
POLITECNICO DI TORINO
Degree Course in Computer Engineering

Master Thesis

Reengineering of a Big Data
architecture for real-time ingestion

and data analysis

Advisor
Prof. Elena Baralis

Candidate
Roberto Fortino

Company Tutor
Engr. Marco Gatta

April 2018

Summary

This thesis is based on the work done during the internship at Data Reply, a consulting
company of Reply group, focused on Big Data and Data Analytics.
The thesis shows the study of developed solution and its application in a production envi-
ronment.
Added value has been focused on reengineering the solution used by the client at the
beginning of the activity, with a particular focus on the ingestion layer and the storage
layer.

2

Contents

1 INTRODUCTION 5
1.1 Personal Effort . 6
1.2 Thesis Structure . 6

2 THE HADOOP ECOSYSTEM 7
2.1 Introduction to Big Data . 7
2.2 The Hadoop Framework . 9

2.2.1 Hadoop Architecture . 11
2.3 Hadoop Distributed File System . 13

2.3.1 HDFS Architecture . 14
2.3.2 HDFS High Availability . 15
2.3.3 Persistence of HDFS metadata . 16
2.3.4 Staging . 18

2.4 The MapReduce Paradigm . 19
2.4.1 Operating Principles . 19
2.4.2 MapReduce Limits . 22

2.5 Apache YARN . 22
2.6 Apache Kafka . 24
2.7 Apache Flume . 27
2.8 Apache Hive . 29
2.9 Cloudera Impala . 31

3 STATE OF ART 35
3.1 Logical Architecture . 35
3.2 Ingestion Layer . 36
3.3 Storage Layer and Analytic Layer . 39

4 DESIGN AND DEVELOPMENT 41
4.1 Environment and Versions . 41

3

4.1.1 Versions . 42
4.2 Logical Architecture . 43
4.3 Ingestion Layer . 44

4.3.1 Introduced Tools . 44
4.3.2 Implementation . 48

4.4 Storage Layer and Analytic Layer . 67
4.4.1 Introduced Tool . 67
4.4.2 Deployment . 70
4.4.3 Performance Test . 71

5 CONCLUSIONS AND FUTURE DEVELOPMENTS 75
5.0.1 Future Developments . 76

List of Figures 77

List of Tables 79

List of Codes 82

Bibliography 83

4

Chapter 1

INTRODUCTION

The work described in this thesis is born from the need to bring innovation to the actual
solution, taking in account both the possibility to replace components actually used with
more recent ones or that better fit the needs, and the possibility to design them from
scratch.
Every day new platforms get on the technological stage, offering alternative approaches
for solving a problem. If this sentence is tipically true, it is truer when we speak about
technologies for Big Data: in the last two years data produced in the world have grown
by 90%, companies are going to produce zettabyte of data in a really short time, from this
the need of solutions able to handle huge moles of data and guarantee good performance
to sudden load variations.
It is easy to understand that in the Big Data world is really important to move with the
times, be updated on upcoming technologies (technological scouting) has become one of
the phases of solution development, that can lead to the implementation of a cutting-edge
product able to satisfy final uers’s needs.

During the implementation of the project, many softwares available on the Big Data
market have been studied in order to evaluate their suitability to improve real-time data
ingestion and propose an alternative storage solution to the one actually used.
One of the most known solution for the management and analysis of Big Data is the Apache
Hadoop framework. Today, The number of companies that develop softwares integrated
with this framework is constrantly increasing, offering data architects an ever-increasing
number of products to choose from. Those products are usually released under commercial
distributions with a subscription fee for technical support.
The whole work described in this thesis has been developed on a Cloudera distribution, an
open source platform, based on Apache Hadoop, built specifically for an enterprise envi-
ronment. Integrating Hadoop with many other open source projects, Cloudera has created

5

1 – INTRODUCTION

an advanced system which allows to execute Big Data end-to-end workflows.

This document has been written with the goal to propose a general purpose solution to
a classic reengineering problem. The whole work has been done on a pre-production cluster
where developed solutions are tested before being released to the production environment.
In this way we were able to simulate real workloads and evaluate how the developed solution
reacts.

1.1 Personal Effort
The proposed solution has been developed dividing the work in the following phases:

• Study of the real-time ingestion layer in place at the beginning of the project, design
and development of the new layer based on Kafka Stream and StreamSets technolo-
gies.

• Implementation of an analytic layer, on HDFS, CRUD compliant, based on Apache
Kudu technology.

• Performance study and comparison of the query layer (Hive vs Impala vs Kudu).

The personal effort covers all design and development phases of the new platform, ex-
cept of the configuration of Hadoop environment.

1.2 Thesis Structure
The structure of the thesis is the following. In chapter 2 is provided an introduction to the
Big Data world and a description of the main tools available in the sector, with a particular
attention to the Apache Hadoop framework. In chapter 3 is shown the state of art. In
particular will be presented the logical architecture at the beginning of the thesis work. In
chapter 4 is described the project design and development, showing the introduced tools,
development choises and difficulties encountered. In chapter 5 are described the work
results e some possible future development.

6

Chapter 2

THE HADOOP ECOSYSTEM

In this chapter are explained the basic concepts about Big Data, aiming to show their main
features and scope.
After that, will be introduced the main aspects on which the tools used during the whole
development process are based, with a particular focus on the Hadoop framework.

2.1 Introduction to Big Data
Every day the complexity and volume of available data increases. It has been estimated
that in less than three year the amount of information will exceed 40 Zettabytes (1 ZB =
221 Byte) [1], thanks to the increasing number of available sources.

Figure 2.1: Growth estimation of data volume produced every year between 2010 and 2020

Even if technology has made giant steps in terms of storage and processing capacity,
traditional data systems can not support the information flows coming from modern sources
(social network, sensor network, online transaction). One of the worst risks is that this

7

2 – THE HADOOP ECOSYSTEM

systems can not satisfy the needs of an ever-connected world, where everything turns
around the availability and access speed of information.
Actually there is no formal definition of Big Data, but in order to fully understand the
phenomenon, it is usually described through a model called Big Data 3 Vs as shown in
figure 2.2:

Volume: it refers to the amount of data generated every second. Just think to the number
of emails, Twitter messages, photo, videos, data coming from sensors, etc. produced
and shared every second. We are not talking about Terabytes , but about Zettabytes
or Brontobytes. If we take all the data generated in the world between the beginning
of time and 2008, the same amount will be produced soon every minute. This makes
data sets too big to be stored and analyzed using traditional databases. With the Big
Data technology, we can store and use these data sets with the help of distributed
systems, where parts of the same data is stored in different places and then put
together by software.

Velocity: it refers to the speed at which new data is generated and to the speed this data
is moved. Just think how a message posted on a social network becomes viral in few
seconds, or how financial transactions are checked to avoid fraudolent activities. Big
Data allows us to analyze data as soon as they are produced, without being put in a
database.

Variety: it refers to the different data types we can access today. In the past everything
was all about structured data that could be mapped on tables or inserted in relational
databases. Today more than the 80% of the available data are unstructured by nature,
and for this reason is difficult to map them on a table. With Big Data we can handle
different data types (structured and unstructured) and put them together with the
more traditional structured data.

In the last years two more Vs have been added:

Veracity: it refers to reliability and quality of data. Since there are many shapes of Big
Data, taking under control the quality and accuracy of data becomes a difficult task
(just think to Twitter messages with hashtags, languages slang or to the reliability
and accuracy of contents). Big Data and data analytics allows us to work with this
kind of data. High volumes fill the gap with low quality and accuracy of the available
data.

Value: maybe one of the most important Vs. Having access to Big Data technology is
a good starting point but, if we are not able to get value from data, everything is
useless.

8

2.2 – The Hadoop Framework

Figure 2.2: Big Data Vs

This leads us to the most widely used definition in the industry. Gartner (2012) defines
Big Data technology in this way.

Big Data is high-volume, high-velocity and/or high-variety information assets that de-
mand cost-effective, innovative forms of information processing that enable enhanced in-
sight, decision making and process automation.

It should be clear now that "big" in Big Data is not just about volume. Big data
certainly involves having a huge amount of data, but is not just that. Yes, you are getting
a lot of data, but it is also coming at you fast, in a complex format and from a great variety
of sources.
This is a rapidly expanding sector whose potential is not fully explored yet, which involves
many professional figures with skills that are often very heterogeneous.

2.2 The Hadoop Framework

Apache Hadoop is an open source framework that allows the distributed processing and
storage of large data sets across clusters of computers using a simple programming model.
It is designed to scale up from single server to thousands of machines, each offering local
computation and storage [2].
The framework has many features that have made it one of the reference tools for the

9

2 – THE HADOOP ECOSYSTEM

Figure 2.3: Hadoop Logo

management and analysis of Big Data in many companies and research centers all over the
world [3]:

Scalability and performance: processing is distributed across several hosts and this
allows to store, manage and process data in the order of Terabytes or Petabytes. New
nodes can be easily added to the cluster and the framework allows easy integration.

Reliability: large data centers are subject to a great number of failures due to malfunc-
tioning of single nodes. The main idea with which all Hadoop components have been
developed is that faults and malfunctions are not exceptions but common events, so
they must be automatically managed within the framework. When a node falls, pro-
cessing is redirected to the other nodes in the cluster and the data are automatically
replicated in case of future failures. This approach also allows the use of commodity
hardware, reducing the total cost.

Flexibility: unlike traditional DBMS, typically is not necessary to define the data struc-
ture before storing them. These can be stored in any format, structured or unstruc-
tured, and then be managed appropriately during the reading phase.

Low cost: Hadoop is an open source framework released under Apache license [4]. How-
ever, there are several commercial implementations with paid suppors, such as Cloud-
era, Hortonworks and MapR.

The main components of Hadoop are a processing infrastructure based on the MapRe-
duce paradigm and a distributed file system, calledHadoop Distributed File System (HDFS).
Its main components are:

Hadoop Common: a common software layer that support the other Hadoop modules.

Haddop Distributed File System: a file system distributed across the nodes inside the
cluster. It provides high throughput and data redundancy to make data always
available even in case of a node failure.

10

2.2 – The Hadoop Framework

Hadoop YARN: a framework for job scheduling and cluster resource management.

Hadoop MapReduce: a programming pattern, based on YARN, for parallel processing
of large data sets.

The great success of Hadoop has led to the creation of an entire ecosystem (figure 2.4)
based on the four component just mentioned, but enriched by many modules designed to
address specific needs. Among these we can mention Apache Hive, Apache Flume, Apache
ZooKeeper and many others.

Figure 2.4: Hadoop Ecosystem

In the next paragraphs will be described the main components used during the thesis
work.

2.2.1 Hadoop Architecture

In the Hadoop terminology, an host is a computer. Usually we refer to a host calling it
node.
A cluster is a set of two or more nodes connected each other by an high-speed local network.
Depending on the needs, a cluster can consist of few nodes or thousands. Within large
data centers, cluster nodes are organized into multiple racks connected by a very high-speed
switch. Each rack contains a variable number of servers, which typically varies between 16
and 24, connected to each other by a switch.
Figure 2.5 shows a typical configuration of a cluster.

A Hadoop cluster consists of two different categories of nodes: master node and worker
node.
The master nodes have the task of supervising and coordinating the main operations.

11

2 – THE HADOOP ECOSYSTEM

Figure 2.5: Typical configuration of a Hadoop Cluster

Among these we can mention the NameNode, which coordinates the use and access to the
distributed file system, or the JobTracker which coordinates the distributed execution of
MapReduce applications.
The worker nodes, which make up the majority of nodes, are responsible for executing
operations and launching processes, under the directives of master nodes.

One of the main problems to be faced in the management of distributed systems is
scalability. In fact, at any time, we may need more resources to support an increasing
workload. Two types of approach can be adopted:

Vertical Scalability (scale up): it consists of adding more resources to the individual
nodes, for example more memory, more CPUs or more disks. This approach is typi-
cally adopted in case of use of few high-performance nodes.

Horizontal Scalability (scale out): it consists of adding more nodes to the cluster.
Typically it is adopted in case of the cluster consist of a large number of commodity
servers.

The term commodity hardware refers to a low cost and widespread device, replaceable

12

2.3 – Hadoop Distributed File System

by another device of the same type in case of need. The term can be put in contrast to
dedicated hardware, where the cost is typically higher and whose availability is limited due
to the lack of diffusion and compatibility with other devices other than those for which it
was designed.

The approach used by Hadoop is scale out, making it particularly easy to add servers
to the cluster. Futhermore, the framework is designed to hide from the user the complex-
ity introduced by the distributed programming models in terms of synchronization and
scheduling of the task, allowing them to concentrate on solving the problem rather than
managing the environment.

2.3 Hadoop Distributed File System

Hadoop Distributed File System is the file system on which the Hadoop architecture is
based. It is a distributed file system, written in Java, which ensures reliability and scala-
bility.
HDFS was designed having in mind that hardware failures are common events and not
exceptions. A typical HDFS instance can in fact be made up of hundreds or thousands of
nodes, so the probability that in a certain instant one or more nodes could fail is very high
and therefore not negligible.

HDFS is inspired by the Google File System, a proprietary file system described for the
first time in a paper released by Google in 2003 [5]. It is not a general purpose file system,
but it is meantfor exclusive use within the Hadoop framework, and it is not fully compliant
with POSIX specifications. The designers have decided to relax some specifications in or-
der to optimize the performances of the applications for which the file system was thought
[6].

HDFS is designed to support very large files. HDFS-compatible applications typically
work with file sizes in the order of GBs or TBs. Internally, a file is divided into smaller
blocks, sometimes called chunk.
All blocks in a file have the same size except for the last one. The block size is configurable
for each individual file, and the typical value of this size is 64-128 MB.

Each data block is replicated on different nodes to guarantee reliability and fault tol-
erance in the event that one of the nodes becomes unreachable or part of the data is
corrupted. The number of replicas is called replication factor and is also configurable for
each file.

13

2 – THE HADOOP ECOSYSTEM

Figure 2.6: Configuration with replication factor equal three

Figure 2.6 shows the possible configuration of a cluster with a replication factor of three.
Note the arrangement of replicas in the cluster. After a block has been written to a node,
a replica is placed on anoter node within the same rack. This ensures that data is not lost
in the event of a machine failure. In this case, however, if the fault should affect the whole
rack, the data is still lost. To avoid this situation, the third replica of the block is placed
on a machine inside a different rack than the initial one.
The knowledge of the network topology within the cluster is called rack awareness and
allows to maximize network performances and optimize data reading operations.

In order to minimize bandwidth consumption and read-only latency, the framework
ensures that the reading of data always occurs on the node that is topologically closer to
the client that requested it. In the best case, the data is present on the same machine that
required it, so that replica is chosen. In case this is not possible, is checked that there is a
replica on a a node inside the same rack of the client, and if so, that copy is selected. If
no replicas are available in the requester’s rack, data is read from the closest rack.

2.3.1 HDFS Architecture

HDFS is based on a master-slave architecture. More precisely, in each cluster there is a
single master, called NameNode, and a variable number of slaves, called DataNode.

NameNode: its role is to regulate client access to files. It also manages the file system

14

2.3 – Hadoop Distributed File System

namespace and the operations of opening, closing and renaming of files and folders.
Finally, it determines the mapping of file blocks and their respective replicas in the
various DataNodes. The NameNode is designed to contain and manage all file system
metadata, without ever directly manipulating application data.

DataNode: they manage the data present in the node in which they reside. They are
responsible for serving client block read and write requests and, coordinated by the
NameNode, perform data creation, deletion and replication operations.

Figure 2.7: NameNode and DataNode in HDFS

HDFS is written entirely in Java and although there are no limits to the number of
nodes that can be active on a single machine, typically a single HDFS node is instantiated
on each host.

2.3.2 HDFS High Availability

The NameNode is a critical component of HDFS. In fact, without it, clients could not have
access to the data stored in the DataNodes.
In the first version of Hadoop, each cluster had a single NameNode. This simplified the
overall architecture but made the NameNode a single point of failure. Whenever the host
node or the NameNode process became unavailable, the entire cluster became unusable as
long as the NameNode was not restarted.

Starting with version 2.0, a feature called HDFS High Availability has been introduced.
This allows to create two redundand NameNode within the cluster. In this configuration,
one of the two NameNodes is active, while the other is in a state of hot standby which
allows fast recovery in case of failure or maintenance of the main node.
In order to let the mechanism work properly, the active NameNode and the standby Na-
meNode must always be synchronized in terms of knowledge of the namespace and the
arrangement of the blocks inside the cluster. Every change to the namespace is recorded

15

2 – THE HADOOP ECOSYSTEM

in an edit log placed in a shared folder. The standby NameNode periodically reads this
log and applies the changes to its namespace, so that it stays in sync with the main Na-
meNode. This allows a quick and correct awakening of the standby NameNode in case of
need. Information about the location of blocks and replicas within the cluster is provided
directly DataNodes, configured so that such status information is automatically sent to
both NameNodes.

The NameNode receives information from the various DataNodes through messages
called Heartbeat and Blockreport.
The Heartbeat is sent periodically from each DataNode. The transmission interval between
two Heartbeat messages is configurable and is set to a default of three seconds. Through
this short message, the node tells the NameNode to be active and properly working. If the
NameNode no longer receives a Heartbeat from a certain node, it then considers it no longer
reachable and does not assign work to that node. Since a DataNode is no longer reachable,
the NameNode assumes that every block stored in that node is no longer available. If this
causes the number of replicas of a block to fall below the value set as replication factor,
the NameNode starts the replication process on another node.

Each DataNode saves HDFS files on its local file system, storing a separate file for
each block. Moreover, it keeps track of the relevant metadata, like the checksum. At
startup, the DataNode scans its local file system and generates the list of HDFS blocks
that correspond to each file. Starting from this list, it generates a report called Blockreport.
A new Blockreport is generated and sent to the NameNode at predefined intervals, so that
NameNode is updated on the status of the replicas on the various nodes.

2.3.3 Persistence of HDFS metadata

The whole HDFS namespace is stored in the NameNode, which handles it through the use
of two files, FsImage and EditLog.
FsImage is a file representing the file system metadata snapshot. Even if it is very efficient
to read, the FsImage is not suitable for small updates, such as renaming a single file. In
order to avoid writing a new FsImage every time the namespace is changed, the NameNode
records the editing operations in the EditLog.
Both are stored in the local file system of the NameNode.
The NameNode keeps in memory the whole image of the namespace and the mapping of
the blocks, thanks to the fact that these structures are designed to be compact and to be
able to contain information related to a large number of folders and files in a small space.
When the NameNode is started, it performs an operation called checkpoint, whose purpose
is to apply the changes contained in the EditLog to the image contained in the FsImage.

16

2.3 – Hadoop Distributed File System

The checkpoint is performed only when the node is started and consists of the following
sequence of operations:

1. The NameNode reads EditLog and FsImage from the local file system.

2. It applies the transactions contained in the EditLog to the FsImage cached in memory.

3. It overwrites the version of FsImage file on disk with the updated image just obtained.

4. It truncates the EditLog file because the changes contained in it have been applied
to the file system image in memory and on disk.

The EditLog and FsImage files are really important for the functioning of HDFS and
it is necessary to make sure that their corruption does not make the system unusable. For
this reason the NameNode can be configured in such a way as to create multiple copies and
keep them updated over time. This synchronization can cause performance degradation in
terms of transactions per second that the NameNode can support.

In the current implementation, the merging between the FsImage and the EditLog is
done only when the NameNode is started. For this reason, the EditLog size can become
bery large over time. In addition, a larger number of edits to be applied makes the node
start slower. To allow a quick start, a node called Secondary NameNode was introduced.
From the name it might seem a sort of backup of the main NameNode, in reality its role
is to periodically merge the two files, so that the EditLog keeps its size small.

Figure 2.8: Behaviour of the Secondary NameNode

Figure 2.8 shows the behaviour of the Secondary NameNode:

1. The EditLog and the FsImage are retrieved from the Master NameNode at regular
time intervals.

17

2 – THE HADOOP ECOSYSTEM

2. A new FsImage is created by applying the edits, and then this version is sent to the
Master NameNode.

3. The Master NameNode is going to use this new version of FsImage at the next start,
reducing restart times.

2.3.4 Staging

When a client requests the creation of a file, the request is not immediately forwarded to
the NameNode. The data is initially placed in a temporary location on the client’s file
system. When enough data is reached to fill a block or the temporary file is closed, the
client contacts the NameNode. Only at that point data is written on HDFS, through the
following sequence of operations:

1. The NameNode puts a new entry in the file system hierarchy and allocates a block
in one of the DataNodes.

2. The NameNode replies to the client’s request by specifying the identity of the DataN-
ode is going to receive the data.

3. The client transfers the data from the local file to the DataNode and tells the Na-
meNode to close the file.

4. The NameNode stores the operation persistently by inserting its entry in the EditLog.
If the NameNode falls before the EditLog edit is written, the file reference is lost.

In case of a replication factor greater than one, the staging phase is followed by another
phase, called replication pipelining. In this scenario, when the client requests to create a
file, the NameNode sends to the client a list of DataNodes that are going to receive the
block. At that point the client, in addition to transmitting data to the first DataNode, it
sends also the list of the other DataNodes received by the NameNode. The first DataNode,
as it receives portions of files, saves them in its local file system and at the same time sends
them according to the DataNode of the list, and so on.

The presence of the staging phase is one of the relaxation introduced to the POSIX
specifications during the design of the file system, ti better support the features of HDFS
applications and avoid a high network congestion due to the direct writing of files by te
clients.

18

2.4 – The MapReduce Paradigm

2.4 The MapReduce Paradigm
The Hadoop architecture is based on the MapReduce programming paradigm. This model
was created with the aim of supporting the creation of distributed applications capable of
processing huge amounts of data, in a reliable and fault-tolerant way.
The paradigm was created by Google in early 2000 and described in a paper in 2004 [7].
This work inspired the open source implementation of Apache Hadoop.

The use of MapReduce allows the execution of a large number of applications. Among
these we can mention:

• Log Analysis.

• Textual Analysis, indexing and research.

• Analysis of complex data structures such as graphs (for example social network anal-
ysis applications).

• Data Mining and Machine Learning.

• Execution of distributed tasks such as complex mathematical calculations and nu-
merical analyzes.

Google itself has used in the past its implementation of MapReduce for the regeneration
of search indexes of Web Pages.

2.4.1 Operating Principles

The model requires that the data can be mapped to a key-value pair. For example, think
about a Web Page: you could consider the URL as the Key and the HTML content of the
page as the respective value.
A MapReduce program consists of two basic steps, from which the framework takes its
name:

Map: The master node takes the input data, divides it into small sub-problems, and
distributes the job to the svale nodes. The single mapper node applies transformations
and produces the intermediate result of the map() function in the form of a pair (key,
value) stored on a distributed file, whose location is notified to the master at the end
of the map phase.

Reduce: The master node collects the answers, combines the pairs (key, value) into lists
of values that share the same key and sorts them by key (lexiconographic order,
increasing or defined by the user), Shuffle Step. The pairs of the form (key, List(value,
value, ...)) are passed to the reducer nodes that perform the reduce() function.

19

2 – THE HADOOP ECOSYSTEM

More formally, the two phases can be defined as:
Map(k1,v1) → list(k2,v2)
Reduce(k2, list (v2)) → list(v3)

Intermediate operations, such as the extraction of (key, value) pairs from the input data
set and the aggregation by key of the values exiting the mapping phase are managed by
the framework, so the programmer does not have to deal with it.

When a job is submitted, the application is copied to the different cluster nodes in
charge of processing. We distringuish three main actors:

Driver: takes care of configuring the job and running it on the Hadoop cluster. There is
only one instance of the driver, and it is performed on the client.

Mapper: implements the mapping phase. This phase is completely parallelizable, there-
fore multiple instances are executed. For optimal parallelism, the number of mappers
should be equal to the number of input blocks. The instances are launched on the
various nodes of the cluster and, depending on the capacity of the individual ma-
chines, multiple instances can be active on each node. Following the data locality
principles of Big Data, the framework makes sure that the instances are executed on
the nodes that contain the data to be processed, in order to minimize the network
usage.

Reducer: implements the reduce phase. Its instances are executed on the cluster nodes,
but their number must be configured by the user and varies depending on the appli-
cation. Each reducer produces an output file and stores it on HDFS.

The simplest and most famous example of a MapReduce application is the Word Count
Problem, where you must count the number of occurrences of words within a text. In
figure 2.9 is shown how it works.

The text file is initially splitted in multiple blocks on HDFS, in this case four. Inside
each block are stored a certain number of records, each containing a sequence of words.
For each block is created an istance of the Mapper. This receives one line of text at a time,
in the format (NULL, line of text). In this particular example, the key of the elements
processed by the Mapper is irrilevant.
The Mapper processes the received line of text by separating the words, and issuing for
each of them a (word, 1) pair, which indicates that the word appeared once.
The issued pairs are temporarily stored on the local file system of the node where was
executed the Mapper.
At this point the framework makes sure that the pairs are sent to the nodes that will carry

20

2.4 – The MapReduce Paradigm

Figure 2.9: Word Count in MapReduce

out the reduce phase. All pairs with the same key must be grouped together and sent to
the same Reducer. To do this, and operation called shuffle is performed, in which a hash
function is typically applied to the key, and the pair is routed to a Reducer based on the
result of the hash.
Assume that five instances of Reducer were created. The pairs addressed to each of them
are grouped by key. At this point the Reducer receives, one at a time, the pairs (word,
list(1, 1, 1, ...)).
For each pair, all the unit values in the list are sum up, obtaining the number of occur-
rences of the word inside the whole text. The pair (word, occurrences) is issued and the
final result is written on HDFS.
The application output consists of file files, one for each Reducer.

The input files of a MapReduce application and its outputs are typically stored on
HDFS. In contrast, the intermediate results of the processing, such as the outputs of the
mapping phase, are not placed on the distributed file system but on the local file system
of each node that have done the processing.
The pairs emitted by the mappers are transferred to the Reducer host nodes through the
network, so the performance of the framework can be influenced by the amount of data
exchanged and by the capacity of the network.
In the previous example, it can be seen that the (word, 1) pair is issued by a Mapper as

21

2 – THE HADOOP ECOSYSTEM

many times as the occurrences of the word inside the block. This can result in degradation
of network performance. For this reason, an optimization phase has been introduced called
combiner, which performs a similar processing like the Reducer, but acting on local data,
before being sent to the Reducer.

2.4.2 MapReduce Limits

MapReduce was one of the first programming paradigms used for Big Data analysis. Even
if it is still used for the development of a large number of applications, there are cases
in which its use is discouraged. Its limits are mainly due to the lack of flexibility and
management of intermediate results:

• Low flexibility: the model is relatively simple, which is why it is often not suitable
for more complex problems.

• Designed for batch applications, not streaming or interactive.

• Not suitable for iterative problems, because this involves having to read data from
disk at each iteration.

The need to overcome these limits has led to a series of alternative paradigms to MapRe-
duce in recent years. The introduction of Apache YARN into Hadoop has allowed the
integration of these new paradigms with the framework.
In recent years, the complexity of problem solving has been masked inside products based
on MapReduce, which over time have become more and more widespread: Apache Hive
and Apache Pig, for example, automatically translate sql-like queries in a sequence of
MapReduce jobs.

2.5 Apache YARN

YARN (Yet Another Resource Negotiator) is one of the four main components of Hadoop
2.0, Its main job is managing the resources of the whole ecosystem, scheduling and launch-
ing processes on the cluster.
The idea on which YARN is based is to divide the functions of resource management,
scheduling and monitoring of jobs in multiple processes distributed on the various nodes.
In particular, a global ResourceManager and a ApplicationMaster are instantiated for each
submitted job.

YARN provides its services through two demons:

22

2.5 – Apache YARN

ResourceManager: it is the master. It takes care of receiving requests from the client,
managing resources of the cluster, keeping track of them, and assigning tasks to
individual workers. The term ResourceManager is also used to indicate the machine
hosting the process. There is only one ResourceManager inside the cluster.

NodeManager: it is the worker. It receives the ResourceManager guidelines, launches
the required processes, and tracks local resources of the host node, including CPU
and memory usage, storage space, and network capacity. Also in this case the term
NodeManager is used to indicate both the process and the host node. There is a
NodeManager for each node in the cluster.

Figure 2.10: YARN Architecture

Figure 2.10 shows the architectural scheme of YARN.

Each application is divided into several processes, which are called task. One of the
tasks defined by the framework is called ApplicationMaster. Its role is to negotiate the
use of resources with the ResourceManager, launch and monitor the various tasks on the
NodeManager.
The ResourceManager consists of two main components, called Resource Scheduler and
ApplicationsManager :

Resource Scheduler: it takes care of allocating the needed resources for applications.
It performs its task based on needs of individual applications and the availability

23

2 – THE HADOOP ECOSYSTEM

of resources on each node. It does not offer features such as monitoring application
status or restarting jobs in case of failure.

ApplicationManager: it takes care of receiving applications submission requests and
allocating resources for their ApplicationMaster. It also allows to restart the Appli-
cationMaster in case of task failure.

Each NodeManager keeps track of its available resources and communicates them to
the ResourceManager, which tracks the overall resources available in the cluster and where
they are located. In Hadoop 2.0, each application, through the ApplicationMaster, can
request the assignment of two types of resources: number of vcores (possibility of using the
CPUs) and amount of memory. In the future, support will also be extended to requests
regarding the number of GPUs, the amount of bandwidth, and the use of disk.
The Resource Scheduler replies to the ApplicationMaster by assigning the requested re-
sources, grouped into a single logical package called Container. Holding a container guar-
antees an application the ability to use a certain amount of resources in a node of the
cluster.
The execution of an application takes place through a series of steps:

1. The application starts and contacts the ResourceManager.

2. The ResourceManager assigns a Container to the application.

3. Once the resources are available through the first Container, the ApplicationMaster
is executed.

4. The ApplicationMaster negotiates with the ResourceManager the allocation of new
Containers required by the application, which is divided into several processes called
tasks. At that point the processing begins.

5. As soon as the tasks end, the Containers are deallocated. When all the tasks have
been completed, the ApplicationMaster exits and even the last Container is released.

6. The application exits.

2.6 Apache Kafka

Apache Kafka is an open source distributed streaming platform [8], based on the publish-
er/subscriber pattern. The project was born with the idea of proposing a platform able to
manage real-time flows, guaranteeing persistence, high throughput and low latency.
From an architectural point of view, Kafka consists of the following components:

24

2.6 – Apache Kafka

Figure 2.11: Kafka Logo

Topic: represents a stream of messages of a particular type. A message is defined as a
byte sequence and a topic is the category to which the message belongs.

Producer: is the actor who publishes messages in a topic.

Consumer: can subscribe to one or more topics and consume published messages.

Brokers or Kafka Cluster: are a set of servers where the topic physically resides to-
gether with the data published on it.

Figure 2.12: Kafka Architecture

Kafka provides four APIs:

Producer API: which allows an application to publish messages on one or more topics.

Consumer API: which allows an application to subscribe to one or more topics and
process the messages contained in.

25

2 – THE HADOOP ECOSYSTEM

Streams API: which allows an application to act as a stream processor, whose task is to
consume messages from one or more topics, apply a transformation to the consumed
messages and republish them.

Connector API: allows you to develop and run reusable producer or consumer that can
link Kafka topics to existing applications or storage systems.

As you can guess, Kafka main component is the topic. For each topic, the Kafka cluster
maintains a partitioned log that looks like:

Figure 2.13: Topic Anatomy

Each partition is an ordered, immutable sequence of records that is continually ap-
pended to a structured commit log. The records in the partitions are each assigned a
sequential id number called offset that uniquely identifies each record within the partition.
The Kafka cluster retains all published records, whether or not they have been consumed,
using a configurable retention period. Kafka’s performance is effectively constant with
respect to data size so storing data for a long time is not a problem [8].

In fact, the only metadata retained on a per-consumer basis is the offset or position
of that consumer in the log. This offset is controlled by the consumer: normally a con-
sumer will advance its offset linearly as it reads records, but, in fact, since the position is
controlled by the consumer it can consume records in any order it likes. For example a
consumer can reset to an older offset to reprocess data from the past or skip ahead to the
most recent record and start consuming from "now". This combination of features means
that Kafka consumers are very cheap, they can come and go without much impact on the
cluster or on other consumers.

The partitions of the log are distributed over the servers in the Kafka cluster with each

26

2.7 – Apache Flume

Figure 2.14: Topic Consumer

server handling data and requests for a share of the partitions. Each partition is replicated
across a configurable number of server for fault tolerance. Each partition has one server
which acts as the leader and zero or more servers which act as followers. The leader han-
dles all read and write requests for the partition while the followers passively replicate the
leader. If the leader fails, one of the followers will automatically become the new leader.
Each server acts as a leader for some of its partitions and a follower for others so load is
well balanced within the cluster.

Kafka can be used in many situations, but it gives its best when dealing with streaming
of data, because it guarantees:

Scalability: it is a distributed system, so easy to scale in case of need without having to
stop the flows.

Durability: messages are stored on disks for long periods, moreover they are replicated
across the servers inside the cluster.

Reliability: data is replicated, supports multiple subscriptions and automatically bal-
ances consumers in case of failure.

Performance: it ensures high thoughput for both producers and consumers, with disk-
based stuctures ensuring consistent performance even in case of huge volumes.

2.7 Apache Flume
Apache Flume is a tool/service/data ingestion mechanism for collecting, aggregating and
transporting large amounts of streaming data, such as log files or events, from various
sources to a centralized data store. Flume is a high reliable, distributed, and configurable

27

2 – THE HADOOP ECOSYSTEM

Figure 2.15: Flume Logo

tool. It is principally designed to copy streaming to HDFS.
Flume is based on a Java process called agent. The agent has the task of running three
components:

Source: receives data from the source and transfers them to one or more channels in the
form of Flume event.

Channel: is a temporary store that receives events from the source and stores them until
they are consumed by sinks. It acts as a bridge between the sources and sinks.

Sink: writes data on HDFS or HBase. It consumes data from the channel and sends it to
the destination. The destination of a sink can be also another Flume agent.

Figure 2.16: Flume Agent

28

2.8 – Apache Hive

Flume has been a great success and its use in Big Data solutions is constantly increas-
ing. This is due to its simplicity in terms of usage and integration. In recent years,
Cloudera engineers, along with other members of the open source community, have
made possible the integration between Apache Kafka and Flume, informally called
Flafka. The Flume-Kafka integration offers new features that Kafka, alone, does not
offer. In a few simple steps you can create Kafka producers and consumers without
having to write code, adding the possibility to process or transform messages coming
from Kafka on-the-fly.

Figure 2.17: Flafka Architecture Example

2.8 Apache Hive

Figure 2.18: Hive Logo

Apache Hive is a data warehouse infrastructure tool lto process structured data in
Hadoop. It resides on top of Hadoop to summarize Big Data, and makes querying
and analyzing easy.
It all started with the need to manage and learn from the huge amount of data that

29

2 – THE HADOOP ECOSYSTEM

Facebook was producing every day through its social network. After testing different
systems, the team chose Hadoop to store and process data, for its cost and scalability.
Hive was created to allow analysts with strong SQL skills to query the huge volume
of data that Facebook had on HDFS. Today, hive is a successful Apache project used
by many companies to process their own data.
Despite its ability to manage structured data in a table, Hive is not designed to
replace transaction-based systems.
The main features offered by Hive are:

• Data access through a dialect of the SQL language, called HiveQL, which allows
to perform ETL operations, reporting and data analysis.

• Ability to read and write data in various formats.

• Ability to query through Spark or MapReduce applications.

• Possibility to structure data read by HDFS.

The Hive infrastructure is divided into several components:

User Interface: allows the user to submit queries and receive results.

Metastore: is one of the main components. It takes care of storing all information
on partitions and tables, such as the names and types of columns. It also keeps
track of how to read and write data, as well as the location of data on HDFS.

Compiler: takes care of receiving queries, verifying their semantic correctness and,
after retrieving the necessary information from the Metastore, generating an
execution plan. This execution plan is represented by an acyclic graph , made
by operations such as MapReduce jobs or read and write operations on HDFS.

Execution Engine: receives the execution plan of the queries and assigns the var-
ious operations to the individual Hadoop components responsible for executing
them, managing their dependencies.

Driver: deals with receiving user queries, creating sessions and managing the com-
munication between Compiler and Execution Engine.

Figure 2.19 shows HIve’s architectural scheme.

When a table is created, its schema is not stored in the same Hive blocks where data
resides. On the contrary, all the metadata of a table are stored by the Hive Metas-
tore in a relational database (for example MySQL). At each access to the table, its
metadata is read from the Metastore.
One of the main consequences of this decoupling is the possibility to create tables
from files alredy stored on HDFS. This fact does not require the modification of the

30

2.9 – Cloudera Impala

Figure 2.19: Hive Architecture

blocks on the file system. During the creation of the metadata, the user indicates
how these files must be read and modified, and from that moment they will be able
to access them through HiveQL queries.

The Hive Metastore represents a single point of failure, in fact its unavailability causes
the impossibility to access the whole data set. For this reason, the service is often
configured in High Availability mode within the cluster, with a second node containing
a copy of the metastore and placed in standby mode, ready to wake up in case of
failure of the main metastore.

2.9 Cloudera Impala

Cloudera Impala is a Massive Parallel Processing (MPP) SQL Engine created to query
data in Hadoop. Impala was born with the aim of combining the familiarity of the
SQL language with the scalability and flexibility of Apache Hadoop.
Compared to other systems, Impala was developed entirely in C++ and Java. It
is perfectly integrated with Hadoop using other components already included in the
platform (HDFS, HBase, YARN, Hive) and is able to work with the most common
formats.
Impala is independent of the underlying storage layer, unlike traditional relational
databases where the query and storage engine are integrated into the same system.

31

2 – THE HADOOP ECOSYSTEM

Figure 2.20: Impala Logo

The high-level architecture of Impala is shown in figure 2.21.

Figure 2.21: Impala Architecture

Impala is based on three services:

Impala Daemon: (impalad) is responsible for accepting queries from clients and
orchestrating their execution on the cluster. When an Impala Daemon takes
care of running a query, it is referred as coordinator of that query. In any case,
all the demons are symmetrical, so they can play all the roles. This is very
useful both for balancing the load and for replacing a daemon in case of failure.
The Impala Daemon is executed on every machine in the cluster on which the
DataNode process is also running, so there is typically an Impala Daemon on
each machine. This allows Impala to take advantage of the data locality and to
read blocks from the file system without having to use the network.

Statestore Daemon: (statestored) is the service in charge to manage the metadata,
and in particular to send them to all the other processes in the cluster during the
executions. The Statestore Daemon is also responsible for verifying the status
of Impala Daemons dispatched on the DataNodes. In the event that one of the

32

2.9 – Cloudera Impala

Impala Daemons could no longer be reached due to some failure, the Statestore
Daemon informs all other Impala Daemons such that the offline node is not used
for future query execution. Since the goal of the Statestore Daemon is to help
Impala Daemons when something goes wrong, its presence within the cluster is
not essential. In the event that it is no longer reachable, Imapa Daemons would
work anyway.

Catalog Daemon: (catalogd) is responsible for sending metadata to Imapa Dae-
mons, when the metadata are modified by a query. Since requests come from
the Statestore Daemon, generally both the statestored and the catalogd reside
on the same machine.

One of the main purposes for which Impala was designed is to make SQL-on-Hadoop
operations fast and efficient. In Practice, Impala makes use of the infrastructure set
up by Apache Hive, usually present because it is used for the execution of very long
or batch operations. In particular, Impala uses the same metastore used by Hive,
but unlike the latter, it tries to reduce accesses to the metastore caching metadata
on the Impala Daemons distributed in the cluster. SQL queries are translated into
MapReduce jobs, like Hive, but everything is done in-memory in such way to ensure
reduced response times.

33

34

Chapter 3

STATE OF ART

In this chapter will be shown an overview of the architecture in place at the beginning
of the thesis work.
For each layer will be explained how it works, trying to highlight strengths and
weaknesses occurred during the study of the solution.

3.1 Logical Architecture

The solution was developed in the late 2015, commissioned by one of the main clients
of Data Reply. Initially the project specifications were relatively simple: the sources
were limited in number and belonging to the same category, the messages sent by
the latter were well specified and subject to few variations. Currently the number of
sources is considerably greater than when the system was developed, moreover the
types of messages sent by the latter is increased.
Figure 3.1 illustrates the logical architecture developed in 2015.

The image, in addition to showing the logical architecture, also allows us to under-
stand its operating principle: the sources, similar to IoT devices, are equipped with
a WS client able to contact the single access point of the layer ingestion. The devices
periodically send messages to the WS server, which, after processing the message,
dispatches information on different Kafka topics. These topics have been linked to
a Flume agent whose job is to consume the data and store them in the destination
folders on HDFS. On the destination folders, tables have been created that can be
queried through Hive or Impala, depending on the needs.

35

3 – STATE OF ART

Figure 3.1: Logical Architecture

In the following paragraphs, the ingestion layer, the storage layer and the analytical
layer will be analyzed in detail, in order to provide a clearer image of the various
components and highlight those that have been defined as the weak points of the
whole architecture.

3.2 Ingestion Layer

The ingestion layer, shown in figure 3.2, is the part that most needed to be redesigned.
This consists of:

• A Web Service server.

• Apache Kafka.

• Apache Flume.

The Web Service server is the only point of access to the entire Big Data infrastruc-
ture. Based on SOAP protocol, this exposes an interface that devices can contact to
send their own messages.
The server plays a fundamental role in the entire architecture as, in addition to being
the access point to the infrastructure, it also takes care of processing the messages
before being stored on HDFS.

36

3.2 – Ingestion Layer

Figure 3.2: Ingestion Layer

In figure 3.3 is shown the transformation chain to which messages are subject, in
particular::

External Payload GZIP Decompression: Devices send messages containing a
list of attachments in XML format. To reduce the amount of data sent to each
transmission, the SOAP envelope payload is compressed. In this phase mes-
sages are decompressed; in the event that the payload is corrupt or can not be
unzipped, the whole message is discarded.

External Payload XML Validation: The decompressed payload is validated against
the WSDL schema. Even at this stage, if the validation fails, the whole message
would be discarded.

External Payload XML Parsing: The payload is mapped to Java classes gener-
ated by the WSDL schema itself.

37

3 – STATE OF ART

Figure 3.3: Web Service Server Internal

At this point we have obtained a list of attachments containing the data we are
interested in. For each of them the following transformations are applied:

Base64 Decode: The attachments are further compressed by encoding them in
Base64. Before being interpreted, these are decoded in order to obtain raw XML.
An error in this step translates into the deviation of the single attachment.

XML Validation & Parsing: As in the case of the external payload, the decoded
attachments are validated against the WSDL shema and subsequently mapped
onto the generated Java classes.

CSV Mapping: Starting from the Java classes, complex data structures are created
that can structure the data in tabular form. This phase became mandatory as
Apache Camel was used for the integration between the server and Kafka.

During the study of the Web Service server, the ones that can be defined the weak
points have been identified:

1. Single Point of Failure: the server was designed and developed as a single mono-
lithic block. All the transformations described above are carried out by the same
Java program. In the event that the server goes down, the entire infrastructure
would no longer be reachable.

2. There is no error queue where you can temporarily store badly formatted mes-
sages.

38

3.3 – Storage Layer and Analytic Layer

3. Consequence of the previous point, if one of the first transformations fails, the
whole message is discarded.

Leaving aside Kafka whose operation is known, Apache Flume takes care to consume
the records published on the topic and write them in CSV files stored on HDFS.
The problems highlighted by the use of Flume, if we can define them so, are collected
in the following two points:

1. Absence of a graphical interface for flow monitoring.
2. Operation based on a configuration file. As the flows increase, the configuration

file becomes longer and more difficult to manage.

3.3 Storage Layer and Analytic Layer

Figure 3.4: Storage and Analytic Layer Internal

As mentioned in the previous paragraph, Flume takes care of importing data on
HDFS; these will then be queried through tables.

39

3 – STATE OF ART

Figure 3.4 shows a lower level architecture of the storage layer and the analytical
layer.
The records, as soon as they are consumed from Kafka, are written on CSV files.
These files are stored in a folder different from the final one: in this folder, in fact,
there are all the files opened in writing that are waiting to be finalized. Every five
minutes an automatic routine takes care of moving the closed files in what will be the
final destination folder. The reason for this process will be clarified later.
Once the files have been moved you can query them: for this purpose, there are
external tables, created through Hive, that point directly to the final folder.
The reasons that led to revisit the Storage and Analytic layers are summarized below:

1. Hive and Impala do not support all CRUD operations. The only operations
allowed are, in fact, Create (INSERT) and Read (SELECT).

2. Impala is affected by some problems in the querying phase when the underlying
files are still open. This forces the closed CSV files to be kept separate from those
opened for writing operations: hence the two folders described above. Even if
the operations of moving from one folder to another have been automated, it is
still difficult to maintain these processes when the number of different flows to
be managed is very high.

40

Chapter 4

DESIGN AND
DEVELOPMENT

In this chapter will be presented the final architecture and how it has been developed.
After a brief introduction abount the environment used for the development, for each
layer involved into the reengineering process will be shown the introduced tools and
how they have been used.

4.1 Environment and Versions

The project was developed on a cluster consisting of three physical machines and two
virtual machines, with the characteristics described in the table 4.1.

Table 4.1: Cluster Configuration

HOST ROLE TYPE CPU RAM STORAGE
host01 Management Virtual 8 16 GB 300 GB
host02 Management Virtual 8 16 GB 300 GB
host03 Worker Physical 40 189 GB 1 TB + 10 x 3,6 TB
host04 Worker Physical 40 189 GB 1 TB + 10 x 3,6 TB
host05 Worker Physical 40 189 GB 1 TB + 10 x 3,6 TB

The configuration of the nodes follows the master-slave model of the main Hadoop
components.
The HDFS service is configured in High Availability mode. In particular, host01 is
the active NameNode istance, while host02 is the standby istance.

41

4 – DESIGN AND DEVELOPMENT

The total capacity of HDFS is around 110 TB, distributed over three DataNodes.
Each of them has a 1 TB hard disk designed to host the node local file system and
ten 3.7 TB disks dedicated to HDFS. Is preferred to use many small disks, rather
than a single large disk, mainly for reliability and performance reasons:

• The breakdown of a single large disk would result in the loss of a lot of data. The
replication process of files blocks on other nodes in the cluster would negatively
impact performances.

• I/O operations performed on different physical disks increase parallelism.

Notice that the overall capacity of the file system does not take into account the
replication factor of the blocks, in this case three. The available capacity of HDFS is
therefore equal to one third of the total capacity.

Communication to the outside takes place through 1 Gbps network interfaces, while
in the internal network is designed to support a 10 Gbps communication.

The cluster management interface is available, in Cloudera distribution, through the
Cloudera Manager service, accessible via a web browser at host01 address on port
7180. Through this service, it is possible to monitor the status of nodes, view infor-
mation and statistics about resources in use and configure most of the services. The
interface is shown in figure 4.1.

Finally another machine, outside the Hadoop cluster, has been used as a web server.
It is a small Linux virtual machine with 8 cores and 8 GB of memory, enough to host
the service.

4.1.1 Versions

The Hadoop distribution used is the Cloudera distribution. In particular, the version
installed on the cluster is Cloudera CDH 5.13.1.
In order to ensure compatibility between the components and to be able to obtain
adequate support in case of need, Cloudera recommends to use, for each service, the
version released with the distribution. For this reason, the following versions have
been used:

• Apache Hadoop 2.6.0

• Apache Hive 1.1.0

42

4.2 – Logical Architecture

Figure 4.1: Cloudera Manager Interface

• Cloudera Impala 2.10.0

• Apache Kudu 1.5.0

• Apache Kafka 2.1.1

• Apache ZooKeeper 3.4.5

• StreamSets 3.1.0.0

Some services are affected by known bugs, fixed in later versions. However, due to
the inability to upgrade or install patches, it was necessary to use workarounds or
relax project specifications to get around these issues.

4.2 Logical Architecture

In figure 4.2 is shown the logical architecture of the new system. From the image you
can see where the new tools are located.
In the following paragraphs will be analyzed in detail the work done: for the re-
designed layers, will be done an introduction of the new tools first and then will be
shown the implementation.

43

4 – DESIGN AND DEVELOPMENT

Figure 4.2: Logical Architecture

4.3 Ingestion Layer

4.3.1 Introduced Tools

Kafka Streams API

Figure 4.3: Kafka Streams Logo

Kafka Streams is a library for building streaming applications, specifically applica-
tions that transform input Kafka topics into output Kafka topics. It lets you do this
with concise code in a way that is distributed and fault-tolerant. Stream processing
is a computer programming paradigm, equivalent to data-flow programming, event
stream processing, and reactive programming, that allows some applications to more
easily exploit a limited form of parallel processing [9].

Kafka Streams simplifies application development by building on the Kafka producer

44

4.3 – Ingestion Layer

and consumer APIs, and leveraging the native capabilities of Kafka to offer data
parallelism, distributed coordination, fault tolerance, and operational simplicity.
In figure 4.4 is shown the anatomy of an application that uses the Kafka Streams
API. It provides a logical view of a Kafka Streams application that contains multiple
stream threads, that each contain multiple stream tasks.

Figure 4.4: Kafka Streams Application Anatomy

The first aspect of how Kafka Streams makes building streaming services simpler is
that it is cluster and framework free, it is just a library. Kafka Streams is one of
the best Apache Storm alternatives. You don’t need to set up any kind of special
Kafka Streams cluster and there is no cluster manager, nimbus, daemon processes, or
anything like that. If you have Kafka there is nothing else you need other than your
own application code. The app code will coordinate with Kafka to handle failures,
divvy up the processing load amongst instances, and rebalance load dynamically if
more instances start up.
All this is accomplished by using the exact same group management protocol that

45

4 – DESIGN AND DEVELOPMENT

Kafka provides for normal consumers. The result is that a Kafka Streams app is
just like any other service. It may have some local state on disk, but that is just a
cache that can be recreated if it is lost or if that istance of the app is moved elsewhere.

The next way Kafka Streams simplifies streaming applications is that it fully inte-
grates the concepts of tables and streams. The stream-table duality describes the close
relationship between streams and tables:

Stream as Table: A stream can be considered a changelog of a table, where each
data record in the stream captures a state change of the table. A stream is thus
a table in disguise, and it can be easily turned into a "real" table by replacing the
changelog from beginning to end to reconstruct the table. Similarly, aggregating
data records in a stream will return a table.

Table as Stream: A table can be considered a snapshot, at a point in time, of the
latest value for each key in a stream (a stream’s data records are key/value
pairs). A table is thus a stream in disguise, and it can be easily turned into a
"real" stream by iterating over each key/value entry in the table.

By modeling the table concept in this way, Kafka Streams lets you compute derived
values against the table using just the stream of changes. In other words it lets you
process database change streams just as you would a stream of clicks.

StreamSets

Figure 4.5: StreamSets

Streamsets is a cloud native collection of products to control data drift. It provides
two products, the Data Collector and the Dataflow Performance Manager. In this
project has been used the Streamsets Data Collector.

46

4.3 – Ingestion Layer

The Data Collector is an open source application which allows users to build platform
agnostic data pipelines. They are optimized for continuous ingestion and no data
latency.
A pipeline describes the flow of data from the origin system to destination systems
and defines how to transform the data along the way. A pipeline is made of stages,
which are divided into three types:

Origin: an origin stage represents the source for the pipeline. Only one origin per
pipeline is allowed.

Processor: a processor stage represents a type of data processing that you want to
perform. You can use as many processors in a pipeline as you need.

Destination: a destination stage represents the target for a pipeline. You can use
one or more destinations in a pipeline.

StreamSets Data Collector is released with many built-in stages, but allows also to
develop custom stages in case of needs.

Building a pipeline is very simple: just drag-and-drop needed stages in the workspace,
link them by an arrow and set few parameters Data Collector provides a graphical user
interface (shown in figure 4.6) which lets you build and monitor batch and streaming
data flows.

Figure 4.6: StreamSets Data Collector GUI

47

4 – DESIGN AND DEVELOPMENT

4.3.2 Implementation

The reengineering process of the ingestion layer was the activity that required more
time and effort. Initially, a study phase of the solution in use was necessary to fully
understand the functioning of the individual components and how they interacted
with each other.
In the next sections the individual components of the ingestion layer will be analyzed
showing how these have been modified. The main differences with the old version
and the advantages that the new version has brought will be highlighted.

Web Service Server

As already mentioned in the chapter 3, the Web Service server is the only access point
to the entire Big Data infrastructure. This, in addition to receiving messages from
IoT devices, also took care of processing the messages before they were imported into
HDFS.
During the study of the old server it was discovered that it managed about fifteen
different types of messages, divided into three macro-groups. Keeping in mind the
multitude of source devices, it is easy to imagine the complexity of the work done
and the workloads to which it was subjected.

For the reasons mentioned above, it was decided to base the design of the new system
on the decoupling of the role of access point from the role of processor of received
messages.

Figure 4.7 shows the operation of the new Web Service server.
In the new implementation it was decided to keep only the decompression of the
external payload inside the server. The reasons for this choice are essentially two and
dependent on each other:

• The first reason is to reduce the number of discarded messages. In the old
system, an error at any point in the elaboration was translated into the discard
of the message, with the impossibility of knowing the reason for the latter. In the
new system we thought to discard only the messages for which the decompression
process fails, because if I can not decompress, the message is completely unusable
and impossible to process.

• It was decided to introduce queues where to temporarily store the messages that
can not be successfully imported on HDFS. The decoupling of the tasks was

48

4.3 – Ingestion Layer

Figure 4.7: New Web Service Server Internal

the pretext to review the error management system too: while before in case
of an error the message was discarded, now, in every processing step, errors are
managed with more accuracy and it is possible to know the reason why a message
is not imported correctly.

With the reduction of the computational load the possibility of the server reacting
unexpectedly to a request has also been reduced, reducing the possibility of sudden
crashes that would make the service unavailable.

Successfully decompressed messages are mapped on a key/value pair and published
to a Kafka topic. The generated pair is shown in the table 4.2.

Table 4.2: Web Service Server Output

TYPE CONTENT
Key String <messageID>_<messageTYPE>
Value String <decompressedPayload>

Kafka and Kafka Streams Applications

As mentioned in the previous section, the processing of the received messages is no
longer carried out by the Web Service server.
During the study of the new solution different tools were analyzed. Of these the

49

4 – DESIGN AND DEVELOPMENT

pros and cons were evaluated trying to understand if they satisfied the following
requirements:

Modularity: because in the old system the processing of the messages took place in
a single point, the new tool had to allow us to split the processing into a series
of independent modules and consequently to better balance the computational
load.

Performance: given the volume of data, the tool had to guarantee high throughput
and moderate consumption of resources. Not least the possibility of scaling in
case of occurrence.

Integration with other components: the instrument had to be easily integrated
with the existing components, in particular with Apache Kafka.

Among all the tools evaluated, it was decided to use Kafka Streams. In addition to
being designed by the same company that owns Kafka and therefore perfectly inte-
grated with it, being a Java library, Kafka Streams does not require the installation
of any software or hardware components. Plus it’s an easy-to-use and lightweight tool
(the whole library consists of about ten thousand lines of code).

Figure 4.8: Kafka and Kafka Stream Applications

50

4.3 – Ingestion Layer

Figure 4.8 shows the new block, made by Kafka and Kafka Streams, responsible for
processing the messages.
After a careful analysis of the whole message processing process, it was decided to
split the processing into a chain of four applications based on the Kafka Streams
APIs. Let’s analyze in detail what they are dealing with and how they have been
implemented.

Application 1: the application at the top of the chain takes care of validating and
parsing the external payload. This consumes the payloads published by the Web
Service server on the topic decompressed_ext_payload_topic, processes them and
publishes the result on the destination topic.
The payloads are in XML format and follow this schema:

<ArrayOfUpload >
<Upload >

<ReportInfo >... </ ReportInfo >
<Attachments >

<FileName >filename </ FileName >
<File >Base64 Encoded Attachment </File >

</Attachments >
</Upload >

</ ArrayOfUpload >

Code 4.1: External Payload Sample

ArrayOfUpload, as the name implies, is a list of Upload. Each Upload is charac-
terized by a header, contained in the ReportInfo tag, and by a list of attachments,
where for each one is specified the name (tag FileName) and the content encoded
in Base64 (tag File).
Once the message from the topic is consumed, the application validates the XML
payload against the corresponding scheme. While payloads that fail validation
are published on an error topic, the properly validated payloads are parsed, ob-
taining the Java class representative of XML.

1 public class Application1
2 {
3 @SuppressWarnings (" unchecked ")
4 public static void main(String [] args)
5 {

51

4 – DESIGN AND DEVELOPMENT

6 Properties config = new Properties ();
7 config.put(StreamsConfig . APPLICATION_ID_CONFIG ,

" application1 ");
8 config.put(StreamsConfig . BOOTSTRAP_SERVERS_CONFIG ,

" localhost :9092");
9 config.put(StreamsConfig . KEY_SERDE_CLASS_CONFIG ,

Serdes.String (). getClass ());
10 config.put(StreamsConfig . VALUE_SERDE_CLASS_CONFIG ,

Serdes.String (). getClass ());
11

12 KStreamBuilder builder = new KStreamBuilder ();
13 KStream <String , String > decompressedExtPayload

=
builder .stream(" decompressed_ext_payload_topic ");

14

15 KStream <String , String > validatedExtPayload =
decompressedExtPayload .map(new
KeyValueMapper <String , String ,
KeyValue <String , String >>(){

16 @Override
17 public KeyValue <String , String > apply(String

key , String value) {
18 try {
19 // Validation procedure against schema
20 } catch(JAXBException | SAXException e) {
21 // Validation fails -> prepend "Error_" to

the key and return
22 String newKey = "Error_" + key;
23 return new KeyValue <String , String >(newKey ,

value);
24 }
25

26 // Validation success -> Just return the
KeyValue as it is

27 return new KeyValue <String , String >(key ,
value);

28 }
29 });

52

4.3 – Ingestion Layer

30

31 KStream <String , String >[] branches =
validatedExtPayload .branch(new
Predicate <String , String >(){

32 @Override
33 public boolean test(String key , String value) {
34 if(key. startsWith ("Error_"))
35 return true;
36 else
37 return false;
38 }
39 }, new Predicate <String , String >(){
40 @Override
41 public boolean test(String key , String value) {
42 if(! key. startsWith ("Error_"))
43 return true;
44 else
45 return false;
46 }
47 });
48

49 KStream <String , String > validPayload =
branches [1];

50

51 KStream <String , ArrayOfUpload > parsedPayload =
validPayload .map(new KeyValueMapper <String ,
String , KeyValue <String , ArrayOfUpload >>(){

52 @Override
53 public KeyValue <String , ArrayOfUpload >

apply(String key , String value) {
54 ArrayOfUpload uploads = // Parsing Procedure

generating the Java object
55 return new KeyValue <String ,

ArrayOfUpload >(key , uploads);
56 }
57 });
58

53

4 – DESIGN AND DEVELOPMENT

59 // Send failed payloads to the error topic ,
while the others to the destination topic

60 KStream <String , String > errorPayload =
branches [0];

61 errorPayload .to(Serdes.String (),
Serdes.String (), " error_payload_topic ");

62

63 final Serializer <ArrayOfUpload > aouSerializer
= new ArrayOfUploadSerializer ();

64 final Deserializer <ArrayOfUpload >
aouDeserializer = new
ArrayOfUploadDeserializer ();

65 final Serde < ArrayOfUpload > aouSerde =
Serdes. serdeFrom (aouSerializer ,
aouDeserializer);

66 parsedPayload .to(Serdes.String (), aouSerde ,
" parsed_payload_topic ");

67

68 KafkaStreams streams = new
KafkaStreams (builder , config);

69 streams .start ();
70 }
71 }

Code 4.2: Application 1 Pseudocode

In the listing 4.2 the code executed by the application 1 is shown, showing only
the transformations that are applied to the streams.
The first applied transformation is the map transformation (line 26). For each
input record, validation against the reference schema is performed: if successful,
the key/value pair is returned without changing anything, otherwise the string
Error_ is added at the beginning of the key.
Once the payload has been validated, you must separate the valid ones from
the invalid ones. To do this, it has been used the branch transformation (line
42). This transformation allows to specify a list of predicates that the incoming
records must satisfy and, based on what happens, to sort them in a certain num-
ber of output streams. The predicates are evaluated in order and at the end the
record is assigned to one and only one output stream.

54

4.3 – Ingestion Layer

Once the records are separated, the valid ones are parsed by using amap trans-
formation again (line 62).
The last step is to publish the records on the destination topic: invalid records
are published on an error queue (line 72), while those correctly validated and
parsed are published on the topic that will use application 2 (line 76).

Application 2: the elaboration carried out by the second application consists in de-
coding from Base64 the attachments of the various Uploads. Since a Upload can
contain one or more attachments, a record is issued for each of these by dupli-
cating the information contained in the header where necessary.

1 public class Application2
2 {
3 @SuppressWarnings (" unchecked ")
4 public static void main(String [] args)
5 {
6 final Serializer <ArrayOfUpload > aouSerializer =

new ArrayOfUploadSerializer ();
7 final Deserializer <ArrayOfUpload >

aouDeserializer = new
ArrayOfUploadDeserializer ();

8 final Serde < ArrayOfUpload > aouSerde =
Serdes. serdeFrom (aouSerializer ,
aouDeserializer);

9

10 Properties config = new Properties ();
11 config.put(StreamsConfig . APPLICATION_ID_CONFIG ,

" application2 ");
12 config.put(StreamsConfig . BOOTSTRAP_SERVERS_CONFIG ,

" localhost :9092");
13 config.put(StreamsConfig . KEY_SERDE_CLASS_CONFIG ,

Serdes.String (). getClass ());
14 config.put(StreamsConfig . VALUE_SERDE_CLASS_CONFIG ,

aouSerde);
15

16 KStreamBuilder builder = new KStreamBuilder ();
17 KStream <String , ArrayOfUpload > parsedPayload =

builder .stream(" parsed_payload_topic ");
18

55

4 – DESIGN AND DEVELOPMENT

19 KStream <String , Attachment > attachment =
parsedPayload . flatMap (new
KeyValueMapper <String , ArrayOfUpload ,
KeyValue <String , Attachment >>(){

20 @Override
21 public KeyValue <String , Attachment > apply(String

key , ArrayOfUpload value) {
22 List <KeyValue <String , Attachment >> result =

new LinkedList <>();
23

24 for(Upload upload : value) {
25 // attachment (attachments) is(are) decoded

from Base64
26 // decoded attachment is mapped on an

Attachment object , containing header
information and the attachment content

27

28 result.add(KeyValue .pair(key , attachment));
29 }
30

31 return result;
32 }
33 });
34

35 final Serializer <Attachment > aSerializer = new
AttachmentSerializer ();

36 final Deserializer <Attachment > aDeserializer =
new AttachmentDeserializer ();

37 final Serde <Attachment > aSerde =
Serdes. serdeFrom (aSerializer ,
aDeserializer);

38 attachment .to(Serdes.String (), aSerde ,
" decoded_attachment_topic ");

39

40 KafkaStreams streams = new
KafkaStreams (builder , config);

41 streams .start ();
42 }

56

4.3 – Ingestion Layer

43 }

Code 4.3: Application 2 Pseudocode

The listing 4.3 shows the operations performed by the application 2. Compared
to the first application, the whole processing is performed using a single trans-
formation.
Through the flatMap transformation (line 19), for each incoming record we can
generate a variable number of output records. In our case for each upload we
generate as many records as the number of attachments that the Upload car-
ries with it. Each attachment is mapped to an Attachment object, which in
addition to transporting the contents of the attachment itself, also includes the
information contained in the header, common to each attachments.

Application 3: in this application the processing is similar to the one carried out in
application 1. The attachments obtained from the various uploads are validated
against the reference scheme and subsequently mapped onto the appropriate Java
objects. Also in this case the attachments that do not pass the validation are
published on an error topic, different from the one used in the first application.

1 public class Application3
2 {
3 @SuppressWarnings (" unchecked ")
4 public static void main(String [] args)
5 {
6 final Serializer <Attachment > aSerializer = new

AttachmentSerializer ();
7 final Deserializer <Attachment > aDeserializer =

new AttachmentDeserializer ();
8 final Serde <Attachment > aSerde =

Serdes. serdeFrom (aSerializer ,
aDeserializer);

9

10 Properties config = new Properties ();
11 config.put(StreamsConfig . APPLICATION_ID_CONFIG ,

" application3 ");
12 config.put(StreamsConfig . BOOTSTRAP_SERVERS_CONFIG ,

" localhost :9092");
13 config.put(StreamsConfig . KEY_SERDE_CLASS_CONFIG ,

Serdes.String (). getClass ());

57

4 – DESIGN AND DEVELOPMENT

14 config.put(StreamsConfig . VALUE_SERDE_CLASS_CONFIG ,
aSerde);

15

16 KStreamBuilder builder = new KStreamBuilder ();
17 KStream <String , Attachment > decodedAttachmet =

builder .stream(" decoded_attachment_topic ");
18

19 KStream <String , Attachment >
validatedAttachment =
decodedAttachment .map(new
KeyValueMapper <String , Attachment ,
KeyValue <String , Attachment >>(){

20 @Override
21 public KeyValue <String , Attachment > apply(String

key , Attachment value) {
22 try {
23 // Validation procedure against schema
24 } catch(JAXBException | SAXException e) {
25 // Validation fails -> prepend "Error_" to

the key and return
26 String newKey = "Error_" + key;
27 return new KeyValue <String , String >(newKey ,

value);
28 }
29

30 // Validation success -> Just return the
KeyValue as it is

31 return new KeyValue <String , String >(key ,
value);

32 }
33 });
34

35 // Divide well formatted records from the badly
formatted ones

36 KStream <String , Attachment >[] branches =
validatedAttachment .branch(new
Predicate <String , Attachment >(){

37 @Override

58

4.3 – Ingestion Layer

38 public boolean test(String key , Attachment
value) {

39 if(key. startsWith ("Error_"))
40 return true;
41 else
42 return false;
43 }
44 }, new Predicate <String , Attachment >(){
45 @Override
46 public boolean test(String key , Attachment

value) {
47 if(! key. startsWith ("Error_"))
48 return true;
49 else
50 return false;
51 }
52 });
53

54 KStream <String , Attachment > validPayload =
branches [1];

55

56 KStream <String , ParsedAttachment >
parsedPayload = validPayload .map(new
KeyValueMapper <String , Attachment ,
KeyValue <String , ParsedAttachment >>(){

57 @Override
58 public KeyValue <String , ParsedAttachment >

apply(String key , Attachment value) {
59 ParsedAttachment parsedAttachment = // Parsing

Procedure generating the Java object
60 return new KeyValue <String ,

ParsedAttachment >(key , parsedAttachment);
61 }
62 });
63

64 // Send failed payloads to the error topic ,
while the others to the destination topic

59

4 – DESIGN AND DEVELOPMENT

65 KStream <String , String > errorPayload =
branches [0];

66 errorPayload .to(Serdes.String (), aSerde ,
" error_attachment_topic ");

67

68 final Serializer < ParsedAttachment >
paSerializer = new
ParsedAttachmentSerializer ();

69 final Deserializer < ParsedAttachment >
paDeserializer = new
ParsedAttachmentDeserializer ();

70 final Serde < ParsedAttachment > paSerde =
Serdes. serdeFrom (paSerializer ,
paDeserializer);

71 parsedPayload .to(Serdes.String (), paSerde ,
" parsed_attachment_topic ");

72

73 KafkaStreams streams = new
KafkaStreams (builder , config);

74 streams .start ();
75 }
76 }

Code 4.4: Application 3 Pseudocode

The flow of transformations performed by the application 3 is shown in the listing
4.4. The transformations applied are the same applied by the application 1. The
ParsedAttachment object is a wrapper class that contains the header information
and the object representing the attachment.

Application 4: the last application in the chain simply acts as a router. Starting
from the ParsedAttachment object are generated the records that will be writ-
ten in the CSV files on HDFS. Then, using a field in the header, the records are
published on the appropriate destination topic.

1 public class Application4
2 {
3 @SuppressWarnings (" unchecked ")
4 public static void main(String [] args)
5 {

60

4.3 – Ingestion Layer

6 final Serializer < ParsedAttachment > paSerializer
= new ParsedAttachmentSerializer ();

7 final Deserializer < ParsedAttachment >
paDeserializer = new
ParsedAttachmentDeserializer ();

8 final Serde < ParsedAttachment > paSerde =
Serdes. serdeFrom (paSerializer ,
paDeserializer);

9

10 Properties config = new Properties ();
11 config.put(StreamsConfig . APPLICATION_ID_CONFIG ,

" application4 ");
12 config.put(StreamsConfig . BOOTSTRAP_SERVERS_CONFIG ,

" localhost :9092");
13 config.put(StreamsConfig . KEY_SERDE_CLASS_CONFIG ,

Serdes.String (). getClass ());
14 config.put(StreamsConfig . VALUE_SERDE_CLASS_CONFIG ,

paSerde);
15

16 KStreamBuilder builder = new KStreamBuilder ();
17 KStream <String , ParsedAttachment >

parsedAttachmet =
builder .stream(" parsed_attachment_topic ");

18

19 KStream <String , String > record =
parsedAttachment . flatMap (new
KeyValueMapper <String , ParsedAttachment ,
KeyValue <String , String >>(){

20 @Override
21 public KeyValue <String , String > apply(String

key , ParsedAttachment value) {
22 List <KeyValue <String , String >> records = new

LinkedList <>();
23

24 // from the attachment object contained into
ParsedAttachment are generated the final
records

61

4 – DESIGN AND DEVELOPMENT

25 // the Key of the new KeyValue object is set
using a specific field contained in the
header included in the ParsedAttachment
object

26

27 return records ;
28 }
29 });
30

31 // Split records in N branches based on the
destination flow

32 KStream <String , String >[] branches =
validatedAttachment .branch(new
Predicate <String , String >(){

33 @Override
34 public boolean test(String key , String value) {
35 if(key. startsWith ("flow1"))
36 return true;
37 else
38 return false;
39 }
40 },
41 new Predicate <String , String >(){
42 @Override
43 public boolean test(String key , String value) {
44 if(! key. startsWith ("flow2"))
45 return true;
46 else
47 return false;
48 }
49 },
50 . . .,
51 new Predicate <String , String >(){
52 @Override
53 public boolean test(String key , String value) {
54 if(! key. startsWith ("flowN"))
55 return true;
56 else

62

4.3 – Ingestion Layer

57 return false;
58 }
59 });
60

61 KStream <String , String > flow1Records =
branches [0];

62 KStream <String , String > flow2Records =
branches [1];

63 . . .
64 KStream <String , String > flowNRecords =

branches [N];
65

66 // Send records to the destination topic
67 flow1Records .to(Serdes.String (),

Serdes.String (), " flow1_topic ");
68 flow2Records .to(Serdes.String (),

Serdes.String (), " flow2_topic ");
69 . . .
70 flowNRecords .to(Serdes.String (),

Serdes.String (), " flowN_topic ");
71

72 KafkaStreams streams = new
KafkaStreams (builder , config);

73 streams .start ();
74 }
75 }

Code 4.5: Application 4 Pseudocode

In the listing 4.5 the code executed by the application 4. Initially, through a
flatMap transformation (line 19) the final records are generated, then from the
header is taken the information necessary to split records between the various
streams.
Also in this case the split of the records between the flows is done through
the branch transformation (line 31). Finally, the records are published on the
destination topics where StreamSets will read.

63

4 – DESIGN AND DEVELOPMENT

StreamSets

Once the records have been published on the Kafka topics, we need a tool that allows
them to be consumed and written on HDFS. In the old system this task was carried
out by Flume. The only problem with Flume is that it is based on a configuration
file, which, in the case of a large number of flows, can become very big and difficult
to manage.
In the new implementation it was decided to replace Flume with StreamSets. The
latter, in addition to performing the same functions as Flume, also allows data to be
processed as they pass through the pipeline. Moreover, everithing is made through a
web graphical interface, which make the work simpler and more intuitive.
The implementation of one of the sixteen created pipelines will be illustrated below.
The others differ only in destination paths and tables in which the records are inserted.

Figure 4.9: StreamSets Pipeline Sample

Figure 4.9 shows one of the pipelines that have been created. The pipeline composition
was done simply by dragging the blocks into the workspace and connecting them with
arrows. Let’s see their configuration.

Kafka Consumer: as the name implies, the block implements a Kafka consumer.
This is subscribed to one of the topics where the records were published.
As you can see from the figure 4.10, configuring a Kafka consumer in StreamSets
is really immediate: in the Broker URI field you have to enter the addresses
of the Kafka brokers followed by the port where the service is available; in the

64

4.3 – Ingestion Layer

Figure 4.10: Kafka Consumer Configuration

ZooKeeper URI field, enter the address of the server hosting the service; the
Consumer Group field contains the group to which this consumer belongs; it
is used for all the operations related to the offset with which the messages are
identified; the Topic field simply contains the name of the topic to which the
consumer subscribes. The values of the other fields are those of default and can
be changed to increase or decrease the number of records that every second the
consumer reads from the topic.

Record Deduplication: this block has the task of deleting duplicates. It caches
record information for comparison until it reaches a specified number of records.
The Record Deduplicator can show the entire records or subset of fields. To
enhance the performance pipeline, the Record Deduplicator hashes comparison
fields and uses the hashed values to evaluate for duplicates.

HDFS Sink: it writes data to the Hadoop Distributed File System.
In the Hadoop FS panel, shown in the figure 4.11, you need to set the address
where you can contact HDFS (Hadoop FS URI field) and the user performing
the operation (HDFS user field).

In the Output Files panel in figure 4.12, instead, you can specify the destination
path where the records will be written (Directory Template field), and other
information about the file that will be created , like the type, the prefix and the
suffix of the file name and the desired size.

Kudu Sink: it writes data to a Kudu cluster.

65

4 – DESIGN AND DEVELOPMENT

Figure 4.11: HDFS Sink Configuration 1

Figure 4.12: HDFS Sink Configuration 2

Its configuration, shown in figure 4.13, is very simple: after specifying the address
of the master nodes of the Kudu cluster (Kudu Masters fields), you must indicate
the destination table (Table Name field) and the operation you want to perform
(Default Operation field).

66

4.4 – Storage Layer and Analytic Layer

Figure 4.13: Kudu Sink Configuration

4.4 Storage Layer and Analytic Layer

4.4.1 Introduced Tool

Apache Kudu

Figure 4.14: Apache Kudu Logo

Kudu is a columnar storage manager developed for the Hadoop platform. Kudu
shares the common technical properties of Hadoop ecosystem applications: it runs on
commodity hardware, is horizontally scalable, and supports highly available operation
[10].
Designed and developed by Cloudera, it is licensed under the Apache license. Since it
was developed by Cloudera, it is natively integrated with the Hadoop environment,
and can therefore be used by all of its components.

The objectives for which Kudu has been developed are manifold. First of all, to

67

4 – DESIGN AND DEVELOPMENT

Figure 4.15: Hadoop Storage Engines

create a storage layer that guarantees performance halfway between those provided
by HDFS and HBASE. In fact, HDFS provides high performance on large datasets,
especially through batch operations, which are potentially long. HBASE, on the other
hand, has low latency in providing small query results, and allows data update, which
does not allow HDFS.
Kudu presents itself as a hybrid choice between HDFS and HBASE, ensuring high
throughput on large amounts of data (lower than HDFS but higher than HBASE), a
low latency data access (lower than HDFS but higher than HBASE) and data update
operations. The data are modeled in relational structures, accessible through an SQL-
like language, guaranteeing ACID properties.
It is important to understand what Kudu is not. First of all it is not a SQL interface,
in fact Kudu offers only a storage layer, like HDFS. If you want to integrate an SQL
interface to query the data, you must use an additional tool such as Impala or Spark.
Kudu does not use HDFS as a storage layer, being an alternative to it. Finally, Kudu
is not a replacement for HDFS or HBASE. It is a product that goes to the other two
already existing. Depending on the situation, you can decide which one is the most
appropriate.
Before showing how Kudu works internally, we must introduce some fundamental
concepts on which it is based:

Tablet: A tablet is a contiguous segment of a table. A given tablet is replicated on

68

4.4 – Storage Layer and Analytic Layer

multiple tablet servers, and one of these replicas is considered the leader tablet.
Any replica can service reads, and writes require consensus among the set of
tablet servers serving the tablet.

Tablet Server: A tablet server stores and serves tablets to clients. For a given tablet,
one tablet server serves the lead tablet, and the othersserve follower replicas of
that tablet. Only leadersservice write requests, while leaders or followers each
service read requests. Leaders are elected using Raft consensus. One tablet
server can serve multiple tablets, and one tablet can be served by multiple tablet
servers.

Master: The master keeps track of all the tablets, tablet servers, the catalog table,
and other metadata related to the cluster. At a given point in time, there
can only be one acting master(the leader). If the current leader disappears, a
new master is elected using the Raft Consensus Algorithm. The master also
coordinates metadata operations for clients. All the master’s data is stored in a
tablet, which can be replicated to all the other candidate masters. Tablet servers
heartbeat to the master at a set interval (the default is once per second).

Raft Consensus Algorithm: provides a way to elect a leader for a distributed
cluster from a pool of potential leaders, or candidates. Other cluster members
are followers, who are not candidates or leaders, but always look to the current
leader for consensus. Kudu uses the Raft Consensus Algorithm for the election
of masters and leader tablets, as well as determining the success or failure of a
given write operation.

Now let’s see what happens when a client wants to perform an update operation on
a record in a table. In figure 4.17 the whole process is schematised.

1. the client asks the Master Server in which tablet of table T resides the record
for todd@cloudera.com

2. the Master Server replies by indicating the tablet containing the searched record
and the related servers holding the tablet. The Master Server also sends infor-
mation about other tablets to which the client might be interested in.

3. the client caches the information received from the Master Server, so it does not
need to request it again in case of subsequent operations on the same table.

4. The client performs the update operation of the record by sending the request to
the server which holds the leader tablet. At the same time, the update operation
is also replicated on the servers in possession of the tablet replicas. If the quorum
is reached the operation ends successfully, otherwise the operation is aborted.

69

4 – DESIGN AND DEVELOPMENT

Figure 4.16: Kudu Architectural Overview

Figure 4.17: Update Operation Steps

4.4.2 Deployment

Starting with version 5.13 of Cloudera CDH, Kudu is part of the CDH parcel rather
than being a separate parcel. The deployment was carried out through the Cloudera
Manager service. The Kudu cluster configuration is as follows:

70

4.4 – Storage Layer and Analytic Layer

Table 4.3: Kudu Cluster Configuration

HOST ROLE

host01 Master Server and
Tablet Server

host02 Tablet Server
host03 Tablet Server

The configuration adopted consists of 1 Master Server and 3 Tablet Servers. One of
the 3 physical machines that make up the cluster used for development, hosts both
the service of the Master Server and the Tablet Server.

4.4.3 Performance Test

In this section we want to present the results obtained from a series of experiments,
with the aim of showing how Kudu could fits in a real-time environment. For this
purpose, the experiments were conducted comparing the performances obtained by
Hive, Impala on HDFS and Impala on Kudu on a set of queries.

Data

For the experiment, four tables stored as parquet files were used. External tables
have been created on these files using Hive, without performin partitioning. These
tables have a variable number of records between 1 million to 3 million.

Data Modification (Insert/Update/Delete)

In this case random tests were performed. In particular, it was first tried to insert or
delete a record from a table, then to insert and delete a few hundred records. In this
situation Kudu was pretty fast with less than one second latency.
In the case of Hive/Impala the only way to delete a record is to reprocess the entire
table, which, in the case of tables with billions of records, can also take several hours.

Random Look-ups

Also in this case simple tests were carried out. Random look-ups were performed on
the primary key and the result was obtained within 5 seconds.
The same test was then carried out using Impala on parquet and on average the
waiting time was between 120 and 200 seconds. However, keep in mind that the

71

4 – DESIGN AND DEVELOPMENT

tables are not partitioned, so Impala must scan the entire table to find only one line.
Back to Kudu, look-ups on non-primary key fields are just as fast thanks to its
columnar storage.

Queries

For this experiment, four queries were prepared that were made first with Hive, then
with Impala on HDFS and finally with Impala on Kudu. The first two queries involve
only one table, while the second two perform join operations between multiple tables.
In figure 4.18 the execution time of the four queries is shown in the three cases
mentioned above.

Figure 4.18: Hive vs Impala on HDFS vs Impala on Kudu

As you can see, the graph is dominated by the long execution times required by Hive.
Only in one case Hive has execution times comparable to those of Impala on HDFS
and Impala on Kudu, in particular when the query is a selection of all the fields of all
the records contained in the table. The long run times of Hive are mainly due to the
fact that the operations are not performed entirely in the main memory as Impala
does, moreover, more complex the query is, greater is the number of map-reduce jobs
that Hive has to instantiate. For better readability, in the figure 4.19 the results are
shown excluding Hive.

The graph shows that Kudu does not differ so much from Impala and even, in the
longer query, Kudu beats Impala.

From the first tests it was noticed that the first time a query was executed, it was

72

4.4 – Storage Layer and Analytic Layer

Figure 4.19: Impala on HDFS vs Impala on Kudu

about two time slower then the following executions. This could be due to the oper-
ating system that caches data once it has been accessed. Queries that query unread
tables cause these to be read from disk, while queries that access cached tables are
faster because they are read from RAM.
In figure 4.20 it is possible to observe the difference in terms of execution time be-
tween a "cold" and a "worm" run.

Figure 4.20: Cold Run vs Worm Run

Note that for the longest queries, Q3, the time difference is not as significant as for
fast queries Q1, Q2 and Q4, where the execution time is almost halved.

73

74

Chapter 5

CONCLUSIONS AND
FUTURE
DEVELOPMENTS

The work presented in this thesis shows a possible solution to a classic reengigneriza-
tion problem. The long process of design and development of the new architecture
has allowed us to know and explore the technologies that in recent years have entered
the Big Data world.

Kafka Streams proved to be a very valuable tool for creating applications that can
process real-time data flows. Thanks to its native integration with Apache Kafka,
the developer has only the task of establishing the transformation chain that the flow
must undergo. In fact, the developer does not have to worry about managing the
offset committing phase, as it is all managed within the Kafka Streams library using
the same internal messaging layer used by Kafka. Kafka Streams is a tool destined to
grow a lot in the near future thanks to the continuous increase of devices connected to
the Internet and the need for tools able to manage the huge amount of data generated
by the latter.

A special mention goes to StreamSets, maybe the most surprising tool among all those
used to implement the new solution. Its strong point is certainly the simplicity of
use: the graphical interface, in addition to making the user experience more pleasant,
allows you to create pipelines quickly and easily thanks to the drag-and-drop system.
Furthermore, creating a pipeline does not require the knowledge of a programming

75

5 – CONCLUSIONS AND FUTURE DEVELOPMENTS

language, but only to properly configure the various stages that comprise it. This
is a very important factor, as it allows the developer to immediately access the full
potential of the platform. StreamSets is perhaps the most promising tool, among all
those present, for ingestion and on-the-fly data processing, thanks also to the great
community behind it.

During the tests performed, Kudu proved to be a good tool for supporting HDFS. We
have been surprised by its ability to modify and update the database quickly, which
is very important in a context where data is rapidly changing. We have seen how,
through Impala, it is possible to query data in few seconds, allowing fast analytics on
fast data.

Currently the new solution is being tested to verify that all the various types of
messages are handled correctly. In the coming months it is planned to carry out a
load test to evaluate the behavior of the solution when subjected to real workloads,
in order then to release it in the production environment.

5.0.1 Future Developments

As anticipated in the chapter 4, in the new solution was decided to manage more ac-
curately the messages that, for one reason or another, were discarded. In particular,
two Kafka topics have been added where are published messages that are not consid-
ered compliant with the specifications. Currently the only way to access information
on discarded messages is through the appropriate Hive tables.
To make access to this information faster, it was decided to implement a web inter-
face. This interface allows you to quickly know the reason why a message has been
rejected, leaving to the developer only the task of investigating and possibly correct-
ing the problem.

Once the problem is corrected, the discarded messages must be re-processed to be
imported to HDFS. Currently the process is managed manually by the developer who
sends back discarded messages to the Web Service server via a series of SOAP calls.
For the reason just mentioned, it was decided to automate the entire process by imple-
menting a module that would query the tables mentioned in the previous paragraph
and send the messages back by contacting the Web Service server. The application
would be appropriately scheduled to be run periodically so as to relieve the developer
of this task.

76

List of Figures

2.1 Growth estimation of data volume produced every year between 2010
and 2020 . 7

2.2 Big Data Vs . 9

2.3 Hadoop Logo . 10

2.4 Hadoop Ecosystem . 11

2.5 Typical configuration of a Hadoop Cluster 12

2.6 Configuration with replication factor equal three 14

2.7 NameNode and DataNode in HDFS 15

2.8 Behaviour of the Secondary NameNode 17

2.9 Word Count in MapReduce . 21

2.10 YARN Architecture . 23

2.11 Kafka Logo . 25

2.12 Kafka Architecture . 25

2.13 Topic Anatomy . 26

2.14 Topic Consumer . 27

2.15 Flume Logo . 28

2.16 Flume Agent . 28

2.17 Flafka Architecture Example . 29

2.18 Hive Logo . 29

2.19 Hive Architecture . 31

2.20 Impala Logo . 32

2.21 Impala Architecture . 32

77

List of Figures

3.1 Logical Architecture . 36

3.2 Ingestion Layer . 37

3.3 Web Service Server Internal . 38

3.4 Storage and Analytic Layer Internal 39

4.1 Cloudera Manager Interface . 43

4.2 Logical Architecture . 44

4.3 Kafka Streams Logo . 44

4.4 Kafka Streams Application Anatomy 45

4.5 StreamSets . 46

4.6 StreamSets Data Collector GUI . 47

4.7 New Web Service Server Internal . 49

4.8 Kafka and Kafka Stream Applications 50

4.9 StreamSets Pipeline Sample . 64

4.10 Kafka Consumer Configuration . 65

4.11 HDFS Sink Configuration 1 . 66

4.12 HDFS Sink Configuration 2 . 66

4.13 Kudu Sink Configuration . 67

4.14 Apache Kudu Logo . 67

4.15 Hadoop Storage Engines . 68

4.16 Kudu Architectural Overview . 70

4.17 Update Operation Steps . 70

4.18 Hive vs Impala on HDFS vs Impala on Kudu 72

4.19 Impala on HDFS vs Impala on Kudu 73

4.20 Cold Run vs Worm Run . 73

78

List of Tables

4.1 Cluster Configuration . 41

4.2 Web Service Server Output . 49

4.3 Kudu Cluster Configuration . 71

79

80

List of Codes

4.1 External Payload Sample . 51

4.2 Application 1 Pseudocode . 51

4.3 Application 2 Pseudocode . 55

4.4 Application 3 Pseudocode . 57

4.5 Application 4 Pseudocode . 60

81

82

Bibliography

[1] John Gantz and David Reinsel, THE DIGITAL UNIVERSE IN 2020: Big Data,
Bigger Digital Shadows, and Biggest Growth in the Far East, 2012.

[2] Apache Software Foundation, Apache Hadoop, http://hadoop.apache.org,
2018.

[3] Apache Software Foundation, Apache Hadoop powered by, https://wiki.apache.
org/hadoop/PoweredBy, 2018.

[4] Apache Software Foundation, Apache license-2.0, http://www.apache.org/
licenses/LICENSE-2.0, 2004.

[5] Sanjay Ghemawat and Howard Gobioff and Shun-Tak Leung, The Google File
System, 2003.

[6] Tom White, Hadoop: The Definitive Guide, 4th Edition, O’Reilly Media, 2004.
[7] Jeffrey Dean and Sanjay Ghemawat, MapReduce: Simplified Data Processing on

Large Clusters, 2004.
[8] Apache Software Foundation, Apache Kafka, https://kafka.apache.org/

intro.html, 2018
[9] Jay Kreeps, Confluent, Introducing Kafka Streams: Stream

Processing Made Simple, https://www.confluent.io/blog/
introducing-kafka-streams-stream-processing-made-simple/, 2016

[10] Cloudera, Kudu User Guide https://www.cloudera.com/documentation/
kudu/0-5-0/PDF/cloudera-kudu.pdf, 2016

83

http://hadoop.apache.org
https://wiki.apache.org/hadoop/PoweredBy
https://wiki.apache.org/hadoop/PoweredBy
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0
https://kafka.apache.org/intro.html
https://kafka.apache.org/intro.html
https://www.confluent.io/blog/introducing-kafka-streams-stream-processing-made-simple/
https://www.confluent.io/blog/introducing-kafka-streams-stream-processing-made-simple/
https://www.cloudera.com/documentation/kudu/0-5-0/PDF/cloudera-kudu.pdf
https://www.cloudera.com/documentation/kudu/0-5-0/PDF/cloudera-kudu.pdf

	INTRODUCTION
	Personal Effort
	Thesis Structure

	THE HADOOP ECOSYSTEM
	Introduction to Big Data
	The Hadoop Framework
	Hadoop Architecture

	Hadoop Distributed File System
	HDFS Architecture
	HDFS High Availability
	Persistence of HDFS metadata
	Staging

	The MapReduce Paradigm
	Operating Principles
	MapReduce Limits

	Apache YARN
	Apache Kafka
	Apache Flume
	Apache Hive
	Cloudera Impala

	STATE OF ART
	Logical Architecture
	Ingestion Layer
	Storage Layer and Analytic Layer

	DESIGN AND DEVELOPMENT
	Environment and Versions
	Versions

	Logical Architecture
	Ingestion Layer
	Introduced Tools
	Implementation

	Storage Layer and Analytic Layer
	Introduced Tool
	Deployment
	Performance Test

	CONCLUSIONS AND FUTURE DEVELOPMENTS
	Future Developments

	List of Figures
	List of Tables
	List of Codes
	Bibliography

		Politecnico di Torino
	2018-04-08T14:36:23+0000
	Politecnico di Torino
	Elena Maria Baralis
	S

