
POLITECNICO DI TORINO
DIPARTIMENTO DI AUTOMATICA E INFORMATICA

Corso di Laurea Magistrale in Computer Engineering, Embedded Systems

Tesi di Laurea Magistrale

NEW TECHNIQUES FOR REDUCING THE DURATION
OF RECONFIGURABLE SCAN NETWORK TEST

Relatore
Prof. MATTEO SONZA REORDA

Correlatore
Dott. RICCARDO CANTORO

Candidato
LUIGI SAN PAOLO

ANNO ACCADEMICO 2017-2018

Dedicato alle persone speciali della mia vita

Acknowledgements

I would like to acknowledge all the people who made the accomplishment of this thesis
possible by guiding, supporting and encouraging me. My thanks goes especially to the
professor Matteo Sonza Reorda, advisor and Dr. Riccardo Cantoro, co-advisor for their
availability. I also acknowledge all the other people I have worked with in the Politecnico
di Torino. Finally, I would also like to thank Valentina, Simona, my family and my friends
for their constant encouragement.

Luigi San Paolo

3

La ricerca è ciò che faccio quando
non so che cosa sto facendo.

Wernher von Braun

Abstract

The growing complexity of electronic devices has created the need for effective access
to registers (called instruments) for non-functional purposes (e.g., test, debug, calibration).
This need has driven to the development of new solutions, such as the new IEEE 1687 stan-
dard. This solution allows access to embedded instruments through a Reconfigurable Scan
Network, composed of a series of reconfigurable scan chains, possibly using the Boundary
Scan interface. To detect the possible permanent faults in these chains, different proposed
approaches automatically generate a sequence of input stimuli capable of detecting such
faults. The common approach to detect faults is to perform a sequence of test sessions on
the IEEE 1687 network. Each session consists of a configuration phase and a test phase.
Furthermore, all faults can be covered if the network configurations sequence is selected
correctly. The cost to test the network depends on the duration of each session, i.e., of each
configuration and test phase. This document discusses the problem of generating a suitable
test sequence for a generic Reconfigurable Scan Network and proposes an optimization
method based on evolutionary computation with related diagnostics. Experiments on stan-
dard networks are also reported.

7

8

Contents

Introduction 9

1 Background 11
1.1 Scan Network . 12
1.2 Reconfigurable Scan Networks . 15
1.3 Test of RSNs . 17
1.4 Fault Model for Reconfigurable Modules 20

1.4.1 SIBs . 22
1.4.2 ScanMuxes . 24

1.5 Depth-First Solution . 26
1.6 Diagnostic analysis . 28

2 Evolutionary Algorithm 31
2.1 Generation tool . 33
2.2 Evaluation tool . 35
2.3 Optimization Techniques . 40

3 Diagnosis 41
3.1 Diagnostic analysis . 41
3.2 Diagnostic Sequence . 42

4 Experimental Results 45
4.1 Framework . 46
4.2 ITC’16 Benchmark networks . 47

4.2.1 N17D3 . 51
4.2.2 N32D6 . 53
4.2.3 Mingle . 54

Conclusions 55

9

Bibliography 57

Appendix 63
.1 N17D3 . 63
.2 N32D6 . 64
.3 Mingle . 66
.4 TreeBalanced . 69

7

8

Introduction

The modern Integrated Circuits include within them various support functions for testing,
such as Built-In Self-Test modules, and sensors capable of measuring parameters such as
current, temperature and delays. These features allow to monitor the operation of the in-
tegrated circuit and the registers to set up and calibrate the operation of specific modules.
To simplify the access to all these resources, called instruments, the IEEE 1687 standard
[1] was introduced. This standard is the evolution of the IEEE 1149.1 standard, in fact it
is based on the scan chains that can also be divided and configured in the most appropriate
way. This new approach allows a flexible choice of the best trade-off between different
parameters, such as access time or area. This new standard [2] also describes the ways
to design configurable networks within the circuit, so in general, we can refer to them as
Reconfigurable Scan Networks (RSNs). As a result, the new generation of devices will
include Reconfigurable Scan Networks accessible via the Test Access Port (TAP) interface
and will support serial access to internal instruments, i.e. Test Data Registers (TDRs). For
each access, the networks must be configured to select the subset of instruments to be ac-
cessed, and then it will be possible to read / write in series values from / to these selected
instruments. In this way, it is possible quickly and efficiently to access the instruments.
There are already CAD tools, which automate the introduction and the use of RSNs [3].
The problem of testing the scan chains introduced by the IEEE 1149.1 standard has been
addressed by various studies [4] [5] [6]. With the new standard, one must face the prob-
lem of testing the hardware of the Reconfigurable Scan Networks, verifying any defects.
Common Reconfigurable Scan Networks are composed of chains of flip flops interlaced
with special configurable modules, such as Segment Insertion Bits (SIBs) and ScanMuxes.
These special modules allow us to divide the network into segments that can be connected
in series or in parallel, changing the accessible elements. An approach to check for pos-
sible permanent faults affecting a standard scan chain is to move a sequence of alternated
0s and 1s within the scan chain and to check that the same sequence occurs in the out-
put of the chain [4] [5] [6]. The complexity of testing a Reconfigurable Scan Network is
higher than the simple scan chain, because it is necessary to verify if the network can be
configured correctly and if it works as expected, i.e. the expected sub-network is made
accessible. Specifically, the test must check whether each special module in the network is

9

working properly. In a previous work, a general technique was proposed to automatically
generate a test sequence for the detection of permanent faults for an IEEE 1687 network
[7]. This approach provided the techniques for testing configurable components, such as
SIBs and ScanMuxes. Moreover, the tests generated are independent on the specific im-
plementation of network elements and does not require any modification in the hardware.
The generation algorithms were based on heuristic calculations that are easily applicable
to relatively large Reconfigurable Scan Networks. In another study, this approach has been
improved to minimize the duration of the resulting test sequence by modeling the problem
on graphs [8]. Furthermore, an optimal algorithm for small Reconfigurable Scan Networks
and sub-optimal solutions for real cases has been described. In this thesis, a new method is
proposed, capable of handling even large and complex Reconfigurable Scan Networks and
that can produce a sequence of tests to detect any permanent failures on the reconfigurable
modules, but whose duration is generally lower than the duration of the test sequences gen-
erated by the heuristic solutions previously proposed [7]. The proposed method is based
on evolutionary computation and provides a good compromise between the required com-
putational cost and the quality of the solution in terms of test duration. The experimental
results are made on the set of benchmark networks described in an article [9] to report the
effectiveness of the proposed approach. The paper is organized as follows. In Chapter I
we describe the key features of the IEEE 1687 networks and a previously proposed sub-
optimal algorithm. In Chapter II we propose the techniques to generate an optimized test
sequence for a Reconfigurable Scan Network. The diagnostic method is presented in the
Chapter III. Chapter IV reports some experimental results, and Chapter V finally draws
some conclusions.

10

Chapter 1

Background

The Reconfigurable Scan Networks have been a research topic for many years. With the
introduction of the IEEE 1687 standard, several problems have arisen concerning design,
validation, testing of these structures and their use in the field. In an article, the time re-
quired to access all the instruments in the circuit was evaluated in several possible scenarios
[6]. The goal of several jobs is to automate the design of the reconfigurable IEEE Std 1687
scanning networks. In a study, an approach has been proposed that can generate networks
composed of multiple SIBs that optimize parameters such as area overhead, total access
time or average access time [10]. Analysis of different scenarios were presented, such as
the position of the configuration bit with respect to the configurable module, in addition to a
formal analysis for verification [11]. A formal analysis of the reconfigurable scan networks
based on modeling in satisfiability problems (SAT) has been described in a document [12]
[13]. In the same document, an analysis of modeling, verification, and modeling issues has
been addressed, but without considering the minimization of testing time. The same studies
have presented a formal verification methodology for the safety of the reconfigurable scan
networks [9], which allow to verify the access protection at the logical level by unbounded
model checking. Pattern retargeting is a problem that involves finding the operations nec-
essary to transport the bits of data requested from / to the instrument registers [14]. One
way to define specific instrument operations is provided by IEEE Std 1687. The specific
problem of configuring the network so that the time to access that segment is minimized
has been addressed by several works [14] [15]. The test of the reconfigurable scan networks
has been analyzed in some previous works, focusing on maximizing the coverage of struc-
tural fault [16]. The main objective of this document is to propose a new method able to
manage large and complex Reconfigurable Scan Networks and able to produce a sequence
of tests capable of detecting any permanent fault affecting reconfigurable modules, but with
a test time lower than that of test sequences generated by heuristic solutions proposed in
another article [7]. The following is an overview of the Scan Network and key elements in
Reconfigurable Scan Networks, such as ScanMux and SIB, followed by a discussion of the

11

related fault model and the problem of testing Reconfigurable Network Scan.

1.1 Scan Network
A scan network as introduced by IEEE Std 1149.1 [2], is a suitable on-chip circuitry that
provide controllability and observability and thus allow the testing of devices on a board,
even when their pin accessibility is very low. On each chip a chain of scan cells is suitably
inserted between the pins and the logic. Scan network supports two types of test: the test
of the interconnections between components, the test of single components. Test of the
chip can be performed by shifting in the values to be applied to the circuit, latching the
values of the circuit, shifting out the circuit outputs. Test of the interconnections between
circuit A and B can be performed by scanning to circuit A the values to be applied to the
interconnections; latching the values received by circuit B, scanning out these values. The
Scan Chain can work in two different operating modes:

• normal mode: Scan Chain allow the normal data flow.

• test mode: scan in values; apply values to the core logic or to the output signals;
capture values from the core logic or from the input signals; scan out values.

Figure 1.1: Example IEEE Std 1149.1.

12

The scan network can be accessed via the TAP Test Access Port, which introduces
some pins like Test Clock to sample the input signals, Test Mode Select to set up test
circuitry behavior, Test Data Input to serially provide data and instructions to test circuitry,
Test Data Output to serially send to the output the values in the internal registers. In general,
a cell of the Scan Chain is composed of two Flip Flops:

• Capture.

• Update.

Figure 1.2: Scan cell.

13

A typical Scan Cell supports 4 operating modes depending on the value of Mode and
Shift/Load:

• normal mode: the cell is transparent.

• capture mode: the value on DataIn is latched in the chain by the application of a
clock pulse.

• scan mode: cells are connected in a chain through the SerialIn and SerialOut pins;
the first cell is connected to TDI, the last to TDO;

• update mode: the value of QA is written in QB by applying a pulse to Update;
DataOut is forced to QB.

Figure 1.3: Detailed Scan cell.

14

1.2 Reconfigurable Scan Networks

Post-silicon validation, test, debug, and diagnosis require efficient access to on-chip in-
strumentation. Reconfigurable Scan Networks, as proposed by IEEE Std 1687-2014 [1]
and IEEE Std 1149.1-2013 [2], are often hierarchical and may have complex structural and
functional dependencies. Reconfigurable Scan Network of Std 1687, also referred to as IJ-
TAG (Internal JTAG), have introduced the concept of reconfigurable scan chains. This kind
of chains are separated in several segments, which are combined with special elements, as
reconfigurable modules. Each segment can include one or more instruments. The interface
with an instrument is the Test Data Register (TDR), which can include capture logic to
read and update logic to write. The active path connected between the scan input and scan
output pins of the reconfigurable scan chain at a given time and connect several segments
together according to the configuration of reconfigurable modules. Since the complexity of
these reconfigurable scan chains can be high (i.e., many possible active paths may exist),
the standards refer to them as networks. Each Test Data Register can be constructed as a
chain of multiple segments, some of which are always scanned while others, called exclud-
able segments and selectable segments, are scanned only in particular configuration. One
of the most important structures the standard defines is called Segment Insertion Bit (SIB),
which represents the concept to an excludable segment. The excludable segment of a Test
Data Register is controlled by a configuration module (Segment Insertion Bit) composed
of one bit, which eventually excludes the segment from the active path of the network, and
is followed by a switching element controlled by the configuration module. The selectable
segments of a TDR are segments, even of different lengths, which are connected to a selec-
tion circuit implemented by means of scan multiplexer (ScanMux) modules. According to
the value of the configuration module composed of one or more bits, only one segment at a
time is selected as the scanout for the set. When a SIB is said to be asserted, the segment it
controls is included in the active path; otherwise, it is said to be de-asserted. Each segment
controlled by a SIB or a ScanMux can be a complex network itself. To access an instru-
ment in a reconfigurable scan network, a scan-in bit sequence must be generated according
to the current state and structure of the network. In order to bring a reconfigurable scan
network into a certain network configuration, vectors have to be shifted through the scan
input port. Then, an update operation moves the vector from the shift flip-flops (CAP cells)
to the update latches (UPD cells) of the configuration module. This operation changes the
active path of the network. Since a reconfigurable scan network can have a hierarchical
structure, the operation of making an instrument, placed deep into the network, part of the
active path may require multiple configuration phases. As an example, a simple IEEE Std
1687 scanning network shown in Fig. 1.2 is used. The sample network is accessible via
an IEEE Std 1149 TAP interface and consists of a ScanMux that selects two segments: the
first with a single TDR and the other with two SIBs that control two TDRs. The T DR0,
T DR1, T DR2 are respectively 2, 8 and 8 cells long. Each reconfigurable module, i.e., SIBs

15

and the ScanMux, are associated with a configuration bit (cb1, cb2 and cb3) and are high-
lighted in gray. The table 1.1 shows all the possible configurations of the network, which
depend on the configuration of the SIBs and ScanMux. The table uses ‘A’ to indicate that
the SIB is in the asserted position, ‘D’ to indicate de-asserted, 0 and 1 for the two possible
configurations of the ScanMux. During system reset, a known configuration is selected
that is determined by the status of the reconfigurable modules. In the example network, the
reset configuration is 0, D, D.

Figure 1.4: Example Reconfigurable Scan Network.

ScanMux SIB1 SIB2 Path length Active Path
0 D D 3 T DI 7→ T DR0 7→ cb3 7→ T DO
0 D A 3 T DI 7→ T DR0 7→ cb3 7→ T DO
0 A D 3 T DI 7→ T DR0 7→ cb3 7→ T DO
0 A A 3 T DI 7→ T DR0 7→ cb3 7→ T DO
1 D D 3 T DI 7→ cb1 7→ cb2 7→ cb3 7→ T DO
1 D A 11 T DI 7→ cb1 7→ T DR2 7→ cb2 7→ cb3 7→ T DO
1 A D 11 T DI 7→ T DR1 7→ cb1 7→ cb2 7→ cb3 7→ T DO
1 A A 19 T DI 7→ T DR1 7→ cb1 7→ T DR2 7→ cb2 7→ cb3 7→ T DO

Table 1.1: Possible configurations for the network in the example.

16

1.3 Test of RSNs
A reconfigurable scan network consists of several reconfigurable modules that allow access
to different parts of the network. The active path is decided by the value stored within
each configurable module. In the example, one ScanMux and two SIBs are present in the
network. The ScanMux select the path to activate between the path with T DR0 and the
path with SIB1 and SIB2. The SIB instead decides whether to include the respective TDRs
in the main path. It is important to note that in the case where the path with the SIBs is not
part of the active path, then it is not possible to configure the two SIBs with the respective
cells. In this thesis, each element of the network is associate to the most specific segment
possible. In the example, SIB2 controls the T DR2 segment and, the configuration bit of
SIB2, i.e. cb2, is situated in the segment of SIB2. The same applies to cb3 that configures
the ScanMux, in fact the ScanMux controls the T DR0 segment and the SIBs segment,
instead cb3 is in the upper segment, i.e. the one with the ScanMux. Each element has a
depth, which indicates the hierarchical level of its position in the network. For example,
the T DR1 and T DR2 segments have depth 3, T DR3, SIB1, SIB1, cb1, cb2 have depth 2,
instead cb3 and ScanMux has depth 1 because it is placed at the top level. In general,
the depth of a configuration bit is the depth of the configurable module decremented by
one. The length of the active path is equal to the sum of the lengths of all the elements
included in that path, counting TDR segments and configurable module controlling. A
generic configuration of the network (i.e., the value of all configuration bits) is referred to
as Ci. The reset configuration is indicated with the term C0. Each configuration Ci can be
associated to a record, which contains an identifier and the following information:

• the configuration bit values for each reconfigurable module Mi (e.g., asserted/de-
asserted for SIBs, an input identifier for ScanMuxes);

• the active path length;

• the list of possible faults (each referred to as Fi) affecting the network, that can be
detected by performing test operations while the network is configured with Ci.

The test operation checks whether the path inserted between the scan input and scan output
pins is the same at the expected path using test vectors, i.e., whether the right instruments
can be accessed during the normal operation. The test operations associated to a generic
test vector tvi correspond to:

1. a sequence of length equal to the active path is shifted in TDI, forcing it to follow the
active path and to go out on the other end;

2. scan output pins (e.g., TDO) are monitored: possible faults can be detected observing
sequence output that matches the expected one or not. Indeed, in the case a fault is

17

present, the expected output sequence will appear on scan output pins after a wrong
number of clock cycles because the active path has changed due to a fault.

A change in the configuration of a network is defined as a network Transition through one
or more configuration vectors. The operations associated to a generic configuration vector
cvi correspond to:

1. as many shift operations how many the active path length, to store the next configu-
ration in the CAP flip-flops of the configuration bits of the reconfigurable modules.

2. an update operation to apply the next configuration to the network, so change the
configuration of modules and the active path.

It is possible to pass from a configuration Ci to a configuration C j directly or through others
configuration vectors. When it requires a single configuration vector, then C j is a neighbor
configuration of Ci and the transition cost in terms of clock cycles is equal to the active
path length of Ci increased by one for the update operation. it is important to note that if
C j is neighbor Ci then it is not true that Ci is neighbor C j, i.e. the neighborhood relation is
not reversible. For example, let us consider the network in Fig. 1.2, whose configurations
are listed in Table 1.1. In this network, the configuration bits are placed in the same seg-
ment of the related reconfigurable module (i.e., right after each SIB and ScanMux), then
the network can be moved from the configuration C1 = 1AA to C2 = 0DD by shifting a
single vector. On the contrary, when the network is in C2, two vectors are needed to reach
C1, passing through the intermediate configuration C3 = 1DD. The neighborhood Zi of a
certain configuration Ci is obtained by generating all permutations on the reconfigurable
modules’ configuration bits included in the active path, so they can be changed by shifting
a single vector in the network with configuration Ci. In the previous example, the network
is configured in C1 and all configuration bits are part of the active path, thus all other con-
figurations are part of the neighborhood of C1. On the contrary, the configuration C2 only
shows the element ScanMux, while SIB1 and SIB2 are not present in the active path; thus,
the neighborhood of C2 is obtained by changing the configuration of ScanMux, i.e., it only
includes C3. A generic session, indicated with Si, includes configuration and test vectors, it
is composed of two phases [17]:

1. a configuration phase (C f g), corresponding to a network transition, in which a certain
number of configuration vectors are applied, until the target configuration is reached;

2. a test phase (T st), in which test vectors are applied. There are different sequences of
test vectors in the test phase and depends on the kind of defects to be tested.

Considering the generic session Si, we denote by t i
c the duration (in clock cycles) of the

configuration phase C f gi and by t i
t the duration of the test phase T sti. The configuration

18

time is the time needed to apply all the configuration vectors of the session. Each vector
requires a certain time to be shifted in, plus a few clock cycles to update it into the UPD
cells of the corresponding path, this time is denoted as JTAG protocol overhead [4] and
it is implementation dependent. Each vector may have a different length because the ac-
tive path changes after each update operation. The duration of the test phase (t i

t) depends
on the active path length l of the target configuration, i.e., the configuration after the last
configuration vector. The total test duration of N sessions for a network is thus given by

T = Tc +Tt =
N

∑
i=1

t i
c +

N

∑
i=1

t i
t (1.1)

where Tc is the sum of clock cycles of each Cn fi and Tt is the sum of the clock cycles of
each T sti.

19

1.4 Fault Model for Reconfigurable Modules
Since physical faults are often difficult to deal with, logical faults are often used, which are
an abstract model. The way a logical fault models a physical defect is called fault model.
The most commonly used fault model is the single-line stuck-at. Reconfigurable modules
are used to include segments into the scan path or to exclude them from the scan path. In
the event of faults in the reconfigurable modules, the network configuration may become
different than expected or unknown, so the network becomes unusable. A functional fault
model is used to make the faults independent of the implementation. Thus, a given fault
in a reconfigurable module forces the network into a different configuration than expected
one. A fault Fi selects an active path different from the expected one without fault, this
path activated by the fault is called faulty path. For example, in Fig. 1.2 the SIB1 can
have a fault that does not allow access to the T DR1 segment, so it can be blocked in the
de-asserted configuration, regardless of the value of the configuration bit. The same can
happen to the ScanMux which always selects the same segment regardless of the configura-
tion. By testing these functional faults, Stuck-at faults in the shift flip-flops (CAP cells) of
the configuration modules and the faults affecting the update logic of reconfigurable mod-
ules are implicitly considered as detected. Moreover, these faults also cover those errors
on the reset logic with the effect of blocking the module at its reset value, but other faults
such as the ineffective reset are not considered. A proper test for functional faults of a
reconfigurable module is composed of the following operations:

1. Excite the fault to create a different scenario from the one without fault. Then, con-
figure the network so that the active path includes the faulty element. In the case of
reconfigurable modules, the excited faults change the length of the active path.

2. A proper sequence is shifted into the network, and the expected path length is com-
pared against the length of the active path. In particular, the comparison is performed
by counting at the number of clock cycles required by the input sequence to appear
on the scan output pin.

For example, if the ScanMux of Fig 1.2 has a functional fault that always selects the seg-
ment at input 1, then it is possible to excite the fault with a configuration that forces input
0 of the ScanMux. Table 1.1 shows all these possible configurations and the length of the
selected faulty paths. It is possible to notice that the first configuration of the table is not
able to detect the fault, because the faulty path length is equal to the length of the active
path. Therefore, you can select one of the remaining three configurations for the test. When
all faulty paths have the same length as the active path, then there is no configuration that
can test the fault, so the fault is untestable.

Afterwards, the basic concepts presented are applied in a test procedure for SIB and
ScanMux modules. In the test procedure, configuration vectors and test vectors are used.

20

ScanMux SIB1 SIB2
Path length

Faulty
Path length

Active
Faulty Path

0 D D 3 3 T DI 7→ cb1 7→ cb2 7→ cb3 7→ T DO
0 D A 11 3 T DI 7→ cb1 7→ T DR2 7→ cb2 7→ cb3 7→ T DO
0 A D 11 3 T DI 7→ T DR1 7→ cb1 7→ cb2 7→ cb3 7→ T DO
0 A A 19 3 T DI 7→ T DR1 7→ cb1 7→ T DR2 7→ cb2 7→ cb3 7→ T DO

Table 1.2: Effect of the functional fault ScanMux always-selects-1, when selecting different
active paths.

For the test phase we include an initialization vector that forces the network to a known
value, because each test vector must determine if the active path is long as expected path.
As initialization vector, a sequence of 0s equal to the longest path in the network can be
used, because an fault involving a reconfigurable module determines an faulty path, whose
length is generally different from the expected path length. Therefore, the length of the
longest path in the network, or the maximum length between all the defective paths and the
intended path, are suitable values to be used before any test phase. In case of the longest
path, each t i

t contribution in Eq. 1.3 includes this length. In the example of Fig. 1.2, an
initialization vector composed of 19 0s can be used before each test phase.

21

1.4.1 SIBs
Given a SIB, the test procedure for testing both the SIB stuck at asserted (stuck-at-A) and
de-asserted (stuck-at-D) faults is the following:

1. configure the network, so that the target SIB becomes part of the active path;

2. shift in an initialization vector whose length is equal to the one of the longest path in
the network;

3. shift in a test vector as long as the expected path length;

4. check whether the expected sequence appears on the output of the path;

5. reconfigure the network, so that the SIB is part of the active path and at the opposite
configuration;

6. shift in an initialization vector whose length is equal to the one of the longest path in
the network;

7. shift in a test vector whose length is equal to the one of the expected path length;

8. check whether the expected sequence appears on the output of the path.

As an example, to test SIB2 of network in Fig 1.2, a sequence of alternated 0s and 1s is
used as test vectors, with two consecutive 1s as sequence terminator. Until the sequence
terminator is shifted out, the output pin is monitored to calculate the active path length and
to compare it against the expected one. Assuming as reset configuration, the de-assertion
of the SIBs and the input 0 of ScanMux, the test of SIB2 in details:

1. Reset – active path (AP): T DI-T DR0-cb3-T DO

2. Apply configuration vector 1:

• Shift in 001 (length = 3)

• Update – AP: T DI-cb1-cb2-cb3-T DO

3. Apply initialization vector 1:

• Shift in 0000000000000000000 (length = 19)

4. Apply test vector 1:

• Shift in 010 (length = 3)

• Shift in 11 (length = 2)

22

5. Check test vector 1, while applying configuration vector 2:

• Shift in 011 (length = 3)

• Update – AP: T DI-cb1-T DR2-cb2-cb3-T DO

6. Apply initialization vector 2:

• Shift in 0000000000000000000 (length = 19)

7. Apply test vector 2:

• Shift in 01010101010 (length = 11)

• Shift in 11 (length = 2)

8. Check test vector 2, shifting 11 bits or at maximum 19 bits (the longest path) plus 2
bits (the length of the sequence terminator) to comes out the last sequence terminator
from the output pin.

23

1.4.2 ScanMuxes
The test procedure to scan multiplexers is the same procedure as the SIBs. The basic idea is
to configure the ScanMux in order to reach a certain configuration, thus activating a certain
path. The faulty path of a SIB is always longer or shorter than the active path, instead this
is not the case of faulty paths of ScanMuxes because the length of the faulty path may vary
depending on the configuration of other modules in the active path. Moreover, the faulty
paths can be more than one as in a 4-to-1 multiplexer. In order for the fault to be testable,
the length of each faulty path has to be different than the active path. In details, the test
procedure for a testable scan multiplexer fault is the following: 1apply a certain number of
configuration vectors, until:

1. the multiplexer is part of the active path and set at a certain configuration, and

2. the other modules are configured such that the faulty paths have different length than
the active path;

3. shift in an initialization vector as long as the longest path in the network;

4. shift in a test vector as long as the expected path length;

5. check whether the expected sequence appears on the output of the path;

6. repeat the previous steps for all the multiplexer’s configurations.

From Fig 1.2, to test the fault stuck-at 0 of ScanMux, assuming as reset configuration,
the de-assertion of the SIBs and the input 0 of ScanMux:

1. Reset – active path (AP): T DI-T DR0-cb3-T DO

2. Apply test vector 1:

• Shift in 010 (length = 3)

• Shift in 11 (length = 2)

3. Check test vector 1, while applying configuration vector 1:

• Shift in 001 (length = 3)

• Update – AP: T DI-cb1-cb2-cb3-T DO

4. Apply configuration vector 2:

• Shift in 011 (length = 3) (or 111, 101)

• Update – AP: T DI-cb1-T DR2-cb2-cb3-T DO

24

5. Apply initialization vector 1:

• Shift in 0000000000000000000 (length = 19)

6. Apply test vector 2:

• Shift in 01010101010 (length = 11)

• Shift in 11 (length = 2)

7. Check test vector 2, shifting 11 bits or at maximum 19 bits (the longest path) plus 2
bits (the length of the sequence terminator) to comes out the last sequence terminator
from the output pin

25

1.5 Depth-First Solution

Testing a non-reconfigurable scan chain for permanent faults has been a widely studied
subject for years. There are several techniques, for example shifting a sequence of 0s and
1s through the scan chain, such as the sequence “00110011” that applies all possible tran-
sitions in two cycles [4]. However, Reconfigurable Scan Networks are more complicated
to test. In fact, it is necessary to test the TDR flip-flops, which must be tested to check if
they can move the values correctly when included in the active path, and to test reconfig-
urable modules, such as IEEE Std 1687 SIBs and ScanMuxes, to check if they can move
the network in all its possible configurations. A technique based on the depth-first search
of a topological representation of a network has been studied [17]. This technique checks
that the capability of a network to change its configuration is not corrupted by a fault.
Therefore, this technique finds a sub-optimal solution in terms of test time that tests all the
reconfigurable modules, such as SIBs and ScanMuxes, and all the configuration bits associ-
ated to these modules. The main motivation of this work is to find sub optimal solutions in
terms of test time using evolutionary computation, starting also from sub optimal solutions
obtained from the depth-first algorithm. The topology graph is a simplified representation
of the scan network in a graph that provides a topological view. Each vertex represents
an element of the scan network, such as TDRs, SIBs, ScanMuxes and configuration bits,
while the edges indicates the connections between elements. The vertices also include ele-
ments associated to the input and output pins of the scan network, e.g., TDI and TDO. the
hierarchical depth of each element is annotated in the corresponding vertex. The topology
graph of the scan network of Fig.1.2 is shown in Fig.1.5. In the example, the reconfigurable
modules’ vertices are highlighted in grey. For each vertex, the depth d is also reported in
Fig.1.5.

Figure 1.5: Topology graph of the example network.

26

To test a Reconfigurable Scan Network, it is necessary to reach a certain number of
configurations, each one able to include in the active path a subset of the registers and the
reconfigurable modules. After reaching the target configuration, the active path is tested,
and the scan output values are monitored. Initially the network is set to its initial config-
uration, call reset configuration. The overall test procedure requires a certain amount of
sessions. For each session, the target configuration of the previous session becomes the
current configuration. During the test phase, the active path includes a certain number of
reconfigurable modules to be tested. In this phase, an initialization vector composed of
as many 0s as the longest path length is applied, followed by a test vector composed of
an alternate sequence of 0s and 1s. The depth-first approach applies a sequence of test
sessions by traversing the topology graph. At each step of the graph traversal, a subset of
reconfigurable modules of the current active path is selected. In the set of selected mod-
ules, the modules, capable of forcing untested faults and located at maximum depth, are
configured in the opposite way. All new configurations are applied together by means of
a single configuration pattern or multiple configuration patterns. A test pattern is applied
when the new configuration is reached, i.e., the configuration in which all excited faults
become observable- Finally, the process is repeated until all faults are covered. As an ex-
ample, the depth-first strategy on the graph in Fig. 1.5 produces the following test sequence
after reset:

• Session 1

1. Configuration 1,D,D

2. Test: SIB1 stuck-at-A, SIB2 stuck-at-A

• Session 2

1. Configuration 1,A,A

2. Test: SIB1 stuck-at-D, SIB2 stuck-at-D, SMux stuck-at-0

• Session 3

1. Configuration 0,A,A

2. Test: SMux stuck-at-1

The work of this thesis uses the Depth-First algorithm to improve the performance
of the evolutionary computation, since it allows to have a starting point of a sub-optimal
solution with complete fault coverage.

27

1.6 Diagnostic analysis
The approach [7] described in this chapter for testing IEEE 1687 networks is based on the
two-step iteration:

1. Network configuration to establish a certain path between the serial input of the net-
work and the serial output

2. Shift a specific sequence within the network and observe the serial output.

The test session is defined as the combination of these two steps. The test sequence
is defined as the sequence of test sessions to reach a given fault coverage. In an article [18]
the extension of this approach to diagnosis is presented. The article describes a method to
generate a sequence of stimuli that allows to identify the faulty element in a faulty network.
This approach uses the fault model described above. The fundamental point is how to iden-
tify the sequence of sessions able to distinguish the largest possible number of faults pairs.
The approach uses a database, called the fault dictionary [19], in which the behavior of the
network is reported for every possible fault when a certain set of stimuli is applied, called
the diagnostic sequence. The stimuli for the diagnosis can force the network to reach a dif-
ferent state for every possible fault in the ideal case. In case of a state incorrect, to identify
the fault that caused the incorrect behavior it is necessary to search the state incorrect in
the database. Furthermore, it is possible to identify those pairs of undistinguished faults by
means of some diagnostic analysis of a test sequence. Given a configurable module in a
network, and a test session in a test sequence, in which the module belongs to the session
path and is configured in a given state, the faulty path is defined as the path that would be
selected if the module would be in the opposite state with respect to the expected one [18].
Note that the length of each faulty path is affected by the configuration bits of the special
modules, then by the network state in the previous session. The approach [18] is based on
the identification of the distinguishable and not-distinguishable pairs of faults, calculating
the behavior of the network for every possible fault. In this paper we only consider the
faults of the reconfigurable modules. To determine which pairs of faults in SIBs and in
ScanMuxes are distinguished by a given test session, it is important to note that there is at
least one session for which the circuit fails, if there is a faulty reconfigurable module. If we
include the faulted SIB in the active path, the configuration reached will be affected by the
faulted SIB, so the active path will be different than expected. If the fault-free and faulty
paths have different lengths, inserting a vector test in the network we can observe that the
output will appear after a different number of clock cycles than expected. Depending on
the difference in the cycles, the special faulty module can be identified. In practice, for
each session it is necessary to determine the length of the faulty path, i.e. the path selected
in case of a faulty reconfigurable module. For each session Si, the Session Fault Set (SFSi)
indicates the set of all the faults connected to the SIB and ScanMux of the active path and
excited by the session.

28

The following properties [18] are described:

• given a session, all the faults of the (SFSi) are distinguished from all the faults that
do not belong to the session path;

• given a session, for each fault pair within the (SFSi), the faults can be distinguished
one from the other if the two faulty paths have different lengths.

29

30

Chapter 2

Evolutionary Algorithm

The approach proposed aimes at minimizing the test time while guaranteeing that all testable
faults are covered. The approach is based on evolutionary computation. An Evolutionary
algorithm is a subset of evolutionary computation, a generic population-based metaheuris-
tic optimization algorithm. An evolutionary algorithm uses mechanisms inspired by bio-
logical evolution, such as reproduction, mutation, recombination, and selection. Candidate
solutions to the optimization problem play the role of individuals in a population, and the
fitness function determines the quality of the solutions. Evolution of the population then
takes place after the repeated application of the above operators. Evolutionary algorithms
often perform well approximating solutions to all types of problems because they ideally
do not make any assumption about the underlying fitness landscape. Techniques from evo-
lutionary algorithms applied to the modeling of biological evolution are generally limited
to explorations of microevolutionary processes and planning models based upon cellular
processes. In most real applications of Evolutionary algorithms, computational complexity
is a prohibiting factor. In fact, this computational complexity is due to fitness function eval-
uation. Fitness approximation is one of the solutions to overcome this difficulty. However,
seemingly simple Evolutionary algorithm can solve often complex problems; therefore,
there may be no direct link between algorithm complexity and problem complexity. In Evo-
lutionary algorithm, a possible solution to the optimization task is called an individual and
a set of individuals is called a population. Given an initial population, the individuals are
recombined by the application of different operations and new individuals are generated.
A subset of individuals is selected in this new set according to their fitness to determine the
next population. This algorithm is divided into two parts: the generation of individuals and
the evaluation of individuals.

31

The approach in the problem of Reconfigurable Scan Network test requires the implemen-
tation of the following features:

• A tool able to produce individuals are through mechanisms that ape both sexual and
asexual reproduction. (GENERATION)

• A tool able to produce a list of configuration vectors that move the Reconfigurable
Scan Network from the generic configuration source to the specific configuration
destination and able to produce the list of faults that can be excited when the Recon-
figurable Scan Network is moved to the generic configuration. (EVALUATION)

• A sub-optimal solution to the problem, i.e., a set of configurations able to excite all
possible faults in the Reconfigurable Scan Network.

32

2.1 Generation tool
In this case, the individual is a sequence of test patterns composed by bit vectors. As tool
for generation, the µGP3 (micro genetic programming) [20] is used. Given a task, it first
fosters a set of random solutions, then iteratively refines and enhance them. Its heuristic
algorithm uses the result of the evaluations, together with some internal structural informa-
tion, to efficiently explore the search space, and eventually to produce the optimal solution.
A population of different solutions is considered in each step of the search process, and
new individuals are generated through mechanisms that ape both sexual and asexual re-
production. In case of Reconfigurable Scan Network, the individuals are sequences of test
vectors, so patterns of bit. The evolutionary computation uses two main forces: Recom-
bination and mutation create the necessary diversity and thereby facilitate novelty, while
selection acts as a force increasing quality. The Generation tool use different operation,
like one Point Crossover, two Point Crossover, single Parameter Alteration Mutation, in-
sertion Mutation, removal Mutation, replacement Mutation, alteration Mutation, subgraph
Removal Mutation, subgraph Replacement Mutation, random Walk Mutation.

• Crossover is a genetic operator used to vary the programming of a chromosome or
chromosomes from one generation to the next. It is analogous to reproduction and
biological crossover, upon which genetic algorithms are based. Crossover is a pro-
cess of taking more than one parent solution and producing a child solution from
them. In a one-point crossover operation of patterns bit, a single crossover point on
both parents’ organism bits is selected. All data beyond that point in either organism
is swapped between the two parent organisms. The resulting organisms are the chil-
dren. Two-point crossover calls for two points to be selected on the parent organism
bits. Everything between the two points is swapped between the parent organisms,
rendering two child organisms.

• Mutation is a genetic operator used to maintain genetic diversity from one genera-
tion of a population of genetic algorithm chromosomes to the next. It is analogous to
biological mutation. Mutation alters one or more gene values in a chromosome from
its initial state. The purpose of mutation is preserving and introducing diversity. Mu-
tation should allow the algorithm to avoid local minima by preventing the population
of chromosomes from becoming too similar to each other, thus slowing or even stop-
ping evolution. The table shows examples of crossover and mutation operations on
bit patterns.

33

The table 2.1 shows an example of one-point, two-point crossover and mutation of bit
patterns.

OnePointCrossover TwoPointCrossover Mutation
Parents 00011|1111000 000|11111|1000 0001111|1|1000

01010|0101010 010|10010|1010
Children 00011|0101010 000|10010|1000 0001111|0|1000

01010|1111000 010|11111|1010

Table 2.1: Example evolutionary operations.

34

2.2 Evaluation tool

In Evolutionary algorithm, a fitness function is a particular type of objective function that
is used to summarise, as a single figure of merit, how close a given design solution is
to achieving the set aims. For configurable scan networks, the individuals are sequences
of test vectors which may have adjacent configurations of network or may need multiple
configurations of network between each pair of test vectors. So, fitness functions must be
able to produce a list of configuration vectors that move the Reconfigurable Scan Network
from the generic configuration source to the specific configuration destination and must
be able to produce an evaluation for a given individual. The fitness is composed by two
parameters, the first is the fault coverage and the second is the reciprocal of the total cost in
terms of clock cycles of the test time and configuration time. Moreover, given a sequence
of test patterns the Evaluation tool determines the configuration patterns of minimum cost
in terms of clock cycles between each pair of test patterns, i.e. creates the sequence of
configuration and test patterns from the initial individual, and computes the fault coverage
and the total cost, i.e. the fitness.
Let's consider a simple Reconfigurable Scan Network example, which includes five instru-
ments accessible through the TAP port, reading or writing from/to the relevant Test Data
Registers (from T DR1 to T DR5). The network includes three SIBs and a ScanMux, as
shown in Fig. 2.1; each of these modules can be configured to allow access to a given
subset of TDRs.

Figure 2.1: Example of IEEE 1687 Reconfigurable Scan Network.

35

All the possible configurations of this network are shown in the table 2.2, they depend on
how the SIB and ScanMux have been configured. The sequence of bits to configure the
network is called the configuration vector and is referred to as cvi. It is possible to access
a subset of TDRs after reaching a certain configuration. The subset of accessible TDRs is
the active path.

Configuration SIB1 SIB2 SIB3 ScanMux Length Active Path
C0 D D D 0 2 -
C1 D D D 1 2 -
C4 D A D 0 2 -
C5 D A D 1 2 -
C2 D D A 0 15 T DR5

C3 D D A 1 15 T DR5

C6 D A A 0 15 T DR5

C7 D A A 1 15 T DR5

C8 A D D 0 9 T DR1

C9 A D D 1 9 T DR1

C10 A D A 0 22 T DR1 7→ T DR5

C11 A D A 1 22 T DR1 7→ T DR5

C12 A A D 0 22 T DR1 7→ T DR2 7→ T DR3

C13 A A D 1 23 T DR1 7→ T DR2 7→ T DR4

C14 A A A 0 35 T DR1 7→ T DR2 7→ T DR3 7→ T DR5

C15 A A A 1 36 T DR1 7→ T DR2 7→ T DR4 7→ T DR5

Table 2.2: Possible configurations for the network of Fig. 2.1.

Then, a list of configurations is generated by the evolutionary engine. The test session is
composed by applying a transition function to generate intermediate configuration patterns
for each configuration in the list, i.e. move the network from a configuration Ci in the list to
Ci+1. Initially, the Transition function is applied between the reset configuration C0 and the
first configuration in the list if it is not equal to C0. After each transition to a configuration
in the list, a test pattern is applied, and the fault coverage is updated by calculating the faults
achieved with that transition. Furthermore, the total test time is obtained from the sum of
the configuration phase time to apply the generated configuration vectors plus the test phase
time for all test vectors. Considering the network in the figure with reset configuration C0, a
possible solution consists in applying a test vector in each of the following configurations:
C0,C10,C12,C13.

36

Each test vector that is shifter in the network is made as follows:

• as many 0s as the longest path length, i.e., 36 bits in the example network;

• an alternated sequence 0101. . . , as long as the length of the active path currently
selected;

• two consecutive 1s (or two consecutive 0s) as the sequence terminator;

• only for the last test vector, a sequence as long as the length of the active currently
selected (values being shifted in are not important).

Configuration Faults excited
C0 SIB1-A SIB3-A
C1 SIB1-A SIB3-A
C4 SIB1-A SIB3-A
C5 SIB1-A SIB3-A
C2 SIB1-A SIB3-D
C3 SIB1-A SIB3-D
C6 SIB1-A SIB3-D
C7 SIB1-A SIB3-D
C8 SIB1-D SIB2-A SIB3-A
C9 SIB1-D SIB2-A SIB3-A
C10 SIB1-D SIB2-A SIB3-D
C11 SIB1-D SIB2-A SIB3-D
C12 SIB1-D SIB2-D SIB3-A ScanMux-1
C13 SIB1-D SIB2-D SIB3-A ScanMux-0
C14 SIB1-D SIB2-D SIB3-D ScanMux-1
C15 SIB1-D SIB2-D SIB3-D ScanMux-0

Table 2.3: List of faults excited by each configuration for the network of Fig. 2.1.

All network faults can be excited by these configurations, as indicated in the list of faults
excited by each configuration (Table 2.3).

37

The vectors corresponding to this list of configurations is composed as follows:

1. tv1 in C0 (shift of 36+2+2 bits)

2. cv1 from C0 to C10 (shift of 2 bits, then update)

3. tv2 in C10 (shift of 36+22+2 bits)

4. cv2 from C10 to C12 (shift of 22 bits, then update)

5. tv3 in C12 (shift of 36+22+2 bits)

6. cv3 from C12 to C13 (shift of 22 bits, then update)

7. tv4 in C13 (shift of 36+23+2+23 bits).

If to move the TAP controller moves from shift to update and vice-versa has a cost of 5 clock
cycles, the test session described is performed in 325 clock cycles. Note that the order of
the configurations in the list is important because the transition from one configuration to
another generates different vectors. Considering the previous configurations in a different
order: C0,C10,C13,C12. In this case, the list of vectors composing the test session is the
following:

1. tv1 in C0 (shift of 36+2+2 bits)

2. cv1 from C0 to C10 (shift of 2 bits, then update)

3. tv2 in C10 (shift of 36+22+2 bits)

4. cv2 from C10 to C12 (shift of 22 bits, then update)

5. cv3 from C12 to C13 (shift of 22 bits, then update)

6. tv3 in C13 (shift of 36+23+2 bits).

7. cv4 from C13 to C12 (shift of 23 bits, then update)

8. tv4 in C12 (shift of 36+22+2+22 bits)

This test session has the fault coverage as the previous session, but with a longer duration
(357 clock cycles). Furthermore, the C12 configuration is visited twice before applying a
test vector (tv4).

38

The table 2.4 shows an example of the Evaluation tool applied to a simple network, in which
the first column represents an individual composed by tree test vectors and the second
column represents the output of tool, i.e. the sequence of test vectors and configuration
vectors with fault coverage and total cost.

Individual Transition Evaluation
000000000000000 [T] 000000000000000 [T] (102) Configuration patterns: 4
111100001110000 [T] 111100001110000 [U] (165) Test patterns: 3
111111111111111 [T] 111100001110000 [T] (165) Configuration cost: 747

111110001110000 [U] (179) Test cost: 2068
111111001111000 [U] (281) Total cost: 2815
111111111111111 [U] (332) Fault coverage: 0.83870965
111111111111111 [T] (332) Total JTAG overhead: 35

Table 2.4: Example Evaluation function.

39

2.3 Optimization Techniques
An important factor that influences performance is the initial population. It is possible to
use various methods for the starting population for example to generate random individuals.
However, starting from individuals with complete fault coverage improves performance. A
technique can be to use patterns resulting from sub-optimal algorithms such as a depth-first
approach or a breadth-first approach. In this paper, we use three methods to characterize
the initial population:

• individuals include random configurations;

• individuals may include one or more configurations generated by the depth-first ap-
proach;

• the initial population includes an individual with the suboptimal solution of depth-
first approach.

40

Chapter 3

Diagnosis

The approach used to diagnose the reconfigurable modules of Reconfigurable Scan Net-
works is based on transforming a the test sequence into a diagnostic sequence. The test
sequence has the task of exercising all possible faults, instead the diagnostic sequence has
the task of identifying the fault that causes the manifested failure. In this diagnostic work
only the faults of the reconfigurable modules such as SIBs and ScanMuxes are considered.
The following sections describe the diagnostic analysis, to identify undistinguished faults,
and the diagnostic sequence generation approach.

3.1 Diagnostic analysis

As written above, to determine which pairs of faults in SIBs and in ScanMuxes are distin-
guished by a given test session, it is important to note that there is at least one session for
which the circuit fails, if there is a faulty reconfigurable module. If we include the faulted
SIB in the active path, the configuration reached will be affected by the faulted SIB, so the
active path will be different than expected. If the fault-free and faulty paths have different
lengths, inserting a vector test in the network we can observe that the output will appear
after a different number of clock cycles than expected. Depending on the difference in the
cycles, the special faulty module can be identified. In practice, for each session it is nec-
essary to determine the length of the faulty path, i.e. the path selected in case of a faulty
reconfigurable module. The approach used to generate the diagnostic sequence is based on
the propagation of the fault detected in the test sequence from a given configuration up to
the test pattern for each session, so the objective of the diagnostic analysis is to calculate
for each configuration pattern which faults are distinguished, and which are not. So, the
idea of the diagnostic analysis applied to each session is extended to each vector configu-
ration. Given a session composed of N configuration vector and a vector test, each applied
network configuration can achieve different faulty configurations, based on possible faults.

41

Thus, in the approach described in the next section, diagnostic analysis is applied for each
configuration pattern.

3.2 Diagnostic Sequence
The method for the generation of diagnostic sequence from a test sequence is based on
the propagation of possible fault identified by a given network configuration in the test
sequence until the test pattern for each session. Therefore, undistinguished faults may be
present at each configuration step. The main idea to deal with undistinguished faults is to
perform an exhaustive search of the configurations space in order to reach distinguishable
configurations in the presence of such faults. Therefore, from a certain configuration it is
possible to reach faulty configurations due to faults, if these configurations are not distin-
guishable, i.e. they have equal path length, then it is possible to apply a method that allows
forcing the network from these faulty configurations indistinguishable from distinguishable
faulty configurations, when possible. Given a sequence of 3 configurations C1, C2, C3:

1. calculate all the possible faulty configurations (C2Fi) by the transition of the network
from C1 to C2.

2. calculate all the possible faulty configurations (C3Fi) by the transition of the network
from C2 to C3.

3. propagate the faults in the faulty configurations (C2Fi) to C3:

(a) for each faulty configuration C2Fi, determine the configuration reached C3F p
i in

the forced transition a C3.

(b) Apply the diagnostic analysis among {C3F p
i } ∪ {C3Fi}.

4. if there are undistinguishable faults U by the diagnostic analysis, then find a di-
agnostic pattern that allows to propagate the undistinguishable faults from C2Fi in
distinguishable faulty configurations C3F p

i (D):

(a) create diagnostic pattern of maximum length among the lengths in {C3F p
i } ∪

{C3}, composed of fixed bits (C3; C3F p
i (D)) and mobile bits (C3F p

i (U))

(b) perform an exhaustive search of the diagnostic pattern that allows to propagate
the undistinguishable faults from C2Fi in distinguishable faulty configurations
C3F p

i (D)∗

At the end of a session, it is possible that indistinguishable faults remained because the
procedure described above did not find any solution. In this case, then it is possible to ex-
tend the propagation of these faults to the next session, only if the faults are distinguishable

42

from the fault-free path. Therefore, at the end of the session, if there are undistinguishable
faults among them but distinguishable from the fault-free path then the faults are further
propagated to the next session. In the next session, it is not necessary to apply a diagnostic
analysis among the possible faults of the session and those propagated in the session be-
cause the latter showed an undistinguishable failure in the test of the previous session, i.e.
a length different from the fault-free path and the distinguishable faulty-path. However, it
is important to apply diagnostic analysis between the faults propagated in sessions. Given
the sequence of configuration and test vectors C1, C2, C3, T3, C4, C5, T5, such as in the Fig.
3.2 :

• apply the diagnostic pattern generation method described above to the first session
(C1-T3).

• output distinguishable fault (green nodes).

• if there are undistinguishable faults (blue nodes) between {C3F p
i } ∪ {C3Fi}, but

distinguishable from the fault-free configuration, then propagate these faulty config-
urations to the next session (C4-T5).

• apply the diagnostic pattern generation method, considering the faults propagated
from the previous session as a separate set from the new faulty configurations calcu-
lated and propagated.

Figure 3.1: Example diagnostic method.

43

44

Chapter 4

Experimental Results

The effectiveness in terms of test duration of the proposed algorithms has been evaluated
with an in-house tool on the ITC’16 benchmarks of IEEE Std 1687 Reconfigurable Scan
Networks [9]. Moreover, additional networks have been used for the test. The Evolution-
ary algorithm has been compared against the depth-first search algorithms [7]. For exper-
iments, a server equipped with a dual Intel Xeon CPU E5-2680 v3 and 256 GB of RAM
was used. Each benchmark network has been tested using Evolutionary Algorithm and
sub-optimal approaches, depth-first. The experiments have been parallelized using up to 8
cores of the server. The number of random individual has been setup to 200, the number of
genetic operation has been setup to 120, and the steady state equal to 500 generations. The
activated genetic operations were: insertion, replacement, removal, alteration, swap, one-
point precise/imprecise crossover, two-point precise/imprecise crossover and invert-over
[21]. The test was performed with different approaches to improve performance in terms
of time and results. Three approaches have been used for initial population:

• individuals of initial population generate random;

• individuals of initial population generate with chromosomes of the sub-optimal so-
lution of the depth-first algorithm;

• individuals of initial population generate random, but with an individual equal to the
sub-optimal solution of the depth-first algorithm.

The last two approaches improve performance because they allow first to reach a generation
with at least one individual with complete fault coverage, as in the second case, or allow to
have at least one individual with complete fault coverage in the first generation, as in the
third approach, compared to the random case.

45

4.1 Framework
The implemented framework connects the evolutionary engine µGP [20] and a prototype
evaluator. The µGP has the task to generate and to combine the individuals. The Evaluation
tool, written in Java, includes the ICL Tools Software library and it is able to read the
network described in ICL format and others formats such as xml. The tool represents
different configurations in states to be tested or to be reached, each with its own active
path length. Furthermore, it is able to perform the transition function, i.e., to calculate
the configuration path from a source configuration to a destination configuration with the
lowest cost. It computes the fault coverage and the total test cost in terms of clock cycles.
For diagnostics, the evaluator is able to apply a diagnosis analysis to identify the faulty
distinguishable configurations reached by a given configuration and to force the network,
in transition, into a distinguishable configuration in the case of fault. The engine µGP
and the evaluator communicate through a script in the Linux environment. Specifically,
the evolutionary engine generates the initial population based on a specific model and the
Evaluator reads each individual of the population, evaluates it and generates the fitness,
i.e., the fault coverage and the total test cost. Finally, the evolutionary engine creates a new
generation through the combinations (mutation, crossover. . .) of individuals with the best
ratings and the process is repeated.

46

4.2 ITC’16 Benchmark networks
The key characteristics of the ITC’16 benchmark networks are detailed in Table 4.1. For
each network, the table reports first the number of SIBs and ScanMuxes. The fourth column
refers to the number of configuration bits of SIBs and ScanMuxes. The column Max depth
indicates the maximum hierarchical depth of each network (for SIB-based networks this
value equals to the maximum number of nested SIBs). Finally, the column Longest path
reports the maximum possible number of scan cells on active path, while Total scan cells
is the sum of the lengths of all scan registers in each network. In the experiments, the cost
for a configuration pattern has been set to the active path length plus the JTAG protocol
overhead (to move from shift to update). The cost for a test pattern has been set to the sum
of the following contributions:

• the JTAG protocol overhead (to move from update to shift), which has been set to 5;

• the longest path length (initialization vector);

• the active path length plus two (a sequence of alternated 0s and 1s as long as the
active path followed by two consecutive 1s).

Network SIB ScanMux Config. bits Max depth Longest path Total scan cells
Mingle 10 3 13 4 171 270

TreeBalanced 43 3 48 7 5,219 5,581

TreeFlatEX 57 3 62 5 5,100 5,195

TreeUnbalanced 28 - 28 11 42,630 42,630

a586710 - 32 32 4 42,381 42,410

p22810 270 - 270 2 30,356 30,356

p34392 - 96 96 4 27,899 27,990

p93791 - 596 596 4 100,709 101,291

q12710 27 - 27 2 26,185 26,185

t512505 159 - 159 2 77,005 77,005

N17D3 7 8 15 4 372 462

N32D6 13 10 23 4 84,039 96,158

N73D14 29 17 46 12 190,526 218,869

N132D4 39 40 79 5 2,555 2,991

NE600P150 207 194 401 78 23,423 28,250

NE1200P430 381 430 811 127 88,471 108,148

Table 4.1: Characteristics of the ITC’16 benchmark networks

47

Experimental results on ITC’16 benchmarks are shown in Table 4.2. For Evolutionary
algorithm, the column 2 reports the method of generating the initial population:

A. individuals include random configurations;

B. individuals may include one or more configurations generated by the depth-first ap-
proach;

C. the initial population includes an individual with the suboptimal solution of depth-
first approach.

Moreover, the table shows the total number of configuration patterns (column 3) and the
total number of test patterns (column 4). The table also indicates the number of clock
cycles required (column 5) by configuration patterns and test patterns. Finally, the time
execution (column 6), the total number of individuals (column 7) and the total number of
eras (column 8) are reported. All modeled faults have been covered in each experiment
(i.e., test coverage is 100%).

Network M Config
patterns

Test
patterns

Total time
[cc]

Exe
time [h]

#inds #eras

Mingle B 6 7 2,078 8 24293 711

TreeBalanced C 7 8 69,369 9 43,914 500

TreeFlatEX C 16 6 55,776 8 51793 638

TreeUnbalanced B 17 12 1,042,450 5 31,329 476

a586710 B 5 5 298,241 8 31,996 624

p22810 C 2 3 152,937 9 21,958 500

p34392 B 5 5 196,505 7 45,623 565

p93791 C 4 5 708,878 23 29,932 500

q12710 C 2 3 131,022 5 20,199 500

t512505 C 2 3 386,024 8 21,279 500

N17D3 A 4 5 3,851 5 164,972 1738

N32D6 A 6 5 893,017 5 79,229 965

N73D14 B 13 13 5,967,137 3 54,183 964

N132D4 B 5 6 37,257 3 61,764 869

NE600P150 C 78 79 3,726,726 12 45,842 500

NE1200P430 C 127 128 21,515,705 50 48,920 500

Table 4.2: Experimental results

48

The table 4.3 shows the results compared with the First-Depth approach for benchmark
networks. In particular, for each algorithm the number of pattern configurations and the
number of test pattern are indicated in column 3 and 4. The configuration time and test
time are reported with the total time in column 5, 6 and 7. Finally, the last column shows
the rate between the two algorithms. The evolutionary approach was able to reduce the
test time in 9 out of 16 RSN. However, the test time of the other networks has not been
improved. In the case of large networks such as NE1200P430, an improvement has not been
achieved, because the search space has not been correctly explored with the evolutionary
parameters used due to the size. In the remaining non-improved cases, probably the depth-
first approach has reached an optimal global solution because the Reconfigurable Scan
Network has a simple structure in terms of hierarchical depth as for p22810, q12710, and
t512505 networks with depth 2, hence, there is no further space for improving the result. In
the improved cases, for method A a reduction of about 7% of the test time was noted, for
method B up to about 9% and for method C up to about 22%. These results show that by
gradually adding some knowledge of the problem to the evolution, the final solutions can
be improved. In the following subsections some experimental results are reported.

49

Network Algorithm
Configuration

patterns
Test

patterns
Configuration

time [cc]
Test time

[cc]
Total time

[cc]
Ratio

Mingle
Depth-first

Evolutionary

6

6

7

7

362

362

1,920

1,716

2,281

2,078

-

0,911

TreeBalanced
Depth-first

Evolutionary

7

7

8

8

8,580

8,580

60,789

60,789

69,369

69,369

-

1

TreeFlatEX
Depth-first

Evolutionary

5

16

6

6

15,263

11,648

56,078

44,123

71,341

55,776

-

0,782

TreeUnbalanced
Depth-first

Evolutionary

11

17

12

12

237,475

274,816

834,324

767,634

1,071,799

1,042,450

-

0,973

a586710
Depth-first

Evolutionary

4

5

5

5

1,471

43,150

298,153

255,091

299,624

298,241

-

0,995

p228120
Depth-first

Evolutionary

2

2

3

3

573

573

152,364

152,364

152,937

152,937

-

1

p34392
Depth-first

Evolutionary

4

5

5

5

697

28,314

196,005

168,191

196,702

196,505

-

0.999

p93791
Depth-first

Evolutionary

4

4

5

5

1,950

1,950

706,928

706,928

708,878

708,878

-

1

q12710
Depth-first

Evolutionary

2

2

3

3

43

43

130,979

130,979

131,022

131,022

-

1

t512505
Depth-first

Evolutionary

2

2

3

3

494

494

385,530

385,530

131,022

131,022

-

1

N17D3
Depth-first

Evolutionary

4

4

5

5

802

656

3,341

3,195

4,143

3,851

-

0,930

N32D6
Depth-first

Evolutionary

4

6

5

5

183,439

235,161

759,031

657,856

942,470

893,017

-

0,948

N73D14
Depth-first

Evolutionary

12

13

13

13

1,577,674

1,676,258

4,400,373

4,290,879

5,978,047

5,967,137

-

0,998

N132D4
Depth-first

Evolutionary

5

5

6

6

9,332

9,332

29,399

27,925

38,731

37,257

-

0,962

NE600P150
Depth-first

Evolutionary

78

78

79

79

916,829

916,829

2,809,89

2,809,89

3,726,726

3,726,726

-

1

NE1200P430
Depth-first

Evolutionary

127

127

128

128

5,014,931

5,014,931

16,500,774

16,500,774

21,515,705

21,515,705

-

1

Table 4.3: Comparison results first-depth approach and Evolutionary algorithm

50

4.2.1 N17D3
In this subsection, the application of the evolutionary algorithm to the N17D3 network is
reported. The network has 7 SIBs, 8 ScanMuxes with maximum depth 4. In particular, the
table 4.4 shows the patterns found by the first-depth approach, together with the test data
using these patterns.

Individual Evaluation
000000000000000 [T] (102) Configuration patterns: 4
111100001110000 [U] (165) Test patterns: 5
111100001110000 [T] (165) Configuration cost: 802
111110001111001 [U] (191) Test cost: 3341
111110001111001 [T] (191) Total cost: 4143
111111001111111 [U] (324) Fault coverage: 1.0
111111001111111 [T] (324) Total JTAG overhead: 45
111111111111111 [U] (332)
111111111111111 [T] (332)

Table 4.4: Result N17D4 First-Depth approach.

The results of the evolutionary algorithm are shown in the table 4.5, with the relative
configuration and test patterns in the first column, and the cost data in the second column.
Evolution is initiated by completely random patterns, therefore without optimization meth-
ods.

Best Individual Evaluation
000000000000000 [T] (102) Configuration patterns: 4
000100000110000 [U] (150) Test patterns: 5
000100000110000 [T] (150) Configuration cost: 656
110110001101001 [U] (135) Test cost: 3195
110110001101001 [T] (135) Total cost: 3851
111111000111001 [U] (249) Fault coverage: 1.0
111111000111001 [T] (249) Total JTAG overhead: 45
111111111111111 [U] (332)
111111111111111 [T] (332)

Table 4.5: Result N17D4 Evolutionary algorithm.

51

In addition, network diagnostics is shown in the table 4.6. For each session, the
possible fault states and related faults are shown. Note that the faults with *, are faults
that occurred in the previous session, but since they are undistinguishable, they have been
propagated to the next session.

Session Fault States Faults
000000000000000 [T] (102) 000000000010000 (153) 4Mux always-selects-1

000000001000000 (117) sMux6 always-selects-1
100000000000000 (103) sMux16 always-selects-1
001000000000000 (95) sMux14 always-selects-1
000000000100000 (93) sMux5 always-selects-1

000100000110000 [T] (150) 000100000111000 (179) 3Mux always-selects-1
000110000110000 (164) 12Mux always-selects-1
000100000010000 (159) sMux5 always-selects-0
010100000110000 (156) sMux15 always-selects-1*
000000000110000 (144) 13Mux always-selects-0
001100000110000 (143) 13Mux always-selects-1*
000100000110001 (133) sMux22 always-selects-1
000100000100000 (99) 4Mux always-selects-0

110110001101001 [T] (135) 110111001101001 (208) 11Mux always-selects-1
010110001101001 (134) sMux16 always-selects-0
100110001101001 (129) sMux15 always-selects-0
110100001101001 (121) 12Mux always-selects-0
110110000101001 (120) sMux6 always-selects-0

111111000111001 [T] (249) 111111000111011 (305) 1Mux always-selects-1
111111000111000 (266) sMux22 always-selects-0
111111100111001 (264) sMux10 always-selects-1
110111000111001 (256) sMux14 always-selects-0
111111000111101 (253) 2Mux always-selects-1
111111010111001 (242) sMux9 always-selects-1
111111000110001 (220) 3Mux always-selects-0
111110000111001 (176) 11Mux always-selects-0

111111111111111 [T] (332) 111111101111111 (339) sMux9 always-selects-0
111111111111011 (328) 2Mux always-selects-0
111111011111111 (317) sMux10 always-selects-0
111111111111101 (276) 1Mux always-selects-0

Table 4.6: N17D4 Diagnostic.

52

4.2.2 N32D6
The tables 4.7 and 4.8 show the results of the experiment on the network N32D6.

Individual Evaluation
00000000000000000000000 [T] (2) Configuration patterns: 4
11100000110000011111000 [U] (6) Test patterns: 5
11100000110000011111000 [T] (6) Configuration cost: 183439
11110000111000011111111 [U] (70) Test cost: 759031
11110000111000011111111 [T] (70) Total cost: 942470
11111101111100011111111 [U] (73) Fault coverage: 1.0
11111101111100011111111 [T] (73) Total JTAG overhead: 45
11111111111111111111111 [U] (42)
11111111111111111111111 [T] (42)

Table 4.7: Result N32D6 First-Depth approach.

Best Individual Evaluation
00000000000000000000000 [T] (2) Configuration patterns: 6
10000000110000010000000 [U] (6) Test patterns: 5
10100000111000010000000 [U] (6) Configuration cost: 235161
00110000011100000001000 [U] (70) Test cost: 657856
00110000011100000001000 [T] (70) Total cost: 893017
11110100111011110111000 [U] (73) Fault coverage: 1.0
11110100111011110111000 [T] (73) Total JTAG overhead: 55
11111111111111111111111 [U] (42)
11111111111111111111111 [T] (42)
10101000110001000000110 [U] (139)
10101000110001000000110 [T] (139)

Table 4.8: Result N32D6 Evolutionary algorithm.

53

4.2.3 Mingle
The tables 4.9 and 4.10 show the results of the experiment on the network Mingle.

Individual Evaluation
0000000000000 [T] (2) Configuration patterns: 6
1000001000000 [U] (6) Test patterns: 7
1000001000000 [T] (6) Configuration cost: 362
1010001010000 [U] (70) Test cost: 1920
1010001010000 [T] (70) Total cost: 2282
1011001110000 [U] (73) Fault coverage: 1.0
1011001110000 [T] (73) Total JTAG overhead: 65
1111001111001 [U] (42)
1111001111001 [T] (42)
1111101111111 [U] (139)
1111101111111 [T] (139)
1111111111111 [U] (171)
1111111111111 [T] (171)

Table 4.9: Result Mingle First-Depth approach.

Best Individual Evaluation
0000000000000 [T] (2) Configuration patterns: 6
1000001000000 [U] (6) Test patterns: 7
1000001000000 [T] (6) Configuration cost: 362
1010001010000 [U] (70) Test cost: 1716
1010001010000 [T] (70) Total cost: 2078
1011001110000 [U] (73) Fault coverage: 1.0
1011001110000 [T] (73) Total JTAG overhead: 65
1111001111001 [U] (42)
1111001111001 [T] (42)
1111101111111 [U] (139)
1111101111111 [T] (139)
1111110110010 [U] (69)
1111110110010 [T] (69)

Table 4.10: Result Mingle Evolutionary algorithm.

54

Conclusions

The modern Integrated Circuits include within them various support functions for testing,
such as Built-In Self-Test modules, and sensors capable of measuring parameters such as
current, temperature and delays. These features allow to monitor the operation of the inte-
grated circuit and the registers to set up and calibrate the operation of specific modules. To
simplify access to all these resources called instruments, the IEEE 1687 standard [1] was in-
troduced. This last standard is the evolution of the IEEE 1149.1 standard, in fact it is based
on the scan chains accessible through the Test Access Port (TAP) but, unlike the previous
version, these chains can be divided and configured in the most appropriate way. This new
approach allows a flexible choice of the best trade-off between different parameters, such
as access time or area. This new standard [2] also describes the ways to design configurable
networks within the circuit, so in general, we can refer to Reconfigurable Scan Networks.
As a result, the new generation of devices will include Reconfigurable Scan Networks ac-
cessible via the TAP interface and will support serial access to internal instruments. The
problem of testing the scan chains introduced by the IEEE 1149.1 standard have been ad-
dressed by various studies [4] [5] [6]. With the new standard, one must face the problem
of testing the hardware of the Reconfigurable Scan Networks, verifying any defects. The
complexity of testing an Reconfigurable Scan Network is higher than the simple scan net-
work, because it is necessary to verify if the network can be configured correctly and if it
works as expected, i.e. the expected sub-network is made accessible. Specifically, the test
must check whether each special module in the network is working properly. The global
cost for testing a device is influenced by the test time of the IEEE 1687 networks, so it is
very important to minimize the test duration of these networks maintaining the same Fault
Coverage. This thesis proposes an alternative method that allows to achieve this goal using
evolutionary calculation. A method capable of handling even large and complex Recon-
figurable Scan Networks and that can produce a sequence of tests to detect any permanent
faults on the reconfigurable modules. Experimental results on the standard benchmark suite
produce an optimized test sequence in 9 of 16 cases, showing in some cases a significant
reduction in test time. Future developments may relate to further improvements in the
method, such as reducing its computational cost.

55

56

Bibliography

[1] “IEEE Standard for Access and Control of Instrumentation Embedded within a Semiconductor Device”.
IEEE Std 1687-2014.

[2] “IEEE Standard for Test Access Port and Boundary-Scan Architecture”. IEEE Standard 1149.1-2013,
2013.

[3] F.G. Zadegan et al. “Design Automation for IEEE P1687”. Design, Automation, Test in Europe
Conference and Exhibition, 2011.

[4] Kuen-Jong Lee and Melvin A. Breuer. “A Universal Test Sequence for CMOS Scan Registers”. IEEE
Custom Integrated Circuits Conference (CICC), pp. 28.5/1–4, 1990.

[5] S.R. Makar and E.J. McCluskey. “ATPG for Scan Chain Latches and Flip-Flops”. IEEE VLSI Test
Symp. (VTS), pp. 364–369, 1997.

[6] Fan Yang et al. “On the Detectability of Scan Chain Internal Faults – An Industrial Case Study”. IEEE
VLSI Test Symp. (VTS), pp. 79–84, 2008.

[7] Cantoro Riccardo, Montazeri Mehrdad, Sonza Reorda Matteo, Ghani Zadegan Farrokh, and Larsson
Erik. “On the Testability of IEEE 1687 Networks”. IEEE Asian Test Symposium, pp. 211-216, 2015.

[8] Cantoro Riccardo, Palena Marco, Pasini Paolo, and Sonza Reorda Matteo. “Test Time Minimization in
Reconfigurable Scan Networks”. 2016 IEEE 25th Asian Test Symposium (ATS), 2016.

[9] Tšertov Anton, Jutman Artur, Devadze Sergei, Sonza Reorda Matteo, Larsson Erik, Ghani Zadegan
Farrokh, Cantoro Riccardo, Montazeri Mehrdad, and Krenz-Baath Rene. “A Suite of IEEE 1687 Bench-
mark Networks”. IEEE International Test Conference (ITC), 2016.

[10] A.T. Dahbura et al. “An optimal test sequence for the JTAG/IEEE P1149.1 test access port controller”.
IEEE International Test Conference (ITC), pp. 55-62, 1989.

[11] Y. Blaquière et al. “Design and validation of a novel reconfigurable and defect tolerant JTAG scan
chain”. IEEE International Symposium on Circuits and Systems (ISCAS), pp. 2559 – 2562, 2014.

[12] R. Baranowski, M. A. Kochte, and H. J. Wunderlich. “Modeling, verification and pattern generation
for reconfigurable scan networks”. IEEE International Test Conference, pp. 1–9, 2012.

[13] R. Baranowski, M. A. Kochte, and H. J. Wunderlich. “Reconfigurable scan networks: Modeling,
verification, and optimal pattern generation”. ACM Transactions on Design Automation of Electronic
Systems, vol. 20, no. 2, pp. 30:1–30:27, 2015.

[14] R. Krenz-Baath, F. Ghani Zadegan, , and E. Larsson. “Access time minimization in IEEE 1687 net-
works”. IEEE International Test Conference, pp. 1–10, 2015.

57

[15] R. Baranowski, M. A. Kochte, and H. J. Wunderlich. “Scan pattern retargeting and merging with
reduced access time”. IEEE European Test Symposium, pp. 1–7, 2013.

[16] M. A. Kochte, R. Baranowski, M. Schaal, and H. J. Wunderlich. “Test strategies for reconfigurable
scan networks”. IEEE Asian Test Symposium, pp. 113–118, 2016.

[17] Riccardo Cantoro, Farrokh Ghani Zadegan, Marco Palena, Paolo Pasini, Erik Larsson, and Mat-
teo Sonza Reorda. “Test of Reconfigurable Modules in Scan Networks”. IEEE transactions on comput-
ers.

[18] R. Cantoro et al. “On the Diagnostic Analysis of IEEE 1687 Networks”. IEEE European test Sympo-
sium (ETS), 2016.

[19] M. Bushnell and V. Agrawal. “Essentials of Electronic Testing for Digital, Memory, and Mixed-Signal
VLSI Circuits”. Kluwer Academic Publ., 2000.

[20] MicroGP web site. Online: http://ugp3.sourceforge.net/.

[21] https://sourceforge.net/p/ugp3/wiki/Genetic20operators/.

[22] S.R. Makar and E. J. McCluskey. “On the Testing of Multiplexers”. IEEE International Test Conference
(ITC), pp. 669-679, 1988.

[23] F.G. Zadegan et al. “Access Time Analysis for IEEE P1687”. IEEE Trans. on Computers, Vol. 61, No.
10, pp. 1459 – 1472.

[24] F.G. Zadegan, U. Ingelsson, G. Asani, G. Carlsson, and E. Larsson. “Test Scheduling in an IEEE P1687
Environment with Resource and Power Constraints”. IEEE Asian Test Symp. (ATS), pp. 525-531, 2011.

[25] E.J. Marinissen et al. “A set of benchmarks for modular testing of SOCs”. IEEE International Test
Conference (ITC), pp.519–528, 2002.

[26] D. Ull, M. A. Kochte, and H. J. Wunderlich. “Formal verification of secure reconfigurable scan network
infrastructure”. IEEE Asian Test Symposium, 2017.

58

List of Figures

1.1 Example IEEE Std 1149.1. 12
1.2 Scan cell. 13
1.3 Detailed Scan cell. 14
1.4 Example Reconfigurable Scan Network. 16
1.5 Topology graph of the example network. 26

2.1 Example of IEEE 1687 Reconfigurable Scan Network. 35

3.1 Example diagnostic method. 43

59

60

List of Tables

1.1 Possible configurations for the network in the example. 16
1.2 Effect of the functional fault ScanMux always-selects-1, when selecting

different active paths. 21

2.1 Example evolutionary operations. 34
2.2 Possible configurations for the network of Fig. 2.1. 36
2.3 List of faults excited by each configuration for the network of Fig. 2.1. . . . 37
2.4 Example Evaluation function. 39

4.1 Characteristics of the ITC’16 benchmark networks 47
4.2 Experimental results . 48
4.3 Comparison results first-depth approach and Evolutionary algorithm 50
4.4 Result N17D4 First-Depth approach. 51
4.5 Result N17D4 Evolutionary algorithm. 51
4.6 N17D4 Diagnostic. 52
4.7 Result N32D6 First-Depth approach. 53
4.8 Result N32D6 Evolutionary algorithm. 53
4.9 Result Mingle First-Depth approach. 54
4.10 Result Mingle Evolutionary algorithm. 54

61

62

Appendix

.1 N17D3
<?xml version="1.0" encoding="utf-8"?>

<Gateway Version="2" xmlns="http://..." xmlns:xsi="http://..." xsi:schemaLocation="http://...">

<SCB ID="16" SCLengthA="10" SCLengthB="11" />

<SCB ID="15" SCLengthA="14" SCLengthB="20" />

<SCB ID="14" SCLengthA="28" SCLengthB="21" />

<SIB ID="13">

<TDR ID="13.t" SCLength="5" />

<SIB ID="12">

<TDR ID="12.t" SCLength="13" />

<SIB ID="11">

<TDR ID="11.t" SCLength="10" />

<SCB ID="10" SCLengthA="6" SCLengthB="21" />

<SCB ID="9" SCLengthA="24" SCLengthB="17" />

<TDR ID="8" SCLength="31" />

</SIB>

</SIB>

</SIB>

<TDR ID="7" SCLength="26" />

<SCB ID="6" SCLengthA="3" SCLengthB="18" />

<SCB ID="5" SCLengthA="14" SCLengthB="5" />

<SIB ID="4">

<TDR ID="4.t" SCLength="18" />

<SIB ID="3">

<TDR ID="3.t" SCLength="27" />

<SIB ID="2">

<TDR ID="2.t" SCLength="4" />

</SIB>

<SIB ID="1">

<TDR ID="1.t" SCLength="25" />

<TDR ID="0" SCLength="15" />

<TDR ID="21" SCLength="16" />

</SIB>

</SIB>

<SCB ID="22" SCLengthA="31" SCLengthB="14" />

</SIB>

</Gateway>

63

.2 N32D6
<?xml version="1.0" encoding="utf-8"?>

<Gateway Version="2" xmlns="http://..." xmlns:xsi="http://..." xsi:schemaLocation="http://...">

<TDR ID="31" SCLength="1667" />

<SCB ID="30" SCLengthA="3232" SCLengthB="2520" />

<SCB ID="29" SCLengthA="480" SCLengthB="1882" />

<TDR ID="28" SCLength="3307" />

<SIB ID="27">

<TDR ID="27.t" SCLength="3933" />

<SIB ID="26">

<TDR ID="26.t" SCLength="270" />

<SCB ID="25" SCLengthA="1097" SCLengthB="3454" />

<SIB ID="24">

<TDR ID="24.t" SCLength="1412" />

<TDR ID="23" SCLength="4139" />

<SCB ID="22" SCLengthA="2012" SCLengthB="2403" />

</SIB>

<SCB ID="21" SCLengthA="2035" SCLengthB="800" />

</SIB>

<TDR ID="20" SCLength="1785" />

</SIB>

<SCB ID="19" SCLengthA="3601" SCLengthB="506" />

<SIB ID="18">

<TDR ID="18.t" SCLength="2671" />

<SIB ID="17">

<TDR ID="17.t" SCLength="2227" />

<SIB ID="16">

<TDR ID="16.t" SCLength="308" />

<SCB ID="15" SCLengthA="1293" SCLengthB="4202" />

<SIB ID="14">

<TDR ID="14.t" SCLength="2442" />

</SIB>

<SCB ID="13" SCLengthA="4210" SCLengthB="2967" />

<TDR ID="12" SCLength="4125" />

</SIB>

<TDR ID="11" SCLength="1122" />

</SIB>

</SIB>

<TDR ID="10" SCLength="3473" />

<SCB ID="9" SCLengthA="406" SCLengthB="343" />

<SIB ID="8">

<TDR ID="8.t" SCLength="1153" />

<TDR ID="7" SCLength="1297" />

</SIB>

<SIB ID="6">

<TDR ID="6.t" SCLength="2195" />

</SIB>

<SIB ID="5">

<TDR ID="5.t" SCLength="2632" />

<TDR ID="4" SCLength="3314" />

</SIB>

<TDR ID="3" SCLength="2692" />

<TDR ID="2" SCLength="139" />

<SIB ID="1">

<TDR ID="1.t" SCLength="1028" />

<SCB ID="0" SCLengthA="101" SCLengthB="3773" />

<SIB ID="-1">

<TDR ID="-1.t" SCLength="3091" />

</SIB>

64

<SIB ID="-2">

<TDR ID="-2.t" SCLength="4396" />

</SIB>

</SIB>

</Gateway>

65

.3 Mingle
Module Mingle {

Attribute lic = ’h d3a0c41d;

Parameter regSize = 32;

Parameter regSize1 = $regSize;

Parameter regSize2 = $regSize;

Parameter regSize3 = $regSize;

Parameter regSize4 = $regSize;

Parameter regSize5 = $regSize;

Parameter regSize6 = $regSize;

Parameter regSize7 = $regSize;

Parameter regSize8 = $regSize;

ScanInPort SI;

CaptureEnPort CE;

ShiftEnPort SE;

UpdateEnPort UE;

SelectPort SEL;

ResetPort RST;

TCKPort TCK;

ScanOutPort SO {

Source SIB2.SO;

}

// Level 1

Instance SIB1 Of SIB_mux_pre {

InputPort SI = SI;

InputPort fromSO = SCB3.SO;

}

Instance SIB2 Of SIB_mux_pre {

InputPort SI = SIB1.SO;

InputPort fromSO = SCB2.SO;

}

// Branch A

LogicSignal sel_Void1 {

SIB2.toSEL & ~SCB1.toSEL & ~SCB2.toSEL;

}

LogicSignal sel_WI1 {

SIB2.toSEL & SCB1.toSEL & ~SCB2.toSEL;

}

LogicSignal sel_SIB3 {

SIB2.toSEL & SCB2.toSEL;

}

LogicSignal sel_SIB4 {

SIB2.toSEL & SCB2.toSEL;

}

LogicSignal sel_SCB1 {

SIB2.toSEL & SCB2.toSEL;

}

Instance WI1 Of WrappedInstr {

InputPort SI = SIB2.toSI;

InputPort SEL = sel_WI1;

Parameter Size = $regSize1;

}

Instance Void1 Of BypassReg {

InputPort SI = SIB2.toSI;

InputPort SEL = sel_Void1;

}

66

Instance SCB1 Of SCB {

InputPort SI = SIB2.toSI;

InputPort SEL = sel_SCB1;

}

ScanMux sMux1 SelectedBy SCB1.DO {

1’b0 : Void1.SO;

1’b1 : WI1.SO;

}

Instance SIB3 Of SIB_mux_pre {

InputPort SI = SCB1.SO;

InputPort fromSO = SIBpost2.SO;

InputPort SEL = sel_SIB3;

}

Instance SIBpost1 Of SIB_mux_post {

InputPort SI = SIB3.toSI;

InputPort fromSO = WI3.SO;

}

Instance WI3 Of WrappedInstr {

InputPort SI = SIBpost1.toSI;

Parameter Size = $regSize3;

}

Instance SIBpost2 Of SIB_mux_post {

InputPort SI = SIBpost1.SO;

InputPort fromSO = WI4.SO;

}

Instance WI4 Of WrappedInstr {

InputPort SI = SIBpost2.toSI;

Parameter Size = $regSize4;

}

Instance SIB4 Of SIB_mux_pre {

InputPort SI = SIB3.SO;

InputPort fromSO = WI2.SO;

InputPort SEL = sel_SIB4;

}

Instance WI2 Of WrappedInstr {

InputPort SI = SIB4.toSI;

Parameter Size = $regSize2;

}

ScanMux sMux2 SelectedBy SCB2.DO {

1’b1 : SIB4.SO;

1’b0 : sMux1;

}

Instance SCB2 Of SCB {

InputPort SI = sMux2;

}

// Branch B

LogicSignal sel_SIB5 {

SIB1.toSEL & ~SCB3.toSEL;

}

LogicSignal sel_SIBpost3 {

SIB1.toSEL & SCB3.toSEL;

}

Instance SIB5 Of SIB_mux_pre {

InputPort SI = SIB1.toSI;

InputPort SEL = sel_SIB5;

InputPort fromSO = SIB6.SO;

}

Instance WI5 Of WrappedInstr {

67

InputPort SI = SIB5.toSI;

Parameter Size = $regSize5;

}

Instance SIB6 Of SIB_mux_pre {

InputPort SI = WI5.SO;

InputPort fromSO = WI6.SO;

}

Instance WI6 Of WrappedInstr {

InputPort SI = SIB6.toSI;

Parameter Size = $regSize6;

}

Instance SIBpost3 Of SIB_mux_post {

InputPort SEL = sel_SIBpost3;

InputPort SI = SIB1.toSI;

InputPort fromSO = SIB7.SO;

}

Instance WI7 Of WrappedInstr {

InputPort SI = SIBpost3.toSI;

Parameter Size = $regSize7;

}

Instance SIB7 Of SIB_mux_pre {

InputPort SI = WI7.SO;

InputPort fromSO = WI8.SO;

}

Instance WI8 Of WrappedInstr {

InputPort SI = SIB7.toSI;

Parameter Size = $regSize8;

}

ScanMux sMux3 SelectedBy SCB3.DO {

1’b0 : SIB5.SO;

1’b1 : SIBpost3.SO;

}

Instance SCB3 Of SCB {

InputPort SI = sMux3;

}

}

68

.4 TreeBalanced
Module TreeBalanced {

Attribute lic = ’h 621bd14e;

ScanInPort SI;

CaptureEnPort CE;

ShiftEnPort SE;

UpdateEnPort UE;

SelectPort SEL;

ResetPort RST;

TCKPort TCK;

ScanOutPort SO {

Source sib0.SO;

}

// Level 1

Instance sib0 Of SIB_mux_pre {

InputPort SI = SI;

InputPort fromSO = sib2.SO;

}

// Level 2

Instance sib1 Of SIB_mux_pre {

InputPort SI = sib0.toSI;

InputPort fromSO = sib3.SO;

}

Instance sib2 Of SIB_mux_pre {

InputPort SI = sib1.SO;

InputPort fromSO = m8.SO;

}

// Level 3

Instance m6 Of H953_Basic::M6 {

InputPort SI = sib1.toSI;

}

Instance sib3 Of SIB_mux_pre {

InputPort SI = m6.SO;

InputPort fromSO = m2.SO;

}

Instance m1 Of H953_Basic::M1 {

InputPort SI = sib2.toSI;

}

Instance m4 Of H953_Basic::M4 {

InputPort SI = m1.SO;

}

Instance m8 Of H953_Basic::M8 {

InputPort SI = m4.SO;

}

// Level 4

Instance sib4 Of SIB_mux_pre {

InputPort SI = sib3.toSI;

InputPort fromSO = m5.SO;

}

Instance m2 Of H953_Basic::M2 {

InputPort SI = sib4.SO;

}

// Level 5

Instance sib5 Of SIB_mux_pre {

InputPort SI = sib4.toSI;

InputPort fromSO = sibM7.SO;

}

69

Instance m5 Of H953_Basic::M5 {

InputPort SI = sib5.SO;

}

// Level 6 and lower

Instance m3 Of H953_Basic::M3 {

InputPort SI = sib5.toSI;

}

Instance sibM7 Of SIB_mux_pre {

InputPort SI = m3.SO;

InputPort fromSO = m7.SO;

}

Instance m7 Of EmptyModule_NoBidirs {

InputPort SI = sibM7.toSI;

Parameter inputs = 80;

Parameter outputs = 32;

}

}

70

		Politecnico di Torino
	2018-03-29T17:16:02+0000
	Politecnico di Torino
	Matteo Sonza Reorda
	S

