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Abstract

In the recent past, large scale event-based systems have gained adoption in many appli-

cations domains like finance, health-care and supply chain management.

Such architectures are characterized by flows of information where events consist of mes-

sages, new items or ”changes of state”, that generate asynchronous data characterized

by high volumes, high velocity and high variety.

These ”Big Data” streams are potentially rich of information and raise the demand for

applications that allow for more accurate and faster decision making. However they need

to be properly processed by means of operations such as filtering, correlating and aggre-

gating in order to extract useful insights.

Complex Event Processing (CEP) is a novel methodology for analyzing data streams

from event-based distributed databases: associating a precise semantics to the informa-

tion item being processed, this paradigm allows to identify interesting composite events

using a set specific rules, built on relational predicates and temporal constrains, which

are matched against the primitive events in the input.

Though, manually writing these ”complex” rules for performing pattern detection is usu-

ally hard and tedious and domain experts are often called in to specify these patterns.

Such a drawback clearly constitutes a limiting factor for the diffusion of CEP applica-

tions, which unlock the possibility of more proactive, reactive and predictive applications

in the context of distributed architectures.

The aim of this project is, thus, to pave the way for a framework that enables to compose

interesting CEP rules in a completely automatic fashion.

In an evident manner, this ambitious goal presents many open challenges such as defin-

ing a concept of interestingness for temporal pattern analysis, consistently and efficiently

expressing multiple correlations between data as well as achieving a scalable solution for

massive data streams.
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In this work, the problem of learning automatically Complex Event Processing rules over

a stream of events is tackled with a brand new approach w.r.t existing works in the lit-

erature: streams of events are first partitioned and modeled as multivariate time series;

segmentation techniques are then combined with temporal pattern mining as to detect

situations of interests and eventually derive potential complex rules.

The final contributions of our work consist of (1) a first analysis on the in-feasibility of a

search-based brute force approach and (2) a pipeline for a batch processing of event-based

data streams; the latter also comprises the development of two new kinds of time series

segmentation based, respectively, on the concepts of ”trend” and ”level” and a simple

temporal pattern mining algorithm for interval-based sequence databases.



Contents

1 Introduction and background 2

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Complex Event Processing . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 An overview of CEP systems . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Stream-based And Shared Event processing . . . . . . . . . . . . 8

1.3 Pattern mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.1 Frequent itemsets . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.2 Sequential pattern mining . . . . . . . . . . . . . . . . . . . . . . 13

1.3.3 Data streams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.3.4 Apriori, TreeProjections and FP-growth . . . . . . . . . . . . . . 15

1.4 Time series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.5 Trend analysis for time series . . . . . . . . . . . . . . . . . . . . . . . . 22

1.5.1 Mann-Kendall test . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Related work 28

2.1 Mixed-initiative approaches to exploring massive databases . . . . . . . . 28

2.1.1 SeeDB: Efficient Data-Driven Visualization Recommendations to

Support Visual Analytics . . . . . . . . . . . . . . . . . . . . . . . 28

2.1.2 Extracting Top-K Insights from Multi-dimensional Data . . . . . 30

2.1.3 EXstream: Explaining Anomalies in Event Stream Monitoring . . 31

2.2 Time series data mining techniques . . . . . . . . . . . . . . . . . . . . . 33

2.2.1 Symbolic Aggregate approXimation . . . . . . . . . . . . . . . . 33

2.2.2 Piecewise Linear Representation . . . . . . . . . . . . . . . . . . . 34

2.3 Changepoint detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.1 (Wild) Binary segmentation . . . . . . . . . . . . . . . . . . . . . 37

3



CONTENTS 4

2.3.2 Pruning exact methods (PELT and OPFP) . . . . . . . . . . . . . 39

2.3.3 Event detection in time series data . . . . . . . . . . . . . . . . . 41

2.4 Temporal pattern analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5 Learning automatically rules for CEP . . . . . . . . . . . . . . . . . . . . 48

2.5.1 iCEP, autoCEP and other machine learning techniques . . . . . . 49

2.5.2 IL-Miner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3 An in-feasibility proof sketch for a search-based approach 53

3.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Find distinct subsequences . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Find distinct matching queries . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Adding predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5 NEG operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4 Towards automatic extraction of complex rules 59

4.1 Problem statement and proposed solution . . . . . . . . . . . . . . . . . 59

4.2 Real world dataset: monitoring Hadoop activities . . . . . . . . . . . . . 60

4.3 From event streams to multivariate time series . . . . . . . . . . . . . . . 64

4.4 Temporal abstractions for time series . . . . . . . . . . . . . . . . . . . . 68

4.4.1 Trend-based segmentation . . . . . . . . . . . . . . . . . . . . . . 70

4.4.2 Level-based segmentation . . . . . . . . . . . . . . . . . . . . . . 76

4.4.3 Changepoint analysis . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5 Towards CEP rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5.1 An interval-based pattern mining algorithm . . . . . . . . . . . . 78

4.5.2 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.5.3 Some remarks on the temporal pattern mining algorithm . . . . . 85

5 Conclusion and future directions 87

Appendix 90

Pseudocode for the algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Trend-based segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 90

Level-based segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Synthetic dataset for trend-based segmentation evaluation . . . . . . . . 99



CONTENTS 5

Interval-based pattern mining . . . . . . . . . . . . . . . . . . . . . . . . 100

OS metrics in Ganglia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101



List of Figures

1.1 A simple model for a Complex Event Processing architecture. . . . . . . 4

1.2 A simple retail store management setup for Complex Event Processing

applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 An example of NFA model for a CEP query. . . . . . . . . . . . . . . . . 6

1.4 Two examples of tree-based models for the same CEP query. . . . . . . . 7

1.5 An example of logic-based CEP query. . . . . . . . . . . . . . . . . . . . 8

1.6 Three SASE queries for applications in store management, logistics and

finance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.7 An execution plan for a SASE query. . . . . . . . . . . . . . . . . . . . . 9

1.8 An NFAb automaton for a SASE query. . . . . . . . . . . . . . . . . . . . 10

1.9 A transactional database. . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.10 A sequence database with horizontal and vertical notation. . . . . . . . . 13

1.11 Possible patterns in a data stream. . . . . . . . . . . . . . . . . . . . . . 14

1.12 A possible lattice of itemsets. . . . . . . . . . . . . . . . . . . . . . . . . 16

1.13 The lexicographic (or enumeration) tree. . . . . . . . . . . . . . . . . . . 17

1.14 A FP-tree construction and a resulting structure. . . . . . . . . . . . . . 19

1.15 An execution of the algorithm. . . . . . . . . . . . . . . . . . . . . . . . . 20

1.16 A time series of an Electromyography (EMG). . . . . . . . . . . . . . . . 21

1.17 Categorization of time series representations. . . . . . . . . . . . . . . . . 22

1.18 Errors and probabilities for a statistical test. . . . . . . . . . . . . . . . . 23

1.19 Linear regression on a sample of data (Eight years of monthly total phos-

phorus concentration data from Samsonville Brook, a stream draining a

Vermont agricultural watershed[Meals et al., 2011]) . . . . . . . . . . . . 24

2.1 An interesting and a uninteresting visualization in the SeeDB framework. 29

6



LIST OF FIGURES 7

2.2 Examples of insights in Top-K. . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Hadoop cluster monitoring example in EXStream. . . . . . . . . . . . . . 32

2.4 PAA coefficients of a time series discretization are mapped into SAX symbols. 34

2.5 PLR with different maximum error thresholds. . . . . . . . . . . . . . . . 35

2.6 An example of changepoint analysis with three different changepoints high-

lighted with dashed lines of different colours. . . . . . . . . . . . . . . . . 37

2.7 A sample scenario for Wild Binary Segmentation: there are shown the

true function (thick black) and observed one (thin black), CUSUM value

for each point for the entire sequence (blue) and for a sub-sample (red). . 39

2.8 A ”cost” vs ”number of changepoints” plot. The red lines and the blue

circle highlight what is retained as the centre of the elbow. . . . . . . . . 41

2.9 Changepoints analysis on data taken from highway traffic sensors, called

loop detectors, in Minneapolis-St.Paul. . . . . . . . . . . . . . . . . . . . 41

2.10 Comparison of two human responses on the same figure regarding Min-

neapolis traffic sensors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.11 Examples of Allen’s 13 interval relations. . . . . . . . . . . . . . . . . . . 43

2.12 Some set of Chords (which include Tones) and a Phrase in TSKR. . . . . 44

2.13 The five steps for TSKR pattern discovery. . . . . . . . . . . . . . . . . . 44

2.14 A set of intervals and a temporal pattern consisting of their temporal

relations (co-occurs and before). . . . . . . . . . . . . . . . . . . . . . . . 45

2.15 A highlight of a Recent Temporal Pattern (the triggered event occurs at t

= 20). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.16 Allen’s seven relations with epsilon flexible extension and the three supersets. 47

2.17 Proposed equivalent representations for Allen’s relations. . . . . . . . . . 47

2.18 A temporal database and the proposed representation. . . . . . . . . . . 48

2.19 Two days visualization for the data of two different users in [Rawassizadeh et al., 2016]. 49

2.20 Partitioning an event stream (or a prefix thereof) in traces. . . . . . . . . 51

4.1 A diagram that describes our overall system. . . . . . . . . . . . . . . . . 60

4.2 Hadoop 1.x architecture ovierview. . . . . . . . . . . . . . . . . . . . . . 61

4.3 Hadoop 2.x architecture ovierview. . . . . . . . . . . . . . . . . . . . . . 62



LIST OF FIGURES 8

4.4 Two time series corresponding to two different event types (respectively

from Hadoop logs and OS metrics logs) in the same partition (nodeNum-

ber=4, jobId=2015031422290042). . . . . . . . . . . . . . . . . . . . . . . 65

4.5 A plot of a 3-multivariate time series . . . . . . . . . . . . . . . . . . . . 66

4.6 A time series for the event type MapPeriod in Hadoop dataset. . . . . . . 69

4.7 A time series segmented in two different ways (Legend: red=increasing,

blue=decreasing, black=flat). . . . . . . . . . . . . . . . . . . . . . . . . 71

4.8 The final ranking of the performances of each algorithm on the dataset

with noise=1%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.9 The final ranking of the performances of each algorithm on the dataset

with noise=5%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.10 The final ranking of the performances of each algorithm on the dataset

with noise=10%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.11 Different realizations of the best segmentation methods applied to three

different noisy signals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.12 A time series segmented using level-based abstraction with three levels

that correspond to the three quantiles with probabilities=(0.33, 0.67, 1). 76

4.13 The most frequent pattern for retail store scenario using ”window” ap-

proach and another 3-length patterns that interestingly captures some

shoplifts (20 against the actual 26). . . . . . . . . . . . . . . . . . . . . . 80

4.14 The top-3 frequent patterns for the retail store scenario using ”step” ap-

proach: you can see that they are all equivalent in terms of meaning as

they indicate a normal buying sequence. . . . . . . . . . . . . . . . . . . 81

4.15 A stock signal with four abrupt changes; the noise was limited to 0.01%. 82

4.16 The top-3 frequent patterns for the stock scenario using ”step” approach

and an interesting pattern that captures the total number of abrupt changes

(20 against the actual 30). . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.17 A level-segmentation for both temperature and humidity values. The fifth

level corresponds to those values that trigger fire. . . . . . . . . . . . . . 85

4.18 Some results from the fire detection scenario: they all suggest useful asso-

ciation rules which capture the relation between fire and levels of temper-

ature and humidity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85



LIST OF FIGURES 9



Abbreviations

CEP Complex Event Processing

EPL Event processing language

FPM Frequent pattern mining

FPOP Function pruning and optimal partitioning

MK Mann Kendall test

NFA Non-deterministic finite automata

PAA Piecewise aggregate approximation

PAA Piecewise linear representation

PELT Pruned exact linear time

RFID Radio frequency identification

SASE Stream-based And Shared Event processing

SAX Symbolic aggregate approximation

SWAB Sliding window and bottom-up

TPM Temporal pattern mining

TSKR Time series knowledge representation

WBS Wild binary segmentation

1



Chapter 1

Introduction and background

1.1 Motivation

In recent times large scale event-based systems have become increasingly popular in sev-

eral domains such as system and cluster monitoring, network monitoring, supply chain

management, finance and healthcare [Wu et al., 2006].

A high variety of different applications in these domains incessantly produces large vol-

umes of data that potentially contain useful information ready to be exploited.

Complex event processing (CEP) is a stream processing paradigm, which constitutes

nowadays a crucial component in the industry world, where data are processed as streams

of continuously arriving events that are matched against complex patterns as to detect

interesting composite events [Agrawal et al., 2008].

The detections of events in these ”Big data” streams, produced by a wide range of appli-

cations, provides the opportunity to implement reactive and proactive measures in active

databases [Giatrakos et al., 2017].

These unendingly flowing data streams from heterogeneous sources (often geographically

distributed) are characterized by large volumes, high rates and intricate relationships

between different objects: these also constitute the main challenges for CEP applications

which aim to extract high-level meaningful and actionable information in a scalable way

[Zhang et al., 2014].

2
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Some examples [Wu et al., 2006, Agrawal et al., 2008, Zhang et al., 2014] where this method-

ology can be applied are:

• Real-time cluster monitoring: there is an increasing demand to correlate per-

formances measurements to identify unbalanced workloads or task stragglers (i.e.

those that perform poorly and keep the others waiting for them).

• Finance: a brokerage customer might need to analyze a sequence of stock trading

events which potentially constitute a new market trend.

• Logistics: in applications based on Radio Frequency IDentifier for tracking and

monitoring one may want to detect anomalies in supply chains and track valid

shipment paths.

CEP systems effectively allow to express a large set of monitoring queries using declara-

tive languages which free the user from manual programming, which is usually complex

and time-consuming.

Nonetheless, any complex event detection takes place according to user-defined rules,

which describe the several predicates to satisfy in order to detect a situation of interest.

Many researchers [Margara et al., 2014a, George et al., 2016a] have recently claimed that

the complexity of writing such rules constitutes a limiting factor for the diffusion of CEP,

as domain experts have to specify these particular triggering situations. This is par-

ticularly due to the possibility of aggregating and correlating different attributes from

different event types (as we will clarify later on).

The intention of this work is to pave the way for a system which is able to extract poten-

tial interesting patterns in a stream of events, operating without any user intervention,

with the ultimate goal of deriving complex event rules that can be expressed using any

Event Processing Language. This objective is addressed by first partitioning and mod-

eling event streams as time series and, consequently, combining together several data

mining techniques such as segmentation, trend analysis and temporal pattern mining.

The data used for the experimental phase consists of a set of different Hadoop workloads

activity logs and OS metrics.
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The complete software of our project can be found at:

https://github.com/Piru93/learning-cep-rules-from-multivariate-time-series

The outline of this document is the following:

• Chapter 1 contains a brief motivation along with some topics which are essential for

the understanding of future sections; we describe some CEP systems, we present

time series and pattern mining paradigms and eventually we describe trend analysis

in time series.

• In Chapter 2 we carry out a literature review of the most pertinent works that we

will refer to throughout our work and that guided our analysis.

• In Chapter 3 we show a proof for the in-feasibility of a brute force search approach

which constitutes the starting point of our contributions.

• Chapter 4 contains the statement of our problem and the details of the architecture

of our proposed solution.

• Chapter 5 contains the conclusions and the remarks for possible future applications

of our work. An appendix is also included in the end, containing the pseudocode

of the algorithms implemented in the application.

1.2 Complex Event Processing

Figure 1.1: A simple model for a Complex Event Processing architecture.

As already highlighted, Complex Event Processing (or Recognition) refers to the detec-

tion of composite events in Big Data streams that present different challenging features

https://github.com/Piru93/learning-cep-rules-from-multivariate-time-series
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such as volumes, speed, uncertainties, etc [Giatrakos et al., 2017].

Both academic and industrial world offer many Event Processing Languages and CEP

systems specifically built to allow queries for filtering and correlating simple events as to

detect complex events which may be used as new input, each with its own architecture

and processing mechanisms [Giatrakos et al., 2017].

Nonetheless, they all usually refer to the same event model where the input is an infinite

sequence of events, also known as an event stream, which are instantaneous and atomic

occurrences of interest at different points in time [Wu et al., 2006].

As in database systems and programming languages, where instances and types are dis-

tinguished, this model includes event types that describe a set of attributes contained by

a class of event.

Moreover, each event is assigned a timestamp which reflects their true order of occur-

rences, which is assumed to be a natural total order (an assumption which is not always

true in practice).

Defining composite rules such as predicates on attributes and temporal constraints en-

ables therefore a CEP application to detect situations of interest by matching the events

that satisfy the conditions.

The following application example from [Gyllstrom et al., 2006] might help to understand

the potentialities of this technique: suppose to have a retail store where four RFID1

readers are placed in the following locations: the store exit, two shelves, and check-out

counter (see Fig. 1.2).

We are then allowed to detect the following events:

• Misplaced inventory query: the engine monitors for an event where a shelf item

is placed on the wrong shelf by checking the attribute of the item that contains its

true position.

• Shoplifting query: the event is triggered when an item is registered at the exit

of the retail store without passing the check-out counter.

1Radio-Frequency IDentification is a technology based on electromagnetic waves that allows a hand-
free massive identification of moving objects.
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Figure 1.2: A simple retail store management setup for Complex Event Processing ap-
plications.

The different formal models that underlie existing techniques place the different sys-

tems in three main categories: automata-based, tree-based and logic-based models

[Giatrakos et al., 2017]. A brief overview of them is provided in the next section.

However, we mainly considered the SASE (Stream-based And Shared Event processing)

framework [Wu et al., 2006] as starting point for our research due to its potentialities

which will be highlighted in the last section.

1.2.1 An overview of CEP systems

As previously stated, there are plenty of different Complex Event Processing (or Recogni-

tion) tools available in the literature which share common requirements such as: handling

instantaneous and ”durative” events as well as relational events, concurrency constraints,

atemporal reasoning and event hierarchies [Giatrakos et al., 2017].

Figure 1.3: An example of NFA model for a CEP query.

Automata-based models include systems like SASE [Wu et al., 2006] and Cayuga

[Demers et al., 2007], which build automata for both semantics and recognition, and
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TESLA [Cugola and Margara, 2010], which uses automata only for pattern recognition.

In these frameworks, a crucial assumptions is that timestamps are non-decreasing with

the arrival order of events (timestamp is treated as an additional attribute); out-of-order

events would need buffering or re-ordering outside the automaton in order to be pro-

cessed.

These automata are much powerful than simple regular expression matching ones: they

are (1) symbolic, as edges are characterized by formulas; they are (2) register as they

need some data storage for previously observed events and (3) they are also transducers,

as they produce finite output rather than simple matching.

Though, a certain degree of non-determinism is intrinsically present in such systems:

they, in fact, need to store at runtime all the possible candidate runs (whose size can

easily become polynomial and even exponential), a problem which can be faced by using

compressed forms, maximal runs mechanisms or lazy approaches.

Figure 1.4: Two examples of tree-based models for the same CEP query.

Tree-based systems employ trees for both detection and recognition: Zstream

[Mei and Madden, 2009] for example can handle all event operators like sequencing, nega-

tion, Kleene closure, etc, as well as predicates and constraints.

Practically speaking, they nest hierarchically event operators assigning buffers to each

node, thus decoupling pattern order and recognition order (which are a major drawbacks

of automata approaches) and performing recognition in a bottom-up fashion, saving in-

termediate results in non-leaf nodes.

Last but not least, logic-based models are characterized by logics used to express formal

semantics (sometimes they translate rules into automata, like in T-Rex

[Cugola and Margara, 2012]) and use inference to detect complex events.
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Figure 1.5: An example of logic-based CEP query.

There are two main approaches in this field:

• Chronicle recognition, which relies on temporal logic and events are encoded using

logic predicates that define occurrence and content of each event. First-order tem-

poral logic formulas are then used to indicate conditions that are met for a particular

composite event and selection and consumption policies can be customized.

• Event calculus, which is instead based on fluents, i.e. are properties that hold

different values at different points in time. Recognition can be performed even when

new information arrives that updates ”old” one, revising the recognized events.

Some systems use Prolog to recognize events by means of logic inference mechanisms,

whereas others use temporal constraint networks or automata. Recognition is usually

performed at query time and windowing mechanisms exist to limit the scope and improve

efficiency and scalability.

The figures in this section (respectively Fig.1.3, Fig.1.4, Fig.1.5) all refer to the following

scenario [Giatrakos et al., 2017]: assume that we want to monitor the temperature and

humidity in some areas to detect wood fires. Sensors report temperature and humidity

values, with each event containing the area in which the sensor is located and a measure-

ment value. As a condition for detecting a hazard, we say that wood fires are likely to

occur in certain areas when humidity drops below 25% while temperature is higher than

40 degrees.

1.2.2 Stream-based And Shared Event processing

SASE is a SQL-like rich declarative language for event processing language based on au-

tomata. It was first developed in 2006 [Wu et al., 2006] and then progressively extended

[Agrawal et al., 2008, Zhang et al., 2014] throughout recent past.
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Figure 1.6: Three SASE queries for applications in store management, logistics and
finance.

The main challenges for pattern matching over event streams addressed by SASE are

mainly: (1) intrinsically high volume streams, (2) large sliding windows which can pro-

duce a lot of intermediate results, (3) performance requirements that put a constraint

on time critical actions and (4) handling timestamps uncertainties due to granularity

mismatches or spurious readings.

The overall structure of the language is shown in Fig.1.6, where Query 1 detects shoplift-

ing, Query 2 contamination in a food supply chain and Query 3 a complex market stock

trend.

Figure 1.7: An execution plan for a SASE query.

Adopting the usual event model depicted in the previous section, events are processed

with a query-plan based approach that exploits a pipeline of native operators like se-

quencing, negation, parameterized predicates (i.e. those who compare the attributes of

different events) and sliding windows, which are then formally translated in algebraic
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query expressions (see Fig. 1.7). These primitive operations are eventually translated by

means of a Non-deterministic Finite Automata model (which uses a buffer as to optimize

query processing), which is shown in Fig. 1.8.

Figure 1.8: An NFAb automaton for a SASE query.

The particularity of this language, though, is the ability to express Kleene2 closure pat-

terns, which make CEP much more challenging than simple regular expression matching,

as they can be used to extract a ”finite yet unbounded number of events of interest”

[Agrawal et al., 2008]; moreover, different possible strategies (as in Fig.1.6) for selecting

relevant events and termination criteria add to the richness of such a language.

Nonetheless Kleene+ 3 queries show a performance bottleneck, as the ”all answers” deci-

sion problem reveals an exponential worst-case upper bound in terms of pattern matching

and result construction.

On the other hand, as different features (such as Kleene+, aggregation and selection

strategies) are successively included, a descriptive complexity analysis shows that the

language can be cleanly mapped into a hierarchy of low level complexity classes ranging

from AC0 to NSPACE[logn].

Finally, an imprecise temporal model [Zhangn et al., 2013], which assumes a possible set

of worlds over time interval with a corresponding confidence value for matches, enables

the possibility of handling of CEP scenarios with time uncertainty.

2A Kleene closure (or Kleene star) basically means ”zero or more” in the context of regular expression
(https://en.wikipedia.org/wiki/Kleene_star).

3The star operator is actually expressed as a ”+” in the SASE language.

https://en.wikipedia.org/wiki/Kleene_star
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1.3 Pattern mining

Frequent pattern mining [Lee et al., 2014, Han et al., 2011] is one of the major problems

of data mining: usually it is performed as a preliminary phase for additional tasks such

as clustering, classification, association rules and outlier detection.

The traditional setting is: given a transactional database (as in Fig.1.9 D of transactions

T1, T2, ...Tn, determine all patterns P with minimum support (i.e. such that they are

present at least in s transactions). This support can be either a relative or an absolute

value.

Figure 1.9: A transactional database.

Originally, this problem was formulated in the context of market basket analysis, where

the overall task was to find association rules for customer behaviours (the ”mythic” rule

beers → diapers for American married men with children); the first step would consist

of finding all minsup itemsets and then build rules accordingly, the former being much

more challenging than the latter.

The following sections will briefly introduce the basic approach to FP along with some

common variations. In the last section we discuss the core algorithms of such domain,

notably APriori and FP-Growth.

1.3.1 Frequent itemsets

When focusing on mining frequent itemsets, a crucial assumption for a certain class of

pattern mining algorithms is the so called APriori principle which enables the design of

a bottom-up approach to exploring the space of frequent patterns in several passes of the

database:
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Every subset of a frequent itemset is a frequent itemset.

In other words, a (k + 1)-pattern may not be frequent when any of its subsets is not

frequent.

There are many ways to state the ”equivalence” of all the frequent pattern mining al-

gorithms: we will observe that they can be all seen as modifications of the following

algorithm:

given a transactional databaseD and a support s, build all length-one frequent

patterns, then repeat the following step until all frequent patterns are found:

generate a candidate pattern and count its support in the database, deciding

whether it is frequent or not.

They are thus all virtually equivalent, differing only in the way they explore the space of

candidate itemsets, which satisfies a downward closure or anti-monotonic property (i.e.

the Apriori principle) and whose size is exponential w.r.t the number of transactions:

Apriori algorithm, for instance is a join level-wise (i.e. it joins k-length frequent itemsets

with themselves to build (k+1)-length candidate itemsets) method that explores the tree

breadth-first (in a lexicographic order), while FP-Growth performs suffix-based recursive

exploration and employs the notion of projected database to reuse the work done for

counting.

Notably the key points to characterize an algorithm are the pruning technique, the effi-

ciency at counting and the data structures employed.

Some special cases of itemsets which can be mined are:

• closed (frequent) itemsets, which have no frequent supersets with the same support;

• maximal (frequent) itemsets, which have no frequent supersets (they are indeed also

closed).

The main difference between these two definitions is that mining maximal itemsets we

lose information about the support of underlying itemsets, while closed itemsets ”are a

condensed representation of frequent itemsets that is lossless” [Lee et al., 2014].

An additional particular case are long patterns, where the number of sub-patterns can

be very large.
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Nonetheless, we can sometimes argue that the traditional support-confidence framework

is unable to express certain kinds of patterns, leading to adopt other interestingness

measures (such as entropy or tiles) and constraints.

To go further, a closely related issue is finding negative association rules: knowing the

relationship between the absence of an item and the presence of another can be very

important in some applications; however, counting absences of items is prohibitive if the

number of possible items is very large, which is typically the case.

1.3.2 Sequential pattern mining

The first extension of frequent itemsets mining is sequential pattern mining

[Lee et al., 2014, Han et al., 2011] where frequent sequences are mined in a database of

ordered sequences (e.g. customer transactions, DNA sequences, web log data).

We can express a database with two formats: horizontal (seq_id | sequence_of_itemsets)

and vertical (item | list of seq_id) which give rise to different fashions of algorithms

(see Fig.1.10).

Figure 1.10: A sequence database with horizontal and vertical notation.

This problem can be stated as:

Given a set of sequences, where each sequence consists of a list of elements and

each element consists of a set of items, and given a user-specified min-support

threshold, sequential pattern mining aims to find all frequent subsequences,

i.e., the subsequences whose occurrence frequency in the set of sequences is

no less than min-support

Sequential frequent patterns satisfy the anti-monotony property as well and algorithms



CHAPTER 1. INTRODUCTION AND BACKGROUND 14

can be generalized to two major classes: Apriori -based and pattern growth-based, whose

implementations, pros and cons are derived from similar approaches for traditional support-

confidence frequent itemsets mining.

1.3.3 Data streams

Figure 1.11: Possible patterns in a data stream.

When pattern mining is applied to data streams [Lee et al., 2014] the main limitation is

that only a single pass is allowed on data.

The main issues that need to be particularly taken into account w.r.t traditional tech-

niques are especially:

1. the space of candidate patterns has an exponential blowup while streaming ap-

proaches should be linear to keep up with newly arriving data,

2. any algorithm should be memory efficient as more memory is required with a large

answer set

3. a trade-off between accuracy and efficiency must be reached.

Let a streaming dataset T be a sequence of indefinite length of transacted patterns

T = T1, T2, ..., Tk, where a pattern P is a sequence or set of items. At a time j we

can define a finite data window Ti,j = {Ti, Ti+1, ..., Tj} which can can contain numerous

patterns.

For a given support threshold 0 < θ < 1 the general task is thus to find all θ-frequent

patterns P , s(P ) ≥ θ, contained with a data window Ti,j; a variant exists that seeks

Top-K frequent patterns regardless of the threshold.



CHAPTER 1. INTRODUCTION AND BACKGROUND 15

The support of a pattern P is defined as:

s(P ) =
count(P,Patt(T ))

|T |

where the numerator is the number of times P appears in the multiset Patt(T ) of all

patterns contained in T .

Check Fig.1.11 for a variety of sample patterns usually mined in a stream.

In conclusion, several windows can be used depending on how much consideration we

want to give to all the data:

• a landmark window contains all data from the beginning to the current time t, say

Ts,t

• a sliding window of width w contains data in the window [t− w + 1, t]

• a damped window gives more weight to most recent observations using a decay rate

0 < δ ≤ 1 which is multiplied to the support of previously recorded patterns (e.g.

after k steps a pattern P has a weight dk) and the total support of a pattern is the

sum of all time-decayed counts

• time-tilted windows are windows of varying width where frequent itemsets are

mined.

1.3.4 Apriori, TreeProjections and FP-growth

Apriori method [Agrawal and Srikant, 1994] is one of the earliest algorithms [Lee et al., 2014,

Han et al., 2011] for frequent pattern mining in a transactional database: it generates the

candidate tree in a top-down fashion by using join operations to obtain (k + 1)-length

possible frequent itemsets from k-length frequent itemsets.

The algorithm is straightforward: obtain F1 and F2, the set of 1-length and 2-length

frequent itemsets (which can be mined quickly with specialized techniques), then for

k = 2 generate Fk+1 until Fk! = ∅, i.e. join Ck candidate itemsets (duplicates are avoided

by sorting them in lexicographic order and joining only itemsets with (k − 1) items in
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commons), prune them by exploiting the anti-monotonic property and count their support

in order to generate Fk.

Some optimizations for counting and pruning were proposed in the past:

• Apriori -TID (and Hybrid) consists of replacing transactions with shorter/null trans-

actions by looking at candidate

• Direct Hashing and Pruning trims transactions and performs partial counting to

prune ulteriorly candidates at each step by using an hash table

• triangular arrays and hash table are usually used together with textitApriori prin-

ciple in order to efficiently count 2-length frequent itemsets

• an Hypercube representation for counting support of multiple itemsets at a time

• a lower bound on support can be used to avoid counting support: given two k-

itemsets A and B with (k− 1) items in common we have s(A∩B) ≤ s(A) + s(B)−

S(A ∪ B), so if the right side is greater than the threshold the computation is not

performed; a corollary of this is that whenever we have s(X) = s(X ∪ Y ), then for

any X ′ ⊇ X we also have s(X ′) = s(X ′ ∪ Y )

Figure 1.12: A possible lattice of itemsets.

As a matter of fact this algorithm can be seen as an enumeration-tree method which

explores the lattice of candidates (Fig.1.12) in a breadth-first way, which allows for ef-
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ficient pruning; depth-first methods for instance are more memory efficient and usually

used for long patterns and maximal itemsets. Visualizing the enumeration tree allows for

understanding what kind of gains are obtained in terms of counting, pruning and memory

saving.

The tree-based algorithm is a paradigm based on set-enumeration concepts: a lexico-

graphic ordering is assumed for items in database as to build a lexicographic (or enumer-

ation) tree where the root is the NULL itemset and each node I = {i1, i2, ...ik+1} is the

child of itemset {i1, i2, ...ik}; we define the set of frequent extensions, i.e. 1-extensions

of an itemset such that the last item is the contributor to the extension, of a node P

as E(P ) while the prospective branches are F (P ), i.e. the items in E(Q) where Q is

the immediate ancestor of itemset P , and correspond to possible frequent lexicographic

extensions of P (see Fig.1.13.

We can observe that Apriori can be explained in terms of the enumeration tree as can-

didates are be generated by joining two frequent siblings.

Figure 1.13: The lexicographic (or enumeration) tree.

Other methods [Lee et al., 2014, Han et al., 2011] achieve better counting strategies by

reusing work done for k-candidates to (k + 1)-candidates; the primitive AIS algorithm

simply builds the enumeration tree, though not presenting it as such, in level-wise fashion

eventually counting supports and with no pruning nor any optimizations techniques.

Different exploration strategies are proposed, instead, together with recursive projections
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in the TreeProjection algorithms, each of which with different advantages depending on

the task.

The main difference with FP-growth is the way the projected databases are internally

represented, but still the important shared observation is that any non-relevant transac-

tion for a node is discarded when considering descendants as well.

A simple depth-first version of TreeProjection [Agarwal et al., 2001] consists of recursively

extending frequent prefixes and maintaining only transaction database relevant to the pre-

fix (a naive optimization would be to project only when the conditional database changes

size), never repeating the counting work done at the higher levels: given a database D,

a minimum support s and a current pattern prefix P (the function is recursive and first

run with the root which is NULL), count frequent 1-items, remove infrequent items and

for each frequent item i build a conditional database for the extended pattern (i∪P ) also

removing lexicographically lower items, then recur. A breadth-first version would have

the overhead of considering all the projected databases at once.

The projected databases in TreeProjection are usually implemented by means of trian-

gular arrays or bitstrings; FP-growth, instead, is a suffix-based recursive pattern growth

method [Han et al., 2000]

The algorithm consists of two steps: first build the FP-tree, than recursively call FP-

growth function on each item.

In order to build the tree, a first scan is performed to remove infrequent items from the

transactions and store frequent 1-itemsets (items in each transaction are also ordered de-

creasingly by support); then, a Trie is built by reading each transaction and incrementing

a counter when a node is traversed or allocating new nodes with initialized counter equal

to 1 when reaching beyond a prefix; eventually pointers for each item are ”chased” and

a header table is built: this contains on each row an item, its support count and a link

to left-most node in the Trie; items are also ordered decreasingly by support. A sample

of FP-tree construction and final result are in Fig. 1.14.
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Figure 1.14: A FP-tree construction and a resulting structure.

The ”tricky” part is calling recursively the FP-growth function on each item of the header

table, starting from the bottom: for a given suffix i a new FP-tree can be built (called

conditional FPTi) by extracting transactions containing i and counting the support, as

to remove infrequent items in the projected database which usually consists of a different

representation w.r.t the original FP-tree (the primary bottleneck is locating instances of

items and counting supports for each in order to built the Trie). An example is given in

Fig.1.15.

In the case of very large databases, partitions must be created because the Trie may not

fit into memory.

A performance comparison between FP-growth and Apriori is not straightforward: it is

true that for certain transaction data sets, the former outperforms the standard Apriori

algorithm by several orders of magnitude.

But generally, if the resulting conditional FP-trees are very bushy (in the worst case, a

full prefix tree), then the performances of the FP-growth algorithm degrade significantly

because it has to generate a large number of subproblems and merge the results returned

by each subproblem.
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Figure 1.15: An execution of the algorithm.

1.4 Time series

Amongst the different classes of temporal data, time series have risen an increasing in-

terest in the scientific community in the recent past [Yang et al., 2006].

A time series is an ordered sequence of points, a collection of measurements performed

over time as the result of an underlying process.

A common assumption is that these observations are collected at time instants which

are uniformly spaced according to a given sampling rate (which does not hold always in

practical world).

Moreover, we usually distinguish between univariate time series which regard a single
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variable and multi-variate time series where, instead, we have multiple univariate time-

series defined on the same time range [Esling and Agon, 2012a][Fu, 2011].

They currently have several fields of applications, from financial markets to climate

change, and they present many challenges due to their continuous nature, noise and

dimensionality (N.B. the length rather than the space size of the observations).

Time series are usually shown by interpolating points (i.e. connecting one point to an-

other) as to obtain the result of Fig.1.16.

Figure 1.16: A time series of an Electromyography (EMG).

Mining time series is currently considered one of the most challenging problems in data

mining [Yang et al., 2006]. Common data mining techniques [Esling and Agon, 2012b]

include for instance:

• Indexing: given a query and some similarity/dissimilarity measure, find the most

similar time series in database.

• Clustering: find appropriate groupings of the time series in a database using some

similarity/dissimilarity measure.

• Classification: given an unlabeled time series, assign it to one or more predefined

classes.

In Section.2 we will discuss a few time series representations (SAX and PLR) and intro-

duce changepoint analysis4.

We will not mention time series decomposition models as they mainly deal with forecast-

ing (we refer the reader to [Hyndman and Athanasopoulos, 2017] for an introduction)

4These two topics actually intersect segmentation, dimensionality reduction and pattern discovery.
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which does not relate to our project.

For what concerns time series representation, we will just provide the classical taxonomy

[Moerchen, 2006] (see Fig.1.17) which is the following:

• non-data adaptive, which use always the same parameters for the transformation,

regardless of the data (e.g. wavelet transformations such as HAAR, DCT and

DFT); they have a fixed size

• data adaptive, whose parameters for the transformation depend on the data (e.g.

SVD, SAX, shapelets); they also have a fixed size

• model, which assume an underlying model for the data and try to fit them to esti-

mate parameters; models can capture the structure of the data generating process.

Sometimes we find an additional class which consists of Data dictated representations,

which do not allow the user to decide the level of the detail as the size of the representa-

tion is automatically determined (as in ”clipping” or ”grid-based” methods).

Again, we refer the interested reader to [Fu, 2011] for an overview of existing tech-

niques.

Figure 1.17: Categorization of time series representations.

1.5 Trend analysis for time series

When examining a series of observations over time a frequent practice is a trend analysis,

i.e. checking whether the values of a random variable consistently increase (or decrease)
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over some period of time in statistical terms [Helsel and Hirsch, 2002]. A general defini-

tion of trend for time series is:

A significant change of a variable of interest over a specific time interval

The tools usually employed for accomplish such goal are statistical tests such as Mann-

Kendall test or Student’s t-test.

However, while a statistical trend analysis can help to identify trends and estimate their

rate of change, it will not provide much information on the particular cause causing the

trend, which usually requires much domain knowledge [Yue et al., 2002].

The traditional testing scenario consists then of the null hypothesisH0 = {no monotonic trend}

against the alternate hypothesis isHa = {there exists a monotonic upward or downward trend}.

Usually a significance value α is specified: this correspond to the Type I error or the prob-

ability of getting a false positive, i.e. the probability of falsely accepting the alternate

hypothesis.

The power of a test is defined as (1− β) where β is the Type II error or the probability

of getting a false negative, i.e. falsely rejecting the null hypothesis (see Fig.1.18 for a

summary).

Figure 1.18: Errors and probabilities for a statistical test.

The tests previously mentioned actually differ in nature: t-test is a parametric method

(i.e. it makes certain assumptions on the distribution of the data) while Mann-Kendall

is a non-parametric one (i.e. ”distribution free”).

Parametric tests for trend analysis basically assume that the residuals (i.e. the differences

between actual and predicted values of the dependent variable) are normally distributed

and homoscedastic (homogeneous variance); the t-test, in particular, is used to check the
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existence of a linear trend.

Non-parametric tests like Mann-Kendall, instead, make no assumptions on the distribu-

tion and thus they work better on skewed (i.e. a distribution of values which is asymmetric

w.r.t the mean value) and non-normal distributions; this test has also been proved to be

equivalent to Spearman’s one and it is usually less affected by outliers [Meals et al., 2011].

Another remark [Helsel and Hirsch, 2002] is that if only a test for trend is of interest, then

monotonic transformations of the data are of no consequence when a nonparametric test

is used; such tests are in fact invariant to monotonic power transformations (for example

the logarithm or square root).

The decision to transform data is, however, highly important for computing and express-

ing slope estimates. Trends which are nonlinear (say exponential or quadratic) will be

poorly described by a linear slope coefficient, whether from regression or a nonparametric

method.

In the end, a time series trend analysis should take into account different aspects of data

in order to adjust the technique employed: type of distribution (normal, skewed, sym-

metric, etc), presence of outliers, presence of seasonality, correlations and missing values

[Onoz Bayazit, M., 2003].

Figure 1.19: Linear regression on a sample of data (Eight years of monthly total phospho-
rus concentration data from Samsonville Brook, a stream draining a Vermont agricultural
watershed[Meals et al., 2011])
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For instance, if the assumptions for linear regression are met, notably ”Y is linearly

related to t, residuals5 are normally distributed, residuals are independent, and variance

of residuals is constant”, then data can be interpreted according to the model:

Y = β0 + β1X + ε

and the null hypothesis H0 is that β equals zero; a (Student’s) t-test is then performed

to check significance6. See Fig.1.19 for an example of data where this conditions are met

and the linear regression works quite fine.

Otherwise, a non-parametric test may be more suitable for the analysis.

During our work we specifically focused on the non-parametric Mann-Kendall test which

will thus be described with a bit of detail in the next section.

1.5.1 Mann-Kendall test

The purpose of this test is to statistically assess if there is a monotonic upward (or down-

ward) trend of the variable of interest over time, i.e. the variable consistently increases

(decreases) through time, but the trend may or may not be linear.

The MK test can be used in place of a parametric linear regression analysis, which tests

if the slope of the estimated linear regression line is different from zero.

The regression analysis requires that the residuals from the fitted regression line be nor-

mally distributed; an assumption not required by the MK test, that means, once again,

that this is a non-parametric (distribution-free) test.

It does actually have two weak requirements:

• a value can always be declared less than, greater than, or equal to another value

• observations are independent

The MK test works as follows: given n input points xi, ordered according to their occur-

5https://en.wikipedia.org/wiki/Errors_and_residuals
6https://en.wikipedia.org/wiki/Student%27s_t-test#Slope_of_a_regression_line

https://en.wikipedia.org/wiki/Errors_and_residuals
https://en.wikipedia.org/wiki/Student%27s_t-test#Slope_of_a_regression_line
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rence timestamp, it first computes a sum S:

S =
n−1∑
i=1

n∑
j=i+1

sgn(xi − xj)

which intuitively tells that, if positive, observations obtained later in time tend to be

larger than observations made earlier; if S is a negative number, instead, observations

made later in time tend to be smaller than observations made earlier.

Using S we can compute the variance (which also takes into account tied groups tp, i.e.

groups of points with same value):

VAR(S) =
1

18

[
n(n− 1)(2n+ 5)−

g∑
p−1

tp(tp − 1)(2tp + 5)
]

and a statistic test:

ZMK =



S−1√
VAR(S)

if S > 0

0 if S = 0

S+1√
VAR(S)

if S < 0

which we can use to test the different alternative hypothesis (e.g. at the Type I error

rate α, where 0 < α < 0.5):

• Upward monotonic trend: it is accepted if ZMK ≥ Z1−α

• Downward monotonic trend: it is accepted if ZMK ≤ −Z1−α

• Upward or downward monotonic trend (two-tailed test): it is accepted if |ZMK | ≥

Z1−α/2

where Z1−α is the 100(1− α)th percentile7 of the standard normal distribution.

7The value p that holds p% of the values below it
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A final and interesting remark is that S is equivalent to Kendall’s tau or coefficient:

τ = nc − nd

where nc and nd are respectively the number of concordant and discordant pairs in the

sequence8.

This allows for optimizations in computing the test whose naive implementation has a

quadratic complexity (simply looping on all pairwise differences).

We refer the interested reader to the following works: a specific better approach to

compute it in O(n log(n)) exists9 in [Knight, 1966] while a O(n 2
√

log(n)) algorithm can

be derived from [Chan and Pătraşcu, 2010] (where the problem is actually to find the

number of inversions in an array, which can be adapted to compute Kendall’s rank coef-

ficient).

8https://en.wikipedia.org/wiki/Concordant_pair
9See also http://adereth.github.io/blog/2013/10/30/efficiently-computing-kendalls-tau/.

https://en.wikipedia.org/wiki/Concordant_pair
http://adereth.github.io/blog/2013/10/30/efficiently-computing-kendalls-tau/


Chapter 2

Related work

2.1 Mixed-initiative approaches to exploring massive

databases

In this chapter we provide a literature review of some interesting works which address

the automatic exploration (by means of visualizations or anomaly detections) of large

databases with little to none intervention of the human user.

This strictly relate to our very goal of performing an automatic understanding of a stream

dataset as to extract processing rules.

2.1.1 SeeDB: Efficient Data-Driven Visualization Recommen-

dations to Support Visual Analytics

Nowadays, visualizations have become more and more important as a starting point for

data analysts to carry out their data exploration; though, they still need a tedious hit-

and-trial approach in order to find interesting views.

SeeDB [Vartak et al., 2015] is a ”mixed-initiative” middleware interface conceived to pro-

vide the user with interesting visualizations, given a subset of the data to explore (e.g.

a query), adopting a deviation-based metric to indicate trends and interesting views: a

28
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visualization is likely to be interesting if it shows a large deviation from some reference.

Nevertheless, some other factors can sometimes affect judgment, like aesthetic, particular

attributes or even lacks of deviation. The problem is stated as follows:

given a snowflake schema (i.e. facts and dimensions), a set of aggregate func-

tions and a query (in the selection-join-projection paradigm), find the top-k

aggregate views scored by an utility metric (Earth’s mover by default).

Figure 2.1: An interesting and a uninteresting visualization in the SeeDB framework.

As they deal with major issues such as the high number of candidate visualizations,

the repeated computations and the performance constraints for interactivity, the frame-

work is developed in a phase-based way, i.e. each phase operates on a ”i-th” portion of

the whole dataset, updating partials results and pruning intermediate ones when possible.

In order to prune aggregate views on the fly two interesting techniques are proposed:

a confidence interval-based one (using Hoeffding-Serfling inequality) and a varied multi-

armed bandit approach (with Successive Accept and Rejects algorithm); these approaches

originally present particular assumptions, which are guaranteed by a weak consistency

property on the utility metric (i.e. low utility views are pruned with high probabil-

ity).

In conclusion, they develop a framework which constitutes an important first step in the

exploration of visualization recommendation tools, which pave the way towards rapid

visual data analysis.
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2.1.2 Extracting Top-K Insights from Multi-dimensional Data

OLAP tools indeed allow companies to make better and faster decisions, but they still

require the user to manually specify attributes and dimensions. Given the concept of

insight, which captures interesting observations from multiple aggregation steps, authors

of [Tang et al., 2017] build a system that allows also non-expert users to find useful infor-

mation in massive data, starting from interesting views provided in an automatic fashion.

Figure 2.2: Examples of insights in Top-K.

The main challenges in such a context are, consequently, a huge search space, expensive

computations and the non-monotonicity of the insight score (that prevents from using

existing aggregation computation methods).

Providing a formal model on top of a multi-dimensional dataset (subspaces, sibling

groups, extractors and composite extractors) exceptional facts and unexpected trends

are defined via insight types (such as point or shape types).

The problem is then stated as follows:

find top-k insights with the highest scores among all possible combinations of

sibling groups, composite extractors and insight types (given a dataset and

a depth), while achieving effectiveness and efficiency in terms of results and

computations.

They propose a scoring function built as a combination of an impact and a significance

measure (based on the p-value definition) and they allow for extensibility of aggregate



CHAPTER 2. RELATED WORK 31

functions and extractors for expert users, as well as customized scoring functions, insight

types and constraints on the search space; eventually, they provide support for any kind

of dataset in the OLAP system.

Ultimately, this application is a first attempt to extract insights hidden in the data,

with practical usages in business intelligence applications such as providing informative

summaries to non-expert users and guiding directions for data exploration by means of

customizable insights for expert users.

2.1.3 EXstream: Explaining Anomalies in Event Stream Mon-

itoring

The aim of this work [Zhang et al., 2017] is to provide ”high-quality explanations” to

anomalies encountered in CEP-based monitored results, which are manually annotated

by a user.

Declaring a formal set of requirements for an explanation (conciseness, consistency and

predictive power) and the definition itself of ”optimal explanation”, the problem of gen-

erating and selecting features is tackled along with an evaluation on two real-world cases

(Hadoop cluster monitoring and manufacturer’s supply chain).

The motivation behind this is that CEP technology is nowadays at the core of real-time

monitoring in several areas of application including IoT, financial market analysis and

cluster monitoring; though, only in a passive fashion where the user explicitly defines

patterns of interest.

One step further would be to automatically detect interesting patterns (e.g. anomalous

behaviours) providing, at the same time, with an explanation that could allow the users

to intervene immediately in what is called a proactive monitoring.

The idea is to let the user manually annotate the abnormal values requesting the platform

to search for an explanation from the archived raw data.

Existing techniques (like regression or decision trees) are designed for prediction rather
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than consistency or conciseness and sometimes analyze only the data explicitly involved

in the analysis (i.e. the tuples selected by a query) and do not look for other causes in

the full dataset.

Figure 2.3: Hadoop cluster monitoring example in EXStream.

The EXstream system is actually built on the SASE framework (1.2.2) but the results

can be extended to other CEP languages.

Going back to the problem, they claim that an expert user should check all the dataset in

order to identify the causes of such anomalies (e.g. the Hadoop cluster monitoring logs).

The system provides a new heuristic method to tackle the problems:

• it searches and provides a sufficient feature space (raw data do not necessarily carry

all necessary features)

• it proposes an entropy-based single-feature reward function (i.e. the larger the

distance, the more reward produced)

• it subsequently identifies a cut-off to reject features with low rewards and it uses

a correlation-based filtering to eliminate overlapping features (emulating the sub-

modularity property).

In order to obtain a reasonable feature space, the CEP system records all the events (and

the matching ones) with all their attributes in order to produce different raw features

(i.e. time-series for each attribute); these are put together using aggregation functions

with sliding windows in order to obtain higher-level features which can show more general

trends and smooth outliers.
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The performances evaluation on real-world cases shows that this kind of approach outper-

forms other techniques such as logistic regression, decision trees, data fusion and majority

voting in terms of conciseness and consistency, while showing a highly competitive pre-

diction power.

2.2 Time series data mining techniques

As we will see in 4.1 an intermediate goal will be to find a good representation for

time series in order to apply frequent pattern mining (which is usually performed on a

transactional database) and extract interesting correlations between different event types

and attributes. The approach of detecting trends into a time series, for instance, is a

well known research problem strictly related to pattern and motif discovery as well as

segmentation and discretization. In the following sections we’ll discuss some existing

techniques that guided our analysis, notably the SAX and PLR representations and the

changepoint analysis.

2.2.1 Symbolic Aggregate approXimation

According to [Lin et al., 2003], many symbolic representation of time series have several

disadvantages:

1. they do not scale with dimensionality

2. distance measures defined on these representations do not correlate well with orig-

inal time series

3. they need to have access to all the data before creating the symbols (this last

features seriously affects a streaming context).

A critical achievement in time series representation is that any ultimate data mining

technique applied as a second-stage should perform identical results on a symbolic time

series as on the original one, which is exactly what authors of this work claim, along with

a lower bound on corresponding distance measures when developing SAX.

Their approach thus reduces dimensionality in a streaming fashion while obtaining lower
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bounding.

We define the lower bounding property as:

the guarantee that a defined distance measurement on the new representation

of data is less than or equal to the true distance measured on the raw data.

According to [Faloutsos et al., 1994]: ”it is this lower bounding property that allows us-

ing representations to index the data with a guarantee of no false negatives”.

Figure 2.4: PAA coefficients of a time series discretization are mapped into SAX symbols.

This technique works by firstly normalizing each time series to have a mean of zero

and standard deviation of one, then transforming it with Piecewise Aggregate Approx-

imation (the lower bound proof derives in fact from PAA definition), which is basically

a segmentation based on moving average calculation1, and eventually symbolizing each

representation with a discrete string. Breakpoints for the last step are obtained by look-

ing them up in a table of Gaussian quantiles.

They correspond to a sorted list of numbers such that the area under a N(0, 1) from one

to another is 1/a, as we want to produce a equal-sized areas under a Gaussian curve.

2.2.2 Piecewise Linear Representation

In [Keogh et al., 2001] we find an exhaustive discussion existing techniques for Piecewise

Linear Representation, one of the most used time series representations usually employed

as a first stage for several data mining techniques like classification, clustering or indexing.

1A time series is divided into K segments, each of which is mapped to the average value of the original
time series in that interval.
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The key point is the dimensionality reduction that can be achieved with such technique.

Figure 2.5: PLR with different maximum error thresholds.

PLR basically consists of performing Piecewise Linear Approximation to segment time

series (see Fig.2.5 for an example); the problem is to find the best way of representing a

time series by means of straight lines and additional constraints such as:

• using only K segments (where K is chosen by the user)

• using a threshold for the maximum allowed error on a single segment

• using a threshold for the maximum combined error of a segmentation

Usually interpolation or regression are the methods used to find these segments, while

common error measures are sum of squared residuals or absolute norm (i.e. the differ-

ence between the approximating segment and the farthest point in the vertical direction).

The three main categories of algorithms identified in such work (and that inspired some

our segmentation algorithms) are the following:

• Sliding windows (online): a segment is grown until a condition is met (e.g. an error
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bound is exceeded); the process repeats with the next data point not included in

the newly approximated segment.

• Top-Down: the time series is recursively partitioned until some stopping criteria is

met.

• Bottom-Up: starting from the finest possible approximation, segments are merged

until some stopping criteria is met.

Results show that the first approach holds the worst results while the last one is the most

promising one, also scaling linearly w.r.t the size of the input.

Ultimately, authors propose a new method called SWAB (Sliding Window And Bottom-

up) which combines the best of both worlds, notably the on-line flavor and the effi-

ciency/accuracy: they use a sliding window with a size big enough to contain (ideally)

5-6 segments and they apply bottom-up to retrieve the leftmost segment.

2.3 Changepoint detection

Changepoint detection is the problem of estimating the point(s) at which the statistical

properties (usually the mean or the variance) of an ordered sequence of data change,

with applications in many areas as climatology, bioinformatics or finance. An example is

shown in Fig.2.6

Finding multiple changepoints, which is the natural generalization of finding a single

changepoint, is actually one approach to deal with segmentation, as they split the data

into a set of segments, each of which can be summarized by a set of parameters.

An interesting case for our context is that in which the number m of changepoints is not

known apriori; given a sequence y and a time τ , one formulation of such problem, known
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Figure 2.6: An example of changepoint analysis with three different changepoints high-
lighted with dashed lines of different colours.

as penalized optimization, consists in minimizing the following function:

min
m

m+1∑
i=1

[C(y(τi−1 + 1) : τi] + βf(m)

where C is a cost function for a segment, e.g. log-likelihood, and β a penalty function

(such as Schwarz Information Criterion).

A first naive approach would be to enumerate all the possible combinations, holding an

exponential cost w.r.t the input size.

In the following, we propose some state-of-the-art existing approaches for changepoint

analysis in time series.

2.3.1 (Wild) Binary segmentation

Binary segmentation [Scott and Knott, 1974] is indeed the most used technique for change-

point analysis.

It consists of a greedy procedure that works as follows:

• Apply a single changepoint test statistic to the entire data, if a changepoint is

identified the data is split into two at the changepoint location.
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• The single changepoint procedure is repeated on the two new subsets, before and

after the change. If changepoints are identified in either of the new subsets, they

are split further.

• This process continues until no more changepoints are found in any of the subsets.

It is a greedy and approximate algorithm but it is computationally fast as it only

considers a subset of the 2(n−1) possible solutions, with a computational complexity

T(N)= O(n log(n)).

An improved version of such algorithm was proposed in [Fryzlewicz, 2014], notably Wild

Binary segmentation.

It is a a variation that counters the drawbacks of the ”greedy” flavor of Binary Segmen-

tation, as searching for a single change-point in each stage makes the method unsuitable

for some functions containing multiple change-points in particular configurations.

In fact, they show that a minimum spacing is needed to ensure consistency of BS results,

as side results of their paper.

Therefore, they propose an algorithm that work as it follows:

• Randomly draw (hence the term ”Wild”) a number of subsamples of variable length

and compute a test statistic on each subsample.

• Choose the most significant changepoint candidate (according to the CUSUM2

statistic) and test it against a stopping condition.

• If it is considered to be significant, the dataset is split and the same procedure is

then repeated recursively to the left and to the right of the changepoint.

The advantages of such approach are shown in Fig.2.7, where the input sequence is

represented as:

Xt = ft + ε, t = 1, ..., T

where the residuals are normally distributed with zero mean and unit variance and is a

deterministic, one-dimensional, piecewise-constant signal.

2https://en.wikipedia.org/wiki/CUSUM

https://en.wikipedia.org/wiki/CUSUM
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Figure 2.7: A sample scenario for Wild Binary Segmentation: there are shown the true
function (thick black) and observed one (thin black), CUSUM value for each point for
the entire sequence (blue) and for a sub-sample (red).

2.3.2 Pruning exact methods (PELT and OPFP)

Another approach for changepoint analysis is to minimise a cost function over possible

numbers and locations of changepoints.

In the following we will examine two different methods that are exact, i.e. they find the

minimum of such cost functions (and thus the optimal location of these changepoints),

and that exploit pruning to avoid repeated computations.

A key difference between these methods and binary segmentation is that when a new

changepoint is added in the exact methods, the location of previous changepoints may

change to accommodate the result, while in the Binary Segmentation method(s) pre-

viously identified changepoints are fixed, as the result of a greedy and approximated

approach.

Authors of [Killick et al., 2012] introduce an exact method called Pruned Exact Linear
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Time that under certain mild assumptions3 performs in a linear time w.r.t data points.

It is important to notice that in such context accuracy often comes at expenses of per-

formances (as for binary segmentation).

What PELT does is to apply an optimal partitioning method that begins by first condi-

tioning on the last point of change and then calculates the optimal segmentation of the

data up to that changepoint.

In this way the calculation of the global optimal segmentation is performed using optimal

segmentations on subsets of the data,i.e. a recursive form to the method is given as the

optimal segmentation for data y1:τ∗ is identified and then used to ”inform” the optimal

segmentation for data y1:(τ∗+1).

The pruning intuition simply consists in removing those values that can never be minima

in further computations; this happens if the cost function is such that when adding a

changepoint the cost of the sequence reduces.

The same authors further propose a non-parametric version of such approach in [Haynes et al., 2017],

that uses the empirical distribution with a given number of quantiles (they suggest

4 log(n) where n is the input size) and an algorithm to select the best number of change-

points for a range of manual penalties, notably CROPS, in [Haynes et al., 2014]: it is an

iterative procedures that efficiently computes the cost function reusing previous compu-

tations.

This last contribution is particularly interesting as the main issue of any changepoint

analysis is selecting the parameters, which includes choosing a penalty (ranging from SIC

to log-likelihood to manual values).

As they suggest one can eventually use the ”elbow”4 method to choose the correct number

of changepoints as shown in Fig.2.8.

Authors of [Maidstone et al., 2017] provide an alternative technique Function Pruning

and Optimal Partitioning that performs better than PELT in certain scenarios, with a

computational cost which is competitive w.r.t binary segmentation.

This is due to the fact that this method prunes ”more” than PELT, thus storing less

candidates and being more efficient; nonetheless their assumptions for functional pruning

are quite strong (we refer the interested reader to [Maidstone et al., 2017]).

3We refer the reader to [Killick et al., 2012] for a clear analysis.
4https://en.wikipedia.org/wiki/Elbow_method_(clustering)

https://en.wikipedia.org/wiki/Elbow_method_(clustering)
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Figure 2.8: A ”cost” vs ”number of changepoints” plot. The red lines and the blue circle
highlight what is retained as the centre of the elbow.

2.3.3 Event detection in time series data

In [Guralnik and Srivastava, 1999], authors tackle the problem of detecting changepoints,

which they refer to as ”events” and ”episodes”, in time series data, i.e. points where the

”behaviour” of a dynamic phenomenon, modeled as a time series, qualitatively changes

(e.g. the change of highway traffic from light to heavy to congested).

Figure 2.9: Changepoints analysis on data taken from highway traffic sensors, called loop
detectors, in Minneapolis-St.Paul.

Overall, they determine the number of such points and the model to fit the data in each

”segment” by means of an iterative algorithm and a likelihood criterion, addressing both

a batch and an incremental (i.e. ”online”) scenario.
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Formally, their problem is to find a piecewise segmented model composed by different

functions that fit the data in different pieces (whose endpoints are changepoints): no

assumption is made on the nature of these functions, but basis classes of functions are

considered accordingly to the universal approximation theorem5.

As the number of changepoints is not given, the algorithm proceeds iteratively with a

stopping criterion given by the stability of the likelihood function (see Fig.2.9 for some

results on real world cases).

Eventually, they ask four human experts for a visual changepoint detection and they

show that their results are more robust, as human observers often disagree (see Fig.2.10

and have predilection for piecewise straight lines.

Figure 2.10: Comparison of two human responses on the same figure regarding Minneapo-
lis traffic sensors.

2.4 Temporal pattern analysis

Temporal mining is a relatively new field of research which ”mines” data that involve a

temporal aspect; it does not exist yet a widely accepted taxonomy and thus we will refer

to several different authors notations.

[Moerchen, 2006] proposes a nice survey on temporal pattern mining: sequential pattern

mining is also included in the temporal mining context (in the market basket scenario,

frequent itemset subsequences of items are searched across different transactions of cus-

tomers as to give buying recommendations) as well as many other application fields like

5https://en.wikipedia.org/wiki/Universal approximation theorem
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Figure 2.11: Examples of Allen’s 13 interval relations.

temporal association rules, data streams, web usage mining, pattern evolution, temporal

reasoning and databases which, however, do not relate to our task.

After presenting time series data mining techniques, the author moves to unsupervised

mining of temporal patterns in time series, which is truly connected to our open problem

as we’ll see in 4.1.

Leaving aside time point rules (i.e. finding frequent sub series of symbols occurring se-

quentially in an univariate time series) we focus instead on time interval rules. Over the

existing techniques, mostly of which can be applied on multivariate data, we can identify

a precise set of different paradigms:

• Allen’s relations (1983) (see Fig.2.11)

• Freksa’s semi-interval operators (1992), a set of 11 operators which are combined

to derive six operators whose advantage is to be represented by simpler formulas;

• Roddick’s Midpoint Interval Operators, a set of 49 operators derived from Allen;

• Unification-based Temporal Grammar (UTG), which is an approximated version of

Allen’s relations,

• Temporal logic operators.
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Figure 2.12: Some set of Chords (which include Tones) and a Phrase in TSKR.

Stating that all representations which are based on Allen’s relations have severe disad-

vantages for knowledge discovery, the author proposes a hierarchical language for interval

patterns known as Time Series Knowledge Representation (in the following we will refer

to another work of the same author for sake of concision [Mörchen, 2007]).

The aim of such language is to extend UTG in order to achieve robustness and compre-

hensibility of patterns, as well as avoiding ambiguity.

A pre-processing stage is performed to transform time series into a symbolic represen-

tation (a custom one proposed by the author in [Moerchen, 2006]) to produce symbolic

interval series.

The basic primitives (see Fig.2.12) are:

• Tones: they consist of a label, a symbol and an interval series

• Chords: time interval where k > 0 tones coincide

• Phrases: a partial order of k > 1 chords

The overall procedure is to find margin-closed (We refer the reader to [Moerchen, 2006][Mörchen, 2007]

for an exhaustive definition) Chords and then margin-closed Phrases. You can check

Fig.2.13 for an idea of the process.

Figure 2.13: The five steps for TSKR pattern discovery.
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Figure 2.14: A set of intervals and a temporal pattern consisting of their temporal rela-
tions (co-occurs and before).

Authors in [Batal et al., 2012, Batal et al., 2016] also propose a pattern mining approach

to learn event detection models from multivariate data: they convert time series into time

interval sequences of temporal abstractions and look backwards in time to find recent time

interval patterns (they work in a supervised context).

Basically, given that certain events are associated to specific time points in a interval, they

assume that relevant patterns to predict these events in the future have to be detected

into a local context and giving more relevance to more recent instances (what they name

a Recent Temporal Pattern).

They convert multivariate data by means of two temporal abstractions:

• Trend, they segment a time series like we aim to do (with local trends, i.e. up,down,flat)

with a sliding window.

• Value, they segments values by using percentiles (and assigning labels such as ”Very

Low”, ”Medium”, ”High”, etc).

They employ Hoppner’s paradigm6, which consists of two simple relations: co-occurs and

before (rather than Allen’s 13 relations) and they accordingly give a matrix representation

for a pattern as in Fig. 2.14.

An interesting remark: also ”instantaneous” events, where start time=end time, are

correctly taken into account.

The core of their approach (see Fig. 2.15) is to build backwards these pattern by using

several parameters to ”tune” the gap between different components of a pattern which

close to the end (i.e. the event occurrence) and have a limited duration (again they try

to focus on more recent observations).

They build incrementally patterns in an efficient way: they only consider compatible

6As in the work we mentioned before, they claim that Allen’s relations may lead to ambiguity and
pattern fragmentation, i.e. several different patterns which are really similar.
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relations when trying to find the k + 1 pattern from a k pattern (where k is the number

of components) and they thus prune the search space.

Eventually they focus on predictive patterns by means of Bayesian inference: these are, in

fact, the most potentially useful amongst all the frequent RTP to learn event prediction

rules.

Figure 2.15: A highlight of a Recent Temporal Pattern (the triggered event occurs at t
= 20).

Authors in [Moskovitch and Shahar, 2015a, Moskovitch and Shahar, 2015b] concentrate

instead on time series classification: they apply temporal abstractions to raw multivariate

time series, they mine frequent Time Interval Related Patterns and they exploit these

patterns to build a classifier.

They compare SAX (see Section 2.2) and Equal Width Discretization, the former per-

forming better, and they employ Allen’s relations to build patterns: eventually they derive

three supersets (before, contains, overlap) and extend them with an ε version which allows

for flexible pattern mining (see Fig. 2.16).

Their algorithm KarmaLego firsts finds 2-sized TIRPs and then extend them recursively

to build a tree (similarly to [Batal et al., 2016] they only consider valid relations when

trying to extend patterns).

Eventually, as duration is not taken into account when building patterns, they propose to

cluster either time intervals or TIRPs for a better knowledge discovery (with significant

effects on the computations).

[Chen et al., 2015] proposes two interesting different representations (”endpoint” and

”endtime” as in Fig.2.17) to deal with the intrinsic complexity of describing relations
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Figure 2.16: Allen’s seven relations with epsilon flexible extension and the three supersets.

between intervals. They basically reduce Allen’s relations into three relationships: be-

fore, equal and after.

They also propose three different kinds of interval based patterns:

Figure 2.17: Proposed equivalent representations for Allen’s relations.

1. temporal, which can reveal the correlation among intervals;

2. occurrence-probabilistic, which provide with insight on the occurrence probability,

enabling prediction;

3. duration-probabilistic, which expresses the correlation between intervals and the

distribution of the different interval lengths.

They assume a temporal database of transactions (as in Fig.2.18, which may be adapted

to our specific case.
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Figure 2.18: A temporal database and the proposed representation.

Eventually, [Rawassizadeh et al., 2016] aims to develop a set of scalable algorithms to

find interesting patterns in human behaviors by looking at consecutive daily routines (see

Fig.2.19).

They define groups and profiles to detect these patterns, and they apply ”sliding” (rather

a subdivision of a week in groups of consecutive two days) windows in order to find

frequent sets of similar activities; an interesting remark is how they convert point-wise

occurrences to intervals by means of rounding it to a reference granularity.

Although they use Allen’s relations they clearly state that their approach should not be

categorized as a time series one (yet they process multivariate data).

Moreover, their approach has a scope limitation: authors claim to be able to identify

daily consecutive behaviors but not all routine behaviors (e.g. going to the cinema every

two or three months or going to a campaign once a year) which would be some interesting

abstractions that we aim to find in an event stream.

2.5 Learning automatically rules for CEP

In the recent literature we found a few different approaches, not truly remarkable, that

tried to first tackle the general issue of an automatic formulation of complex rules for event

processing, spanning from machine learning to time series data mining techniques.
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Figure 2.19: Two days visualization for the data of two different users in
[Rawassizadeh et al., 2016].

2.5.1 iCEP, autoCEP and other machine learning techniques

A couple of works fit to some extent our problem as they make similar assumptions on

the complexity of building these complex patterns and they try to build them using Event

Processing Language semantics.

[Margara et al., 2014b] presents a modular solution to learns causality between events

starting from historical traces, which they distinguish into positive and negative ones

matching a pattern to a dataset.

They exploit to infer complex rules decomposing the problem into several ones: deter-

mine the time window, identify types and attributes and eventually discover selection,

parameter, aggregate and negation constraints.

Everything is performed by applying these operations on traces (i.e. inferring all the

existing correlations in between the events), which constitute thus a training set; in the

end, an evaluation is carried out on a public transportation dataset assuming only one

existing rule and the goal of ”reconstructing” it in the most efficient way.

Although the interesting submodular approach and the premises are very promising, the

goal of iCEP of ”reconstructing” one single rule departs a bit from our context; nonethe-

less the idea of decomposing the problem of finding the different components of a pattern

is a good hint.

[Mousheimish et al., 2016] tries instead to integrates time series data mining techniques
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(in particular Early Classification) to deliver an automatic rule extraction; precisely, they

employ ”shapelets” (a new primitive for time series data mining) to ”annotate” multidi-

mensional time series and find correlations across several attributes to ”translate” into

CEP rules (using Esper7 framework, an industrial CEP tool).

The following works only focus on the Human Activity Recognition domain, where events

are three-axis measures (forward, upward, downward and horizontal movement of the

legs) and patterns are situations to detect (e.g. walking or running):

• [Petersen et al., 2016] exploits SVM along with TESLA query model. The tech-

nique proposed is an online version of SVM algorithm that can learn and generate

rules on the fly, as these can change dynamically in time; overall, only 6 amongst

the 43 features of the dataset are considered (average, deviation and others) and

neither these variables neither the functioning of the rule extraction are really clear.

• [Mehdiyev et al., 2015] proposes a rule-based model insisting on the ”updating”

need of patterns and their readability; a particular attention is also paid on outliers

and missing data, although it is not so related to our case, that are handled with

an R package. In the end they exploit 18 input variables (the three-axis measures

along with 5 lagged values for each of them) and simply compare different rule-

based classifiers performances leading to different rankings according to different

measures.

• [Mehdiyev et al., 2016], conceived as a ”future” direction of the previous work, pro-

poses a fuzzy algorithm combined with a feature subset selection (where ”fuzziness”

is justified by outliers and uncertain data). The evolutionary approach employed

is the most competitive wrapper one, i.e. it considers interdependencies among

the variables, for feature subset selection; roughly speaking it is the solution of a

multiple objective optimization problem which is not clearly explained. The fuzzy

algorithm (FURIA) is a rule induction one (essentially a modification of RIPPER,

which is also present in the previous work) whose main disadvantage is the complex-

ity in interpretation. Features are eventually reduced to 11 from 18, and a similar

evaluation is performed (no clear patterns, just classification) as to substantiate a

7http://www.espertech.com/esper/

http://www.espertech.com/esper/
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possible ”primate” of fuzzy rules in the CEP world.

In the end, the works aforementioned provide very little contributes to the cause and

they lack of many technical details.

2.5.2 IL-Miner

Figure 2.20: Partitioning an event stream (or a prefix thereof) in traces.

As discussed afterwards in 3.1 correlating events to define complex patterns has notably

an exponential blow-up in terms of time windows, primitive operators and value predi-

cates; authors of [George et al., 2016b] claim that using labeled historic event data (aka

traces), instead, allows to learn these patterns automatically (see Fig.2.20.

Traditionally, CEP applications need domain experts to define situations of interest, with

a very recent trend of shifting towards pro-active processing where patterns should an-

ticipate these scenarios.

Using labeled data, one can split event streams in sequences knows as traces which can

be used for a learning process (linking this task to the field of frequent sequence mining),

where existing techniques discover sequential patterns on type-level, i.e. they partition

events into types and identify order over these types, or partitioning on attribute values

for global correlation conditions; nonetheless, an automatic approach would need to ex-

plore a very large space of possible patterns, thus becoming intractable in practice.

The work adopts a relational model of event streams (like SASE) and assumes that all

events have the same schema; moreover it defines formally an event pattern as a triplet

of event variable, a set of constraints and a time window.
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A trace is then defined as a finite sequence of events such that the situation of interest

occurs at the end of the timespan covered by the trace; these can be obtained using a

maximal duration or partitioning the stream by situation of interest.

IL-MINER learns event abstractions and correlation conditions automatically by exploit-

ing these traces:

1. it employs FSM (frequent sequence mining) to find candidate sequences of event

abstractions;

2. it links them to events in the trace to find relevant event abstractions and correlation

conditions;

3. it filters interesting patterns among a large result set.

This procedure is eventually shown to be formally correct, complete and minimal.

In the end, evaluation is performed on four different datasets and several existing pat-

terns are used to build up traces. Comparing it to [Margara et al., 2014b], the latter is

outperformed and fails to discover patterns for many scenarios.

Despite being the most promising methodology across the works analyzed so far, the con-

cept of trace does not properly fit completely our task (our main premise is a completely

unsupervised setting) although the clustering procedure to filter out patterns could be

interesting (nonetheless there is some kind of information which resides in the syntax of

the pattern itself, that needs to be evaluated by a human expert).

Moreover, the assumption of all the events with a same schema is not so practical.

Although they mention classical CEP operators, they do not produce any readable rules

but they focus on the same problem as [Margara et al., 2014b] of ”reconstructing” pat-

terns from their traces.



Chapter 3

An in-feasibility proof sketch for a

search-based approach

3.1 Problem definition

As discussed so far, Complex Event Processing is a powerful technique for data analytics

which is, nonetheless, guided by manually defined rules. As such, implementing a CEP

application is not straightforward as domain knowledge must be exploited in order to

define rules which may be useful on a certain dataset.

As we will indicate, there is an unnumberable amount of different correlations that can

be expressed using an Event Processing Language (which makes it really powerful to

process streaming datasets) that makes any data-driven brute force approach infeasible

for composing such patterns.

In the following sections we will first provide the sketch of a proof of in-feasibility for

brute-force searching all the existing rules that would match on a given dataset: a sim-

plistic analysis shows that even considering only sequences of events (without any JOIN

conditions or aggregate functions such as SUM, AVG, etc.) holds an exponential blow-up

in terms of results.

The simplified problem we will (implicitly) refer to in our analysis is the following: given

a stream of events S of fixed size, find all possible matching queries (using SASE lan-
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guage).

Eventually, some additional processing on such results could give the most interesting

rules.

The basic form of a SASE query that we employ is expressed in the form:

FROM S

PATTERN p

WHERE skip till any match(){}

WITHIN W

where S is our stream, p is a pattern defined using SASE operators (such as ANY, +, SEQ)

and W is the time window which needs to be specified.

For the moment we do not specify any WHERE predicates but only the strategy employed.

We refer the reader to [Zhang et al., 2014] for a deeper understanding of how the lan-

guage works.

A first remark is that all matches of a pattern containing ANY and + operators in SASE

(1.2.2) can be obtained also by using patterns that contain only the SEQ operator, i.e.

the result set of the former is the union of the results obtained with several of the latter.

Moreover, considering such strategy allows us to analyze the worst-case scenario.

We can then formulate the problem in two equivalent forms, which both have an expo-

nential blow-up in terms of results: find distinct subsequences of a given sequence and

find all the distinct matching queries over an input stream.

3.2 Find distinct subsequences

Given a finite input sequence S defined as follows:

S = 〈ei〉 i ∈ N, i <∞
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where ei ∈ Σ ≡ {Types of event}.

We define the set of distinct subsequences P as:

P = {p ∈ P | p ≡ 〈ej〉, j <∞, j ∈ N,∀p1, p2 ∈ P : p1 6= p2}

where

p1 6= p2 ≡ ∃k : p1,k 6= p2,k

Here we use the notation p1,k ≡ (k, p1,k) to denote the ”k-th” element of p1.

The problem is then to find P (or |P |).

A well-known result for a sequence of k distinct symbols is that the total number of

non-empty distinct subsequences is 2k − 1.

The result is bounded by 2|S|−1 subsequences if symbols are repeated: in fact, we see that

in the general result we could have sequences included in the former result (duplicated

sequences) and sequences not included (e.g. in ”ABA” we have ”BA” which does not

belong to the power set of ”AB”1).

Thus, we can argue that:

2k − 1 ≤ |P | ≤ 2|S| − 1

3.3 Find distinct matching queries

Given a finite input S defined as follows:

S = {ei ∈ S | ei(t) =

 TRUE if t = ti

FALSE otherwise

 ,∀i < j : ti < tj}

where 0 < t <∞ and ei ∈ Σ ≡ {Types of event}, where ei denotes just the symbol.

We define P as the set of distinct matching patterns (or queries in the SASE framework)

on S:

P = {p ∈ P | p ⊆ S,∀p1, p2 ∈ P : p1 6= p2,∀p(i) : ti < ti+1,∃t1 < t2 < ... < tn :
n∧
1

ei(ti) ∈ p = TRUE}

1”A”,”B”,”AB”.
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where

p ⊆ S ≡ ∀ei ∈ p, ei ∈ S

and

p1 6= p2 ≡ ∃k : p1(k) 6= p2(k)

and the last two conditions mean that the symbols are ordered according to the ”triggering

time” (i.e. when they evaluate to TRUE) and the pattern matches the input.

We further use the notation p(i) to identify the ”i-th” symbol in the pattern and ti its

”triggering time”.

The problem is then to find P (or |P |) and we easily see that it is equivalent to the previous

problem (i.e. we can always build a sequence of symbols ordered by their ”triggering time”

and obtain such a formulation).

Thus:

2k − 1 ≤ |P | ≤ 2|S| − 1

3.4 Adding predicates

So far we have considered only simple patterns in the form:

FROM S

PATTERN p

WHERE skip till any match(){}

WITHIN W

What if we add predicates in the WHERE clause?

We can say that we have up to C boolean conditions which are TRUE for the input S: this

parameter would depend on |Ai| ≡ {No. attributes for event type ”i”} and |Va| ≡ {No.

values for attribute ”a”}; we could have different types of conditions (e.g. ceq, cattr, caggr)

that would add differently to C.

Given m conditions we have thus (2m−1) non empty subsets of conditions, each of which

evaluates to TRUE when using only AND connectors between two literals.

Therefore we have (2C − 1) possible WHERE clause that match the input, holding for a W
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size input a worst-case result:

|P | ≤ (2W − 1)(2C − 1)

as the previous ”truth” assumption on conditions may not hold for each pattern (e.g. c1

might be TRUE only for pattern p3 and so on).

3.5 NEG operator

What if we also consider the NEG operator?

Our previous results tell us that:

|P | = 2k − 1 with |S| = k distinct symbols

|P | = 2k − 1 +N with |S| 6= k symbols, k unique

Where N is the number of distinct subsequences which are not included in the first term.

We can reformulate the last line in:

|P | = 2k − 1 +

|S|∑
1

Ni

where Ni is the number of distinct subsequences of length i that are not included in the

first term.

We also observe that, given a sequence and a matching pattern, we can put the NOT

operator in any position of the pattern, using a symbol which is not present in the overall

sequence, such that the pattern still matches the input:

ABCBDB→ SEQ(!E, A, B), SEQ(A, !E, B), SEQ(A, B, !E)
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for a total number of (i+ 1) possibilities, where i is the length of the pattern.

In the end, for k′ non-present symbols2 we obtain:

|P | =
k∑
1

(
k

i

)
k′ · (i+ 1) +

|S|∑
1

k′ · (i+ 1)Ni = k′ · (2k − 1) + k′ · 2(k−1)k+

|S|∑
1

k′ · (i+ 1)Ni

Though, we did not consider any NEG operator using symbols present in the input (e.g.

”ABCBD” is matched by SEQ(A, C, !D, B)).

2k′ = |Σ| − k



Chapter 4

Towards automatic extraction of

complex rules

4.1 Problem statement and proposed solution

The main challenge to face in order to learn CEP rules automatically is the intrinsic

complexity that derives from the very richness of Event Processing Languages, which are

capable of expressing innumerable different correlations between primitive events.

As we pointed out, applying a brute-force search-based approach to generate all possible

interesting rules that apply on a given dataset is not feasible.

Instead, we propose a brand new approach to tackle the problem of automatic extraction

of CEP rules from streams of events, which consists of the following procedure:

1. Transform a finite stream of events in a dataset of multivariate time series;

2. identify potential situations where to build basic CEP operators: i.e. temporal

windows where time series show an interesting behavior (whether isolated or in

conjunction);

3. build a set of matching patterns according to these windows;

4. identify the most pertinent ones according to some notion of interestingness ;

5. evaluate the overall procedure by means of ground truth or human experts.
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Notice that the pipeline operates in a ”batch” mode, i.e. a finite stream of events is

analyzed off-line; however, we developed our approach keeping in mind that a streaming

fashion should be achieved for performing real-time CEP rules learning.

We give here one formulation for our specific problem:

Given a finite stream of events S and finite alphabet of event types T , build a

multivariate time series for each event type Ti; then represent each time series

by means of a proper abstraction and apply temporal mining techniques as

to extract interesting patterns and build rules according to a given Event

Processing Language.

The pipeline of such ”plan of attack” is depicted in Fig.4.1.

In the following subsections we first describe the real world case dataset we used for our

analysis and therefore we go into the details of each block of our architecture.

Figure 4.1: A diagram that describes our overall system.

4.2 Real world dataset: monitoring Hadoop activi-

ties

In this section we provide with a bit of context regarding our dataset from a real world

case study on Hadoop.

The data we used for our analysis refer to the monitoring of Hadoop activities carried on

in the period 28th March-12th April 2015; these were produced using logs of OS metrics

and Hadoop itself, by means of Ganglia monitoring daemon gmond1.

1http://ganglia.sourceforge.net/.

http://ganglia.sourceforge.net/
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These logs correspond to three different workloads, as in [Zhang et al., 2017]: count statis-

tics for tri-grams for tweets, compute frequent users from click logs in the 1998 FIFA

Worldcup website and divide user clicks into session. Anomalies such ”High Memory

Consumption” or ”High IO activity” were manually ”injected” in order to experiment

some supervised anomaly explanation.

The Hadoop architecture used in such applications is depicted in Fig.4.2: it corresponds

to the (older) version 1.x. of MapReduce framework and it is slightly different from the

actual2 version 2.x. which is shown in Fig.4.3.

Figure 4.2: Hadoop 1.x architecture ovierview.

As explained in [White, 2009], the Name Node coordinates the data storage function

(HDFS), while the Job Tracker coordinates the parallel processing of data using Map

Reduce.

Slave Nodes make up the vast majority of machines and do all the ”dirty” work of storing

the data and running the computations.

Each slave runs both a Data Node and Task Tracker daemon that communicate with and

receive instructions from their master nodes. The Task Tracker daemon is a slave to the

2https://www.cloudera.com/documentation/enterprise/5-3-x/topics/cdh_ig_mapreduce_

to_yarn_migrate.html.

https://www.cloudera.com/documentation/enterprise/5-3-x/topics/cdh_ig_mapreduce_to_yarn_migrate.html
https://www.cloudera.com/documentation/enterprise/5-3-x/topics/cdh_ig_mapreduce_to_yarn_migrate.html
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Job Tracker, the Data Node daemon a slave to the Name Node.

Client machines have Hadoop installed with all the cluster settings, but are neither a

Master or a Slave. Instead, the role of the Client machine is to load data into the cluster,

submit Map Reduce jobs describing how that data should be processed, and then retrieve

or view the results of the job when its finished.

In smaller clusters (∼40 nodes) you may have a single physical server playing multiple

roles, such as both Job Tracker and Name Node. With medium to large clusters you will

often have each role operating on a single server machine.

The Secondary Name Node occasionally connects to the Name Node (by default, ever

hour) and grabs a copy of the Name Node’s in-memory metadata and files used to store

metadata (both of which may be out of sync). The Secondary Name Node combines this

information in a fresh set of files and delivers them back to the Name Node, while keeping

a copy for itself.

Should the Name Node die, the files retained by the Secondary Name Node can be used

to recover the Name Node.

Figure 4.3: Hadoop 2.x architecture ovierview.

Apache Hadoop’s jobtracker, namenode, secondary namenode, datanode, and tasktracker

all generate logs [White, 2009].

In our specific case, input data are actually the results of a parsing operation (carried

out by gmond) on Job Statistics logs: these are created by the jobtracker that writes

runtime statistics from jobs to these files. Those statistics include task attempts, time

spent shuffling, input splits given to task attempts, start times of tasks attempts and

other information.
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We have the following set of events for what concerns Hadoop statistics (some of which

are ”self-explaining”):

1. HadoopDataActivity (cf. DataIO in [Zhang et al., 2017]) records the activities of

generation (positive values) / consumption (negative values) of intermediate data;

it has the nodeNumber of the JobTracker node.

2. JobStart and JobFinish, which have the nodeNumber of the JobTracker node.

3. MapStart, MapFinish, ReduceStart and ReduceFinish, that have the nodeNumer of

the node they run on.

4. MapPeriod and ReducePeriod, show the duration of the tasks (with same nodeNumber

as the tasks themselves).

5. MergeStart, MergeFinish correspond to the final output of all reducers and they

have the nodeNumber of the JobTracker, as they occur at the end of the job.

6. PullStart, PullPeriod and PullFinish correspond to the input splitting before map

start.

7. RequestStart and RequestFinish correspond to the request of input by the mappers.

And for what concerns OS metrics an exhaustive list is found in the Appendix3. We will

just say that they correspond to specific performance metrics for each machine: they thus

have a nodeNumber that represents the corresponding Node of the cluster and a value

that represents the value of the corresponding metrics.

We eventually derived the following hierarchy, where each single line is a (left-to-right)

one-to-many relationship with the only exception of the the many-to-many relationship

between nodeNumber and jobId):

©
nodeNumber

= ©
jobId
− ©

taskId
− ©

attemptId

In fact:

3You can also check https://github.com/ganglia/monitor-core/blob/master/ganglia.pod

https://github.com/ganglia/monitor-core/blob/master/ganglia.pod
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• a job can be run on several machines and one machine can run several different jobs

(jobId are 1-based, i.e. the first job has jobId=1)4

• for each job we have different tasks (0-based, i.e. the first task has taskId=0)

• for each task we have different attempts (0 based as well)

After an exploratory analysis of the data we manually selected the following dimen-

sions :

• jobId

• nodeNumber

with the only consistent measure being the value attribute. In this way we can extract

the partitioning tuples and build partitions accordingly.

In order to handle some (event) types that do not have the jobId attribute (OS metrics

from Ganglia) we include them in the partitions if they just match the nodeNumber of

the partition.

An example of two events from the same partition is shown in Fig.4.4.

4.3 From event streams to multivariate time series

As said in 1.4, a multivariate time series is a collection of univariate time series which

refer to same underlying process and, thus, to the same time span. You can build such

model whenever you have a sequence of multi-dimensional points (or variables): each

dimension would constitute one univariate time series and the overall result would be a

d-multivariate time series (where d is the number of dimensions). An example with 3

dimensions is shown in Fig.4.5

The main intuition behind our work is that given an event stream that follows the event

model (see 1.2), one can always build a dataset of multivariate time series, one for each

event type, by using the sequences of values of each attribute. The next goal is then to

compare different multivariate time series and extract potential correlations that can give

4Actually the jobId is a concatenation of the date and a counter which starts from 1, e.g.
2015031422290008
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Figure 4.4: Two time series corresponding to two different event types (respectively
from Hadoop logs and OS metrics logs) in the same partition (nodeNumber=4, jo-
bId=2015031422290042).

insights and, more importantly, build CEP rules.

It is often the case where several attributes of an event type are used only for ”joining”

different event types (say jobId or transactionId) whereas other attributes carry values

that provide ”more continuous” information (such as price, volume, etc).

Thus, our realistic assumption is that these streaming data are generated by architectures

that can be modeled using a Dimensional Fact Model5, such as logistics or healthcare

data warehouses, naturally providing the means to partition data along some dimensions

and building time series according to some measures.

5https://en.wikipedia.org/wiki/Dimensional_fact_model

https://en.wikipedia.org/wiki/Dimensional_fact_model
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Figure 4.5: A plot of a 3-multivariate time series

Our initial step, therefore, consists of partitioning the stream by type first and then

according to a set of dimensions. We assume the user provides both a list of event types

and the attribute taxonomy.

We provide here some formal definitions to understand the scenario.

Definition 1. Event stream. A finite event stream S = 〈ei〉i∈N0 is a set of events ei

occurring in a non-decreasing order (w.r.t timestamp6), where each ei |= Ej i.e. ei is

of event type Ej ∈ Σ, Ej ≡ 〈a1, a2, ..., an〉; we can also say that Ej ≡ σjE(S), i.e. it

represents a selection over the stream of all the events of type Ej (our first partitioning

step).

Definition 2. Attributes taxonomy. Given an event type Ej = 〈a1, a2, ..., an〉 and a set

of labels L = 〈l1, l2, ..., ln〉, we build a set of dimensions Dj
E and measures M j

E according

to labels: for each attribute ai we put it in one set by checking the corresponding label

li, D
j
E if li is a dimension, M j

E otherwise. We assume that the timestamp is a special

attribute in the sense that it is not considered in such procedure and never dropped; it

will be used eventually to build time series.

Definition 3. Partition. Given an event type Ej and a partition pi identified uniquely

identified by a list of values (i.e. instances of the dimension attributes) pi = (v1, ..., vn),

a sub stream of Ej belonging to the partition is defined ”recursively”, i.e. a SELECTION

6We will consider it as a ”special” attribute: nor dimension nor measure.
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on each dimension followed by a PROJECTION over the other attributes, as:

pi(E
j) = πM(σdn==vn(πdn−1,M(σdn−1==vn−1(πdn−2,dn−1,M( ... πd2,...,dn,M(σd1==v1(E

j))

or more compactly

pi(E
j) = πM(σdn==vn(π¬dn−1(σdn−1==vn−1(π¬dn−2( ... π¬d1(σd1==v1(E

j))

where M is the set of measures. In the end what we obtain is a ”table” composed of only

measures and a timestamp column which will be used to build time series.

Definition 4. Time series. Given a partition pi(E
j) of an event type Ej, its corre-

sponding multivariate time series TSpi(Ej) is (〈m1,j〉, 〈m2,j〉, ..., 〈mn,j〉) where 〈m1,j〉 is a

sequence of points whose subscript indexes the corresponding timestamp (equivalently

(m1,j; tj)); we recall that each mi is a measure and each sequence of points belongs to a

different partition.

Given a finite event stream S, an alphabet of event types Σ and a set of labels L we can

build for each event type Ej a set of multivariate time series (one for each partition pi)

TSpi(Ej) by applying the following procedure:

1. Read the event stream S;

2. partition the stream by event type according to Σ;

3. for each event type label attributes according to L;

4. build the set P of partitions by looking at the set of dimensions D ⊂ L;

5. for each sub stream (corresponding to a specific continuous event type) in each

partition build a multivariate time series by using measures attributes and the

timestamp.

A simplistic assumption we made is that all the event types carry a set of dimensions

which allow to build consistent partitions.

We expect to have some event types that do not carry continuous information but still

their occurrences can be used to detect temporal patterns. In this case, we assume that

the user provides labels for each event type, as answering to the question ”Should we
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treat this sequence of points as a time series?” is not straightforward and one can not

simply argue on the frequency or the variance of the values of a sequence of observations.

Using this rough taxonomy of time series and pointwise event types, one can then select

those that should be further processed by means of temporal abstractions (in our case,

time series segmentations techniques) and, as a ultimate stage, apply any pattern mining

techniques (which work on both point-based and interval-based symbols).

4.4 Temporal abstractions for time series

As seen in Section 2.4, an interval-based representation is compulsory in order to apply

temporal pattern mining techniques that take into account the concept of duration for a

given item.

This means that representing time series with a consistent abstraction is a crucial pre-

processing phase for our final goal.

In our analysis we considered three different sets of representations:

1. trend-based segmentation, where each segment is represented either by a monotonic

trend or a flat behavior;

2. level-based segmentation, where each segment contains point belonging to a certain

range of values (e.g. quantiles);

3. Symbolic Aggregate approXimation (SAX), which transforms a time series into a

set of symbols by applying Z-normalization and Piecewise Aggregate Approxima-

tion.

We will describe the first two in the following sections: we actually implemented our

own algorithms as no existing work focused on this kind of approach (we enhanced the

intuitions of [Batal et al., 2016] where these representations are used in an approximate

way).

All the pseudocode is available in the Appendix.

For what concerns SAX representation, we refer the reader again to Sec.2.2.
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Figure 4.6: A time series for the event type MapPeriod in Hadoop dataset.

We originally planned to address two distinct yet similar issues with time series temporal

abstraction techniques:

1. find a ”good” segmentation that transforms a time series into a sequence of interval-

based symbols;

2. find a representation which can be eventually expressed by means of Kleene closures

(thus recognized by the SASE language) for further temporal analysis which focus

on the potentialities of the NFA-based CEP systems.

An example of this last objective is found in Fig.4.6 where one can express the depicted

time series (using SASE [Wu et al., 2006] language) as:

SEQ(MapPeriod+ a[], MapPeriod+ b[])

WHERE avg(a[].value) == 10000 AND avg(b[].value) == 8000

WITHIN 1000 s
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4.4.1 Trend-based segmentation

As discussed in Sec. 1.5, the concept of trend is of common interest in many domains

such as finance or climatology.

We believe that identifying trends can help to detect interesting ”unit blocks” that can

be combined to obtain a complex rule for pattern matching over events.

The problem for a trend-based segmentation of a time series is defined as follows:

Given an event stream (for a specific type in a certain partition), represented

as a time series, segment it by means of trend abstraction, i.e. such that each

segment can be represented by a trend/flat segment.

We label a segment as trend or flat segment according to the following definitions:

Definition 5. Trend-based labels. We say that a trend exists for a sequence of points

X = {x1, x2, ...xn} notably τ(X), if the alternate hypothesis Ha (a monotonic trend

exists) is accepted using a statistical trend test T with a type I error ratio 0 < α < 0.05.

We label it as a trend sequence with a slope/sign (i.e. �increasing� or �decreasing�)

determined by the test if the trend exists, flat otherwise.

The problem thus becomes:

let X = {x1, x2, ...xn} be a sequence of points, represent it using only trend

sequences (increasing or decreasing) and flat sequences.

The main challenge of this task (”Which is the best representation?”) is shown in Fig.4.7,

where we have the same time series represented in two acceptable yet different ways (i.e.

two different outcomes of the algorithms we describe in the following).

Inspired by [Keogh et al., 2001], we developed three different algorithms (with slight mod-

ifications):

1. A Sliding Window approach that grows a segment until the statistical Mann-

Kendall test is rejected; two modifications include a maximum length and a succes-

sive merging operations that merges together adjacent compatible trends.

2. A Bottom-Up algorithm that tries to merge together segments, starting from the

finest segmentation, whenever a trend is detected; variants include a max length
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Figure 4.7: A time series segmented in two different ways (Legend: red=increasing,
blue=decreasing, black=flat).

and a (optimal) greedy approach.

3. A Sliding Window And Bottom-up (SWAB) procedure that combines both

previous flavours by applying a large sliding window and performing bottom-up in

it.

They all have some parameters that needs to be specified by the user: a min/max length

for a trend, the size of the sliding window and the significance value for the test; their

design is flexible for adding any additional constraints (e.g. a desired ”shape” for a trend,

etc).

Nonetheless, the hyperparameter selection is an open problem: existing methods for

Piecewise Linear Approximation focus on minimizing the error produced by a certain

segmentation and Changepoint analysis techniques precisely define a min-optimization

problem using a predefined cost function, whereas in our implementation we do not have

an equivalent measure that allows us to discriminate different results (the p-value can

definitely not be treated as a similarity measure).

Since there are no benchmarks nor other existing techniques for evaluating a trend-

based segmentation, we eventually generated our own synthetic dataset and tested our

algorithms on it.

As our approach is built on some non-parametric assumptions on data (since we use

Mann Kendall test) we reproduced a dataset of time series which are characterized by

non-linear trends: we ”concatenated” together sequences of observations that are either
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flat or represent a monotonic (upward/downward) non-linear trend; the latter is the

following arbitrary ”superlinear” function:

Yi = signi(Xi +Xiarctan(Xi) +
√
Xi + log3Xi) + offseti

where i is the i-th sequence and the sign s is randomly chosen at each step {+1, 0,−1};

offseti represents the offset we add at each step to get an overall continuous signal.

In the end we add a percentage (1%, 5%, 10%) of noise, i.e. a uniform distribution with

zero mean and as standard deviation the empirical one of the overall time series. You can

see a few examples with their segmentation obtained using different methods in Fig.4.11.

All the pseudocode is present in the Appendix.

More precisely, we built three datasets (40 time series of 2000 observations), one for each

of the three different amounts of noise, and we splitted it into two halves: 20 time series

to perform hyperparameter selection, 20 time series to evaluate the best configuration of

each algorithm.

We thus ran the different techniques with different parameters:

• min length w ∈ {7, 10, 20, 50, 100}

• max length7 M ∈ {w, 2w, 3w, 4w, 5w}

• α ∈ {0.01, 0.02, 0.05}

In order to measure the accuracy of each segmentation we defined an error function

based on edit distance: when applying segmentation or building a synthetic signal, we

also label each point depending on the behaviour of the sequence it belongs to (0 if flat,

1 if increasing and -1 if decreasing), thus obtaining for each time series a string of

0 and 1; the error corresponds then to the edit distance between the ground truth, i.e.

the array of labels of the synthetic signal, and the labels obtained using the segmentation.

We took the best configuration for each method in the three scenarios as the one with

the lowest error and we ran again the algorithms on the other half of the three datasets

accordingly to this analysis.

7It corresponds to the size of the sliding window in the SWAB cases.
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The performances of all the algorithms are finally shown in Fig.4.8, Fig.4.9 and Fig.4.10

with each row containing the method and its best configuration: the precision is computed

as

precision = 1− average error

2000

where the average error represents the (average) percentage of misclassified points in a

segmentation of a time series of 2000 points with the relative amount of noise.

We can see that the best method overall is win-max (the ”merging” enhancement of

win-max-merge does not actually affect the precision), with a precision up to 85% in the

noisier scenario; bottom-up-opt-max and SWAB are quite competitive but we noticed that

they struggle to identify flat segments.

In the end, imposing a maximum length for a trend segment proved to be a good idea

for obtaining a good segmentation.

You can see some results in Fig.4.11.

Figure 4.8: The final ranking of the performances of each algorithm on the dataset with
noise=1%.
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Figure 4.9: The final ranking of the performances of each algorithm on the dataset with
noise=5%.

Figure 4.10: The final ranking of the performances of each algorithm on the dataset with
noise=10%.
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Figure 4.11: Different realizations of the best segmentation methods applied to three
different noisy signals.
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4.4.2 Level-based segmentation

Figure 4.12: A time series segmented using level-based abstraction with three levels that
correspond to the three quantiles with probabilities=(0.33, 0.67, 1).

The idea for this kind of segmentation lies in the nature of certain event types (such as

memory consumption or volume of goods), that makes interesting not to focus on the

precise value of a given point but rather on a set of levels (such as ”LOW”, ”MEDIUM”

and ”HIGH”).

A rough definition of the problem of level-based segmentation is the following:

given a sequence X of points and Q+1 levels on the y-axis defined by Q values

(e.g. percentiles), find a segmentation such that each segments contains up to

a tolerance α of outliers chosen by the user, i.e. such that the error computed

(using a customized function) on that segment is less or equal α.

For such goal we developed two simple different algorithms: one based on a sliding window

and another using a bottom-up approach (similarly to the algorithms of previous section).

An example of this kind of segmentation is shown in Fig. 4.12 and the pseudocode can

be found in the Appendix.

4.4.3 Changepoint analysis

As already discussed in Sec. 2.2, the problem of changepoint detection is to estimate the

point(s) at which the statistical properties of a sequence of points change. The traditional

setting is to identify changes in mean or in variance.
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This kind of analysis is actually strictly connected to the problem of the segmentation of

a time series, as these particular points allow to divide a sequence of points into segments,

each characterized by different statistical parameters.

Detecting statistical changes in mean and/or variance is consistent with our final goal of

detecting interesting scenarios in time series and, moreover, they can be easily expressed

by means of SASE language.

However, we did not apply any changepoint analysis for time series segmentation (as

domain knowledge is required to perform model selection) but rather considered it as part

of our future directions which do not focus on frequent pattern mining but statistically

perform pattern and motif discovery in time series.

4.5 Towards CEP rules

So far, the pipeline we developed allows to get consistent partitions of event streams

based on event_type and a set of dimensions and measures ; events that carry continu-

ous information are in turn modeled as time series and abstracted using different kind of

representations.

The next step is therefore to extract interesting patterns in these datasets of time series:

roughly speaking we could consider each partition as a ”transaction” (in the traditional

transactional database setting for pattern mining) and compute the interestingness of a

pattern across all transactions, i.e. partitions.

In the following, we will use the notions of ”intervals” and ”symbols” to refer to the same

concept, i.e. a symbol with duration over an interval as seen in Section. 2.4.

We carried out an exploratory analysis on this data mining technique in order to see if

interesting behaviours (whether normal or abnormal) can be detected by means of pat-

tern mining on interval sequences obtained from properly processing event streams.

This is achieved by first developing a simple mining algorithm and in turn setting up

three basic scenarios where to test this approach.

Lastly, the goal would be to convert some sort of association rules into CEP pattern

expressions.
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4.5.1 An interval-based pattern mining algorithm

In order to apply the pattern mining paradigm discussed previously we developed a very

simple algorithm that is built on the following assumptions:

• Given a sequence of intervals, time gaps between symbols must be taken into ac-

count: intervals should not be correlated with other intervals which are too far away

in time;

• using Allen’s relationships is too much costly: given S symbols and K relationships,

the number of possible existing patterns is K|S|−1
2

.

Keeping these considerations in mind, we finally designed an algorithm based on a sliding

window which can use two different subsets of Allen’s 13 relations: (before, co-occurs)

and (before, overlaps, contains).

Moreover, we allowed the user to specify two different windowing conditions: one based

on a ”step” concept and another based on a ”time window”.

Practically speaking (the pseudocode is provided in the Appendix) the heuristic is the

following: given a partition ordered lexicographically by start, end and symbol, we scan

all the symbols, applying for each of them, say current, a windowing condition in order

to obtain a set of symbols, namely candidates ; we finally build all the possible existing

relations between current and all the possible subsets of the set of candidates.

Given a current symbol curr the two windowing conditions define two different sets of

candidates:

Cstep = {sj ∈ Cstep : sj.index ≤ curr.index + step} (step approach)

Ctime = {sj ∈ Ctime : sj.end ≤ curr.start + limit} (time approach)

Basically with the first approach we consider in our set of candidate symbols the first

n=step events that follow current in the sequence of intervals, whereas with the second

approach all the symbols that do not end after current has ended.



CHAPTER 4. TOWARDS AUTOMATIC EXTRACTION OF COMPLEX RULES 79

Building only existing patterns (and not all the possible relations between symbols) ”re-

duces” the computation cost to 2|S| − 1 patterns for |S| symbols.

4.5.2 Simulation

The following is a series of simulations that we ran in order to validate our approach.

We reproduced streams of events and then applied the entire pipeline: partitioning into

event types (and according to some dimensions), abstracting time series and running the

frequent temporal pattern mining algorithm.

Retail store

This scenario simulates a set of customers in a retail store equipped with RFID sensors8

which can make three different possible actions: buy a product, taking a product and

putting back on the shelf (”indecision”) and shoplift (i.e. taking a product from the shelf

and exiting without passing by the counter).

We thus define three different event types (shelf, counter, exit) and the following

attributes for each of them:

• dimensions : customer_id and product_id

• measures : price, quantity

The actions are represented by a sequence shelf-counter-exit for a normal buying, a

sequence shelf-shelf for indecision and a sequence shelf-exit for shoplifting.

We assigned some probabilities to each action and modeled the occurrence of each event

with a Poisson distribution.

The preliminary phase is to partition by both dimensions, therefore extracting frequent

patterns across all partitions, each of which contains the events relative to a particular

customer and a specific product.

We take into account just the occurrences of the events in this scenario (there is no time

series segmentation) and we prove that partitioning events is useful to detect interesting

situations (either normal or abnormal).

8Similarly to AmazonGo https://www.amazon.com/b?node=16008589011.

https://www.amazon.com/b?node=16008589011
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You can see two different results for the most frequent patterns obtained with both the

”step” (step=2) and the ”window” approach (we used a size of 1.5λ) in Fig.4.14 and

Fig.4.13. We obtained these results by using the following parameters:

• No. products = 10

• No. customers = 5

• No. actions per customer = 100

• Pr(Normal buying) = 0.8

• Pr(Indecision) = 0.1

• Pr(Shoplift) = 0.05

• λ = 1/60 (we modeled the occurrences as described in http://preshing.com/

20111007/how-to-generate-random-timings-for-a-poisson-process/)

N.B: In all the results that are shown, the y-axis is of no interest: plots were produced in

the R environment and the y-value is only used in order to show the events in a friendly

way, i.e. with a proper spacing. The x-axis, instead, correctly shows the time axis.

Figure 4.13: The most frequent pattern for retail store scenario using ”window” approach
and another 3-length patterns that interestingly captures some shoplifts (20 against the
actual 26).

http://preshing.com/20111007/how-to-generate-random-timings-for-a-poisson-process/
http://preshing.com/20111007/how-to-generate-random-timings-for-a-poisson-process/
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Figure 4.14: The top-3 frequent patterns for the retail store scenario using ”step” ap-
proach: you can see that they are all equivalent in terms of meaning as they indicate a
normal buying sequence.
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Stocks

The next scenario has been designed to combine temporal pattern mining with time series

segmentation: we built a set of signals representing stock indexes which are similar to

the synthetic time series that we employed for evaluating trend-based segmentation.

We in fact concatenated sequences of ”unit segments” such that the normal behaviour

would consist of monotonic trends always followed by a flat region, while a ”strange”

behaviour would result in any abrupt changes, i.e. a sequence of two monotonic trends

with opposite slope.

You can see an example of such signals with 4 consecutive strange behaviours highlighted

in red in Fig.4.15.

Figure 4.15: A stock signal with four abrupt changes; the noise was limited to 0.01%.

We do not defined dimensions or measures as each partition practically corresponds to a

signal. We used the following parameters:

• No. stocks ids = 10

• No. observations per time series = 1000

• Pr(Normal behaviour) = 0.8

• Pr(Abrupt change) = 0.2

• λ = 1/60
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• Trend segmentation = win_max_merge (with w = 20, M = 20 and α = 0.01)

The results for the ”step” algorithm (step=2) are shown in Fig. 4.16.

Figure 4.16: The top-3 frequent patterns for the stock scenario using ”step” approach
and an interesting pattern that captures the total number of abrupt changes (20 against
the actual 30).
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Fire detection

In this last scenario we aim to combine level-based segmentation together with interval-

based pattern mining (and, of course, partitioning along dimensions).

We thus simulate a certain numbers of areas where the levels of temperature and humid-

ity are recorded and an additional sensor tells whether there is a fire or not (as in the

examples from [Giatrakos et al., 2017] described in the Section.??).

Therefore we have three different event_type (temperature, humidity, fire) and dif-

ferent areas with several events corresponding to the sensors measures in such areas. We

model the occurrence of the events with a Poisson distribution as in the previous exam-

ples.

The attributes are, for each event:

• dimensions : area and type

• measures : value.

The level-based segmentation is applied on temperature and humidity time series (using

the attribute value) whose values are randomly chosen at each occurrence; precisely, they

are picked from two different uniform distributions depending on the kind of situations

they describe.

Overall we have:

• No. areas = 5

• No. events in each area = 300

• Pr(No fire) = 0.9; this corresponds to values of temperature in [1,50] and humidity

in [1,10]

• Pr(Fire) = 0.1; this corresponds to values of temperature in [51,100] and humidity

in [11,20]

• λ = 1/60

• Level segmentation = window with 5 levels corresponding to the quantiles of prob-

abilities (0.2, 0.4, 0.6, 0.8, 1); the 5th level contains exactly those values of temper-

ature and humidity present in ”fire:yes” situations
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Figure 4.17: A level-segmentation for both temperature and humidity values. The fifth
level corresponds to those values that trigger fire.

You can see an example of the segmentation in Fig.4.17 and some results of the pattern

mining procedure in Fig.4.18.

Figure 4.18: Some results from the fire detection scenario: they all suggest useful as-
sociation rules which capture the relation between fire and levels of temperature and
humidity.

4.5.3 Some remarks on the temporal pattern mining algorithm

So far, we have seen that combining temporal pattern mining with time series and seg-

mentation allows to extract potential correlations between data, at least in some simple

synthetic scenarios.

Nonetheless, the results also showed several critical aspects that we will resume in the

following.
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Firstly, when scanning the dataset to extract patterns we observe that the number of

patterns has an exponential blow-up: given N symbols in a particular window (built

using the two criteria of our algorithm), there are (2N − 1) existing patterns that are

built, one for each non-empty subset. This clearly does not scale when considering large

sequences of intervals.

Moreover, we can argue that the representation clearly affects the final results: e.g. in

the second scenario (Stocks) if no flat segments are detected by the trend-segmentation

algorithm than it is harder to recognize the normal behaviour. Therefore, how to choose

the best representation (and the best parameters) for a given dataset?

Answering to this question implies a preliminary exploratory analysis of the data which

does not facilitate at all the path to a completely automatic overall procedure, where no

user intervention is needed.

Concerning the pattern mining algorithm, a choice must be made on the criterion and its

parameter: different sizes of the resulting window of candidates may severely affect the

final results.

This choice again depends on the preliminary exploration of the data that we suggested

beforehand.

Moving on, the concept of frequency may not be always relevant to detect interest-

ing correlations as some patterns usually show some ”semantics” redundancy: in the

first scenario different frequent patterns actually refer to the same underlying behaviour;

moreover, some segmentations may produce representations where the ”normality” is not

frequent as there can be a few yet very large interval-based symbols that describe this

behaviour.

To this extent, different criteria should be further analyzed such as the concept of set

coverage (tiles) or the interestingness based on entropy [Lee et al., 2014].



Chapter 5

Conclusion and future directions

As stated in the preface, the intention of this work was to pave the way towards a com-

pletely automatic rules learning tool for Complex Event Processing (CEP), by means of

a brand new approach that combined time series and temporal pattern analysis.

As large-scale event-based distributed systems are more and more gaining adoption in

many application domains (from finance to health-care) we believe that the issue of manu-

ally writing complex rules for pattern matching over streams of events is a huge limitation

for developing proactive and reactive solutions in distributed architectures.

We have preliminary discussed how the main obstacle of such goal resides in the ex-

pressiveness of many Event Processing Languages. This, in fact, opens up a vast set of

correlations that can be described by Complex Event Processing engines when processing

flows of information items.

As a matter of fact, we proved that applying a simple brute-force search procedure to

generate all the possible existing rules that match a given input stream is not feasible,

even when considering simple patterns such as sequences of events.

The main contribution of this work, is a complete pipeline that operates in a off-line

manner, i.e. by processing a finite batch of events at a time. However, all the algorithms

of each module work in a streaming fashion and the approach can be easily extended to

a real-time scenario where streams are processed on-the-fly.

87
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The first step consists of partitioning the events along some consistent attributes (dimen-

sions) and successively model some other attributes values (measures) as (multivariate)

time series. In a simplistic scenario we assumed that the user is always capable of pro-

viding such context along with the data.

In this way, we can apply time series segmentation and combine several different temporal

abstractions with a temporal pattern mining algorithm.

To this extent, we developed two ”customized” kinds of segmentations for time series,

one based on the concept of trend and the other on the concept of level (”on the Y-axis”).

Hyperparameter tuning is also performed on the former by using some synthetic datasets.

We eventually designed our own temporal pattern mining algorithm for the final stage of

the pipeline and we tested it against some synthetic scenarios where the entire approach

proved to be promising.

The entire software of our work can be found on:

https://github.com/Piru93/learning-cep-rules-from-multivariate-time-series.

In the future, we plan to further investigate several open issues that we encountered dur-

ing our work as well as employing our technique against some real-world massive datasets.

As a first future direction, we aim to look into the different time series segmentations

as to be able to perform automatically model (and hyperparameter) selection and pick

always the best representation for the sake of the later phase of pattern analysis.

As a matter of fact, different representations can lead to different interpretations of the

data.

Moving on, as our results showed to be promising enough to extract association rules

that can be converted to Complex Event Processing rules, we plan to apply our temporal

pattern mining technique to a real world dataset (such as the Hadoop’s one): this requires

a preliminary exploratory analysis of the data as to recover ground truths and, especially,

to tune the parameters for both segmentation and pattern mining phases.

There is currently a need to understand how both ”step” and ”time window” parameters

affect the final outcome of the mining algorithm; also the concept of frequency may not be

https://github.com/Piru93/learning-cep-rules-from-multivariate-time-series
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always the most feasible measure when trying to extract insights and different measures

should be further investigated (such as tiles or entropy).

On the other hand, we also intent to consider some completely different approaches that

also apply on time series models: changepoint analysis and motif and pattern discovery

in multivariate time series.

The former can be exploited to detect interesting situations, i.e. changepoints, and extract

correlations. The latter is a statistical approach to detect patterns in multivariate time

series by considering all the components, i.e. univariate time series, at once.

They seem both promising contexts where our approach of converting insight in CEP

rules by means of an Event Processing Language seem feasible.



Appendix

Pseudocode of the algorithms

Trend-based segmentation

Sliding window

Algorithm 1: Sliding window algorithm for trend segmentation.

Data: A sequence of points X, a minimum length W and a significance α.

Result: A list of segments where a monotonic trend is present.

trends= ∅
L =length(X)

i = 1

while i ≤ L−W + 1 do
j = i+W − 1

if MannKendall(X[i : j]).pvalue ≤ α then

repeat
j = j + 1

until j > L || MannKendall(X[i : j]).pvalue > α;

a = i

i = j

j = j − 1

b = j

trends.add(a,b,MannKendall(X[a : b])

end

end

return(trends)

90
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Algorithm 2: Sliding window algorithm with maximum size for trend segmentation.

Data: A sequence of points X, a minimum length W , a maximum length M > W

and a significance α.

Result: A list of segments where a monotonic trend is present.

trends= ∅
L =length(X)

i = 1

while i ≤ L−W + 1 do
j = i+W − 1

if MannKendall(X[i : j]).pvalue ≤ α then

repeat
j = j + 1

until j > L || (j − i) > M || MannKendall(X[i : j]).pvalue > α;

a = i

i = j

j = j − 1

b = j

trends.add(a,b,MannKendall(X[a : b])

end

end

return(trends)
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Algorithm 3: Sliding window algorithm with maximum size and merging for trend

segmentation.

Data: A sequence of points X, a minimum length W , a maximum length M > W

and a significance α.

Result: A list of segments where a monotonic trend is present.

trends= ∅
L =length(X)

i = 1

while i ≤ L−W + 1 do
j = i+W − 1

if MannKendall(X[i : j]).pvalue ≤ α then

repeat
j = j + 1

until j > L || (j − i) > M || MannKendall(X[i : j]).pvalue > α;

a = i

i = j

j = j − 1

b = j

trends.add(a,b,MannKendall(X[a : b])

end

end

while no more merges are possible do
i = 1

while i < trends.length() do

if adjacent(trends[i],trends[i+ 1]) && accept(trends[i],trends[i+ 1]) then
merge(trends[i],trends[i+ 1])

end

i = i+ 1
end

end

return(trends)
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Bottom-up

Algorithm 4: Bottom-up algorithm for trend segmentation.

Data: A sequence of points X, a minimum length W and a significance α.

Result: A list of segments where a monotonic trend is present.

trends= ∅
flag= 0

i = 1

S =make segments(X,W )

repeat
flag= 1

i = 1

while i <length(S) do
s = S[i].append(S[i+ 1])

pvalue = MannKendall(s).pvalue

if pvalue ≤ α then
flag = 0

merge(S[i], S[i+ 1])

end

i = i+ 1
end

until flag == 1;

foreach s in S do
test = MannKendall(s)

if test.pvalue ≤ α then
trends.add(s.start, s.end, test)

end

end

return(trends)
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Algorithm 5: Bottom-up algorithm with best merge for trend segmentation.

Data: A sequence of points X, a minimum length W and a significance α.

Result: A list of segments where a monotonic trend is present.

trends= ∅
flag= 0

i = 1

S =make segments(X,W )

repeat
flag= 1

i = 1

min=MAX INTEGER VALUE

while i <length(S) do
s = S[i].append(S[i+ 1])

pvalue = MannKendall(s).pvalue

if pvalue ≤ α && pvalue < min then
min=MannKendall(s).pvalue

index= i

f lag = 0

end

i = i+ 1
end

if flag==0 then
merge(S[index], S[index+1])

end

until flag == 1;

foreach s in S do
test = MannKendall(s)

if test.pvalue ≤ α then
trends.add(s.start, s.end, test)

end

end

return(trends)



CHAPTER 5. CONCLUSION AND FUTURE DIRECTIONS 95

Algorithm 6: Bottom-up algorithm with best merge and maximum size for trend

segmentation.

Data: A sequence of points X, a minimum length W , a maximum size M > W

and a significance α.

Result: A list of segments where a monotonic trend is present.

trends= ∅
flag= 0

i = 1

S =make segments(X,W )

repeat
flag= 1

i = 1

min=MAX INTEGER VALUE

while i <length(S) do
s = S[i].append(S[i+ 1])

if length(s) ≤M then
pvalue = MannKendall(s).pvalue

else
pvalue = 1

if pvalue ≤ α && pvalue < min then
min=MannKendall(s).pvalue

index= i

f lag = 0

end

i = i+ 1
end

if flag==0 then
merge(S[index], S[index+1])

end

until flag == 1;

foreach s in S do
test = MannKendall(s)

if test.pvalue ≤ α then
trends.add(s.start, s.end, test)

end

end

return(trends)
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Hybrid

Algorithm 7: Hybrid algorithm (SWAB) for trend segmentation.

Data: A sequence of points X, a minimum length M , a window size W ∼ 5M and

a significance α.

Result: A list of segments where a monotonic trend is present.

trends= ∅
L =length(X)

i = 1

while i ≤ L−W + 1 do
j = i+W − 1

t =bottom up(X[i : j]).first()

if MannKendall(t).pvalue ≤ α then
trends.add(t.start,t.end,MannKendall(X[t.start : t.end])

end

i =t.end+1
end

return(trends)

Algorithm 8: Hybrid algorithm (SWAB) with merge for trend segmentation.

Data: A sequence of points X, a minimum length M , a window size W ∼ 5M and

a significance α.

Result: A list of segments where a monotonic trend is present.

trends= ∅
L =length(X)

i = 1

while i ≤ L−W + 1 do
j = i+W − 1

t =bottom up(X[i : j]).first()

if MannKendall(t).pvalue ≤ α then
trends.add(t.start,t.end,MannKendall(X[t.start : t.end])

end

i =t.end+1
end

while no more merges are possible do
i = 1

while i < trends.length() do

if adjacent(trends[i],trends[i+ 1]) && accept(trends[i],trends[i+ 1]) then
merge(trends[i],trends[i+ 1])

end

i = i+ 1
end

end

return(trends)
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Level-based segmentation

Algorithm 9: Bottom up algorithm for level based segmentation.

Data: A sequence of points X, a number of levels L and a tolerance α.

Result: A list of labeled segments.

S = ∅
levels = make levels(X,L)

flag = 0

i = 1

repeat
flag = 1

i = 1

min = MAX INTEGER VALUE

while i <length(X) do
s = X[i].append(X[i+ 1])

error = compute error(s,levels)

if error ≤ α && error < min then
min = error

index= i

f lag = 0

end

i = i+ 1
end

if flag == 0 then
s = merge(X[index], X[index+1])

S.add(s)

end

until flag == 1;

foreach s in S do
s.level = compute level(s, levels)

end

if s.end6= length(X) then
s = X[length(X)]

s.level = compute level(s, levels)

S.add(s)

end

return(S)
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Algorithm 10: Sliding window algorithm for level based segmentation.

Data: A sequence of points X, a number of levels L and a tolerance α.

Result: A list of labeled segments.

S = ∅
levels = make levels(X,L)

i = 1

while i ≤ length(X) do
j = i

repeat
j = j + 1

if j > length(X) then
error = MAX INTEGER VALUE

else
error = compute error(X[i : j], levels)

until error > α;

a = i

b = j − 1

S.add(X[a : b], compute level(X[a : b], level)

i = j

end

return(S)
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Synthetic dataset for trend-based segmentation evaluation

Algorithm 11: Building a synthetic signal for trend-segmentation evaluation.

Data: A maximum number of breakpoints B, a length L and a noise N .

Result: A list of symbols.

Y =array()

repeat
bp =random breakpoints(1, B, L)

until min distance between breakpoints is 10;

S =make segments(Y, bp, L)

foreach s in S do
sign =random(−1, 0,+1)

s = sign∗non linear (s)

end

std =empirical std(S)

Y = S+uniform errors(mean= 0,std= N ∗ std)

return(S)
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Interval-based pattern mining

Algorithm 12: A temporal pattern mining algorithm.

Data: A sequence of intervals I, a windowing condition cond and the size of the

window win.

Result: A list of temporal patterns with their frequency.

P = ∅
i = 1

while i ≤length(I) do
current = I[i]

if cond == ”time” then
candidates = build candidates time(I, i, current.start + win)

else
candidates = build candidates step(I, i, i+ win)

P .add(build patterns(current, candidates)

i = i+ 1
end

return(P )

Algorithm 13: Building candidates set using ”step”.

Data: A sequence of intervals I, a current index and a step.

Result: A list of symbols.

i = index+ 1

C = ∅
while i ≤length(I)− step do

C.add(I[i])

end

return(C)

Algorithm 14: Building candidates set using ”time”.

Data: A sequence of intervals I, a current index and a time.

Result: A list of symbols.

i = index+ 1

C = ∅
while i ≤length(I) do

if I[i].end> time then
break

end

C.add(I[i])

end

return(C)
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OS metrics in Ganglia

The following table describes the metrics that were monitored using Ganglia’s daemon

gmond in each of the nodes of the Hadoop’s architecture we analyzed in Section.??

(taken from their official GitHub page https://github.com/ganglia/monitor-core/

blob/master/ganglia.pod).

Metric Name Description

boottime System boot timestamp

bytes in Number of bytes in per second

bytes out Number of bytes out per second

cpu aidle Percent of time since boot idle CPU

cpu idle Percent CPU idle

cpu nice Percent CPU nice

cpu num Number of CPUs

cpu speed Speed in MHz of CPU

cpu system Percent CPU system

cpu user Percent CPU user

disk free Total free disk space

disk total Total available disk space

load fifteen Fifteen minute load average

load five Five minute load average

load one One minute load average

mem buffers Amount of buffered memory

mem cached Amount of cached memory

mem free Amount of available memory

mem shared Amount of shared memory

mem sreclaimable Amount of slab reclaimable memory

mem total Amount of available memory

part max used Maximum percent used for all partitions

pkts in Packets in per second

pkts out Packets out per second

proc run Total number of running processes

proc total Total number of processes

swap free Amount of available swap memory

swap total Total amount of swap memory

https://github.com/ganglia/monitor-core/blob/master/ganglia.pod
https://github.com/ganglia/monitor-core/blob/master/ganglia.pod
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