-anonymity algorithm, comparing it with what can be achieved using an open source
tool (ARX [29]) and with a different anonymization algorithm called 3PHA [22]; finally,
I will present the results of my attempts at performing anomaly detection. A further
introductory section explains the quality measures I used and introduces the datasets I
employed to perform my studies. Quality measures were already introduced briefly in
Section 1.2; datasets will be described more thoroughly here.

5.1 Datasets and accuracy measures

5.1.1 Datasets

I studied multiple different datasets with the aim of understanding where ROCK can
perform well and whether my changes added some improvement or not. Since the main
issue was clustering categorical data, I focused on datasets that contained mostly this
type of attributes. The tests I performed depended on the dataset I was considering: for
example, some of them could not be used to perform anonymization (in fact, only the IHIS
and Adult ones were suitable for this), while others could not be used to perform anomaly
detection. Other datasets were specifically designed for performing anomaly and fraud
detection: these datasets were mostly generated for ML challenges and for this reason
they should undergo an extensive Exploratory Data Analysis, while I simply ran eROCK
on them ignoring this step (with the exception of dropping problematic and/or useless
columns). It’s important to note that, before testing datasets larger than 30000 records,
I sampled them to keep the execution times manageable when running the algorithm.
Most datasets contain mixed features (i.e. that include both categorical and numerical
attributes).

Smaller datasets were used mostly as benchmarks to understand the performances of
the algorithm and for troubleshooting purposes. Although there is not much information
to gather from them, they still can provide an idea of the performances and help with

43

5 – Results

tweaking parameters for more meaningful trials.
In Table 5.1 I report the main datasets I studied, together with their source and some

data relative to them:

Name Source Samples Classes Use
agaricus-lepiota UCI [21] 8124 2 Classification

adult ARX [29] 30161 2 All
ihis ARX [29] 1193505 2 Anonymization

KDD Cup 1999 KDD UCI Archive [2] 494020 23 Anomaly detection
clickfraud SMU LARC [26] 2598816 3 Anomaly detection

ETD simulation SAP [4] 1466664 2 Anomaly detection

Table 5.1: List of datasets used to perform experiments.

Exploratory data analysis may help with the choice of parameters (especially the num-
ber of clusters and the value of the threshold) by finding how “homogeneous” records
belonging to a dataset are: in fact, if records are very homogeneous and θ is close to 1 the
number of clusters may be too large and the algorithm may fail at finding a suitable num-
ber of links between records. In the opposite case, having easily distinguishable clusters
means that a larger value for the threshold should be chosen. The number of clusters to
be used is similarly difficult to infer and similarly dependent on how homogeneous records
are: if records are easily distinguishable the number of clusters needed to produce good
classification results may be very small, while in other cases the “sensible” number of
clusters may be larger than a few hundreds depending on the actual dataset.

5.1.2 Quality measures

Clustering quality measures

I measured the quality of the final result with different quality measures provided by the
scikit-learn Python library [27]: homogeneity score (H), completeness score (C), V-M
measure (V − M) [31], and Adjusted Mutual Information score [37]. These measures are
used when classes are binary and they all require ground truth to produce a result. As a
consequence, they cannot be employed when a data set does not provide classes, or when
multiple valid classes are present. Homogeneity scores a clustering result depending on
how homogeneous clusters are, i.e. observing whether clusters contain only members of a
certain class. Completeness, conversely, gives a score that depends on whether all points
belonging to a class belong to the same cluster. The V-Measure is the harmonic mean
between completeness and homogeneity:

V = 2 · (H · C)
(H + C) (5.1)

Finally, the Adjusted Mutual Information score is an adjustment of the Mutual Informa-
tion score made to account for chance, needed because the MI score is in general larger for

44

5.1 – Datasets and accuracy measures

a clustering result that contains a very large number of clusters even if the actual amount
of information is smaller. For two clusterings U and V , the AMI score (like other Mu-
tual Information based scores) indicates the agreement between two assignments ignoring
permutations and is defined as follows:

AMI(U, V) = MI(U, V) − E(MI(U, V))
max(H(U), H(V)) − E(MI(U, V)) (5.2)

All the previous measures are normalized so that the maximum value is 1 (perfect clus-
tering). For the AMI score negative scores may be possible in case the classification is
random, while for H, C and V − M the lower bound is 0.

I did not use traditional quality measures such as Precision, Recall and Accuracy
because they are strictly binary measures: for a binary classification, they will require a
perfectly binary classification (i.e. only 2 clusters). Both ROCK and eROCK do not work
well with this: since they are hierarchical algorithms, climbing the dendrogram until there
are only two clusters produces very poor results in general. In fact, in some cases this may
not even be possible, with both algorithms stopping way before that because all clusters
will be disjoint.

Quality measures for anonymization

For what concerns anonymization all the scores described so far become meaningless since
they all require a ground truth to produce a result, thus they cannot be applied to un-
classified data sets. Moreover, since anonymization does not involve classification, such
measures cannot be used to judge the quality of the result produced by an anonymiza-
tion algorithm. To solve this problem, I had to use quality measures able to measure
the two quantities I was trying to improve with my approach, namely the loss in utility
caused by the application of k-anonymity and the disclosure risk records undergo after
anonymization. In the rich landscape of measures that were proposed to measure the
quality of an anonymization result [38], I chose the following two: the Global Certainty
Penalty described in [40] and the Estimated number of Correct Matches used in [7]. GCP
was chosen because, besides the fact that it provides a very good indication of the amount
of information loss, it can also account for attributes with different weights. ECM was
chosen because of its simplicity and because it quantifies the disclosure risk independently
of the amount of background information an attacker may have.

Global Certainty Penalty The Global Certainty Penalty describes the amount of
information that was lost because of anonymization, by producing a number between 0
and 1, with 0 meaning no information loss and 1 complete information loss. It is based on
the concept of Normalized Certainty Penalty (NCP), which allows measuring the level of
generalization of an attribute while taking into consideration its weight. The NCP has two
different formulations depending on whether a feature is categorical or numeric. Given
a table T with Quasi-Identifiers (A1, A2, . . . , An) and a tuple t = {x1, x2, . . . , xn} that is
generalized to a tuple t′ = {[y1, z1], [y2, z2], . . . , [yn, zn]}, such that yi ≤ xi ≤ zi ∀1 ≤ i ≤

45

5 – Results

n. The Normalized Certainty Penalty of attribute Ai will be

NCPAi{t} = zi − yi

|Ai|
(5.3)

where |Ai| = maxt∈T A
(t)
i − mint∈T A

(t)
i .

When an attribute Ai is categorical, instead, the NCP is computed in a different way.
Consider the following example:

*

ab

a b

cde

c d e

Figure 5.1: Sample hierarchy for NCP with hierarchical values

In this case, the value of the NCP will be computed as follows:

NCPAi{t} = |u|
|Ai|

(5.4)

where |u| denotes the number of leaves of subtree u, while |Ai| indicates the number of
values that can be assumed by attribute Ai. Here, subtree cde will have |u| = 1, while
Ai = 5. This means that a generalization that puts together a and b yields a penalty of
2/5, while grouping a and e results in a penalty of 1.

Given an equivalence class E of size k, the NCP of class E will be defined as follows:

NCPE =
∑
t∈T

n∑
i=1

NCPAi(t) (5.5)

A weighted version of NCPE is the following:

WNCPE =
∑
t∈T

n∑
i=1

wi · NCPAi(t) (5.6)

NCPE measures the information loss a single equivalence class experiences, so to measure
the total loss that a table is subject to after anonymization the Global Certainty Penalty
(GCP) is introduced:

GCPT =
∑

E∈T NCP (E) · |E|
|T | · n

(5.7)

Here, |E| denotes the size of class E, |T | is the size of table T (i.e. the total number
of records present in the dataset) and n is the number of attributes of each record in
the table. Because of how it is defined, the GCP is 0 when no utility has been lost
(i.e. no generalization has been performed at all) and 1 means that there is only one
equivalence class that covers the entire dataset, which in turn means that all records have
been completely generalized and no information was preserved.

46

5.2 – General results

Estimated number of Correct Matches The second measure is a risk measure rather
than a utility one: it quantifies the average number of correct matches an attacker may
gather, considering the case where they are randomly guessing according to P (r|s). Here
P (r|s) is the probability of re-identifying a record r ∈ R given its anonymized version ŝ.
Given the conditional probability P (r|s), the conditional entropy of the dataset represents
the average number of binary questions that must be asked to identify r given s and is
defined as follows:

H(R|s) = −
∑
r∈R

P (r|s)log2P (r|s) (5.8)

The Expected number of Correct Matches is then defined as

ECM =
∑
s∈S

1
2H(R|s) (5.9)

This value should be kept as low as possible and may take any positive value: its value
depends on the size of the dataset, so I used the nECM (normalized ECM) by normalizing
its value relative to the size of the dataset. The nECM allows having a better idea of the
effect of the algorithm when it is applied to different datasets.

Quality measures for anomaly detection

Regarding anomaly detection, I initially planned to mark as anomalous all clusters whose
size was smaller than a certain percentage of the total number of records (this percentage
depended on the size of the dataset). Anomalous and legitimate clusters would then be
merged with their respective class to obtain a binary classification so that it would be
possible to score results using precision score, F-measure and AUC-PR. After performing
my tests, however, I noticed that this approach would not work because small clusters
may still contain legitimate transactions or operations. For this reason, I employed again
the quality measures used for regular clustering.

5.2 General results

To test the algorithm I repeated the clustering operation multiple times varying different
factors: the value of the threshold θ, the number of clusters to use, the size of the sample
set, what f(θ) should be used and the number of points to use during labeling.

5.2.1 Comparing eROCK and original ROCK

Here I’ll describe the improvements I obtained by using the improvements I described in
Chapter 3. To this end, I used the IHIS, adult and agaricus-lepiota datasets. For each
trial, I recorded the quality scores described in Section 5.1.2, the number of clusters, the
function of θ I used and the variable I was observing (θ, L, number of samples); for some
trials I also reported the size of the biggest cluster, the number of outliers and the number
of clusters. The most interesting results are reported in the following plots and tables.

47

5 – Results

Clustering results as a function of θ and number of clusters

Firstly, it’s important to describe how do results vary as a function of the parameters that
can be changed in the original ROCK algorithm, i.e. the number of clusters to be used and
the value of the threshold θ. To this end, I decided to use IHIS, Adult and agaricus-lepiota
to show how results may change depending on whether clusters are well defined or not; I
chose the first two because they proved to be a hard match for the algorithm since their
records are quite similar to each other. The agaricus-lepiota dataset is, conversely, easier
to cluster because records are more distinct.

Figures 5.2, 5.3 and 5.4 show the quality measures for a dataset whose classes are easy
to spot. For these tests, I chose k = 22 as the number of clusters (as was done in [15]).
Firstly, it can be noted how all measures are much larger than the corresponding ones
for the adult dataset, and how curves are much closer to each other compared to other
cases. The effectiveness of the new f(θ) at reducing the number of outliers is also reflected
by Figure 5.5. For the agaricus-lepiota dataset, the optimal value of θ is around 0.80.
Figures 5.6 and 5.7 show how the final clustering quality depends on θ and that there is
a maximum around θ = 0.74: this value depends on the dataset, and shouldn’t be taken
as optimal in general. Here, it is especially evident how the original function f0(θ) has
worse scores than other functions in most trials; the somewhat surprising increase in the
V-Measure score it experiences as θ becomes larger than 0.74 is explained by Figure 5.10:
the number of outliers generated by the algorithm when using f0(θ) increases dramatically
with θ = 0.74 and, since the V-Measure is an average of Homonegeity and Completeness,
it is heavily influenced by the increase in Homogeneity caused by the fact that outliers are
considered as clusters containing only a single point and are thus perfectly homogeneous.

0.75 0.78 0.81 0.84 0.87 0.90

0.38

0.40

0.42

0.44

0.46

0.48

V
M
ea

su
re

f0 ()
f1 ()
f2 ()
f3 ()

Figure 5.2: V -Measure as a function of θ.
agaricus-lepiota.

0.75 0.78 0.81 0.84 0.87 0.90

0.70

0.75

0.80

0.85

0.90

0.95

1.00

H

f0 ()
f1 ()
f2 ()
f3 ()

Figure 5.3: Homogeneity as a function of θ.
agaricus-lepiota.

Figures 5.8 and 5.9 are very important because they show the negative behavior of

48

5.2 – General results

0.75 0.78 0.81 0.84 0.87 0.90
0.22

0.24

0.26

0.28

0.30

0.32

0.34

AM
I

f0 ()
f1 ()
f2 ()
f3 ()

Figure 5.4: AMI as a function of θ. agaricus-
lepiota.

0.75 0.78 0.81 0.84 0.87 0.90
0

100

200

300

400

500

To
ta

l c
lu

st
er

s

f0 ()
f1 ()
f2 ()
f3 ()

Figure 5.5: Number of clusters as a function
of θ. agaricus-lepiota.

0.65 0.68 0.71 0.74 0.77 0.80
0.00

0.01

0.02

0.03

0.04

AM
I

f0 ()
f1 ()
f2 ()
f3 ()

Figure 5.6: AMI score of results as a function
of θ. adult dataset

0.65 0.68 0.71 0.74 0.77 0.80

0.02

0.03

0.04

0.05

0.06

0.07

0.08

V-
M
ea

su
re

f0 ()
f1 ()
f2 ()
f3 ()

Figure 5.7: VM score of results as a function
of θ. adult dataset

ROCK when clustering difficult datasets, and the consequences of this behavior. The first
figure shows the size of the largest cluster as a function of θ for different f(θ): it is evident
how f0(θ) produces a cluster whose size is too large to be of any use, and that contains
around 80% of the records in the dataset. Such a result is, clearly, not the desired one;
other functions show a more “meaningful” behavior (although f1(θ) does approach f0(θ)
for large values of θ). Producing very large clusters has additional, harmful consequences;
one of them is shown in the second figure, 5.9, where the execution time (reported in
seconds on the y-axis) is shown: the time necessary to complete the execution with f0(θ)
is always about double the time necessary to other functions. This is a consequence of the
worst case complexity described in Section 2.4.3: having a very large cluster that contains

49

5 – Results

most points leads to a much larger complexity than what is the average case.

0.65 0.68 0.71 0.74 0.77 0.80

10000

15000

20000

25000

30000

Si
ze

 o
f l

ar
ge

st
 c

lu
st

er

f0 ()
f1 ()
f2 ()
f3 ()

Figure 5.8: Size of largest cluster as a func-
tion of θ.

0.65 0.68 0.71 0.74 0.77 0.80

400

600

800

1000

1200

Ex
ec

ut
io

n
tim

e

f0 ()
f1 ()
f2 ()
f3 ()

Figure 5.9: Execution time as a function of
θ.

Observations on the number of outliers

The behavior I chose for my implementations of ROCK and eROCK makes it so that any
point that cannot be labeled is marked as an outlier; for my purposes, I consider as outliers
any cluster of size 1 generated during the clustering phase. I’ve identified 3 possible ways
for reducing the number of outliers: changing the number of samples for the clustering
phase, changing the number of points to use during the labeling phase and changing f(θ).
These behaviors can be observed in Figures 5.10, 5.11 and 5.12.

In the first figure, the effect of threshold and f(θ) is evident: when the threshold
increases, the number of outliers increases extremely quickly for f0(θ), while it is not as
fast for other functions. The increase due to θ is caused by the fact that having a higher
threshold means that neighbor pairs are harder to form, and this is especially noticeable in
the labeling phase. For what concerns the actual function of θ, the cause of the behavior
is the fact that large clusters are favored too much over small ones: small clusters will not
increase in size and most points will be assigned to large clusters. As a consequence, when
the labeling phase starts, the chance of assigning a point to a large cluster will not improve
(since, in general, even before labeling starts they already contain more than L points)
and it will be very unlikely that a point will be assigned to a cluster that contains only 1
item. Having balanced clusters helps with labeling because a larger fraction of the sample
set is represented; moreover, having many very small clusters means that increasing the
value of L will not improve the result since large clusters are still not fully represented,
while small ones do not experience an improvement in coverage.

In Figure 5.11, the effect of changing the number of samples is shown: somewhat
surprisingly, there isn’t such a large change in the number of outliers after the first few
data points. This is partially due to the fact that the number of outliers is quite small

50

5.2 – General results

to start with; it is also noticeable how after the sample size has been increased beyond a
certain value the number of outliers tends to remain constant. The latter effect is likely
due to the fact that the number of outliers is, by then, simply the number of points that
cannot be clustered because they’re actual outliers. It must be noted that this should not
be considered a general behavior: depending on the size of the complete dataset and on
the chosen threshold, 2000 samples may well be far from what is necessary to achieve good
results; the choice of how many samples should be used must be done on a use case basis
while considering the complexity issue.

How L affects the result will be explained more thoroughly in the following subsection.

0.65 0.68 0.71 0.74 0.77 0.80

0

500

1000

1500

2000

2500

3000

3500

Nu
m

be
r o

f o
ut

lie
rs

f0 ()
f1 ()
f2 ()
f3 ()

Figure 5.10: Number of outliers as a function
of θ. adult.

500 800 1100 1400 1700
Number of samples

10

20

30

40

50

60

70

Nu
m

be
r o

f o
ut

lie
rs

f0 ()
f1 ()
f2 ()
f3 ()

Figure 5.11: Number of outliers as a function
of the number of samples. IHIS.

Observations on the effects of labeling

As already described in Section 3.2.4, I implemented and tested three different versions of
the labeling phase, each one behaving differently regarding outliers and how to consider
them. Another possible variation is the method used to decide how the L points are
chosen during the labeling step: either the first L points from each cluster are taken for
computing the number of neighbors, or L random points are drawn from each cluster. All
versions operate differently, but some general behaviors arose. For all following plots, the
dataset I used was the adult one and the threshold was θ = 0.68, with 2000 samples and
k = 100. The variable of interest was L, so I tested the behavior for values of L in the
range [40, 140] to understand how this would influence the final result.

Firstly, I used L2 to test the effect of L on the result. It is evident how the number of
outliers decreases as L increases, and how much larger the number of outliers for f0(θ) is
compared to the other functions; f1(θ), f2(θ) and f3(θ) are much closer to each other and
overall they produce a much smaller number of outliers. In this case as well, the clustering

51

5 – Results

result for f0(θ) has the issue introduced in Figure 5.8 of containing a single huge cluster.
As a consequence, since the majority of points are contained by one cluster, fewer clusters
will have a size larger than L, fewer points overall will be considered when processing each
unlabeled point and the number of unlabeled points that were successfully assigned to a
cluster will decrease (Example 5.2.1 briefly illustrates the issue). This results in having
less potential neighbors and more outliers. The downwards trend shown as L increases
is explained simply by the fact that, by increasing L, more points are taken from each
cluster.

Example 5.2.1. Consider the distribution of points in clusters described by Table 5.2.
Assuming L = 100, in the first case only 103 points will be considered when evaluating
the number of neighbors of an unlabeled point; in the second case all 400 points would
be considered, so the chance of finding at least one valid neighbor is much higher. The
fact that in the first table the majority of points belongs to the first cluster means that all
of them would be alike; consequently, if the unlabeled point is very different from those
belonging to C1, having the full set of 100 points will not help with the assignment. It
is still important to note that, even in the perfect case, points may still be marked as
outliers: neither ROCK nor eROCK force points into clusters (unlike other algorithms
such as k-means).

Cluster Cluster size
1 397
2 1
3 1
4 1

Cluster Cluster size
1 100
2 100
3 100
4 100

Table 5.2: Examples of worst case (left) and perfect case (right) scenarios for the labeling
phase.

The second observation to be made is relative to the sampling method: random sam-
pling showed a slightly better behavior for f0(θ) and little to no change for other functions;
this is most likely due to the fact that random sampling allows covering a large fraction
of the single cluster compared to other approaches. It should still be noted that this im-
provement is present only for the first trials; these were made with a value of L that, in my
opinion, is too small to produce good results in a real case; for L ≤ 100 the result is almost
the same for both approaches. Something to note when considering labeling with random
sampling is the fact that this approach is more likely to consider points that were added
during the labeling phase itself: this may lead to a worse performance than what could be
achieved by considering only points assigned during clustering. For reasons of complexity
during the development phase, I did not implement a more complex check on the cluster
size that would allow to, for example, perform labeling only on points belonging to the
cluster that was generated during the clustering phase.

The second set of tests was performed using L3 so that outliers would be considered as
valid clusters to study. This approach produced a much smaller number of outliers, as can

52

5.3 – Anonymization

40 60 80 100 120 140
L

200

400

600

800

1000

1200

1400

1600

Nu
m

be
r o

f o
ut

lie
rs

f0 ()
f1 ()
f2 ()
f3 ()

Figure 5.12: Number of outliers as a function
of L, sequential sampling. adult, L2.

40 60 80 100 120 140
L

200

400

600

800

1000

1200

Nu
m

be
r o

f o
ut

lie
rs

f0 ()
f1 ()
f2 ()
f3 ()

Figure 5.13: Number of outliers as a function
of L, random sampling. adult, L2.

be seen from Figures 5.14 and 5.15. In this case, all functions returned a number of outliers
close to the average of around 65, and labeling with random sampling produced a somewhat
inconsistent behavior with a number of outliers that didn’t decrease monotonically and
that, instead, increased or decreased depending on the trial. Overall, the Homogeneity
score was better using L3 compared to L2 (Figures 5.16 and 5.17) while the execution time
was, unexpectedly, shorter for L3 than for L2 (Figures 5.18 and 5.19): I do not have an
explanation for this latter result, especially considering that in many situations L3 fell in
the worst case scenario and required impractically long execution times. Indeed, caution
is needed when employing L3: if the size of the dataset contains many records and the
potential number of outliers is potentially very large the use of L3 may lead to a quadratic
complexity in the number of elements present in the complete dataset (this happened
in the complete IHIS dataset, for example). When this does not happen, however, L3
produces the best results out of all the variations I tested.

5.3 Anonymization
For testing anonymization, I considered the adult and IHIS datasets because they are
good examples of microdata (i.e. data relative to individuals). For the adult dataset I
performed generalization using only the hierarchies that were provided with the dataset,
while for IHIS I used both “official” hierarchies and a different one that changed some of
the classes: it is important to note this because, as can be seen from Table 5.3, scores
change depending on the generalization hierarchy.

I tested the adult dataset with the standard distance function (Section 2.2.1) and with
the hierarchical distance (Section 3.3). I also changed f(θ) and I used the ARX anonymiza-
tion tool [29] to see how my implementation would compare to it. Performances were a
large issue for this dataset (even more for the larger IHIS set), and the average execution
time for all trials was around 30 minutes. For what concerns the scores, anonymization

53

5 – Results

40 60 80 100 120
L

30

40

50

60

70

Nu
m

be
r o

f o
ut

lie
rs

f0 ()
f1 ()
f2 ()
f3 ()

Figure 5.14: Number of outliers as a function
of L, sequential sampling. adult, L3.

40 60 80 100 120
L

45

50

55

60

65

70

Nu
m

be
r o

f o
ut

lie
rs

f0 ()
f1 ()
f2 ()
f3 ()

Figure 5.15: Number of outliers as a function
of L, random sampling. adult, L3.

40 60 80 100 120 140
L

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

H

f0 ()
f1 ()
f2 ()
f3 ()

Figure 5.16: Homogeneity measure for L2.
adult.

40 60 80 100 120
L

0.16

0.17

0.18

0.19

0.20

0.21

0.22

H

f0 ()
f1 ()
f2 ()
f3 ()

Figure 5.17: Homogeneity measure for L3.
adult.

performed using the hierarchical distance had worse performances than what was achieved
using the standard Gower distance (this was a fairly disappointing result). The value of
GCP for ARX is especially high because the generalization is much more severe than with
other methods. The ECM is, unexpectedly, larger for the version anonymized by ARX:
my guess for this is that, since the ECM is based on the number of equivalence classes
with size exactly equal to k, if there is a large number of such classes records are more in
danger because the random choice considers a smaller pool of possible values. Once again,
f0(θ) performed worse than f3(θ): in this case, the reason was probably the fact that it
produces a larger number of outliers.

IHIS was tested using the 3PHA algorithm [22], ARX and my algorithm. In this case,

54

5.3 – Anonymization

40 60 80 100 120 140
L

600

800

1000

1200

1400

1600

Ex
ec

ut
io

n
tim

e

f0 ()
f1 ()
f2 ()
f3 ()

Figure 5.18: Execution time in seconds while
using L2. adult.

40 60 80 100 120
L

400

450

500

550

600

650

700

750

Ex
ec

ut
io

n
tim

e

f0 ()
f1 ()
f2 ()
f3 ()

Figure 5.19: Execution time in seconds while
using L3. adult.

the execution took an impractically long time for both 3PHA and my algorithm (around
19 hours for the first, 13 for the second), while ARX completed the operation in a matter
of minutes. For what concerns the quality scores, ARX has an incredibly small ECM and
a very large GCP, 3PHA behaves better than my algorithm from both GCP and ECM
points of view. Changing the generalization hierarchy yields a way higher ECM and a
lower GCP, so this should be taken into consideration when the hierarchy must be built.
I could not draw any conclusion on a “rule of thumb” for creating the hierarchy.

Finally, when using official hierarchies, both GCP and nECM decrease as the number of
samples increases: this means that the amount of disruption caused by the anonymization
step is less problematic with larger datasets. Overall, while the utility results are good, this
remains a simple k-anonymity implementation, which means that all the vulnerabilities
and issues presented in Section 4.2 are still present. Future work will involve understand-
ing the impact of different hierarchies on the result and on improving the performances.
Further studies will also be needed to understand how to implement the clustering step in
the variants of k-anonymity introduced in its section.

Tables 5.4 and 5.5 show the difference between the final result obtained eROCK and
the one produced by ARX on the adult dataset. In both tables, the Country of origin
column was suppressed for space reasons1 (in the first table, the value was US for all rows,
while it was suppressed in all rows in the second table). It is especially evident how much
more information is lost by ARX compared to eROCK, especially considering that the
anonymization coefficient was the same, k = 5.

1For the same reason, instead of Amer-Indian-Eskimo the value of the Ethnicity column was substituted
by A.-I.-E.

55

5 – Results

Dataset Records Notes ECM nECM GCP f(θ)

Adult 30161

ARX 6806.79 0.225682 0.593076 NA
Hierarchical d. 1583.05 0.0524868 0.380202 f3(θ)

θ = 0.75, hierarchical d. 4121.19 0.13664 0.373554 f3(θ)
Gower d. 2204.57 0.0730935 0.332064 f3(θ)
Gower d. 3364.34 0.111546 0.370152 f0(θ)

Hierarchical d. 4524.61 0.150015 0.443811 f0(θ)

IHIS variant 1193505
3PHA 46814.7 0.0392246 0.153527 NA

Hierarchical d. 47373.5 0.0396928 0.225684 f3(θ)
ARX 84.2484 7.059e-05 0.47619 NA

IHIS official 1193505 Gower d. 47194.6 0.0395429 0.323456 f3(θ)
Hierarchical d. 47498.2 0.0397973 0.412694 f3(θ)

Table 5.3: Quality results of k-anonymity algorithm on Adult dataset. All cases where a
f(θ) is reported were realized with eROCK.

Sex Age Ethnicity MARSTAT Education Work class Occupation Salary
F 21-47 A.-I.-E. No spouse High School Private Nontech <=50K
F 21-47 A.-I.-E. No spouse High School Private Nontech <=50K
F 21-47 A.-I.-E. No spouse High School Private Nontech <=50K
F 21-47 A.-I.-E. No spouse High School Private Nontech <=50K
F 21-47 A.-I.-E. No spouse High School Private Nontech <=50K

Table 5.4: Result of anonymization with k = 5 as performed by eROCK.

5.4 Anomaly detection

For the anomaly detection part, I analyzed 3 different datasets: two of them focusing on
intrusion detection (KDD and ETD simulation), while the last contained records for a
challenge on fraud detection in online advertisements. During the testing phase, I realized
I had unreasonably high expectations of what ROCK (and eROCK) could do, and the
results I obtained when clustering both KDD and clickfraud showed this. The ETD
simulation dataset was too simple and the reason why ROCK worked so well was due to
the fact that its classes are extremely easy to distinguish.

Still, some tests were made on the KDD dataset and an acceptable result was obtained
(shown in Table 5.6. Before performing the clustering operation, most columns were
dropped and the weights of the surviving ones were tweaked to favor some over others.
Most clusters were not pure; some of the attacks were correctly placed in a single cluster;
some of the very small clusters contained only very rare attacks. There is a major issue
with this dataset: in this case, normal connections are the minority, with since only 20% of
the records being normal traffic; for this reason, the assumption of “anomalies being fewer
than normal behavior” breaks down and the result is that the algorithm is performing

56

5.4 – Anomaly detection

Sex Age Ethnicity MARSTAT Education Work class Occupation Salary
F * A.-I.-E. * * * Nontech <=50K
F * A.-I.-E. * * * Nontech <=50K
F * A.-I.-E. * * * Nontech <=50K
F * A.-I.-E. * * * Nontech <=50K
F * A.-I.-E. * * * Nontech <=50K

Table 5.5: Result of anonymization with k = 5 as performed by ARX.

classification rather than anomaly detection. What makes this task even harder is the fact
that normal traffic contains all possible protocols, while attacks tend to use only one avenue
of attack (ICMP, UDP etc.). For these reasons, eROCK did not perform particularly well.
The results obtained here, however, should not be discarded since they represent a fairly
successful preprocessing step, that could lead to later, more accurate studies.

Cluster ID Element count Unique classes Most represented Frequency
0 9 2 teardrop 5
1 48 3 normal 39
2 57 2 neptune 55
3 19 3 portsweep 11
4 8 1 normal 8
5 2865 6 neptune 1127
6 10 1 normal 10
7 76634 19 normal 72992
8 17462 9 normal 16206
9 106950 8 neptune 105853
10 8 2 neptune 4
11 7192 15 normal 6929
12 285 4 neptune 138
13 282443 7 smurf 280758
14 31 3 portsweep 19

Table 5.6: Result of clustering applied to the KDD dataset. θ = 0.65, k = 15.

I then tested the ETD simulation dataset employed in [4]; this dataset was synthetically
generated to simulate a log file that reports the transactions performed by different users
with different applications. Most transactions are legitimate, some are malicious (precisely,
one of the users uses a protected application); only 4 meaningful fields are present: user
ID, applications, transmitted bytes and received bytes. In this case, clustering results
were perfect simply because of how the distance function works: by choosing a suitable
threshold, the algorithm was easily able to find classes by grouping those records that had
the same user id and transaction. Changing the weights so that those two attributes had
more importance than the others made this behavior even more obvious. In this case, I

57

5 – Results

clustered the complete dataset and was able to isolate all 11 malicious transactions (out
of about 1.4M records) as outliers: since the sample used during the clustering phase
did not contain any of them, they were all marked as outliers during the labeling phase.
Moreover, clusters were perfectly homogeneous, each of them containing all elements of
a class and nothing else. This led me to overly optimistic hopes for eROCK and should
be considered as an example of a dataset that is simply “too easy” to cluster. Table 5.7
shows the clustering results; the synthetic nature of the dataset is especially evident here,
from how perfectly partitioned clusters are.

Cluster number Legitimate transactions Anomalies
0 293334 0
1 293323 0
2 293334 0
3 293334 0
4 73332 0
5 73332 0
6 73332 0
7 73332 0

[8 − 18] 0 11
Total 1466653 11

Table 5.7: Result of clustering on ETD simulation dataset.

The final dataset I considered was the clickfraud [26] one. This was provided as a
challenge dataset by an actual online advertisement company, that was looking for a ML-
based approach to anomaly detection that would be able to identify frauds and mark them
as such. The dataset contained information about user IP, device, advertiser ID, country,
time, category. It also contained a huge amount of missing data for some features. Before
performing clustering I dropped some useless features and changed missing values so that
they would be considered as valid categorical entries. In this case, the clustering result not
very good: indeed, while some small clusters were perfectly pure, no clusters were complete
and, in general, most clusters were fully mixed (the largest ones in particular). In this
dataset, the class feature may contain three different values, OK, Fraud and Observation.
To apply the quality measures I considered the case in which all observations should be
considered as “OK” and the case in which they are considered as “Fraud”, and reported
the results in Table 5.8. Quality measures are not encouraging and, in this case, it is not
possible to apply other measures such as AUPRC or Precision because there are more than
2 clusters; since the size of clusters varies a lot, and clusters that contain “OK” entries
may be very small, filtering the clusters by size is not the correct approach.

Overall, the approach that I used for performing anomaly detection did not produce
good results: usually, when anomaly detection is performed (and, in general, when it
is necessary to perform data mining) additional features are added to the dataset (this
happens in [26] and [18], for example). In my case, I wanted to see if eROCK was able
to return good results well without additional features, and with minimal pre-processing:

58

5.4 – Anomaly detection

Case H C V-Measure AMI
Observations are OK 0.614046 0.022228 0.042903 0.006303

Observations are Fraud 0.615210 0.047518 0.088222 0.015794

Table 5.8: Quality results for clickfraud dataset.

in the end, this did not work out at all. Furthermore, one of the drawbacks of eROCK is
how its performances degrade when most features are numerical rather than categorical;
it is doubtful that adding new numerical features would cause an improvement in the
results. I didn’t try to add categorical features, and this will be a matter for future work:
“grouping” items by adding categorical classes based on some observations made on the
original dataset may improve the final result, especially if weights are used in a suitable
way: weights and feature reduction allowed to produce the result shown in 5.6, so accurate
studies that take them into account and introduce new features may be able to produce
better results than what I have been to achieve so far.

59

60

Chapter 6

Conclusions

In this report, I described the requirements I had for a clustering algorithm able to handle
categorical data, with the final objective of performing anonymization and anomaly detec-
tion. The algorithm I chose to do so was ROCK, designed in [15], because of the promising
results it showed when used for categorical data. After completing the implementation of
the original algorithm, I looked for ways to reduce its drawbacks and to handle a wider
range of situations: f(θ), GDSTOP; changes to the labeling phase and the hierarchical
distance. I tested the algorithm on multiple datasets, then I applied it in both anomaly
detection and anonymization. Anonymization results were encouraging, while more work
must be done to obtain good results for anomaly detection.

Out of all the improvements I introduced, changing f(θ) 3.2.1 was the most successful
one: the intuition according to which the goodness function wasn’t able to penalize larger
clusters enough proved to be correct, and the idea of changing f(θ) so that the compu-
tation would produce more accurate scores massively improved the results (particularly
in those cases when records are very homogeneous). Developing a f(θ) that depends on
the application may be worth the effort in some cases, although I think that the three
different functions I proposed here should, together with the original one, be able to cover
most use cases.

GDSTOP 3.2.2 is an interesting addition when the structure of the dataset is unknown:
it adds a new, milder termination condition compared to the default two, allowing to have
an indication of the number of clusters that can be found. In its current iteration, however,
it is not optimal: while it does help having an indication of the number of clusters to be
used, an analyst should not blindly rely on it. Indeed, to obtain better clustering results
it may be necessary to reach a much smaller number of clusters than what GDSTOP
suggests. It is still a useful tool for the first steps of the analysis and for understanding
how changing f(θ) or θ may influence the final result. Once the optimal number of clusters
has been identified, however, using GDSTOP does not have an effect on the result.

The hierarchical distance 3.3 was a disappointment: its use is very limited both in
scope and effectiveness, since hierarchies are not universally applicable and, when they can
actually be employed, the result is often the same or worse than what could be achieved
with the “default” distance. Given how influential the hierarchy is when performing the
generalization step, designing deeper trees may improve the result and be worth the effort.

61

6 – Conclusions

This, however, is part of future work.
Somewhat unexpectedly, the changes I made to the labeling phase 3.2.4 were more

effective than I expected, particularly the version that allows outliers to be valid clusters.
While not taking into consideration new points when they are added to clusters may allow
for an easy parallelization, the loss in accuracy does not warrant the improvement in
performances; when comparing the latter two versions, instead, there may be two reasons
for considering only clusters built during the actual clustering phase: either it may be of
interest to keep all outliers as such, so that in a later step it may be possible to analyze the
entire set of outliers, or the number of unassigned points may be so large that the increase
in complexity makes the last version impractical. The latter issue was strikingly evident
when the complete dataset was very large: in this case, the main problem is the size of
the sample set since by having a sample that represents poorly the complete dataset, a
large number of outliers will be produced.

eROCK showed very good clustering results when compared to ROCK (represented
in most trials by the use of f0(θ)), especially in those cases where records were highly
homogeneous. What was reported in Section 5.2 gives examples of the behavior of the
algorithm under different conditions and what the parameters that change its performance
are.

Results in the anonymization part are interesting but there is a caveat: the algorithm
is still very slow. While both utility and risk measures are quite good, the time required by
the execution may be impractical. For this reason, the choice of this method over others
must be made keeping the balance between time and utility in mind: any improvement
to the implementation of ROCK will, in turn, reduce the execution time of this method
while the performances remain the same.

Unfortunately, this was not the case for anomaly detection: while improving the per-
formances of eROCK will reduce the execution time, the quality of the result will not
change without a radical modification of the actual algorithm. I was too optimistic when I
first attempted to use ROCK as an anomaly detection tool: since any record that cannot
be assigned to a cluster will either be marked as an outlier or will remain in small clusters,
anomaly detection seemed a logical application of the algorithm. However, this approach
has two major drawbacks: firstly, outliers depend heavily on the size of the sample set, and
on how well representative of the complete dataset it is; secondly, the distance function
is the largest factor in defining whether a point is an anomaly or not and, in its current
iteration (Gower’s distance), performances are not good enough. The distance function
I am currently using is, in fact, unable to find correlations between different values that
would allow marking a record as “anomalous” when compared to others. ROCK (and
eROCK) lacks this capability: it works by finding the number of attributes in common
between different records, without “asking itself questions” about what does the difference
mean. This is once again a drawback of the distance function, similar to the issue with
missing values described in Example 2.2.1. Given a sufficient preparatory analysis, the use
of weights and the introduction of additional features to the dataset (e.g. combinations
of other features that give rise to arbitrary classes) it may be possible to “instruct” the
algorithm and improve the final result. Developing a distance function that can perform
analysis at a higher level is another possible solution. This is, however, material for future

62

6 – Conclusions

work.
Many topics still require more in-depth analysis: parallelization is still missing, and

it is of paramount importance for real world applications and to reduce the accuracy
penalty caused by using a sample set that is unrepresentative of the complete dataset;
data analysis with the objective of introducing additional features could help achieve bet-
ter results in some applications; k-anonymity remains a very insecure method for perform-
ing anonymization, and applying other techniques requires changes to the algorithm so
that their requirements are satisfied; results produced using the hierarchical distance may
be improved by designing better generalization trees (this step, however, should not be
required in the first place if the technique were as effective as it seemed in the beginning).

Overall, the work I conducted allowed me to test the performances of an interesting
algorithm, studying its advantages and drawbacks and apply it to real life datasets. While
some of the drawbacks were fixed, performance remains the major issue and this prevents
the algorithm from being employed in a Big Data environment. Some of the improvements
I made are quite interesting, others were less useful. Clustering and anonymization pro-
duced satisfying results, while anomaly detection was not as encouraging. A large amount
of future work is still left to do, and fixing some of the remaining issues would make ROCK
and eROCK competitive algorithms on the market.

63

64

Bibliography

[1] Gower’s similarity coefficient. http://www.clustan.talktalk.net/gower_
similarity.html. [Online; accessed 14-December-2017].

[2] KDD Cup 1999 Data. http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.
html, 1999. [Online; accessed 1-December-2017].

[3] PAM (partitioning around medoids). In Ling Liu and M. Tamer Özsu, editors, En-
cyclopedia of Database Systems, page 2012. Springer US, 2009.

[4] Claudio Agostino Ardagna, Valerio Bellandi, Paolo Ceravolo, Ernesto Damiani,
Michele Bezzi, and Cédric Hébert. A model-driven methodology for big data
analytics-as-a-service. In George Karypis and Jia Zhang, editors, 2017 IEEE Inter-
national Congress on Big Data, BigData Congress 2017, Honolulu, HI, USA, June
25-30, 2017, pages 105–112. IEEE Computer Society, 2017.

[5] Korra Sathya Babu and Sanjay Kumar Jena. Balancing between utility and pri-
vacy for k-anonymity. In International Conference on Advances in Computing and
Communications, pages 1–8. Springer, 2011.

[6] Stefan Behnel, Robert Bradshaw, Craig Citro, Lisandro Dalcin, Dag Sverre Selje-
botn, and Kurt Smith. Cython: The best of both worlds. Computing in Science &
Engineering, 13(2):31–39, 2011.

[7] Michele Bezzi. An entropy based method for measuring anonymity. In Third Inter-
national Conference on Security and Privacy in Communication Networks and the
Workshops, SecureComm 2007, Nice, France, 17-21 September, 2007, pages 28–32.
IEEE, 2007.

[8] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A sur-
vey. ACM Comput. Surv., 41(3):15:1–15:58, July 2009.

[9] Josep Domingo-Ferrer, David Sánchez, and Jordi Soria-Comas. Database Anonymiza-
tion: Privacy Models, Data Utility, and Microaggregation-based Inter-model Connec-
tions. Synthesis Lectures on Information Security, Privacy, & Trust. Morgan & Clay-
pool Publishers, 2016.

[10] Mala Dutta, Anjana Kakoti Mahanta, and Arun K. Pujari. QROCK: A quick version
of the ROCK algorithm for clustering of categorical data. Pattern Recognition Letters,
26(15):2364–2373, 2005.

[11] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. Calibrating
noise to sensitivity in private data analysis. In Shai Halevi and Tal Rabin, editors,
Theory of Cryptography, Third Theory of Cryptography Conference, TCC 2006, New
York, NY, USA, March 4-7, 2006, Proceedings, volume 3876 of Lecture Notes in

65

http://www.clustan.talktalk.net/gower_similarity.html
http://www.clustan.talktalk.net/gower_similarity.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

Bibliography

Computer Science, pages 265–284. Springer, 2006.
[12] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based

algorithm for discovering clusters in large spatial databases with noise. In Evange-
los Simoudis, Jiawei Han, and Usama M. Fayyad, editors, Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining (KDD-96), Port-
land, Oregon, USA, pages 226–231. AAAI Press, 1996.

[13] Adil Fahad, Najlaa Alshatri, Zahir Tari, Abdullah Alamri, Ibrahim Khalil, Albert Y.
Zomaya, Sebti Foufou, and Abdelaziz Bouras. A survey of clustering algorithms for
big data: Taxonomy and empirical analysis. IEEE Trans. Emerging Topics Comput.,
2(3):267–279, 2014.

[14] Brendan J. Frey and Delbert Dueck. Clustering by passing messages between data
points. Science, 315(5814):972–976, 2007.

[15] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. ROCK: A robust clustering
algorithm for categorical attributes. Inf. Syst., 25(5):345–366, 2000.

[16] John D Hunter. Matplotlib: A 2d graphics environment. Computing In Science &
Engineering, 9(3):90–95, 2007.

[17] Bernard J. Jansen, Kathleen A. Moore, and Stephen Carman. Evaluating the per-
formance of demographic targeting using gender in sponsored search. Inf. Process.
Manage., 49(1):286–302, 2013.

[18] Arjun Joshua. Predicting Fraud in Financial Payment Services. https://www.
kaggle.com/arjunjoshua/predicting-fraud-in-financial-payment-services,
2017. [Online; accessed 20-December-2017].

[19] Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian. t-closeness: Privacy
beyond k-anonymity and l-diversity. In Rada Chirkova, Asuman Dogac, M. Tamer
Özsu, and Timos K. Sellis, editors, Proceedings of the 23rd International Conference
on Data Engineering, ICDE 2007, The Marmara Hotel, Istanbul, Turkey, April 15-20,
2007, pages 106–115. IEEE Computer Society, 2007.

[20] Tiancheng Li, Ninghui Li, and Jian Zhang. Modeling and integrating background
knowledge in data anonymization. In Yannis E. Ioannidis, Dik Lun Lee, and Ray-
mond T. Ng, editors, Proceedings of the 25th International Conference on Data En-
gineering, ICDE 2009, March 29 2009 - April 2 2009, Shanghai, China, pages 6–17.
IEEE Computer Society, 2009.

[21] M. Lichman. UCI machine learning repository, 2013.
[22] Luigi Longo. Towards big data with k-anonymity. Master’s thesis, EURECOM,

January 2017.
[23] Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke, and Muthuramakrishnan

Venkitasubramaniam. L-diversity: Privacy beyond k-anonymity. TKDD, 1(1):3,
2007.

[24] Wes McKinney et al. Data structures for statistical computing in python. In Pro-
ceedings of the 9th Python in Science Conference, volume 445, pages 51–56. SciPy
Austin, TX, 2010.

[25] Robert C McNamee. Canât see the forest for the leaves: Similarity and distance
measures for hierarchical taxonomies with a patent classification example. Research
Policy, 42(4):855–873, 2013.

66

https://www.kaggle.com/arjunjoshua/predicting-fraud-in-financial-payment-services
https://www.kaggle.com/arjunjoshua/predicting-fraud-in-financial-payment-services

Bibliography

[26] Richard Jayadi Oentaryo, Ee-Peng Lim, Michael Finegold, David Lo, Feida Zhu,
Clifton Phua, Eng-Yeow Cheu, Ghim-Eng Yap, Kelvin Sim, Minh Nhut Nguyen, Ka-
sun S. Perera, Bijay Neupane, Mustafa Amir Faisal, Zeyar Aung, Wei Lee Woon, Wei
Chen, Dhaval Patel, and Daniel Berrar. Detecting click fraud in online advertising:
a data mining approach. Journal of Machine Learning Research, 15(1):99–140, 2014.

[27] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[28] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand
Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent
Dubourg, et al. Scikit-learn: Machine learning in python. Journal of Machine Learn-
ing Research, 12(Oct):2825–2830, 2011.

[29] Fabian Prasser and Florian Kohlmayer. Putting statistical disclosure control into
practice: The ARX data anonymization tool. In Aris Gkoulalas-Divanis and Grigorios
Loukides, editors, Medical Data Privacy Handbook, pages 111–148. Springer, 2015.

[30] General Data Protection Regulation. Regulation (eu) 2016/679 of the european par-
liament and of the council of 27 april 2016 on the protection of natural persons with
regard to the processing of personal data and on the free movement of such data,
and repealing directive 95/46. Official Journal of the European Union (OJ), 59:1–88,
2016.

[31] Andrew Rosenberg and Julia Hirschberg. V-measure: A conditional entropy-based
external cluster evaluation measure. In Jason Eisner, editor, EMNLP-CoNLL 2007,
Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language
Processing and Computational Natural Language Learning, June 28-30, 2007, Prague,
Czech Republic, pages 410–420. ACL, 2007.

[32] David Sánchez, Montserrat Batet, David Isern, and Aïda Valls. Ontology-based se-
mantic similarity: A new feature-based approach. Expert Syst. Appl., 39(9):7718–
7728, 2012.

[33] Shaoxu Song and Chunping Li. Improved ROCK for text clustering using asymmetric
proximity. In Jirí Wiedermann, Gerard Tel, Jaroslav Pokorný, Mária Bieliková, and
Julius Stuller, editors, SOFSEM 2006: Theory and Practice of Computer Science,
32nd Conference on Current Trends in Theory and Practice of Computer Science,
Merín, Czech Republic, January 21-27, 2006, Proceedings, volume 3831 of Lecture
Notes in Computer Science, pages 501–510. Springer, 2006.

[34] Jordi Soria-Comas, Josep Domingo-Ferrer, David Sánchez, and Sergio Martínez. En-
hancing data utility in differential privacy via microaggregation-based k-anonymity.
VLDB J., 23(5):771–794, 2014.

[35] Latanya Sweeney. Protecting privacy when disclosing information: k-anonymity and
its enforcement through generalization and suppression. Technical report.

[36] Latanya Sweeney. Weaving technology and policy together to maintain confidential-
ity. The Journal of Law, Medicine & Ethics, 25(2-3):98–110, 1997.

[37] Nguyen Xuan Vinh, Julien Epps, and James Bailey. Information theoretic measures
for clusterings comparison: Variants, properties, normalization and correction for

67

Bibliography

chance. Journal of Machine Learning Research, 11:2837–2854, 2010.
[38] Isabel Wagner and David Eckhoff. Technical privacy metrics: a systematic survey.

CoRR, abs/1512.00327, 2015.
[39] Stéfan van der Walt, S Chris Colbert, and Gael Varoquaux. The numpy array: a

structure for efficient numerical computation. Computing in Science & Engineering,
13(2):22–30, 2011.

[40] Jian Xu, Wei Wang, Jian Pei, Xiaoyuan Wang, Baile Shi, and Ada Wai-Chee
Fu. Utility-based anonymization for privacy preservation with less information loss.
SIGKDD Explorations, 8(2):21–30, 2006.

[41] Ying Zhao and George Karypis. Evaluation of hierarchical clustering algorithms for
document datasets. In Proceedings of the 2002 ACM CIKM International Confer-
ence on Information and Knowledge Management, McLean, VA, USA, November
4-9, 2002, pages 515–524. ACM, 2002.

68

	Introduction
	Motivation
	State of the art
	Table of contents

	ROCK
	Overview of ROCK
	Clustering paradigm
	Similarity function
	Criterion function
	Goodness function

	Data preparation
	The algorithm
	Clustering phase
	Labeling phase
	Complexity

	My contributions
	Motivation
	eROCK (enhanced ROCK)
	Design of f(θ)
	GDSTOP
	Introducing parallelization
	Improvements to labeling
	Weighing features

	Hierarchical distance
	Notes on the implementation

	Applications
	Generic clustering
	Anonymization
	Background
	Algorithm

	Anomaly detection
	Clustering as an anomaly detection tool
	My approach

	Results
	Datasets and accuracy measures
	Datasets
	Quality measures

	General results
	Comparing eROCK and original ROCK

	Anonymization
	Anomaly detection

	Conclusions
	Bibliography

		Politecnico di Torino
	2018-04-10T06:50:44+0000
	Politecnico di Torino
	Elena Maria Baralis
	S

