
POLITECNICO DI TORINO

Corso di Laurea Magistrale in Ingegneria Elettronica

Tesi di Laurea Magistrale

A Correction Method for
Pedestrian Detection using a

Convolutional Neural Network

Relatori:
prof. Guido Masera
prof. Maurizio Martina

Candidato:
Stefania Trapani

Aprile 2018



Acknowledgments

I



Table of contents

Acknowledgments I

1 Introduction 1
1.1 Pedestrian detection and Advanced Driver Assistance Systems . . . . 1
1.2 Widely used methods . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Support Vector Machines . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Histograms of Oriented Gradients . . . . . . . . . . . . . . . 3
1.2.3 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Convolutional Neural Network 7
2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Typical structure of a Convolutional Neural Network . . . . . . . . . 9

2.2.1 Convolutional Layers . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Batch Normalization Functions . . . . . . . . . . . . . . . . . 10
2.2.3 Non-Linearity Functions . . . . . . . . . . . . . . . . . . . . . 11
2.2.4 Pooling Layers . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.5 Fully-Connected Layers . . . . . . . . . . . . . . . . . . . . . 12

2.3 Fields of use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Model examples for CNNs 15
3.1 LeNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 AlexNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 VGG Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 ResNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.5 GoogLeNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.6 Darknet and YOLO . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Datasets for Classification Purposes 23
4.1 Caltech Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2 PASCAL VOC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 DITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

II



4.4 GTSRB and GTSDB . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.5 KUL Belgium Traffic Sign dataset . . . . . . . . . . . . . . . . . . . 28
4.6 ETH dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Implementation and Results 32
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1.1 Flowchart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2 Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.4 Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.5 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.5.1 TensorFlow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.5.2 LabelImg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.6 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6 Conclusion and future works 51

A Code 54

Bibliography 74

III



List of tables

5.1 Pedestrian Helpers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 Training Dataset Statistics . . . . . . . . . . . . . . . . . . . . . . . . 39
5.3 Tiny-YOLO Network . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.4 Results per image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.5 Results per label . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.1 Top-5 error rates of the most popular CNNs . . . . . . . . . . . . . . 51

IV



List of figures

1.1 Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Histograms of Oriented Gradients . . . . . . . . . . . . . . . . . . . . 4
1.3 Layers composing a Neural Network . . . . . . . . . . . . . . . . . . . 5
2.1 Artificial Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Overfitting Phenomenon . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Typical structure of a Convolutional Neural Network . . . . . . . . . 9
2.4 Convolutional Layer example . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Non-Linearity Functions . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.6 Pooling Layer example . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.7 Fully-Connected Layer example . . . . . . . . . . . . . . . . . . . . . 12
3.1 LeNet architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 AlexNet architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 VGG-16 architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 ResNet module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.5 GoogLeNet Inception Module . . . . . . . . . . . . . . . . . . . . . . 19
3.6 GoogLeNet architecture . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.7 YOLO architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1 Caltech Pedestrian dataset example . . . . . . . . . . . . . . . . . . . 24
4.2 Caltech-256 dataset example . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 PASCAL VOC dataset examples . . . . . . . . . . . . . . . . . . . . 26
4.4 DITS dataset examples . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.5 GTSDB dataset examples . . . . . . . . . . . . . . . . . . . . . . . . 28
4.6 KUL Belgium Traffic Sign dataset examples . . . . . . . . . . . . . . 29
4.7 ETH dataset examples . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.1 Flowchart of the implementation . . . . . . . . . . . . . . . . . . . . 34
5.2 PBM class examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.3 warningPos class examples . . . . . . . . . . . . . . . . . . . . . . . . 35
5.4 prohibitoryPos class examples . . . . . . . . . . . . . . . . . . . . . . 35
5.5 obligationPos class examples . . . . . . . . . . . . . . . . . . . . . . . 35
5.6 warningNeg class example . . . . . . . . . . . . . . . . . . . . . . . . 35
5.7 prohibitoryNeg class example . . . . . . . . . . . . . . . . . . . . . . 36

V



5.8 Tiny-YOLO Network architecture . . . . . . . . . . . . . . . . . . . . 40
5.9 labelImg usage example . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.10 Example of image with right response . . . . . . . . . . . . . . . . . . 44
5.11 Example of image with partially right response . . . . . . . . . . . . . 44
5.12 Example of image with possible improvements . . . . . . . . . . . . . 45
5.13 Example of image without possible improvements . . . . . . . . . . . 45
5.14 Example of image without bounding boxes . . . . . . . . . . . . . . . 45
5.15 Example of image through each stage of the flowchart: the result is

a right label . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.16 Example of image through each stage of the flowchart: the result is

a positively disappeared label . . . . . . . . . . . . . . . . . . . . . . 48
5.17 Example of image through each stage of the flowchart: the result is

a negatively disappeared label . . . . . . . . . . . . . . . . . . . . . . 48
5.18 Example of image through each stage of the flowchart: the result is

a still-wrong label . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.19 Still-wrong labels example . . . . . . . . . . . . . . . . . . . . . . . . 49

VI





Chapter 1

Introduction

1.1 Pedestrian detection and Advanced Driver As-

sistance Systems

Advanced Driver Assistance Systems [1], referred to as ADASs, have been devel-
oped in order to help drivers avoiding traffic accidents. They can be also used
for autonomous-driver cars, hence it’s a very interesting and much studied field in
research area. ADASs make use of image processing and many sensors, such as
infrared, radars and lidars.
Some of the techniques included among ADASs are: Electronic Stability Control
(ESC), Line Keeping Assistance (LKA), Adaptive Cruise Control (ACC), Lane De-
parture Warning System (LDWS), Anti-Lock Braking System (ABS), Cooperative
Intersection Collision Avoidance System (CICAS) and Driver Drowsiness Detection.

Another task of the ADAS, maybe the most important due to its criticality, is
the Pedestrian Detection [2]. Through the last decades, it has become a challenging
topic, since the variety of peculiarities that can determine the features of a pedes-
trian. They can be different in size, clothes and in the way they appear (front, rear
or side pose). The difficulties come not only from the pedestrians themselves, but
also from the surrounding environment, such as light level or the presence of object
between the camera and the person.
Since pedestrian detection is useful in other fields, like surveillance and robotics, this
problem has been approached in different ways, changing both method and dataset.

Among the principal methods used for pedestrian detection, there are:

• Support Vector Machines (section 1.2.1)

• Histograms of Oriented Gradients (section 1.2.2)

1



1 – Introduction

• Neural Networks (sections 1.2.3 and 3)

• Deformable Part Detectors

• Mixed version of the previous ones

Datasets are a large set of photos, videos or frames taken from videos, and are very
useful to train and evaluate the robustness of the algorithm. Depending on what is
the goal pursued by the researchers, many datasets have been produced, such as:

• MNIST

• Caltech Dataset

• ETH Dataset

• INRIA Dataset

• PASCAL VOC

• DITS

• GTSRB and GTSDB

• KUL Belgium Traffic Sign dataset

A detailed description of the datasets can be found in sections 4 and 5.3.

The purpose of this thesis work is to design a module able to refine the proba-
bility to detect a pedestrian with the help of surrounding objects (road signs, cars,
dogs, etc.). In order to accomplish this, a Convolutional Neural Network has been
employed and some pre-existent datasets have been combined. The network is a
Tiny-YOLO version [3], written in Python language, which will be presented in
section 5.4.

1.2 Widely used methods

1.2.1 Support Vector Machines

One of the first and simpler algorithms used for pattern recognition is the Support
Vector [4] one.
The Support Vector Machines (SVMs) have been created in order to solve two-
group classification problems. The basic idea is to find the optimal hyperplane which

2



1 – Introduction

separates the input vectors into two classes and maximize the margin between them.
The set of training vectors xN are separated as follows:

yi = wT · xi + b ≥ 1 ∀xi ∈ 1 ⇒ yi ∈ Class1 (1.1)

yi = wT · xi + b ≤ −1 ∀xi ∈ −1 ⇒ yi ∈ Class− 1 (1.2)

where w is the weights vector and b is the bias.
Since the distance between Class1 and Class− 1 is

d =
2

‖w‖
, (1.3)

in order to maximize it, the ‖w‖ quantity has to be minimized.

Figure 1.1: Support Vector Machine

The most successful fields of application for the Support Vector Machine are
handwritten character recognition, bioinformatics and machine vision.

1.2.2 Histograms of Oriented Gradients

The Histograms of Oriented Gradients (HOG) method [5] is based on the idea that,
in a restricted portion of the image, object shapes can be characterized by the
distribution of intensity gradients or edge directions.
This implementation is composed of five phases, as pictured in 1.2:

1. The image window is subjected to a colour and gamma normalization, which
helps to reduce illumination and shadowing effects on it. However, this pre-
process stage is optional, since it does not affect performances.

2. The first order gradient of the image is computed. What comes out from this
stage is a new image containing the object shapes present in the original one.

3



1 – Introduction

3. The image is divided into small cells and, in each of them, a local 1-D his-
togram of gradient or edge orientations is accumulated.

4. A further contrast normalization is applied to local groups of cells (called
blocks), accumulating a measure of the local histogram ”energy”. After that,
the normalized block descriptors are named Histogram of Oriented Gradient
descriptors.

5. The HOG descriptors from all blocks are collected in a feature vector.

Figure 1.2: Histograms of Oriented Gradients

1.2.3 Neural Networks

In the last decade, Neural Networks became more popular, thanks to its usage in
different fields. Depending on the way they process data, there exist many types of
Neural Networks, but it can be stated that the data processing layers are similar
(fig. 1.3). These layers can be grouped as three pipeline stages:

1. region proposal or input layer, where the entire frame is examined and
image regions hopefully including, for example, a person are extracted. There-
fore, its input is the complete image, while the output is a collection of regions
which probably contain a pedestrian. One of the most used algorithms for
region proposal is the sliding window approach, since it manages regions ex-
traction at multiple scales and aspect ratios.

2. feature extraction or hidden layer, whose input is the set of image regions
previously generated. The output is a set of real or binary values (depending
on how many classes compose the network), which can be compacted in a
features vector.

4



1 – Introduction

3. region classification or output layer, whose purpose is to identify which
regions within the set of candidates correspond to a human shape. In order to
accomplish to this task, the features vector has to be sent to this stage, which
provides the probability that such region contains a person.

Figure 1.3: Layers composing a Neural Network

Further information about Neural Networks can be found in the next chapter.

5





Chapter 2

Convolutional Neural Network

2.1 Overview

A Neural Network, also called Artificial Neural Network, is a computing system
inspired by natural neurons [6, 7]. It can be implemented as algorithms or actual
hardware. Usually a brain has billions of neurons, while the Neural Network can
have hundreds or thousands of them.

An Artificial Neural Network contains many highly-interconnected processing el-
ements (fig. 2.1), which respond to external inputs, which play the role of the
synapses. These inputs are then multiplied by weights (”activation functions”),
computed by mathematical functions. In this way, the neuron has been activated
and the output has been estimated. By adjusting the weights of an artificial neuron,
the desired output for a given input can be stated.

Figure 2.1: Artificial Neural Network

In order to revise the neurons weights, each neural network needs a learning rule,

7



2 – Convolutional Neural Network

since Neural Networks learn by example. One of the most important and utilized
learning rule is the delta rule: it is a supervised process, that occurs each time the
network receives a new input. In other words, when a new input is applied to the
network, it tries to guess the output. This kind of learning rule is the basis of the
Back-Propagation Neural Networks (BPNNs), which allow the backward propaga-
tion of the error.

One crucial problem during the training of a network is the overfitting (fig. 2.2):
the network only recognizes data from the training set, since it has been trained too
extensively. In other words, overfitting occurs when a network memorizes training
data rather than learning to generalize them. In order to avoid overfitting, some
regularization techniques have to be employed, such as the dropout one.

Figure 2.2: Overfitting Phenomenon

After training a Neural Network to an acceptable level, it can be used to analyse
data, detect objects, etc. In order to do this, the network is used in forward propa-
gation mode and each input is processed by the middle layers.

Depending on the connection pattern, in particular on the presence of loops, the
network architecture can be divided in: Feed-forward networks and Recurrent or
Feedback networks.

Convolutional Neural Networks (CNN) are a particular type of Neural Networks,
composed by neurons with weights and biases. Their architectures are designed
knowing that the inputs are images, and so the number of parameters in the net-
work are reduced. The layers of a Convolutional Neural Network are composed of
3-dimension neurons: width, height, depth.

8



2 – Convolutional Neural Network

2.2 Typical structure of a Convolutional Neural

Network

Depending on its application, a Convolutional Neural Network architecture [8] presents
different sizes and shapes. However, some characteristics are common to all networks
(fig. 2.3): they are typically organized in layers, to which some functions are applied.
So, it can be stated that a CNN is composed of:

• Convolutional Layers

• Batch Normalization Functions

• Non-Linearity Functions

• Pooling Layers

• Fully-Connected Layers

Figure 2.3: Typical structure of a Convolutional Neural Network

2.2.1 Convolutional Layers

The Convolutional Layer is a windowed and weight-shared layer much used during
the design of a Neural Network.
This type of layer is composed of a set of filters, each of which is small in terms of
width and height, but extends through the full depth of the input volume. In fact,
during the convolutional stage, a small neighbourhood of the input is transformed in
a weighted sum. To be more clear, the first layer of a Neural Network, for example,
can be made of a filter with sizes 5x5x3, which indicates 5 pixels for width and
height and 3 colour channels.
Each filter is slid across the dimensions of the input and a dot product between

9



2 – Convolutional Neural Network

the filter elements and the input at any position is computed. The result is a 2-D
activation map which is represented by the responses of that filter in every loca-
tions. Following these rules, the network will learn which filters are activated when
recognizing some characteristics.
Recovering the example and supposing that the input has size 32x32x3, it can be
established that the number of weights is 5x5x3 = 75 (+1 bias parameter) and each
filter slides among the 32x32 matrix.

Three hyper-parameters control the input dimensions:

- the depth, which corresponds to the number of filters used in the stage;

- the stride, which specifies the slide of filter, i.e. how many pixels are moved
each time;

- the zero-padding, which defines how many zeros have to be added around
the border. It is useful to have the same dimensions of the input.

Figure 2.4: Convolutional Layer example

2.2.2 Batch Normalization Functions

In order to increase the stability and performances of a Neural Network, a Batch
Normalization function needs to be added. This stage leads to improve accuracy in
the training phase without loosing speed.
The input of each layer is normalized such that the mean output activation (µ) is
zero and the standard deviation (σ) is one. Then, the normalized value is scaled
and shifted:

y =
x− µ√
σ2 + ε

γ + β (2.1)

where ε is a small constant to avoid numerical problems, while γ and β parameters
are learned from training.
The Batch Normalization is usually performed between a convolutional or a fully-
connected layer and the non-linearity function.

10



2 – Convolutional Neural Network

2.2.3 Non-Linearity Functions

A Non-Linearity function is an activation function, which is usually adopted after
a Convolutional or a Fully-Connected layer, in order to introduce a non-linearity
into the network. They are very important, since they are in charge of deciding if a
neuron should be triggered or not. This stage simply works applying one activation
function to the inputs and sending the transformed outputs to the next layer.
Various types of non-linear activation functions can be chosen, as depicted in figure
2.5:

Figure 2.5: Non-Linearity Functions

2.2.4 Pooling Layers

A Pooling Layer is employed each time is necessary to progressively reduce the di-
mensions of a feature map, in order to limit over-fitting problems and to decrease
network parameters and computation.
This stage is applied to each channel of the input separately, which is spatially re-
sized using a maximum or average operation. A further feature, the stride, has to
be established, in order to know which degree of reduction has to be used.

Both maximum and average operations on the input matrix can be observed in

11



2 – Convolutional Neural Network

figure 2.6, where the input is represented by a 4x4 matrix and it has to be trans-
formed in a 2x2 one (so the stride number is 2).

Figure 2.6: Pooling Layer example

2.2.5 Fully-Connected Layers

In a Fully-Connected layer, all neurons involved in the previous layer (convolutional,
fully-connected or pooling) are connected to each of its neurons. In other words, the
output neurons are composed of the weighted sum of each input neuron:

output = (weights× input) + bias (2.2)

After using this type of layer, the output dimensions are 1x1xN, as can be seen in
figure 2.7. When there are more than one fully-connected layers, the last one (called
output layer) will compute the ratings for each category. This happens when the
network is used for classification purposes.

Figure 2.7: Fully-Connected Layer example

12



2 – Convolutional Neural Network

2.3 Fields of use

Nowadays, Neural Networks are very popular in many applications and every day
new challenges are introduced to improve people’s life. The well-known fields of use
for Neural Networks are:

• Image and video: they are useful, among the other tasks, for objects classi-
fication or security surveillance. Their application is widespread and computer
vision helps to extract meaningful information from them. Videos can be also
employed for real-time systems, for which fast responses are needed.

• Speech and language recognition : Neural Networks are employed for ma-
chine translation, speech recognition and language processing.

• Medical : Neural Networks have been very important to understand the ge-
netics of some diseases and to detect them. Thanks to this type of Neural
Network, it has been possible to detect various types of cancers, such as brain,
breast and skin ones.

• Robotics : the success of these type of Neural Networks is stated by their
numerous applications, such as the self-driving cars and the motion of a robotic
arm.

13





Chapter 3

Model examples for CNNs

As already mentioned in the previous chapters, depending on the pursued purpose,
Convolutional Neural Networks [8] presents different architectures. The main fea-
tures of an architecture are:

• number of filters

• filter sizes

• number of layers

• types of layers

In the next sections, the most popular Convolutional Neural Networks will be
introduced.

3.1 LeNet

The first application of Convolutional Neural Network, named LeNet [9], was devel-
oped by Yann LeCun in the late 1980s.
This model was designed primarily for the handwritten digit recognition in the
MNIST dataset, which is composed of 70.000 grayscale images of dimensions 28x28.
In order to accomplish its task, the network (fig. 3.1) was composed of:

- 2 convolutional layers, with 6 filters in the first layer and 16 in the second
one (each layer uses 5x5 filters);

- Sigmoid function for the non-linearity;

- Average pooling function of 2x2 after each convolutional layer;

15



3 – Model examples for CNNs

- 2 fully-connected layers.

Figure 3.1: LeNet architecture

3.2 AlexNet

The first Convolutional Network conceived for Computer Vision purposes was the
AlexNet architecture [10]. It was proposed at the ImageNet Competition in 2012,
introducing the concept of Local Response Normalization.
This model (fig. 3.2) consists of:

- 5 convolutional layers, with different number and sizes;

- ReLU function for the non-linearity;

- Max pooling function of 3x3 after convolutional layers no. 1, 2 and 5;

- 3 fully-connected layers.

The first convolutional layer contains 3 channels, corresponding to the RGB
(Red, Green and Blue) components of the input image.
The main difference between AlexNet and LeNet is that the number of weights is
much larger and the shapes vary according to the layers.

Figure 3.2: AlexNet architecture

16



3 – Model examples for CNNs

3.3 VGG Networks

In 2014 Karen Simonyan and Andrew Zisserman discovered that the depth of a
network is critic for good performance. This led to the realization of the VGGNet
[11].
The final version of this network, called VGG-16, as its name suggests, is 16 layers
deep. In particular, it consists of:

- 13 convolutional layers, with the same filter size (3x3);

- ReLU function for the non-linearity;

- Max pooling function of size 2x2;

- 3 fully-connected layers.

In the convolutional layers, large filters are decomposed in smaller ones, which
have fewer weights. This explains why, in that stages, filters have the same size.
The principal disadvantage of the VGG-16 network is that it is more expensive to
evaluate and uses a lot of memory and parameters.

Figure 3.3: VGG-16 architecture

3.4 ResNet

The ResNet [12], also known as Residual Net, was proposed at the ImageNet Chal-
lenge in 2015, being the first Neural Network that exceeded human-level accuracy.
Its idea is based on residual connections to build a deeper network; indeed, it is

17



3 – Model examples for CNNs

composed of 34 or more layers. This model is motivated by the fact that the ability
to update the weights in the earlier layers is degraded, since, as the error back-
propagates through the network, the gradient decreases.
The Residual Network introduces a module which contains an identity connection
in order to skip the weight layers (convolutional layers). Rather than learning the
function for the weight layers F(x), this module learns the residual mapping:

F (x) = H(x)− x (3.1)

In addiction to this, in order to reduce the number of the weights, the two 3x3
layers involved in the module are replaced by three layers of sizes 1x1, 3x3, 1x1.
This transformation is observable in fig. 3.4:

Figure 3.4: ResNet module

3.5 GoogLeNet

The GoogLeNet [13] is a Convolutional Network proposed at the ImageNet Com-
petition in 2014. Its key point is the introduction of an Inception Module, which,
realizing parallel connections, reduces the number of the parameters in the network.
In this architecture, as can be seen in fig. 3.5, parallel connections are designed with
the help of a 3x3 max-pooling layer and of filters with sizes 1x1, 3x3 and 5x5. The
choice of using different filters sizes helps to process the input at multiple scales.

18



3 – Model examples for CNNs

Figure 3.5: GoogLeNet Inception Module

The whole GoogLeNet architecture (fig. 3.6) is composed of 22 layers:

- 3 convolutional layers

- 9 inception layers

- 1 fully-connected layer

Figure 3.6: GoogLeNet architecture

19



3 – Model examples for CNNs

3.6 Darknet and YOLO

Darknet is an open source Neural Network framework, which supports CPU and
GPU computation. It relies on the fact that the Neural Network receives the whole
image, which is then divided into regions. At this point, the network predicts mul-
tiple bounding boxes and the related probabilities for each class. This constitutes
the main difference from other networks, where the model is applied to an image at
multiple locations and scales and the regions with higher probabilities are considered
positives.

YOLO [3], which stands for ”You Only Look Once”, belongs to the Darknet types of
networks. Its basic idea is to design the network merging the components of object
detection into a single Neural Network.
YOLO uses features from the full image to predict simultaneously the bounding
boxes and the right class among the trained ones. Its design allows end-to-end
training and real-time speeds while maintaining high average precision.
The input image is divided into an SxS grid. The grid cell is in charge of detecting
an object, if the center of it falls into a grid cell. Each grid cell predicts B bounding
boxes and the confidence results for those boxes. Confidence is defined as:

confidence = Pr(obj) · IOUpred
truth (3.2)

where IOU represents the Intersection Over Union between the predicted box and
the ground truth, which is zero when there is no object in the cell.
Each bounding box consists of 5 predictions :

- x and y, which are the coordinates of the center of the box relative to the
bounds of the grid cell

- w and h, which represent width and height relative to the whole image

- confidence, defined in equation 3.2

Each grid cell also predicts C conditional class probabilities, Pr(Classi|Obj).
YOLO only predicts one set of class probabilities per grid cell, regardless the number
of bounding boxes B. The predictions are encoded as a tensor with shape:

S × S × (B · 5 + C) (3.3)

Making an example for evaluating YOLO network on the PASCAL VOC dataset,
where the parameters are S = 7, B = 2 and C = 20, the output is a 7 x 7 x 30 tensor.

YOLO architecture (fig. 3.7) is similar to the GoogLeNet (section 3.5) model for
image classification. The network consists of:

20



3 – Model examples for CNNs

- 24 convolutional layers;

- leaky-ReLU function for the non-linearity;

- Max pooling function;

- 2 fully-connected layers.

Figure 3.7: YOLO architecture

The convolutional layers at the beginning of the network extract features from
the image, while the fully-connected layers predict the output, providing probabil-
ities and coordinates. While GoogLeNet makes use of the inception modules, in
YOLO 1x1 reduction layers are used followed by 3x3 layers.

There also exists a fast version of YOLO, which uses 9 convolutional layers and
fewer filters in those layers.

21





Chapter 4

Datasets for Classification
Purposes

As mentioned in section 1.1, dataset can be a large amount of photos, videos or
frames from videos. The choice of a dataset is based on the classes to be detected
and so on its task. In general, among the others, the most important classes are:

• Digits

• Persons

• Animals

• Vehicles for Transportation

• Road Signs

4.1 Caltech Dataset

The Caltech Pedestrian Dataset [14] is made of frames extracted from a 10 hours
video taken from a vehicle driving through city traffic. In order to label each frame,
researchers implemented an interactive annotating tool, which operates depending
on the pedestrian visibility. For every frame containing a completely visible pedes-
trian, the annotator drew a Bounding Box (BB) indicating the region where to find
the entire pedestrian. Instead, for pedestrians which are covered by something, the
visible region is bounded as usual and an estimation of the hidden parts location is
performed. Then, each bounding box is marked according to one of the following
labels:

1. Individual pedestrians as ’Person’

23



4 – Datasets for Classification Purposes

2. Large groups of pedestrians as ’People’

3. Ambiguous or easily mistaken pedestrian as ’Person?’

Pedestrians are categorized according their image height in pixels into three scales:
near (above 80 pixels), medium (between 30-80 pixels) and far (below 30 pixels).
For automotive applications, a medium scale detection is fundamental, since allows
to have sufficient time to alert the driver about the incoming danger.

Figure 4.1: Caltech Pedestrian dataset example

Another type of Caltech dataset is the Caltech-256 Object Category Dataset [15],
which involves classes different from the pedestrian one. It is an evolution of the
Caltech-101 dataset and contains more than 30.000 images. These images don’t
need pre-processing steps, since, after collecting them from Google and Picsearch,
they were labelled following some criteria:

• Good, if the image represents a clear example for the involved category;

• Bad, if the image is a drawing or leads to confusion;

• Not applicable, if the image does not contain the involved category.

and only the good ones constitute the dataset.
Among the others, the most important categories for urban recognition are:

- People

- Pram

- Dog

- Traffic Light

24



4 – Datasets for Classification Purposes

- Bike (both touring and mountain)

- Bulldozer

- Fire-truck

Figure 4.2: Caltech-256 dataset example

4.2 PASCAL VOC

The PASCAL VOC dataset [16] provides a large image set for object class recogni-
tion, which is created concurrently to an annual challenge.
The biggest dataset (VOC2012 ), which contains images from 20051 to 2012, is com-
posed of more than 11.000 images representing 20 classes (person and varieties of
animals, vehicles and indoor objects). Images are provided along with the associ-
ated annotation files (in .xml format), which contain the coordinates of the regions
of interest (ROI) and the object class and pose (frontal, rear or lateral).
Depending on the pursued task, the challenges are different:

- Classification: for each of the 20 classes, it has to predict the presence or
the absence of at least one object of that class in a test image;

- Detection: for each of the 20 classes, it has to predict the bounding boxes of
each object of that class in a test image (fig. 4.3a);

- Person Layout Evaluator: for each person in a test image, it has to predict
the bounding box of the person, the presence or the absence of human parts,
such as head/hands/feet, and the bounding boxes of those parts (fig. 4.3b).

1This dataset contains images from Caltech, ETH, INRIA, TUGraz and UIUC

25



4 – Datasets for Classification Purposes

All of them have to produce also the real-valued confidence of the related bounding
box.

(a) Detection

(b) Person Layout Evaluator

Figure 4.3: PASCAL VOC dataset examples

4.3 DITS

The Data set of Italian Traffic Signs (DITS2) is composed of images extracted by
several hours of videos recorded in Italy and divided into 58 classes folders. It’s a
project managed by some researchers in the Department of Computer, Control, and
Management Engineering (Sapienza University of Rome).
One of the main advantages of using this dataset is that some images are taken
in different weather and illumination conditions, such as day-time (fig. 4.4a) or
night-time (fig. 4.4b) and fog ones (fig. 4.4c).

2http://www.dis.uniroma1.it/~bloisi/ds/dits.html

26



4 – Datasets for Classification Purposes

(a) day-time

(b) night-time

(c) fog conditions

Figure 4.4: DITS dataset examples

4.4 GTSRB and GTSDB

The German Traffic Sign datasets have been created by a research team of the Ruhr
University of Bochum3.

3http://benchmark.ini.rub.de

27



4 – Datasets for Classification Purposes

The German Traffic Sign Recognition Benchmark (GTSRB) is composed of more
than 50.000 images depicting only road signs. They have different sizes (from 15x15
to 250x250 pixels) and are divided in 43 classes folders, each of which contains a
.csv file, were the coordinates of the Regions of Interest are annotated.

The German Traffic Sign Detection Benchmark (GTSDB) is composed of 900 im-
ages, whose dimensions are 1360 x 800 pixels. They are captured by a vehicle not
only in a urban scenario (fig. 4.5a), but also in a highway one (fig. 4.5b).

(a) Urban scenario

(b) Highway scenario

Figure 4.5: GTSDB dataset examples

4.5 KUL Belgium Traffic Sign dataset

The Belgium Traffic Sign dataset [17] consists of more than 9000 images, where
traffic signs are visible at less than 50 meters from the camera. It has been created
by a research team at Catholic University of Leuven.
The number of included classes, so of the traffic signs, is 65. Data can be divided in
subsets, for both training and validation purposes. In order to include also negative

28



4 – Datasets for Classification Purposes

samples for the training phase, researchers use urban scenario images without traffic
signs.

(a) image with 2 traffic signs

(b) image with no traffic signs

Figure 4.6: KUL Belgium Traffic Sign dataset examples

4.6 ETH dataset

The ETH dataset [18, 19] has been created by a research team of the Swiss Federal
Institute of Technology in Zurich.
Each image of the dataset contains at least one pedestrian, which can be occluded
or not. This constitutes a good detection dataset, since, in this way, it’s possible to
determine how robust is a network.

29



4 – Datasets for Classification Purposes

If this dataset is used for training, in addition to this, a set of bounding box anno-
tations is provided.
Examples of the ETH dataset are presented in the figure below.

(a)

(b)

Figure 4.7: ETH dataset examples

30





Chapter 5

Implementation and Results

5.1 Overview

The basic idea behind this thesis work is to refine the Pedestrian Detection results
produced by the Convolutional Neural Network. This is done using the probabilities
of other detected objects in the same image.
In other words, speaking about probability theory, this situation can be seen as the
measure of the probability of an event given that another event has occurred. This
is the formal definition of conditional probability :

P (A|B) =
P (A ∩B)

P (B)
=
P (A) + P (B)− P (A ∪B)

P (B)
(5.1)

Obviously, in this particular case, the intersection or the union of two events is not
feasible, since formally there is no correlation between two different bounding boxes.
One idea could be to annotate how many times, during the training phase, the two
classes coexist in an image. However, this could lead to influence the samples, since
desired images could be added in order to obtain a certain correlation between the
classes.

Alternatively, classes can be correlated through a set of pseudo-random constants,
based on common experiences. This approach is the one used for this thesis activity.
Accordingly to this concept, the formulas to be applied are:

P (A ∪B) = α · (P (A) + P (B)) (5.2)

P (A|B) =
(1− α) · (P (A) + P (B))

P (B)
(5.3)

where α corresponds to the pseudo-random quantities, which are real values between
0 and 1.

32



5 – Implementation and Results

Further information about α and the correlation of the employed classes can be
found in section 5.2.

5.1.1 Flowchart

The implementation of this thesis (fig. 5.1) is composed of 4 stages:

1. Region Of Interest (ROI) Annotation

- input : the set of training images;

- output : annotated files in PASCAL VOC format (.xml files);

2. Network Training

- input : the set of training images and the related annotation files from
the previous stage;

- output : the network weights;

3. Objects Detection

- inputs : the weights from the previous stage and the set of images to be
detected;

- outputs : a modified copy of the original images, containing the bound-
ing boxes, and the related annotation files with the coordinates and the
confidence of each identified class;

4. Probability Correction, required only in case of wrong detection

- inputs : the coordinates and confidence of the wrong bounding box, the
label and probability of the helping class, and the correction file (al-
phas.txt) where pseudo-random quantities are saved in order to exploit
the conditional probability formula;

- outputs : a modified copy of the original images, containing the revised
bounding boxes, and the related annotation files with the coordinates
and the confidence of each class.

33



5 – Implementation and Results

ROI
Annotation

Network
Training

Images for Training

Object
Detection

Probability
Correction

Weights

Annotated images
and .txt files

Corrected images
and .txt files

Images for Detection

Annotation files

Correction file

Figure 5.1: Flowchart of the implementation

5.2 Classes

Since persons have to be observed in urban scenarios, for the purpose of this thesis,
some new classes have been created. The whole list of classes is the following:

1. dog

2. person

3. car

4. bus

5. PBM, i.e. Person on Bicycle or Motorcycle. This class has been created since
the shapes they assume together are, in this work, more meaningful than those
of a bicycle or of a motorcycle alone.

Figure 5.2: PBM class examples

34



5 – Implementation and Results

6. warningPos, i.e. warning signals which increase pedestrian probability. Even
if the pedestrian crossing signal with the blue background is an indication
signal, it can be included in this class because of the features inside it.

Figure 5.3: warningPos class examples

7. trafficLight

8. stop

9. zebraCrossing

10. pram

11. prohibitoryPos, i.e. prohibitory signals which increase pedestrian probabil-
ity

Figure 5.4: prohibitoryPos class examples

12. obligationPos, i.e. obligation signals which increase pedestrian probability

Figure 5.5: obligationPos class examples

13. warningNeg, i.e. warning signals which decrease pedestrian probability

Figure 5.6: warningNeg class example

35



5 – Implementation and Results

14. prohibitoryNeg, i.e. prohibitory signals which decrease pedestrian probabil-
ity

Figure 5.7: prohibitoryNeg class example

Road signs are collected into few classes, in order to avoid too many filters at the
output layer of the Network. Recalling that the output of a YOLO-type Network
is a predictions tensor with shape S × S × [B · (5 + C)] (equation 3.3), the number
output filters are:

Nfilters = B · (5 + C) = 5 · (5 + 14) = 95 (5.4)

As mentioned in section 5.1, the pseudo-random quantities α are generated taking
into account the correlation between classes. For example, the give-way road sign
(warningPos class) helps the pedestrian probability to grow, while the detection of
a no-pedestrian road sign (prohibitoryNeg class) is not.
In table 5.1, the objectives of each class are shown; in particular:

• ”+” indicates that the class helps increasing the pedestrian probability;

• ”-” indicates that the class helps decreasing the pedestrian probability;

class P class P class P
dog + person + car -
bus + PBM - warningPos +

trafficLight + stop + zebraCrossing +
prohibitionPos + obligationPos + pram +

warningNeg - prohibitoryNeg -

Table 5.1: Pedestrian Helpers

In order to accomplish this task, taking into account the information given above,
a Python file for the generation of the ”alphas” is created (alphaGen.py):
import sys

import random

36



5 – Implementation and Results

def probFunc(lab, start, stop):

probs = lab + ":\n"

for i in range(len(labels)):

if (labels[i] == "person"):

rdm = random.uniform(start, stop)

else:

rdm = random.uniform(0.84, 0.91)

probs = probs + "\t%s %f\n" % (labels[i], rdm)

return probs

labFile = open("labels.txt", "r")

labels = []

for line in labFile:

labels.append(line[:len(line)-1])

file = open("alphas.txt","w")

file.write(probFunc("dog", 0.7, 0.8) + "\n")

file.write(probFunc("person", 0.6, 0.7) + "\n")

file.write(probFunc("car", 0.85, 1.0) + "\n")

file.write(probFunc("bus", 0.7, 0.8) + "\n")

file.write(probFunc("PBM", 0.85, 1.0) + "\n")

file.write(probFunc("warningPos", 0.65, 0.8) + "\n")

file.write(probFunc("trafficLight", 0.65, 0.8) + "\n")

file.write(probFunc("stop", 0.65, 0.8) + "\n")

file.write(probFunc("zebraCrossing", 0.6, 0.7) + "\n")

file.write(probFunc("prohibitoryPos", 0.6, 0.75) + "\n")

file.write(probFunc("obligationPos", 0.62, 0.77) + "\n")

file.write(probFunc("pram", 0.6, 0.65) + "\n")

file.write(probFunc("warningNeg", 0.9, 1.0) + "\n")

file.write(probFunc("prohibitoryNeg", 0.95, 1.0) + "\n")

file.close()

The produced output is in the form:
dog:

dog 0.840572

person 0.776773

car 0.878812

37



5 – Implementation and Results

bus 0.892800

PBM 0.877044

warningPos 0.877657

trafficLight 0.843473

stop 0.854105

zebraCrossing 0.844662

prohibitoryPos 0.848044

obligationPos 0.883571

pram 0.885746

warningNeg 0.886785

prohibitoryNeg 0.905894

person:

dog 0.857985

person 0.647749

car 0.882685

bus 0.854004

PBM 0.883794

warningPos 0.880917

trafficLight 0.865681

stop 0.905100

zebraCrossing 0.856251

prohibitoryPos 0.876428

obligationPos 0.901422

pram 0.896362

warningNeg 0.844165

prohibitoryNeg 0.894666

PBM:

dog 0.885336

person 0.956782

car 0.901154

bus 0.895608

PBM 0.897947

warningPos 0.897834

trafficLight 0.889612

stop 0.886631

zebraCrossing 0.889097

prohibitoryPos 0.886647

obligationPos 0.897668

pram 0.844802

warningNeg 0.849538

prohibitoryNeg 0.885323

38



5 – Implementation and Results

In this way, each class has different constants, which depend on the helping class.
Obviously, if the results are not satisfying, it’s possible to re-run the script to change
the constants.

5.3 Dataset

Because of the introduction of new classes, for this thesis, two custom datasets have
been created, one for the training phase and another for the detection phase.

The set of training images, which is composed of about 7.700 images, is a com-
bination of some datasets discussed in section 4:

- Caltech-256 Object Category ;

- PASCAL VOC ;

- Dataset of Italian Traffic Signs (DITS);

- German Traffic Sign - Recognition and Detection - Benchmarks (GTSRB and
GTSDB).

Even if some images are already annotated, some files need to be edited and others
need to be created from scratch. In order to do this, a tool named LabelImg (section
5.5.2) has been used. In table 5.2, the statistics of the training dataset are shown.

class samples class samples
person 9.430 dog 1.318

car 2.225 bus 565
pram 30 PBM 1.255
stop 197 warningPos 699

warningNeg 54 zebraCrossing 100
trafficLight 323 obligationPos 75

prohibitoryPos 85 prohibitoryNeg 3

Table 5.2: Training Dataset Statistics

The set of images for the detection phase is composed of 379 images taken from
KUL and ETH datasets (sections 4.5 and 4.6). The results of the detection phase
are presented in section 5.7.

39



5 – Implementation and Results

5.4 Network

The network implemented in this thesis work is a modified version of the YOLO
network, called Tiny-YOLO, which is smaller and faster, but less accurate. It, as
shown in figure 5.8 and in table 5.3, is composed of 9 Convolutional layers with
3x3 filters, followed by 6 Max pooling layers. Each Convolution layer, except the
last one, is followed by the Batch Normalization function and a Leaky ReLU as
Non-Linearity function.

Figure 5.8: Tiny-YOLO Network architecture

Layer type Filters Output size
Input 416× 416× 3

Convolutional 16 416× 416× 16
Max Pooling 208× 208× 16
Convolutional 32 208× 208× 32
Max Pooling 104× 104× 32
Convolutional 64 104× 104× 64
Max Pooling 52× 52× 64
Convolutional 128 52× 52× 128
Max Pooling 26× 26× 128
Convolutional 256 26× 26× 256
Max Pooling 13× 13× 256
Convolutional 512 13× 13× 512
Max Pooling 13× 13× 512
Convolutional 1024 13× 13× 1024
Convolutional 1024 13× 13× 1024
Convolutional 95 13× 13× 95

Table 5.3: Tiny-YOLO Network

40



5 – Implementation and Results

The code for the network configuration is presented below, where the outputFil-
ters variable is determined by the equation 5.4:
def build_networks(self):

self.x = tf.placeholder(’float32’,[None,416,416,3])

self.conv_1 = self.conv_layer(1,self.x,16,3,1)

self.pool_2 = self.pooling_layer(2,self.conv_1,2,2)

self.conv_3 = self.conv_layer(3,self.pool_2,32,3,1)

self.pool_4 = self.pooling_layer(4,self.conv_3,2,2)

self.conv_5 = self.conv_layer(5,self.pool_4,64,3,1)

self.pool_6 = self.pooling_layer(6,self.conv_5,2,2)

self.conv_7 = self.conv_layer(7,self.pool_6,128,3,1)

self.pool_8 = self.pooling_layer(8,self.conv_7,2,2)

self.conv_9 = self.conv_layer(9,self.pool_8,256,3,1)

self.pool_10 = self.pooling_layer(10,self.conv_9,2,2)

self.conv_11 = self.conv_layer(11,self.pool_10,512,3,1)

self.pool_12 = self.pooling_layer(12,self.conv_11,2,2)

self.conv_13 = self.conv_layer(13,self.pool_12,1024,3,1)

self.conv_14 = self.conv_layer(14,self.conv_13,1024,3,1)

self.conv_15 = self.conv_layer(15,self.conv_14,outputFilters,1,1)

self.sess = tf.Session()

self.sess.run(tf.initialize_all_variables())

self.saver = tf.train.Saver()

self.saver.restore(self.sess,self.weights_file)

def conv_layer(self,idx,inputs,filters,size,stride):

channels = inputs.get_shape()[3]

weight =

tf.Variable(tf.truncated_normal([size,size,int(channels),filters],

stddev=0.1))

biases = tf.Variable(tf.constant(0.1, shape=[filters]))

pad_size = size//2

pad_mat =

np.array([[0,0],[pad_size,pad_size],[pad_size,pad_size],[0,0]])

inputs_pad = tf.pad(inputs,pad_mat)

conv = tf.nn.conv2d(inputs_pad, weight, strides=[1, stride, stride,

1], padding=’VALID’,name=str(idx)+’_conv’)

conv_biased = tf.add(conv,biases,name=str(idx)+’_conv_biased’)

return

tf.maximum(self.alpha*conv_biased,conv_biased,name=str(idx)+’_leaky_relu’)

41



5 – Implementation and Results

def pooling_layer(self,idx,inputs,size,stride):

return tf.nn.max_pool(inputs, ksize=[1, size, size, 1],strides=[1,

stride, stride, 1], padding=’SAME’,name=str(idx)+’_pool’)

5.5 Tools

5.5.1 TensorFlow

TensorF lowTM [20] is an open source software library for data-flow programming.
It was originally developed by researchers and engineers working on the Google Brain
Team, a deep learning artificial intelligence group.
It is used for a wide range of activities, such as speech recognition, image classifica-
tion and object detection.
The name TensorFlow derives from the usage of multidimensional data arrays,
named tensors, which are easily to handle in complex systems like Neural Networks.
Its flexible architecture allows to distribute computations to one or more CPUs or
GPUs in a desktop, server, or mobile device with a single API.

5.5.2 LabelImg

LabelImg [21] is a graphical image annotation tool written in Python language. It
helps labelling images in a fast and precise way, translating the regions of interest
(ROI) in .xml files.

Figure 5.9: labelImg usage example

The formatting style of the output files is the same as PASCAL VOC annotation
ones, which will be presented below.

42



5 – Implementation and Results

<annotation>

<folder>images</folder>

<filename>2010_006453.jpg</filename>

<path>/home/sti/Desktop/dataset/images/2010_006453.jpg</path>

<source>

<database>Unknown</database>

</source>

<size>

<width>500</width>

<height>375</height>

<depth>3</depth>

</size>

<segmented>0</segmented>

<object>

<name>person</name>

<pose>Unspecified</pose>

<truncated>0</truncated>

<occluded>0</occluded>

<difficult>0</difficult>

<bndbox>

<xmin>46</xmin>

<ymin>163</ymin>

<xmax>121</xmax>

<ymax>333</ymax>

</bndbox>

</object>

</annotation>

5.6 Training

The computational resources for the training phase are provided by HPC@POLITO1,
which is a project of Academic Computing within the Department of Control and
Computer Engineering at the Politecnico di Torino.

5.7 Results

As already said in the section 5.3, the detection stage is composed of 379 images.
Each image contains at least one person, which could be a pedestrian or not: for

1HPC@POLITO Website: http://hpc.polito.it

43



5 – Implementation and Results

example images with persons in cars are also included in order to check if the net-
work gives the right output.

Depending on the results of the network in this stage, the detected images can
be divided into several groups:

1. right response: 109 images

Figure 5.10: Example of image with right response

2. partially right response: 125 images;

Figure 5.11: Example of image with partially right response

3. wrong response with the possibility of improvement : 16 images

44



5 – Implementation and Results

Figure 5.12: Example of image with possible improvements

4. wrong response without the possibility of improvement : 78 images

Figure 5.13: Example of image without possible improvements

5. without bounding boxes : 51 images

Figure 5.14: Example of image without bounding boxes

45



5 – Implementation and Results

The partially right response category is different from the wrong ones, because it
points out that some pedestrians have been recognized but, unfortunately, nothing
can be done for the others in the same image. This is due to the absence of bounding
boxes around them.

After finding the possibly correctable images, a script file is created in order to
launch a simulation. It is the form:

python3 ./correctionModule.py --imgName arg1 --wrongBox

tl_x,tl_y,br_x,br_y --helperLabel arg3 --helperProb arg4

where:

• arg1 is the name of the image to be modified;

• tlx and tly are the coordinates at the top-left of the bounding box to be
changed;

• brx and bry are the coordinates at the bottom-right of the bounding box to be
changed;

• arg3 is the label of the bounding box in the same image, which indicates the
helper;

• arg4 is the confidence of the helper.

There are, obviously, two possibilities:

1. the image contains erroneously a pedestrian and the label needs to be changed
into another one;

2. the network detects something which is not a pedestrian, but the label need
to be changed into it.

Since the network has been modified in order to generate all the guesses of each
bounding box, the conditional probability formula (equation 5.3) is applied to all of
them. Then, the maximum value among these new probabilities is obtained, and,
checking if it is above the threshold chosen in the detection stage, it is used to create
a new image with the right labels and its .txt file with the annotations. This could
lead to reject a good label with a low confidence.

Using this detection dataset, the correctable images are 16, which contain one of
more label to be changed (the total number of wrong labels is 22). The correction
script file is the following:

46



5 – Implementation and Results

python3 ../correctionModule.py --imgName image.001756.jpg --wrongBox

355,939,765,1235 --helperLabel car --helperProb 0.2

python3 ../correctionModule.py --imgName image.001964.c00.jpg

--wrongBox 1159,311,1290,416 --helperLabel car --helperProb 0.54

python3 ../correctionModule.py --imgName image.002376.c00.jpg

--wrongBox 899,193,955,288 --helperLabel PBM --helperProb 0.36

python3 ../correctionModule.py --imgName image.004877.c01.jpg

--wrongBox 615,292,662,363 --helperLabel car --helperProb 0.53

python3 ../correctionModule.py --imgName image.008750.c02.jpg

--wrongBox 992,264,1154,520 --helperLabel person --helperProb 0.47

python3 ../correctionModule.py --imgName image.010539.c02.jpg

--wrongBox 1136,250,1231,421 --helperLabel car --helperProb 0.78

python3 ../correctionModule.py --imgName image.010539.c02.jpg

--wrongBox 1109,241,1187,430 --helperLabel car --helperProb 0.78

python3 ../correctionModule.py --imgName image.011705.c02.jpg

--wrongBox 883,103,946,201 --helperLabel car --helperProb 0.64

python3 ../correctionModule.py --imgName image.011706.c02.jpg

--wrongBox 1246,108,1336,197 --helperLabel car --helperProb 0.65

python3 ../correctionModule.py --imgName image.012831.c05.jpg

--wrongBox 209,451,333,553 --helperLabel car --helperProb 0.81

python3 ../correctionModule.py --imgName image.016032.c05.jpg

--wrongBox 108,397,303,664 --helperLabel car --helperProb 0.74

python3 ../correctionModule.py --imgName image.016032.c05.jpg

--wrongBox 208,475,258,595 --helperLabel car --helperProb 0.74

python3 ../correctionModule.py --imgName image.016032.c05.jpg

--wrongBox 176,465,259,599 --helperLabel car --helperProb 0.74

python3 ../correctionModule.py --imgName image_00000265_0.jpg

--wrongBox 380,236,390,261 --helperLabel person --helperProb 0.79

python3 ../correctionModule.py --imgName image_00000265_0.jpg

--wrongBox 365,232,386,265 --helperLabel person --helperProb 0.79

python3 ../correctionModule.py --imgName image_00000265_0.jpg

--wrongBox 420,236,445,269 --helperLabel person --helperProb 0.79

python3 ../correctionModule.py --imgName image_00001077_0.jpg

--wrongBox 308,115,425,378 --helperLabel person --helperProb 0.63

python3 ../correctionModule.py --imgName image_00001077_1.jpg

--wrongBox 305,70,444,476 --helperLabel person --helperProb 0.43

python3 ../correctionModule.py --imgName image_00001450_1.jpg

--wrongBox 12,161,144,382 --helperLabel person --helperProb 0.70

python3 ../correctionModule.py --imgName image_00001527_0.jpg

--wrongBox 198,196,254,274 --helperLabel person --helperProb 0.60

python3 ../correctionModule.py --imgName image_00001527_0.jpg

--wrongBox 175,178,278,300 --helperLabel person --helperProb 0.60

47



5 – Implementation and Results

python3 ../correctionModule.py --imgName image_00005693_0.jpg

--wrongBox 489,182,506,221 --helperLabel car --helperProb 0.21

The results of this stage are:

• 9 right labels;

Figure 5.15: Example of image through each stage of the flowchart: the result is a
right label

• 3 positively disappeared labels (a person inside a car is not considered as
pedestrian, so he/she is deleted);

Figure 5.16: Example of image through each stage of the flowchart: the result is a
positively disappeared label

• 5 negatively disappeared labels (the confidence of a pedestrian is below
the threshold, so he/she is deleted);

Figure 5.17: Example of image through each stage of the flowchart: the result is a
negatively disappeared label

48



5 – Implementation and Results

• 5 still-wrong labels (the applied formula does not helped to reach the desired
result, but the same label with a lower confidence).

Figure 5.18: Example of image through each stage of the flowchart: the result is a
still-wrong label

Figure 5.19: Still-wrong labels example

Results in terms of error rate are summarized in tables 5.4 and 5.5.

Before/after correction # wrong images # total images Error rate
before 145 379 38.26%
after 137 379 36.15%

Table 5.4: Results per image

Before/after correction # wrong labels # total labels Error rate
before 480 1421 33.78%
after 468 1421 32.93%

Table 5.5: Results per label

49





Chapter 6

Conclusion and future works

Clearly, the set of images for the detection part is too small with respect to the
popular ones to constitute solid and reliable results. For this reason, it can be said
that the results produced in this thesis work are not comparable with the ones from
the well-known architectures. Anyway, they can be considered a good start point.

In the following, the top-5 error rates of the most popular Convolutional Neural
Networks (mentioned in chapter 3) are presented in table 6.1.

AlexNet VGG-16 ResNet GoogLeNet YOLO
16.4% 7.4% 5.3% 6.7% 12%

Table 6.1: Top-5 error rates of the most popular CNNs

The goals of this thesis were to implement a correction module for a Convolu-
tional Neural Network designed for the pedestrian detection and to synthesize the
hardware.
Even if the first goal was achieved, obviously, further steps can be considered to
improve the robustness of the Neural Network, such as:

• more training epochs;

• more and differentiated training images;

• different thresholds;

• different learning rate;

• different helping classes.

51



6 – Conclusion and future works

Regarding the hardware goal, it was not possible, due to lack of time, to achieve
it. However, scientific articles on this subject have been produced, so this can be
a valid starting point for a possible task for the future. For example, in the article
named Hardware Implementation and Optimization of Tiny-YOLO Network [22],
the authors explain that, since a Convolutional Neural Network needs intensive
computations and lots of memory, designing its hardware is very complex. Both of
these problems can be overcome as follow:

1. in order to reduce the memory, they employ data reusing and data sharing
techniques;

2. in order to reduce computing time, some processing elements work simultane-
ously.

In this way, parallel processing elements share the same input data.

52





Appendix A

Code

This appendix includes the command lines and some of the principal code files
involved for the purpose of this thesis. Some of these files are located at
https://github.com/thtrieu/darkflow

CommandLines

python3 ./flow.py --model ./cfg/tiny-yolo-14c.cfg --load

./bin/tiny-yolo-voc.weights --train --annotation

./dataset/annotations/ --dataset ./dataset/images/ --batch 5 --epoch

30 --save 10000 --savepb

python3 ./flow.py --pbLoad built_graph/tiny-yolo-14c.pb --metaLoad

built_graph/tiny-yolo-14c.meta --imgdir ./images/detImg/ --threshold

0.2

python3 ./alphaGen.py

python3 ../correctionModule.py --imgName arg1 --wrongBox

tl_x,tl_y,br_x,br_y --helperLabel arg3 --helperProb arg4

tiny-yolo-14c.cfg

[net]

batch=64

subdivisions=8

width=416

height=416

channels=3

54



A – Code

momentum=0.9

decay=0.0005

angle=0

saturation = 1.5

exposure = 1.5

hue=.1

learning_rate=0.001

max_batches = 40100

policy=steps

steps=-1,100,20000,30000

scales=.1,10,.1,.1

[convolutional]

batch_normalize=1

filters=16

size=3

stride=1

pad=1

activation=leaky

[maxpool]

size=2

stride=2

[convolutional]

batch_normalize=1

filters=32

size=3

stride=1

pad=1

activation=leaky

[maxpool]

size=2

stride=2

[convolutional]

batch_normalize=1

filters=64

size=3

stride=1

pad=1

55



A – Code

activation=leaky

[maxpool]

size=2

stride=2

[convolutional]

batch_normalize=1

filters=128

size=3

stride=1

pad=1

activation=leaky

[maxpool]

size=2

stride=2

[convolutional]

batch_normalize=1

filters=256

size=3

stride=1

pad=1

activation=leaky

[maxpool]

size=2

stride=2

[convolutional]

batch_normalize=1

filters=512

size=3

stride=1

pad=1

activation=leaky

[maxpool]

size=2

stride=1

[convolutional]

56



A – Code

batch_normalize=1

filters=1024

size=3

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

size=3

stride=1

pad=1

filters=1024

activation=leaky

[convolutional]

size=1

stride=1

pad=1

filters=95

activation=linear

[region]

anchors = 1.08,1.19,3.42,4.41,6.63,11.38,9.42,5.11,16.62,10.52

bias_match=1

classes=14

coords=4

num=5

softmax=1

jitter=.2

rescore=1

object_scale=5

noobject_scale=1

class_scale=1

coord_scale=1

absolute=1

thresh = .5

random=1

57



A – Code

darkflow/net/prova.py

import numpy as np

from numpy import exp

from ..utils.box import BoundBox

from .provaNMS import NMS

#findMatch

def findMatch(nms_prob, cl_prob):

for el in nms_prob:

#print("el: {}".format(el))

for elRow in range(cl_prob.shape[0]):

#print("elRow: {}".format(elRow))

for elCol in range(cl_prob.shape[1]):

#print("elCol: {}".format(elCol))

if(el == cl_prob[elRow, elCol]):

return cl_prob[elRow, :]

return nms_prob

#expit

def expit_c(x):

y= 1/(1+exp(-x))

return y

#MAX

def max_c(a, b):

if(a>b):

return a

return b

#BOX CONSTRUCTOR

def box_constructor(meta, net_out_in):

threshold = meta[’thresh’]

arr_max=0

summation=0

anchors = np.asarray(meta[’anchors’])

#print("anchors {}".format(anchors))

H, W, _ = meta[’out_size’]

C = meta[’classes’]

58



A – Code

B = meta[’num’]

#print(meta)

net_out = net_out_in.reshape([H, W, B, net_out_in.shape[2]//B])

Classes = net_out[:, :, :, 5:]

Bbox_pred = net_out[:, :, :, :5]

probs = np.zeros((H, W, B, C), dtype=np.float32)

clProb = np.zeros(C, dtype=np.float32)

firstClProb = True

for row in range(H):

for col in range(W):

for box_loop in range(B):

arr_max=0

summation=0;

Bbox_pred[row, col, box_loop, 4] = expit_c(Bbox_pred[row,

col, box_loop, 4])

Bbox_pred[row, col, box_loop, 0] = (col +

expit_c(Bbox_pred[row, col, box_loop, 0])) / W

Bbox_pred[row, col, box_loop, 1] = (row +

expit_c(Bbox_pred[row, col, box_loop, 1])) / H

Bbox_pred[row, col, box_loop, 2] = exp(Bbox_pred[row, col,

box_loop, 2]) * anchors[2 * box_loop + 0] / W

Bbox_pred[row, col, box_loop, 3] = exp(Bbox_pred[row, col,

box_loop, 3]) * anchors[2 * box_loop + 1] / H

#SOFTMAX BLOCK, no more pointer juggling

for class_loop in range(C):

arr_max=max_c(arr_max,Classes[row,col,box_loop,class_loop])

for class_loop in range(C):

Classes[row,col,box_loop,class_loop] =

exp(Classes[row,col,box_loop,class_loop]-arr_max)

summation+=Classes[row,col,box_loop,class_loop]

###############

prova = np.zeros(C, dtype=np.float32)

toProb = False

for class_loop in range(C):

59



A – Code

tempc = Classes[row, col, box_loop, class_loop] *

Bbox_pred[row, col, box_loop, 4]/summation

prova[class_loop] = tempc

if(tempc > threshold):

toProb = True

probs[row, col, box_loop, class_loop] = tempc

if(toProb):

if not (firstClProb):

clProb = np.vstack([clProb, prova])

else:

clProb = prova

firstClProb = False

#print("clProb probs: {}\n".format(clProb))

###############

#NMS

probsContArray = np.ascontiguousarray(probs).reshape(H*W*B,C)

boxPredContArray = np.ascontiguousarray(Bbox_pred).reshape(H*B*W,5)

NMSboxes = NMS(probsContArray, boxPredContArray)

########

#print("nmsSHAPE before {}".format(np.shape(NMSboxes)))

toDel = -1

for b in NMSboxes:

toDel += 1

#print("nms PROBS before: {}".format(b.probs))

if (np.array_equal(b.probs, np.zeros(C, dtype=np.float32))):

NMSboxes = np.delete(NMSboxes, toDel, axis=0)

toDel -= 1

#print("deleted row {}\n".format(toDel))

else:

b.probs = findMatch(b.probs, clProb)

60



A – Code

#print("nms PROBS after: {}\n".format(b.probs))

#print("nmsSHAPE after {}\n".format(np.shape(NMSboxes)))

########

return NMSboxes

darkflow/net/provaNMS.py

import numpy as np

from numpy import exp

from ..utils.box import BoundBox

#OVERLAP

def overlap_c(x1, w1 , x2 , w2):

l1 = x1 - w1 /2.

l2 = x2 - w2 /2.

left = max(l1,l2)

r1 = x1 + w1 /2.

r2 = x2 + w2 /2.

right = min(r1, r2)

return right - left;

#BOX INTERSECTION

def box_intersection_c(ax, ay, aw, ah, bx, by, bw, bh):

w = overlap_c(ax, aw, bx, bw)

h = overlap_c(ay, ah, by, bh)

if w < 0 or h < 0: return 0

area = w * h

return area

#BOX UNION

def box_union_c(ax, ay, aw, ah, bx, by, bw, bh):

i = box_intersection_c(ax, ay, aw, ah, bx, by, bw, bh)

u = aw * ah + bw * bh -i

return u

61



A – Code

#BOX IOU

def box_iou_c(ax, ay, aw, ah, bx, by, bw, bh):

return box_intersection_c(ax, ay, aw, ah, bx, by, bw, bh) /

box_union_c(ax, ay, aw, ah, bx, by, bw, bh);

#NMS

def NMS(final_probs, final_bbox):

boxes = []

indices = set()

pred_length = final_bbox.shape[0]

class_length = final_probs.shape[1]

for class_loop in range(class_length):

for index in range(pred_length):

if final_probs[index,class_loop] == 0: continue

for index2 in range(index+1,pred_length):

if final_probs[index2,class_loop] == 0: continue

if index==index2 : continue

if box_iou_c(final_bbox[index,0], final_bbox[index,1],

final_bbox[index,2], final_bbox[index,3],

final_bbox[index2,0], final_bbox[index2,1],

final_bbox[index2,2], final_bbox[index2,3]) >= 0.4:

if final_probs[index2,class_loop] > final_probs[index,

class_loop] :

final_probs[index, class_loop] =0

break

final_probs[index2,class_loop]=0

if index not in indices:

bb=BoundBox(class_length)

bb.x = final_bbox[index, 0]

bb.y = final_bbox[index, 1]

bb.w = final_bbox[index, 2]

bb.h = final_bbox[index, 3]

bb.c = final_bbox[index, 4]

bb.probs = np.asarray(final_probs[index,:])

boxes.append(bb)

indices.add(index)

62



A – Code

return boxes

darkflow/net/yolov2/predict.py

import numpy as np

import math

import cv2

import os

#import json

#from scipy.special import expit

#from utils.box import BoundBox, box_iou, prob_compare

#from utils.box import prob_compare2, box_intersection

from ...utils.box import BoundBox

#from ...cython_utils.cy_yolo2_findboxes import box_constructor

from ..prova import box_constructor

def expit(x):

return 1. / (1. + np.exp(-x))

def _softmax(x):

e_x = np.exp(x - np.max(x))

out = e_x / e_x.sum()

return out

def findboxes(self, net_out):

# meta

meta = self.meta

boxes = list()

boxes=box_constructor(meta,net_out)

return boxes

def postprocess(self, net_out, im, save = True):

"""

Takes net output, draw net_out, save to disk

"""

boxes = self.findboxes(net_out)

#print("POSTPROCESS YOLO2")

# meta

meta = self.meta

threshold = meta[’thresh’]

63



A – Code

colors = meta[’colors’]

labels = meta[’labels’]

if type(im) is not np.ndarray:

imgcv = cv2.imread(im)

else: imgcv = im

h, w, _ = imgcv.shape

outfolder = os.path.join(self.FLAGS.imgdir, ’out’)

img_name = os.path.join(outfolder, os.path.basename(im))

textFile = os.path.splitext(img_name)[0] + ".txt"

with open(textFile, ’w’) as f:

for b in boxes:

print("im {} PROBS: {}".format(im, b.probs))

boxResults = self.process_box(b, h, w, threshold)

if boxResults is None:

continue

left, right, top, bot, mess, max_indx, confidence = boxResults

thick = int((h + w) // 300)

totProbs = ’’

for p in range(len(b.probs)):

totProbs = totProbs + ’ ’ + str(b.probs[p])

print(’totProbs {}’.format(totProbs))

resultsForTXT = ’[label: %s, confidence: %.2f, topleft: x=%s,

y=%s, bottomright: x=%s, y=%s, totProbs: %s]’ % (mess,

confidence, left, top, right, bot, totProbs)

f.write(resultsForTXT + "\n")

cv2.rectangle(imgcv, (left, top), (right, bot), colors[max_indx],

thick)

cv2.putText(imgcv, mess, (left, top - 12), 0, 1e-3 * h,

colors[max_indx],thick//3)

#if not save: return imgcv

cv2.imwrite(img_name, imgcv)

alphaGen.py

import sys

import random

64



A – Code

def probFunc(lab, start, stop):

probs = lab + ":\n"

for i in range(len(labels)):

if (labels[i] == "person"):

rdm = random.uniform(start, stop)

else:

rdm = random.uniform(0.84, 0.91)

probs = probs + "\t%s %f\n" % (labels[i], rdm)

return probs

labFile = open("labels.txt", "r")

labels = []

for line in labFile:

labels.append(line[:len(line)-1])

file = open("alphas.txt","w")

file.write(probFunc("dog", 0.7, 0.8) + "\n")

file.write(probFunc("person", 0.6, 0.7) + "\n")

file.write(probFunc("car", 0.85, 1.0) + "\n")

file.write(probFunc("bus", 0.7, 0.8) + "\n")

file.write(probFunc("PBM", 0.85, 1.0) + "\n")

file.write(probFunc("warningPos", 0.65, 0.8) + "\n")

file.write(probFunc("trafficLight", 0.65, 0.8) + "\n")

file.write(probFunc("stop", 0.65, 0.8) + "\n")

file.write(probFunc("zebraCrossing", 0.6, 0.7) + "\n")

file.write(probFunc("prohibitoryPos", 0.6, 0.75) + "\n")

file.write(probFunc("obligationPos", 0.62, 0.77) + "\n")

file.write(probFunc("pram", 0.6, 0.65) + "\n")

file.write(probFunc("warningNeg", 0.9, 1.0) + "\n")

file.write(probFunc("prohibitoryNeg", 0.95, 1.0) + "\n")

file.close()

correctionModule.py

import sys

import numpy as np

65



A – Code

import cv2

from helper import correctionHelper

def extractAlpha(lab):

tmp = []

fl = open("alphas.txt","r")

fileL = list(fl)

for i in range(len(fileL)):

if (lab+":") in fileL[i]:

for k in range(len(labels)):

sl = fileL[i+k+1].split(" ")

tmp.append(float(sl[1]))

#print(’tmp = {}’.format(tmp))

fl.close()

return tmp

def finder(ms): #find nClasses and colors in .meta file

iAbsolute = ms.find(’"absolute"’)

iAnchors = ms.find(’"anchors"’)

iBiasMatch = ms.find(’"bias_match"’)

iClasses = ms.find(’"classes"’)

iClassScales = ms.find(’"class_scale"’)

iColors = ms.find(’"colors"’)

iCoords = ms.find(’"coords"’)

iCoordScale = ms.find(’"coord_scale"’)

iInpSize = ms.find(’"inp_size"’)

iJitter = ms.find(’"jitter"’)

iLabels = ms.find(’"labels"’)

iModel = ms.find(’"model"’)

iName = ms.find(’"name"’)

iNet = ms.find(’"net"’)

iNoObjectScale = ms.find(’"noobject_scale"’)

iNum = ms.find(’"num"’)

iObjectScale = ms.find(’"object_scale"’)

iOutSize = ms.find(’"out_size"’)

iRandom = ms.find(’"random"’)

iRescore = ms.find(’"rescore"’)

66



A – Code

iSoftmax = ms.find(’"softmax"’)

iThresh = ms.find(’"thresh"’)

iType = ms.find(’"type"’)

mList = [iAbsolute, iAnchors, iBiasMatch, iClasses, iClassScales,

iColors, iCoords, iCoordScale, iInpSize, iJitter, iLabels, iModel,

iName, iNet, iNoObjectScale, iNum, iObjectScale, iOutSize, iRandom,

iRescore, iSoftmax, iThresh, iType]

#print("mList {} \nmList size {}\n".format(mList, len(mList)))

mList = sorted(mList)

#print("sorted mList {}\n".format(mList))

clStart = mList.index(iClasses)

nClasses = int(ms[mList[clStart]+11:mList[clStart+1]-2])

# print("nClasses {}".format(nClasses))

coStart = mList.index(iColors)

colors = ms[mList[coStart]+12:mList[coStart+1]-4]

# print("colors {}".format(colors))

return nClasses, colors

def changeProbs(probs, alpha, help):

newProbs = []

for j in range(len(labels)):

new = ((1 - float(alpha[j])) * (float(probs[j]) + help))/help

newProbs.append(float(format(new, ’.7f’)))

#print("newProbs {}".format(newProbs))

return newProbs

def extractLabels():

labFile = open("labels.txt", "r")

labels = []

for line in labFile:

labels.append(line[:len(line)-1])

#print("LABELS {}".format(labels))

return labels

67



A – Code

def extractMeta(metaName):

metaFile = open(metaName, "r")

metaStr = metaFile.read()

#print("metaStr {}".format(metaStr))

nClasses, colors = finder(metaStr)

print(’classes {}’.format(nClasses))

print(’colors {}’.format(colors))

for i in range(nClasses-1):

c = colors.find(’], [’)

colors = colors[:c] + ’, ’ + colors[c+4:]

print(’colors before {}\n’.format(colors))

colors = colors.split(", ")

temp = []

for j in range(nClasses):

temp2 = []

temp2.append(str(int(float(colors[3*j]))))

temp2.append(str(int(float(colors[3*j+1]))))

temp2.append(str(int(float(colors[3*j+2]))))

temp.append(temp2)

colors = temp

print(’colors after {}\n’.format(colors))

# threshold = meta[’thresh’]

return colors

def extractObjs(line, tp):

lo1 = line.find(’label’)

lo2 = line.find(’confidence’)

lo3 = line.find(’topleft’)

lo4 = line.find(’bottomright’)

lo5 = line.find(’totProbs’)

68



A – Code

tl = line[lo3+11:lo4-2]

c_idx = tl.find(’,’)

left = int(tl[:c_idx])

top = int(tl[c_idx+4:len(tl)])

br = line[lo4+15:lo5-2]

c_idx = br.find(’,’)

right = int(br[:c_idx])

bot = int(br[c_idx+4:])

if not tp:

lab = line[lo1+7:lo2-2]

conf = line[lo2+12:lo3-2]

return (lab, conf, left, top, right, bot)

else:

tmp = line[lo5+11:len(line)-2]

totProbs = [float(s) for s in tmp.split()]

#print("TOT PROBS {}".format(totProbs))

return (left, top, right, bot, totProbs)

# print (’arguments lenght: {}’.format(len(sys.argv)))

# print (’arguments: {}’.format(sys.argv))

ch = correctionHelper()

ch.parseArgs(sys.argv)

#print(ch.imgName)

#print(ch.coord)

#print(ch.helpLab)

#print(ch.helpProb)

#print(ch.probOld)

#print(’’)

new_imgName = ’new_’ + ch.imgName

#print(’new image name: {}’.format(new_imgName))

coord_split = ch.coord.split(",")

brIN = ’bottomright: x=%s, y=%s’ % (coord_split[2], coord_split[3])

tlIN = ’topleft: x=%s, y=%s’ % (coord_split[0], coord_split[1])

69



A – Code

#print(’’)

#print("coord {}".format(coord_split))

#print(brIN)

#print(tlIN)

#colors =

extractMeta("./built_graph/tiny-yolo-14c.meta") # tiny-yolo-14c.meta

labels = extractLabels()

txt1 = ch.imgName[:len(ch.imgName)-4] + ’.txt’ # .jpg extension is

changed in .txt

txt2 = ’new_’ + ch.imgName[:len(ch.imgName)-4] + ’.txt’

#print(’txt1 file: {}’.format(txt1))

#print(’txt2 file: {}’.format(txt2))

file1 = open(txt1,"r")

file2 = open(txt2, "w")

if type(ch.imgName) is not np.ndarray:

imgcv = cv2.imread(ch.imgName)

else:

imgcv = ch.imgName

h, w, _ = imgcv.shape

thick = int((h+w)//300)

for line in file1:

if tlIN in line:

if brIN in line:

left, top, right, bot, totProbs = extractObjs(line, True)

alpha = extractAlpha(ch.helpLab)

newTotProbs = changeProbs(totProbs, alpha, ch.helpProb)

probNew = max(newTotProbs)

lab = labels[newTotProbs.index(probNew)]

newline = ’[label: %s, confidence: %.2f, %s, %s, totProbs: %s]\n’

% (lab, probNew, tlIN, brIN, newTotProbs)

print(newline)

else:

newline = line

lab, conf, left, top, right, bot = extractObjs(line, False)

70



A – Code

file2.write(newline)

detIdx = labels.index(lab)

#print("detIdx {}".format(detIdx))

cv2.rectangle(imgcv, (left, top), (right, bot),

(int(colors[detIdx][0]), int(colors[detIdx][1]),

int(colors[detIdx][2])), thick)

cv2.putText(imgcv, lab, (left, top - 12), 0, 1e-3 * h,

(int(colors[detIdx][0]), int(colors[detIdx][1]),

int(colors[detIdx][2])),thick//3)

cv2.imwrite(new_imgName, imgcv)

file1.close()

file2.close()

helper.py

class correctionHelper(dict):

def __init__(self):

__getattr__ = dict.get

__setattr__ = dict.__setitem__

__delattr__ = dict.__delitem__

self._descriptions = {’help, --h’: ’help message’}

self._descriptions[’imgName’] = ’path to the image to be corrected’

self._descriptions[’wrongBox’] = ’coordinates of the wrong box

tl_x,tl_y,br_x,br_y BEWARE: no spaces between numbers!’

self._descriptions[’helperLabel’] = ’label of the helper’

self._descriptions[’helperProb’] = ’probability of the helper’

def parseArgs(self, args):

print(’’)

i = 1

if (len(args) != (2*len(self._descriptions)-1)):

if args[i] == ’--h’ or args[i] == ’--help’:

71



A – Code

print(’Example usage: python3 correctionModule.py --imgName

arg1 --wrongBox tl_x,tl_y,br_x,br_y --helperLabel arg3

--helperProb arg4’)

print(’’)

print(’Arguments:’)

spacing = max([len(i) for i in self._descriptions.keys()]) + 2

for item in self._descriptions:

currentSpacing = spacing - len(item)

print(’ --’ + item + (’ ’ * currentSpacing) +

self._descriptions[item])

print(’’)

exit()

else:

print(’Wrong input!! Missing argument/s, run python3

correctionModule --help’)

print(’’)

exit()

while i < len(args):

if args[i] == ’--imgName’:

self.imgName = args[i+1]

if args[i] == ’--wrongBox’:

self.coord = args[i+1]

if args[i] == ’--helperLabel’:

self.helpLab = args[i+1]

if args[i] == ’--helperProb’:

self.helpProb = float(args[i+1])

i += 1

72





Bibliography

[1] A. Ziebinski, R. Cupek, D. Grzechca, and L. Chruszczyk. Review of advanced
driver assistance systems (ADAS). AIP Conference Proceedings, 1906(1), 2017.

[2] D. Gerónimo, A.M. López, A.D. Sappa, and T. Graf. Survey of pedestrian de-
tection for advanced driver assistance systems. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 32(7), 2010.

[3] J. Redmon, S. Divvala, R. Girshick, and Ali Farhadi. You only look once:
Unified, real-time object detection. arXiv:1506.02640, 2015.

[4] C. Cortes and V. Vapnik. Support-Vector Networks. Machine Learning, 20(3),
1995.

[5] N. Dalal. Finding People in Images and Videos. PhD dissertation, Institut
National Polytechnique de Grenoble, 2006.

[6] C. Maureen. Neural networks primer, part I. AI Expert, 2(12), 1987.

[7] N. Gupta. Artificial neural network. Network and Complex Systems, 3(1), 2013.

[8] V. Sze, Y. Chen, T. Yang, and J. Emer. Efficient processing of deep neural
networks: A tutorial and survey. Proceedings of the IEEE, 105(12), 2017.

[9] Y. Le Cun, L.D. Jackel, B. Boser, J.S. Denker, H.P. Graf, I. Guyon, D. Hender-
son, R.E. Howard, and W. Hubbard. Handwritten digit recognition: Applica-
tions of neural network chips and automatic learning. IEEE Communications
Magazine, 27(11), 1989.

[10] A. Krizhevsky, I. Sutskever, and G.E. Hinton. Imagenet classification with deep
convolutional neural networks. In Advances in neural information processing
systems, 2012.

[11] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-
scale image recognition. ICLR, 2015.

[12] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, 2016.

[13] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. CVPR,
2015.

[14] P. Dollár, C. Wojek, B. Schiele, and P. Perona. Pedestrian detection: An

74



Bibliography

evaluation of the state of art. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 34(4), 2012.

[15] G. Griffin, A. Holub, and P. Perona. Caltech-256 object category dataset. Tech.
rep., California Inst. of Technology, 2007.

[16] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman.
The pascal visual object classes (VOC) challenge. International Journal of
Computer Vision, 88(2), 2010.

[17] R. Timofte, K. Zimmermann, and L. Van Gool. Multi-view traffic sign detec-
tion, recognition, and 3D localisation. Machine Vision and Applications, 25(3),
2014.

[18] A. Ess, B. Leibe, and L. Van Gool. Depth and appearance for mobile scene
analysis. In IEEE 11th International Conference on Computer Vision, 2007.

[19] A. Ess, B. Leibe, K. Schindler, and L. Van Gool. A mobile vision system for
robust multi-person tracking. In IEEE Conference on Computer Vision and
Pattern Recognition, 2008.

[20] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving,
M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané,
R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner,
I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. Ten-
sorFlow: Large-scale machine learning on heterogeneous systems, 2015.

[21] Label Annotation VOC Pascal website. https://github.com/manhcuogntin4/Label-
Annotation-VOC-Pascal, 2015.

[22] J. Ma, L. Chen, and Z. Gao. Hardware implementation and optimization of
tiny-yolo network. In Digital TV and Wireless Multimedia Communication.
Springer Singapore, 2018.

75


		Politecnico di Torino
	2018-04-06T09:24:50+0000
	Politecnico di Torino
	Guido Masera
	S




