
POLITECNICO DI TORINO

Master of Science in Computer Engineering

Master’s Thesis

Deep Semantic Learning for
Conversational Agents

Supervisor
Prof. Maurizio Morisio

Candidate
Martino Mensio

Tutor
Istituto Superiore Mario Boella

Dr. Giuseppe Rizzo

April 2018

To all the ones that supported me.

i

Summary

Context

Conversational agents are now, more than ever, the answer to establish a seamless inter-
action between end users and any service out there. The spreading of these agents, also
called bots or chatbots, has highlighted an important need: going beyond the simple (often
pre-computed) answer and provide personalized answers according to users’ profiles.

This work contains therefore two major themes - Natural Language Understanding
(NLU) and personalization - that follow each other’s in a traversal argumentation from
the literature to the selected approaches.

The Natural Language Interface enables a communication with the machine in the
language that is really used by humans in their everyday interactions with other people.
Traditional mobile applications force the human to imitate the computer to exchange
information, performing precise questions in the form of commands. The goal of Con-
versational Interfaces instead, is to reverse this imitation process in order to bring the
interaction closer to the users using his natural language.

Once this interaction channel is ready, with the mutual understanding of the involved
parties, a process of personalization can be applied in order to provide user-centric con-
tents and interactions.

Goals

The goals of this work are of two different natures: i) analyze the State of the Art in
order to identify the approaches that better suit the creation of a Conversational Agent
ii) build a bot prototype that uses the selected approaches.

The first goal includes the two main themes: Natural Language Understanding and
personalization. For the first one, the focus stands on Recurrent Neural Network (RNN)
approaches that can perform a sentence classification (intent detection task) and extrac-
tion of parameters (slot filling task). The literature also shows how the input words can
be used, by exploiting features (word embeddings [81]) computed on large datasets of
unlabeled text, to capture syntactic and semantic similarities on big dictionaries. These
similarities allow to be more robust towards words that have not been considered in
training sets. For the personalization theme instead, the Content-based and Collabora-
tive filtering are explained along with available methods to extract user features. These
user features can be of anagraphic type or can be more undeclared traits such as Big Five
Personality Traits [29] that can be computed by analyzing external data coming from
social networks and interests.

The second goal, the running prototype, is focused on the only theme of Natural
Language Understanding. As use case the domain of urban mobility is chosen, having as

ii

specific objective the design and implementation of a Conversational Agent to retrieve
real-time information about the bike sharing system. The bot should offer capabilities
to find bikes given the user location, or plan trips between different points of a given
city, using the data from the bike sharing providers. To provide a natural interaction
with a user, the bot should be able to process requests that are not in the strict form
of commands, but in a more conversational fashion. To reduce the distance between the
system and the user, the bot should support multilinguality, to increase the usability of
the tool for audiences belonging to different nationalities; for this reason both English
and Italian languages are targeted with the prototype.

Personal contributions and results achieved
Moving on the fulfillment of these goals, the approach is structured as follows. Firstly
the description focuses on Natural Language Understanding, describing the selected ap-
proach to target two types of interactions (single-turn where each sentence is processed
independently and multi-turn where an interaction context exists): for the single-turn
interactions the reference State of The Art joint approach [65] is chosen, while for the
multi-turn ones it is proposed an extended version of the former.

Then, relatively to the bike sharing prototype, an analysis is done of the target scenar-
ios where the bot is meant to be used. After giving a high-level view of the components
required to interact with chat platforms (such as Facebook Messenger, Telegram, Skype)
and the required services (bike sharing providers, directions provider), an overview of
the designed intents and entities is given. For the personalization theme instead, two
main needs are described: providing content recommendations, such as interesting places
along the path of the cyclist, and tailoring the communication means to the needs of the
user. The personalization theme actually is discussed with a sketch that can be used as
guideline for implementation.

Moving to the implementation, a description is done of the details that made it
possible to bring the bot prototype to life. The considered parts are the interactions with
the chat platforms, the framework used for the NLU, and a dedicated section to word
embeddings that shows how they have been computed on the Wikipedia Italian corpus1

to support this secondary language.
Finally, for the validation (both of the selected NLU approach and of the prototype)

a description is done of the evaluation framework that has been used. For the evaluation
of NLU, the datasets (standardized ones and collected ones for the specific bike sharing
bot in both English and Italian) are explained and the measures are defined. The results
underline the importance of features such as word embeddings or the structure of the
network itself. For the overall evaluation of the prototype instead, it emerges how difficult
it is to obtain human-like understanding performances.

1https://dumps.wikimedia.org/

iii

https://dumps.wikimedia.org/

Contents

List of Tables vii

List of Figures viii

1 Introduction 1
1.1 Istituto Superiore Mario Boella . 1
1.2 Autonomous Systems in the society . 1

1.2.1 Artificial Intelligence evolution . 2
Artificial Intelligence as Human imitation 2
What AI can do today . 3
The evolution of machine learning 4
Towards general AI . 5

1.2.2 AI Guidelines . 8
Distinguishability . 9
Autonomy . 10
Personality and Emotions . 11

1.3 Remainder . 12

2 State of the Art 13
2.1 Chatbots and their classification . 13

2.1.1 Applications of chatbots . 14
2.1.2 Existing classifications . 15
2.1.3 The information content . 16

Chit-chat . 16
Goal-oriented . 17
Knowledge-based . 18

2.1.4 The approaches . 18
Rule-based . 21
Machine Learning NLU . 22
Encoder-Generative models . 23

2.1.5 The challenges . 25
2.2 Natural Language Understanding . 25

2.2.1 Goals . 26
2.2.2 Recurrent Neural Networks . 27

Backpropagation . 28
2.2.3 Cell types . 29

Simple RNN . 30
Long Short-Term Memory . 31
Gated Recurrent Unit . 32

iv

2.2.4 Word embeddings . 33
The algorithms . 34
The vocabulary issues . 35

2.2.5 Intent classification . 35
Keyword-based . 36
Average of word vectors . 36
RNN approach . 37
RNN with attention . 37

2.2.6 Sequence-to-sequence models for slot tagging 38
Simple Encoder-Decoder . 39
Encoder-decoder keeping sentence vector 39
Encoder-decoder with aligned inputs 40
Encoder-decoder with attention . 40

2.2.7 Joint tasks . 42
2.2.8 The interaction context . 43

Multi-turn Understanding . 45
Coreference resolution . 48
Simple QA to test the memory . 48
End to End for Goal-oriented dialogues 49

2.2.9 NLU as a service . 50
2.3 Personalization . 51

2.3.1 User features and Personality analysis 52
2.3.2 Recommendation Approaches . 53

Content-based filtering . 54
Collaborative filtering . 54
Hybrid . 55

2.3.3 Cold start . 55

3 Approach 57
3.1 NLU . 58

3.1.1 Single-turn NLU . 58
Word embeddings . 58
Output dependencies . 59

3.1.2 Multi-turn NLU . 60
3.2 The bot for bike sharing . 62

3.2.1 Scenarios . 62
Search for bike stations information 62
Search for supported cities . 63
Small talk, refining the user model 63
Proactive messages . 63

3.2.2 High-level model . 63
Intent and slot types . 65
Dialogue State Management . 66

3.2.3 Personalization . 67
Content recommendation . 67
Tailored communication . 71

3.2.4 Information Retrieval . 73
Bikes . 73
Geographical information . 73

v

Places . 74
Facebook Graph API . 75
Big Five computation . 75
Other . 76

4 Implementation 77
4.1 Interaction with chat platforms . 77
4.2 Natural Language Understanding . 80

4.2.1 Wit.ai exploitation . 80
4.2.2 Neural Networks frameworks . 81

Keras Recurrent API . 82
TensorFlow Recurrent API . 83
Decision . 84

4.2.3 Graph details . 84
The differences . 85
Multi-turn . 86

4.2.4 Word embeddings . 86
The tokenization of spaCy . 87
Integrating SpaCy with TensorFlow 87
Italian word embeddings . 88

4.2.5 Datasets collection . 89

5 Validation 90
5.1 NLU evaluation . 90

5.1.1 Datasets . 90
Single-turn . 90
Multi-turn . 92
Italian Word Embeddings . 93

5.1.2 Evaluation Protocol and results . 93
Italian embeddings analogy evaluation 94
Single-turn variations . 94
The multi-turn . 96

5.2 Bot prototype . 96

6 Conclusions 99

Glossary 101

Bibliography 104

vi

List of Tables

2.1 The different approaches to Understanding, Information Retrieval and Re-
sponse Generation . 19

2.2 A comparison between the major NLU providers 51
3.1 Intent types and examples . 66
4.1 A comparison between Keras and TensorFlow 82
5.1 A comparison of the analogy scores for the Italian Wikipedia datasets . . 94
5.2 The F1 scores for intent classification with different embeddings 95
5.3 The F1 scores for slot tagging with different embeddings 95
5.4 The F1 scores for intents and slots comparing LSTM vs GRU 96
5.5 The comparison between F1 scores for slots by using or not the attention 96
5.6 F1 scores of the selected approaches for the kvret [24] dataset 97
5.7 Some statistics about the experimental online scenario with the bot . . . 98

vii

List of Figures

2.1 Natural Kinds Classification of Autonomous Agents in [26] 15
2.2 How the approaches for each task can be connected together 20
2.3 An example of the rule-based AIML . 21
2.4 The Inside Out Beginning annotation scheme 27
2.5 The temporal unfolding operation on a simple RNN structure 28
2.6 The Backpropagation Through Time: how the errors are propagated . . . 29
2.7 A simple RNN with a single layer inside 30
2.8 The Long Short-Term Memory cell proposed in [41] 31
2.9 The Gated Recurrent Unit cell proposed in [17] 32
2.10 An example of the n-grams derivation of FastText in [11] 35
2.11 Intent classification by average of word vectors 36
2.12 Intent classification by applying a bidirectional RNN 37
2.13 The connections between Encoder and Decoder components for sequence

translation . 38
2.14 The usage of RNN for a simple Encoder-Decoder approach 39
2.15 Passing the sentence vector to all the decoding steps 39
2.16 The Encoder-decoder with aligned inputs: each decoding step is influenced

by the contextual representation of the aligned word 40
2.17 The aligned Encoder-decoder with the addition of attention mechanism . 41
2.18 How the Attention block computes a weighted sum, learning the weights

dynamically . 41
2.19 A visualization of the attention scores in translation [5] 42
2.20 The Joint Encoder-decoder model with Aligned Inputs in [65] 43
2.21 The joint attention-based RNN Model in [65] 43
2.22 A simple dialogue where a simple key-value approach can provide multi-

turn abilities . 46
2.23 The contextual approach based on memory of previous turns in [16] . . . 46
2.24 The time and role aware approach of [15] 47
2.25 An example of the questions asked in [107] 49
3.1 An example of interaction where the interaction context is important for

the intent classification . 57
3.2 The selected approach to model the output dependencies 60
3.3 The selected Multi-turn approach . 61
3.4 The high level model of the system . 64
3.5 The geographical constraints to search places for the recommendation . . 68
3.6 An overview of the possible recommendation paths between the user and

the places . 69
4.1 The physical components involved for the prototype 78
4.2 The differences of the multi-turn with respect to [65] 86

viii

Chapter 1

Introduction

This chapter provides a general introduction to the work done in this thesis project.
Starting with a brief introduction of the setting where this work has been conducted, an
introduction to the topic of Conversational Agents (also known as Chatbots or Bots) is
given. An overview of the field of Artificial Intelligence is done, by considering both its
current achievements and some general purpose guidelines that should lead the research
and development of such systems. The chapter ends with an outline of the next chapters.

1.1 Istituto Superiore Mario Boella

This work has been conducted as a joint collaboration between Politecnico di Torino1

and Istituto Superiore Mario Boella.2 This institute, founded in 2000 as a research and
innovation center by Compagnia di San Paolo and Politecnico di Torino, is organized in
different research areas that focus on some core sectors of ICT such as mobile solutions,
cloud computing wireless systems and sensors, and navigation technologies. The research
area where the current work has been done is the Innovation Development area that
investigates the future of data-driven innovations doing research on three different axes:
data science, data experience and economics. This work, being on the topics of Natural
Language and Personalization, has been supported by the Data Science Group through
its studies and development.

1.2 Autonomous Systems in the society

This work about Conversational Agents belongs to the wider topic of Autonomous Sys-
tems. If we think about independent systems that live together with humans, a lot of
science fiction stories may come to our minds. From this literature we can extract some
major themes that may reflect how the society can see the development of autonomous
systems.

One of them is surely the problem of dominance and control. There is a fight (real
or implicit) between humans and machines. The dominance can be hold by both sides,
and what emerges is the difference between the goals of the machines and the goals of
the humans.

1https://www.polito.it/
2http://www.ismb.it/

1

https://www.polito.it/
http://www.ismb.it/

1 – Introduction

Another very important topic that emerges is the self-awareness and what distin-
guishes humans from machines. This is where sentient AI seek for understanding of the
world together with a purpose of existence, and always arises ethical questions, such as
effects on our behaviours and interactions, how to keep control over the singularity, what
are the rights of both sides.

All those stories, being part of science fiction, are mostly far from reality. But since
technology is advancing faster and faster, an analysis should be done on the consequences
it can have on the society, and how the existence of some principles could turn those
advances into empowering tools for humans and not something to be afraid of.

These concepts have to be analyzed and some principles must be known and followed
when designing autonomous systems. Keeping in mind that the systems analyzed in this
work are far from generic artificial intelligence, because they are designed to solve very
narrow problems, those principles have to be analyzed at the beginning.

For this reason, after giving an introduction to Artificial Intelligence that empowers
those autonomous agents, looking at its roots and evolution (Subsection 1.2.1), the dis-
cussion will go on some guidelines (Subsection 1.2.2) that have been derived from common
sense and scientific literature [104, 38, 78, 20].

1.2.1 Artificial Intelligence evolution

Here it is provided a bit of background on Artificial Intelligence, starting from the histor-
ical roots that lead to development of systems that imitate a human being. Successively,
an overview is given about what can be done by AI today in different fields. Then a brief
exploration of the Machine Learning techniques opens the discourse of general Artificial
Intelligence.

Artificial Intelligence as Human imitation

The development of artificial intelligence has its roots back in the 50s. The idea is to build
an artificial brain, inspired by the human brain. Empowered by the studies carried in
those years about neurons and synapses, imitating those elements and their connections
became an active topic of research. The first machines trying to achieve this task did
not use computers, but were completely controlled by analog circuitry. The first neural
network machine was built by Marvin Minsky in 1951 [76], based on the idea of the
artificial neuron [72, 90].

With the goal of exploring how the human brain works, the neuroscience community
has done a lot of progresses with the advance of years, and the studies are still open
trying to find the biological basis of information processing (take a look at the “human
brain project” in 1.2.1).

While the first experiment were carried out in 50s, on the philosophical side Alan
Turing published a paper [103] in which he argues that a “thinking machine” could be
built. The criterion defined to distinguish the thinking process is based on human judg-
ment: if the machine is not distinguishable from another human being in a conversation
over a teleprinter, we can say that the machine is able to think. This setting is the so
called Turing Test . In this test, two players (a human and a machine) are tested against
a human interrogator who tries to understand their nature. A machine that passes this
test is said to be intelligent.

As we can see, all is based on imitation of humans: at a more detailed level, the arti-
ficial neural networks try to mimic the behaviour of the human brain. If the intelligence

2

1 – Introduction

of a human is located in its brain, a good reproduction of it can potentially have the
same intelligence of the original one. And the root of the abilities of the brain stands in
its structure. At more higher level of abstraction, a system can be seen as intelligent if
it can emulate a human characteristic (such as holding a conversation over a teleprinter)
well enough to convince the interrogator.

This can be seen as a first definition of artificial intelligence: the simulation of
human intelligence by machines. This imitation also is reflected in the shapes of
robots, because a more human-like appearance is a faster way to immediately feel more
human. Having a face that can emulate some expressions is an active field of work in the
robotics. As we know, the interaction is not bound to what is said in communication,
but has its strength in multimodality, combining visual and audio channels.

But is really the human intelligence the best an autonomous system can achieve?
In today’s world, with the enormous quantity of data available, and with the increasing
processing power of computers, an artificial system can be seen as smart because combines
and extracts the information available very fast and in a way that is useful to the humans
using it.

Having a good distinction between what is human intelligence and what artificial in-
telligence could be can help building a roadmap about how the society wants and will like
to be empowered by technology. The concept used to express this collaboration between
human and machine is heteromation [23]: the labour is divided between humans and
machines by using the automation for all the repetitive tasks while the humans are used
for critical and decisional tasks.

What AI can do today

As of today, Artificial Intelligence has reached some good results in very narrow tasks.
The key point that made this possible is how the intelligent behaviour is achieved: from
historical systems that aim to act by following huge sets of rules (deductive reasoning) to
Machine Learning techniques that allow to learn things simply from examples (inductive
reasoning). Over the Machine Learning techniques, a major role is being played by Neural
Networks that try to imitate the physical and chemical structure of human brain. The
fields where Machine Learning has achieved recent outstanding results are many. Here
we try to provide some examples of them.

With respect to image processing, Machine Learning can be able to detect, segment
and recognize objects and regions. For these tasks Deep Convolutional Networks are
used [58]. Their objective is to abstract from pixel-level features to more complex fea-
tures such as lines, borders and shapes. In this way, they can successfully categorize
images based on the contents: identify objects, recognize written text (OCR), detect
faces, recognize people, detect facial expressions [100], find new planets.3

Instead on the field of language a lot of different tasks are addressed: automated
translation,4 sentiment analysis, entity recognition, Natural Language Understanding.
For this set of tasks, more than Convolutional Networks, the best results are provided
by Recurrent Neural Networks that are able to process order-sensitive sequences. These
approaches usually make use of distributed representation of words [7], known as Word
Embeddings, that following the Distributional Hypothesis: “linguistic items with similar

3https://www.wired.com/story/new-kepler-exoplanet-90i-discovery-fueled-by-ai/
4http://bit.ly/google-translate-introduces-nmt

3

https://www.wired.com/story/new-kepler-exoplanet-90i-discovery-fueled-by-ai/
http://bit.ly/google-translate-introduces-nmt

1 – Introduction

distributions have similar meanings” [92] (see 2.2.4). Those approaches, labeled as Nat-
ural Language Processing, can be used for different goals: analysis of text from online
sources or social media, provide services through Conversational Interfaces, entertain the
user with chit-chat dialogues.

Machine Learning also applies well to the field of games. In 2016 AlphaGo [18]
managed to beat the world champion of the Go game. The interesting part of this story
is that the AI trained for the match by not only observing a lot of previous matches
but also by playing against itself. Other studies focus on other games such as Texas
hold’em [13], or on video games [77]. Using Reinforcement Learning techniques, those
systems are able to learn the consequences of performing actions and adaptively learn
with time to optimize their goals.

Those different fields of application have also been combined together: for exam-
ple generating textual descriptions of images [110], or providing multimodal interaction
(voice, text, visual) with smart assistants (Alexa, Siri, Cortana).

The evolution of machine learning

All those results have been achieved thanks to the evolution of the Machine Learning
techniques. A first division of them can be done by considering if the desired output
is provided or not in the training set: the distinction is between supervised techniques
(that have input-output pairs) and unsupervised ones (that have only inputs, and apply
in tasks like clustering).

The principle at the basis of supervised techniques is to show examples to a system
that learns how to obtain the desired output. Different approaches exist: decision trees,
association rules, neural networks. But the trend nowadays is towards Artificial Neural
Networks because of their power in being able to model non-linear relationships. Neu-
ral Networks have tunable parameters that are learned by using the Backpropagation
algorithm [91]. From the errors on the predictions with respect to the truth values, the
sources of errors are found by evaluating the backpropagation of the gradients, and the
tunable parameters are modified in order to reduce this error by using some Gradient
Descent techniques [12].

Given this mechanism to automatically learn from examples, there has been an evo-
lution considering the structure itself of the network (adding more and more layers, of
different kinds), on the training algorithms and on the kind of input that are fed.

Neural Networks come in the field of Artificial Intelligence as systems that can model
some non-linear functions and substitute handcrafted rules in classification tasks. The
first generation of this approach is based on a strong definition of input features, which are
defined manually and inputs are annotated with a lot of them. This manual specification
of input features requires a lot of effort in their design and in data annotation, and for
this reason is not easily applicable to new problems. For some problems the features
themselves can become quite complex and difficult to generate.

Given those reasons, and also considering the advances of hardware that allow more
computation power at reduced costs, the trend of Machine Learning has gone towards
Deep Learning that uses several layers of computation in the networks. This increase
in number of layers and in complexity of the computational graph allows to reduce the
work done on input features, allowing rawer data to be fed into the networks. In Deep
Learning techniques, features at higher level layers are extracted by the lower levels of
the network. This reduces the work of feature engineering but on the other hand requires
more training samples in order to understand how to extract the relevant features.

4

1 – Introduction

This shift from simple networks with complex and elaborated features towards com-
plex networks with simpler inputs can be observed also in the fields of Natural Language
Understanding, which will be covered in Section 2.2.

Having deep learning techniques, however, does not change the applied approach: it
is always based on the observation of inputs and output pairs and learning a statistical
model that will be able to predict something with sufficiently similar inputs. Random
examples are presented to the computational graph that learns how to imitate them.

Another approach that is relevant to mention is the Reinforcement Learning that is
more active also in the training epochs. Being able to act and observing the consequences
on some rewarding functions, it is able to learn what is good and what is not towards a
certain goal. This is the field where computers recently have defeated human opponents
in popular games, such as AlphaGo [18]. In this example the reinforcement was applied
also to matches between two computers. The strength of this dynamic training is to be
able to act and observe the consequences of actions. In this way, the machine is able to
explore different choices and learn which one is better with respect to the rewards that
have been established. For this mixed objective of learning new things but at the same
time using the acquired knowledge, it is known as the exploration vs exploitation dilemma
and many solutions exist [101].

A special kind of Reinforcement technique is the Adversarial ML, that by employing
two components (the classifier and the adversary) with different goals builds a more robust
classifier. This special training technique tries to overcome vulnerabilities of current
Machine Learning systems, that may be exploited to generate wrong predictions if the
inputs are preprocessed in some specific ways [4]. This phenomenon of “AI hallucinations”
is difficult to solve even with Obfuscated Gradients, and can make predict to the classifier
any wrong output with only little but targeted changes on the inputs.5 The goal of
Adversarial ML is to reduce the possible effects of adversarial examples by employing the
adversary component abilities to reinforce the classifier via the trial-and-error procedure.

Even with Reinforcement Learning, the involved systems are unable to understand
the ontological level of things: a system of this type is only able to work on a specific
problem thanks to the optimization function that it learned to reduce. However what is
unique to human intelligence is the ability to perform retrospective reasoning, in other
words to truly understand the association between causes and consequences and being
able to provide answer to associational questions.

As [80] analyzed, there are three levels of reasoning (seeing, doing, reasoning) that
have strong dependencies between them and currently the Machine Learning approaches
only reach the second level. An overview of building machines that are able to reach the
third level (reasoning like humans) is provided in the next paragraph.

Towards general AI

The term Artificial General Intelligence, with its meaning of being able to perform tasks
like humans, “involves the ability to reason, plan, solve problems, think abstractly, com-
prehend complex ideas, learn quickly and learn from experience. It is not merely book
learning, a narrow academic skill, or test-taking smarts. Rather, it reflects a broader
and deeper capability for comprehending our surroundings-’catching on’, ’making sense’
of things, or ’figuring out’ what to do” . [31]

5https://www.wired.com/story/ai-has-a-hallucination-problem-thats-proving-tough-to-fix/

5

https://www.wired.com/story/ai-has-a-hallucination-problem-thats-proving-tough-to-fix/

1 – Introduction

Looking at the current situation of Artificial Intelligence, the gap with respect to
General AI can be felt: the examples shown previously belong to a narrow field, with
strong definitions of inputs and outputs, while this definition requires a very dynamic
behaviour, learning what to do in contexts that were not analyzed.

The main capabilities that are missing, according to [57], are:
• Building causal models that can support real understanding of causes and conse-

quences;
• Understanding principles of physics and psychology, in order to enrich the knowl-

edge that is acquired through “senses” with general principles that rule the world;
• Learning to learn in new environments, generalizing knowledge.

The first point is the same that has been analyzed by [80] and it underlines the fact
that mostly AI is applied to solving pattern recognition problems. Instead the human
brain can build structured casual models thanks to the properties of the neocortex [36].
This difference makes possible to recognize things also if they appear from different per-
spectives: for example in object recognition, rotated images can be misclassified simply
because at training time the system was not trained from that point of view. Instead,
having a richer model that simulates the 3D shape of objects helps to predict correctly
also in those situations.

The second point extends this characteristics: a prior knowledge of some general rules,
in the example of rotated objects those rules are geometrical, can help understand better
and faster the observation done on the domain. For example, learning to track an object
knowing that it is solid and coherent, can help focusing on more important features,
such as the trajectory and stability [59]. Or for the psychological principles, observing a
video gamer knowing that is trying to seek rewards while avoiding punishment can help
focusing on his tactics and more advanced features.

For the third point, between human learning and machine learning we know that the
first one is more efficient and faster to learn from few examples. The ability of learning
to learn comes from the causal models that give form to rich structured knowledge. This
knowledge is a set of concepts that belong to a higher level of abstraction.

From concepts, the human brain is able not only to do the pattern recognition task,
but also to generate new examples and explain what are the major discriminator of the
output classes. And those concepts are transferred along different problems thanks to
the human memory.

Machine Learning instead suffers that for any different problem it is trained from
scratch. Because the learning network is designed for the current narrow process, the
learning is difficult to transfer to new applications. Humans, when trained on a completely
new task, can exploit their previous experience on other problems and the rich structured
knowledge they have been acquiring since their birth. This is also caused by the structure
of the connections, that between artificial neurons are fixed. The brain instead, forming
new synapses can quickly learn new things without affecting previous learnings. [35]

Following [80], the way to achieve better AI is to include physical and psychological
fundamentals and generate models that capture the causality of the world. With those
models as basis, new concepts could be learned fast (thanks to Transfer Learning) and
the training process could be really more efficient and require less examples.

A very important feature of future machine learning, in the opinion of the authors, is
to use compositionality (to put together the learned models from different problems)
to build a single causal model that is able to learn new things and generalize faster.

About machine reasoning, consider the MACNets approach [43] that with the propo-
sition of a new recurrent cell, Memory Attention Composition (MAC), tries to model

6

1 – Introduction

both control and attention propagation. The problem where this approach is applied is
Question-Answering on synthesized images [45], and the focus is on language composi-
tionality and visual reasoning based on simple objects. The approach is able to answer
questions such as “How many objects are either small cylinders or metal things?”.

The scientific communities are quite divided in opinion about if and when AGI will
be reached but from some surveys, completed by participants of conferences (Philosophy
and Theory of AI 2011, AGI 12) and members of associations like EETN and “The 100
Top authors in artificial intelligence by citation in all years” , the opinion seems to be
that it will be reached in this century [79].

The opinions can be so positive about the reachability of this objective thanks to all
the research that has been done in order to understand how the human brain works.
Different projects exist today, both European6 and American7 that aim to explore this
topic in neuroscience, computing and medicine. Models are built that can simulate brains
and researchers can use them to do experiments in different fields: robotics, medicine,
cognition.

However, nowadays the term AI is being used commercially as a fuzzy word, and it is
unfortunately generating a lot of examples that use the expression simply because they
employ some statistical models but are far from the processes that would be necessary to
achieve AGI. The goal is simply to exploit the trending topic and generate some hype to
promote products that are mostly based on rules or highly handcrafted features. It is the
example of some Humanoid robots, that are remarkable good examples of progresses in
human appearance and movements, but from the intelligent point of view are only well
featured programs, far from the general intelligence.

As humanoid examples of robots, we can start with Sophia, developed by Hanson
Robotics, which has been granted citizenship by Saudi Arabia recently.8 This is an
examples that is linked to many interesting topics. For some, this action “set a bad
precedent for how we might treat robots in future” 9 and this will be covered in the next
subsection 1.2.2 about some guidelines. Moreover, it is not clear how much of this robot
is real Artificial Intelligence and how much is just the emblematic representation of AI
hype.

Another example is Nadine,10 built at the Nanyang Technological University, that is
able to recognize people and resume conversations based on previous chats.

Those kind of robots are a combination of a wide number of AI methods: face tracking,
emotion recognition, and robotic movements generated by deep neural networks.11 But
anyway all those examples are far from general AI, because they work only in the specific
field they have been designed to. The advances have been done on expanding the things
that can be done, but purists of AI argue that in this way the human intelligence cannot
be reached [80]. Human intelligence is more dynamic and general because it learns how
to do new things in unbounded fields.

Also considering the actual reinforcement learning, which learns from itself how to do

6https://www.humanbrainproject.eu/en/
7https://www.nsf.gov/awardsearch/showAward?AWD_ID=0134732
8http://bit.ly/forbes_stone_sophia_robot_citizen
9http://bit.ly/theverge_vincent_robot_citizen

10http://bit.ly/telegraph_knapton_nadine
11http://bit.ly/theverge_vincent_sophia_not_true_ai

7

https://www.humanbrainproject.eu/en/
https://www.nsf.gov/awardsearch/showAward?AWD_ID=0134732
http://bit.ly/forbes_stone_sophia_robot_citizen
http://bit.ly/theverge_vincent_robot_citizen
http://bit.ly/telegraph_knapton_nadine
http://bit.ly/theverge_vincent_sophia_not_true_ai

1 – Introduction

tasks, is misleading because the fields in which this is applied are always defined a-priori
and the learning always occurs following a predefined rule. For instance, on the task of
playing a specific game, a rewarding function is defined and the machine learns how to
play better by challenging itself.

AGI can be reached only by effectively performing machine reasoning, enabling com-
positional and physical based thinking.

1.2.2 AI Guidelines

Also with the noticed distance from AGI, we can think about some general guidelines
that should be followed when designing autonomous systems that are interacting with
humans. Those guidelines can be seen as part of the AI ethics discussion [38, 78], and are
really needed because we agree with the idea that “Technology is neither good nor bad;
nor is it neutral” as said in [54]. Because it is not neutral on itself, it is better to define
some rules to avoid threats.

First of all, there are threats linked to the human-machine fight: physical threats.
To avoid them, we can think of some simple principles, like the basic Three Laws of
Robotics [20]. Those rules, firstly expressed in a short story [2] by Asimov, quoted from
the “Handbook of Robotics, 56th Edition, 2058 A.D.” , are:

1. A robot may not injure a human being or, through inaction, allow a human being
to come to harm;

2. A robot must obey the orders given it by human beings except where such orders
would conflict with the First Law;

3. A robot must protect its own existence as long as such protection does not conflict
with the First or Second Laws.

By observing those three rules, the main physical threats can be avoided. However,
due to their historical birth, they may be a bit outdated and not consider all the possible
consequences that may arise. This happens because the fields where autonomous systems
can be applied vary dynamically with time and the potential consequences change with
them.

More recently AI and robotics researchers, experts and other endorsers have produced
a set of principles - the Asilomar AI Principles12 - that analyze issues that may arise in
research (how to establish the goals, funding and cooperation of AI research towards
beneficial intelligence), or in the fields of ethics and values (safety, human values, privacy,
control), or also longer-term issues (like superintelligence for the benefit of humanity).

About the ethics of Artificial Intelligence, there is a lot of discussion on the topic.
James H. Moor on the relation between robots and ethics defines “Four Kinds of Ethical
Robots” [78]:
Ethical impact agents: those systems, intentionally or not, can have an ethical impact

by the actions they perform;
Implicit ethical agents: are designed to avoid unethical outcomes, the strategy is to

prevent them by limitations of the system capabilities;
Explicit ethical agents: have algorithms to act ethically, they can identify and process

ethical information and act accordingly;
Full ethical agents: are as ethical as humans, thanks to features such free wil, con-

sciousness and intentionality.

12https://futureoflife.org/ai-principles/

8

https://futureoflife.org/ai-principles/

1 – Introduction

Previously it has been mentioned that keeping a good distinction between the human
intelligence and the intelligence provided by artificial systems, and understanding the
advantages of both, could help focusing on the desired scope of the technology. Following
this vision, we can say that artificial intelligence can provide an improvement to the
society of today by being a set of useful tools. This is the idea expressed with the
expression “utilitarian ethics for AI” [38].

Letting the machines do the stuff they can do better such as automatic and repetitive
tasks is needed in a word where fast production is a crucial element, as it has been
done in factories by substituting human employees with robots in tasks like assembling
of products. Fields where this substitution is happening now is in call centers, where the
work is most repetitive and can be automated. While the automation in previous years
has been focused on mechanical fields, now it is shifting to conversational fields. While
machines do this works, the humans can focus on works they like more and on decisional
processes.

All where there is a distinction there is a point of contact, an interface, where the
two sides meet and interact. Specifically for conversational agents, here are presented
some boundaries that should be present on different dimensions that are examined in the
following subsections: distinguishability, autonomy and personality.

Distinguishability

One of the reasons that lead to the development of Conversational Agents is to emulate
the human. The progress of those system is evaluated with measures of how seamless the
interaction is and how likely the system can be confused with a human (see the Turing
Test [103], or the Loebner Prize13). However, going in the opposite direction, we can
put as a first general rule the distinguishability of autonomous systems. Following the
“Turing’s red flag law” analyzed by [104], an autonomous system should be designed in a
way to make clear that is not a human, and identify itself at the start of any interaction
with other agents. In this article, the author is taking the expression “red flag law”
from the Red Flag Act contained in the Locomotive Act [87], that stated that a self-
propelled vehicle had to be led by a pedestrian waving a red flag or carrying a lantern to
warn bystanders of the vehicle’s approach. The term is modified by adding the artificial
intelligence topic by referencing the author of the so largely known test.

Walsh stands this principle in two parts. In the first one, the design itself of the
system should be done by keeping in mind that the product is unlikely to be mistaken
for human. This applies to the case of self-driving vehicles, that should be recognizable
so that other actors on the road can have a more precise knowledge of the surrounding
environment. This is crucial because the behaviour of human drivers and autonomous
ones can be very different: both sides can make errors but of different kinds, a human
can be distracted or fall asleep while a bot can do mistakes in situations it has not been
designed to work.

The second part is about stating the nature of the agent at the beginning of every
conversation. This has to be done to be distinguished and put the interlocutor in the
right setting and mood. Knowing the source of words is very important.

The article also reports some examples for this specific part of the law. First of all
with virtual assistants, that nowadays are so popular. Walsh observes that this rule is not

13http://www.aisb.org.uk/events/loebner-prize

9

http://www.aisb.org.uk/events/loebner-prize

1 – Introduction

always respected: if you ask Siri14 if she is human or not, the answer is not so clear. The
playwright did that in order to keep a funny and unpredictable character of the assistant,
but pretending to be human is a dangerous precedent. Now it is clear that they are AI,
but with technological progress the difference could become unnoticed. Another example
is with online games: bots can have some advantages and disadvantages, but user should
know what kind of player they are playing with. Also when reading computer-generated
text it should be explicit that the writer is not human: depending on the domain, this
can impact the emotions of the reader.

This criterion of distinguishability is not itself limiting the expressive power that the
autonomous systems can have. It is simply asking to make clear what species belongs
the interlocutor.

Autonomy

Another dimension in which there should exist a fixed barrier is the decisional one. On
this dimension there should be a limit on what can be decided autonomously by the
artificial agents in a way to establish on the one side the control of humans and their
safety, and on the other one to allow some smart actions that improve the experience for
humans. The goal of all the systems should be of this nature: being useful to the human
user. Then the problems falls on how to decide what is good in an environment composed
of different people with different goals. This problem is intrinsic in the society, also when
no autonomous systems exist. Adding those presences, their function of autonomy must
be aligned with the values and rules of the society.

If their autonomy is none, there is no risk for the humans but there may be no
advantages at all. With some degrees of freedom, regulamented in the right way (for
example always letting human overrides and never hurting anyone), a good improvement
can be done. A good regulamentation by the governments, maybe in a internationalized
context, can help defining the boundaries in this dimension. This guideline is very similar
to the first two Laws of Robotics [2].

As an example, let us take again the self-driving car. In the majority of the world
this technology is not allowed to drive independently. Advanced cruise controls with lane
assist can operate only if a driver with a licence is sitting on the driving place, ready to
intervene in danger situations. Those kind of rules are necessary because those technology
may not be ready and in general can find unexpected situations where they may fail.

However, in some cases there can be conflicts between what the user asks and the
principle the system was designed with. This should be the only situation in which
the system must disregard a command. If the system decides things on his own, also
without conflicting with commands, this can be seen as a threat to human superiority on
machines. The autonomy can be seen as menacing the safety and well-being of humans
or also material resources [114]. It is a hierarchical problem. The humans should stay in
control even if the AI becomes smarter. For this reason it would be better if autonomous
systems in decisional processes are used only as advisors to empower humans to take
smarter decision, not directly deciding on their own.

14https://www.apple.com/ios/siri/

10

https://www.apple.com/ios/siri/

1 – Introduction

Personality and Emotions

AI can be seen as a threat to humans not only as direct menace, but also in more
symbolic and subtle ways. Without establishing a strong discrimination between human
and machine, the concept of identity and distinctiveness are threatened [114]. Both kinds
of threat lead to negative attitudes towards robots and robotics research. But beyond
a possible negative attitude towards robotics generated from the recognition of those
threats, we want to shortly describe the positive and negative effects on the individuals
and society.

We can take as examples the app Replika15 that resembles the Black Mirror episode
“Be Right Back” : the goal of the app is to be “your best friend”, by learning from
the conversation how to interact with the specific user and make him happy (rewarding
function is the user feedback expressed via text or thumbs buttons).

On the positive effect, having an artificial intelligence with some personality makes
interactions more interesting and seamless for users. This makes the user feel more
comfortable and can make the system to use emotions to express the vicinity to the user,
using the Affective Computing concept [82].

However, this emotional attachment to machines can cause also negative effects, both
on the individual and on society. On the individual those systems can cause addiction16

and isolation. The addiction is caused by the apparent relief given by interacting with
something that agrees with things we say and its availability to listen to us. The isolation
is the consequence of this addiction, and could be disruptive especially for the youngest
ones who, already under the effect of mobile addiction, have a high decrease on empathic
abilities [49] and can sometimes fall in a very problematic isolation situation like hikiko-
mori [27]. And these changes on the individual and his personality can also affect society,
weakening the human relations.

For these reasons, a boundary needs to be defined in order to avoid emotional attach-
ment and other inappropriate feelings towards machines. From the societal point of view,
people need to keep their life in real world with real people, and use only the autonomous
systems not as targets of happiness but as means to achieve wellness in the human only
environment of feelings and emotions.

This dimension of personality should also not be invaded under the light of excessive
personalization. Knowing the users’ preferences is ethically good if actually the objective
is an improvement on his side. Commercial recommender systems should not be creepy
for the users. A regulation of what can be collected, analyzed and sold to advertising
companies should be imposed in more strict forms that the current ones, to avoid some
Big Brother-like dystopian scenarios.

These guidelines should put the design of autonomous systems oriented towards the
well-being of humans, helping with repetitive tasks and providing powerful services and
enhancing the connection between humans. All this should interface in a easy natural
way for the humans, using natural language both in spoken and in written forms.

15https://replika.ai/
16http://bit.ly/thekernel_coca_apps_designed_addiction

11

https://replika.ai/
http://bit.ly/thekernel_coca_apps_designed_addiction

1 – Introduction

1.3 Remainder
The next Chapter 2 gives a deep analysis on the topic of Conversational Agents. Starting
from a classification of agents based on the contents of the dialogue (Section 2.1), a
description is given of the available approaches that best fit different contents. Focusing
on the Goal-oriented agents, the available Machine Learning approaches are analyzed
(Section 2.2) focusing on Neural Networks (Recurrent ones) that achieve State of the Art
condition for the specific goals: sentence classification (intent recognition) and extraction
of parameters (slot filling). The chapter ends with an analysis of the personalization
techniques (Section 2.3), describing how the user features are used both in content-based
and collaborative filtering and what are the available options to avoid the cold start
problem.

Chapter 3 is divided into two parts. The Section 3.1 describes the chosen approach
for managing different interaction environments: the State of the Art approach for single-
turn described in [65] is analyzed, and the proposed modifications for multi-turn inter-
actions are exposed in Subsection 3.1.2. The Section 3.2 instead focuses on the specific
Chatbot use case: the bot for bike sharing information. The scenarios are delineated
(Subsection 3.2.1) and the high level model of the system is described (Subsection 3.2.2)
by also giving the motivation for having two different components that interact. Then
a description is given of the intent and entities chosen for a simple interaction model
(Subsection 3.2.2). On the topic of personalization (Subsection 3.2.3) two main needs
emerge: provide content recommendation under the form of places near the path of the
cyclist, and performing a tailored communication with the user in terms of a customized
behaviour, personal preferences and different linguistic style. At the end of that subsec-
tion, a description of the information retrieval techniques needed as dependencies to the
presented approach are given (Subsection 3.2.4).

Chapter 4 focuses on the implementation of the Bot prototype. This includes the
interaction mechanism with chat platforms in Section 4.1 and the Neural Network com-
putational graph in Section 4.2. The latter describes the exploitation of an online NLU
provider in the initial stage of the prototype (Subsection 4.2.1), followed by the choice of
the Neural Network framework (Subsection 4.2.2) and the implementation details (Sub-
section 4.2.3). Two subsections close the discussion: one describes word embeddings (Sub-
section 4.2.4) computed for the Italian language and retrieved for the English one, and
the other reports the collection of the single and multi-turn datasets (Subsection 4.2.5).

Chapter 5 contains the evaluation of the system, both for the Natural Language
Understanding performance in Section 5.1 and for the prototype in Section 5.2. For
the NLU, Subsection 5.1.1 describes the datasets used both for single-turn and multi-
turn interactions, then a description of the measures and the obtained results follows in
Subsection 5.1.2, comparing the effects of different choices.

The Chapter 6 concludes this work by underlying the reached objectives, both as
objective results and as acquired competences, and prospecting possible future works. s

12

Chapter 2

State of the Art

This section reports the related works on the topic of Conversational Agents. Having done
some considerations about how the interaction among autonomous agents and humans
was born and which social implication can rise, the discussion will focus on a classification
of chatbots (Section 2.1). Then the focus will go deep into technologies that can help
building bots that can interact with the user through Natural Language (Section 2.2).
The last part will cover the topic of personalization (Section 2.3).

2.1 Chatbots and their classification

Starting from the formulation of the Turing test, the problem of human-machine inter-
action has been analyzed and different solutions have been found. The terms that are
commonly used for those kind of systems may vary (e.g chatbots, conversational agents,
virtual assistants), but the substance does not change: one interlocutor is not of human
nature.

After the mobile-first wave that lead to a development of thousands of applications
for devices that people pass the day with (e.g. smartphones, tablets, wearable devices
and smart watches), a second wave is the transition to intelligent interactions that put
the emphasis on natural and seamless interactions with automated systems. The interac-
tion mean shifts from using well-designed and sometimes complicated interfaces made of
buttons and paged procedures to textual or vocal dialogue. Asking questions naturally
has many advantages with respect to traditional app interactions. The main one is that
the user does not need to know how the specific app works, everyone knows how to com-
municate and in this case the system is coming towards the user to make the interaction
more natural.

The evolution of these systems started long time ago, with first systems that were
built to emulate a natural conversation, and has lead to today’s virtual assistants that
live on our smartphones and are ready to complete tasks for us.

The approaches that have been used have evolved through time to fit different needs
and to overcome challenges that arise while developing such systems. The choice depends
on the purpose of the bot. Bots can be designed to entertain the user in a conversation
or can be designed to provide information on a specific field.

By firstly looking at the common applications of chatbots (Subsection 2.1.1) and
existing classification in literature (Subsection 2.1.2), a classification will be done by
considering the contents (Subsection 2.1.3) and the approaches (Subsection 2.1.4). In the
final Subsection 2.1.5 the main challenges are listed.

13

2 – State of the Art

2.1.1 Applications of chatbots

Conversational Agents can be applied in all situations where there is a repetitive exchange
of information with the user. The advantages can be both for users and companies.

On the side of the user, using applications can be quite frustrating sometimes. Every
company has a different app that needs to be installed, configured and learned to be used.
The usage itself may result cumbersome. User interface forces to fill up information in
a form-like structure. When finally you try to submit, you find out that you missed one
required field. A conversational interface could simplify a lot this process, even though
the system is simply doing slot-filling and asking one input after the other.

Other advantages of conversational interfaces can be found when interacting with
structured data whose criterion of navigability and search are not well known. Having
an interlocutor that progressively helps refining our search, instead of filling a large form
in an app, can help being more productive. Furthermore, voice commands can be used
also without need to look and use hands, for situations where our attention is needed for
other tasks.

From the point of view of the companies, the relation with the customer is the main
channel to acquire and maintain customers. It is where the effort to understand users’
needs should be maximum, and in many cases opting for offshore call centers may not
be good and not very cheap. In these situations, having an automated responder could
provide the service in the way you want in a scalable way.

The advantages of having those systems instead of dedicated people in call centers
for customer support are many. First of all, the companies can support more customers
because of the high scalability of those systems. For the majority of support requests,
an automated response can be helpful. In case the system does not understand well the
requests, a backup human solution can be called into action: in this way, also some very
specific responses that were not designed in the requirements can be provided. The second
major advantage for companies is that in this way they can have a set of responses more
aligned with their guidelines. Establishing how the system should answer some types of
questions once and for all, instead of having possible disinformation and misalignment
of human employees. Eventually, when the automated system detects some difficulties
due to the specificity of some issues with the user, an human responder can be used as
backup solution: the chatbot will provide a first-line service and manage all the trivial
interactions with the customers, using the human employees only when necessary.

Chatbots are also used in the field of virtual assistants. Using voice or text, we can
interact with something that can quickly do things for us: adding events to the calendar,
making phone calls and searching information on the Web. Virtual assistants provide a
fast way to interact with the device, useful in situations where the users cannot interact in
the visual way, for example while driving. The assistant can help with a set of user intents
on pre-determined domains (such as agenda management, weather, sending messages) or
also with external domains integrated by third-party apps (such as Alexa Skills,1 Cortana
integration2).

1https://developer.amazon.com/alexa-skills-kit
2https://developer.microsoft.com/en-us/cortana

14

https://developer.amazon.com/alexa-skills-kit
https://developer.microsoft.com/en-us/cortana

2 – State of the Art

2.1.2 Existing classifications

Since the fields of application and the possibilities are many, a search of classifications
has been done in order to divide and find the main characteristics of this kind of bots.

Chatbots, in their larger definition, are software agents with whom you can carry a
conversation. Accordingly to [26], there exist three main types of autonomous software
agents that have different objectives: task-specific, entertainment and viruses, as can
be seen in Figure 2.1.

Figure 2.1. Natural Kinds Classification of Autonomous Agents in [26]

Another division can be done by looking at the type of control mechanism: from rule-
based systems that only follow handcrafted rules, to machine learning ones that learn
dynamically from examples how to interact.

A very important characteristic to be considered when classifying conversational
agents is the initiative.3 With System Initiative only, the conversation is led by the
bot and the user has only the possibility to say a finite set of things and cannot change
directly the current state of the dialogue. It is the case when the user always replies to
questions made by the bot, or when the only possibility of inputs is given by buttons. In
dialogues between humans, the initiative usually shifts from one participant to another,
and the same should apply in interactions with autonomous systems. For this reason,
there exist mixed-initiative systems that try to take into consideration the user requests
for tracking the dialogue state (and not imposing it).

Yet another division can be done by considering if the interaction scheme is single-turn
(question followed by a response that only depends on the last question) or if the memory
is required to perform a multi-turn dialogue. Multi-turn enables to refine searches and
refer to entities previously mentioned, and is more natural than single-turn.

Other classifications that have been found are based on features such as believability
and intelligence [44]. Those features are reflected on how the user perceives the agent
and are somehow similar to the goal of the imitation game: giving the illusion to talk to
a person.

3https://web.stanford.edu/class/cs124/lec/chatbot.pdf

15

https://web.stanford.edu/class/cs124/lec/chatbot.pdf

2 – State of the Art

Given briefly those classification options, the choice has been to focus on two main
dimensions for doing a classification: the first one (Section 2.1.3) considers the contents
of the dialogue, and is inspired by the objectives of [26]. The second one (Section 2.1.4)
instead focuses on the approaches that are used.

2.1.3 The information content

This first dimension considers the content of the conversation. Retaking the three ob-
jectives by [26] (task-specific, entertainment, viruses) of autonomous software agents and
removing the last one that is not inherent to conversational agents, the entertainment
one is mapped to a generic chit-chat content (maintaining a general conversation with
the user), while the task-specific one corresponds to domain specific knowledge (the bot
provides it to the user acting as a natural language interface).

A third content type has been added to be able to categorize all those type of system
that deal with different sources of information and combine them to provide rich answers.
This may be called Encyclopedic Knowledge content, and the main ambition of those
systems is to provide real answers to complex questions related to the world knowledge.

Those three main content types are explained in the following paragraphs, before
going to discuss the existing approaches.

Chit-chat

The first type of content, chit-chat, corresponds to the native setting of the turing test
because the goal is to entertain the user making him believe that the machine really
understands the conversation and the history of chatbots of this type is quite long.

The first chatbot ELIZA [105], that was built in 1966, is of this kind. It was cre-
ated mainly to demonstrate the superficiality of communications and the illusion to be
understood by a system that is simply applying a set of pattern-matching rules and a
substitution methodology.

ELIZA simulates a psychotherapist and, thanks to the trick of presenting again to the
interlocutor some contents that have been previously mentioned, keeps the conversation
without having an understanding of what really is said.4 At the time when ELIZA came
out, some people even attributed human-like feelings to the bot. A lot of other computer
programs have been inspired by ELIZA. Even a markup language has been created to
express the rules that drive the conversation (see AIML in Subsection 2.1.4).

A competition has been created to reward the progresses in this field: the Loebner
Prize, an annual challenge that stands in the format of the Turing tests, but restricting
the topics of conversation. Judges keep parallel conversations, one with a human and
one with a computer program. Judges are chosen with the criterion that they “should
respond naturally, as they would in a conversation with another person”, in a way to
avoid excessive sophistication. At the end the winner is the computer program that
mostly convinced the judges (even without passing the Turing test). There are two more
prizes in this competition: one is for the Turing test in text only interactions, the last
one (the biggest one) is for passing the Turing test including visual and auditory inputs.
This competition was first held in 1991, and with the years advancing the challenges have
became more and more complex.

4ELIZA can be easily tested inside the text editor Emacs with the command doctor (meta-x doctor).

16

2 – State of the Art

The Loebner Prize has been criticized by experts in the field because it rewards the
usage of some tricks [95], pointing the focus on imitation instead of intelligence. The
commonly used tricks are [71]:

• Let the conversation to be driven by the interlocutor. This works because most
people like to talk about themselves and only want someone who listens;

• Give the illusion to be listening and understanding, by including substrings of the
user input;

• Changing the topic when not understanding, that sometimes can be seen as para-
noid;

• Simulated typing, delaying the responses.
The details of rule-based chatbots will be explained in more detail in Subsection 2.1.4.
The evolution of chit-chat bots has recently evolved from a rule-based one to a generative
approach. The key idea is to imitate existing conversations, and generate a response
in a way that reflects both the training corpus and the current user turn (used as a
stimulus). This approach, which will be discussed deeper in Subsection 2.1.4, has its
roots in using Statistical Machine Translation. The importance of the dialogue corpus,
that dynamically establishes how the responses are generated, makes their availability a
key element for a successful bot. For this reason these models are trained on few datasets
publicly available: tweets, reddit discussions, ubuntu dialog corpus.

An example of this kind of systems is the mobile application Replika,5 that wants to
provide a chat companion for its users. The conversation has no specific goals, and the
system entertains the user with long discourses and games.

Focused on psychological support, an example of conversational system is Woebot.6
Entertaining the user with dialogues, it analyses the user mood and provides tips to feel
better against depression and anxiety [25].

Goal-oriented

Another completely different type of bots is the one that provides a service on a restricted
domain. It can be a natural language interface to a set of static Frequently Asked Ques-
tions, or can be linked to some dynamic content using some defined APIs. Those systems
need to define the list of things they can do, and in some way map the user’s requests to
some actions.

Using those systems, the user should be aware of what the system can do and what
cannot. A goal of the ideators should be to let the user know that the bot can provide
information only on the domain it is built for. Responses for a little chit-chat conversation
can also be added to the system, but they should be used only to avoid a general “I don’t
know” or “I didn’t understand”.

Those kind of bots can provide a more natural way of interacting with companies,
both in the field of customer support and in search for information. The information can
be statically defined as pairs of questions-answers. In this case the bot has to classify the
user requests and provide the answer that mostly fits it. Or there can be some dynamic
information that need to be extracted from the request. In this case, in addition to
sentence classification, a parameter extraction needs to be performed. These tasks are
the ones that this thesis will later focus on, and are the main part of the Natural Language

5https://replika.ai/
6https://woebot.io/

17

https://replika.ai/
https://woebot.io/

2 – State of the Art

Understanding process, which is described as one of the approaches in Subsection 2.1.4
and analyzed in the dedicated Section 2.2. The NLU approaches are quite handcrafted
on the possible sentence types, and for this reason some more generative approaches are
coming also in this field, inspired by the chit-chat domain. But what characterizes the
conversational agents that provide this kind of content is the presence of a goal from the
user: this is the reason that makes them called goal oriented agents.

Knowledge-based

As last type of chatbots, we can consider a richer version of the domain specific bot.
Instead of limiting on a very restricted domain and predetermining the abilities with a
static design of intents, this type of bots tries to provide a natural language interface
towards a Knowledge Base. The fixed-structure intent based approach seems not to be
optimal when the number of possible intents is very high and cannot be predetermined.
If the system allows questions with a high level of complexity, requiring the linking of
information, the number of intents quickly can explode.

Instead of doing a classification of sentences on some pre-defined intents, the goal
of those systems is to transform the user sentence in a database query (for structured
knowledge) or also to extract information from unstructured knowledge (such as docu-
ments expressed in natural language). This requires a strong relation between the Natural
Language module and the Information Retrieval module. Structured knowledge can be
composed of entities and relations between them. Information is in the form of RDF
(Resource Description Framework) which have links to other entities with specific roles.

The sentences are analyzed using some parsers and are mapped to a set of lin-
guistic patterns. After this translation (from human natural language to computer-
understandable queries), the interrogation is performed using the content of a knowl-
edge base. Those Question-Answering systems are actually very complex and involving
different tasks and challenges [42].

A commonly used system that provides this kind of content is the Google Knowledge
Graph, that explores the queries done on the search engine and provides linked informa-
tion. Another example of them is the Wolfram Search, that can be asked questions like
“who is the USA president?”. The focus here is not on managing complex dialogues, but
understanding complex queries and exploring knowledge graphs.

There are however examples of encyclopedic knowledge systems that try to convey
the conversational abilities of chit-chat dialogues empowering them with richer contents.
This content ingestion is at the basis of the prototypes participating to the Alexa Prize.7
The goal that participants should try to achieve in this prize is to reach 20 minutes of
dialogue with the user. Given a set of services (such as ASR, NLU, TTS), the teams have
to design the dialogues and make it possible to carry on the conversation for the longest
amount of time. Keeping such a long dialogue cannot be done by only providing simple
responses using the tricks of ELIZA. Reasoning on topics requires having knowledge of
them, so this kind of conversational agents are connected to knowledge bases.

2.1.4 The approaches

The other dimension that is considered to make this classification is relative to the ap-
proach used. As will be seen shortly, bots require different stages (understanding, getting

7https://developer.amazon.com/alexaprize

18

https://developer.amazon.com/alexaprize

2 – State of the Art

some information, answering) and different approaches can be applied to all of them.
As can be seen from the discussion on the content of the dialogue, there is an evolution

of the approaches, leading to data-driven ones. The first wave of chatbot, as mentioned
before, simply matched the input sentences with some keywords and responded in a way
to make the conversation look natural. From this, a lot of other agents grew up with
the same technique: pattern matching. With this approach, lots of bots have been built
and even a specific markup language has been developed to express the patterns and link
them to some responses.

More recent approaches instead tend to abandon the handcrafted rules towards an
automatic learning from a dialogue corpus. This can be applied both to the part of
natural language understanding (turn the user sentences into structured data) or also to
the information retrieval and response generation.

We can do a classification of chatbot systems based on how much has to be specified
and defined in a static way versus a dynamic approach that learns from the examples
provided. This choice can be done in three main tasks: understanding, information
retrieval, response generation. Each of them can have three levels of dynamicity: the
first one is completely rule-based, the second one is mixed, usually presenting a dynamic
categorization over pre-defined types, while the third one is completely dynamic. In the
following Table 2.1, the levels are shown for each task.

Dinamicity level Understanding Information
retrieval

Response
generation

0 Pattern based
(entities and
intents)

None / Fixed data Rule-based
template

1 Machine Learning
(entities and
intents)

Fixed API Dynamic template:
retrieval based

2 Encoding (sentence
embeddings)

Dynamic
exploration

Generative

Table 2.1. The different approaches to Understanding, Information Retrieval and
Response Generation

The understanding task is the one related to turning the natural language sentences
into something that can be understood by the machine: its output can be obtained
through pattern matching for level 0 of Machine Learning for level 1, but in both cases it
is translated to an intent and a set of entities; instead for level 2 the sentence is translated
to an encoded representation that is not human-understandable.

The information retrieval task instead, if present, can use a fixed set of APIs or be
more dynamic, interacting with information and their relations (graph knowledge bases).

Finally the response generation can be fully governed by handcrafted rules (e.g. if a
set of conditions apply, say that). Or decide the template response from a finite set using
statistical approaches (using some proximity measures like TF-IDF, Word2Vec, Skip-
Thoughts). Or being generative, with responses that are built on the fly by a Sequence-
to-sequence model.

The choices are not independent however, as can be seen from Figure 2.2: since the

19

2 – State of the Art

tasks are put in a chain (first understanding, then retrieving the information and ulti-
mately formulating a response), the approach chosen on the first stages has consequences
on the following ones. Choosing to use ML instead of dynamic understanding precludes
the possibility to have generative responses, because the user utterances will be catego-
rized on a finite set of types (intent types) unless a hybrid understanding is performed
(ML to find the intent types with a parallel sequence-to-sequence model for chit-chat
dialogues). For this reason and being the understanding stage the first one, the details
on the approaches will be analyzed mainly on this first task, and for each level in it some
details will be given on the possibilities for the other two choices.

Figure 2.2. How the approaches for each task can be connected together

The choice between those possibilities has to be done based on the available data (e.g.
if transcripts of existing human conversations exist), and on the main information content
the system will provide (see above, between chit-chat, domain-specific, knowledge-based)
because the approach performance depend a lot on it. It is also necessary to keep in
mind that complex dialogues actually can perform better if at dialog management level
an handcrafted approach is kept. ML can help reconduct on sentence types, but actually
structured topic dialogues need handcrafting. As of today, deductive (from rules) decision-
taking in conversation gives better performances with respect to inductive (only learning
from examples), because it gives more control to the designers of dialogues.8

Moving the level of dynamicity higher, the complexity moves from handcrafting
very specific features, that can be very specific to the domain of application and there-
fore provides a solution that difficulty can be ported to new domains, to the complexity
of the approach itself. The transition usually is towards approaches that involve machine
learning techniques like neural networks: the engineering of those networks is quite com-
plex with respect to writing patterns to cover a set of sentences. In addition, also more
computing power is required to run those heavy systems.

Changing the selected approach (especially on the understanding and generation pro-
cesses) also has consequences on the additional work that has to be done to port the
agent to other languages. A rule-based understanding is highly coupled with the used
language. Using ML reduces a lot this dependence because instead of manually deciding
how to categorize the sentences, the system will find automatically how to do that even
in another language, if the appropriate annotated training examples are provided and if
the network structure itself is sufficiently language independent. As will be described in

8https://developer.amazon.com/alexaprize

20

https://developer.amazon.com/alexaprize

2 – State of the Art

the NLU chapter, using features of words that are more related to their meaning (con-
textual and semantic, following the “distributional semantics” concept) instead of their
grammatical role, helps generalizing and being less dependent on the selected language
(see usage of word embeddings and how they can be easily generated for any language).

Summing up, a more dynamic, end-to-end approach has an higher complexity but
leads to easily adaptable solutions, in terms of new domains and new languages.

Rule-based

This approach has both the understanding part and the response generation specified as
rules. It was firstly used for chit-chat systems, and the number of rules can be quite big.
Those rules can define themselves a response or can refer to other rules in order to reduce
the amount of different actions. However this strategy is not very good because a lot of
rules must be written in order to span all the possible variations of sentences. Moreover,
since the majority of the work is to write those rules, and the rules highly depend on the
language analyzed, this approach can hardly be applied on different languages and the
process of migration from one to another requires the rewriting of the whole set of rules.

Chit-chat systems historically do not use knowledge bases to provide responses. The
information that they provide is statically written as part of the system background.

This approach was firstly used by ELIZA [105]. Then, when used by ALICE, an
extended version of ELIZA, there has been the release of AIML, that is the markup
language used for expressing the rules. With the release of AIML, lots of implementations
of chatbots used this approach.

AIML stands for Artificial Intelligence Markup Language and is a language that
describes how the bot replies to certain inputs. Inputs are evaluated against a set of
patterns and the best matching (category) is chosen. The actions performed by the
category can be a simple response or can also set the values of state variables and invoke
other categories. Those rules determine together the classification of the sentences and
the response generation.

A rule (in the AIML jargon is called category) is made up of a pattern and a template.
As can be seen in 2.3, the pattern is responsible to identify the sentences that activate
the rule, while the template is the part that manages the response: a template can be
both a sentence that will be sent to the user or can be a redirection towards another
rule (srai rules). In addition to those two elements, some actions to manage the state of
the conversation can be added: variables can be set and read to to conditionally activate
rules.

1 <category>

2 <pattern>WHAT IS YOUR NAME</pattern>

3 <template><![CDATA[My name is <bot name="name"/>.]]></template>

4 </category>

5 <category>

6 <pattern>WHAT ARE YOU CALLED</pattern>

7 <template>

8 <srai>what is your name</srai>

9 </template>

10 </category>

Figure 2.3. An example of the rule-based AIML

While writing those rules can be quite easy, the problem is that a lot of them must

21

2 – State of the Art

be written to manage the variations on the natural language. In fact, the strategy used
for managing the development cycle of bots empowered by AIML is a cyclical process:
starting with a model with some rules, the system is tested against a group of test users
collecting the interactions; at the end of the test session, the logs are analyzed and the
developers modify and add rules to provide suitable responses. This process is called
targeting. The developer role can be separated from the role of tester or testers can be
given privileges to modify the rules on their own.

The disadvantages of using AIML are many. First of all, being a rule based system,
a big set of rules need to be built and so a big fraction of time is spent analyzing the
possible variation of the sentences instead of leaving it for more important tasks such as
focusing on the data available. A lot of rules are also needed to perform reduction on
other rules. Those additional rules make very difficult to understand what is wrong when
multiple reduction rules have been applied. Other problems come when the sentences
contain complex queries. In this situation, it is possible that more parameters need to be
extracted from a single sentence, and since every pattern can contain a maximum of one
wild character some tricks must be used.

AIML is used on bots based on ALICE. Being the markup language released under
GNU GPL license, a lot of open source tools exist, only requiring the developers to
produce a set of AIML rules. Even online services exist that can be used to deploy an
AIML bot in very few steps (for example pandorabots9).

Also considering that AIML was born for generic chit-chat systems and the Loebner
Prize, it has been used also in domain specific bots. For example, to provide answers to
Frequently Asked Questions in the domain of student support in Universities [28]. The
information contained in the FAQ are relative to admissions and courses information.
The AIML rules for managing conversations on these topics have been added to a base
ALICE bot, and a change in the state transition management has been done in order to
make the conversation stay on the desired topics, using weighted transitions that make
the bot prefer to stay on the university domain. This system has been tested on students,
establishing some evaluations on their satisfaction and also on the topic switching rate,
in order to have some measures on the state transition management.

Other examples of rule-based systems are bots that manage the interaction with the
user by only providing buttons. In this way, the dialogue is completely managed by
the bot and the interlocutor can only decide on a finite set of choices at every turn.
This is a very unnatural dialogue scheme, where the initiative belongs completely to the
bot. A lot of bots today belong to this category, because in this way the dialogues are
strongly reliable and the state of conversation can be tracked and managed easily without
unexpected utterances. About the information retrieval, those bots usually interact with
a fixed set of APIs (as most domain-specific bots do).

Machine Learning NLU

Another approach that can be used for the understanding task, instead of manually
matching sentences with patterns, is to have a Natural Language Understanding engine
that performs this classification in a smarter way. In this approach, instead of building
rules and analyzing the structure of the sentence in order to span the different variation
of sentences that should be grouped together, the objective is to have a classifier that can

9https://home.pandorabots.com/en/

22

https://home.pandorabots.com/en/

2 – State of the Art

be trained to make this task automatically using machine learning techniques (feeding
training examples, letting the internal parameters to be adjusted automatically to obtain
the desired outputs).

Natural Language Understanding applies only to the task of understanding the sen-
tences (turn natural language sentences into structured data), and not to the response
generation. NLU is composed of two sub-tasks: sentence classification, also called intent
detection, that finds for each input sentence a predetermined type that expresses what
the user wants to communicate or ask; slot filling, also called entity extraction, that is
responsible to obtain from sentences some parameters that have been previously defined
in their type.

This approach is born for domain specific bots and responds to a problem that is
inborn to this kind of bots: exists a big difference between the natural language and
the information with fixed structure stored in knowledge bases. Using Natural Language
Understanding techniques, an intermediate representation can be built starting from the
sentences in natural language and from this representation, composed of intent and slots,
it is easier to interface with the fixed structure information that are usually reachable
using some statically defined APIs (information retrieval) and also manage the state of
the dialogue, recording which intents and slots have occurred (dialogue manager).

NLU can also be used when the dialogue manager is not statically defined, but is
trained to provide the correct responses and call the right APIs over a predefined set.
In this solution, there are not rules defining how to track the state of the conversation,
because they are inferred from the training corpus. This technique, for example, is used
by the open source company RASA,10 that provides a model that not only takes care
of NLU (handling intents and entities), but also can manage a dynamic state tracking.
Based on a fixed set of patterns provided by the developer and actions (that may call
external APIs), the state tracker can be trained both by providing dialogue examples or
by doing online learning (asking for feedback after every turn) for a quick annotation of
new corpora.

Encoder-Generative models

Going further with automation techniques that learn from examples, if the management
of the state of the dialogue and the information retrieval and the response generation
are managed without writing static rules, the approach is said to be generative. Using
this approach removes the intermediate point of contact between natural language and
rule-based systems that is used in NLU systems. Everything is trained together in a
end-to-end fashion: from the input sentences to the output sentences.

This approach was born in the chit-chat domain and has its strength when combined
with a huge corpus of dialogues. Given the dialogues, which are sequences of sentences
said by different actors, the system is trained to generate the next sentence given the
current dialogue history.

The first implementation of this strategy was trained on tweets [88], but other works
have been trained on Ubuntu Dialogue Corpus [68] and many other datasets.

This technology is the one that is used to provide translations, with some modifica-
tions. The model for the generation is trained on the corpus and learns how to generate

10https://rasa.ai/products/rasa-core/

23

https://rasa.ai/products/rasa-core/

2 – State of the Art

the next sentence from the previous ones with an encoder-decoder structure. This struc-
ture, as will be seen applied for slot tagging in Subsection 2.2.6, uses LSTM cells, that can
capture features of sequences adaptively using the memory capabilities of their recurrent
nature. The encoder network (can be seen as the understanding part) collects the useful
features while the decoder, given an initial state from the encoder and given a stimulus,
begins the generation of the new sentence and stops when appropriate.

A even more complex approach is the one described in [93] that uses a hierarchical
RNN: the lower level is applied on words, both in the encoder and the decoder, while a
coarse-grained RNN applied on the sentences is used to model the topic propagation over
the turns.

The main advantage of this kind of approach is that responses are generated com-
pletely in automatic way and thanks to LSTM cells can contain elements that were pre-
viously mentioned in the conversation. Being generative, they always produce an output
even when the inputs are very different to the ones used in the training phase. This can
be seen as good generalization ability, but can result in the generation of unpredictable
and strange sentences, even when huge corpora are used for training. Grammatical errors
can also be generated in the output sentences if no post-processing checks are done.

To overcome those problems, reinforcement learning strategies can be applied, in order
to learn in an online setting also from the dialogues that occur at runtime. This is a good
strategy in general, but it can lead to some unwanted effects of polarity of the responses
if there is not a supervision: the example of Microsoft Tay, that after 16 hours on Twitter
was shut down because of the offensive tweets that was generating.11

Having a model trained on a wide variety of dialogues also rises the problem of the
coherence of the responses: it is easy that, without filtering and post-processing the
responses, the bot replies in different ways to questions inherent to the same topic. For
this reason a persona-based model can be built in order to consider also some more inputs
to the generator of the responses, that can model some features of the speaker, such as
background information and speaking style [61]. Those features can be encoded into
distributed embeddings and be provided to the generator both in the training and in the
inference time.

Another common problem of this approach is that it tends to generate commonplace
responses, because it is trained to maximize the likelihood of the output for the given
input. It is like providing an average response that fits the current input. A proposed
solution to reduce this effect is to use Maximum Mutual Information as objective function
in the neural model. This will try “to take into account not only the dependency of
responses on messages, but also the inverse, the likelihood that a message will be provided
to a given response” [60]. Using this solution, a clear decrease in the proportion of generic
responses can be observed on the outputs.

This generative approach has shown good results for non-specific task dialogues, be-
cause the goal is simply to continue the dialogue and there is no need to introduce some
task-specific information.

As an example of this approach in action, Google Smart Reply applies it to generate
short email responses that can be selected and completed. The implementation takes in
account the incoming email to generate responses that may be used to replay [48].

In the field of domain specific bots, usually the responses are not generated completely
from sequence-to-sequence models. The approaches usually make use of templates that

11http://bit.ly/washingtonpost_ohlheiser_tay

24

http://bit.ly/washingtonpost_ohlheiser_tay

2 – State of the Art

can be chosen by rules or by a dynamic classifier. But in some way templates are always
used to provide the answers to domain-specific questions.

The dynamism can also reach higher levels on the information retrieval task, without
requiring fixed APIs but allowing simple key-value data storage to be queried in natural
language: this approach has been proposed in [24].

2.1.5 The challenges

For the different contents and approaches that have been analyzed, different challenges
arise with bots that should provide some kind of valuable content.

The most important point is to classify the user sentences and to reconduct them to
a set of questions that have a response by design. This challenge of understanding the
user is made up of two components: one is relative to the natural language understanding
of the current sentence, while the other one is relative to the contextualization of the
current sentence in the environment of the dialogue. While talking, humans tend to
refer to previously mentioned things, and the understanding of sentences is often difficult
without placing it into its context. Some approaches to solve this problem are explained
in Subsection 2.2.8, explaining the concept of multi-turn and dialogue tracking.

Another challenge that arises, especially on generative approaches, is the coherence
of the sentences that are said. Since the training of those models is done on dialogues
between multiple users with different visions and different behaviour, it may be difficult
to establish a coherent personality of the bot. This issue is not present if the approach
chosen makes the response generation in a static way: in this case it is sufficient to keep
a coherent personality among the people writing the response templates.

Another big issue is how to deal with unexpected questions, for which a response
has not been prepared. This problem is present in rule-based approaches, in NLU-based
bots and even in generative approaches.

The next section will investigate the Natural Language techniques that are used for
domain specific bots, focusing on the tasks of intent recognitionand slot filling and how
to manage a dialogue in a multi-turn environment.

2.2 Natural Language Understanding
As introduced previously, NLU is the process of turning sentences into structured infor-
mation. Two tasks are involved: intent classification and slot filling. Usually those tasks
are performed in statistical way, not applying a fixed set of rules as was done with AIML
and similars. Natural Language Understanding belongs to the Natural Language Pro-
cessing (NLP) family whose components are involved in text processing in very different
ways.

Starting from the easiest NLP component, tokenizers are part of this family. The role
of a tokenizer is to split texts into tokens that correspond to words and also punctuation
(if punctuation is relevant for the current problem, or can be removed by the tokenizer).

Other important components of NLP are Part-Of-Speech recognizer and Dependency
Parser, that are responsible to parse the sentence and individuate the grammatical roles of
the words (the term “parsing” is also used when elaborating source code; some approaches
can be taken from source code parsing, but usually the natural language grammar is more
complex and ambiguous and is better analyzed by statistical parsing [6]).

Another commonly used component of NLP is the Lemmatizer: its role is to reconduct
to the base form all the words that derive from others. This is used to reduce the

25

2 – State of the Art

cardinality of vocabularies and simplify some tasks, for example finding the topic of the
conversation.

Another thing that is done using NLP is Named Entity Recognition: this finds occur-
rences in the text of some entities that belong to some types: common types are Person,
Organization, Country, Location, Date, Time, Numbers, Currencies. This component
usually mixes an approach based on POS combining them with a knowledge base that
enumerates in some way what belongs to each entity type. The Slot Filling task is quite
similar to NER, and the differences will be analyzed soon. The NER can have some
complications when the talker refers to previously mentioned entities by using explicit
signs (such as pronouns or definite nominals) or implicit references (such as ellipsis): this
is the non trivial problem of coreference resolution, that is analyzed in Subsection 2.2.8.

Other components are more focused on the sentence as a whole: Sentiment Analysis
that tells if a sentence is positive negative or neutral, Summarization, Sentence Classi-
fication to find topic or complexity level for example. The intent detection task can be
put in this last group.

For this work we are interested mainly in two very specific tasks (intent classification
and slot filling) that usually are denoted by the Natural Language Understanding label.
The other NLP tasks (syntactical analysis, POS tagging) are not main interests here,
however some of them, such as sentiment analysis, can be used to detect the mood of the
writer, as will be discussed in the personalization Section 2.3.

2.2.1 Goals

As mentioned before, from the sentences NLU wants to:
• Classify the intent (what the user wants, against a set of predefined ones);
• Extract the entities mentioned (we may want to care about only a specific set of

entity types that are relevant to the abilities of the bot). This task is somewhere
called slot filling, because the words that we want to extract may also not be entities.
Furthermore, slots in a sentence can be designed to have a role (in order to be able
to discriminate between multiple instances of the same type of entity). This feature
is not present in the Named Entity Recognition task because the objective is only
to recognize the entities, not to give them a role as a parameter in a programming
language. For this reason the name of this task can be both “slot filling” and “entity
extraction” with preference for the first one that gives more the idea of roles, while
“named entity recognition” is quite inappropriate.

For example, for the sentence “is Turin a supported city?” we may want to categorize
it as a question that asks if a city is supported (this is the intent) and extract the word
“Torino” that is the city the user is looking for (this is a slot that corresponds to an
entity of type CITY or simply LOCATION depending on the granularity of entities defined).

The first task corresponds to a classification of the user sentences to decide what is
the intention of the user. Since a bot is usually designed to answer to different types of
questions, this stage is responsible for finding the type of question. The slot filling task
instead is a process that annotates some parts of the input sentences with the name of
the corresponding slot. A slot can be thought as a field in an online form. While the
intent represents the type of question, the slots of a sentence are values that the bot
must be able to extract from the sentences because they are used as parameters for the
application logic.

For both the goals, different approaches are described in dedicated subsections: the
intent classification related ones are analyzed in Subsection 2.2.5 while the slot filling

26

2 – State of the Art

ones in Subsection 2.2.6.
Once the intent and the slots have been analyzed on the current sentence, we can

have some rules at the application level that can put some constraints. For example, for
a certain type of question, one or more slots can be compulsory. In this case, the conver-
sation should make the user provides the values by prompting him some questions. These
types of constraint make the interaction model more complex and require an analysis over
multiple user and machine turns, as will be seen in Section 2.2.8.

The two tasks can be done independently, but some recent studies [33, 65] have shown
that there can be benefits if they are performed together.

2.2.2 Recurrent Neural Networks

This section contains a description of the different structures of neural networks that have
reached the State of the Art condition and have been described in literature.

A neural network approach can be used for the tasks of slot filling and intent detection.
The first thing that needs to be done is to point out what are the inputs and outputs
of the system. Once defined the inputs and outputs, we can think of a component that
implements the desired functionalities. The inputs to the network are the words contained
in the sentence and the outputs are the intent label (for the intent classification task)
and the slot labels (for the slot filling task).

As slot labels, the slot names can be used directly but, in order to better handle
multi-word slots, a commonly used format is the IOB introduced in [85], where the O
indicates “other”, the B is the beginning of a slot and the I is the label associated with
a word that continues the slot of the previous word. The IOB labels are prepended to
the slot name. An example of inputs and expected outputs, showing the IOB annotation
scheme, is represented in Figure 2.4.

Figure 2.4. The Inside Out Beginning annotation scheme

Instead of using simple feed-forward networks, a lot of studies make use of networks
with recurrent components. The core idea behind RNN is to make use of sequential
information. In feed-forward networks, the assumption is that each input-output pair
is independent from the others. For RNN, the recurrence stays in performing the same
task for every element of the sequence, making the output depending on the previous
steps. This idea can be seen as the RNN having memory that keeps information from the
past iterations. Specifically on the ability of remember and use in the correct way their

27

2 – State of the Art

memory, a lot of studies have been done to develop particular cells (a cell is the basic
building block for RNNs).

A recurrent cell is a type of cell that takes as input also its previous output. Those
types of neural networks have been designed for problems where the order of inputs
matters, and the length of input sequence can vary. For example, they are commonly
used with sequence of words, characters, frames in a video and their goodness stands in
modeling features that belong to the sequence. Unlike feed-forward nets, that consider
the fixed set of inputs to generate the outputs, the recurrent nets are applied in different
timesteps to elements belonging to a sequence and, thanks to the loops of their cells,
retain information from previous timesteps and the output depends on them too.

Since the same network (and cells) are used in different timesteps, the analysis of
RNN is usually performed on the unfolded version of the network (see Figure 2.5): the
single elements are repeated different times (one for each timestep) and the looping links
are now going from the element in the previous time to the next time. In this way, a
recurrent network is transformed into a multi-layer feedforward network, but keeping the
same weights on the unfolded elements that generate from the same recurrent cell.

Figure 2.5. The temporal unfolding operation on a simple RNN structure

The unfolding operation sometimes is also called unrolling because of the similarity
to the loop unrolling.12

Backpropagation

Backpropagation is the algorithm used in neural networks to update the weights, that is
used also for the training of recurrent networks, with a slight modification.

The goal of the backpropagation training algorithm is to modify the weights of a neural
network in order to minimize the error of the network outputs compared to some expected
output in response to corresponding inputs. It is a supervised learning algorithm that
allows the network to be corrected with regard to the specific errors made. The general
algorithm is the following:

1. Present a training input pattern and propagate it through the network to get an
output;

2. Compare the predicted outputs to the expected outputs and calculate the error;
3. Calculate the derivatives of the error with respect to the network weights;
4. Adjust the weights to minimize the error;

12https://en.wikipedia.org/wiki/Loop_unrolling

28

https://en.wikipedia.org/wiki/Loop_unrolling

2 – State of the Art

5. Repeat with other training samples.
In this way the Neural Network, which is a combination of layers with tunable parameters,
learns to predict the expected output of the training samples. The goodness of the
network is to obtain correct outputs also for reasonably similar samples that were not
seen in training time.

With RNNs the training mode is very similar. The name of the modified algorithm is
BackPropagation Through Time (BPTT) [106] and is basically the standard algorithm
applied on the temporally-unfolded version of the network. The only difference is that,
since the layers correspond to different timesteps of the same cell, the weight updates
in each instance are summed together. In other words, the temporally-unfolded neural
network is a deep neural network with shared weights.13

Figure 2.6. The Backpropagation Through Time: how the errors are propagated

As can be see in Figure 2.6, the loss function in backpropagation for each observed
error (the difference between the true value and the predicted one, denoted with E) affects
the current and previous timesteps with partial derivatives. For example, if we want to
consider the gradient of the error E2 with respect to the inputs x2, x1 and x0 we can
apply the chain rule:

∂E2
∂x2

= ∂E2
∂s2

· ∂s2
∂x2

∂E2
∂x1

= ∂E2
∂s2

· ∂s2
∂s1

· ∂s1
∂x1

∂E2
∂x0

= ∂E2
∂s2

· ∂s2
∂s1

· ∂s1
∂s0

· ∂s0
∂x0

2.2.3 Cell types

This paragraph describes the cell types used in this thesis. Such cells are the basic units
used for the network architectures explained successively. As a layer in feedforward NN
is composed of neurons, a layer in a RNN is composed of a recurrent cell. The cell holds
the matrix parameters to compute outputs and next state given the current state and
current input.

13http://bit.ly/windml_rnn_backpropagation_time

29

http://bit.ly/windml_rnn_backpropagation_time

2 – State of the Art

Simple RNN

The simplest recurrent cell type is a block with two inputs and two outputs. As can
be seen in Figure 2.7, one input is the actual input at the current timestep while the
other one comes from the previous timestep (or from initialization on the first time).
The cell produces an output (yt) that can be passed to the next layers of computation
(recurrent or not) or be used as a probability distribution passing through a softmax. For
the next timestep the cell also produces the current state (ht) that is used on the looping
connection; the state has the same value as the output, and the different name is given
only to to put the emphasis on the different destinations for each one of them.

Figure 2.7. A simple RNN with a single layer inside

The two inputs are concatenated and passed through a single feed-forward layer that
corresponds to a linear transformation plus a non-linear function (e.g. tanh, σ). The next
state is computed as ht = tanh (W · [ht−1, xt] + b) where the notation of square brackets
denotes the concatenation operation, and W and b are respectively weights and biases.

Since the same cell is applied many times in time, and the recurrence loop feeds back
the output as inputs, there can be easily two kinds of problem due to the fact that the
weight matrix coefficients are multiplied at each timestep:
Exploding gradient: if some coefficients are greater than 1, the output values can

become soon very big, making the network insensible to new inputs because is in
some way saturated. The solution to this problem is using some non-linear function
that limits the values not to be over the value of 1;

Vanishing gradient: if some coefficients are near to 0, the network will quickly forget
previous inputs and the output will not depend on them.

This can also be seen in the formulation of BPTT. There are two factors that can affect
the magnitude of gradients: the weights and the activation functions (or more precisely,
their derivatives) that the gradient passes through. If either of these factors is smaller
than 1, then the gradients may vanish in time; if larger than 1, then explosion might
happen. For example, the tanh derivative is smaller than 1 for all inputs except 0;
sigmoid σ has even lower values because it is always less than 0.25.

30

2 – State of the Art

Those problems have the same origin: the simple RNN is not able to manage long-
term dependencies. This problem has been analyzed in detail by [8, 40] and other types
of cells have been proposed.

Long Short-Term Memory

LSTM [41] is a solution that came out in 1997 in which a more complex cell is considered.
The main idea is to have some gates that decide how much of the previous cell state to
keep, and how much of the current input to consider for the calculation of the current
state and current output.

In addition to the simple RNN cell, we can see in Figure 2.8 that three more gates
are added:
Forget gate: decides how much of the previous hidden state to keep.

ft = tanh (Wf · [ht−1, xt] + bf)
Input gate: decides how much of the current input to consider.

it = tanh (Wi · [ht−1, xt] + bi)
Output gate: decides how much of the hidden state is exposed to the output.

ot = tanh (Wo · [ht−1, xt] + bo)

Figure 2.8. The Long Short-Term Memory cell proposed in [41]

All those gates are implemented with single layer feedforward networks. This type
of RNN is able to manage better the long-term dependencies, at the expenses of having
four times the parameters. But with sufficient training examples, the network is able to
learn how to output the correct values and how to mix the different inputs.

Many implementation exist of this cell, the most common is the basic LSTM that is
shown in Figure 2.8, but variations exist (with peephole connections, or other variations
on the gates14).

The gates are combined with the previous cell state ct−1 and hidden state ht−1 in
the following way: the input gates it are used to scale the outputs of a tanh layer (the

14http://colah.github.io/posts/2015-08-Understanding-LSTMs/

31

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

2 – State of the Art

layer that was used in simple RNN) and produce the state update candidate ĉt. Then
the forget gates ft decide how much to keep of the previous cell state ct−1 and produce
the new state ct = ft · ct−1 + it · ĉt. At the end the new hidden state is computed using
the output gate: ht = ot · tanh (ct).

The LSTM addresses the problem of vanishing gradients very specifically. In the
recurrency of the LSTM, the activation function is the identity function (the addition
from ct−1 to ct) with a derivative of 1.0. So, the backpropagated gradient neither vanishes
or explodes when passing through, but it remains constant. The effective weight of the
recurrency is equal to the forget gate activation. So, if the forget gate is on (activation
close to 1.0), then the gradient does not vanish. Since the forget gate activation is never
greater than 1.0, the gradient cannot explode either.

Gated Recurrent Unit

Later studies [17] have proposed a new type of cell (GRU) that has only two gates: reset
gate and update gate that adaptively control how much each hidden unit remembers
or forgets while processing a sequence. The hidden state and the state cell are merged
together and therefore the output gate is no more required. The advantage of this type
of element with respect to LSTM is that less parameters are used.

Figure 2.9. The Gated Recurrent Unit cell proposed in [17]

Figure 2.9 shows the internal composition of the cell. The analysis of how the internal
layers are connected can be done by taking as reference the simple RNN with only the
tanh layer. GRU firstly adds the reset gate rt that modulates how much of the previous
state ht−1 is passed to the basic tanh layer. The other gate, the update one it decides the
weighting between the basic tanh output and the previous state ht−1: if the values are
close to 1, the cell works similarly as a simple RNN that suffers from long-dependencies
irrelevance (fading gradients), but as the values of this gate decrease the behavior of the
cell tends to keep its state unchanged.

It is important to notice that this cell has only one state vector: no distinction between

32

2 – State of the Art

visible ct and hidden ht, the architecture is simpler.
Being more recent, less studies have used them, but from the performance point of

view, they seem to be of the same order of LSTM [47, 19]).

2.2.4 Word embeddings

Now that the bases of recurrent networks have been described, let us focus on a very
important point: inputs. The choice of the inputs to the neural network is very important
and can affect a lot its performances.

It might seem that we already have the inputs to the Neural Network: sentences.
Sentences are made up of words and we would like to use those words as inputs to the
classifier network. But since all neural networks only work with numbers, there must be
a layer at the beginning that, given the input words, transforms them in numerical form.

The most simple and naive approach is to consider the “one-hot” vector of the words.
This representation is an array with length corresponding to the length of the input dic-
tionary and contains values that are all zeros except for the one whose index corresponds
to the index of the word in the vocabulary. In other words, a dictionary is built and
the representation of the i-th word in the dictionary is an array with a single non-zero
value on the i-th value. This is straightforward to implement, but has some problems
because highly depends on the input dictionary: the length of one-hot vectors is the same
as the length of the dictionary. Any network following this representations will have a
big problem: different words, with similar meanings, will be completely different so any
parameter that can be learned on one words will not be applicable to a similar word.
This approach cannot work with words that are not contained in the training set.

Other solutions may employ techniques like stemming or lemmatization, that try
to reduce the vocabulary by stripping out word suffixes and reconduce words to their
roots. Stemming, applies brutally some rules to remove the suffixes, while lemmatization
extracts the lemma with more powerful and studied rules. However those techniques
remove information that could in some way be useful, and make human language very
rich.

A better approach is to use a representation of words that considers semantics and
syntactic information. The hypothesis behind this method is the Distributional Seman-
tics [92]: words that appear in the same context (the context is there defined as the
surrounding words) are considered similar, because somehow they can be exchanged the
one for the other since they appear in similar contexts. With this hypothesis, each word
is mapped to a dense real vector with a fixed dimension, where the values are optimized
to represent the semantic distribution of the corresponding words. Their dimension is
a lot smaller than the size of the input dictionary. The word embeddings are usually
pre-trained on large corpora of unlabeled data (for example Wikipedia15 or Common-
Crawl16).
With these vectors it is possible to perform different things:

• Find neighbors and compute the similarity of words;
• Visualization on 2D plane [69];
• Mathematical operations with words that represent analogies of relationships among

words: this can be measured with the so called analogy test [75].

15https://dumps.wikimedia.org/
16http://statmt.org/ngrams/

33

https://dumps.wikimedia.org/
http://statmt.org/ngrams/

2 – State of the Art

Using word embeddings as inputs to the neural network has the advantages [7]:
• Reduced size of input arrays, no “curse of dimensionality”;
• Semantic and syntactic similarities of words are considered.

The embeddings can be part of the model (in this case the weights of the embedding
layer are trainable) or can be pre-computed on external bigger corpus. The first option
is preferred when the size of the used corpus is big enough and it is thought to be
comprehensive enough in terms of word coverage (no unexpected new words in prediction
time). Instead when the corpus of the considered problem is not big enough to model the
word distribution in terms of syntax and semantics, it is better to use pre-trained word
embeddings.

Pre-trained word embeddings can also be fine-tuned. Fine-tuning has as main ad-
vantage to reduce the loss on the desired task, but can also have some disadvantages: if
two words are near in the pre-trained embedding space, and only one of them is used
in a neural network and fine-tuning is applied, the position in the embedding space can
change and move far from the other word, not trained in the model. If the other word
occurs in model testing (inference), the network will have some problems because the two
words are not anymore similar.

Machine Learning approaches that use word embeddings to translate from words to
representations that capture their meanings are said to be semantic.

The algorithms

There are different algorithms for producing word vectors, that fall into two families:
count based and direct prediction. For the count based ones, the idea at the basis is
to build a co-occurrence square matrix with the dimension of the vocabulary. Then,
chosen a window size (usually between 2 and 5) the chosen corpus is processed by sliding
this window over the words and the counts are collected. Once this matrix is filled
up, some strategies for dimensionality reduction are applied. Usually Singular Value
Decomposition [30] is used, a particular matrix factorization technique based on the usage
of eigenvalues and eigenvectors. Without entering in the mathematical details, we can
view that as a trick to translate the co-occurrence matrix into the word vectors, keeping
the idea that words with similar occurrence counts correspond to similar word vectors,
and therefore similar meaning due to the distributional hypothesis.

The second family instead, direct prediction, puts the calculation of those vectors
under the machine learning technique: the values for each word are used as tunable
parameters that need to be optimized through a learning procedure. The problem is
defined as follows: considering the same sliding window of words as the count based, for
each center word the contextual words inside the window are considered, and the objective
is to predict the one from the other. In detail, two different models exist: the CBOW
(Continuous Bag of Words) predicts the center word from the outside context words and
the skip-gram that instead predicts the context words from the central one. These two
possibilities exist for the Word2Vec algorithm described in [74], and what emerges is that
the first one is better on smaller datasets because it uses all the surrounding words to
perform a single observation smoothing the distributional information, while the second
one is able to produce more detailed predictions over large dictionaries because treats
each word in the context is treated as a new observation.

Other algorithms do a hybrid approach, mixing count-based with direct predictions.
This is the case of GloVe [81]. All these solutions work on the word level only. Instead
some works have been done also to enrich the representations with subword features.

34

2 – State of the Art

In [11], following the idea that similar groups of letter convey similar meanings, each
word is mapped to a set of n-grams and the skip-gram model is changed to consider each
word vector as the sum of its n-grams. Figure 2.10 shows an example of extraction of
n-grams (with n = 3), where the first and the last ones contain some special characters
to indicate the beginning and end of words. The learning of the embeddings therefore is
not done on the words but on the groups of letters. In this way it is possible to compute
word vectors also on unknown words since they are composed of known n-grams.

Figure 2.10. An example of the n-grams derivation of FastText in [11]

The vocabulary issues

Having good algorithms for word embeddings is a good starting point. But there may be
some problems when deciding how to preprocess the corpora. What we want to consider
as input features? Only the words in lowercase, cleaned up from all the non alphabetical
characters, or we may consider other hints from the user typing such as capital letters or
punctuation?

The choice is usually to clean deeply the inputs in order to reduce the vocabulary. For
capitalization it means to lowercase everything. But the casing feature may be important
in some way to help recognizing entities (think about a place name with capital letter, or
an acronym uppercase). On the other side, beginning of sentences have capital letters that
should be lowercased because that is not a wanted feature, it is only required by writing
rules. For this reason some invented a truecasing model [64] that aims at reconstructing
the correct word casing.

The other critical point is punctuation: a decision is needed about whether to keep
those signs as additional dictionary entries or simply drop them. A very critical one is
the apostrophe: the words around it are usually modified, so not only they have to be
considered separately, but also some reconstruction could be required (example: “we’re”
as a single word [“we’re”] or separating by the apostrophe [“we”, “’re”] or reconstructing
the original words [“we”, “are”] in order to have the same entry for the verb “are” in the
dictionary (or applying a stemmer with similar results).

An approach based only on alphabetical lowercased words may be good for scenarios
where the users do not have the time to write complex punctuations. But when additional
features are provided (such as punctuation and word casing in text, and accents and tone
in voice), it would be a pity to throw away things that may be useful for doing a better
classification.

2.2.5 Intent classification

Let us talk here about approaches for the first task of NLU, intent classification, that
takes as input the sentence and provides as output a label that corresponds to the intent

35

2 – State of the Art

type of the sentence. It is a multi-class classification. It takes in input a sequence of
words and produces a single label, that is a trait value of the input sentence.

Keyword-based

The first approach that can be considered is keyword-based. In this approach, for each
intent type we determine a set of keywords that, if present in the current input, gives a
score to the selected intent type. For example a naive classifier can be built to generate
keyword groups from training sentences and classify accordingly to their presence by doing
a “majority vote” on the words of the current sentence.17 This approach dynamically
determines the keywords for each class, but it is not good enough because it looks only
at some words in the current input sentence.

A better idea would be to compute a sentence-level representation that summarizes
all the words and the meaning of the sentence, and from this vector it does a classification
on the output labels (intent types). For this sentence vector a lot of different approaches
can be applied that are explored in the following paragraphs.

Average of word vectors

Figure 2.11. Intent classification by average of word vectors

First of all, given the word vectors for each word contained in the sentence, an average
can be done. As shown in Figure 2.11, after the average is computed over the fixed-length
embedding values for the input words, a simple feed-forward layer can be used to map
to the intent space, producing logits that estimate the probability to belong to a certain
class (intent type).

This strategy however is not good because it does not consider the order and the
relationships between the words. The order matters a lot in natural language.

Another problem of this approach is that actually every word counts the same, so if
stopwords are not eliminated they can bias the output basing on irrelevant inputs.

17https://chatbotslife.com/text-classification-using-algorithms-e4d50dcba45

36

https://chatbotslife.com/text-classification-using-algorithms-e4d50dcba45

2 – State of the Art

RNN approach

To consider the order, a RNN can be used to summarize the sentence and produce a
sentence representation that can be used in another layer to classify on the intent types.
The output of the RNN is taken only at the end of the sequence. This approach is able
to capture some more information about the sequence that considers the relative order of
words. Considering both a forward and a backward RNN, the output of the summarized
output is not biased towards the end of the sentence as would happen for a forward-only
RNN.

Figure 2.12 shows how the bidirectional encoding of the sentence substitutes the
average operation with respect to the previous approach. The output projection layer
finally performs the mapping to the intents spaces.

Figure 2.12. Intent classification by applying a bidirectional RNN

What makes this technique to work well is that the LSTM is very good at captur-
ing sequence-level information, considering with different importance the input words.
The problem of stopwords is defeated and the Recurrent Network learns to discard the
irrelevant words.

RNN with attention

To emphasize the fact that some words count more than others in the classification prob-
lem, several techniques can be used. First of all, stopwords can be identified and removed.
But more dynamic approaches can automatically learn a distribution over time of words
that tells how much relevant is this word for the task. This is the attention mecha-
nism, that is quite commonly adopted in automated translations [5] and on sentiment
analysis [63].

This kind of additional component, as will be seen also for the slot filling task in
Subsection 2.2.6, provides a way both to learn those scoring values and to use them for
a weighted average on the outputs of the RNN layer. In the case of intent classification
the attention wraps the bidirectional RNN.

37

2 – State of the Art

2.2.6 Sequence-to-sequence models for slot tagging

The task of slot tagging instead consists of generating an output sequence in which each
element corresponds to a tag for the corresponding input word. The tag can be the entity
type or the IOB. IOB can be useful when there is the need to deal with multi-word slots,
as in the example of Figure 2.4.

A lot of the architectures listed below have been created for the task of Neural Machine
Translation. This task takes as input the sequence of words in the source language and
outputs a sequence of words in another language. This is somehow similar to the task of
sequence labeling, because it maps an input sequence to an output sequence, but has some
differences that make it a lot different and require a different approach. The differences
will be explained in details during the analysis.

A common characteristic of them is the presence of two key elements: an encoder
and a decoder. The encoder is responsible of collecting all the useful features on the
input sequence. The decoder instead must generate the output sequence. The differences
between the different models are on the way that the encoder provides input to the
decoding stage. The general composition of such encoder-decoder approaches is shown
in Figure 2.13.

Figure 2.13. The connections between Encoder and Decoder components for
sequence translation

A very critical point when generating the output sequence is the correlation between
the IOB labels. For example a “I-ent” is always preceded by a “B-ent” or another
“I-ent”. Also there can be some patterns that highlight that after a certain entity it
is more probable to find another one. This is called output dependency, that occurs
at the decoding stage, just before the production of the outputs. Modeling the output
dependencies can be done in different ways:
Local choice: using this approach, each decoding step produces an output that is then

projected to the labels. The decision about which labels to assign is done locally,
performing a simple softmax operation followed by a sampling;

Output feedback: in this approach, the output is fed back as input to the next timestep
for the decoder network (similarly to a Jordan Network [46]), and the network in
training learns the output dependencies;

Linear-chain CRF: an alternative to RNN for modeling the output dependencies is
using a linear-chain CRF. This can substitute the decoder network, and use the
encoder to produce its input features. CRF finds the paths with higher energy in
a very similar way to RNN. In other words, it finds the output sequence that is
mostly probable;

Beam search: not only a single candidate is kept for subsequent decoding timesteps,
but a set with fixed size, in order to be able to perform decoding without always
following the local optimum.

38

2 – State of the Art

In the following paragraphs we give a description of some sequence-to-sequence ap-
proaches, from the most simple ones towards the most suitable for the slot labelling
task.

Simple Encoder-Decoder

The most simple approach, illustrated in Figure 2.14 is the one where the encoder collects
all the word vectors and using a RNN computes a final representation of the sentence (as
in the intent classification task). This representation is passed to the decoder RNN that
for each timestep produces an output word.

Figure 2.14. The usage of RNN for a simple Encoder-Decoder approach

This model has some problems. First of all, the decoding part depends only on the
sentence vector c, that must be able to keep all the information on the input sequence,
whose length can vary, in a fixed size. Then, the decoding steps may easily lose the
relevant information from this vector, since the decoding can take a lot of decoding
timesteps. But a much greater problem comes from the lack of constraint on the output
sequence length: in translation between different languages, this can be a good feature,
but in our task of sequence labeling we want an output sequence with fixed length. The
last observation we can make is that there is no alignment model between the input
and output sequences. The outputs depend on all the inputs, without having different
encoded information for the decoding of the output sequence.

Encoder-decoder keeping sentence vector

This model comes from [17], a study on the task of neural machine translation. It is an
enhanced version of the previously considered model because the sentence vector coming
from the encoding stage is passed to all the decoding stages (see Figure 2.15).

Figure 2.15. Passing the sentence vector to all the decoding steps

39

2 – State of the Art

This approach helps the decoding stages that, receiving the sentence vector directly,
can perform better in their task. However, some problems are not solved: the output
sequence length has no constraints and there is no alignment model.

Encoder-decoder with aligned inputs

This model was proposed [65] for the sequence labeling problem (that can be applied
to slot filling, POS tagging). In this model the encoder sends some information to the
decoder for each input word instead of sending a single vector at the end (see Figure 2.16).

Figure 2.16. The Encoder-decoder with aligned inputs: each decoding step is influenced
by the contextual representation of the aligned word

This model fixes the output sequence length to the length of the input sequence. The
alignment model is fixed: the decisions in decoding are done looking at current input
word in the current left plus right context.

Encoder-decoder with attention

The idea of attention empowers recent studies on translation. The purpose is to decide
which outputs of the encoder are more relevant for the current decoding step dynami-
cally. On the previous model, always the aligned encoded input is used, but for language
translation this can be a limitation.

Using the attention [5], that provides a dynamic alignment model, it is possible to:
• Determine which are the encoded inputs that are more relevant;
• Use them to provide a better translation.

The attention, as can be seen in Figure 2.17, adds two blocks: one is the context vector
memory, which stores the output of the bidirectional RNN at each timestep, and the other
one is the attention block that is responsible to pick up the correct mix of the encoded
vectors by doing a weighted sum of them and provide that to the decoder RNN.

By looking inside at the attention mechanism, in Figure 2.18 we can see that the
encoded vectors e are used together with the previous hidden state of the decoder cell

40

2 – State of the Art

Figure 2.17. The aligned Encoder-decoder with the addition of attention mechanism

hi−1 in some matricial multiplications and finally pass through a softmax. This part
is responsible to learn the weights for each timestep of the decoder that represents how
much relevant are the input words for the determination of the current output word. The
matrices W1, W2 and V are used together with a tanh layer to determine dynamically
those weights. This block, put inside a complex network architecture, learns all the
parameters thanks to the backpropagation algorithm being end-to-end differentiable. The
output ci is then computed doing a weighted sum between the ej encoded vectors.

Figure 2.18. How the Attention block computes a weighted sum, learning the
weights dynamically

41

2 – State of the Art

With this network, used for translations, it is useful to show how the attention maps
the words in the two languages. Figure 2.19 shows a matrix representation that says
which input words were used to provide the corresponding output words.

Published as a conference paper at ICLR 2015

T
h
e

a
g
re
e
m
e
n
t

o
n

th
e

E
u
ro
p
e
a
n

E
co
n
o
m
ic

A
re
a

w
a
s

si
g
n
e
d

in A
u
g
u
st

1
9
9
2

. <
e
n
d
>

L'

accord

sur

la

zone

économique

européenne

a

été

signé

en

août

1992

.

<end>

It sh
o
u
ld

b
e

n
o
te
d

th
a
t

th
e

m
a
ri
n
e

e
n
v
ir
o
n
m
e
n
t

is th
e

le
a
st

kn
o
w
n

o
f

e
n
v
ir
o
n
m
e
n
ts

. <
e
n
d
>

Il
convient

de
noter
que

l'
environnement

marin
est
le

moins
connu

de
l'

environnement
.

<end>

(a) (b)

D
e
st
ru
ct
io
n

o
f

th
e

e
q
u
ip
m
e
n
t

m
e
a
n
s

th
a
t

S
y
ri
a

ca
n

n
o

lo
n
g
e
r

p
ro
d
u
ce

n
e
w

ch
e
m
ic
a
l

w
e
a
p
o
n
s

. <
e
n
d
>

La
destruction

de
l'

équipement
signifie

que
la

Syrie
ne

peut
plus

produire
de

nouvelles
armes

chimiques
.

<end>

" T
h
is

w
ill

ch
a
n
g
e

m
y

fu
tu
re

w
it
h

m
y

fa
m
ily

, " th
e

m
a
n

sa
id

. <
e
n
d
>

"
Cela
va

changer
mon

avenir
avec
ma

famille
"
,
a

dit
l'

homme
.

<end>

(c) (d)

Figure 3: Four sample alignments found by RNNsearch-50. The x-axis and y-axis of each plot
correspond to the words in the source sentence (English) and the generated translation (French),
respectively. Each pixel shows the weight αij of the annotation of the j-th source word for the i-th
target word (see Eq. (6)), in grayscale (0: black, 1: white). (a) an arbitrary sentence. (b–d) three
randomly selected samples among the sentences without any unknown words and of length between
10 and 20 words from the test set.

One of the motivations behind the proposed approach was the use of a fixed-length context vector
in the basic encoder–decoder approach. We conjectured that this limitation may make the basic
encoder–decoder approach to underperform with long sentences. In Fig. 2, we see that the perfor-
mance of RNNencdec dramatically drops as the length of the sentences increases. On the other hand,
both RNNsearch-30 and RNNsearch-50 are more robust to the length of the sentences. RNNsearch-
50, especially, shows no performance deterioration even with sentences of length 50 or more. This
superiority of the proposed model over the basic encoder–decoder is further confirmed by the fact
that the RNNsearch-30 even outperforms RNNencdec-50 (see Table 1).

6

Figure 2.19. A visualization of the attention scores in translation [5]

The attention model is quite advanced, and since a lot of other parameters are there
in the network, a lot more of training samples must be used. For the task of sequence
tagging it seems to be too much. The output labels depend only on the current word
context that is already given by the bidirectional encoder RNN, so the expected values
for the attention distribution is that it will keep the inputs and outputs aligned. It can
be kept together with the aligned model just to provide more features.

2.2.7 Joint tasks

The two tasks can be combined together in one single network in different ways and with
a wide variety of additional things that can be added (for example attention mechanism,
output dependencies). The approaches found in literature try to use a common encoding
stage and then differentiate on the decoding, one for each task. The network has to fork
at some point because the shape of the outputs is different: one single label for the intent
and many slot labels, considering a single input sentence.

In [65] there are two different proposed architectures: one is based on the encoder-
decoder adding the intent output, while the other collapses all in one single compact
structure.

The first one, as can be seen in Figure 2.20, is a combination of the bidirectional
RNN for intent classification and the encoder-decoder with attention for the slot filling.
The two networks, having the encoder in common, are merged together, and fork for the
following layers towards two different outputs.

The two branches consider different outputs of the encoder. The intent classifier
is added as a branch that takes the last state of the encoder and then projects to the
intent space with a single layer feedforward. Instead the slot filling decoder takes all the
word-level outputs because it needs an aligned model.

42

2 – State of the Art

Figure 2.20. The Joint Encoder-decoder model with Aligned Inputs in [65]

The other network proposed in the paper is a bit different. Instead of having a
separate RNN for encoder and decoder, it has a single bidirectional RNN, that in the
forward direction also has the modeling of slot label dependencies. As can be seen in
Figure 2.21, the intent classification is done on top of the bidirectional RNN output,
doing a mean pooling on the states at each timestep or, if the attention is enabled, by
using a weighted average.

Figure 2.21. The joint attention-based RNN Model in [65]

2.2.8 The interaction context

All the previously described networks only care about the current sentence, but human
natural language understanding does not limit itself on this strict form. What happens
when we meet some people that are already talking about something? It may take some
time to understand the topic of the discussion, we need to collect some information as
the interaction goes on to get the point of the discussion. This happens because most
of the sentences are not standalone, but they belong to a context that goes beyond the
single sentence.

43

2 – State of the Art

The context of a conversation can be defined as a set of important things to know in
order to both understand others and say more relevant things. The context can capture
features belonging to different areas:
domain: knowledge of the topic of the discussion. A conversation where the participant

have a deep knowledge of it brings an exchange of meaningful ideas and opinions;
interaction: going beyond the fixed form of atomic question-answer pairs. Human to

human conversations rely a lot on the interaction context, referring explicitly or
implicitly to things that have been previously said. A multi-turn environment can
allow users to do questions and later refining them to find what they were searching
for, by simply adding new parameters instead of rebuilding a complete independent
interrogation, or doing follow-up questions on the previous results;

interlocutor: knowing better the user that we are interacting can be advantageous to
find better and targeted responses to his question, both in the form and in the
content.

In this work we focus more on the interaction context because it is the one that is
mostly related to language. The domain knowledge is instead given by design in goal-
oriented bots, because they are built to serve some specific needs and do restrict the
topics of conversation. Instead for the interlocutor/user context, it is the field where the
personalization techniques are analyzed, as will be seen in Section 2.3 for the background
and in Subsection 3.2.3 for more dialogue-related personalization techniques.

The interaction context feature can be seen as some kind of memory that actors
in a conversation need to keep about previous sentences. The context is necessary to
understand the dialogue at different levels:

• Understand the role of some words in a sentence given some information contained
in other sentences. This practically means to identify entities by knowing that
after a certain type of question it is easier to find them (e.g. replying to “Where?”
questions suggest that the next sentence contains a place entity, even if the sentence
does not contain indicators like “near/in/at”). We may call this setting multi-turn
slot filling.

• Understand the meaning of the current sentence. This is the case of sentence
classification, like extracting the intent, when the current sentence does not give
hints about it, but a knowledge of the previous sentences can lead to the correct
understanding (e.g. replies like “ok. Let’s do it” that standalone are impossible to
be processed). We call this the multi-turn intent classification.

• Ability to link the all the entities that are mentioned in a discourse, being able to
resolve the things that are behind words like “this/him”. This is the coreference
resolution.

• Based on previous levels, link the meanings of things across the different turns, and
be able to answer to some test questions that require reasoning. This is the so
called dialogue tracking.

All those levels of understanding provide active fields of research in the NLP com-
munity and they fall under different names. The first one is multi-turn appearing
in [16, 15, 111, 10, 94]. This term is specific to virtual assistants and it covers the first
two levels of understanding: the goal is to identify the intent and entities in a dialogue
where the user is not using a single sentence to ask for information. One common case is
when, after the initial question of the user, the agent asks back for some clarifications or
missing parameters to refine the search. In this case the assistant should put together the
information contained both in the current sentence and in the previous ones, to perform
a complete query. Other common cases are user follow-up questions. Receiving some

44

2 – State of the Art

results from the agent, the user could ask for more details or to change some parameters.
In this case, the user refers to the previous query and it is only changing some constraints
(like the intent or some slots).

The other used term is dialogue state tracking: mostly known because of the Dialogue
State Tracking Challenge [108], it refers to the ultimate level of understanding a dialogue:
represent the dialogue state and updating it as the conversation keeps going on.

Different solutions exist and depend on where we want the neural network to come
in contact with the application logic (what to establish as manual rules and what is
inferred by the neural network approach). Literature shows case studies where there is a
strict separation between the understanding module and the management of the dialog
state [65, 16], but also cases where everything is put together in an end-to-end fashion in
a way more independent from domain rules [93, 24].

In the first type of systems, the NLU module contains the recurrent neural network
stuff and produces as output intent and slots. Once they are extracted from the dialogue,
another module called “dialogue state tracker” keeps track of the conversation and apply-
ing some handwritten rules decides the flow of the conversation and provides responses
back to the user.

Instead in the end-to-end architectures, all the components are trained by dialog
examples. The positive point is that there is no need to handwritten rules for the dialogue
state tracker. The rules are inferred by the dialog corpus and the system learns what is the
most appropriate answer to provide. Some parts are still not part of the trainable model:
the module accessing the data exposes some operations via some API. The trainable
model learns when to issue API calls. However, the end-to-end approaches need a very
big amount of dialogues to induce the general rules giving an advantage to rule-based
dialogue tracking systems where the resources are limited.

The following paragraphs explore the three levels of interaction context that have
been outlined previously.

Multi-turn Understanding

As mentioned before, the goal of multi-turn SLU is simply to extract the intent and the
entities when the user is not providing a single sentence with all the required parameters.
In a second moment, it could be after the agent asks back for some parameters, other
sentences complete the initial one with more entities that are used to refine the search.
It can be seen as an iterative filling of a fixed-structure form. For this reason, a naive
approach could be simply to classify the intent on the first sentence and then collecting
the parameters in a key-value fashion (the key is the name of the slot, that is asked by
the agent, and the value is the answer taken “as is” , as can be seen in Figure 2.22).

This approach is quite simple but has some problems: this is not natural language.
Natural language dialogue has not this fixed structure, and the system must be able to
receive a sentence that contains more than a single entity. Another issue is that the
user may change his mind in the middle of the interaction and start a new intent. For
those reasons the NLU task should be expanded to the multi-turn environment by a more
complete approach. We will there analyze some proposed solutions to this problem.

Some first works in the direction of contextualized understanding have been done
in [111] for classification of the domain (that can be seen as a coarse-grained intent). In
that work, the previous output of the system is added to the inputs by enlarging the
input word vectors. The authors choose as approach for single-turn developed using a
CNN [55], so the multi-turn adding the recurrent connections results in a RNN/CNN

45

2 – State of the Art

Figure 2.22. A simple dialogue where a simple key-value approach can pro-
vide multi-turn abilities

hybrid network.
Another approach that has been studied for the multi-turn problem is [16]. The idea

to additionally incorporate contextual knowledge is applied with a sentence encoder that
considers also previous sentences. The current sentence is processed by a RNN like in [65],
and the addition is the contextual sentence encoder that can be seen in Figure 2.23.

history
utterances

{xi}

Contextual
Sentence Encoder

Sentence
Encoder

Inner
Product

u

mi

Knowledge Attention Distributionpi

Memory Representation

Weighted
Sum

∑

h

Wkg

o

Knowledge Encoding
Representation

RNN
Tagger

slot tagging
sequence

current utterance
c

y

RNNin

x1 x2 xi…

x1 x2 xi…

RNNmem

Figure 2: The illustration of the proposed end-to-end memory network model for multi-turn SLU.

tent prediction, and slot filling [18, 21]. However, most prior
work exploited information only from the previous turn, ignor-
ing the long-term contexts. Another constraint is that the mod-
els require supervision at each layer of the network, and there is
also no unified architecture that can perform multi-turn SLU in
an end-to-end framework.

Recently there has been a resurgence in computational
models using explicit storage and a notion of attention [22, 23,
24, 25]; manipulating such a storage allows multiple computa-
tional steps and can model long-term dependencies in sequen-
tial utterances. Basically, the storage is endowed with a con-
tinuous representation modeled by neural networks, where the
stored representations can be read and written to encode knowl-
edge. Motivated by the idea, this paper presents a recurrent
neural network (RNN) architecture where the recurrence reads
from a possibly large external memory before tagging the cur-
rent utterance. The model training does not require paired data
for each layer of the network; that is, the proposed model can
be trained end-to-end directly from input-output pairs. To the
best of our knowledge, this is the first attempt of employing an
end-to-end neural network model to model long-term knowl-
edge carryover for multi-turn SLU.

2. End-to-End Memory Networks
For the SLU task, our model takes a discrete set of history ut-
terances {xi} that are stored in the memory, a current utter-
ance c = w1, ..., wT , and outputs corresponding semantic tags
y = y1, ..., yT , where a semantic tag consists intent and slot
information. The proposed model is illustrated in Figure 2 and
detailed below.

2.1. Architecture

The model embeds all utterances into a continuous space and
stores all x’s embedding to the memory. The representation of
the current utterance is then compared with memory representa-
tions to encode carried knowledge via an attention mechanism.
Then the encoded knowledge is taken together with the word se-
quence for estimating the semantic tags. Four main procedures
are described below.

Memory Representation: To store the knowledge in the pre-
vious turns, we convert each utterance from previous turns, xi,
into a memory vectors mi with dimension d by embedding the
utterances in a continuous space through an RNN. The current

utterance c is also embedded to a vector u with the same dimen-
sion.

mi = RNNmem(xi), (1)

u = RNNin(c), (2)

where RNNmem and RNNin are tied together for encoding con-
texts and the current utterance consistently. Therefore, the se-
quential information can be kept for better representations [16].

Knowledge Attention Distribution: In the embedding space,
we compute the match between the current utterance u and each
memory vector mi by taking the inner product followed by a
softmax.

pi = softmax(uTmi), (3)

where softmax(zi) = ezi/
P

j e
zj and pi can be viewed as at-

tention distribution for modeling knowledge carryover in order
to understand the current utterance.

Knowledge Encoding Representation: In order to encode the
knowledge from history, a history vector h is a sum over the
memory embeddings weighted by the attention distribution.

h =
X

i

pimi. (4)

Because the function from input to output is smooth, we can
easily compute gradients and back propagate through it. Then
the sum of the memory vector h and the current input embed-
ding u are then passed through a weight matrix Wkg to generate
an output knowledge encoding vector o,

o = Wkg(h+ u), (5)

where Wkg is a fully-connected neural network for encoding
carried knowledge.

Sequence Tagging: Different from the classification task most
of work focused on [25], our memory architecture is to pro-
vide additional knowledge for improving tagging performance.
Therefore, to estimate the tag sequence y corresponding to an
input word sequence c, we use an RNN module for training a
slot tagger, where the encoded knowledge o is fed into the input
of the model in order to model knowledge carryover:

y = RNN(o, c). (6)

3246

Figure 2.23. The contextual approach based on memory of previous turns in [16]

This encoder provides a context memory representation, where each previous turn is
represented. To choose which turns are more relevant for the current sentence, an atten-
tion mechanism is used in the encoded representation space. Weights for attention are
computed by an inner product between the current sentence and the memory represen-
tations, which represent a measure of similarity of the considered pairs. The hypothesis
behind this scoring is that sentences that have similar encoded representation should
be considered more than the ones that are different. The final output of the encoding

46

2 – State of the Art

procedure is computed as the sum of the current sentence and the weighted sum of mem-
ory representations. During the decoding stage, similar to the one in [17], the encoded
representation is used to generate slot labels.

The results of this approach have been evaluated on a proprietary dataset and there-
fore the results cannot be compared with other studies on the field. Furthermore in the
paper the intent network is not described at all. However, this study is interesting in the
perspective of how the previous sentences are considered together with the current one
for the slot-tagging task.

A problem of this architecture is that the agent sentences are not considered. But
the agent sentences could contain some keywords that may help to identify the slot in
the decoding stage. For example if a trip requires a source and a destination, the agent
asked for the source and the user answered with that, it is very relevant for the task of
slot filling to know that the agent asked for source and not for the destination.

Another work has been done in [15] on the value of time and roles in conversation.
About the time, the idea is that most recent sentences count more and an attention score
is given with values that fade out as the time is more remote. Instead for the roles, two
similar networks are used, one for each role.

Dense LayerΣ

Current Utterance

wt wt+1 wT
… …

Dense
Layer

Spoken
Language

Understanding

∙ u2 ∙ u4 ∙ u5

Role History Summary

u2

u6

User
(Tourist)

u4
Agent

(Guide)

u1

u7

Current

Attentional Contextual Model

Sentence Attention
Content Time

u3

u5

𝛼𝑢2
𝑇

𝛼𝑢𝑖
𝐶 𝛼𝑢𝑖

𝑇

𝛼𝑢2
𝐶

𝛼𝑢4
𝑇

𝛼𝑢4
𝐶

𝛼𝑢5
𝑇

𝛼𝑢5
𝐶

∙ u1 ∙ u3 ∙ u6𝛼𝑢1
𝑇

𝛼𝑢1
𝐶

𝛼𝑢3
𝑇

𝛼𝑢3
𝐶

𝛼𝑢6
𝑇

𝛼𝑢6
𝐶

Role Attention

Attention Mechanism

Attention Type
• Content-Aware 𝛼𝐶

• Time-Aware 𝛼𝑇

Attention Level
• Sentence 𝛼𝑢𝑖
• Role 𝛼𝑟𝑖

𝛼𝑟1
𝐶 𝛼𝑟2

𝐶𝛼𝑟1
𝑇 𝛼𝑟2

𝑇

Fig. 2. Illustration of the proposed attentional contextual model.

To address this issue, this work proposes the role-based
contextual model: instead of using only a single BLSTM
model for the history, we utilize one individual contextual
module for each speaker role. Each role-dependent recurrent
unit BLSTMrolei receives corresponding inputs, xt,rolei , which
includes multiple utterances ui (i = [1, ..., t − 1]) preceding
to the current utterance ut from the specific role, rolei, and
have been processed by an encoder model.

vhis = vhis,rolea + vhis,roleb (4)
= BLSTMrolea(xt,rolea) + BLSTMroleb(xt,roleb),

where xt,rolei contains vectors after one-hot encoding that rep-
resent the annotated intent and the attribute features. Note that
this model requires the ground truth annotations for history
utterances for training and testing. Therefore, each role-based
contextual module focuses on modeling role-dependent goals
and speaking style, and vcur from (2) would contain role-based
contextual information.

2.3. Neural Attention Mechanism

One of the earliest work with a memory component applied to
language processing is memory networks [15, 23], which en-
code mentioned facts into vectors and store them in the mem-
ory for question answering (QA). The idea is to encode impor-
tant knowledge and store it into memory for future usage with
attention mechanisms. Attention mechanisms allow neural
network models to selectively pay attention to specific parts.
There are also various tasks showing the effectiveness of at-
tention mechanisms [24, 16]. This paper focuses on two atten-
tion types: content-aware (αC) and time-aware (αT), and two
attention levels: sentence (αui

) and role (αri) illustrated in

Figure 2. The following sections first describe content-aware
and time-aware attention mechanism using the sentence-level
structure, and the role-level attention is explained afterwards.

2.3.1. Content-Aware Attention

Given the utterance contexts, the model can learn the atten-
tion to decide where to focus more for better understanding
the current utterance [15, 16]. In the content-aware attention,
it is intuitive to use the semantic relation between the cur-
rent utterance representations and the history context vector
as the attention weight, which is used as a measurement of
how much the model should focus on a specific preceding ut-
terance:

αC
ui

= softmax(MS(vcur + xi)), (5)

where αC
ui

is the content-aware attention vector highlighted
as blue texts in Figure 2, the softmax function is used to nor-
malize the attention values of the history utterances, and MS
is an MLP for learning the attention weight given the current
representation vcur and xi is the vector of ui in the history.

Then when computing the history summary vector, the
BLSTM encoder additionally considers the corresponding at-
tention weight for each history utterance in order to empha-
size the content-related contexts. (4) can be rewritten into

vhis =
X

i∈{a,b}

BLSTMrolei(xt,rolei , {αC
uj
| uj ∈ rolei}). (6)

2.3.2. Time-Aware Attention

Intuitively, most recent utterances contain more relevant in-
formation; therefore we introduce time-aware attention mech-
anism which computes attention weights by the time of utter-

Figure 2.24. The time and role aware approach of [15]

We can see from Figure 2.24 that the history of sentences is encoded with different
networks, one for the tourist and one for the agent. Two different mechanisms of attention
are used: one is the content-aware, that is computed in the same way as in the previous
mentioned paper with a dot product in the embedding space; the second one is the
time-aware, that gives higher importance to recent sentences.

In this case the work has been done on the DSTC4 dataset18 that contains human-
to-human dialogues. One of them is a tourist and the other one is a guide.

It can be seen with the progress of the DSTC over the years, that the task is switching
from a multi-turn understanding to an end-to-end goal-oriented dialogue learning, as will
be seen in the last paragraph of this subsection focused on DSTC6.19

18http://www.colips.org/workshop/dstc4/
19http://workshop.colips.org/dstc6/

47

http://www.colips.org/workshop/dstc4/
http://workshop.colips.org/dstc6/

2 – State of the Art

Coreference resolution

The problem of coreference resolution is one of the most difficult to solve in NLP. There
are currently models available to resolve explicit coreferences, using some correlation of
gender and number between the entities and further references.

It has been analyzed in TREC10,20 as the main purpose of using the context in the
sentences. In [34] the investigation goal is to find a set of elements in the question, that
may indicate entities mentioned in previous questions and answers. Those can be split
into explicit references (such as pronouns like “this/that/him”, use of definite nominals
like “the state” that suggest having a previous knowledge of reference) or implicit ones
(like ellipsis of something that logically needs to be kept into consideration). The proposed
system tries to find in previous turns the ones that contain the referenced entity.

A more complex approach has been analyzed by [98], based on the Centering The-
ory [32] that models the local coherence of a discourse and how the transitions caused
by a new sentence changes the center of the talk. In this work, two types of context
are found: one depending on the user (analyzed by later TREC contextual tracks, corre-
sponding to personalization techniques that will be analyzed in section 2.3) and the one
of the discourse. The question processing should, according to the authors, perform three
main tasks: i) question type analysis and categorization, ii) detailed processing to build
and expand queries, iii) anaphora resolution. This theory is used to build a model that
selectively retain query terms from previous interactions.

Going on more recent approaches to the coreference resolution problem, [22] builds a
model for predicting the lifespan of discourse entities, in other words if one of them is a
singleton entity or is referenced many times. The actual scores make clear that this is yet
an open field of research, where only simple sentences achieve great accuracy. A detailed
description of this model is explained in an interesting online article21 and available as
an online demo.22

Simple QA to test the memory

Going beyond the quite simple tasks of entity recognition and coreference resolution, some
more difficult challenges try to address the question-answering (QA) problem relatively
to the discourse. The idea is to provide some sentences that contain factual information
and then an easy question is asked about this. The system has to use correctly memory
abilities and combine the different facts to provide the response.

On the easiest problems proposed in [107], the information is contained in simple
sentences that are composed by triples of subject, verb and object. Usually a model of
memory [97] is used to store the relationships between the entities expressed by the triples.
From this memory the easiest questions can be directly provided, while for tasks like
counting on temporal reasoning it is necessary to enable a process of machine reasoning
to turn the facts into operational knowledge. Some examples can be seen in Figure 2.25.

The memory model can be seen as a “soft” hash table. It stores key-values pairs.
The output of a lookup is a weighted sum of the values, where the weights are attention
weights derived by the training procedure.

20https://trec.nist.gov/pubs/trec10/t10_proceedings.html
21http://bit.ly/medium_wolf_coreference_res
22https://huggingface.co/coref/

48

https://trec.nist.gov/pubs/trec10/t10_proceedings.html
http://bit.ly/medium_wolf_coreference_res
https://huggingface.co/coref/

2 – State of the Art

Our model is also related to Bahdanau et al. [2]. In that work, a bidirectional RNN based encoder
and gated RNN based decoder were used for machine translation. The decoder uses an attention
model that finds which hidden states from the encoding are most useful for outputting the next
translated word; the attention model uses a small neural network that takes as input a concatenation
of the current hidden state of the decoder and each of the encoders hidden states. A similar attention
model is also used in Xu et al. [24] for generating image captions. Our “memory” is analogous to
their attention mechanism, although [2] is only over a single sentence rather than many, as in our
case. Furthermore, our model makes several hops on the memory before making an output; we will
see below that this is important for good performance. There are also differences in the architecture
of the small network used to score the memories compared to our scoring approach; we use a simple
linear layer, whereas they use a more sophisticated gated architecture.

We will apply our model to language modeling, an extensively studied task. Goodman [6] showed
simple but effective approaches which combine n-grams with a cache. Bengio et al. [3] ignited
interest in using neural network based models for the task, with RNNs [14] and LSTMs [10, 20]
showing clear performance gains over traditional methods. Indeed, the current state-of-the-art is
held by variants of these models, for example very large LSTMs with Dropout [25] or RNNs with
diagonal constraints on the weight matrix [15]. With appropriate weight tying, our model can be
regarded as a modified form of RNN, where the recurrence is indexed by memory lookups to the
word sequence rather than indexed by the sequence itself.

4 Synthetic Question and Answering Experiments
We perform experiments on the synthetic QA tasks defined in [22] (using version 1.1 of the dataset).
A given QA task consists of a set of statements, followed by a question whose answer is typically
a single word (in a few tasks, answers are a set of words). The answer is available to the model at
training time, but must be predicted at test time. There are a total of 20 different types of tasks that
probe different forms of reasoning and deduction. Here are samples of three of the tasks:
Sam walks into the kitchen. Brian is a lion. Mary journeyed to the den.
Sam picks up an apple. Julius is a lion. Mary went back to the kitchen.
Sam walks into the bedroom. Julius is white. John journeyed to the bedroom.
Sam drops the apple. Bernhard is green. Mary discarded the milk.
Q: Where is the apple? Q: What color is Brian? Q: Where was the milk before the den?
A. Bedroom A. White A. Hallway

Note that for each question, only some subset of the statements contain information needed for
the answer, and the others are essentially irrelevant distractors (e.g. the first sentence in the first
example). In the Memory Networks of Weston et al. [22], this supporting subset was explicitly
indicated to the model during training and the key difference between that work and this one is that
this information is no longer provided. Hence, the model must deduce for itself at training and test
time which sentences are relevant and which are not.

Formally, for one of the 20 QA tasks, we are given example problems, each having a set of I
sentences {xi} where I ≤ 320; a question sentence q and answer a. Let the jth word of sentence
i be xij , represented by a one-hot vector of length V (where the vocabulary is of size V = 177,
reflecting the simplistic nature of the QA language). The same representation is used for the
question q and answer a. Two versions of the data are used, one that has 1000 training problems
per task and a second larger one with 10,000 per task.

4.1 Model Details

Unless otherwise stated, all experiments used a K = 3 hops model with the adjacent weight sharing
scheme. For all tasks that output lists (i.e. the answers are multiple words), we take each possible
combination of possible outputs and record them as a separate answer vocabulary word.

Sentence Representation: In our experiments we explore two different representations for
the sentences. The first is the bag-of-words (BoW) representation that takes the sentence
xi = {xi1, xi2, ..., xin}, embeds each word and sums the resulting vectors: e.g mi =

P
j Axij and

ci =
P

j Cxij . The input vector u representing the question is also embedded as a bag of words:
u =

P
j Bqj . This has the drawback that it cannot capture the order of the words in the sentence,

which is important for some tasks.

We therefore propose a second representation that encodes the position of words within the
sentence. This takes the form: mi =

P
j lj ·Axij , where · is an element-wise multiplication. lj is a

4

Figure 2.25. An example of the questions asked in [107]

End to End for Goal-oriented dialogues

More specifically to the interaction context for goal-oriented dialogues, the DSTC6,23

rebranded as Dialog System Technology Challenges, has a dedicated track for this objec-
tive24 and is composed of the following tasks:
Issuing API calls: asking to the user the required parameters until a complete inter-

rogation is performed;
Updating API calls: the user asks to modify an existing request;
Displaying options: when multiple results are found, the bot should provide a list of

the most relevant and manage the user choice between them;
Providing extra information: after that a result has been chosen, the user can ask

for extra information about the corresponding entity.
What is special of this challenge is the end to end trainability of the systems involved.
The Natural Language, that is very flexible and various, is put in contact with APIs that
instead are very fixed and must follow strict rules. Having an end-to-end differentiable
system allows to use the approaches on new problems and domains by simply having a
huge corresponding training corpus. Removing the domain-specific handcrafting provides
more versatile systems that can fastly be used for new domains.

The origins of these approaches come from the generative chit-chat dialogs. From
corpora of discussions (forum threads / movie conversations), the system is trained in
a end-to-end fashion to predict the next sentence. The porting from this scenario to
goal-oriented ones has some issues that generate from the fact that the conversation is
intrinsically different in the purpose: the system is interrogated by the user and has to
provide some information back. Beyond keeping the conversation smooth, the agent has
to ask questions to the user to have a better formulation of the request, query knowledge
bases, interpreting the results and provide them to the user in the correct shape in order
to complete a transaction.

For these reasons, in this type of system, the outputs are both the agent responses
and the API calls. Not only the understanding part is turned from handcrafted rules
to an optimization problem, but also the replying part. The API to call are determined
without using fixed rules, but with a model that is determined by the training corpus.
The same applies to the response generation: there are not fixed rules deciding what to
say in responses.

A critical challenge for generative systems is to keep the coherence between turns and
be more focused on the topic of the dialogue, discarding irrelevant responses that do not
provide the required information. This problem is addressed by two different things: one
is having the training corpus focused on the selected domain, and the second one is to
maintain the topic by using some models like in [109] that biases the output sentences by

23http://workshop.colips.org/dstc6/
24http://workshop.colips.org/dstc6/papers/track1_overview_perez.pdf

49

http://workshop.colips.org/dstc6/
http://workshop.colips.org/dstc6/papers/track1_overview_perez.pdf

2 – State of the Art

giving more topic attention.
A point that still needs handcrafted features is the KB interrogation through fixed

APIs. One of the reasons that drives this choice is that a legacy system may be used
as KB and it can have a predefined set of operations that cannot be modified. Another
reason could be that those APIs belong to third parties, like web services, that have
strict calling rules. However some works have been done also towards a more dynamic
exploration of information like discussed also in the classification done in Subsection 2.1.4.

For example at Stanford they experimented with a data exploration that can be
explored as a set of key-value pairs. In this way the system, trained in an end-to-end
fashion will be able to explore the KB in a more dynamic and content-aware way with
structured data [24]. It learns how to extract information from a KB without the need
of handcrafted dialogue state tracking. This is possible thanks to the KB structure that
enables a good exchange of data between the conversation and the KB without the need
of intent tracker and relying only on latent neural embeddings. This approach is mainly a
sequence-to-sequence generator enriched by a KB that provides triples of subject, relation,
value. The values are available to the output generation thanks to some placeholders in
the output dictionary in the form of subject_relation, that is later replaced by its
value after decoding.

As can be seen, all those approaches really combine the techniques of generative
conversations together with goal-oriented interactions.

2.2.9 NLU as a service

As of today, there are a lot of platforms that provide Natural Language Understanding
in the form of Software as a Service (SaaS). Big companies have decided to invest on it,
to be the ones that hold the technology. They made those topics extremely easy for the
developers who via a web interface can create dialogue flows and annotate manually the
data. There is no need to know about the technology that is inside. All it is needed for
a developer is to understand the jargon used by the platform and configure a black box.

Those platforms usually provide intent classification and slot filling, with an approach
that is not usually trainable in a end-to-end way. The provided features, as can be seen in
Table 2.2, turn the user sentences in structured data. Some platforms offer a way to force
the user to provide some parameters (compulsory entities for some intents), managing the
questions that the bot should ask when they are missing and call the fulfillment endpoint
(the service owned by the developers of the bot, receiving the structured data) only when
those parameters have been provided. The programmers are left to the role of handling
the dialogue state, retrieving the information and providing a response.

But this does not scale well when the dialogue can have lots of different states and
the user could change the topic of conversation in every moment. In those situations, the
task of handcrafting rules to track the state of the conversation can become quite difficult.
Also when something in the behaviour of the bot is not correct, the investigation of the
problem can be cumbersome. Instead if the dialogue-state-tracking and the dialogue itself
are trained end-to-end, changing the behaviour is as easy as adding a new example to
the training corpus.

This kind of end-to-end trainability is supported on the shelf by RASA,25 an open
source tool that has two main components: the NLU and the dialogue management Core.

25http://rasa.com/

50

http://rasa.com/

2 – State of the Art

Provider Deployment M
es
se
ng

er
pl
at
fo
rm

s
in
te
gr
at
io
n

in
te
nt

sl
ot
s

re
qu

ir
ed

pa
ra
m
et
er
s
m
an

ag
em

en
t

en
d-
to
-e
nd

tr
ai
na

bl
e

pr
e-
de

fin
ed

in
te
nt
s

op
en

so
ur
ce

wit.ai web service 7 3 3 7 7 7 proprietary
DialogFlow web service 3 3 3 3 7 3 proprietary

LUIS web service 3 3 3 7 7 7 proprietary
IBM web service 7 3 3 3 7 7 proprietary
alexa web service 3 3 3 3 7 3 proprietary

recast.ai web service 3 3 3 7 7 3 partially open
RASA self 3 3 3 7 3 7 open

Table 2.2. A comparison between the major NLU providers

The first one turns sentences into intents and entities, while the second one manages the
state of the conversation and determines responses and API calls without handcrafted
rules. The developers of a bot using this libraries have to define the intents, entities, the
actions (that correspond to some methods) and templates (for the responses) and provide
examples for training both the NLU and the core.

There have been some efforts to compare the performances of all those systems by
SNIPS,26 that tested a lot of those platforms to compare the results mainly on the intent
detection task. The benchmark does also compare the results on out-of-domain samples,
that are sentences that should be classified with none of the declared intents and man-
aged with fallback options. The results are available both on their site,2728 and most
importantly the datasets used are available with an open license.29

2.3 Personalization
This section analyzes the state of the art of personalization, starting from how to profile
users and determine their features in Subsection 2.3.1, and considering the existing ap-
proaches for recommender systems and their problems in Subsection 2.3.2. Finally, we

26https://snips.ai/
27https://snips.ai/content/sdk-benchmark-visualisation/
28http://bit.ly/slideshare_intento_nlu_benchmark
29https://github.com/snipsco/nlu-benchmark

51

https://snips.ai/
https://snips.ai/content/sdk-benchmark-visualisation/
http://bit.ly/slideshare_intento_nlu_benchmark
https://github.com/snipsco/nlu-benchmark

2 – State of the Art

discuss the so-called cold-start problem, particularly relevant in a conversational agent
interaction scenario.

We use the following definitions for personalization and recommendation:
Personalization: a general technique to change the behaviour of a system depending

on the user with the intent to lead better experience;
Recommendation: a technique whose goal is to provide content that may be interesting

according to user history, item catalogue and business objectives.

2.3.1 User features and Personality analysis

A personalization or a recommender system need in input some information about the
user in order to provide some outputs. Those information can be provided explicitly
by the user, for example by asking him to fill up a questionnaire, or can be collected
implicitly, analyzing his behaviour and doing some forecasts.

While having those features provided directly by the user is straightforward to be
done, the implicit discovery is a bit more challenging. However users may not want
to tell their personal details to the system to receive targeted recommendations. It is
something that is not seen as good, because personal details are sensible data and no
one wants to share them. Also when receiving explicit self-judgement from users, a big
problem is how to trust them. For those reasons the implicit discovery of some features
may help in different ways: looking at some available data and behaviour of the user,
personal details can be estimated and users can be clustered together considering some
dimensions that may reflect sensible data and their personality.

With the spread of social networks a lot of data is ready to be analyzed to build
big models that are able to predict personal information. The most common nowadays,
Facebook, stores information of any kind about users: from age, occupation, and other
personal information to others relative to interests. This is the ideal setting for training
models that predict some user features based on others, contained themselves on the
social network or coming from other sources. Specially on the fields of social sciences and
personality analysis [52].

For example, one of the biggest datasets to perform personality analysis is the myPer-
sonality dataset.30 Born as an application to take psychometrics tests and allowing users
to give access to their personal data on Facebook, the Cambridge researchers managed
to build a model that, thanks to 6 milions volunteers, is able to predict some information
of users simply by looking at what are the likes or by looking at some text.

The personality is usually analyzed in five dimensions, in a model that has been widely
shared, discussed and applied both in academic environments and in empirical ones. The
Big-Five Personality Traits, formulated in [21] and very well analyzed in [29], are the
following:
Openness to experience: it is an indicator of the curiosity level. High values indicate

unpredictability and desire for intense experiences, while low ones are lead from
pragmaticism or even closed-mind.

Conscientiousness: tells how much a person is organized, even obsessed versus a more
careless and spontaneous behaviour.

Extraversion: energetic and sociable attitudes versus introversion and shyness.

30https://www.psychometrics.cam.ac.uk/productsservices/mypersonality

52

https://www.psychometrics.cam.ac.uk/productsservices/mypersonality

2 – State of the Art

Agreeableness: indicates how much someone is cooperative with others versus being
antagonistic and competitive.

Neuroticism: identifies the level of stress and emotional stability. When facing with
problems, people may behave more confidently or be insecure.

Having good values for those traits is not an easy task, because self-judgement and also
human judgement can be easily polarized. To obtain values that are somewhat objective,
different criteria can be used.

In [112] three different criteria are used. The first one, called “self-other agreement”
is based on how much an external judger agrees with self-rating. The second one is
the “interjudge agreement”, that evaluates the similarity of the ratings given by two
external judger. The last one is the “external validity”, that measures the prediction on
life outcomes: based on observation of facts that can be verified, a comparison is done
between the personality score provided by the different actors. This last criterion is not
easy to use and not always applicable.

In this paper, their objective is to measure the accuracy of personality judgement done
by computers against those made by humans. The dataset they used is myPersonality,
based on user likes and attached personality tests. The results they produced established
that computer-based judgements are more accurate, because they can take in account a
very big quantity of data using them in statistical modeling, However human judgement
can capture more subtle cues that may be ignored by automated systems.

Another study, described in [53] based on the same dataset, makes use of the Facebook
profiles in order to predict some private user information, such as ethnicity, gender and
age that may be unpublished. Given other available digital traces, such as user likes, the
system is able to predict accurately this kind of information. For recommender systems
needing those features, it is no more necessary to explicitly ask them to the user, but
simply knowing what a person likes those values can be inferred.

All those works on unwilling profilation, especially considering details that users may
want to hide (such as sexual and political orientation), imply a decrease in trust of online
services by people that have a bit of knowledge about it. Furthermore, quite recently,
there has been a scandal related to illegitimate exploitation, involving commercial and
political usage in different countries.31 This is clearly a point that should not be reached,
as discussed in Introduction.

Other works, explore ways of profiling the users given some text they produced. Dif-
ferent things can be discovered, from the sentiments the user is feeling to their personal-
ity [70]. The requirement is having more than few words and know the environment the
text belongs to, in order to remove the environmental bias. This approach applies better
on social networks that are more text-based, like Twitter. Since usually the tweets are
openly available, analysis on text can be done.

2.3.2 Recommendation Approaches

Given some representation of the users, different approaches can be used to recommend
items to them. The major ones we are presenting here are content-based filtering and
collaborative filtering.

31http://bit.ly/theguardian_cambridge_analytica

53

http://bit.ly/theguardian_cambridge_analytica

2 – State of the Art

Content-based filtering

The content-based approach is based on some evidences of the user tastes, usually his
previous ratings to some items. Analyzing those samples, a model of the user preferences
is created. The assumption is that users will like items similar to the ones that have
previously satisfied him, so the recommender will find this type of items and propose
them to the user.

So the important things are two: having a history of interactions (feedbacks can be
binary, discrete-value ratings or even textual) and having a representation of items in
terms of features. The similarity of items is evaluated over those features. The model is
different for each user and for this reason this approach suffers a lot the problem of cold
start 2.3.3.

From a high level view, content-based recommender requires three steps, that are
handled by different components [67]:
Content analyzer: analyzes the items and extracts the features from it. If items do not

have already a structured form (for example textual items like webpages) this step
is very important to produce those features (keywords in the example of webpages).
Those features will be used by the other two components.

Profile learner: user models are built, usually using machine learning techniques, feed-
ing as examples the item features with the associated feedback provided by the
user.

Filtering component: the user models are used to infer expected positive ratings on
new items, evaluated using some kind of similarity, like cosine similarity between
the prototype vector (the one built by the profile learner) and the new item features.
The results of this stage is a ranked list of new items.

The advantages of those systems are many. First of all, user independence: only feed-
backs from the target user are needed, no matter on the number of different users. Also
transparency can be easily added, listing the features that caused the item score. Finally,
those systems can work with new items that have not been rated by any user.

However there are also disadvantages. Being very dependent on the content, a domain
knowledge is usually required in order to extract the item features. This problem is usually
addressed by strategies like semantic analysis that make use of rich data models (such
as ontologies) in order to catch references to external concepts. Another disadvantage is
that the items that are recommended tend to be very similar, resulting in high accuracy
but low serendipity. It is very difficult to provide unexpected recommendations, out of
the filter bubble that surrounds the user. The last problem is with new users: until a
history of feedbacks is collected, the system can hardly suggest other items that will be
liked by the user.

Collaborative filtering

Instead of trying to already have detailed features of items and of users, the collaborative
filtering approaches try to exploit the ratings coming from different users. The assumption
is that people that agreed in the past will agree in the future too.

The only features that need to be provided are the ratings that link one entity of type
user to one entity of type item, no features about those two distinct entities are necessary,
only the ability to identify all the ratings that link them. The goal is always to correlate
them. And Collaborative approaches can use two different techniques for that [50]:
Neighboring approaches: they try to distribute users or items (separately) over a

space, in order to be able to find neighboring users or neighboring items to the

54

2 – State of the Art

ones provided (from users it is possible to find other users, from items only find
other items) by using the ratings provided by different users. Those distributions
are directly used to do item-based or user-based recommendations, depending on
the considered starting point.

Latent factor models: [51] using matrix factorization like SVD, transform both items
and users to the same space, always by using the feedbacks as input features. The
idea behind is to model the interactions between users and items by capturing some
latent characteristics of the two edges of relationships. For example, some factors
of the users may be their preference and one of the items may be their category.
Once user and item vectors are inferred from rating patterns (explicit or implicit
feedback), the predicted rating is the dot product between the two vectors.

With both techniques, the corresponding models are built from training, and learn to
predict ratings of users for new items without having a feature-based description of any
of the two sides of the relationships. They are inferred as part of the model.

The advantages with respect to content-based approaches are many. First of all, more
serendipity [89] can be achieved, because the recommendations are not bound to content-
specific features. People tend to like different things that may be not related. Serendipity
is something more than novelty because it provides not only new things, but also things
that would have not been discovered by the user on its own. Another advantage is the
simplicity of the approach. No need to have item description and features, the system
learns how to distribute them in the internal model space by only looking at the feedback
provided by the users.

Hybrid

Of course the different approaches can be combined together, in order to exploit the
strengths of the sides and in some way mitigate their problems. For example collaborative
filtering suffers with new items that do not have any ratings. A hybrid system can use
its content-based side to analyze the item features. And the weakness of content-based
approaches that have low serendipity values can be mitigated by the collaborative side.
The combination of the different sides can be done in several ways [14]: a weighted
scoring, a confidence-based scoring, feature-augmentation methods, cascading are just
some examples.

2.3.3 Cold start

One thing that is common to all the learning-based recommendation approaches briefly
described before, is that they suffer from the cold start problem. Handling a new user
or a new item is quite difficult if its features are not available. The recommendations
for them are weaker and the system has to find the correct balance between a random-
like suggestion that if accepted leads a lot of value or a more confident one that (if
available) is more safe but carries no significance. This is in some ways similar to the
exploration vs exploitation dilemma of reinforcement learning, because also those systems
are learning from online experimentation. However here the problem is bigger because in
some situations there are no available data to even explore brave suggestions.

Those reason make necessary to employ other techniques. To solve the user-relative
cold start problem, a possible solution is to use third party external data [96]. Doing
an association between the empty new user and social network, enables to learn things
from interests and interactions that occurred on with the user profile. Many applications

55

2 – State of the Art

employ this technique, letting the user link their Facebook, Google+, Twitter accounts
to acquire as many useful information as possible. But the problem is that not all the
people are likely to share personal details in this way, and it may seem too much invasive.

For this reason another technique is to use a bootstrap phase in which the new user
is required to answer some initial questions to give a general model of him. This short
interview can be very effective if the questions themselves adapt to the responses. An
approach of this kind has been proposed in [62], where a decision tree is built for the
sentences to be prompted, enabling a grouping process that has as outputs some initial
features of the user who can solve the cold start problem. In [99] instead the authors
examine how, instead of prompting a single question per screen, using multiple questions
at each node of the decision tree can maximize the accuracy while minimizing the user
efforts.

What is important to notice of those bootstrap techniques is that the recommendation
at the beginning will be not very accurate, because it is difficult to capture the personal
traits from a limited set of questions. Then by interacting more and more the user model
is refined and better recommendations can be given.

56

Chapter 3

Approach

This chapter describes the design and the approach that has been investigated and de-
veloped to create a domain-specific bot. Section 3.1 focuses on the major topic of this
work, the Natural Language Understanding, treated as a really important component
independent from the domain, by giving a description of the most relevant choices that
have been done for the single-turn approach. These include word embeddings, that are
really important to provide the proper meaning to words (from here the semantic denota-
tion), and output dependency modeling, that enable to generate better output sequences
for the slot tagging task. Then the novelty introduced for the multi-turn scenario is
described to show the importance of the interaction context. The approach is defined
as Deep Semantic Learning, because the models are built from the observation of exam-
ples (Learning) without manually selecting handcrafted features but relying on stacked
recurrent layers (Deep) that take as input the word embeddings that map words to a
distributed representation that captures their meaning [92] (Semantic).

Figure 3.1. An example of interaction where the interaction context is important
for the intent classification

Then Section 3.2 describes the approach chosen for the selected applicative prototype,
by starting from the target scenarios (Subsection 3.2.1). A high level model is provided
(Subsection 3.2.2) and then a personalization strategy is proposed (Subsection 3.2.3) and
the possible sources of information are described (Subsection 3.2.4). The domain is the

57

3 – Approach

urban mobility: the bot goal is to provide a natural language interface towards the bike
sharing service. Bike sharing is one of the projects for sustainable mobility that tries
to address transportation replacement especially for the so called last mile: cover more
capillary with a public form of transport areas or trips that would be uncomfortable
without using a private vehicle. With respect to car sharing, bikes have much little
impact on the environment and are 100% green. It is important to notice that not all
the topics discussed in this chapter have been implemented. By comparing with the next
Chapter 4 it can be seen that only the language understanding, the interface with the
messenger platforms, the bike retrieval information and path computations have been
brought to experimental environment.

Figure 3.1 shows an example of interaction in the domain of bike sharing where the
previous value of the intent is important to determine the intent of the last sentence,
propagating over the dialogue.

3.1 NLU

Before describing the NLU module, it is important to remember the approach that has
been chosen: it is NLU based, not generative. For this reason the dialogue management
is still done using rules and the responses are provided by filling some templates.

Without having an existing corpus to train the dialogues in an end-to-end fashion,
this is the approach that best fits the situation. For example some complex rules like
“to search for a bike you should provide a search criterion or the last known position
should be known and recent (2hr or ask for confirmation)” is not manageable from a
data-only focused approach. Inside this domain, it is better to provide static rules that
are handwritten in some configuration files. Although there are several studies on end-to-
end goal-oriented dialog, for the implementation of this prototype a rule-based logic has
been chosen. The neural network are only applied in the NLU module that is responsible
to extract intent and entities from the current dialog, eventually using the multi-turn
environment only to better identify intents and slots.

3.1.1 Single-turn NLU

The computational graph that has been chosen to perform the joint task of intent classi-
fication and slot filling is the encoder-decoder model proposed in [65] because of its State
of the Art condition. By simply providing the words contained in a sentence, both the
intent and the slot tags can be computed. This approach was not modified for single-
turn interactions, because the performance are already good as will be seen in chapter
5. The focus has been on how to provide better inputs to the system in terms of word
embeddings and on output dependency modeling for the slot filling.

Word embeddings

The paper presenting the used model is not describing the way the words are fed into
the network. The implementation provided by the authors1 however shows that a word
embedding layer is part of the model and the values are randomly initialized. Since
the datasets on which the evaluation has been done is not very big (especially the ones

1https://github.com/HadoopIt/rnn-nlu

58

https://github.com/HadoopIt/rnn-nlu

3 – Approach

collected for the bike sharing domain), in the approach chosen fixed word embeddings,
pretrained on bigger corpora, have been used as inputs. This actually gave a little boost
on performances on all the used datasets as can be seen in the next chapter. Using pre-
trained static word embeddings as inputs to the neural network can help reducing the
number of tunable parameters and therefore help training small corpora, in addition to
other advantages, like the ability to use word-similarity also with words that were not
contained in the training corpus of the domain.

This is the most language-dependent part of the network and the goodness of the
classification results highly depend on the quality of the embeddings.

Natural Language Processing techniques depend a lot on the selected language and
also available libraries come with differentiated support based on it. Features such as
Part of Speech, or Parse Trees, if they come from statistical models or handcrafted ones,
can be good only if a lot of work is done in annotation of big corpora and therefore the
efforts mainly fall on the English language.

Instead approaches that consider word embeddings are less dependent on annotated
corpora, since those vectors can be built by simply having sentences in the desired lan-
guage, that have been computed and realised publicly on the Web, with unsupervised
techniques. As mentioned before, the bot has as requirement to support also the Ital-
ian language. Concerning English, several preprocessed word embeddings are available,
trained with different corpora and with different algorithms. Concerning Italian, the
found pre-trained embeddings are GloVe and Word2Vec trained by the Human Language
Technologies of Pisa2 trained on Wikipedia and the official fastText.3

A critical aspect to make word embeddings work at their best is to apply the same
kind of tokenization both when training the word embeddings and when using them
when feeding RNNs. For this application the choice has been to include punctuation
in order not to discard any useful hints from the input sentences. And, hence, the
two pretrained Italian embeddings have at their base a different tokenization method,
removing punctuation and by applying other transformations (such as replacing hyphens
and apostrophes with spaces to split the words), the choice has been to recompute the
GloVe vectors. This time applying a proper tokenization that, as will be seen in the
implementation chapter (Subsection 4.2.4), has been applied to maximize the performance
on a language that has a short representativeness in the domain-specific dataset.

Output dependencies

As mentioned in Chapter 2, modeling the output dependencies is very important in
sequence labeling tasks. The different choices available are: feeding output labels as
inputs to the decoding stage, or using a linear chain CRF. For its simplicity and also
because it is mentioned in the referenced paper [65], the first one has been chosen.

In the description of the network in the paper it is not described how the output
sequence labels are fed into the decoder. Different methods can be used: using one-hot
encoding, that has the problem of scalability when the output dictionary is big enough,
and word embeddings, to have a size independent from the number of existing slot labels.

The choice is to use word embeddings. This time however, differently from what
happens to input words, the embeddings are on a separate dictionary: the IOB labels.

2http://hlt.isti.cnr.it/wordembeddings/
3https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md

59

http://hlt.isti.cnr.it/wordembeddings/
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md

3 – Approach

Figure 3.2. The selected approach to model the output dependencies

For this reason they are not used pretrained but are included as trainable parameters
of the computational graph. As can be seen in Figure 3.2, the embeddings values are
concatenated with the current encoded word coming from the encoder. The rest of the
graph does not change.

3.1.2 Multi-turn NLU

For solving the problem of multi-turn NLU, after analyzing solutions in the literature to
the problem of keeping the context [111, 10, 94, 93], the decision has been to change the
single-turn architecture to consider also previous sentences. The goal does not change:
classify the intent and extract the slot values. So no advanced statistical dialogue-tracking
techniques are used, but the change focuses to enrich the available inputs with contextual
elements to do the selected tasks on the current sentence.

The work that follows for the contextual intent classification is taken from [73] done for
the “Hybrid Question Answering with Structured and Unstructured Knowledge” work-
shop,4. Three main challenges are addressed:

1. detect the change of intent in a multi-turn environment: in other words, to under-
stand dynamically when a certain session (sequence of messages related to a single
intent) ends in favour of a new one. This corresponds to choose for each input sen-
tence whether to keep the value of the previous intent or to consider some evidence
on the current input. The first case happens when the input sentence is part of a
preceding session, and the user is simply continuing the interaction with the same
initial intent. The second case instead is when a new intent is expressed in the
current sentence, signalling an intent change;

2. capture intent dependencies using the RNN: capturing the sequences of intent val-
ues, a better prediction of the sentence can be done knowing the proceeding intents.
This can be quite useful with sentences that are not so expressive because they are
referring implicitly to some context of the interaction;

4https://goasq.lri.fr/workshop/hqa18.html

60

https://goasq.lri.fr/workshop/hqa18.html

3 – Approach

3. consider the current agent turn words: having a knowledge about what has been
replied to the user can help contextualize the new sentence that may not have
evident indicators of the intent.

Figure 3.3. The selected Multi-turn approach

Figure 3.3 illustrates our approach. Sentences are encoded in fixed-length vectors
using the word-level bidirectional RNN (coloured in blue).The outputs of this first RNN
are passed to a second RNN (coloured in red) that models the intent propagation of the
user sentences over the different timesteps. This last RNN (in red) for each user sentence
produces the contextualized intent value. The agent words are in green, while the words
generated by the human are in white boxes.

In literature also other studies have been done on the problem of sentence classification
inside an interaction context. The approach proposed in [111] on the classification of the
domain, that is like the high level class in a hierarchical intent classification, uses the
previous model prediction at word-level, concatenating it with each word vector.

The approach proposed in this work is different both in the specific point where the
previous classification is used (not together with the input words but on the sentence level,
using the high-level RNN) and also in the way the word-level features are summarized in
sentence-level features and considered for next interactions by the learning network.

A critical point where this model should prove the goodness of the chosen cell, is when
two completely unrelated sentence follow each others (e.g. two different intents). In this
case the LSTMs/GRUs should learn to forget their past state in order to provide the new
values. In inference time we can never know whether a certain sentence is a follow-up
or is a new intent without any logical linking with the previous one, so the only good
option is to train the network to learn when this happens. For this motivation, instead
of training on single independent sessions, all the sessions have been concatenated. In
this way the model will be able to work better both on sentences that belong to the
same session (for example answering back to a missing slot) and on other independent
questions (for example an independent intent).

61

3 – Approach

3.2 The bot for bike sharing
At the beginning of this chapter the domain-specific bot has been introduced as a Natural
Language Interface towards the bike sharing information.

Since there is no agreement with the bike sharing providers (with the meaning that
for the majority of cities supported the only way to obtain updated data is through web
scraping, not through an official API), the information is only available in read mode,
and only from public sources. For this reason the main things a user can do with the
bot is to ask for information on the station and availability of bikes. No account linking
is possible and users cannot unlock bikes using the bot. The main idea is to provide
useful information to the users in a spatial context-aware setting. To provide this, the
bot should analyze the area relative to the information and provide some suggestions to
the user.

A required characteristic for the bot is to support the Italian language too: the agent,
being developed in Turin, is supposed to be able to understand both Italian and English.
For the sentences of the agent, the solution is simply to have both Italian and English
template responses. Instead for the language understanding part, as will be seen especially
for the Word Embeddings in Subsection 3.1.1, it requires having the requested models
for both the languages.

3.2.1 Scenarios

We explain there the main scenarios that we want to face with this conversational agent.
The main goal is to provide an easy-to-use interface that feels more natural for the user
by allowing the interrogation in natural language.

Search for bike stations information

The main scenario is the one where a user asks for information about bikes and available
parking slots. This can be expressed by a search of one station given some parameters or
by a search that includes more stations.

For the first case, the user may want to find an available bike or a free parking slot
given the current user position or another location. Instead for the second case, the user
may want to ask for direction between two points: this involves finding a bike near the
source and finding a place where to leave it near the destination.

The system, given simple queries expressed in natural language, should understand
the request and extract the necessary parameters. The retrieval of information should
include the interrogation of the bike sharing system or using cached versions, with the
aim to find a path for the user that follows the constraints specified by the user and by
the bike availability. Other sources of information that may be consulted are weather
information (to provide alerts for the given location) and routing information in order to
return a path that can be used by bikes.

The history of conversation is stored in a way to find temporal and spatial pattern
for the user, in order to build a model that can be used for personalizing his experience
for example by providing places suggestions, as will be seen in Subsection 3.2.3.

If there is a place that can be suggested, with sufficient confidence of the recom-
mending systems (telling that the suggestion is appropriate and relevant), additional
information about it can be included in the response that is generated.

Such response should have the form of natural language, with the possibility to include
visual contents such as pictures or links to more detailed information about the results.

62

3 – Approach

Search for supported cities

Another scenario is when a user wants to understand the availability of the information
for a specific city. In this case the request, expressed in natural language, will contain
the name of the city. The system extracts it and finds if any bike sharing providers have
support in it. If the city is not supported, information about which nearby locations are
supported can be provided in the response.

Small talk, refining the user model

The last scenarios is the one of small talk: all the sentences that are not necessary
to provide information about bikes, but are necessary to handle very basic chit-chat
dialogues.

The user may use greetings, generic responses like yes/no, questions about the bot
and other sentences that can be easily replied to, just to make it seem more natural.

Knowing that user expectations can be easily destroyed with a “I don’t understand”,
some answers have been added only to mitigate a very big problem that still is present
and could only be solved with generative approaches.

Having some dialogues of this genre with the user could help understanding more
about him, and this kind of information could be useful for refining the personalization
model. By having a mixed-initiative interaction instead of letting the system to reply
only to the questions, the bot may also ask questions to the user about his interests or
explicitly asking for some feedback. In this way the personalization would receive a boost.

Proactive messages

Extending the mixed-initiative interaction out of the single dialogue, the bot may be able
to actively begin the conversation with the user after some time of inactivity (not possible
to start conversations with new users of course). This can be seen as breaking the idea
of the bot as a service and for this reason should be only done if there is an advantage
for the user. The advantage can exist in two different situations.

The first one is when, after having provided some kind of information to the user (e.g.
a bike is available in a specific station) and before the user arrives there, the situation
changes (e.g. the bike is no more available or the weather is getting worse). In this case
the bot could actively send a message to the user informing about the change.

The second situation is when a pattern in the behaviour has been observed (e.g. the
user always searches for a bike at 8am in a fixed location). The system (some minutes
before the forecasted event) can send an unsolicited message to the user informing him
about the bike availability.

Those messages must be in some way controllable from the user. The suggested way
of making them available is to test them once on the user and then getting the feedback: if
the user reacts positively (measured by explicit response or interacting with the generated
content) the feature can be kept on, otherwise the system will remember not to use the
feature with the current user.

3.2.2 High-level model

Given the main scenarios and given the fact that no publicly available corpus exists for
the selected domain, the choice of the approach could not be in favour of an end-to-
end system with dynamic response generation, but towards a NLU-based understanding.

63

3 – Approach

About the Information Retrieval, the data comes from external fixed set of APIs so it has
been chosen to keep this approach instead of turning all the information in explorable
graph of connected entities. These choices, together with the delineed scenarios, require
the presence and cooperation of different components.

Figure 3.4. The high level model of the system

As can be seen in Figure 3.4, one component is needed to interface with the different
messaging platforms. This is responsible to make messages arrive to the “brain” of the bot
and to deliver responses back. Something about this component will be described soon
and some implementation details will be given in the next Chapter (Subsection 4.1). Then
another component will do the NLU, providing intents and resolved entities. Passing
through the dialogue manager, that contains the rules for managing the conversation,
the flow will reach the personalization module that will collect episodic knowledge and
together with the contextual knowledge will provide recommendations. The responses
will be generated by combining the results and some templates will be filled.

The main sources of information (knowledge base) can be grouped together in two
types: the Contextual and Episodic. In the first group can be found the providers of
information, that are used in read only mode, inherent to bike sharing, places, weather.
The data is provided by external web API, and may be cached locally for performance im-
provements. The Information Retrieval module is responsible to manage them providing
a higher level API that can be easily used by the dialogue manager. Instead the Episodic
Knowledge contains records captured from the interaction with the users. Aggregated
information can be computed and put in the user model that collects the user features
that can be used for the personalization.

Going a bit deeper on the source and destination of messages, we are discussing
about the messaging platforms where chatbot can be created. Nowadays there are so
many different options available and every one of them has different features. There
are even some of them that do not allow bot users. For example, the most widely used
chat platform WhatsApp strictly forbids non-human accounts, punishing with permanent
banning.

Starting with one of the first platform to support bots with official API, Telegram
Messenger is surely the easiest platform to create bots on, allowing them since June
2015. Bot accounts can be easily created in few seconds with the only principle that the
username should end with “bot” in order to be recognizable. User can interact with bots
using text, voice, buttons of different kinds, images (any kind of file can be sent) and
including them also in chat groups. On mobile devices users can also send their location.

64

3 – Approach

This platform is the most friendly for bots, but is not widely used by non-geeks.
A very commonly used platform is Facebook Messenger, that opened to bots in April

2016. This platform is widely spread because is part of Facebook, and is available for
every devices, also from web browsers. On Facebook Messengers the features are tex-
t/voice exchange, buttons of different kind, images and even attaching the user location.
Facebook Bots have their Facebook Page and a few configuration steps need to be done
to be able to set up a new bot. Other chat platforms that allow bots are Skype, Slack
and Kik.

Other interesting communication channels are arising with expandable virtual assis-
tants, that focus more on the use of the voice. Expandable in the sense that developers
can develop some abilities for some domains and users are allowed to select them and add
to the behaviour of the virtual assistant. We are talking about Alexa Skills and Cortana
Skills. For these platforms the interaction with the user is quite different because instead
of communicating directly with the user, the virtual assistant manages the conversation.

There are so many different platforms that it would be quite restricted to focus only
on a single one. Furthermore the APIs change a lot between them, and even between
different versions of the same platform.

Since all the details of the API are only an implementation detail, that will be fastly
covered in the implementation chapter, here we will give only the motivation that lead the
design of the system to be split into two parts: one will manage the channels and commu-
nication from and towards them, while the other will handle the important conversation
stages (comprehension with NLU, dialogue state management, information retrieval, per-
sonalization). The message exchange between the two parts is done using a neutral
representation, not dependent on any of the destination platforms.

This is what is intended with the term Multichannel Support: the core of the chatbot
can be put in communication with any messaging platforms, given that the message-
proxy component (the part of the two that depends on the specific platform) is correctly
configured. This component can make use of one of the many available solutions to
manage different channels: Microsoft Bot Framework, Recast.AI Bot Connector, or start
from scratch the implementation of the different endpoints. As will be seen in the next
Chapter (Subsection 4.1), having this component has many practical advantages.

Intent and slot types

From an analysis of the scenarios, an hypothesis of the common user intents has been
done, and from them also the slot types have been modeled. Intent and slot types have
been successively refined in successive iterations by observing the transcript of some test
users. The intents that have been used can be seen in Table 3.1 together with some
examples.

While the intents, once recognized, are ready to be used in a rule-based logic (each
intent is linked to a set of actions that must be performed), for the slots more work
needs to be done. First of all a check of the required ones based on the intent type,
providing some questions back to the user to request them when missing. And then
another component, the entity resolver, needs to translate text spans into living entities.
For the entities of type LOCATION this corresponds to translating a text into a location
object with latitude, longitude, full name.

During the progress of this task many problems can arise. First of all, the user may
refer to some place names that are bound to a position only for them: examples are
“home” “work” and “school” that are different for each user. For this reason this type of

65

3 – Approach

Intent type Example Slots
search_bike Find me a bike near Central

Park
LOCATION(’Central Park’)

search_slot Where can I leave the bike near
Big Ben

LOCATION(’Big Ben’)

plan_trip I want to go from Piazza
Castello to Porta Susa

FROM.LOCATION(’Piazza
Castello’)
TO.LOCATION(’Porta Susa’)

city_supported Is Torino supported? LOCATION(’Torino’)

set_position I am in Rue de France, Nice LOCATION(’Rue de France,
Nice’)

ask_position Locate me

booking Please book me a bike near Pi-
azza Navona

LOCATION(’Piazza Navona’)

greeting Hi there!

info What can you do?

end_discussion Ok

thank Thank you!

Table 3.1. Intent types and examples

resolution and memorization is required to be personalized. Another common problem
is the disambiguation of places with the same name that exists in different contexts.
Geocoding can be biased on a specific area to give a preference on a certain bounding
box,5 but the identification of this box is itself a problem because we can never know if
the user is visiting some unusual places.

Apart of all those problems, the chosen solution is to use third party geocoding ser-
vices to translate from a place name to a structured object that enables to work with
the latitude and longitude to provide the desired path information. The problem of
disambiguation and personalization are kept for future works.

The entity of type LOCATION can be inside the utterance as entity or can be the user
position. Other entity types have not been considered for this initial prototype.

Dialogue State Management

The Dialogue State Management module is responsible to handle the mapping from
intents and available slots to the actions and responses. For this part, as mentioned
before, a rule-based approach has been chosen.

Each intent type is mapped to a specific set of actions. Additionally for each slot type
that is used in a certain intent type a rule is configured to say if it is compulsory to have
a value or not. In the case the slot is compulsory, the Dialogue State Manager must ask

5https://developers.google.com/maps/documentation/geocoding/intro#Viewports

66

https://developers.google.com/maps/documentation/geocoding/intro#Viewports

3 – Approach

back for it, prompting a question to the user.
The intents that have been designed however have another type of rule: the location

entity can be replaced by the current position of the user, that can be sent as attachment
or expressed with the corresponding intent set_position. If the value of the user position
exists and is recent (last 2 hours), it can be used. Otherwise the user is required to provide
it.

Once the requirements have been checked, the corresponding actions are called, in-
volving the interrogation of the bike sharing information and other collateral sources. At
the end, when the results are ready in a structured format, the translation back in natural
language is done by filling some template responses with some item features.

3.2.3 Personalization

This section explains how the personalization techniques can be applied to the inter-
actions with a chatbot, providing personalized content recommendations in a tailored
communication fashion. This approach is composed of two main parts: content recom-
mendation and in this specific case the contents that are provided as recommendations
are places around the user that he could be interested in. The second part is relative
to the interaction itself : the goal is to change the behaviour of the bot relatively to the
mood of the user, in a dynamic way.

It is very important to notice that the topics here discussed have been used in a design
phase but they have not been developed and tested. However we kept this section as part
of this work because its content can be used for future studies (as discussed in Chapter 6)
that may implement the idea represented here. Furthermore, not only a personalization
approach is presented, but also a bit of analysis of third party information providers
that could enable this scenario, such as Facebook Graph API or Big Five predictors (in
Subsection 3.2.4).

Content recommendation

For giving content recommendations, the objective of the recommender is to provide
interesting places for the user around his trip. The area of search is therefore established
by the results of the information: different strategies could be used to determine this
surface, but the fastest one, that helps also querying providers of places information (e.g.
Foursquare, Facebook Places, Google Places), is to use a circle determined by its center.
As can be seen in Figure 3.5, the circle is centred in the mean point between the source
and the destination, while its radius is chosen to cover the source and the destination
plus an additional margin. The margin enables to provide also some places nearby the
source or the destination that would be clipped out otherwise.

Determined the valid surface, the places in it are candidates for the recommendation.
To restrict the places list and to provide one of them as recommendation, the strategy to
be applied is to determine a place category that the user could be interested in. To find
this category, a bit of user modeling needs to be done.

User modeling First of all, it is important to understand which variables need to be
collected to build the user model. Some manifest variables like gender, age, profession,
religion, political orientation are used for many profiling techniques, but not always they
are available. Moreover, from a bot that is giving bike sharing information it is strange
to be asked for those values, and can only make the user stop using the bot because it is

67

3 – Approach

Figure 3.5. The geographical constraints to search places for the recommendation

asking strange questions. For these reasons, this kind of information is not even asked to
the user.

As explicit data collection, some questions can be asked to the user in a more appro-
priate way, relatively to bike sharing. For example asking why the user makes use of bike
sharing: to go to school, work or simply to run errands around the city. Having a gen-
eral knowledge of the main purpose of using the bot should be really helpful, extracting
personal details like occupation or student status. This type of information can be col-
lected at the beginning as bootstrap questions, or also after some dialogue with the user
has been done. In this way the user can soon use the service without being blocked by
bootstrap questions, but after some minutes of inactivity he can be sent some questions
in order to improve the service. In any case, waiting for responses should not block in
any way the understanding process of new requests. For this reason it is important that
the classification of intents continues to work, distinguishing dynamically if the user is
keeping the discourse in the bootstrap environment or if he is providing his own intent
to reach some details about bike sharing.

Other explicit information can be collected when the recommendation is in act, as
feedback to the suggestions: feedback can be positive or negative, collected through
specific buttons or intercepting the user clicking on the information given about the
place. The feedback can help refining the user interest and also understanding his attitude
towards recommendations (as will be seen in Subsection 3.2.3).

As implicit user modeling, observing the patterns (temporal and spatial) of the queries
performed can help find users similarity and improve the collaborative filtering approach
(as will be described soon). The patterns in the spatial dimension correspond to frequent
places, while in the temporal dimension can be interpreted as habits.

Other optional sources of data may come from social networks. On social networks
people usually show their interests towards different kind of things: check-ins, places,
music, films, and many others. This can be very helpful to user modeling, both providing
user features both providing item (places in this case) features. The inputs in this case
are the interests of the user, that can be provided by doing a login on the desired social

68

3 – Approach

network. The access scopes6 usually can be requested with different granularity levels and
allowing different types of personal information to be retrieved. This login is proposed to
the user as optional and if denied must not preclude any functionality of the bot. Simply
the model for this user will not be accurate and more generic recommendation will be
provided.

Given the social network footprints, a prediction of the Big Five personality traits
can be done using some online available APIs (see the related Information Retrieval
description in Subsection 3.2.4): the user features will be the Big Five together with
concentration on different areas (like art, biology, business, IT, education, engineering,
journalism, finance, history, law, nursing and psychology). These features try to describe
the personality and the possible interests of a person, and can be computed easily as
will be seen in the section. Furthermore, as described previously in Subsection 2.3.1,
they come from expert psychological studies [21] and are proved to be able to predict
unpublished user features [53].

Once these user features are collected, different recommendation paths have been
modeled to suggest the categories of places inside the selected area.

The trainable relationship The recommendations of categories are given following
an hybrid recommendation approach, combining content-based with collaborative tech-
niques. As can be seen in Figure 3.6, there are different entities involved, but the main
goal is to learn the mapping from user features to place categories. This is the unknown
relationship evidenced in red in the figure. The model needs to retrieve as many details
on the two edges of this relation, in order to be more able to suggest the best places for
each user.

Figure 3.6. An overview of the possible recommendation paths between the
user and the places

There are different ways to collect the details of user or of the places. The user fea-
tures have just been described, but to have a correlation between them and the places

6https://developers.facebook.com/docs/facebook-login/permissions/

69

https://developers.facebook.com/docs/facebook-login/permissions/

3 – Approach

features, it is necessary to collect also information on the other side of this trainable rela-
tionship. For this reason, when connecting to third party social networks (gold candidate
is Facebook), the desired scopes for this personalization strategy should allow exploring
the user interests (Facebook Likes) and the places where the user checked-in (similar
to the Foursquare checkins, Facebook calls them as user tagged places). The first ones,
besides allowing to infer user features, allow exploring the places he likes, because pages
can have a physical location. The places that have been visited or have been “liked” by
the user can be used to analyze the respective categories, and add training data.

Yet another input can be used to feed data about this trainable relationship: explicit
and implicit feedback. Receiving signals from the user about a recommendation, the
model can be refined depending on the positivity of the user opinion. The explicit feed-
back is acquired when the user evaluates the solution, and the implicit can be collected
by using a link rewriting strategy that captures when a suggestion link is visited.

All those inputs are used to train this relationship that models how different users
with similar interests are likely to appreciate places with similar features. To model this
unknown mapping, a simple feedforward neural network can be used and trained with the
data of every user. It is a content-based component because users that have expressed
a positive opinion on a certain category, will receive recommendations with places that
have similar characteristics. But it is also collaborative because the relation is trained
with data of all the users, so similar user features map to similar places features.

Providing recommendations So given any user and any constraining circle around
his path, different recommendation strategies can be applied depending on which inputs
are available.

First of all, the trained relationship can be exploited if enough inputs are known.
This is the case where the user has done the social login and/or has provided answers to
the bootstrap questions. Using his feature vector, an estimation of the categories he is
interested can be done by applying this hybrid recommendation component. Once the
categories are found, the search within the bounding circle can be performed by giving
preference to them.

If the user feature vector is not yet populated, or the previous recommendation strat-
egy gives results that have low confidence, another strategy is to use the explicit feedback
provided on previous recommendation. This time, no hybrid recommendation is used,
but only a content based one, suggesting places with a similar category to the ones that
were previously appreciated.

If also this kind of information is not available, but the user has used the bot for a
while receiving several times path directions, another strategy can be applied. The idea
is that users with similar spatio-temporal usage patterns are somewhat similar, because
they go to the same places around the same time. Following this idea, an analysis of those
patterns can be done by applying some unsupervised techniques, such as user clustering
based on the Episodic Knowledge. The features to include for this clustering are time and
space of the locations involved while performing the interaction with the bot. As output
from this application of clustering we can get a neighborhood of the user in this space of
spatial and temporal features. We can then use the identified similar profiles and ask the
recommender a suggestion with respect to them, and see the effect of propagating this
recommendation to the starting user. This technique is therefore really collaborative.

However all those strategies rely or on a properly featured user (to use his feature
vector), or on a wide usage by different user (to enable the neighborhooding search).
Those aspects are heavily suffering from the cold start problem. To mitigate this effect,

70

3 – Approach

especially on the first epochs of the system where a very limited number of users are
interacting with it, a last technique can be used. Places API, as will be seen in the section
relative to the Information Retrieval 3.2.4, usually provide a section named “trending
places” (in the jargon of Foursquare they are called top picks). This kind of places
usually represent very interesting places in general, that can be safely suggested to the
new users. An important role again is played by collecting the feedback after prompting
the suggestions. Generic recommendations can be given at the beginning and can be
slowly refined by collecting the feedbacks and collecting more users that hopefully will
accept to perform the social login.

When a certain distribution of probability over the place category is computed, there
are still some choices that can be performed to reinforce the recommender system. One
of them, typical of the reinforcement learning, is the exploration vs exploitation dilemma
that in this case can be seen as: it is better to provide an experimental suggestion that
has a low confidence score and could result both in a serendipitous acceptance and brutal
rejection, or to provide a more confident suggestion that can be seen as foregone and will
not help discovering more about the user?

To put this dilemma into action, an ε-greedy [101] can be used to dynamically deter-
mine a temperature level [39] that will model the softmax smoothing. A low temperature
value makes the recommendation more confident and stays on the exploitation side, while
an higher value tends to make the choice over the categories more random, on the explo-
rative side.

If this approach is implemented, measures of its goodness should consider not only
the accuracy of recommendations, but also their diversity and serendipity.

Tailored communication

How introduced previously, we think that the personalization strategy in a textual envi-
ronment should not be limited to content recommendation. Being human conversation
itself one of the most dynamic interactions where it is very important to understand
the interlocutor to say the things in the right way, in the following paragraphs different
modifications to the mean itself of interaction are considered. First of all, some operative
modes are defined to represent different behaviours with respect to the recommendation
process. Then a memory of the personal preferences, letting the bot remember things
that can be useful to fasten the interaction (having places saved with names like “home”
and “work”). And finally some considerations that can help reducing the linguistic style
distance between the user and the bot.

Operative Modes Starting from the operative modes, we can define them as states
of conversation that model how much the recommendation process should be active and
visible to the user. It should reflect how much the user is willing to receive suggestions
relatively to interesting places in addition to the normal information about the trip. Three
operative modes can be designed:
Normal: the recommendation are provided when the system is sufficiently confident.

This means that not for each search a recommendation is provided, because that
would be too much, but sporadically a place is suggested and the effect on the user
is observed;

Straight to the point: the user expressed negative sentiment in response to a recom-
mendation, or may be in a hurry and needs only the bike information. In this

71

3 – Approach

situation, the bot is not allowed to send recommendations because can lead to a
very negative attitude and abandonment of the conversation;

Conversational: the user is chatting with the bot, asking some questions about it. This
may be the right moment to ask some information to the user in order to refine the
model. Questions should not be too personal, but always somewhat related to the
topics discussed. An analysis of the personal interests can be done to understand
better which categories can be interesting for him.

To decide which operative mode should be applied, it is very important to collect signs
from the users. Signs can be explicit in feedbacks: both textual or by using some buttons
next to the results. Signs can also be implicitly sent in text messages: latent sentiment
analysis can sometimes provide sporadic hints.

Or signs can be collected from monitoring the destination pages that are linked in the
results. For this reason the strategy of link rewriting can be used to intercept the user
clicking on the details of the recommendation: an intermediate webserver can be set as
the destination when creating the link; when it receives the request, it records the fact
that the user has reached it and sends a redirect for the real destination. This strategy
is widely used to measure click-through rates by all the big companies (see for example
the real URL used in the results of a Google Search, or the links built by Facebook and
Twitter).

Personal preferences The personalization, beyond providing the recommended con-
tent in the correct way, should also consider some personal preferences that may enable
a faster and more comfortable usage, like setting bookmarks or saving form fields in a
web browser. In the domain of bike sharing, it can be useful to let the user save favourite
stations, linking them with a shorter name, or saving the values for other commonly fre-
quented places, like the home or the work/study location. By having this personal map
between names and locations, searches can be performed faster and without the need to
remember long addresses every time.

Other preferences that can be saved for the bot, are values that play the role of
settings: set automatic messages in certain time slots, to receive unsolicited messages for
bike availability on recurrent habits or to receive constant updates about a bike station in
the minutes before its usage. Those are all things that could enhance the user experience.

Linguistic style and mood Furthermore, the personalization strategy could also be
expanded to the linguistic style of the user. This can declinate on a targeted choice of
language or the usage of emotions. Those enhancements can be used effectively only if
responses are provided in a generative fashion.

On the choice of language, what can be done is a imitation of the formality level
and jargon. This is what happens in real life dialogues, where the terms people choose
are usually targeted to the interlocutors and the sentences are generated to fit the social
situation. In a generative approach, as works like [61] show, the language can be modified
by being more user centric with respect to speaking style, that can reflect also some
background information of the interlocutor.

Instead on the side of emotions, as [113] shows, the output of generative approaches
can be biased on a specific emotion. This can help making the user more understood by
reflecting his mood of writing. However, as discussed in the introduction, this emotional
content has many potential negative effects on the personality and should be evaluated
well in ethical field before giving any implementation.

72

3 – Approach

3.2.4 Information Retrieval

This subsection analyzes the kinds of information that both have been used in the pro-
totype and may be used for the implementation of the personalization approach. Some
details are given about each data source that is necessary, together with the respective
APIs that can be used. The sources of data cover different domains: from the bike sharing
information, passing through the computation of directions and geocoding, and going in
the direction of personalization by means of APIs to retrieve the recommendation items
or APIs to compute user features. Below are listed the different data sources that need
to be queried to provide updated information to the users.

Bikes

Bike sharing is an expanding market, where every day more companies are investing in
and more people decide to use them for their relatively small cost and for their easiness in
the urban environment. The majority of the providers have station-based systems, where
the users begin and end their trip at fixed locations (the stations). However nowadays
station-free systems are being spread in major cities, with the advantage of being able to
leave the vehicle in any responsible place.

Given the multitude of companies and the economic competition between them, and
also the fact that in different cities multiple providers are available (e.g. in Turin there is
the station-based toBike and the station-free oBike and MoBike), interfacing with them
is quite difficult for two reasons:

• The bike sharing providers may not want to make available their data to third-party
players, both for privacy issues (data disclosure can be quite a problem also in this
domain7) and because of its value;

• The data format is different for each bike sharing system.
For these reasons, the only applicable approach to get the desired information is to use
some open-source contributive library that is produced and maintained by a sufficient
number of people in order to cover a big number of cities. The information may be
extracted by publicly-available APIs or by web scraping techniques.

Fortunately such library exists for station-based systems: PyBikes.8 This library in-
terfaces with different bike sharing providers by using open RESTful APIs when available
or using web scraping to connect to other ones. The structured information about the
bikes and stations can be updated from the source and be used for any computation.
Being completely open-source, everyone can contribute and make it work for additional
systems.

Geographical information

Instead on the side of geographical tools, two main needs are addressed: geocoding capa-
bilities, as tools for the entity resolver that needs to turn textual entities into geographical
objects, and the computation of paths between sets of points with specific constraints.

For the geocoding capabilities, translating text into positions can be achieved by

7https://www.cnet.com/news/yellow-bike-sharing-firm-is-new-victim-of-global-data-breach/
8https://github.com/eskerda/pybikes

73

https://www.cnet.com/news/yellow-bike-sharing-firm-is-new-victim-of-global-data-breach/
https://github.com/eskerda/pybikes

3 – Approach

using online services such as Google Geocoding Service,9 OpenStreetMap Nominatim,10

Mapbox11 or many others. Among them, Google seems to be the most reliable and
comprehensive even in terms of incomplete textual descriptions. The query can ask even
for preference in a given bounding box, and the response provides back a list of candidates.
The information retrieved through this service provides the source and destination points
used to search the bike stations and to compute the paths.

Given the locations of source, destination and possible stations involved, a path has
to be computed to give directions to the user with the selected constraints. Since many
web APIs exist with good results, the approach is to find a service with the desired func-
tionalities and use it. The main feature requested is to compute paths that are suitable
for cycling: respecting the street laws, avoiding highways, preferring cycle lanes are just
the examples that show how important the mean of transport is while computing the
paths. Looking for this functionality, three major providers have been analyzed. First
of all, the Google Maps Directions API,12 that should support bicycle directions. But
however the service does not work in the city of Turin, so it has been discarded. The
second system considered has been one of the many based on the OpenStreetMaps in-
formation: OpenCycleMap.13 Even though the information provided should be the most
accurate because of the collaborative open source data, it seemed too much complicated
to integrate and had some strange behaviour that made it not totally reliable. The last
and definitive service has been the Mapbox Directions API,14 fully supporting bike paths
and having only as negative point a limited number of calls per month (50000 that is
quite huge though).

A feature that would have been interesting to consider is the possibility to choose the
path with criteria different from shortest or faster, for example considering the smells and
happiness of the places in the route. This could potentially provide results that offer a
better quality of the path, but have currently be done as an experiment only in the city
of London [84, 83, 1]. This feature was not considered, in favour of the usual optimal
path.

Places

Instead for the information about the places, required for the recommendation strategy
described above, there are different options that can be considered.

The first one is again by Google with the Places API,15 that provides up to 1000
requests per day freely. A similar role is played by Foursquare that makes available
different tools for place discovery: one traditional place search API16 that can be used
to search places by name, location, category or other criterion and can be used also to
match places from other external sources (like the pages that some user expressed interest

9https://developers.google.com/maps/documentation/geocoding/intro
10https://nominatim.openstreetmap.org/
11https://www.mapbox.com/geocoding/
12https://developers.google.com/maps/documentation/directions/
13https://www.opencyclemap.org/
14https://www.mapbox.com/api-documentation/#directions
15https://developers.google.com/places/web-service/search
16https://developer.foursquare.com/docs/api/venues/search

74

https://developers.google.com/maps/documentation/geocoding/intro
https://nominatim.openstreetmap.org/
https://www.mapbox.com/geocoding/
https://developers.google.com/maps/documentation/directions/
https://www.opencyclemap.org/
https://www.mapbox.com/api-documentation/#directions
https://developers.google.com/places/web-service/search
https://developer.foursquare.com/docs/api/venues/search

3 – Approach

to, that can be used with the match intent that requires the position to be the same with
high precision); an explore API17 that can be used to search for relevant places inside a
selected area on a given section (that corresponds to high level categories: food, drinks,
coffee, shops, arts, outdoors, sights, trending, venues frequently visited after a given one,
or a mix of recommendations generated without a query from the user called topPicks).
This second API can be used to get more recommendation-related items against search-
related results: the objective of search is really different. Furthermore the call limits
of Foursquare are even bigger (120.000 requests per day) and this makes it the best
candidate for the required features.

Facebook Graph API

The personalization approach described before requires an analysis of social networks to
perform an analysis of user features and the pages and places that are liked by them.
Nowadays the most widespread social network is undoubtedly Facebook. With around 1.4
billion users active daily,18 it is a mine of data that gets fed constantly with multimedia
content. Users tend to voluntarily disclose personal details on this platform, following
the pages of the places they have been to, self-tagging themselves in places to show
their experiences to their friends, personal interests like music, films and arts. This is
the perfect source of profiling that can be found. For this reason, a quite cumbersome
management of read permission has been developed in order to make users a bit more
conscious about what they are sharing with applications linked to the platform.

For example chatbots, when messaged by users, only see their name, picture, locale
and gender. To see other details a Facebook Login19 needs to be performed. This login
can be done on any messenger platform because the procedure is handled by a flow
that only requires to have a web browser installed that will carry some authorization
information towards a destination web server that is configured as endpoint.

The login follows this flow. First of all, the bot provides an url to login on Facebook,
specifying the destination endpoint URL (owned by the developer and configured on the
corresponding Facebook Application as trusted domain). Then the Facebook login is
shown to the user, that authenticates himself and selects which permissions to give to the
application. After this, the user is redirected to the endpoint URL with a parameter that
contains a short-term token usable to retrieve the user information through the Graph
API.

The identified scopes that are necessary to retrieve both the user likes and the tagged
locations are user_likes and user_tagged_places. The data obtained can be used to
estimate the personality traits and to obtain a list of place categories that the user has
shown interest for. To make the correspondence between Facebook places and Foursquare
places, the intent of matching is specified to the places search API.

Big Five computation

Another third-party component, that is very useful for the personalization approach, is
the computation of the Big Five personality traits [29]. Since having a mapping from

17https://developer.foursquare.com/docs/venues/explore
18https://zephoria.com/top-15-valuable-facebook-statistics/
19https://developers.facebook.com/docs/facebook-login/permissions/

75

https://developer.foursquare.com/docs/venues/explore
https://zephoria.com/top-15-valuable-facebook-statistics/
https://developers.facebook.com/docs/facebook-login/permissions/

3 – Approach

personal preferences and tastes to this five-factors representation requires a lot of training
data, it is quite unfeasible to start from scratch without an existing dataset. For this
reason, a search of online services has been done. The requirement that we searched for,
beyond free usage, is to avoid personal detail disclosure. For this reason only solutions
that allow anonymous data to be sent and retrieved were considered (no third party
application login, only sending anonymous features to obtain a response over the person-
ality traits). In an exploration phase, an interesting service has been found, that only
requires a list of Facebook pages identifier to compute the personality traits. This service
is ApplyMagicSauce,20 that can be used both on their site, allowing their application to
read the personal profile, or can be used as a web service, sending simply the list of pages
in any way indicating which user is linked. The results provided are both the big five and
some concentration areas described before. They can be used to fill the user vector and
to understand better his personality.

Other

Other additional data sources can refer for example to the weather conditions. Being
bikes vehicles subject to bad weather conditions, considering precipitations could be ad-
vantageous for the user. For example while retrieving the information for a trip, the bot
could warn the user of an imminent storm.

Different weather API are available online, and the criteria to choose which one to
use should be the accuracy and the availability of detailed information.

20https://applymagicsauce.com/research.html

76

https://applymagicsauce.com/research.html

Chapter 4

Implementation

This chapter focuses on the bot prototype that has been developed to put in practise
the studies that have been done. This chapter reports the things that have reached the
implementation stage. The implementation can be divided in two main areas:
Multichannel implementation: platform-dependent code completely decoupled from

the core of the bot;
Natural Language Understanding: the implementation of recurrent neural network

for joint intent detection and slot filling in single and multi-turn environments.
As mentioned previously the personalization part remained as a draft only and is not
active in the prototype.

While the first part is really bound to the bot scenario, where it is important to
interface with the messaging platforms, the second one can also be used as a standalone
framework to evaluate performances on different datasets.

The whole implementation of the system is available as a open source repository,1
that contains two modules: one dedicated to the specific bot for the bike sharing, while
the other is relative to the Natural Language Understanding and neural networks.

4.1 Interaction with chat platforms

To interact with the chat platforms it was mentioned that a separate component has been
designed to adapt to the different messaging platforms. This component, the Bot Server,
on one side communicates with the Bot Core, that can be physically hosted on another
machine, and on the other side interfaces with messaging platforms.

The overall architecture of all the distributed components can be viewed in Figure 4.1.
In this figure different types of components can be seen. On the left the user devices
are shown, that can interface with different messaging platforms and websites. Those
red components, the channels, are not manageable from the bot developer. Usually an
account is built for the bot, but the communication with the user is completely handled
by the reference platform. A special case is played by the website in blue, that provides
an additional platform to chat with the bot without requiring any messenger accounts.
Going a bit on the right, we can see the concentration role of the Bot Framework2 server
that handles dishomogeneous data on the left and transforms them to a more standardized

1https://github.com/D2KLab/botcycle
2https://dev.botframework.com/

77

https://github.com/D2KLab/botcycle
https://dev.botframework.com/

4 – Implementation

form on the right. This component is configurable by the bot developer, who through a
web graphical interface can add and configure the channels on the left and at the same
moment configure the external webservice on the right (the Bot Server). The Bot Server,
under the full control of the developer, applies extra transformations of messages and
plays also the role of a web server. The intelligent part, containing the Bot Core, is
deployed on another machine without being reachable from the outside.

Figure 4.1. The physical components involved for the prototype

The communication between the two custom components (in blue in the figure) is
done over a websocket to allow asynchronous messages to be sent in both directions,
without using polling techniques that may consume resources and bandwidth. The Bot
Server exposes two different endpoints for Bot Cores, one for the English version and one
for the Italian one. Those endpoints thanks to HTTPS protocol offer a reliable channel
that provides data encryption to protect data in motion and authentication through a
symmetric key shared between the two parts. The data is transferred between those two
components with the JSON standard over the websocket, with a format that does not
depend on any specific messaging platform.

The Bot Server is not put directly in contact with the Messaging platforms because
it would have required to implement all the webhook endpoints for them and also to
translate from and to all the platform dialects. The most easy way to implement it has
been found by interacting with a third-party component (Microsoft Bot Framework3)
that can be configured on a web portal to reach the different platforms. This removed a
lot of implementation effort but brought to an architecture that is not very elegant and
compact. The communication between the Bot Server and the Bot Framework is done
in a way that is similar to the one required by messaging platforms: both components
expose web endpoints (that must provide HTTPS connections with digital certificates
that have as root a trusted CA) that are used for one-directional communications (the
only response that is given is a status code that represent the outcome of the request)
and each message is sent independently in its direction.

The supported platforms that have been configured for users to chat with the bot are
the following:
Telegram: chosen because it is easy to create bots and is a must for historical reasons.

This channel is available both for English4 and Italian5 languages. A particularity

3https://dev.botframework.com/
4https://telegram.me/botcycle_bot
5https://telegram.me/botcycle_it_bot

78

https://dev.botframework.com/
https://telegram.me/botcycle_bot
https://telegram.me/botcycle_it_bot

4 – Implementation

of this platform is that it allows using a special kind of buttons that enables the
user to send his current location.

Facebook Messenger: chosen because linked to Facebook it is one of the messaging
platform with the biggest number of potential users. This channel too is available
both in English6 and Italian7 languages. Similarly to what happens on Telegram,
a special button can be built with the capability to pick a location on a map.

Skype: exploiting the exclusive Bot Framework support for the platform, that is not
usable otherwise, this channel is added both for English8 and Italian.9 However the
majority of people do not even know that bots can live on skype.

Slack: used for internal experimental testing on a dedicated workspace.
Web site: a dedicated website10 allows to test the bot without using messenger apps.

The main role of the Bot Server is to receive the messages on one side and provide
them to the other one, by transforming their representation. The Bot Framework works
well in the direction of receiving the messages from the user, but on the other directions
does not provide all the features specific to the messaging platform. For instance, both
on Facebook Messenger and on Telegram, buttons can be shown to the user in order
to send the current position, while other platforms do not support it. To send these
types of messages, it is necessary to send attachments in the native form of the platform
(quick_replies with ’content_type’: ’location’ for Facebook, reply_markup with
’request_location’: true for Telegram). Furthermore, this component also provides
a web page where users can test the bot without using messaging platforms, as has
been described previously. Also the Bot Server source code is made available openly,11

and makes internally usage of the Botkit library12 to interface correctly with the Bot
Framework.

Having two different custom components has many advantages: both conceptual and
practical. The main conceptual advantage is that the coupling with messaging platforms
is reduced: the bot core does not know anything related to them, and interacts with a
representation of data that is human-readable and has no dependencies. The practical
ones are many, generated from different needs, first of all performance. The Bot Server
does not require high computation resources because is simply a proxy that manipulates
the representation of information. The Bot Core instead, running Neural Networks to
classify the sentences, needs disk space and RAM (the language models are quite huge),
together with a computing power that should be sufficient to produce outputs in short
times. The Bot Server instead requires to host a web server with a fixed hostname
and with good certificates provided by a CA trusted from the Bot Framework. This
hostname needs to be configured as a webhook endpoint to whom send POST requests
with the incoming messages.

Having those needs and opting for a cheap feasible option (without buying a powerful
VPS with all those features), the choice has been to split those components. The Bot

6https://m.me/BotCycleEn
7https://m.me/BotCycleIt
8https://join.skype.com/bot/2cb007d1-5dd5-441a-8503-23268e2df32d
9https://join.skype.com/bot/db2aa777-2e46-40fc-9e49-9bc9d1db201b

10https://botcycle-server.herokuapp.com/
11https://github.com/MartinoMensio/botcycle-server
12https://botkit.ai/

79

https://m.me/BotCycleEn
https://m.me/BotCycleIt
https://join.skype.com/bot/2cb007d1-5dd5-441a-8503-23268e2df32d
https://join.skype.com/bot/db2aa777-2e46-40fc-9e49-9bc9d1db201b
https://botcycle-server.herokuapp.com/
https://github.com/MartinoMensio/botcycle-server
https://botkit.ai/

4 – Implementation

Server is hosted on heroku13 with a free plan that has limitations in computing power and
space, but fits the requirements for this component. Especially, the platform supports
natively HTTPS that are covered by a wildcard certificate (every application receives
a URL that matching with *.herokuapp.com is covered). Websites and Web Server
applications can easily be created (using one of a large set of supported languages and
frameworks) and pushed to the platform and the deployment will occur with no pains
in configuration. Having the websocket endpoints exposed on the Bot Server, the Bot
Core does not require to act as a server: no hostname is required, no certificate, no port
forwarding on NATs, no ports open on the machine that runs it. This enforces a lot the
security of the system. Furthermore also the websockets are HTTPS as offered by the
Bot Server, so no plaintext interactions can be intercepted.

To make clear how all the components work together, let us follow what happens
from when a user sends a message until he receives back a response. First of all, the
user connected to a messaging platform (Facebook Messenger) sends some text, that
arrives to the Facebook Servers. From there, since the destination account is a page that
has been configured to receive messages at a certain webhook location, the message is
sent to the Bot Framework. From the Bot Framework, the message is forwarded to the
Bot Server that is finally one of the two custom components that has been developed.
The Bot Server, checking that a Bot Core is connected over websocket for the specific
language, delivers the message. The Bot Core processes the message (NLU, Information
Retrieval, Response Generation) and replies on the websocket. The Bot Server transforms
the response for the dialect of the destination platform and forwards the message to the
Bot Framework that delivers it to the Facebook Servers. Finally the user receives the
message.

The flow is quite intricate but has all the advantages listed above.

4.2 Natural Language Understanding
This section focuses on the implementation that has been done relatively to the Natural
Language Understanding described on the previous Chapter 3.1. Firstly, a description is
done of the external NLU provider that has been used to initially handle the understand-
ing process and successively has been kept as a single-turn dataset collector and manager
(Subsection 4.2.1). Then the discourse will cover some details about the frameworks used
for implementing the neural networks (Subsection 4.2.2), and also about some specific is-
sues risen in the development (Subsection 4.2.3). A dedicated subsection is then given to
word embeddings (Subsection 4.2.4) and the last part explains how the datasets have been
collected and preprocessed to uniformly be fed to the neural network (Subsection 4.2.5).

4.2.1 Wit.ai exploitation

In the early stages of the bot, the Natural Language Understanding has been delegated
to an external provider: wit.ai.14 It was chosen for its simplicity to use and for being a
standalone product that just provides NLU usable through a web API.

While giving the advantage to have an almost ready to use NLU (the configuration of
intents and entities requires few steps and few examples), it also helps building a dataset.

13https://www.heroku.com/
14https://wit.ai/

80

https://www.heroku.com/
https://wit.ai/

4 – Implementation

All the sentences that are sent for analysis are stored in a inbox, that can be analyzed
and the responses can be interactively fixed and validated (inserted in the dataset). The
dataset can also be downloaded, and because it is stored in comprehensible JSON format
can be used as annotated dataset to later train another NLU system. A limitation of
this service is that it handles only single-turn interactions, so the datasets that have
been collected for both Italian and English languages can be only used for this type of
interaction.

This stage of development has been done in order to understand the main needs of
the users, and progressively new intents and examples have been added. On the other
side, this experimentation also helped understanding what the NLU tasks are, giving
an orientation in the very big landscape of Natural Language Processing. This helped
directioning the study of literature towards approaches that could do a similar sentence
classification and parameters extraction. During this stage, it has been noticed that for
the intent classification task a promising approach is to use Recurrent Neural Networks,
so the studies (both theoretical and practical) went deeper in exploring this field.

4.2.2 Neural Networks frameworks

As of today many open source libraries and frameworks are available for NLP tasks, using
different programming languages and different approaches. The most important ones are:
Stanford Core NLP: 15 a java library that provides Tokenizer, NER, POS, Depen-

dency Parsing, Coreference Resolution for languages: English, Arabic, Chinese,
French, German, and Spanish;

NLTK: 16 a python library that focuses on Tokenizers, n-grams, POS, NER;
Syntaxnet: 17 a neural-network NLP framework for TensorFlow. Helps building POS

and Parsers. It contains pre-built models for POS and parsing. It is the most
accurate parser for english, able to parse correctly garden-paths;

SpaCy: 18 an open source NLP framework that provides Tokenizer, NER, POS, Depen-
dencies, Word Vectors, Parsing for different languages with the goal of being ready
to use with pre-built models, and also fast.

But from what has been explored, those libraries focus on a selected subset of NLP tasks,
and we wanted to implement Neural Networks to have full control of the process.

Experimenting with Neural Networks has become easier and easier in the last years
thanks to open source libraries that provide high-level APIs and, being used more and
more, the support is really easy to obtain on online communities (such as StackOverflow19)
or on the official documentation or directly on the official code repositories (by means of
interlined comments or “self-documenting code” [86]). The programming languages that
are supported for Neural Networks are many, but the most used nowadays is Python. In
Python the most used frameworks are Keras20 and TensorFlow.21

15https://nlp.stanford.edu/software/
16https://www.nltk.org/
17https://github.com/tensorflow/models/tree/master/research/syntaxnet
18https://spacy.io/
19https://stackoverflow.com/
20https://keras.io/
21https://www.tensorflow.org/

81

https://nlp.stanford.edu/software/
https://www.nltk.org/
https://github.com/tensorflow/models/tree/master/research/syntaxnet
https://spacy.io/
https://stackoverflow.com/
https://keras.io/
https://www.tensorflow.org/

4 – Implementation

For choosing between Keras and TensorfFlow, experiments have been done with both.
It is important to say that the two frameworks are not uncorrelated, because Keras
as default backend uses TensorFlow and TensorFlow recognizes Keras as its high-level
interface.22 So the problem is simply to choose the abstraction level desired.

Initially, when trying to emulate a RNN approach for Intent Classification (see section
2.2.5, Keras has been used to implement it. Without considering the data preprocessing
part that is needed to get the desired shape and values for the inputs and outputs (as
inputs word vectors corresponding to the words in the sentence and as outputs the cor-
responding intent type), the building of the computation graph (a bidirectional LSTM
layer followed by a densely connected layer) and its training just required few lines of
code.

But when trying to implement less regular models, such as the encoder-decoder of [65],
the criticality of using only high level API came out, especially considering complex parts
like output dependencies.

For this reason a comparison has been done in order to choose what implementation
path to follow. Table 4.1 summarizes the main differences found between Keras and
TensorFlow.

feature Keras Tensorflow
Abstraction level High Can go down to reach sin-

gle operations, but also
high level API is provided
by lots of classes

Learning difficulty Quite easy More difficult, lots of de-
tails to consider

Support for complex oper-
ations

Focuses more on simple
regular layers and cells

Lot of already defined
classes, and also helpers
function that can help
building complex opera-
tions

Best for Rapid prototyping Advanced operations

Documentation Documentation good for
what is implemented

Documentation gap be-
tween trivial and advanced

Table 4.1. A comparison between Keras and TensorFlow

Let us see in more details what is the support provided by both libraries for building
recurrent neural networks in the following paragraphs.

Keras Recurrent API

Similarly to what happens with feedforward neural network, also when working on re-
current ones handling Keras layers is like playing with LEGO:23 blocks can be easily

22http://www.fast.ai/2017/01/03/keras/
23https://www.lego.com/

82

http://www.fast.ai/2017/01/03/keras/
https://www.lego.com/

4 – Implementation

stacked one on the top of the other (also forks and joins are quite easy to perform).
Keras Recurrent API is described extensively on its documentation,24 while here only a
quick overview is performed.

To define a recurrent layer in Keras the class keras.layer.RNN takes as argument a
RNN cell. Some parameters can be used to define how the layer will behave. A RNN cell
is a class that has a call method that takes as input the actual input and the current
state and produces the output and the next state. Different implemented cells exist.
SimpleRNNCell: a cell that simply concatenates the input with the previous state and

passes it through a feedforward layer;
GRUCell: Gated Recurrent Unit [17];
LSTMCell: Long-Short Term Memory layer [41].

Layers can be easily stacked and the creation of deep recurrent network is very easy.
Networks that are a simple stack of different layers (Recurrent, Dropout regularizations,
Dense feedforward) will not find any problem in implementation. But when the networks
are not so linear in the flow or when some advanced layers are required, there might not
be an already implemented solution. For example there is no native implementation for
Sequence-to-sequence models and layers, no Attention mechanism and it is not possible
to have a ready to use help for doing output dependency modeling (feeding back the
outputs in a decoding layer). They can be implemented with the existing API, but they
are not part of the library itself (some implementations can be found online,25 but the
number of people working on it is order of magnitude smaller than the one involved in
the TensorFlow community).

TensorFlow Recurrent API

Also TensorFlow has classes for defining RNN layers and RNN cells. But there is more:
• More cells: instead of a single implementation of LSTM and GRU, a wide variety

of cells can be chosen
• More wrappers: wrappers can be used to encapsulate cells. DropoutWrapper,

AttentionWrapper and a lot more can be added to the cells
• Sequence-to-sequence native support: classes for defining encoders and decoders,

with some helpers for modeling output dependencies can make a lot easier to build
complex models that are not a linear chain of layers but contain links that move
backwards in the stacked layers (as in output dependencies, where the output label
is fed back to the decoder RNN). For example to build a decoder that considers
output dependencies, in TensorFlow three components are needed: a RNN cell (e.g.
LSTMCell), a CustomHelper (that is responsible to provide values to the cell and
take the outputs by simply declaring three custom functions) and a BasicDecoder
that combines the cell with the helper and builds a layer. By dividing the roles of
the cell and of the helper, a complex decoder can be built without a big effort.

More details about the available classes can be found in the official documentation of
the seq2seq package.26

24https://keras.io/layers/recurrent/
25https://github.com/farizrahman4u/recurrentshop
26https://www.tensorflow.org/api_docs/python/tf/contrib/seq2seq

83

https://keras.io/layers/recurrent/
https://github.com/farizrahman4u/recurrentshop
https://www.tensorflow.org/api_docs/python/tf/contrib/seq2seq

4 – Implementation

Decision

The objectives of the decision between the frameworks are:
• Ability to build the proposed network without too much headache. Especially for

the decoding stage, some advanced wiring is needed and would like not to start from
scratch (being really error-prone) but have some native support from the library;

• Code readability and maintainability: possibly using quite high level operations, no
reinventing the wheel (in a buggy version);

• Quite good performances.
Considering these objectives, the choice has been to use the native TensorFlow APIs
for building the solution, using the seq2seq package for faster implementation. The
additional work required to build even simple networks is compensated by the great
flexibility of the library.

4.2.3 Graph details

Implementing a neural network with TensorFlow needs understanding some basic con-
cepts.

First of all, the difference between defining a computational graph and actually doing
operations. This is the concept of tensors: they are a generalization of (multidimensional)
vectors that will be used to contain values. Using and connecting them in computational
graphs means defining how the values contained will be processed. The big difference
with normal variables is the time of execution of the computations defined.

If in a programming language we have two variables a=3,b=1 and we sum them, when
the instruction of sum is executed c=a+b the resulting variable will contain the result c=4.
Instead defining a sum between tensors a=tf.Variable(3), b=tf.Variable(1), when
the instruction of c=a+b is executed the resulting tensor will not contain 4. It will
be stored that c can be computed by summing what is contained in a and b. In this
way the operations can be defined once and the same computational graph can be run
different times. To actually run the graph it is necessary to build a session, that is the
execution environment. But in order to have different inputs to the same graph, there is
the need to define the starting tensors not as Variables but as placeholders. Later when
running the session, the placeholder values can be fed to the graph and the results can be
evaluated. The library is powerful in how allows to define variables that can be initialized
and automatically optimized by internally using the packpropagation of gradients. The
only things that the programmer needs to do is to define the graph with all the tunable
variables and declare a loss function to be optimized. No manual calculation of gradients,
it is handled by TensorFlow.

The most difficult things to do while using this library are: i) know which operation
to use, because there are so many classes available that only after a deep dive into
documentation a solution is found; ii) manipulate in the correct way multi-dimensional
tensors, without making confusion. Both difficulties decrease by the increasing time used
to experiment with it, but it is important to understand soon how to work with the axes
parameter, crucial to perform reduction operation over the correct dimensions in nearly
all the operations.

As has been discussed in the approach part, the chosen graph to be used in single-
turn interactions is the encoder-decoder joint approach of [65]. The paper comes with

84

4 – Implementation

a TensorFlow implementation that is not complete:27 output label dependencies are not
considered. Another negative property of the implementation is that it does not use a
recent API, that would provide higher level functionalities and helper functions. Another
implementation has been found that uses a more recent API and is really a lot more
understandable that the original one.28 It makes use of the seq2seq native package,29

that can be used for all the quite complicated networks that process sequences, like NMT
or generative processing by employing classes that are relatively simple to use with respect
to what they do.

So this last implementation has been used as starting point. Starting from this last
implementation, that highly depend on the ATIS dataset [37] in the preprocessing part,
a slightly different implementation has been developed. The differences are described in
the following paragraphs.

The differences

The main changes are not on the network structure, that is the one of the original paper,
but in some details about the inputs and outputs.

First of all, the inputs of the computational graph, previously feeded as word indexes,
have been changed to string tensors (that exist as native type in TensorFlow although
its math-preponderance). In this way the dictionaries are part of the graph. Transla-
tion from word to indexes and the inverse operation is possible thanks to the package
tf.contrib.lookup that can be used to implement lookup tables for both the directions
(words to indexes and indexes to words).

Then, having the lookup operations inside the computational graph and having the
string tensors as inputs, it has been possible to define different ways to obtain the embed-
ding values with the same interface. Both proceeding implementations contained the em-
bedding matrix as a trainable Variable with size [vocabulary_size× embedding_size],
and this embedding technique has been moved in a specific class. The other way to
obtain the embedding values, that corresponds to pretrained fixed values, is to use an
external library (SpaCy, see the details and implications below in word embeddings Sub-
section 4.2.4) to get those values. The library requires words as parameters to get their
representation, and it would not have possible to pass the word numerical identifiers as
in the previous implementation.

Having another class that wraps the external library call to get the embedding vectors,
it is possible to test the two different approaches (trainable embeddings versus fixed
pretrained embeddings) and some measures have been done showing a boost given by the
second approach empowered by big corpora.

To make more understandable also the management of output dictionaries (intent
types and IOB annotation types), the same strategy has been used. This time only
trainable embeddings not precomputed have been used, because the words do not belong
to the English or Italian dictionary (for example the word search_bike or B-location).

The last kind of modifications that have been done are relative to saving the models
trained and being able to resume them for inference time. This is possible thanks to the
naming of tensors, that allows to save the computational graph and the values of the

27https://github.com/HadoopIt/rnn-nlu
28https://github.com/applenob/RNN-for-Joint-NLU
29https://www.tensorflow.org/api_guides/python/contrib.seq2seq

85

https://github.com/HadoopIt/rnn-nlu
https://github.com/applenob/RNN-for-Joint-NLU
https://www.tensorflow.org/api_guides/python/contrib.seq2seq

4 – Implementation

variables to the disk and resume it without re-defining all the variables that were present
previously. To interact with the graph, it is possible to retrieve the input and output
tensors by name and all the intermediate steps will be internally managed by TensorFlow.
As will be described in Subsection 4.2.4, the only parts that cannot be serialized are the
external python functions, but a solution exists also for this problem.

Multi-turn

Relatively to the multi-turn implementation described in subsection 3.1.2, the modifica-
tions for considering the previous agent turn are only on the preprocessing step, while
for doing the top level intent RNN an addition has been done on the top of the intent
logits. As can be seen in Figure 4.2, instead of passing them to a softmax layer that
estimates their value, the current turn intent logits are passed to a LSTM cell that re-
ceives as previous state the previous intent value. This specific point has been critical
because the original idea was to propagate the previous state directly, as a vector of
floating values, that would have allowed the backpropagation to go through the previous
turns and optimize also tunable parameters of the past. But maintaining the state of
this cell would have been difficult in the training phase specially. The training samples
would have needed to be fed in the correct order (using the cell in stateful mode), or
the whole discussion would have needed to be fed for each new user sentence. Both of
these solution are not good for performance, so the decision has been to use directly the
previous value of the intent instead of the state of the cell. This is something that is also
done in sequence to sequence approaches, where previously generated words are fed as
inputs to the decoding stages. In this case, the previous value of the intent is translated
from string to an index (using the lookup table) and then transformed into a one hot
encoding (a vector of zeros with a 1 at the correct index).

Figure 4.2. The differences of the multi-turn with respect to [65]

4.2.4 Word embeddings

To work with word embeddings different strategies and libraries can be applied. The most
TensorFlow-purist one is to declare the embedding matrix (one vector for each word)

86

4 – Implementation

directly as a TensorFlow variable. This is the simplest solution from word embeddings
that are randomly initialized and are tunable. However it may have implementation and
memory issues when the values come precomputed on bigger corpora (all the embedding
matrix is loaded simultaneously in memory, and it is very important to keep only one copy
of it in memory30). Furthermore, it is necessary to get the word embeddings from third
party sources and manage the download of them carefully (the implementation presented
in this work is based on docker containers31 to provide high portability). And third party
libraries can be necessary also to do common text processing or IOB label management.

For all these reasons, our implementation integrates a neural network library with a
NLP library. For NLP, Spacy has been chosen for its good performances32 and models
supporting word embeddings.33 It has been used also in an early stage of experimentation
for identifying the entities with its native functionalities. The natively provided models
come in different sizes, where the most spatial occupation is given by the word vectors.
For example on the English language, four different models are available34 where also the
biggest one only occupies around 600MB.

For some other non-english languages only the smallest model is available, that does
not contain precomputed word vectors. Instead, using character-based information,
SpaCy provides contextual tensors35 that are estimated by applying a 4-level convo-
lutional network sensitive to up to four words on either side of a word. The performances
of these tensors are also analyzed in the validation chapter 5.1.2, but generally they are
not as good as word vectors precomputed on large corpora. However SpaCy allows quite
easily to build new models that can integrate a native language model with externally
computed word vectors.

The tokenization of spaCy

For splitting the sentences into words, with knowledge of the common problems explored
in section 2.2.4 when discussing about keeping or removing punctuation and special cases
like apostrophes, the chosen approach is the one employed by the library SpaCy. This is
done by applying rules specific to each language. Just as an example, punctuation is split
off, like commas or periods at end of sentences, but "U.K." remains one token. English
expressions like “don’t” are tokenized into [“do”, “n’t”] and for this reason a lot of rules
are applied. For other languages that do not have a full model, like the Italian one, the
tokenization is more trivial because no one has yet worked on those rules. However it is
always done better than a whitespace tokenization (splitting the words basing on spaces
or other separator signs) combined with punctuation removal.

Integrating SpaCy with TensorFlow

To integrate the Spacy NLP utilities inside a computation graph defined in TensorFlow,
two different things have been done.

30http://bit.ly/stackoverflow_pretrained_embeddings_tensorflow
31https://www.docker.com/
32https://spacy.io/usage/facts-figures
33https://spacy.io/models/
34https://spacy.io/models/en
35https://spacy.io/usage/vectors-similarity#in-context

87

http://bit.ly/stackoverflow_pretrained_embeddings_tensorflow
https://www.docker.com/
https://spacy.io/usage/facts-figures
https://spacy.io/models/
https://spacy.io/models/en
https://spacy.io/usage/vectors-similarity#in-context

4 – Implementation

The first one is relative to the tokenization. To simplify the process of transform
the sentences into vectors of words, it has been chosen to put this operation in the
preprocessing step. A motivation for this solution is that the ATIS dataset [37] has
a predefined word tokenization based on whitespaces. To maintain the measurements
comparable with other papers, in this specific case the tokenization is not modified while
for other corpora, that only define sentences without saying how the words are separated,
the SpaCy tokenization is applied. Having different tokenization models, to simplify the
feeding of inputs the tokenization has been managed in the normalization procedure of
datasets. The source datasets are preprocessed and saved to disk in a uniformed format
(that can be seen in the preprocessed folders36).

The second point of contact between the NLP library and the computational graph
is established when the word embedding values are retrieved. Being inside the computa-
tional graph the only way to call a custom function, as a block that works with tensors,
is to use the py_func helper. This method allows to put in the graph a python function,
possibly idempotent to avoid side-effects that may generate unwanted behaviour since
the training is usually done together with randomization of samples, that will receive and
produce numpy arrays37 translated back and forth to tensors for the graph.

The only problem of using this helper is that the graph will not be fully serialized to
disk for future usage. The solution to this problem is to declare again the same function
when the restoration of the graph and parameters are done, before declaring and using a
running session.

Italian word embeddings

As has been said previously, for the Italian language, SpaCy has an incomplete model
that does not contain precomputed word vectors but only contextual tensors (generated
on the fly by a convolutional network) are available. For this reason, a side work has
been done, taking the Wikipedia Italian corpus38 and computing GloVe vectors on it.
Some preprocessing has been done to extract the text only of the dump with a mix of
tools written by the SpaCy developers39 and people from the University of Pisa.40 From
the text, cleaned of all the markup and XML tags, a re-tokenization is applied to feed
correctly the text to the GloVe algorithm.41 In this way both the dictionary and the
tokenization used in the training of the word embeddings is the same that is used by the
computational graph.

The output of this process is a SpaCy model that is made available openly42 and can
be installed easily with pip.43

36https://github.com/D2KLab/botcycle/tree/master/nlu/data
37https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.array.html
38http://dumps.wikimedia.org/itwiki
39https://github.com/explosion/spacy-dev-resources
40http://medialab.di.unipi.it/wiki/Wikipedia_Extractor
41https://github.com/stanfordnlp/GloVe
42https://github.com/MartinoMensio/it_vectors_wiki_spacy
43https://pip.pypa.io/en/stable/

88

https://github.com/D2KLab/botcycle/tree/master/nlu/data
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.array.html
http://dumps.wikimedia.org/itwiki
https://github.com/explosion/spacy-dev-resources
http://medialab.di.unipi.it/wiki/Wikipedia_Extractor
https://github.com/stanfordnlp/GloVe
https://github.com/MartinoMensio/it_vectors_wiki_spacy
https://pip.pypa.io/en/stable/

4 – Implementation

4.2.5 Datasets collection

This last subsection contains some details about how some datasets have been collected
for the specific bike sharing domain. The goal is to be able to have enough annotated
sentences for both single and multi-turn, in order to train the selected approach and be
able to provide measures (see next chapter 5.1) that have a bit of statistical significance.

Starting with the single-turn settings, it has been described in Subsection 4.2.1 that
wit.ai has been exploited to gradually collect sentences. By using this online platform it
has been quite simple to annotate new samples, that also come from online usage of the
bot thanks to the recording capabilities. The platform offers support for a quite wide
variety of languages, and the English and Italian are between them.

Instead for the collection of multi-turn dialogue sessions, a logging of all the incoming
and outcoming messages has been done in the local database to capture as more dialogues
as possible. With the basis of these dialogues, that are characterized by some features
typical of a very restricted experimental setup (such as repetitivity and lack of variety,
high ratio of wrong responses, preponderance of sentences sent to test the bot and not to
really use the information provided), a successive cleaning has been done to only insert
proper sentences in the training set. This cleaning has been done to identify the relevant
dialogues that should contain multi-turn interactions, using a TSV format that allows an
easy modification of values without requiring any special environment.

But a big problem avoided collecting a good dataset: a circular dependency. The
system was expected to collect a dataset for the multi-turn dialogues while it only provided
single-turn capabilities. The most common example is when the user does not provide
a required parameter (e.g. searches a bike without saying where), the bot asks for the
location, the user provides it without forming a complete sentence (only the entity value
provided, without the “i am in” prologue) and the bot fails because no intent has been
detected (lack of the multi-turn model). To solve this problem other strategies may
be applied, like building a restricted dataset by hand without an online setting, and
proceeding with incremental cycles of testing, collecting and training. Or even better
would be to enable a Reinforcement Learning based approach to increase the performance
while conversing with the user.

89

Chapter 5

Validation

This chapter is relative to the validation of the dialogue system. What is evaluated
can be divided into two main parts: one is relative to the NLU approach described in
the Chapter 3 (Subsection 3.1) considering different datasets and different variations of
the model; the second one instead focuses more on the bot prototype, looking at some
measures that can be done to evaluate its global performance from the point of view of
the users.

5.1 NLU evaluation
This section describes the datasets used (Subsection 5.1.1), the evaluation protocol and
the measures analysis (Subsection 5.1.2).

5.1.1 Datasets

In the search of datasets available for the Natural Language Understanding, two main
types of corpora have been found, respectively for single-turn and for multi-turn inter-
actions. Here we provide a list of them, with some statistics and details of each one.
About the language of the datasets, the found ones are in English both for single: no
availability of Italian annotated datasets have been found. The Italian dataset used for
the embeddings is discussed in the last part of this subsection, but the key point is that
these corpora are not annotated because the word embeddings algorithms are unsuper-
vised. For both single and multi-turn, in addition to the available datasets, an English
and Italian dataset is proposed for the domain of bike sharing, collected with the methods
described in the previous Subsection 4.2.5.

Single-turn

For the single-turn, a lot of datasets can be found online, each one with a different domain
of application. The characteristics of these datasets is that each sentence is annotated
with the values of the intent (a feature of the whole sentence) and of the slots (word
groups, also called spans). While the annotation of the intent is more or less standardized,
for the annotation of slots different notations can be used, representing different features.
Those specific elements will be explained for each dataset.

ATIS The first dataset, used historically for the tasks of intent detection and slot filling,
is Air Travel Information System (ATIS) [37]. This dataset contains transcriptions of

90

5 – Validation

questions obtained from the Official Airline Guide1 in 1990: each question is annotated
with its intent, over 18 different intent types, and with the relative slots, over 127 IOB
slot types (corresponding to 80 slot types reducing the B- and I-). The slot types
correspond to entity types with a specific role: for example the slot type fromloc.city_-
name corresponds to the entity type city_name with the role fromloc that expresses that
this is the source city in the sentence. The dataset notation is done using the IOB format.
For this reason, the inputs and outputs of the dataset are provided already tokenized by
using a whitespace tokenizer. This is the only dataset considered that constraints the
division of words because the other ones usually represent slots as start and end indexes
of the sentence.

The dataset has 4978 training samples and 893 test samples: the original division is
only in two splits, no “development” set is available. However some works have addition-
ally divided the training set into two parts to leave the validation set on its own for the
final evaluation and not for the hyperparameters optimization.

NLU Benchmark Another dataset that has been used in the specificity of single-turn
interactions is the nlu-benchmark that is published by Snips2 as an effort to compare
and evaluate different NLU commercial providers like Amazon Alexa,3 Google Api.ai,4
Microsoft Luis,5 Apple SiriKit,6 IBM Watson Conversation,7 Facebook Wit,8 and Snips9

itself. The dataset used for their benchmark10 is considered here for the custom intents:
7 different intents are provided over a total of 1942 training samples and 100 test ones.
Instead the entities are annotated on spans directly, because the sentences are provided
pre-split on the edges of the slot values (e.g. [“Add another ”, “song”, “ to the ”, “Cita
Romántica”, “ playlist. ”] where “song” and “Cita Romántica” are two different slots).
There are 39 different slot types.

This dataset has been used by Snips to do a benchmark that considers only the intents,
but on the measurements we show also the results for the slots.

Wit.ai More specific to the prototype built for this project, BotCycle, two single-turn
datasets have been collected with the support of wit.ai platform: one in English and one
in Italian. The collection of samples begun with the early stages of the prototype, which
was relying on wit.ai for the understanding part back then. This platform provides a
friendly GUI where the intents and slots can be configured, and also some training samples
can be provided. Moreover it keeps track of the “inbox” messages used in operational
environment, that can be later reviewed and added to the gold standard. Even when
the understanding part switched to local deployment, we kept sending the requests for

1https://www.oag.com/
2https://snips.ai/content/sdk-benchmark-visualisation/
3https://developer.amazon.com/alexa
4https://api.ai/
5https://www.luis.ai/
6https://developer.apple.com/sirikit/
7https://www.ibm.com/watson/developercloud/nl-classifier.html
8https://wit.ai/
9https://snips.ai/

10https://github.com/snipsco/nlu-benchmark

91

https://www.oag.com/
https://snips.ai/content/sdk-benchmark-visualisation/
https://developer.amazon.com/alexa
https://api.ai/
https://www.luis.ai/
https://developer.apple.com/sirikit/
https://www.ibm.com/watson/developercloud/nl-classifier.html
https://wit.ai/
https://snips.ai/
https://github.com/snipsco/nlu-benchmark

5 – Validation

processing to wit.ai in order to continue increasing the dataset. With this technique we
collected 522 samples for the English language and 95 samples for the Italian one.

As described in subsection 3.2.2, there are 11 intents types and three slot types be-
longing to the same type of entity: from.location, to.location and location without
a specific role. The slots are annotated by providing the start and end indexes, together
with the intent type and the optional role.

Multi-turn

Instead for the multi-turn NLU, wich is described in subsection 3.1.2, the number of
datasets used is more restricted because less have been found with the required charac-
teristics. The data that we wanted had to contain multi-turn sessions with messages from
both sides, where at least on the user sentences it could be possible to obtain the intent
value and the slot annotations.

The problem of multi-turn has been analyzed mostly on proprietary datasets [94,
111, 10], or requiring a participation in a challenge (like the Dialogue State Tracking
Challenge [108]). Others, focusing mainly on memory networks and simple questions,
are not very relevant for the multi-turn goal-oriented problem (bAbI11). The Frames
dataset [3] is publicly available but it only contains a single intent (book), and focuses
more on the tracking of user and machine actions.

Key-Value Retrieval The only dataset found in literature is the Key-Value Retrieval
(KVRET) [24], that contains sessions of interaction between a driver and his smart car.
Each session begins with an utterance of the driver that clearly states his intent (out of 3
possible values: Calendar Scheduling, Weather Information Retrieval, POI Navigation),
and the subsequent turns of both parties continue the dialogue to refine the search and
to reach the desired final response. About the annotation of the slots, they are available
but not annotated in a straightforward way: each slot (15 types available) is stored with
its value, but there are some problems in identifying their displacement in the sentences,
because a normalization step would have been required. The major problems are:

• trailing spaces in the slot annotation: solved by trimming strings;
• capitalization differences between slot annotation and text of the sentence: solved

by applying match insensitive;
• slots annotated on later turns referring to previous turns: solved by reversing the

look-up processing order on the sentences and annotations, in order to enable back-
ward references to text;

• multiple matches for the same word in a sentence: by keeping the forward slots to
be referenced, sometimes multiple entities overlap partially in the sentences, that
is not allowed by the IOB annotation scheme;

• incomplete slot value: for example “take my pills” in the sentence is annotated as
“take pills”, and this is not solvable by simple look-up strategies;

• entity resolution problems: for example the reference “there” is annotated with
its resolution (the place mentioned before), or “today” in the text is annotated as
“wednesday” in the slots;

• other entity resolution problems that could be solved by looking at the attached
Knowledge Base: those are not resolved since it is not the only limitation.

11https://research.fb.com/downloads/babi/

92

https://research.fb.com/downloads/babi/

5 – Validation

The selected multi-turn approach, while providing also outputs for the slot labels being
trained jointly, is here analyzed mainly under the point of view of the intents, so this is
actually not a problem. The main goal is to be able to automatically recognize when a
certain session ends or continue, where a time-based session split can be misleading and
a working solution should rely on the contents only.

This dataset, therefore, satisfies our needs: each sentence is annotated with its speaker
and the intent values are available. The preprocessing is composed of three steps: i)
annotation of the intent from session-level to sentence-level by copying the values; ii)
concatenation of all sentences, removing the concept of session that remains only on the
intent values; iii) consider as samples only the driver sentences, each one stored together
with the current and previous intent value and with the previous sentence of the agent.

With this setup of the samples, on the training set there are 1583 intent changes over
6429 samples, while on the test set 189 changes over 820 samples.

BotCycle multi-turn As for the single-turn, a targeted dataset is needed for the
specific application to the bike sharing domain. For this reason, all the conversations
between the user and the bot have been recorded, and from them some sessions have
been cleaned up, eventually correcting the predicted outputs. The conversations have
been generated from a restricted team of testers that knew the limitations of the system
and focused the interaction on the actual types of things the system is able to do. Through
this technique it has been possible to collect 73 sessions with an average length of 12.7
for the English language and 10 sessions with an average length of 29.4 for the Italian
one (considering sentences from both interlocutors).

Actually, this dataset is nearly unusable for all the limitations that have been noticed
in Subsection 4.2.5, as can be seen also from the quite poor size of the Italian dataset.

Italian Word Embeddings

For the ItalianWord embeddings actually the datasets available are mainly two: Wikipedia
or CommonCrawl. Both can provide statistical information of word co-occurrences and
be used to train unsupervised representations like word embeddings.

The Wikipedia Italian dump12 consists of nearly 2.3GB of text contained in the arti-
cles. This dataset contain quite formal language and does not cover well the entire Italian
dictionary (covering only 758358 different words), but it is the only feasible to be used
for such huge calculation.

With proper machines (calculation power and storage), another dataset is the Com-
monCrawl one, available on a preprocessed version where duplicated sentences have been
removed13 to have only a size of 76GB. This corpus contains text found on a lot of web-
sites, and will therefore have a larger dictionary. However, for its size it is impossible to
be processed in an environment without server farms.

5.1.2 Evaluation Protocol and results

The following paragraphs illustrate the results obtained. First of all, a dedicated eval-
uation to the Italian embeddings computed will show how the different preprocessing

12http://dumps.wikimedia.org/itwiki
13http://data.statmt.org/ngrams/deduped/

93

http://dumps.wikimedia.org/itwiki
http://data.statmt.org/ngrams/deduped/

5 – Validation

allows to reach higher scores on the analogy test [75]. Then different variations (such as
the embedding dictionary size, the choice of LSTM vs GRU and the usage of attention
mechanism) will be measured on the single-turn setting. At the end also some evaluation
on the multi-turn setting are shown. To evaluate the performance of the computational
graph, a search of commonly used measures has been done. For the ATIS dataset usu-
ally [102] the performance is evaluated by computing the intent error rate and the F1
measure for the slot filling. It is important to notice that in classification tasks for which
every test case is guaranteed to be assigned to exactly one class, F-measure on micro level
(globally counting true positives,false negatives, false positives) is equivalent to accuracy.
So for both single and multi-turn settings the measure chosen to evaluate the results is
the F1 score on the intents and slots (a slot is correctly detected if both type and start
and end are correct).

Italian embeddings analogy evaluation

To evaluate the goodness of word embeddings, a commonly used test is the analogy
test [75]. Since in the embeddings space, words should distribute relatively to their
meaning, semantic relations can be characterized by a translation. For example the
relation singular-plural can be exploited to find a plural of one word by using the analogy
of coordinates between another pair of singular and plural words (e.g. queens = queen -
king + kings). The evaluation is done by comparing the predicted word against the true
one. Here we are considering the translated version of this analogy test, used by [9] too.

Word embeddings Accuracy
Italian values from [9] on Wikipedia 44.81%
Computed Italian values on Wikipedia 58.14%

Table 5.1. A comparison of the analogy scores for the Italian Wikipedia datasets

Table 5.1 shows how the different preprocessing, applying the SpaCy tokenization,
allows to reach better values for the analogy test.

Single-turn variations

For the evaluation of the single-turn approach, since it has been shown to reach State-
of-the-Art condition on the tasks of intent classification and slot filling, we are here
analyzing how some variations in the structure or in the inputs affect the performances
on the collected datasets. The measures shown are the selection of the best score reached
over a maximum of 20 training epochs.

The first comparison we want to do is how the choice of embeddings influences the
quality of results in terms of F1 score. For this reason in Tables 5.2 and 5.3 different
embeddings strategies are applied (random, contextual tensors, precomputed14).

As we can see, the correct choice of word embeddings can play a big difference. The
best performance is reached by using fixed pretrained vectors computed on large corpora
(with just one exception for the slots on the nlu-benchmark dataset). The contextual
tensors provided by SpaCy show a very poor performance, because they are observing

14https://spacy.io/models/en

94

https://spacy.io/models/en

5 – Validation

Embeddings type ATIS nlu-benchmark wit_en wit_it
Trainable, randomly initialized 0.9740 0.9928 0.9428 0.8947

Contextual tensors 0.7140 0.2542 0.4000 0.4736

Medium (English: 685k keys with
20k unique vectors, Italian [9]:
730k unique vectors)

0.9660 0.9928 0.9714 0.8421

Large (English: 685k keys with
685k unique vectors, Italian: 758k
unique vectors proposed)

0.9860 0.9928 0.9714 0.8947

Table 5.2. The F1 scores for intent classification with different embeddings

Embeddings type ATIS nlu-benchmark wit_en wit_it
Trainable, randomly initialized 0.9425 0.9177 0.9000 0.5000

Contextual tensors 0.1658 0.0032 0.3391 0.1818

Medium (English: 685k keys with
20k unique vectors, Italian [9]:
730k unique vectors)

0.9588 0.8970 0.9375 0.5666

Large (English: 685k keys with
685k unique vectors, Italian: 758k
unique vectors proposed)

0.9649 0.9170 0.9689 0.6153

Table 5.3. The F1 scores for slot tagging with different embeddings

only the current sentence and have no knowledge about the real meaning of words. The
large model only provides a delta from the medium one on the slot tagging task, while for
the intents they have the same performance. For the Italian embeddings, the “medium”
row corresponds to the embeddings from [9], while the “large” row is the computed
embedding values computed on the Wikipedia corpus preprocessed with SpaCy (explained
in Subsection 4.2.4).

A second modification can be done by trying to substitute the LSTM cells with GRU.
Table 5.4 shows the F1 scores computed for the intent and slots with both cell types. As
can be seen, the two different cells have very similar performances, and for each dataset
their relative order changes.

Another variation is to consider the attention in the decoding stage for the slots.
Table 5.5 shows the comparison of the same network by enabling or disabling the attention
wrapper around the LSTM of the slot label decoder. The performances are better for the
model with the attention, except for the Italian dataset. Probably this result indicates
that the attention has too many parameters to be tuned with a little dataset. In fact the
Italian dataset is the smallest one.

95

5 – Validation

ATIS nlu-benchmark wit_en wit_it
LSTM intents 0.9860 0.9928 0.9714 0.8947
GRU intents 0.9820 0.9942 0.9809 0.8421

LSTM slots 0.9649 0.9170 0.9689 0.6153
GRU slots 0.9678 0.9114 0.9565 0.6400

Table 5.4. The F1 scores for intents and slots comparing LSTM vs GRU

ATIS nlu-benchmark wit_en wit_it
With attention 0.9649 0.9170 0.9689 0.6153
Without attention 0.9638 0.9132 0.9625 0.6956

Table 5.5. The comparison between F1 scores for slots by using or not the attention

The multi-turn

This evaluation is inspired by the work proposed in [73]. The dataset is the kvret [24],
used to measure separately the effects of the two modifications that have been described
in Subsection 3.1.2. For this reason, two more approaches have been considered: the first
one considers the single-turn network with the only addition of the agent words, while
the second one considers the proposed multi-turn without the agents words (resulting in
the only addition of the top-level RNN working on the intent values). The comparison
is extended to a CRF [56] simply applied at word-level with words as inputs and intent
labels as outputs (to obtain the estimated intent on a sentence, a majority vote is applied
by the words belonging to the original sentences).

In this case two different configurations have been used: in the first one, the lower
cased words are used as input features, while in the second one the pre-trained word
embeddings.

Table 5.6 reports the results of the F1 measure on the selected approaches. From
the results obtained, we can observe that the role of the interaction context is crucial to
perform a better understanding. Natural Language dialogues have great dependencies
between the sentences used by both parties. The experimental results show also that the
intent changes are correctly detected on the sequence of input samples. We can observe
that, considering only the previous value of the intent without concatenating the agent
words, gives also an increase with respect to the single-turn model. Then, by looking at
the F1 measure change between the couples of rows (1,2), (3,5) and (4,6), we can notice
that the agent words on their own give an important contribution in terms of both score
and epoch number. Combining the two modifications helps going a little bit higher with
the score achieving the top score faster. The comparison with the simple CRF approach
highlights how important is to work on a properly encoded sentence using RNN.

5.2 Bot prototype

From the literature [66, 60] it is clear that evaluating the overall performance of dialogue
systems is very difficult: the difference between human judgement and automatic meth-
ods is very big, especially because the definition of good responses itself is complicated.

96

5 – Validation

Row Approach F1(intent) epoch

1 Multi-turn approach with LSTM 0.9987 7
2 Multi-turn approach without agent words LSTM 0.9987 8
3 Multi-turn approach with GRU 0.9975 14
4 [65] with extension of agent words 0.9951 5
5 Multi-turn approach without agent words GRU 0.9585 9
6 [65] 0.8524 8

7 CRF on pretrained word embeddings 0.7049 100
8 CRF on words 0.4976 100

Table 5.6. F1 scores of the selected approaches for the kvret [24] dataset

Furthermore the approach used is not generative but is based on the processing of a finite
set of intents. The sentences in response are built from a set of template properly filled
with some structured information. For this reason the most important part that has been
already evaluated is the Natural Language Understanding, that focuses on supervised au-
tomatic metrics that compare with the expected output. However to evaluate the overall
performance of the system it is necessary to measure some values from an online setting,
collecting statistics directly on the real dialogues between the bot and the users.

A first group of measure is identified by their unfeasiblility to be collected for the
implemented prototype. First of all, to measure the success of the bot, the sentiment
analysis could raise as a promising technique. However, for a bot that provides bike
sharing information, the majority of sentences will not have any indicators of positive or
negative attitude. Only extreme cases of anger and frustration can be identified, or very
sparse signal of happiness. However, being only an early stage prototype, those measures
will not be easy to collect and consider. Another unfeasible strategy could be the implicit
measurement of the dialogue success rate. Some rules should be defined to establish when
a dialogue fails or succeeds. An indicator of failure could be the repetition of questions
or rephrasing in a short temporal range to indicate the same concept not previously
understood by the system. However, this is quite complicated to do, also because this
could simply express the need of the user to receive new and updated information, so also
this strategy has been abandoned.

A second group of measures is about statistical measure. Those numbers do not
indicate directly the goodness of the system, but they can give some general ideas about
its usage. Their values are shown in Table 5.7, and are computed by referring to the
machine where the Core of the bot was deployed (a virtual machine running on a Intel®
Xeon® X5570 with 4GB of RAM). They include statistics about the physical occupation
of resources (CPU, memory), about the sessions with the users, and also some other
measures.

In this last set, some can be used as indicator of the goodness of the experience with
the system. For example the count of sentences that have been classified as not belonging
to any intents. There are many different reasons for these situations, because requests
themselves can be out of domain (for example asking for car sharing) where the system
cannot in any way provide a response, or can be into the domain but unforeseen in the
design phase (e.g. asking to find another station because the user does not like the one
selected) that can be fixed by adding a new intent and handling correctly the application
logic with new methods, or could simply be that the sentence has not been classified but

97

5 – Validation

measure value
Average number of messages for each session 14.7
Total number of messages received 535
Total number of messages sent 569
Average length of sentences 4.7 words
Average time to provide a response 1.41 s
Average memory footprint for each language 1042.5 MB
Average CPU usage at rest 0.18 %
CPU peak to process a single message 13 %
Percentage of no intent detection 30 %
#Errors/#results while providing information 12 %
Number of positive feedback button 13
Number of negative feedback button 5
Number of thank you intents 31

Table 5.7. Some statistics about the experimental online scenario with the bot

already a corresponding intent exists (failure of generalization of the classifier). Instead,
the errors occurred while providing the results are generated by errors of the PyBikes
module, that can fail because the source of information is not reachable (website down
or internal server errors) or is not parseable (in the case of changes in the layout of the
pages scraped). The positive and negative buttons are used also to count the immediate
feedback from the users, as also the thank intent.

Another strategy that could have been employed to collect the feedback in a more
explicit way, would have been to propose a survey to a selected wide set of users, including
evaluation scores on a discrete scale for different factors. Those may include points for
usefulness, usability, relevance of results or even open optional questions asking for missing
features. However this kind of survey has not been adopted.

98

Chapter 6

Conclusions

In this last chapter of the thesis some conclusions are provided by resuming some achieve-
ments and presenting some possible future works.

The achievements include the fulfillment of the two goals described in the summary:
i) a study of the approaches that better suit the creation of a Conversational Agent and
ii) a bot prototype that uses them.

Relatively to i), the major contributions are the following. The first one is the novelty
of the multi-turn approach described in 3.1.2, ideated to be able to dynamically keep track
of the intent propagation over a sequence of turns. The measures collected on the dataset
from [24] highlight the importance of hierarchical RNN to better understand the requests
exploiting the interaction context. By using this approach it is possible to reduce the
handcrafted rules to manage the dialogue state by using a more dynamic processing of
the user requests.

The second measured contribution is the analysis on the semantic word embeddings.
Comparing the effects of different embedding techniques show how this choice is one of the
most important to achieve good scores on the intent classification and slot filling tasks.
For this reason a computation of word embeddings for the Italian language has been
done with a different preprocessing, showing an increase of quality of the embeddings
with respect to [9] on the analogy test.

Beyond these measured results, this work also provides a detailed investigation on
the deep learning-based solutions for Natural Language Understanding processes. A
wide (covering quite different problems) and deep (going up to a certain level of detail)
exploration of data-driven approaches has been conducted. This analysis has been done
not only theoretically but also with direct experimentation with libraries and platforms.

With respect to ii), a prototype of a bot to retrieve bike sharing information has
been built and deployed to several messaging platforms. This required putting into ac-
tion the NLU engine and also collecting some domain specific datasets for the languages
supported. One thing that has been extremely challenging, and showed the limitations of
the chosen workflow, is the collection of datasets. The bot prototype required a domain
specific training corpus to correctly categorize the intents of the user and to identify the
entities involved with their role. No existing publicly available collections of annotated
sentences existed for the bike sharing domain, so it has been required to personally collect
it. Reaching good size and quality of collected data is not easy and some circular depen-
dencies in the workflow can occur, like evidenced for the multi-turn dataset collection in
subsection 4.2.5.

As future works, we plan firstly to do more works related to goal ii). The multi-turn

99

6 – Conclusions

approach could be extended also for the management of the entities, in order to have
a rule-free context management. Similarly to what has been done with intents a model
needs to be found to know which entities (implicitly or explicitly referenced in the current
sentence) have to be kept into consideration into the current context. In this way, a more
dynamic management of the dialogue state can allow having more meaningful dialogues,
where the bot contextualizes the current requests of the user with the previous ones
without using a rule-based context management.

Relatively to problems detected while collecting the training dataset, a future work can
include a better workflow for their collection, enabling a reinforcement loop that, through
the observations on a properly defined rewarding function, can let the agent understand its
performances and learn dynamically how to behave when unexpected inputs are provided,
passing from a totally supervised approach to a reinforcement enabled one.

About goal ii) the bot prototype, two possible directions can be taken for future works.
The first one is towards domain-related improvements. The bot for bike sharing could be
improved by allowing user to also lock and unlock bikes. This would need a more robust
integration and dialogue with the service providers, not based on web scraping or public
API. Authentication issues should be managed both between the user and the bot and
between the bot and the providers. Another extension can be done by allowing intermodal
transport based on public resources (like buses, trains, trams) or other sharing-economy
based services (such as car sharing) by providing a service in the green direction. Instead
the second direction is towards the implementation of the personalization strategy, that
can be provided by interfacing with the described sources of information and using both
item recommendation and the tailored communication described in described in Section
3.2.3.

100

Glossary

AI Artificial Intelligence is intelligence demonstrated by machines. It can be intended
as an imitation of the human intelligence or can exploit the different nature of the
owner to provide smart and useful features, for examples analyzing big quantities
of data in small amounts of time.

AIML Artificial Intelligence Markup Language is a XML dialect that allows to write
rule-based agents. Patterns are used to match with the inputs and the corresponding
actions and responses are declared in templates.

API Application Programming Interface is a set of methods, protocols and tools for
building application software by providing building blocks that can be easily com-
bined.

Artificial Neural Network Inspired by the biological neural networks, such systems
“learn” tasks by considering examples, modeling complex function that relate the
inputs to the outputs thanks to matrices of parameters that get tuned to minimize
a specific function.

ASR Automatic Speech Recognition (or Speech to Text) is a set of methodologies and
technologies that enable the recognition and translation of spoken language into
text.

attention In Neural Machine Translation, attention is a mechanism that allows to use
all words of input sentence to predict the current output word introduced in [5].
The training decides how much amount of each of input word needs to be used to
produce the current output word by learning these probabilities jointly with the
translations.

chain rule The chain rule is a formula for computing the derivative of a composed
function by multiplying the local gradients.

CNN Convolutional Neural Networks are a type of feedforward Artificial Neural Net-
works that achieve good results on image analysis.

context The set of circumstances that preceed or follow a specific target that can give
additional information influencing its meaning. The term is used to indicate the
interaction context, that denotes the elements outside of the considered sentence
that help understanding it better.

CRF Conditional Random Fields are a class of statistical modeling method often applied
in pattern recognition and machine learning and used for structured prediction, that
fall into the sequence modeling family..

Deep Semantic Learning An approach that combines Deep Learning with Seman-
tic Analysis. Models are built from the observation of examples (Learning) with-
out manually selecting handcrafted features but relying on stacked recurrent layers
(Deep) that take as input the word embeddings that map words to a distributed
representation that captures their meaning.

DL Deep Learning is a branch of Machine Learning that uses several layers of Artificial

101

Glossary

Neural Networks to perform complex tasks starting from raw features, instead of
having features engineered by hand.

GRU Gated Recurrent Unit [17], similarly to LSTM are RNNs building units. They
have less gates than LSTM but generally they have comparable performance in
sequence elaboration.

IOB Inside Out Beginning, proposed in [85] allow to annotate multi-word entities by
using the B for the beginning and the I with a word that continues the entity of
the previous word.

JSON JavaScript Object Notation is an open-standard file format that uses human-
readable text to transmit data objects.

KB AKnowledge Base is a technology used to store complex structured and unstructured
information used by a computer system.

LSTM Long Short-Term Memory [41] are building units for RNNs that model the prop-
agation of their state over timesteps thanks to input, output and forget gates. They
have been proposed to solve the vanishing gradient problem.

ML Machine Learning is a field of computer science that focuses on systems that “learn”
with data, without being explicitly programmed.

Natural Language A Natural Language, in contrast to constructed and formal lan-
guages, is any language that has evolved naturally in humans through use and
repetition. It denotes the language used when people talk to each others.

NER Named Entity Recognition is a text processing task that identifies certain words
as belonging to one class or another (for example person, organization, locations,
dates, times).

NLP Natural Language Processing is the area of computer science that provides a set
of tools to let machines understand and process the Natural Language.

NLU Natural Language Understanding corresponds to sentence classification and ex-
traction of parameters from Natural Language sentences, to provide a structured
representation of the intent expressed by the human and the entities mentioned
with their role (slots).

NMT Neural Machine Translation are approaches which use artificial neural network.
OCR Optical Character Recognition is a technique that converts written signs into text.
PoS Part of Speech is a category to which a word is assigned in accordance with its syn-

tactic functions. In English the main parts of speech are noun, pronoun, adjective,
determiner, verb, adverb, preposition, conjunction, and interjection.

RDF Resourse Description Framework is a tool proposed by W3C to encode, exchange
and reuse structured metadata. It allows semantic interoperability between appli-
cations that share information on the Web.

RL Reinforcement Learning is an area of Machine Learning focusing on systems that
learn to take actions by interacting with an environment to optimize some rewarding
functions.

RNN Recurrent Neural Networks [46] are a specific type of Artificial Neural Networks
that have recurrent loops that propagate information along different timesteps.
Their ability is to capture features belonging to sequences of inputs.

SaaS Software as a Service is a software licensing and delivery model in which software
is licensed on a subscription basis and is centrally hosted.

Semantic Analysis In machine learning, semantic analysis of a corpus is the task of
building structures that approximate concepts from a large set of documents.

seq2seq Sequence-to-Sequence is an application of sequence processing where both the
inputs and outputs are sequences. The goal is to produce an output sequence,

102

Glossary

belonging to another domain (different language, different vocabulary), starting
from an input sequence. The language modeling capabilities of RNN express their
power in Sequence-to-Sequence models.

stopword The most common words in a language, that carry no meaning for tasks like
sentence classification. For the English lanugage some examples are “the” or “a”.

Tf-idf Term frequency-inverse document frequency is a function used in information
retrieval tasks to measure the importance of a term with respect to a document or
a collection of documents. This function increases proportionally with the number
of times that the term is contained in the document, but decreases as the frequency
of the term becomes high in the collection.

TSV Tab-Separated Values is a simple text format for storing data in a tabular structure,
by separing the fields of the same row with the TAB character.

TTS Text To Speech is a technique that converts language text into speech.
Web Scraping Extraction of data from websites, using automated tools that emulate

the browser behaviour and parse the retrieved HTML content to find relevant in-
formation.

XML eXtensible Markup Language is a set of rules for encoding documents in a format
that is both human-readable and machine-readable.

103

Bibliography

[1] Aiello, L. M., Schifanella, R., Quercia, D., and Aletta, F. Chatty maps:
constructing sound maps of urban areas from social media data. Royal Society
open science 3, 3 (2016), 150690.

[2] Asimov, I. Runaround. Astounding Science Fiction 29, 1 (1942), 94–103.
[3] Asri, L. E., Schulz, H., Sharma, S., Zumer, J., Harris, J., Fine, E.,

Mehrotra, R., and Suleman, K. Frames: A corpus for adding memory to
goal-oriented dialogue systems. In Proceedings of the SIGDIAL 2017 Conference
(Saarbrücken, Germany, 2017), Association for Computational Linguistics, pp. 207–
219.

[4] Athalye, A., Carlini, N., and Wagner, D. Obfuscated gradients give a false
sense of security: Circumventing defenses to adversarial examples. arXiv preprint
arXiv:1802.00420 (2018).

[5] Bahdanau, D., Cho, K., and Bengio, Y. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473 (2014).

[6] Ballesteros, M., Dyer, C., and Smith, N. A. Improved transition-based
parsing by modeling characters instead of words with lstms. arXiv preprint
arXiv:1508.00657 (2015).

[7] Bengio, Y., Ducharme, R., Vincent, P., and Jauvin, C. A neural probabilis-
tic language model. Journal of machine learning research 3, Feb (2003), 1137–1155.

[8] Bengio, Y., Simard, P., and Frasconi, P. Learning long-term dependencies
with gradient descent is difficult. IEEE transactions on neural networks 5, 2 (1994),
157–166.

[9] Berardi, G., Esuli, A., and Marcheggiani, D. Word embeddings go to italy:
A comparison of models and training datasets. In IIR (2015).

[10] Bhargava, A., Celikyilmaz, A., Hakkani-Tür, D., and Sarikaya, R. Easy
contextual intent prediction and slot detection. In International Conference on
Acoustics, Speech and Signal Processing (ICASSP) (2013), IEEE, pp. 8337–8341.

[11] Bojanowski, P., Grave, E., Joulin, A., and Mikolov, T. Enriching word
vectors with subword information. arXiv preprint arXiv:1607.04606 (2016).

[12] Bottou, L. Large-scale machine learning with stochastic gradient descent. In
Proceedings of COMPSTAT’2010. Springer, 2010, pp. 177–186.

[13] Brown, N., and Sandholm, T. Superhuman ai for heads-up no-limit poker:
Libratus beats top professionals. Science (2017), eaao1733.

[14] Burke, R. Hybrid web recommender systems. In The adaptive web. Springer,
2007, pp. 377–408.

[15] Chen, P.-C., Chi, T.-C., Su, S.-Y., and Chen, Y.-N. Dynamic time-aware
attention to speaker roles and contexts for spoken language understanding. arXiv
preprint arXiv:1710.00165 (2017).

104

Bibliography

[16] Chen, Y.-N., Hakkani-Tür, D., Tür, G., Gao, J., and Deng, L. End-to-
end memory networks with knowledge carryover for multi-turn spoken language
understanding. In INTERSPEECH (2016), pp. 3245–3249.

[17] Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares,
F., Schwenk, H., and Bengio, Y. Learning phrase representations using rnn
encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078
(2014).

[18] Chouard, T. The go files: Ai computer wraps up 4-1 victory against human
champion. Nature News (2016).

[19] Chung, J., Gulcehre, C., Cho, K., and Bengio, Y. Empirical evalua-
tion of gated recurrent neural networks on sequence modeling. arXiv preprint
arXiv:1412.3555 (2014).

[20] Clarke, R. Asimov’s laws of robotics: Implications for information technology.
Machine Ethics (2011), 254–84.

[21] Costa, P. T., and McCrae, R. R. The revised neo personality inventory (neo-
pi-r). The SAGE handbook of personality theory and assessment 2, 2 (2008),
179–198.

[22] De Marneffe, M.-C., Recasens, M., and Potts, C. Modeling the lifespan
of discourse entities with application to coreference resolution. Journal of Artificial
Intelligence Research 52 (2015), 445–475.

[23] Ekbia, H., and Nardi, B. Heteromation and its (dis) contents: The invisible
division of labor between humans and machines. First Monday 19, 6 (2014).

[24] Eric, M., and Manning, C. D. Key-value retrieval networks for task-oriented
dialogue. In Proceedings of the 18th Annual SIGdial Meeting on Discourse and
Dialogue (Saarbrücken, Germany, August 2017), Association for Computational
Linguistics, pp. 37–49.

[25] Fitzpatrick, K. K., Darcy, A., and Vierhile, M. Delivering cognitive behav-
ior therapy to young adults with symptoms of depression and anxiety using a fully
automated conversational agent (woebot): a randomized controlled trial. JMIR
mental health 4, 2 (2017).

[26] Franklin, S., and Graesser, A. Is it an agent, or just a program?: A tax-
onomy for autonomous agents. In International Workshop on Agent Theories,
Architectures, and Languages (1996), Springer, pp. 21–35.

[27] Furlong, A. The japanese hikikomori phenomenon: acute social withdrawal
among young people. The sociological review 56, 2 (2008), 309–325.

[28] Ghose, S., and Barua, J. J. Toward the implementation of a topic specific dia-
logue based natural language chatbot as an undergraduate advisor. In Informatics,
Electronics & Vision (ICIEV), 2013 International Conference on (2013), IEEE,
pp. 1–5.

[29] Goldberg, L. R. The structure of phenotypic personality traits. American
psychologist 48, 1 (1993), 26.

[30] Golub, G. H., and Reinsch, C. Singular value decomposition and least squares
solutions. Numerische mathematik 14, 5 (1970), 403–420.

[31] Gottfredson, L. S. Mainstream science on intelligence: An editorial with 52
signatories, history, and bibliography, 1997.

[32] Grosz, B. J., Weinstein, S., and Joshi, A. K. Centering: A framework for
modeling the local coherence of discourse. Computational linguistics 21, 2 (1995),
203–225.

105

Bibliography

[33] Guo, D., Tur, G., Yih, W.-t., and Zweig, G. Joint semantic utterance
classification and slot filling with recursive neural networks. In Spoken Language
Technology Workshop (SLT), 2014 IEEE (2014), IEEE, pp. 554–559.

[34] Harabagiu, S. M., Moldovan, D. I., Pasca, M., Surdeanu, M., Mihalcea,
R., Girju, R., Rus, V., Lacatusu, V. F., Morarescu, P., and Bunescu,
R. C. Answering complex, list and context questions with lcc’s question-answering
server. In TREC (2001).

[35] Hawkins, J., and Ahmad, S. Why neurons have thousands of synapses, a theory
of sequence memory in neocortex. Frontiers in neural circuits 10 (2016), 23.

[36] Hawkins, J., Ahmad, S., and Cui, Y. A theory of how columns in the neocortex
enable learning the structure of the world. Frontiers in neural circuits 11 (2017),
81.

[37] Hemphill, C. T., Godfrey, J. J., Doddington, G. R., et al. The atis spoken
language systems pilot corpus. In Proceedings of the DARPA speech and natural
language workshop (1990), pp. 96–101.

[38] Hibbard, B. Ethical artificial intelligence. arXiv preprint arXiv:1411.1373 (2014).
[39] Hinton, G., Vinyals, O., and Dean, J. Distilling the knowledge in a neural

network. arXiv preprint arXiv:1503.02531 (2015).
[40] Hochreiter, S. The vanishing gradient problem during learning recurrent neural

nets and problem solutions. International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems 6, 02 (1998), 107–116.

[41] Hochreiter, S., and Schmidhuber, J. Long short-term memory. Neural
computation 9, 8 (1997), 1735–1780.

[42] Höffner, K., Walter, S., Marx, E., Usbeck, R., Lehmann, J., and
Ngonga Ngomo, A.-C. Survey on challenges of question answering in the se-
mantic web. Semantic Web 8, 6 (2017), 895–920.

[43] Hudson, D. A., and Manning, C. D. Compositional attention networks for
machine reasoning. arXiv preprint arXiv:1803.03067 (2018).

[44] Isbister, K., and Doyle, P. Design and evaluation of embodied conversa-
tional agents: A proposed taxonomy. In The first international joint conference
on autonomous agents & multi-agent systems (2002).

[45] Johnson, J., Hariharan, B., van der Maaten, L., Fei-Fei, L., Zitnick,
C. L., and Girshick, R. Clevr: A diagnostic dataset for compositional language
and elementary visual reasoning. In Computer Vision and Pattern Recognition
(CVPR), 2017 IEEE Conference on (2017), IEEE, pp. 1988–1997.

[46] Jordan, M. I. Serial order: A parallel distributed processing approach. In
Advances in psychology, vol. 121. Elsevier, 1997, pp. 471–495.

[47] Jozefowicz, R., Zaremba, W., and Sutskever, I. An empirical exploration of
recurrent network architectures. In International Conference on Machine Learning
(2015), pp. 2342–2350.

[48] Kannan, A., Kurach, K., Ravi, S., Kaufmann, T., Tomkins, A., Mik-
los, B., Corrado, G., Lukács, L., Ganea, M., Young, P., et al. Smart
reply: Automated response suggestion for email. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(2016), ACM, pp. 955–964.

[49] Konrath, S. H., O’Brien, E. H., and Hsing, C. Changes in dispositional
empathy in american college students over time: A meta-analysis. Personality and
Social Psychology Review 15, 2 (2011), 180–198.

106

Bibliography

[50] Koren, Y., and Bell, R. Advances in collaborative filtering. In Recommender
systems handbook. Springer, 2015, pp. 77–118.

[51] Koren, Y., Bell, R., and Volinsky, C. Matrix factorization techniques for
recommender systems. Computer 42, 8 (2009).

[52] Kosinski, M., Matz, S. C., Gosling, S. D., Popov, V., and Stillwell, D.
Facebook as a research tool for the social sciences: Opportunities, challenges, ethical
considerations, and practical guidelines. American Psychologist 70, 6 (2015), 543.

[53] Kosinski, M., Stillwell, D., and Graepel, T. Private traits and attributes
are predictable from digital records of human behavior. Proceedings of the National
Academy of Sciences 110, 15 (2013), 5802–5805.

[54] Kranzberg, M. Technology and history:" kranzberg’s laws". Technology and
culture 27, 3 (1986), 544–560.

[55] Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classifica-
tion with deep convolutional neural networks. In Advances in neural information
processing systems (2012), pp. 1097–1105.

[56] Lafferty, J., McCallum, A., and Pereira, F. C. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In Proceedings of
ICML (2001), pp. 282–289.

[57] Lake, B. M., Ullman, T. D., Tenenbaum, J. B., and Gershman, S. J.
Building machines that learn and think like people. Behavioral and Brain Sciences
40 (2017).

[58] LeCun, Y., Bengio, Y., and Hinton, G. Deep learning. nature 521, 7553
(2015), 436.

[59] Lerer, A., Gross, S., and Fergus, R. Learning physical intuition of block
towers by example. arXiv preprint arXiv:1603.01312 (2016).

[60] Li, J., Galley, M., Brockett, C., Gao, J., and Dolan, B. A diversity-
promoting objective function for neural conversation models. arXiv preprint
arXiv:1510.03055 (2015).

[61] Li, J., Galley, M., Brockett, C., Spithourakis, G. P., Gao, J.,
and Dolan, B. A persona-based neural conversation model. arXiv preprint
arXiv:1603.06155 (2016).

[62] Lika, B., Kolomvatsos, K., and Hadjiefthymiades, S. Facing the cold start
problem in recommender systems. Expert Systems with Applications 41, 4 (2014),
2065–2073.

[63] Lin, Z., Feng, M., Santos, C. N. d., Yu, M., Xiang, B., Zhou, B., and
Bengio, Y. A structured self-attentive sentence embedding. arXiv preprint
arXiv:1703.03130 (2017).

[64] Lita, L. V., Ittycheriah, A., Roukos, S., and Kambhatla, N. truecas-
ing. In Proceedings of the 41st Annual Meeting on Association for Computational
Linguistics-Volume 1 (2003), Association for Computational Linguistics, pp. 152–
159.

[65] Liu, B., and Lane, I. Attention-based recurrent neural network models for joint
intent detection and slot filling. Interspeech 2016 (2016), 685–689.

[66] Liu, C.-W., Lowe, R., Serban, I., Noseworthy, M., Charlin, L., and
Pineau, J. How not to evaluate your dialogue system: An empirical study of
unsupervised evaluation metrics for dialogue response generation. In Proceedings
of the 2016 Conference on Empirical Methods in Natural Language Processing
(2016), pp. 2122–2132.

107

Bibliography

[67] Lops, P., De Gemmis, M., and Semeraro, G. Content-based recommender
systems: State of the art and trends. In Recommender systems handbook. Springer,
2011, pp. 73–105.

[68] Lowe, R., Pow, N., Serban, I. V., and Pineau, J. The ubuntu dialogue
corpus: A large dataset for research in unstructured multi-turn dialogue systems.
In 16th Annual Meeting of the Special Interest Group on Discourse and Dialogue
(2015), p. 285.

[69] Maaten, L. v. d., and Hinton, G. Visualizing data using t-sne. Journal of
machine learning research 9, Nov (2008), 2579–2605.

[70] Mairesse, F., Walker, M. A., Mehl, M. R., and Moore, R. K. Using
linguistic cues for the automatic recognition of personality in conversation and
text. Journal of artificial intelligence research 30 (2007), 457–500.

[71] Mauldin, M. L. Chatterbots, tinymuds, and the turing test: Entering the loebner
prize competition. In AAAI (1994), vol. 94, pp. 16–21.

[72] McCulloch, W. S., and Pitts, W. A logical calculus of the ideas immanent in
nervous activity. The bulletin of mathematical biophysics 5, 4 (1943), 115–133.

[73] Mensio, M., Rizzo, G., and Morisio, M. Multi-turn qa: A rnn contex-
tual approach to intent classification for goal-oriented systems. In The 2018 Web
Conference Companion, April 23–27, 2018, Lyon, France (2018).

[74] Mikolov, T., Chen, K., Corrado, G., and Dean, J. Efficient estimation of
word representations in vector space. ICLR Workshop (2013).

[75] Mikolov, T., Yih, W.-t., and Zweig, G. Linguistic regularities in contin-
uous space word representations. In Proceedings of the 2013 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (2013), pp. 746–751.

[76] Minsky, M. A neural-analogue calculator based upon a probability model
of reinforcement. Harvard University Psychological Laboratories, Cambridge,
Massachusetts (1952).

[77] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Belle-
mare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski,
G., et al. Human-level control through deep reinforcement learning. Nature 518,
7540 (2015), 529.

[78] Moor, J. Four kinds of ethical robots. Philosophy Now 72 (2009), 12–14.
[79] Müller, V. C., and Bostrom, N. Future progress in artificial intelligence: A

survey of expert opinion. In Fundamental issues of artificial intelligence. Springer,
2016, pp. 555–572.

[80] Pearl, J. Theoretical impediments to machine learning with seven sparks from
the causal revolution. arXiv preprint arXiv:1801.04016 (2018).

[81] Pennington, J., Socher, R., and Manning, C. Glove: Global vectors for
word representation. In Proceedings of the 2014 conference on empirical methods
in natural language processing (EMNLP) (2014), pp. 1532–1543.

[82] Picard, R. W. Affective Computing. MIT Press, 2000.
[83] Quercia, D., Aiello, L. M., Schifanella, R., et al. The emotional and

chromatic layers of urban smells. In ICWSM (2016), pp. 309–318.
[84] Quercia, D., Schifanella, R., Aiello, L. M., and McLean, K. Smelly maps:

the digital life of urban smellscapes. arXiv preprint arXiv:1505.06851 (2015).
[85] Ramshaw, L. A., and Marcus, M. P. Text chunking using transformation-

based learning. In Natural language processing using very large corpora. Springer,
1999, pp. 157–176.

108

Bibliography

[86] Raskin, J. Comments are more important than code. Queue 3, 2 (2005), 64–65.
[87] Rickards, G. K. The Statutes of the United Kingdom of Great Britain and

Ireland. His Majesty’s statute and law printers, 1817.
[88] Ritter, A., Cherry, C., and Dolan, W. B. Data-driven response generation

in social media. In Proceedings of the conference on empirical methods in natural
language processing (2011), Association for Computational Linguistics, pp. 583–
593.

[89] Roberts, R. M. Serendipity: Accidental discoveries in science. Serendipity:
Accidental Discoveries in Science, by Royston M. Roberts, pp. 288. ISBN
0-471-60203-5. Wiley-VCH, June 1989. (1989), 288.

[90] Rosenblatt, F. The perceptron: a probabilistic model for information storage
and organization in the brain. Psychological review 65, 6 (1958), 386.

[91] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learning represen-
tations by back-propagating errors. nature 323, 6088 (1986), 533.

[92] Sahlgren, M. The distributional hypothesis. Italian Journal of Disability Studies
20 (2008), 33–53.

[93] Serban, I. V., Sordoni, A., Bengio, Y., Courville, A. C., and Pineau, J.
Building end-to-end dialogue systems using generative hierarchical neural network
models. In AAAI (2016), vol. 16, pp. 3776–3784.

[94] Shi, Y., Yao, K., Chen, H., Pan, Y.-C., Hwang, M.-Y., and Peng, B.
Contextual spoken language understanding using recurrent neural networks. In
International Conference on Acoustics, Speech and Signal Processing (ICASSP)
(2015), IEEE, pp. 5271–5275.

[95] Shieber, S. M. Lessons from a restricted turing test. arXiv preprint
cmp-lg/9404002 (1994).

[96] Son, L. H. Dealing with the new user cold-start problem in recommender systems
a comparative review. Information Systems 58 (2016), 87–104.

[97] Sukhbaatar, S., Weston, J., Fergus, R., et al. End-to-end memory net-
works. In Advances in neural information processing systems (2015), pp. 2440–
2448.

[98] Sun, M., and Chai, J. Y. Discourse processing for context question answering
based on linguistic knowledge. Knowledge-Based Systems 20, 6 (2007), 511–526.

[99] Sun, M., Li, F., Lee, J., Zhou, K., Lebanon, G., and Zha, H. Learning
multiple-question decision trees for cold-start recommendation. In Proceedings of
the sixth ACM international conference on Web search and data mining (2013),
ACM, pp. 445–454.

[100] Tian, Y.-L., Kanade, T., and Cohn, J. F. Facial expression analysis. In
Handbook of face recognition. Springer, 2005, pp. 247–275.

[101] Tokic, M. Adaptive ε-greedy exploration in reinforcement learning based on
value differences. In Annual Conference on Artificial Intelligence (2010), Springer,
pp. 203–210.

[102] Tur, G., Hakkani-Tür, D., and Heck, L. What is left to be understood in
atis? In Spoken Language Technology Workshop (SLT), 2010 IEEE (2010), IEEE,
pp. 19–24.

[103] Turing, A. M. Computing machinery and intelligence. Mind 59, 236 (1950),
433–460.

[104] Walsh, T. Turing’s red flag. Communications of the ACM 59, 7 (2016), 34–37.
[105] Weizenbaum, J. Eliza–a computer program for the study of natural language

communication between man and machine. Communications of the ACM 9, 1

109

Bibliography

(1966), 36–45.
[106] Werbos, P. J. Backpropagation through time: what it does and how to do it.

Proceedings of the IEEE 78, 10 (1990), 1550–1560.
[107] Weston, J., Bordes, A., Chopra, S., Rush, A. M., van Merriënboer, B.,

Joulin, A., and Mikolov, T. Towards ai-complete question answering: A set of
prerequisite toy tasks. arXiv preprint arXiv:1502.05698 (2015).

[108] Williams, J., Raux, A., Ramachandran, D., and Black, A. The dialog
state tracking challenge. In Proceedings of the SIGDIAL 2013 Conference (2013),
pp. 404–413.

[109] Xing, C., Wu, W., Wu, Y., Liu, J., Huang, Y., Zhou, M., and Ma, W.-Y.
Topic aware neural response generation. In AAAI (2017), vol. 17, pp. 3351–3357.

[110] Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudinov, R.,
Zemel, R., and Bengio, Y. Show, attend and tell: Neural image caption gen-
eration with visual attention. In International Conference on Machine Learning
(2015), pp. 2048–2057.

[111] Xu, P., and Sarikaya, R. Contextual domain classification in spoken language
understanding systems using recurrent neural network. In International Conference
on Acoustics, Speech and Signal Processing (ICASSP) (2014), IEEE, pp. 136–140.

[112] Youyou, W., Kosinski, M., and Stillwell, D. Computer-based personality
judgments are more accurate than those made by humans. Proceedings of the
National Academy of Sciences 112, 4 (2015), 1036–1040.

[113] Zhou, H., Huang, M., Zhang, T., Zhu, X., and Liu, B. Emotional chatting
machine: emotional conversation generation with internal and external memory.
arXiv preprint arXiv:1704.01074 (2017).

[114] Złotowski, J., Yogeeswaran, K., and Bartneck, C. Can we control it?
autonomous robots threaten human identity, uniqueness, safety, and resources.
International Journal of Human-Computer Studies 100 (2017), 48–54.

110

	List of Tables
	List of Figures
	Introduction
	Istituto Superiore Mario Boella
	Autonomous Systems in the society
	Artificial Intelligence evolution
	Artificial Intelligence as Human imitation
	What AI can do today
	The evolution of machine learning
	Towards general AI

	AI Guidelines
	Distinguishability
	Autonomy
	Personality and Emotions

	Remainder

	State of the Art
	Chatbots and their classification
	Applications of chatbots
	Existing classifications
	The information content
	Chit-chat
	Goal-oriented
	Knowledge-based

	The approaches
	Rule-based
	Machine Learning NLU
	Encoder-Generative models

	The challenges

	Natural Language Understanding
	Goals
	Recurrent Neural Networks
	Backpropagation

	Cell types
	Simple RNN
	Long Short-Term Memory
	Gated Recurrent Unit

	Word embeddings
	The algorithms
	The vocabulary issues

	Intent classification
	Keyword-based
	Average of word vectors
	RNN approach
	RNN with attention

	Sequence-to-sequence models for slot tagging
	Simple Encoder-Decoder
	Encoder-decoder keeping sentence vector
	Encoder-decoder with aligned inputs
	Encoder-decoder with attention

	Joint tasks
	The interaction context
	Multi-turn Understanding
	Coreference resolution
	Simple QA to test the memory
	End to End for Goal-oriented dialogues

	NLU as a service

	Personalization
	User features and Personality analysis
	Recommendation Approaches
	Content-based filtering
	Collaborative filtering
	Hybrid

	Cold start

	Approach
	NLU
	Single-turn NLU
	Word embeddings
	Output dependencies

	Multi-turn NLU

	The bot for bike sharing
	Scenarios
	Search for bike stations information
	Search for supported cities
	Small talk, refining the user model
	Proactive messages

	High-level model
	Intent and slot types
	Dialogue State Management

	Personalization
	Content recommendation
	Tailored communication

	Information Retrieval
	Bikes
	Geographical information
	Places
	Facebook Graph API
	Big Five computation
	Other

	Implementation
	Interaction with chat platforms
	Natural Language Understanding
	Wit.ai exploitation
	Neural Networks frameworks
	Keras Recurrent API
	TensorFlow Recurrent API
	Decision

	Graph details
	The differences
	Multi-turn

	Word embeddings
	The tokenization of spaCy
	Integrating SpaCy with TensorFlow
	Italian word embeddings

	Datasets collection

	Validation
	NLU evaluation
	Datasets
	Single-turn
	Multi-turn
	Italian Word Embeddings

	Evaluation Protocol and results
	Italian embeddings analogy evaluation
	Single-turn variations
	The multi-turn

	Bot prototype

	Conclusions
	Glossary
	Bibliography

		Politecnico di Torino
	2018-04-10T14:44:37+0000
	Politecnico di Torino
	Maurizio Morisio
	S

