POLITECNICO DI TORINO

Corso di Laurea Magistrale in Ingegneria Elettronica

Tesi di Laurea Magistrale

Logical and Memory Architectures
in Nanomagnetic Technology

Relatori:
Prof. Maurizio ZAMBONI

Prof. Mariagrazia GRAZIANO
Prof. Marco VACccA

Candidato:
Daniel MELIS

Aprile 2018

Abstract

CMOS has been the standard technology for building digital circuits for decades,
and one of the key reasons why Moore’s law has been holding for such a long time;
as a result, the electronic field has experienced astonishing and constant progresses
throughout time. In recent years, unfortunately, this progress is in serious jeopardy.
Atomic-scaled transistors, bringing along an almost unmanageable power density,
will sooner or later become impossible to scale further.

For these reasons, technologist have been looking for alternatives for a while.
Some of them are improvements to the CMOS technology, whereas others call for
a complete change of paradigm. The QCA (Quantum Cellular Automaton) is a
family of technology belonging to this second branch. The possible implementations
are many, with some of them being more promising than others: the nanomagnetic
implementation (NML, Nano Magnetic Logic) is a fairly good implementation, com-
pletely compliant with current CMOS fabrication process, and with interesting fea-
tures as far as power dissipation and area are concerned. Nanomagnetic technology,
in turn, has many different implementations. Among them, the most peculiar one
is pNML (perpendicular Nano Magnetic Logic), which is the technology addressed
in this thesis work. Being very much 3D oriented, very low power, and being less
constrained than other NML are some of its most important and interesting traits.
The 3D feature is a great advantage over CMOS, which allows the integration of
many metal layers, but just for interconnections, with the whole logic lying on the
bottom area of the circuit. pNML is also interconnections-free, since each wire also
can be thought as a computational device. Last, as all the other QCA technologies,
pNML exhibits a extremely pipelined signal propagation fashion.

With this thesis, different 3D pNML architectures are explored. For this purpose,
the tool MagCAD has been adopted. One of the first aims consists in trying to take
advantage of the 3D feature. Previous works used more than one layer, but just with
the purpose of avoiding wire crossings or as VIAs. In other words, previous works
analyzed two-layer architectures with a second layer devoted to the interconnection
routing. This work instead endeavors to place roughly the same amount of logic in
all the used layers, trying therefore to make the third dimension perfectly equivalent
to the two planar ones. That is to say, the idea consists in developing the circuit
towards the vertical direction rather than enlarging the footprint. An important
requirement is also the characterization of the circuits, before and after the design,
in particular with respect to the delay. The design has to be done considering
beforehand the delays, which has to be finely tuned in order to achieve the best
possible timing.

The research of effective design techniques and the sensible use of the 3D feature
can be successfully done only with moderately complex circuits, and this is another
important point of the thesis. Despite current technology studies just proving to
be able to implement architectures based on two or three layers, the 3D designs
presented in this work see the adoption of up to 14 layers.This study has been
carried out to explore the feasibility of logic architectures based on pNML structures
evaluating how the use of multiple layers can impact the performances. In order to
obtain a substantial analysis, version limited to two layers has been developed for
some of the proposed architecture.

The most elaborated algorithm implemented in this thesis is the summed area
table (SAT), particularly suited because its complexity can be defined by choosing
the number of elements, the word width and the control strategy. Moreover, it is an
incremental algorithm, allowing many kinds of optimizations and implementations.
The algorithm requires several memory, logical and control elements, all done both
in 3D and in two layers. Some of them are represented in figure 1. The one in

LEI
1]

FEENC
]
53 |

LB
-
e
. I
o L

L

Figure 1: Example of pNML circuits designed in this thesis: (a) is a memory cell made of two
inverters; (b) is a PLA composed of four ANDs and two ORs

figure 1a shows a memory cell, made with two cascaded multiplexer: one of them
actually stores the input data, the other one serves as bit line (if the cell is not to

II

be written or read, it is bypassed by means of that multiplexer). This is an example
of the alternative structures implemented with this technology. The other one, in
figure 1b, is a PLA (Programmable Logic Array), with two OR planes and four
AND plane. It is made of five layers, that are very convenient to allocate the large
amount of wiring needed in such a circuit. The hardware is modular, made with
a basic element repeated several times; therefore, it could carry out the algorithm
over a matrix with arbitrary size. It is tested with a 2 by 2 matrix and a 4 by 4 one.

The last job involves a technological study of the physical parameters, in order to
find out possible delay optimizations. The influence of the most relevant parameters
is found, so that in case the optimal value of technological variable is to be found,
a method to find it is already available.

The results are encouraging: first of all, no circuit whatsoever has been found to
be unfeasible; even though it might seem obvious, it is actually not guaranteed for
such a new technology. From the point of view of the area occupation, this new tech-
nology could even outperform some of the most recent CMOS technological nodes.
In this regard, being able to stack the logical elements one over the other is a great
advantage in terms of area reduction. Therefore, the two-layer versions are undoubt-
edly larger, but that is really the worst case condition. The delay analysis shows
that CMOS is much faster, by several orders of magnitude. Anyway, the interest
towards pNML does not lie in its delay performances, but rather in its low power
and area features. A careful design and a technological parameters’ optimization
yield a quite good improvement, but still very far from CMOS performances. The
plots in figure 2 summarize what are the final results obtained by the study of the
SAT algorithm implemented. The 2a plot represents the delay. The times shown

Delay Area

. 3000
I
10 2000

Delay [us] 1100% Area [/J,IIIQ]
1073 1000
107
10
0
pNML CMOS [] —-—
2x2 2x2

CMOS 4x4 pNML 4x4

(a) (b)

Figure 2: Delay and area results of this work for the pNML circuits performing the SAT algorithm
for matrices with size 2 by 2 and 4 by 4, compared with the CMOS implementations

are those needed to complete a SAT algorithm over a matrix with 16 locations (the
bars with the 4 = 4 label) and with 4 (the bars with the 2 z 2 label). Likewise, the

111

2b represent the area that the two versions (4 x 4 and 2 x 2) of the circuit occupy
when manufactured in the two technologies analyzed (pNML and CMOS).

The thesis is structured this way: chapter 1 contains an introduction to QCA
and nanomagnetic technologies, in particular to pNML. The description is not rig-
orous, the aim is setting the stage to understand what follows. Chapter 2 is devoted
to the delay analysis. Delays are one of the most baffling traits of pNML, and tack-
ling them from the beginning will certainly be beneficial for future understanding.
Chapter 3 shows some logical, memory and control elements in their 3D implemen-
tation. They are designed and characterized, building then a library of components
for the SAT hardware, which is presented in chapter 4. This latter chapter illus-
trates the algorithm and the hardware for its implementation. Chapter 5 is devoted
to the performance analysis of the SAT hardware, compared with various CMOS
implementations. In chapter 6, the SAT hardware and some of the most telling
circuit are designed in two layers; some performance comparison follows. Chapter
7 contains the technological optimization of the parameters, in order to make the
circuits designed faster. Last, in chapter 8 the conclusions and possible future work
are presented.

The first appendix contains a short note about the delay model used in this thesis.
The following one contains a series of general rules, advices and tricks to design in
pNML. Next chapter shows how to make 3D drawings of the circuits designed in
MagCAD. The fourth appendix chapter is about a power analysis of the CMOS
circuits implementing the SAT is in. The last chapter contains some advices for the
use of MagCAD.

v

Table of contents

Introduction to pNML

1.1 QCA and logical functions
1.2 QCA Clocking
1.3 Nanomagnetic QCA o
1.3.1 in plane Nano Magnetic Logic
1.3.2 out of plane Nano Magnetic Logic
1.3.3 Clocking Terminology
Delay Analysis
2.1 Basic propagation
2.2 Propagation through a logic gate and glitches
2.3 How to deal with glitches in a simple manner
2.4 Delay balancing
2.5 Delay characterization L oL
2.6 Feedbacks
3D Architectures and Memories
3.1 Decoder
3.2 Folded Decoder
3.3 Multiplexer
3.4 Storing Cell
3.5 Memory Cell
3.6 Memory Cell - Notched version
3.7 Memory Array
3.8 Programmable Logic Array
3.9 Finite State Machine oL

Implementation of the Summed Area Table Algorithm
4.1 Datapath Hardware

4.1.1 Memory
4.1.2 Adder
4.1.3 Full Datapath
4.2 Control Hardware
4.2.1 Control Signals o
422 Reset FSM
423 Local FSM

4.3
4.4

4.5

424 Input FSMo
425 Output FSM
4.2.6 Vertical/Horizontal data transfer
2by2cell . ..
Putting cells together L
4.4.1 Hierarchical control
4.4.2 “Flat” control
4.4.3 Implementation Lo
Useofnotches

5 Performance Analysis of the SAT

5.1
5.2

Independent Design L
CMOS conversionot

6 Two-Layer flattening

6.1
6.2
6.3
6.4
6.5
6.6

Multiplexer
Full Adder
Flat delay decoder
Scaled delay decoder Lo
Programmable logic array L
SAT hardware in two layers
6.6.1 Local FSM
6.6.2 Reset FSM
6.6.3 Input FSM
6.6.4 Output FSM
6.6.5 SAT Datapath,
6.6.6 Full SAT Cell

7 Technological Parameters Tuning

7.1
7.2

7.3
7.4
7.5

Delay Contributes
Clock Field
7.2.1 Delay components o0
Propagation Delay
Anisotropy L
Coupling Fields

8 Conclusions and Future Work

A Caveat on the Delay Model

VI

98
98
104

108
109
110
113
116
119
123
123
124
125
128
130
132

135
135
139
140
142
144
146

152

155

B Design Fundamentals of pNML
B.1 Majority Voter
B.2 Logical analysis
B.3 Singular fixed-magneto
B.3.1 Inverter insertion L.
B.3.2 Layerswitch oo
B.3.3 Boolean logic rearrangement
B.4 General rules and tricks for layout drawing
B.4.1 Choosing layer to reach a nucleation center from
B.4.2 Sensible layer organization

C 3D Rendering of the pNML circuits
D Power Reports Of SAT Architecture Turned Into CMOS

E MagCAD Hints
E.1 Geometrical Parameters
E.2 Forbidden configurations oL
E.3 Coordinates System L
E.4 Components
E.5 Pads coupling directions
E.6 Reports

Bibliography

VII

157
157
158
164
164
165
168
171
171
175

185

197

202
202
203
205
206
209
210

214

List of tables

1.1
3.1

3.2

3.3

3.4

3.5
3.6

3.7
3.8
4.1
4.2
4.3
4.4
4.5
4.6
4.7
5.1
5.2
2.3
0.4

2.5

Majority Voter’s truth table
Comparison of area (expressed in squares) and delays (expressed in
half clock cycles) for the decoders described in section 3.1
Delays of the Folded Decoder, expressed in half clock cycles. Area
(expressed in squares) is reported at the bottom line
Delays of the Multiplexer, expressed in half clock cycles. Area (ex-
pressed in squares) is reported at the bottom line
Delays of the Storing Cell, expressed in half clock cycles. Area (ex-
pressed in squares) is reported at the bottom line
Logical behavior of the Memory Cell
Delays of the Memory Cell, expressed in half clock cycles. Area (ex-
pressed in squares) is reported at the bottom line
Delays of the PLA, expressed in half clock cycles. Area (expressed in
squares) is reported at the bottom line
Delays of the F'SM, expressed in half clock cycles. Area (expressed in
squares) is reported at the bottom line
How the SAT values are calculated in terms of the original values of
thematrix
Outputs of the Reset FSM
Outputs of the Local FSM
Outputs of the Input FSM
Outputs of the Output FSM
Addresses when data are exchanged between cells
“Outputs” of the FSM Global. A “1” means that the particular FSM
is reset, a “0” means it is running Lo
Delay and area comparison between the pNML architecture and the
one of [11], witha2x2SAT size
Delay and area comparison between the pNML architecture and the
one of [11], witha4 x4 SAT size

Area estimates (in pm?) for implementations with smaller technology
NOdeS e

Area ratios (4r<“eNMLY for a 2 x 2 SAT size for some pNML and

Areacyos

CMOS nodes
Area ratios (42<%NML) for g 4 x 4 SAT size for some pNML and

Areacnyos

CMOS nodes

VIII

5.6 Delay and throughput of the two CMOS versions with the same ar-
chitecture used for the pNML implementation
5.7 Area of the two CMOS versions with the same architecture used for
the pNML implementation
6.1 Area and delays of the multiplexer in figure 3.9 and of its two-layer
VEISION . v v v v v e e e e e e e e e e e e
6.2 Area and delays of the three versions of the full adder
6.3 Area and delays of the decoder in figure 3.4 in section 3.1 and of its
two-layer version

116

6.4 Area and delays of the decoder in figure 3.5 and of its two-layer version118

6.5 Area and delays of the PLA in figure 3.24 and of its two-layer version
6.6 Area and delays of the Local FSM and of its two-layer version . . .
6.7 Area and delays of the Reset FSM and of its two-layer version . . .
6.8 Area and delays of the Input F'SM and of its two-layer version . . .
6.9 Area and delays of the OQutput FSM and of its two-layer version . .
6.10 Area and delays of the datapath of the SAT cell datapath and of its
two-layer version
6.11 Area and delays of the SAT cell and of its two-layer version
B.1 Truth table of a majority voter
B.2 Possible input configuration for a two-input gate
B.3 Values forced by each input
B.4 Values forced by each input and by the fixed magnet
B.5 Output value eventually calculated
B.6 Example of row switch for an input
B.7 Example of row switch for two inputs
B.8 Example of fixed-magnet switched
B.9 Study to find a way to make an AND gate with a fixed-magnet that
forces a logicalone
B.10 The two possible cases for table B.9
D.1 Power consumption figures for the CMOS SAT architecture, with size
2by 2 Lo
D.2 Power consumption figures for the CMOS SAT architecture, with size
Aby 4 .o

IX

122

. 126
. 127
. 129
. 129

List of figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14
1.15
1.16
1.17
1.18
2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

2.9

Example of pNML circuits designed in this thesis: (a) is a memory
cell made of two inverters; (b) is a PLA composed of four ANDs and
two ORs 1
Delay and area results of this work for the pNML circuits performing
the SAT algorithm for matrices with size 2 by 2 and 4 by 4, compared
with the CMOS implementations I
The two possible arrangements of a QCA cell, marked in red and blue 2

Example of information propagation through a QCA wire 2
QCA inverter and example of signal propagation 3
QCA Majority Voter 3
Example of non working QCA propagation mechanism 4
QCA clock zones and possible time evolution 5
Representation of cell states in every clock phase.)
INML wires e 7
iINML majority voter 8
Clock phases on a iNML wire 9
Examples of AND/OR nanomagnetic logic 10
pNML nanomagnets in the two possible magnetization states 11
pNML wire manufacturing Lo 12
3D pNML majority voter oo 13
Example of signal propagation in pNML 14
Domain wall propagation along a nanomagnet 16
Alternative circuit designs with different maximum wire length 17
Pinning and depinning of a domain wall in a notch 18
Example of propagation through an inverter 20
AND gate in planar pNML technology 22
Glitch case study for an AND gate, no glitch occurring 23
Glitch case study for an AND gate, glitch occurring 23

Delay case study for and AND gate, output length = 1 half clock cycle 24
Delay case study for and AND gate, output length = 3 half clock cycle 24

Example of the “easy” method to handle pNML delays 25
Example of time evolution for gates with strongly unbalanced delay.
The network does not work L 28
Example of time evolution for gates with unbalanced delay. The
network works very badly o000 29

2.10

2.11
2.12
2.13

2.14

2.15

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17

3.18

3.19

3.20
3.21
3.22
3.23
3.24
3.25

3.26

A multiplexer in planar pNML technology. Domain walls, inputs and

outputs, logical gates and some inverters chains are marked 31
Example of possible time evolution of the circuit in figure 2.10 32
Example of possible time evolution of the circuit in figure 2.10 33
A latch made with a multiplexer with the output brought back to one

of the inputs. Domain wall, logical gates and loops are marked 34
Time diagram of a latch led to metastability by signal En too rapidly

changingo 36
Time diagram of a latch led to metastability by signal En and D

changing too close in time to each other 36
Basic method to build gates in multi layer pNML 38
Decoder, first version, technology non compliant 39
Decoder, second versiono 40
Decoder, third version, fully technology compliant 41
Decoder, solution with scaled output delays 41

Test of the whole set of input combination for the circuit in figure 3.4 42

Test of the whole set of input combination for the circuit in figure 3.5 43
Folded Decoder 44
Multiplexer in three layers 46
Storing cell 47
Basic memory cello 48
Memory Cell with notches 49
Timing of a signal passing through anotch 50
Metastability prevention property of a notch 50
Memory Array 52
Memory Array with balanced paths 54
Schematic representation of the memory in figure 3.15 (unbalanced

paths) 55
Signals’ timing when no analysis is carried out. This way, the circuit

doesnot work 55
Signals’ timing when Address signal is stretched so that it gets to each

cell joined with the Data one. This timing works, but its generation

iscomplex 56
Timing actually implemented 56
Schematic representation of the memory in figure 3.16 (balanced paths) 57
Timing of memory whose delays have been balanced 57
Double-plane Memory Array 58
Programmable Logic Array 59
Programmable Logic Array, two layers removed from top for a better

VIEW . o oo e e e e e e e 60
Layout of the FSM sequence identifier 63

XI

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14

4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22

4.23

4.24

4.25
4.26

4.27
4.28
4.29

4.30
4.31

4.32
4.33

Example of a matrix where SAT algorithm can be applied 66
SAT Table split in four matrices and after the first step of the algorithm 68

SAT Table after the second step of the algorithm 69
SAT Table after the last step of the algorithm 70
Memory element used in the SAT circuit 71
Full Adder used in the SAT circuit 72
Datapath for the SAT algorithm 73
Reset FSM for the SAT algorithm 76
State flow chart of Reset FSM 76
Local FSM, that drives the SAT algorithm in a single cell 7
State flow chart of Local FSM 78
Input FSM, red lines drawn to distinguish the three components of it 79
The two “logical” Imput FSM 80
Output FSM, a red line marks the boundary between actual FSM and

XOR network 81
State flow chart of the Qutput FSM 81
Address assignement withinacell 83
Basic cell datapath, made on the three bottom layers 84
Basic cell control, made on the seven top layers 85
A generic matrix that will undergo SAT algorithm 87
Matrix of figure 4.19 after the first split 87
Matrix of figure 4.19 after the second split 88
Matrix of figure 4.19. Marked locations are the ones involved in the

data transfer currently under consideration 88
Example of flat control on a 4 by 4 array, first four steps. Light blue

locations are the ones whose value is the final SAT value 90
Example of flat control on a 4 by 4 array, last four steps. Light blue

locations are the ones whose value is the final SAT value 91
Steps of the algorithm as they are carried out in the designed hardware 92
Global FSM, which controls the SAT over a 2 by 2 array of 4-locations

cells . . . e 92
State flow chart of the Global FSM 93
16-location SAT hardware, made up with four 4-location cells 94
Detail of figure 4.28, with the two notches in series and two inverters

inthemiddle 95
Two notches in series. The signals evolution is shown in figure 4.31 . 95
Example of signal passing thorough two notches in a single “notch

cycle” oL 96
Possible solution to the problem of figure 4.31 96
Two notches in series with a pair of inverters in the middle. It solves

the problems seen in figure 4.31 96

XII

4.34
5.1
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12

6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
7.1
7.2
7.3
7.4
7.5

7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
B.1

B.2

Solution to the problem of figure 4.31 with two inverters 97
MagCAD report of the technological parameters used in this chapter 107
Two-layer design of the multiplexer in figure 3.9 109
Multiplexer in figure 3.9 compared with its two-layer version 109
Two-layer design of a full adder (with oblique pad) 111
Oblique pad, a new technological feature 111
Full adder compared with its two-layer version (with oblique pad) . . 111
Two-layer design of a full adder (without oblique pad) 112
Full adder compared with its two-layer version (without oblique pad) 112
Two-layer design of the decoder in figure 3.4 114
Decoder in figure 3.4 compared with its two-layer version 115
Two-layer design of the decoder in figure 3.5 (scaled delay) 117
Decoder of figure 3.5 compared with its two-layer version 117
Test of the whole set of input combination for the circuit in figure 6.8

and in figure 6.10 Lo 119
Two-layer design of the PLA in figure 3.24 120
PLA in figure 3.24 compared with its two-layer version 121
Two-layer design of the Local FSM 124
Local FSM compared with its two-layer version 125
Reset FSM compared with its two-layer version 127
Input FSM compared with its two-layer version 128
Output FSM compared with its two-layer version 130
Two-layer design of the SAT cell datapath 131
Two-layer design of the SAT cell 133
Half clock period vs. clock field, critical path equal to 8 squares . . . 140
Half clock period vs. clock field, critical path equal to 2 squares . . . 141
Half clock period vs. clock field, by each delay component 142
Nucleation delays vs. clock field, by each delay component 143
Half clock period vs square size, with ANC volume scaled by the same

factor 144
Half clock period vs. anisotropy constant 145
Half clock period vs. anisotropy constant, zoomed 145
Half clock period vs. anisotropy constant and clock field 146
Half clock period vs. clock field, with C' fields tending to 153 Oe . . . 148
Half clock period vs. clock field, with C' fields tending to 48 Oe . . . 148
Half clock period vs. clock field, with C' fields tending to 25 Oe . . . 149
Half clock period vs. clock field, with progressively increasing C' fields 150
Delay components for the SAT architecture. 151
Examples of circuits that might look like AND gates but actually are

Nnot . . . o 159
Example of circuits that are AND gates 159

XIIT

B.3 Alternative way to produce a fixed-one magnet, sometimes referred

to as “alternative fixed-one” oo 164
B.4 Example of circuits where the “alternative fixed-magnet” cannot be

used ... 165
B.5 Rearrangement of a gate when just one fixed-magnet is available . . . 166
B.6 Standard way to build a 3D gate 0. 167
B.7 Technologically incorrect gate, 167
B.8 Example of layer switch with the removal of an inverter 168

B.9 Example of VIAs, where the direction of the input does not matter . 172
B.10 Example of coplanar coupling, where the coupling takes place only in

certain directions 172
B.11 Case study: the output must be moved to the bottom layer 173
B.12 Possible solutions to the problem of figure B.11 173

B.13 Variation of the case study in figure B.11: the output must be on the
bottom layer, and the signal from the notch must reach farther away 174

B.14 Possible solutions to the problem of figure B.13 174
B.15 Possible alternative to place an “alternative fixed-one” 175
B.16 Possible arrangement on notches ina FSM 176
B.17 Variation to the structure in figure B.16 177
B.18 Example of a regular use of the two available layers 178
B.19 Example of circuits with two ANC on the same pad coupled in two
OPPOSItE WAYS« v o e e e e 180
B.20 Possible solution to deliver a signal to many ANC 181
B.21 Possible solution to deliver a signal to many ANC with just two layers
available 182
B.22 Example of wires bent to reduce room occupation 183
C.1 Fake input as “orientation mark” 185
C.2 PNGexport e 186
C.3 Inkscape PNG import 186
C.4 SVG conversion oo e e 187
C.5 Separation of the two (SVG and PNG) overlapping images 187
C.6 SVG image after deletion of the PNGone 188
C.7 Text deletion 188
C.8 Detailremoval 189
C.9 Cube deletion in Blender 189
C.10 Blender SVG importo 190
C.11 SVG imported in Blender and scaled 190
C.A2 Extrusion 191
C.13 Layer extruded 192
C.14 Choice of the origin point 192
C.15 Setting of the origin point (magnets) 193

XIV

C.16 Setting origin point (inputs/outputs) 193

C.17 Magnets moved to the origin, 194
C.18 Selection of the fake input 194
C.19 Deletion of the fake input 0. 195
C.20 Second layer placement 196
D.1 Dynamic power for the CMOS SAT architecture 199
D.2 Leakage power for the CMOS SAT architecture 200
D.3 Total power, with the leakage and dynamic component, for the CMOS

SAT architecture 201
E.1 Technology choice and geometry definition 203
E.2 Nanowires with two different nanomagnet width 203
E.3 Input coupled with an ANC 203
E.4 Forbidden input configuration 204
E.5 Output placement oo 204
E.6 Examples of forbidden configurations (unwanted coupling) 204
E.7 MagCAD coordinates and forbidden location (the blue square) 205
E.8 Grid activationo 206
E.9 Disabling VHDL export 207
E.10 Component import into the design 207
E.11 Components’ options 208
E.12 Component placed in the workspace 209
E.13 Example of pads coupled with ANC 210
E.14 Example of pads not coupled with ANC 210
E.15 Report with most important parameters outlined 211
E.16 Technological parameters definition 212

XV

Chapter 1

Introduction to pNML

The expressions “QCA” (Quantum Cellular Automata, [1]) defines a family of new
technologies that can be used to represent digital values, and have all in common
the fact that the information is represented by means of the two possible states of
a quantum variable, rather than a voltage. Here this technological family is briefly
described, in particular its nanomagnetic implementation, which is the technology

used for this thesis work.

1.1 QCA and logical functions

The basic idea is defining a volume with a high potential barrier, and injecting two
electrons in it. This structure is called “cell”. The two electrons cannot escape from
the cell, and they will settle within the potential well in an arrangement that makes
their distance the greatest, because they tend to repel each other. What happens
is pictured in a simple drawing in figure 1.1. The picture shows that, when trying
to get as far from each other as possible, the two electrons arrange themselves in
two alternative patterns, that can be encoded as the two logical values, 1 and 0. A
cell alone is not very useful, but luckily, when two or more cells are brought close
together, they interact. Let us refer to figure 1.2. If the state of the leftmost cell
is “forced” somehow from the outside, the cell on its right will be influenced, and
switch its state because the other one is more energetically favorable. The third

cell will be influenced as well, and so on until the far right end of this arrangement,

1 — Introduction to pNML

Basic cell, a potential well

° ° A pair of electrons is injected

o O
Two possible configurations exist (left=1, right=0)

© O o O

Figure 1.1: The two possible arrangements of a QCA cell, marked in red and blue
o o|c e|c oo e|c e|o e|o e
®@ Ojlo oje Joje oje Joje oje o
[oo oo e|c e|c e|oc e|o e
O e@jo oje Joje oje oje oje o
o O|e oo e|c e|o e|o e|o e
O ©@J0 _9j@ JOjo oje oje oje o
o O|e o|e oo e|o e|oc e|o e
O @J|0 0J0 eoje oje Jjle oje O
o O|e o6 oJe ojo e|oc e|o e
O @J|O0 0JO0 ©0Jo ojoe Joje oje o
o O|e o] o|e oje o|o e|o e
o eJo oJo ojo oJo eje oje o

Figure 1.2: Example of information propagation through a QCA wire. Time evolves towards the
direction of the arrows

that might be legitimately defined “wire”, is reached. A particular arrangement of
cells is able to propagate the opposite value of the input. This inverter is shown in
figure 1.3.

This technological family has also a more advanced logical elaborating device,
the majority voter. It can be seen drawn in figure 1.4. The device has three inputs
and one output. It has a cell in the middle (the green one), that will hold the result
of the computation, influenced by all the the final ends of each input wire, that could
undergo opposing forces. In figure 1.4, for instance, the bottom input would cause
the elaborating cell to assume the state “1”, and the two remaining ones would cause

it to get into the “0” state. These are somehow “stronger” than the bottom input

2

1.1 — QCA and logical functions

t=0 o eo|o el|o e t=2 e oOlfle o o
l@ ojle ofe o o ejJlo eJlo e
e O|foc elo e]Jo e o oOlle o [ol oje olfe o @ oO|le o
) _ejle oje oje o o ejo e 0 eJlo eJo ejo e o ejlo e
(0 e|loc e]o e o olfe o|fe o
@ ojle ojle o o0 ejlo eojlo e
t=1 e O|o elo e t=3 e oO|e olfe o
o _ejle ojle o o0 ejlo ejlo e
e) e Olle o [5) o (@ olfe olfe olle o o eo|lo e
@0 o ejo e o) e e/lo ejlo eJlo e e ojle o
e olo elo e e oOlfle o o
o eje ojle o o ejlo e e

Figure 1.3: QCA inverter and example of signal propagation

® Oj|é ojlé o|e o|e o
O @0 00 00 0|0 o
@ O
o O
@ O||é Oojl6 oo o|e © Oj|é ojjlé ojlo O
o 0|0 0 00 o ®|0 00 0j]0 0jo o
o o
@ O
o @||0 0|0 |0 |0 e
@ Oje6 Ojle o) oje O

Figure 1.4: QCA Majority Voter

alone, and the final state of the elaborating cell will be 0. Elementary boolean logic
proves that if one of the inputs, no matter which one, is always forced in the same
state, the device will exhibit either an AND-like or an OR-like logical behavior. For

sake of completeness, table 1.1 shows the truth table of such a gate.

1 — Introduction to pNML

In; Inp Ing Out

— === O O OO
= _ 0 O = OO
—_ O, O~ O O
== O = OO

Table 1.1: Majority Voter’s truth table

1.2 QCA Clocking

The description of the propagation phenomenon of the previous section, as it is,
leads to non working circuits. The reason is found in the energy configuration of
the device: basically, the energy barrier between the two states is too high for the
“forcing” cell to cause the cell on its right to switch its state. Thus, the leftmost cell
would be switched by some mechanism on the outside, and would be the only cell
switching. A way to lower this energy barrier is needed. Once it is found, it must be
implemented with some care; issues (namely, backdriving, stuck or unstable circuits)

would come out otherwise. Consider figure 1.5. The black cell located exactly in the

o 0|0 0|0 0|0 0|0 o0o||6 o0o|6 o|6 o|lo O

oo

o 0Ojj6 oj]lé6 o) oo o0Oj]|o 0j]|o 0j]|o 00 o

Figure 1.5: Example of non working QCA propagation mechanism

middle has all the cells on its left trying to force a state, and all the cells on its right
trying to force the other one. The cell itself is not in anyone of those two states, and
experiences a strong influence from both sides. Therefore, some sort of timing or
pattern must be found to avoid ambiguous cases like this one. The mechanism that
lowers the barriers is in fact the clock, which, in QCA, both times the circuit and
supplies it with power. Physically, it is a field (depending on the implementation

could be electric, magnetic of both) that provides the energy needed to overcome

4

1.2 — QCA Clocking

the energy barrier. The clock scheme is a four-phases one, shown in figure 1.6. The

Clock Clock Clock Clock Clock Clock Clock Clock
Zone 0 Zonel Zone?2 Zone3d Zone(O Zonel Zone?2 Zone3

o oo poJfo oo, ojfe ofa ofoc ofo ©
tZO R oo X o\ oo P
o o|d ofo oflo vllo e|lo v|o ol|d o
- o polfo elfo o OMO o, Olfe oqoooooo
—))
g ole old oflo ofo |o efo Yo o
oflo polo eljfo plJo oo oje ola o
t:2 oo P oo \o .
olld” olle olld o o ollo elo o
0 o ofo pelfo efo o ofo, olfe ©
t=3 | ,° oo) . o .
d oflo o||d ofle o|d ojo oo v|o o

Figure 1.6: QCA clock zones and possible time evolution

meaning of the drawing should be self-explanatory, but in figure 1.7 the “legend” is

shown. A preliminary thing to say is that the introduction of the clock, that lowers

o e|lfe o
Hold
@ O|lo e
o oo, ©
P N Release
g o|lo o
o O
o Relax
o o
o polfa o
’ ’ Switch
g ollo ™

Figure 1.7: Representation of cell states in every clock phase

the cell’s potential barrier, adds a possible state to the already existing two. This
state is a “Null” state, something like the boolean “X” state; in this state the cell

is in neither of the two logical values, and is highly influenced by the neighbors.

5

1 — Introduction to pNML

As the figure shows, the four phases are:

e Relax: the potential barrier of the cell is low, the cell is not in a defined logical
state, and is ready to get into the one forced by the neighbor. The clock keeps

the potential barrier low;

e Switch: the cell is starting to get into a defined state, influenced by the
neighboring cell; the clock is being released, so that the energy barrier is

raising and the state of the switching cell is becoming less easy to influence;

e Hold: the potential barrier is high, the cell stays in a well-defined state and
can be used to set the state of the next one. The lowering-barrier feature of

the clock is now turned off on this cell;

e Release: the clock is lowering the energy barrier, and the cell is loosing its

state.

This way, the currently switching cell always stays in between a cell with a strong
influencing ability (the one in the Hold state) and one with almost no influencing
ability (the one in the Relaz state). This avoids backdriving and sets the direction of
propagation of the wire. Hence, the circuit is made of several “strips”, and in every
one of these strips the clock is in a certain phase: these strips are also called “clock
zones”. Some variations to this scheme could be found, for example, the clock could
be made of just three phases, provided they overlap for a certain portion [2]. The way
QCA circuits are clocked and powered makes them a sort of highly pipelined circuit,
where each signal undergoes a delay equal to the number of clock zones it travels

through. This is also known as the characteristic (or problem) “Layout=Timing”.

1.3 — Nanomagnetic QCA

1.3 Nanomagnetic QCA

One of the possible implementations of QCA is the nanomagnetic one. It leverages
nanomagnets, which are magnets whose size is about tens or hundreds of nanometers.
When the magnet is so small, it only contains one magnetic domain; this makes its
magnetic field well-defined. Moreover, in these nanomagnets the magnetic field is
very likely to have just two, opposite directions. This property is called “anisotropy”,
and will be further elaborated in chapter 7. For the time being, let us just say that it
is caused by the elongated shape of the nanomagnets, and that the axis where these
two preferred directions lie is called “easy axis”, whereas the orthogonal axis is called
“hard axis”. These two features make the magnet particularly suited to represent
the two digital states. If the easy axis lies in the same plane the nanomagnet is lying,
the technology is called “in plane Nano Magnetic Logic” (iNML); if the easy axis
lies on a plane perpendicular to the one where the nanomagnet lies, the technology

is called “perpendicular Nano Magnetic Logic” (pNML).

1.3.1 in plane Nano Magnetic Logic

In figure 1.8 two lines of magnets, one horizontal and one vertical, are shown. Notice

MR EERA

Figure 1.8: iNML wires

that when magnets are lined up in the same direction as the one of their magneti-
zation vector (the vertical line of the figure), each magnet forces into the next one
its own state. On the other hand, if the nanomagnets are lined up in a direction
orthogonal to the one of their magnetization vector, each nanomagnet forces into
the next one the opposite of its own state. The two possible coupling between mag-

nets are called respectively “ferromagnetical” (F) and “antiferromagnetical” (AF).

7

1 — Introduction to pNML

A line of antiferromagnetically coupled nanomagnet is also the way the inverter is
made: a line of an odd number of nanomagnets will always hold opposite values on
its ends. The majority voter is still the main logic gate, and is also made in the
same way seen before. A nanomagnet is influenced by three other nanomagnets, as

in figure 1.9. The only difference is that in this case two inputs are coupled one way

Figure 1.9: iNML majority voter

(the top and bottom ones, F coupled), and the remaining one the other way (the
middle one, AF coupled). Of course, inverting the signals as needed is all what is
needed to deal with this new characteristic of the device.

Next thing to describe is how the circuit is clocked. There still are clock zones,
but the clock phases could be just three (some conditions are to be met), as in here.
The nanomagnes are brought to a “Null” state by means of a magnetic field that
causes the direction of the magnetization to be parallel to the hard axis. As soon as
this clocking magnetic field is removed, the magnetization direction moves back to
the hard axis, in the direction forced by the neighboring nanomagnets. Clock zones
still exist, and the easiest way to technologically implement them is by means of
wires running below the planes of the nanomagnets [2],[3]. Figure 1.10 shows how a
nanomagnetic wire evolves across the three clock zones. The three phases are: Hold,
Switch and Reset, and appear, from left to right, in this same order in the figure. The
nanomagnets in the switch zone are orienting their magnetization vectors according
to the influence of the last nanomagnet in the hold zone, without the nanomagnets
on the right, in reset zone, able to interfere. The principle is the same as the one
seen for generic QCA. The blue arrow shows the direction of the clock field. Another
possible way to reset the nanomagnets leverages piezoelectricity and absorbs much

less power [4], but a detailed description is beyond the scope of this thesis. There is

8

1.3 — Nanomagnetic QCA

Clock direction
—_—

|AESENEE

Hold Switch Reset

Figure 1.10: Clock phases on a iNML wire

nothing preventing a nanomagnet from being placed above another one, rather than
besides: this is a multi layer technology. In order to produce one of the known gates
(AND, OR, NAND, NOR) with a majority voter, one of the inputs should hold a
fixed logical value. In iNML, this can be easily done: a possible solution consists
in placing a nanomagnet rotated by 90 degrees. Given the clocking field direction
(figure 1.10), the clock will force a magnetic field on it along the easy axis. When
the clocking field is removed, the magnet will stay in this magnetic configuration.
By placing it close to either the top or the bottom of the nanomagnets it can be set
whether if forces a 1 or a 0 on the nanomagnet. Another way employs nanomagnets
with “slanted” edges [5]. The slant produces a slight rotation of the easy axis,
so that when the clocking field is removed, the magnetization vector will be much
more likely to turn to one side rather than to the other. Figure 1.11 shows what
these solutions look like. Figure 1.11a shows how a rotated nanomagnet can serve as
“fixed-input”; figure 1.11b shows the rotation of the easy axis, and how consequently
the magnetization vector rearranges when the clock field is removed; figures 1.11c
and 1.11d show example of the application of the two devices two build a AND/OR
gate with a majority voter. The clock direction is the one indicated by the blue

arrow.

1 — Introduction to pNML

(a) Rotated b) Magnet with slanted edge
Magnet

) AND/OR gate with a rotated magnet) AND/OR gate with a “slanted-
edge magnet

Figure 1.11: Examples of AND/OR nanomagnetic logic

1.3.2 out of plane Nano Magnetic Logic

The preferred anisotropic direction in a nanomagnet might be also be out of the plane
the nanomagnet is placed on. In this case the technology is called “perpendicular
Nano Magnetic Logic” (pNML). Usually, this property is achieved by manufacturing
the nanomagnets as a stack of two different, alternating, materials, and making them
very thin. This difference has a lot of consequences, that make pNML technology
quite different from all the rest of NML. First of all, the nanomagnets can have

whatever shape. Second, clock zones are not needed anymore. The reason is a little

10

1.3 — Nanomagnetic QCA

elaborated, and next subsection is devoted to its illustration.
Figure 1.12 shows some of the pNML nanomagnets. In the picture they are

about squared, but they can have any shape.

L4/

Figure 1.12: pNML nanomagnets in the two possible magnetization states

Local Anisotropy Reduction

In general terms, the way a logical value is propagated through a series of lined up
pNML nanomagnets is the same as any other NML technology: the magnetization
direction of a nanomagnet influences the magnetization direction of the next one,
with the help of a clock. Since in a line of regularly spaced nanomagnets every one
of them would be influenced by the one on its right as much as it would be by the
one on its left, an appropriate timing of the clocking field is necessary to set the
direction of propagation of the information. This last point is exactly what changes
in pNML technologies. As mentioned above, the perpendicular anisotropy feature is
achieved by manufacturing the nanomagnets as a stack of two different materials. If,
in one spot of the nanomagnets, this order is somehow upset or destroyed, that same
spot will show a more limited anisotropy. The spots with the lowest anisotropy in a
magnet happen to be the ones more sensitive to the influence of neighbors’ fringing
fields. Therefore, it is much easier forcing a particular direction of the magnetic
field within that area. This anisotropy reduction is made by means of a Focused
Ton Beam irradiation (FIB), that mixes up the molecules of the two materials the
nanomagnets is made of [6]. The spot with modified structure is called Artificial

Nucleation Center (ANC). All these concepts are shown in figure 1.13. The figure

11

1 — Introduction to pNML

FIB irradiation

Ve < 4

) FIB irradiation process

%@

b) Propagation direction

J%w

¢) pNML nanowire

Figure 1.13: pNML wire manufacturing

shows also why the propagation direction is set: if the nanomagnets is irradiated on
the lefthand side, the ANC will be much closer to the nanomagnet on its left. With
a careful study of the technological and geometrical parameters, the ANC can be
made very sensitive to the magnetic field of the left hand nanomagnets, and almost
insensitive to the on the right side, as shown in row b of figure 1.13. This is what
sets the propagation directions. “Nucleating” an ANC means that a magnetic field
direction has been forced into the ANC itself. The expression “the ANC nucleates
itself” can be found too. Notice that in a line of coplanar pNML nanomagnets, their

coupling is antiferromagnetical.

Gates in pNML

The universal gate in pNML is the majority voter. It can be made by a nanomagnet
whose ANC is influenced by more than one other nanomagnet (but always an odd
number), as it is draw in figure 1.14. The picture also shows an important design
feature of pNML: it is a 3D technology, with nanomagnets that can be placed one
above the other.

The three input nanomagnets are draw in a different color with respect to the

12

1.3 — Nanomagnetic QCA

Layer 2

Layer 1

Layer 0

Figure 1.14: 3D pNML majority voter

output nanomagnet. Notice also that the two nanomagnets above and below the
output one are ferromagnetically coupled, and the output nanomagnet behaves ac-
cordingly. The coupling between two nanomagnet in different layer is called a “via”,
because of the functional similarity with the CMOS element bearing the same name.

In place of one of the input nanomagnets in figure 1.14 there could be a fixed-
values nanomagnet, which of course are available for pNML too. Unlike iNML,
though, usually just one logical value (that is, magnetic direction) is available for
them, rather than two. This could seem a massive hindrance, but it will be discussed

at great length, and it will turn out that it is not a big issue.

pNML Clocking

pNML circuits still need a clock to propagate signals, because the magnetic field
generated by the nanomagnets is not strong enough to nucleate the ANC. The clock
is also a magnetic field, that is applied over the whole circuit surface with no clock
zone or any other spatial distinction. Its direction is the same as the magnetization
vector of the nanomagnets, that is, perpendicular to the plane where the magnets
are placed, and alternates between two opposite values. In order to understand

better, it is very helpful thinking that the clock alternates between logical value 1

13

1 — Introduction to pNML

and logical value 0. The intensity of the clock field is such that it cannot nucleate an
ANC if the nanomagnet on the left of that ANC does not have a field that supports,
rather than oppose, the nucleation of that value. In other words, an ANC nucleates
with a magnetic field representing the value 1 only if the clock is currently at the “1”
value, and the nanomagnet on the left side is holding a “0” value (remember, the
coupling is antiferromagnetical, so each nanomagnet forces its opposite value into
the next ANC). The propagation of zeros and ones is out-of-phase by 180 degrees, as

it is shown in figure 1.15. The first row represents a steady situation, where all the

S
Vo yIII

iiiqiqiii
O
|G

V & & o2 P s
|

e

Figure 1.15: Example of signal propagation in pNML

nanomagnets are already updated and coherent. If the input on the left (big, pink
arrow) does not change, the line of nanomagnets will never change either. In the

second row the input changes indeed, and the remaining rows show the evolution,

14

1.3 — Nanomagnetic QCA

pointing out which nanomagnet is being updated.

According to this description, a wire in pNML is made in pretty much the same
way it is done in iNML: a line of basic nanomagnets is built. Several clock cycles
are needed for a token to travel all the way through the wire, and this could jeopar-
dize the performances and be challenging for the designer to handle. An alternative
is available thanks to the ability of pNML nanomagnets to retain the basic char-
acteristic so far listed regardless of the shape they have, that allows to draw long
nanomagnets which are in fact wires. To understand how a long wire behaves, it is

necessary to introduce the concept of domain wall.

Domain Walls

A domain wall is the border between two adjacent domains within a nanomagnet
whose magnetization is different. The subject is very complicated; here only the
concepts useful to understand their use along with the pNML technology will be
addressed. The domain wall can be “shifted” towards a certain direction by means
of an appropriate magnetic field, and the usual way to work with them consists
in manufacturing long nanomagnets which contain some domain walls, and then
analyzing their movement along the wires. What happens in a pNML nanomagnet
is that the magnetization vector is changed in the ANC area, and then is propagated
towards the rest of the nanomagnet in the way described above. Figure 1.16 shows
how the domain wall moves along a nanomagnet. Domain walls can also be used
to build digital circuits: bends, branches and tips within the domain wall path,
together with the exposure to a magnetic field with varying direction and intensity,
provide logical functions such as AND, OR and NOT ([7]). The most relevant point
is that domain walls do not propagate in the high-pipelined fashion described for all
the other QCA technologies, but rather as signals in a combinational network. This
makes them really attractive to reduce the delay, in terms of clock cycles, needed
for signals to run through long wires. Basically, the computation could be carried
out in the usual way, whereas the long rows of nanomagnets, with a high latency,
are changed with domain walls. The clock period will increase, because what causes
the domain wall movement is the clock field, but the wire will deliver its values

in just one clock cycle. Thus, three main elements make up this new variation

15

1 — Introduction to pNML

Figure 1.16: Domain wall propagation along a nanomagnet

to the NML technology: nucleation centers, stretched nanomagnets through which
a domain wall propagates (really often called just “domain wall”: the two terms
are interchangeable in practical use, and it is almost impossible to confuse the two
meanings. Other words could be “wire” or “nanowire”), and the notch, that will be
addressed later on. Of course, these are not separated items, as ANC and notches
are both adjustments made on the stretched nanomagnet. This design approach,
that combines domain walls and standard pNML coupling, is called Domain Magnet
Logic (DML,[8]). Figure 1.17 shows how circuits can be made. The figure presents
two alternatives of the same circuit, a majority voter, with the inputs on the bottom
and the output on the top. The elements like the one in the red circle are nucleation
centers, while in the green circle there is a “Pad”, that is just the end of a domain
wall, but it is drawn that way to make clear that it is influencing an ANC. The
black circle encloses a domain wall antiferromagnetically coupled with an ANC: in
practice, an inverter. There is no functional difference between that element and
the configuration of two adjacent nanomagnets in figure 1.13, bottom row; however,
the actual structure is different, and the configuration inside the circle is specifically
designed to increase the coupling between the two nanomagnets. This configuration
is usually considered an independent design element, called, of course, “inverter”.
The key difference between the circuits is that in the 1.17a, long nanowires run

from the input ANC to the one of the majority voter, whereas in the 1.17b those

16

1.3 — Nanomagnetic QCA

(a) Non pipelined b) Pipelined
Figure 1.17: Alternative circuit designs with dlﬂerent maximum wire length

nanowires have been considered too long, and the clock period would have been
excessive. Hence, it has been divided in sections with a couple of inverters: this
way, the signal takes one more clock cycle to reach the majority voter ANC, but the

clock period is lower. In other words, the 1.17b is a pipelined version.

Notches

The last feature of pNML technology, very important, is the notch. A domain wall
moving along a nanomagnet is sensitive to the geometry of it: this is how domain
wall logic is build. Some “deformations” of the nanomagnet cause the domain wall to
be trapped in it, and it will not move any farther, unless a stronger magnetic field is
applied (different from the usual clocking magnetic field). The expression “pinning
a domain wall” is the one used to describe this phenomenon. The magnetic field
could be applied to the whole circuit, causing all the notches of the circuit to “open”,
or “release” (“depin the domain wall”)the value the have in input (meaning that
the domain wall is again allowed to run through the nanomagnet), or just locally
applied by means of other nanomagnets close to the notch [9]. This feature is really

useful to implement memory elements with no internal loop, latching devices and

17

1 — Introduction to pNML

even a pNML equivalent of the CMOS pass-transistor. Figure 1.18 shows how the

propagation works. As drawn there, the domain wall moves along the nanomagnet,

A

PPl

111

I,

Figure 1.18: Pinning and depinning of a domain wall in a notch

but as soon as it reaches the shrunk section, it gets stuck. A particular value of the
magnetic field is able to release it, and once the domain wall gets past the notch, it
can propagate with the usual clock values. Notches can be used in many different
ways: in all the circuits of this thesis work, they will be opened on a regular basis by
the proper clock field, as it is done for registers in CMOS. Thus, a “notch period”
can be defined.

1.3.3 Clocking Terminology

The description of the previous sections should have made clear that in pNML there

are multiple “levels” of clock. These are:

e The clock that causes the nucleation of ANCs and the propagtion of domain

walls;
e The clock that allows domain walls to get past the notches;

18

1.3 — Nanomagnetic QCA

Therefore, there are two kinds of clock periods:

e The one that considers the amount of time needed for a domain wall to propa-
gate through a single nanowire, expressed in seconds. This is usually referred
to as “Clock Period”;

e The one that considers the number of clock cycles (as defined in the previous
point) needed for a signal to propagate from the output of a notch in the
circuit to the input of another notch. It is expressed in number of clock cycles,
or sometimes half clock cycles, and it is usually referred to as “Clock Period

in terms of clock cycles”, or “Notch period”;

If the circuit does not contain notches, the second kind of clock period is not defined.
This description shows how a signal is always considered to need an integer number
of half clock cycles to propagate from a point to the other: if the absolute time
is needed, it could be obtained by multiplying the clock period by the number of
clock periods needed to propagate. Hence, a general delay too might be expressed
either in terms of clock cycles or in terms of absolute time. The first approach
is by far the most frequent. Comparisons with the CMOS circuits, that just have
one clock, will be frequent, so it is absolutely worth it solving possible ambiguities.
Since a signal delay is usually considered in terms of half clock cycles, in general a
circuit without notches is mentally associated with a CMOS combinational circuit.
On the other hand, a pNML notch will be associated with a CMOS register. Next
chapters will show a pNML circuit descripted in CMOS: the pNML logical paths
become combinational paths in CMOS, and the notches becomes registers. The
similarity is so deep that this conversion could even be made automatically (with
some workarounds). Therefore, really often (at least in this thesis work) the pNML
delay in terms of clock cycles of a signal is thought as the counterpart of the CMOS
combinational delay.

Last, the concept of “pipelining” will be used at length. If not otherwise stated,
this expression refers to the insertion of pairs of inverters along very long domain
walls, in order to reduce the clock period. The expression used to insert notches,
the same ways as registers are inserted in CMOS, will be “notch insertion”. The

context will hopefully reduce the ambiguity in the use of these words.

19

Chapter 2

Delay Analysis

In this chapter, the main characteristics of the timing and signal propagation are
addressed, with particular regard to the traits that might turn into troubles and to

the ways to deal with them.

2.1 Basic propagation

pNML has the peculiar feature that logical zeros and logical ones do not propagate
at the same time, but rather one after the other by half cycle based steps. Figure 2.1

shows how this happens, using an inverter as example.

Clock

Input L_l_\ (L%IL
Output —) glﬁ)_‘

Figure 2.1: Example of propagation through an inverter

Notice, there are three changes of the input signal, numbered within the figure,
but the delay is always different. In the first transition, the input signal goes from
0 to 1; the next clock edge is a positive one, and it does not propagate zeros. Thus,
the propagation occurs after the next, negative, clock edge. Two clock edges stay in
between input and output transition. In the second transition, the input goes back

to zero, just before a negative clock edge, that propagates the output: this time,

20

2.2 — Propagation through a logic gate and glitches

the output is ready after a single clock edge. The third transition still shows a half
clock cycle delay. A few things can be observed:

e The delay depends on the moment in which the transition occurs: it might
happen either in the “good half cycle” (sign of the transition and current phase
of the clock match), as it does in case 2 and 3, or in the “wrong half cycle”
(sign of the signal transition and current phase of the clock do not match). If
the input is free to change at any moment, predicting the exact delay entity

is not possible (there will always be an half clock cycle of slack);

e Transitions 2 and 3 show the same delay in terms of clock cycles, even though
the absolute time is a little different. The reason is that input transition 2
occurs just before the clock edge, whereas transition 3 occurs long before the
clock edge. Actually, this happens in CMOS technology too, and is due to the
edge-triggered nature of the propagation;

e As already said, in case 2 the input changes very close in time to the clock
edge. The change may not get arbitrarily close, since a setup time condition

must be met;

e On the other hand, the output transition occurs always with the same delay
with respect to the clock edge (apart from tolerances) that causes it (no matter

what is its sign). This delay can be considered the propagation delay;

e All these considerations about the sign of the clock edge that propagates the
input to the output are so simple because there is only one input, so that the
output depends only on a single signal. Gates with more than one input, of
course, cannot be left out of the analysis, and must be handled in a slightly

more complicated way.

21

2 — Delay Analysis

» -:1

[-:-‘

Figure 2.2: AND gate in planar pNML technology

2.2 Propagation through a logic gate and glitches

Now, let us consider a simple two-input circuit, such as an AND. The pNML, one-
layer circuit, is shown in figure 2.2; keep in mind that this is just a case study, a
circuit like that is not even feasible.

The delay depends on both inputs: for example, if B is zero, and A rises from
zero to one, the output will stay unchanged. This case, however, is very trivial.
Considering the inputs one at once should not be too difficult. A more elaborated
problem might be the following one:

Suppose that A=1 and B=0. At the same time, A — 0 and B — 1. What will
happen? The steady output will still be zero, but will there be a glitch?

To answer the question, let us draw the timing diagram in figure 2.3.

No glitch occurs: even though there is a time span where both pads (the rounded
spots near to the nucleation center, bearing the A and B labels) are high, and a clock
edge occurs within that time span, that edge is a negative one. Thus, no logical
one can be propagated. However, this is just a lucky case. Consider now figure 2.4:
in this case, a glitch shows up, with the output going to one even if the two input
values are never both one at the same time. Of course, this is due to the out-of-phase

propagation between zeros and one: in this particular case, the 0 — 1 transition

22

2.2 — Propagation through a logic gate and glitches

O
o)
0O
Q

1
0

] ”

O w » w »

Figure 2.3: Glitch case study for an AND gate, no glitch occurring

is faster than the 1 — 0 transition in propagating towards the output, because the
next clock edge is a negative one. It is easy to find a case (or a logical gate) where

the opposite phenomenon takes place.

Clock ‘ 0

)

|

O w » w »

T 1

Figure 2.4: Glitch case study for an AND gate, glitch occurring

Glitch occurrences were not uncommon at all in CMOS technology. However, in
pNML, because of the clock-based propagation, a glitch lasts for an integer number
of half clock cycles, that is at least half clock cycle. Unfortunately, half clock cycle
might be the length of a “true” signal, where “true” means here that a value is the
correct outcome of the input configuration, not due to glitches. Let us have a look
at figure 2.5.

Input signals last for exactly one clock cycle, as it happens in regular CMOS
circuits, where a clock cycle is usually enough. It would seem a perfectly sensible
choice for pNML as well, inasmuch as a full clock cycle must contain both clock
transitions and both logical values possibly present are sampled. They are indeed,
producing the outcome on the output, which has exactly the same length as the
glitch in figure 2.4.

The problem of telling apart steady values from glitches arises. A different way

23

2 — Delay Analysis

|
|
I
| I—

|
|
[T

Figure 2.5: Delay case study for and AND gate, output length = 1 half clock cycle

to express the problem might be: how can be found the time instant where the output
value is the correct value, rather than just a glitch manifestation? Once the answer
to the problem is found, output values can simply be sampled in that moment.
Moreover, the solution to that problem also provides the delay value for a logic
gate, which is referred to the time instant where the output is free from glitches.
Before moving forward, it might be interesting looking the same input configu-
ration seen in 2.5, but with an half clock cycle shift. Figure 2.6 represents this exact

scenario.

Figure 2.6: Delay case study for and AND gate, output length = 3 half clock cycle

It turns out that the time length of the output signals depends also on the
relative order of the two clock transitions within the clock cycle. Bear in mind that
there are cases where the inputs are under control, so that, if need be, they might be
generated right before the most useful clock edge (though it enormously complicates
the control), and cases where the inputs are actually outputs of another network,
and there is not a direct control over them. A signal driven by the clock (as any
signal within the network is, besides, possibly, the inputs) retains the same value

for an odd number of half clock cycles. If, for sake of simplicity, inputs are kept

24

2.3 — How to deal with glitches in a simple manner

stable for an integer number of clock cycles, as they are in this example, outputs

and inputs will always have a different duration.

2.3 How to deal with glitches in a simple manner

So, all the previous problems, namely, finding the correct time to sample, telling
apart glitches and steady values, and finding the delay of a gate, are all different
expressions of the very same problem. A really simple solution, used when just the
functionality of the circuits is tested, without a fine timing characterization, can be

seen in figure 2.7.

Clock U o ey
Input 1 [|
Input 2)
Output 1 [L1
Output 2 [[

Figure 2.7: Example of the “easy” method to handle pNML delays

In order to understand properly how this works, the context must be somehow
outlined. Suppose an arbitrary network with two inputs and two outputs, where
each input represents a condition to be checked, and whose outputs are driven this

way:

e Output 1 is always low, except when input 1 is a logical one and input 2 is a

logical zero;

e Output 2 is always high, except when input 1 is a logical zero and input 2 is

a logical one.

Hence, the easiest test to perform consists in checking whether output 1 issues
a logical one or output 2 issues a logical zero, because only one out of four possible
input configurations produce that outcome. For the time being, let us focus on the
former. Output 1 is expected to be always zero, except when the input configura-

tion is 1-0. If the inputs are set for long enough in that combination, the output

25

2 — Delay Analysis

should get high, which is exactly what happens in figure 2.7. Of course, this is a
simplification, the other input configurations are ignored here: the point here is just
proving the concept. In some real cases, one input/output configuration could be
more interesting or meaningful than the other (an AND checking whether a set of
conditions is met), in others, all the combinations could be equally important (a

counter).

The idea is this: when the condition for input 1 or input 2 to get high is met,
they are kept high for a long time, several clock cycles. This produces in output
a burst long enough, much more than the time span where glitch might occur. In
figure 2.7, the input configuration in the blue box causes the output burst in orange
box, and the input configuration in red box causes the output burst in green box.
This way, the time where the output cannot show glitches is much longer than the
time where glitches may occur. All it is left to do is sampling the outputs in these
“glitch-free” time periods. To sum up, the method boils down to this: set an input
configuration for long enough until the expected output shows up, possibly after
some glitches, and keep the inputs steady so that the outputs are steady too for a
suitable amount of time. This method mirrors what happened in CMOS technology:
there were glitches in CMOS too, but the clock period was long enough so that they
only took up a small fraction of the clock cycle. The only difference is this one: since
in pNML all the evolution is clock-based, it comes out that glitches are latched as
well as any other signal is. This is also why they last as long as the correct outcomes
do. Clock cycles cannot be stretched to wait for glitches to die out, because only the
clock transitions cause the circuit the evolve. And, given that the glitches are due
to the input transitions, it follows that the clock cycles where inputs change must
be much fewer than the clock cycles where inputs are steady. This is just another

way to express the same thing.

This method has two drawbacks, that make it in fact only feasible for simple cases
or study cases rather than an actual solution. The first one is that determining the
burst-length of the inputs is not easy for an arbitrary network: an AND gate is made
up with a handful of gates; it is easy to guess that roughly after five clock cycles
all the glitches are gone. A more complicated network might not be that easy to
analyze. The second drawback is that this method is essentially based on oversizing,

causing a performance fall.

26

2.3 — How to deal with glitches in a simple manner

A way to sum up all these concepts is this one:

e In pNML, it happens that some clock cycles present input transitions, some
other do not. This is quite obvious, but a there is something to point out: in
CMOS, there is nothing preventing inputs from changing at every clock cycles,
whereas a pNML circuit with an input changing rate so high would be hardly

useful;

e Signal transitions cause glitches, exactly like CMOS technology; unlike CMOS
technology, glitches are sampled and propagated by the same clock that prop-

agates all the signal values;

e Thus, when looking at the output, it turns out that some glitches reached all
the way to it (others might be filtered out by the logical function or by delay
mismatches). It means that if a pNML gate is fed with an input configuration
lasting N clock cycles, the output might last N — m clock cycles, where m
is a number of clock cycles where the output is affected by glitches. Hence,
glitches must be distinguished from the correct output values. In this regard,
an interesting fact is that in a correctly clocked CMOS circuit, glitches are
always locally generated: they come from the transient of the local gate. In
pNML, glitches are sampled by the clock and might propagated through many

gates.

e In order to neutralize the effects of glitches, a simple solution consists in making
N > m. Further delay knowledge is needed to define what exactly is “much
greater”, otherwise the throughput will be strongly affected.

In conclusion, a designer that just wants to test the logical functionality of his/her
circuit could set the inputs to wait an appropriate number of clock cycles (usually
an rough assessment is quick to do, or, in alternative, a very high number might be
chosen), and, at simulation time, it will be very easy to check whether the circuit

issues the expected outputs.

27

2 — Delay Analysis

2.4 Delay balancing

The most important reason why understanding correctly the timing is crucial in
pNML can be proved by the following example. Suppose to have a set of inputs
and two networks. Each one of the two networks evaluates the inputs according to
whatever logical function, and then, if some conditions are met, outputs a logical
one. If the two networks are both high at the same time, some actions must be
taken; therefore, the two outputs are AND-ed. The two networks have, of course, a
different logical function, that means different delays, since in pNML the two things
are strictly related. Thus, after having designed the two networks, it might happen

something like what is shown in figure 2.8.

Clock L L
Input 1

Input 2

Input ng,
Output Network 1 [|
Output Network 2 [
Output AND gate

Figure 2.8: Example of time evolution for gates with strongly unbalanced delay. The network does
not work

The two networks, having a different logical function, also exhibit a different
delay: they outputs are dramatically out of phase, they do not overlap for a single
time instant (remember, the inputs are the same for both) and the AND gate never
outputs a one, inasmuch as it never has both inputs high. The solution is simple:
network 1 will be “slowed down” by means of inverters insertion (actually, pair of
inverters). Of course, to put in place the solution, the delays of the two networks
must be know in great detail. Why the outputs are out of phase has already been
said. Someone might still wonder however why they also have different time lengths
(the first one outputs a logic one two clock cycles long, the second one is three cycles
long). The reason can be showed resorting to this same example, slightly modified.

Have a look at figure 2.9. What happens is more or less the same thing seen in

28

2.4 — Delay balancing

Clock LU
Input 1

Input 2

Input ny,
Output Network 1 [|
Output Network 2 [
Output AND gate [

Figure 2.9: Example of time evolution for gates with unbalanced delay. The network works very
badly

figure 2.8; nevertheless, the delays here are slightly less out of phase, and the AND
gate manages to output a one for a very short time. The AND gate brings out a
signal much shorter than supposed (basing on the inputs lengths, almost three clock
cycles for both). So the reason why in figure 2.8 the outputs of the two networks
stay high for different amounts of time is exactly this: probably inside network 1
a phenomenon alike to the one of figure 2.9 occurred, and, due to internal delays

unbalancing, the output got shorter.

29

2 — Delay Analysis

2.5 Delay characterization

So far, all the main singularities of pNML timing have been illustrated. The aim of
that was proving how necessary a way to compute delays was needed, and in this
chapter it will be expressed. Once the delays are know, it will be possible to know
in which exact time instant (or, better said, clock edge) an input configuration will
show up in output, steady and free from any glitch. Referring to the N and m
parameters defined in page 27, it means knowing both the N — m and the clock
edge where those N — m clock cycles begin. The rules to compute a delay are very
simple:

Follow the path between the two points of interest (even with gates in between),
consider half clock cycle delay for each antiferromagnetically coupled pair of domain
walls, and a full clock cycle delay for each ferromagnetically coupled pair of domain
walls.

Just to test the rule with an example, let us try it on a real circuit, for example,
a multiplexer. A multiplexer (designed in [10]) is a good circuit to test the rule
with, because is essentially made of an OR gate with inputs coming from two AND
gates. The feature that makes it interesting is that the two AND share one of the
three inputs, even though for one of the ANDs it is inverted. Figure 2.10 contains
the circuit. Since the signal values will be checked all along the circuit, each piece
of domain wall is labeled with a letter.

The two figures, 2.11 and 2.10, share the same color code, that works this way:
in the time diagram some signal names on the left column are colored, it means they
are each one the inversion of the previous (from top to bottom) and can be found
in the circuit layout along an arrow of the same color. Then, there are triads of
signal in the diagram, all with the same color, one of them in dashed line. The two
solid-line signals are the inputs of a gate, whose output is the dashed-line signal.
In the multiplexer layout figure this gate is marked with a circle whose color is the
same as the three signals. The kind of gate is, however, left unspecified. Hopefully,
these colors make easier reading the two figures.

Let us check some paths, for example, the one starting from the signal Input
1 to the output (signal Out) of the multiplexer. Six antiferromagnetically coupled
steps are found: B0, B1, B2, B3, D, Out. By looking at figure 2.11, it can be

30

2.5 — Delay characterization

Input 1

Input 0

Figure 2.10: A multiplexer in planar pNML technology. Domain walls, inputs and outputs, logical
gates and some inverters chains are marked

noted that Input 1 changes in half-cycle 2 and in half-cycle 20. Since the first
transition occurs when the multiplexer is open on the other side, it is much better
considering the transition starting in half-cycle 20. By half-cycle 27, the output has
changed. It makes 7 half cycles delay. Only 6 half cycles were predicted, and it is
correct: the input transition occurs right before a negative clock transition, unable
to sample the input value, so that it does not count. Notice that every inverting
function has a delay made of an odd number of half cycles; on the contrary, in a
non inverting function the delay is made of an even number of half clock cycles.
Even though this is a pretty trivial consideration, it might come in handy to check
correctness of layouts or delays counts. A short expression for delay values equal to
an even number of half clock cycles that will be used, for convenience, in future, is
“even delay”, while the opposite case will be called “odd delay”. As an example,
notice that Input 0 and Input I must both have an even delay, because, when the
multiplexer is open on their side, it copies their value in output. If, when assessing
the delays of a network, this sort of rules are violated, it certainly means that the
circuit carries out the wrong logical function.

Signal Sel is more interesting, because it branches in two different gates, whose

outputs then converge in the same gate. In this case the delay to be considered as the

31

2 — Delay Analysis

1 2 3 4 5 6 7 8 9 110] 11|12] 13|14]15] 16] 17 | 18

Cycle #
5 cycle #

2[3]4]s5]6]7]8] o iof11]i2f13[14]15]16]17]18]19]20]21]22]23]24]25]26]27]28]29]30]31]32]33]34]35]36]37
Clock JEpEpEEEREEEE RN .
Input 0 il |
A0 1 [

Al

A=l
C
C
C
C
C

B2
A2
B3
A3
D
Out L | [

Figure 2.11: Example of possible time evolution of the circuit in figure 2.10

characteristic delay from point to point is the greatest among the two. Sometimes
the delay is actually lower, and, being the whole process completely deterministic,
it is possible to find out these cases, but it is not always trivial. Just to make things
a little more clear, figure 2.12 shows an example with the same level of detail of the
previous one.

Roughly speaking, in this case the longer of the two paths from signal Sel to
signal Out is not sensitive to the signal change; therefore, the delay of the transition
is the one of the other path. It was not difficult to spot this case, this circuit has
only three gates whose function is very intuitive, but much more complicated cases
exist. This is why it is much better to stick to the worst case delay rule.

To sum up, once it is known how to compute delays, it can be predicted the time

when an input configuration will have reached the output without any glitch, how

32

2.6 — Feedbacks

Cycle # 0 1 2 3 4

1011

12]13

14]15

16 [17

18] 19

1
5 cycle # oJi]2]3[4]s 67809

Clock LI L[L[1 1L

Input O

AO
Al

B2
A2
B3
A3
D
Out

Figure 2.12: Example of possible time evolution of the circuit in figure 2.10

to balance networks with a different delay, and so on. The only missing concept is

how to handle feedbacks, and it will be addressed in the following section.

2.6 Feedbacks

When in a circuit an output signal is brought back to the inputs, a feedback is
put in place. Some further considerations about delays and timing are necessary.
First off, one might wonder what is the delay in this case, and a off-hand answer
could be: the delay is given by the input-output path, exactly as the previous cases.
In fact this answer is correct, but something more must be said. Let us refer to a
simple feedback circuit, which is basically a variation of the multiplexer already seen.

Figure 2.13 shows it. It is a memory cell, namely, a circuit able to retain indefinitely

33

2 — Delay Analysis

a signal brought in input in a previous moment, ignoring then the current value of

the input.

En

L
(B

D

Figure 2.13: A latch made with a multiplexer with the output brought back to one of the inputs.
Domain wall, logical gates and loops are marked

Three paths have been drawn in figure 2.13, three “standard ones” and a loop.

The characterization of the circuit might be done this way:

e Fnable signal has a delay equal to 5 half clock cycles. It is a branched path,
so it actually has a 4 half cycles delay on one side and 5 on the other, but the

same considerations as before apply in this case;
e D signal has a 4 half cycles delay;

e The loop has a 2 half cycles delay. All signals that share some elements along
their path with the loop will have to stay constant at least for as long as the

loop delay, which is a full clock cycle.

It will be now shown what happens when the loop delay rule is ignored. It is easy
to guess that the circuit will probably get into a metastable state. Anyway, it might
be worth saying that in order for the circuit not to get into metastability, beside
the loop delay condition, it has also to be stable from the logical point of view. In

other words, the output that is brought back in input must not cause a new output

34

2.6 — Feedbacks

change, otherwise it will endlessly change. This is a matter of logical function, not
of inputs timing. A very good example of this is a NAND gate, whose output is fed
back to the input. Suppose the output is 0 and the input is 0. The NAND stays
in this state forever. As soon as the input becomes a logical 1, the output switches
back and forth between zero and one. In this regard, notice that the loop delays
is an even number of half clock cycles: it means that its “logical function” is non
inverting. If we consider the loop as a series of inverters (and, to some extent, this is
correct), one can say that exactly as a series of an even number of inverters in a loop
is not supposed to oscillate, this loop is not supposed to oscillate either. Actually,
it is much more sensible saying that a loop whose delay is even (or, whose logical
function is non inverting) can, from a theoretical point of view, be stable, whereas

a loop whose delay is odd cannot.

Figure 2.14 shows a possible input configuration and timing that brings the cir-
cuit into metastability. The color code previously used cannot be used here (because
of the loop), and a different one is employed: colored arrows run between some sig-
nals, starting from the inputs and reaching the output. In the circuit figure the
color of the circles on the gates is the same as the arrows. Some black arrows are
there, they simply indicated that the two signals are one the inverted of the other
The two domain walls that make the loop always have the same logical value, which
continuously changes at each clock edge. The output should take the opposite value
with respect to the domain wall marked with L0, and it does indeed. It looks like
@ follows L0 because they both change after every clock edge.

Again, it is important to know that the same violation of the loop delay rule
(namely, keeping signal En to 1 for just half a clock cycle) does not always lead
to metastability. Had the input been a logical one, no metastability would have
occurred. This idea seems obvious and one could think to take it for granted, since
the output and the new input would have had the same logical value; yet, it is
uncorrect, because if the initial state is Q = 0, D = 0, metastability still sets in.
Therefore, even if these particular cases in which a violation of the condition does
not lead to oscillations, once more it is better never triggering them, and always
follow the strictest timing rules. Figure 2.15 represents another case of oscillation,
caused by a slightly different input timing. In the example, both D and En never

change twice within 2 half clock cycles, and yet the circuit oscillates. The reason is

35

2 — Delay Analysis

6

7 8 9

10

213

a]5]T6f7[89oJi0]11

12]13

14]15]16]17]18]19

20]21

T S Iy [y N (N B

N N I S I

:
:
ARE

Figure 2.14: Time diagram of a latch led to metastability by signal En too rapidly changing

that the loop delay rule should be casted in this form:

When a circuit has an internal loop whose delay is N half clock cycles, a new

change of the inputs must wait N half clock cycles from the previous input change.

That having been said, the D transition in half clock cycle number 4 and the En

transition in half clock cycle number 5 (which are both sample at the same time) can

be considered two different input changes, whose time distance is smaller than the

loop delay (2 half cycles). Given the storing function of the circuit, these constraints

might also be interpreted as setup/hold time conditions.

Cycle #

1
5 cycle #
Clock

6

7 8 9

10

0]1

213

4a]5]6]7[8JoJi0]11

1213

14]15]16]17]18]19

20]21

1

N N I S I

]

]

]
14/

Figure 2.15: Time diagram of a latch led to metastability by signal En and D changing too close

in time to each other

36

Chapter 3

3D Architectures and

Memories

pNML technology, like other NML technologies, allows stacking multiple layers on
top of each other. There is no definite difference between wires and logic circuitry
in this technology, as the logic gates are basically made with an odd number of
wires magnetically coupled; thus, it follows that processing elements can be placed
wherever it is most suitable. This cannot be done in CMOS: multiple layers are
available, but the processing elements are placed at the bottom, with the upper
layers hosting only interconnections. Hence, the mere logic is spread over a plain
surface; on the other hand, in pNML technology processing elements can be grown
one over the other, with conspicuous area savings.

This chapter shows a few circuits that have been designed trying to exploit as
effectively as possible the layers above the bottom one. To this aim, logic gates tend
to be built by stacking nucleation centers and pads one over the other. The most
obvious way to build a gate is a three layer solution, shown in figure 3.1.

Of course, this way of coupling magnets is ferromagnetic, so that logic connec-
tions must be rearranged accordingly (for examples, in figure 3.1 the multilayer
implementation has a further inverter). Moreover, placing a certain number of nu-
cleations centers and pads throughout the layers might result in unwanted magnetic
coupling: care must be taken in order to avoid this side effect. Inverters too might

get coupled, since they contain a nucleation center. Last, passing a signal from a

37

3 — 3D Architectures and Memories

Il-‘

m -G b -C-. WX N

Il"

) Planar AND gate (b) 3D AND gate (c) 3D AND gate, alternative version

Figure 3.1: Basic method to build gates in multi layer pNML. The two multi layer gates are
equivalent to the on in (a). In 3.1b the fixed magnet and the input B are placed on the sides just
to make the circuit easier to be visually analyzed. The actual circuit implemented is something like
the one in 3.1c. The inverter must not couple with fixed magnets in layers below and above, that
is why the piece of domain wall inside the red rectangle (layer 0 and layer 2) is there, otherwise
the gate could have been narrower

layer to the one above (or below) adds a full clock cycle delay to the signal path (it is
a ferromagnetic kind of coupling). From the technological point of view, chances are
that fixed magnets cannot be biased both ways; this, in terms of boolean logic, means
that either a fixed zero or a fixed one is available, not both together. Therefore,
circuits must be designed using only one of the two fixed magnets, coupled either
ferromagnetically or antiferromagnetically according to the needs. Alternatively, an
inverter placed at the “output” of the fixed magnet might be used, provided that
it does not get coupled with the layers above and below. Needless to say, these are
further constraints to be met when designing the circuit.

Once the circuits have been designed, it is necessary to characterize them with
respect to their timing. It has already been shown that pNML timing is quite
complicated, and, generally speaking, input signals might have to last several clock
cycles. A solid knowledge of the timing behavior allows to reduce the number of clock
cycles to the minimum possible value. Memory elements too must be addressed. As
already seen in chapter 2, this means having loops within the circuit, which in turn
cause a slow-down of the throughput by a certain factor, proportional to the delay
of the loop path. Violating this constraint invariably leads to non working circuits,
and sometimes to a metastable behavior. A possible alternative consists in using
notches, which makes dealing with loops much easier, and reduces metastability

risks too. Nevertheless, delay analysis is still necessary, in order to appraise the

38

3.1 — Decoder

length of the notch-opening period. Following sections will give some examples of
the concepts above mentioned. Areas are expressed in an arbitrary area unit, called
“square”, which is the smallest area that an element can occupy in MagCAD, and
also the area of a grid cell. The word “square” can be used to define a length as

well. Refer to Appendix E for details.

3.1 Decoder

In this section a few decoders are shown. From the logical point of view they are
all very much alike, but technologically they are different. Figure 3.2 shows the first
attempt. Three layers make up the design, with the top and bottom ones holding the
inputs, and the middle one holding the fixed magnets and the nucleation centers: in
other words, it is in the middle layer that the computation takes place. As previously
mentioned, this is the “standard” way of designing gates with many layers available.
Notice that the circuit could not be built as it is, because of two main reasons: fixed
magnets are placed above and below inverters (which contain nucleation centers),
and also, both fixed-one and fixed-zero magnet are used at the same time. It is
shown here just because of its simplicity. Bear in mind that MagCAD does not
check any of the above mentioned conditions, and they remain completely up to the
designer. The reason is that sometimes introducing inverters where it is not allowed
might be convenient when studying how to reduce the critical path, without having
to start the whole design from scratch. Examples of this inverter insertion will be

provided later on. A second, almost technologically correct, version, is shown in

Sel Sel ¢ Sel Sel Selg Se Selg Sel elyg Sely, Sel Sel Selyy Selys
As by
s

T b= b= - - b= b= b= - - = = - - - -
y

(e)-0}

Figure 3.2: Decoder, first version, technology non compliant
figure 3.3. All the pads belonging to the A, and Aj branches have been turned to

39

3 — 3D Architectures and Memories

the other side. This leaves room enough to allocate the fixed magnets in places not
above or below inverters. However, it takes up a little more space. The presence of
both fixed-ones and fixed-zeros magnets is the only technological constraint not yet

met.

Figure 3.3: Decoder, second version

Finally, it is shown in figure 3.4 how the design is made completely compliant with
the technological constraints. The difference between this and the previous version
is a good example of how a designer might get by with only a kind of fixed-magnet:
the type of coupling must be changed, that means moving signals to other layers. In
this case it has been quite easy to do, but in other cases, with denser designs, finding
the space might be slightly trickier. Since in this implementation only three-way
majority voters were available, one of the other signals too has been coupled the
other way, so that the inverter has been removed. Again, in this case it is easy,
because the domain wall is long enough. In other cases placing an inverter might
not be easy, as the space may be missing, or the inverter might get coupled with
surroundings layers. The last one marks a difference with the previous approach. A
quick look to the image 3.5 reveals that the delay is not the same for all the outputs:
for instance, in the path running from input A, to output Sel, the delay is 4 half
clock cycles shorter with respect to the path A,-Sel,. This is quite usual for this
technology; sometimes the unbalancing is offset by means of the use of a notch (this
concept will be further elaborated in next sections), some other times there is very
little to do. In this case the difference between this approach and the previous one
consists in only a minor area reduction for the current implementation, but in some
cases implementations other than this are very expensive in terms of area, or even

unfeasible. In future, when referring to the approach used to build the first example

40

3.1 — Decoder

Figure 3.4: Decoder, third version, fully technology compliant

of the decoder, the expression “flat delay” might be used, because the delays are all
equal for every output, whereas this last approach might be referred to as “scaled

delay”, since the delay increases as the outputs get farther away from the inputs.

vy By b Bk
 Slc8clcdcalcdcdcicalcdcicicalcdclcd

Table 3.1 shows the differences in area occupation and delay for the four version
of the decoder.

These two possible approaches do not concern only the decoders: almost any circuit

Decoder version Delay Area occupation Feasihle
First version 9 833 =264 No
Second version 9 9.33 =297 No
Third version 9 9-33 =297 Yes
9 if0<e1<3
Fourth version 10 of i=4 7-36 =252 Yes

i+5 if i>5

i index is the output number index 0 <1 < 15

Table 3.1: Comparison of area (expressed in squares) and delays (expressed in half clock cycles)
for the decoders described in section 3.1

41

3 — 3D Architectures and Memories

can be designed in either way. Thus, it is important to underline a further difference
between the two models, by means of the timing diagrams of the circuits. Figure 3.6
and 3.7 show a time evolution where all the input combinations are tested. Each
input combination is kept stable for a great amount of clock cycles, and this is why

the clock signal is not drawn, it would be too dense to be readable.

SeI 12 [Tl @_

Sel 15: |

Figure 3.6: Test of the whole set of input combination for the circuit in figure 3.4

Comparing the two time diagrams, one can see that:

e The output are more regular in the flat version, they all last the same amount
of time, whereas, for example, in the scaled delay version the Sel;s stays at
one for less than most of the other output signals. Notice that the input

configuration is the same in both tests;

e The scaled version is more prone to glitch. 4 glitches occur in the flat decode

test, 10 in the scaled one. Glitches are outlined with a blue ellipse. Moreover,

42

3.1 — Decoder

wn
o

=}
_l
=

Sel 15 @ m F)__ﬂ_‘

Figure 3.7: Test of the whole set of input combination for the circuit in figure 3.5

the glitches occurring in the flat decoder test cannot be avoided by changing

the circuit configuration, they depend on the logical function;

e The glitches too have varying length in the scaled decoder version. They tend
to last longer in the outputs placed farther away from the inputs. In output

Selys, the last glitch is similar in duration to the correct output.

The comparison shows that a scaled delay solution is possible and might be more

appropriate, but also requires more care in delay analysis.

43

3 — 3D Architectures and Memories

3.2 Folded Decoder

In order to save space and to try an effective use of the upper layers, the decoder
can be “folded”. The circuit is in figure 3.8. The outputs from 8 to 15, and relative
combinational networks, are brought to three separated layers above. This way the
footprint of the decoder is about half of the original one. However, this introduces a
delay shift between the outputs 0-7 and the outputs 8-15. This happens because the
inputs are placed on the bottom layers; signals run through the 0-7 outputs, climb
up to the top layers, and then reach the outputs 8-15. In section 3.1, page 40, it has
been already said that a progressively increasing delay among the bits of the output
vector is perfectly normal. Hence, this folding just introduces a step-increase of the
delay difference between the two groups of outputs (otherwise, the difference would
have increased more or less as shown in 3.1) Anyway, another option is available:
the input signals should get to the top half without passing through the bottom one.
Rather than a “series connection” (inputs — bottom half — top half), there would
be a “parallel connection” (inputs — bottom half; inputs — top half; both at the
same time). Being this just a study case, it did not seem necessary. Furthermore,
this example shows what are the limits when trying to develop the circuitry along
the vertical direction: an increasing share of the area is devoted to the routing of
signals among the various layers. Given the features of this technology, this also
adds to the delay of the paths.

Selyg Sely Selyo Selyg Selyy

Selg ‘ Selg Selys
5 3
- h h h B a & & &
3 Sel Sel, Sel, Sel Sely Selg Selg Sely
2
1
0

Figure 3.8: Folded Decoder

44

3.2 — Folded Decoder

Table 3.2 lists the delays from each input to each output, and the area occupation.
The rightmost column contains the highest value, which can be considered the “true”
delay of the output signal, because it is the worst case. The reason why the full
table is shown lies in the delay pattern: if each odd delay value is changed with
a 1, and each even delay value is changed with a 0, one gets exactly the code for
that output. This is not casual at all, but rather a direct consequence of the fact
that opposite values propagate with delays whose parity is opposite. Furthermore,
between output 7 and 8 can be seen the delay step increase due to the folding of the

decoder.

Ay Ay Ay Az Typical delay

Sely 4 4 8 8 8
Sely 5 4 8 8 8
Selsy 6 5 8 8 8
Sels 7 5 8 8 8
Sely 8 6 9 8 9
Sels 9 6 9 8 9
Selg¢ 10 7 9 8 10
Sel, 11 7 9 8 11
Selg 18 14 16 15 18
Selg 19 14 16 15 19
Selip 20 15 16 15 20
Sely; 21 15 16 15 21
Selis 22 16 17 15 22
Seli;s 23 16 17 15 23
Seliy 24 17 17 15 24
Selis 25 17 17 15 25
Area 823 =184

Table 3.2: Delays of the Folded Decoder, expressed in half clock cycles. Area (expressed in squares)
is reported at the bottom line

45

3 — 3D Architectures and Memories

3.3 Multiplexer

Traditional word lines and bit lines are very expensive in pNML technology in terms
of area occupation. It has been shown in [10] that a clever and efficient alternative
can be a multiplexer, allowing either to feed the current cell with the datum to
be written, or to let the latter pass by towards the next cell. Hence, it has been
implemented. Figure 3.9 shows a possible solution. Table 3.3 reports the delay for

the circuit.

D,

Enable

Figure 3.9: Multiplexer in three layers

Delays
D, 8
Dy 8

Enable 9 (8)!
Area 6-6=236

1 Signal FEnable reaches
the output through two
different paths

Table 3.3: Delays of the Multiplexer, expressed in half clock cycles. Area (expressed in squares) is
reported at the bottom line

3.4 Storing Cell

If the output of the multiplexer is fed back to one of the inputs, the multiplexer
becomes an element with storing capabilities, that from now on will be referred to as
“storing element” or “storing cell”. The name “memory element” (or “memory cell”)
will be used for the combination of the storing cell with a multiplexer. Figure 3.10

shows the circuit, whereas timing and area are described in table 3.4.

46

3.5 — Memory Cell

(2,(1;&;1

0

Figure 3.10: Storing cell

Signal Delay

Data 8
Enable 9

Loop length=10
Area 3-6=18

Table 3.4: Delays of the Storing Cell, expressed in half clock cycles. Area (expressed in squares)
is reported at the bottom line

3.5 Memory Cell

A set of two multiplexers can be used to build the generic memory cell. The input
data (D) enters both the storing cell and the multiplexer; the output data (Q_data)
of the storing cell enters the other input of the multiplexer. The multiplexer will
be switched to the storing cell output data in case the current one is the selected
memory location, otherwise will bypass the cell and take D as output, making it
available for the next location, that will behave likewise. The cell will be always in
read mode, unless it is selected and the instruction is a write one.

Figure 3.11 shows the layout of the circuit (a) and a logical representation of it (b).
Table 3.5 shows the “truth table” of it, and table 3.6 contains the delay and area

figures.

47

3 — 3D Architectures and Memories

Q_data

D
F——
Enable

W2 - ‘Qdat;o
- o
. oo

Sel\ {
| 4

II “EH Write gg|
D— ‘ 0 Enable -

(a) pNML layout. . (b) Logical representation
Figure 3.11: Basic memory ce

Inputs Outputs
Sel Enable Q Q_data
0 0 D Stored Datum
Lo 1 D D
1 0 Stored Datum Stored Datum
1 1 Stored Datum D

L In practical use, this is a forbidden input configuration

Table 3.5: Logical behavior of the Memory Cell

Delay to ()_data signal Delay to () signal

Data 8 8
Enable 9 19
Sel - 8
Q_data - 10
Loop length=10
Area 6-6=236

Table 3.6: Delays of the Memory Cell, expressed in half clock cycles. Area (expressed in squares)
is reported at the bottom line

48

3.6 — Memory Cell - Notched version

3.6 Memory Cell - Notched version

It is well know that pNML technology offers the chance to “pin” a certain logical
value in a specific point of the nanowire, depending on the geometrical features of
the point. This provides the designer with a latch-like device, the only difference
being the different conditions needed to output a logical one or a logical zero. Hence,
the memory cell might be latched this way. The storing principles is still the same,
namely, the feedback, but the notch reduces the risk of metastability (output os-
cillating between one and zero because of improper timing). The reason why this
happens can be easily explained. First, let us recap that a loop is updated this way:
it must be logically “broken” somehow, then a new value is fed into the loop. The
updated val<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>