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Abstract

CMOS has been the standard technology for building digital circuits for decades,
and one of the key reasons why Moore’s law has been holding for such a long time;
as a result, the electronic field has experienced astonishing and constant progresses
throughout time. In recent years, unfortunately, this progress is in serious jeopardy.
Atomic-scaled transistors, bringing along an almost unmanageable power density,
will sooner or later become impossible to scale further.

For these reasons, technologist have been looking for alternatives for a while.
Some of them are improvements to the CMOS technology, whereas others call for
a complete change of paradigm. The QCA (Quantum Cellular Automaton) is a
family of technology belonging to this second branch. The possible implementations
are many, with some of them being more promising than others: the nanomagnetic
implementation (NML, Nano Magnetic Logic) is a fairly good implementation, com-
pletely compliant with current CMOS fabrication process, and with interesting fea-
tures as far as power dissipation and area are concerned. Nanomagnetic technology,
in turn, has many different implementations. Among them, the most peculiar one
is pNML (perpendicular Nano Magnetic Logic), which is the technology addressed
in this thesis work. Being very much 3D oriented, very low power, and being less
constrained than other NML are some of its most important and interesting traits.
The 3D feature is a great advantage over CMOS, which allows the integration of
many metal layers, but just for interconnections, with the whole logic lying on the
bottom area of the circuit. pNML is also interconnections-free, since each wire also
can be thought as a computational device. Last, as all the other QCA technologies,
pNML exhibits a extremely pipelined signal propagation fashion.

With this thesis, different 3D pNML architectures are explored. For this purpose,
the tool MagCAD has been adopted. One of the first aims consists in trying to take
advantage of the 3D feature. Previous works used more than one layer, but just with
the purpose of avoiding wire crossings or as VIAs. In other words, previous works
analyzed two-layer architectures with a second layer devoted to the interconnection
routing. This work instead endeavors to place roughly the same amount of logic in
all the used layers, trying therefore to make the third dimension perfectly equivalent
to the two planar ones. That is to say, the idea consists in developing the circuit
towards the vertical direction rather than enlarging the footprint. An important
requirement is also the characterization of the circuits, before and after the design,
in particular with respect to the delay. The design has to be done considering
beforehand the delays, which has to be finely tuned in order to achieve the best
possible timing.



The research of effective design techniques and the sensible use of the 3D feature
can be successfully done only with moderately complex circuits, and this is another
important point of the thesis. Despite current technology studies just proving to
be able to implement architectures based on two or three layers, the 3D designs
presented in this work see the adoption of up to 14 layers.This study has been
carried out to explore the feasibility of logic architectures based on pNML structures
evaluating how the use of multiple layers can impact the performances. In order to
obtain a substantial analysis, version limited to two layers has been developed for
some of the proposed architecture.

The most elaborated algorithm implemented in this thesis is the summed area
table (SAT), particularly suited because its complexity can be defined by choosing
the number of elements, the word width and the control strategy. Moreover, it is an
incremental algorithm, allowing many kinds of optimizations and implementations.
The algorithm requires several memory, logical and control elements, all done both
in 3D and in two layers. Some of them are represented in figure 1. The one in

(a) (b)

Figure 1: Example of pNML circuits designed in this thesis: (a) is a memory cell made of two
inverters; (b) is a PLA composed of four ANDs and two ORs

figure 1a shows a memory cell, made with two cascaded multiplexer: one of them
actually stores the input data, the other one serves as bit line (if the cell is not to
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be written or read, it is bypassed by means of that multiplexer). This is an example
of the alternative structures implemented with this technology. The other one, in
figure 1b, is a PLA (Programmable Logic Array), with two OR planes and four
AND plane. It is made of five layers, that are very convenient to allocate the large
amount of wiring needed in such a circuit. The hardware is modular, made with
a basic element repeated several times; therefore, it could carry out the algorithm
over a matrix with arbitrary size. It is tested with a 2 by 2 matrix and a 4 by 4 one.

The last job involves a technological study of the physical parameters, in order to
find out possible delay optimizations. The influence of the most relevant parameters
is found, so that in case the optimal value of technological variable is to be found,
a method to find it is already available.

The results are encouraging: first of all, no circuit whatsoever has been found to
be unfeasible; even though it might seem obvious, it is actually not guaranteed for
such a new technology. From the point of view of the area occupation, this new tech-
nology could even outperform some of the most recent CMOS technological nodes.
In this regard, being able to stack the logical elements one over the other is a great
advantage in terms of area reduction. Therefore, the two-layer versions are undoubt-
edly larger, but that is really the worst case condition. The delay analysis shows
that CMOS is much faster, by several orders of magnitude. Anyway, the interest
towards pNML does not lie in its delay performances, but rather in its low power
and area features. A careful design and a technological parameters’ optimization
yield a quite good improvement, but still very far from CMOS performances. The
plots in figure 2 summarize what are the final results obtained by the study of the
SAT algorithm implemented. The 2a plot represents the delay. The times shown

(a) (b)

Figure 2: Delay and area results of this work for the pNML circuits performing the SAT algorithm
for matrices with size 2 by 2 and 4 by 4, compared with the CMOS implementations

are those needed to complete a SAT algorithm over a matrix with 16 locations (the
bars with the 4 x 4 label) and with 4 (the bars with the 2 x 2 label). Likewise, the
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2b represent the area that the two versions (4 x 4 and 2 x 2) of the circuit occupy
when manufactured in the two technologies analyzed (pNML and CMOS).

The thesis is structured this way: chapter 1 contains an introduction to QCA
and nanomagnetic technologies, in particular to pNML. The description is not rig-
orous, the aim is setting the stage to understand what follows. Chapter 2 is devoted
to the delay analysis. Delays are one of the most baffling traits of pNML, and tack-
ling them from the beginning will certainly be beneficial for future understanding.
Chapter 3 shows some logical, memory and control elements in their 3D implemen-
tation. They are designed and characterized, building then a library of components
for the SAT hardware, which is presented in chapter 4. This latter chapter illus-
trates the algorithm and the hardware for its implementation. Chapter 5 is devoted
to the performance analysis of the SAT hardware, compared with various CMOS
implementations. In chapter 6, the SAT hardware and some of the most telling
circuit are designed in two layers; some performance comparison follows. Chapter
7 contains the technological optimization of the parameters, in order to make the
circuits designed faster. Last, in chapter 8 the conclusions and possible future work
are presented.

The first appendix contains a short note about the delay model used in this thesis.
The following one contains a series of general rules, advices and tricks to design in
pNML. Next chapter shows how to make 3D drawings of the circuits designed in
MagCAD. The fourth appendix chapter is about a power analysis of the CMOS
circuits implementing the SAT is in. The last chapter contains some advices for the
use of MagCAD.
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Chapter 1

Introduction to pNML

The expressions “QCA” (Quantum Cellular Automata, [1]) defines a family of new

technologies that can be used to represent digital values, and have all in common

the fact that the information is represented by means of the two possible states of

a quantum variable, rather than a voltage. Here this technological family is briefly

described, in particular its nanomagnetic implementation, which is the technology

used for this thesis work.

1.1 QCA and logical functions

The basic idea is defining a volume with a high potential barrier, and injecting two

electrons in it. This structure is called “cell”. The two electrons cannot escape from

the cell, and they will settle within the potential well in an arrangement that makes

their distance the greatest, because they tend to repel each other. What happens

is pictured in a simple drawing in figure 1.1. The picture shows that, when trying

to get as far from each other as possible, the two electrons arrange themselves in

two alternative patterns, that can be encoded as the two logical values, 1 and 0. A

cell alone is not very useful, but luckily, when two or more cells are brought close

together, they interact. Let us refer to figure 1.2. If the state of the leftmost cell

is “forced” somehow from the outside, the cell on its right will be influenced, and

switch its state because the other one is more energetically favorable. The third

cell will be influenced as well, and so on until the far right end of this arrangement,
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1 – Introduction to pNML

Basic cell, a potential well

A pair of electrons is injected

Two possible configurations exist (left=1, right=0)

Figure 1.1: The two possible arrangements of a QCA cell, marked in red and blue

Figure 1.2: Example of information propagation through a QCA wire. Time evolves towards the
direction of the arrows

that might be legitimately defined “wire”, is reached. A particular arrangement of

cells is able to propagate the opposite value of the input. This inverter is shown in

figure 1.3.

This technological family has also a more advanced logical elaborating device,

the majority voter. It can be seen drawn in figure 1.4. The device has three inputs

and one output. It has a cell in the middle (the green one), that will hold the result

of the computation, influenced by all the the final ends of each input wire, that could

undergo opposing forces. In figure 1.4, for instance, the bottom input would cause

the elaborating cell to assume the state “1”, and the two remaining ones would cause

it to get into the “0” state. These are somehow “stronger” than the bottom input

2
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t=0

t=1

t=2

t=3

Figure 1.3: QCA inverter and example of signal propagation

Figure 1.4: QCA Majority Voter

alone, and the final state of the elaborating cell will be 0. Elementary boolean logic

proves that if one of the inputs, no matter which one, is always forced in the same

state, the device will exhibit either an AND-like or an OR-like logical behavior. For

sake of completeness, table 1.1 shows the truth table of such a gate.

3
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In1 In2 In3 Out

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Table 1.1: Majority Voter’s truth table

1.2 QCA Clocking

The description of the propagation phenomenon of the previous section, as it is,

leads to non working circuits. The reason is found in the energy configuration of

the device: basically, the energy barrier between the two states is too high for the

“forcing” cell to cause the cell on its right to switch its state. Thus, the leftmost cell

would be switched by some mechanism on the outside, and would be the only cell

switching. A way to lower this energy barrier is needed. Once it is found, it must be

implemented with some care; issues (namely, backdriving, stuck or unstable circuits)

would come out otherwise. Consider figure 1.5. The black cell located exactly in the

Figure 1.5: Example of non working QCA propagation mechanism

middle has all the cells on its left trying to force a state, and all the cells on its right

trying to force the other one. The cell itself is not in anyone of those two states, and

experiences a strong influence from both sides. Therefore, some sort of timing or

pattern must be found to avoid ambiguous cases like this one. The mechanism that

lowers the barriers is in fact the clock, which, in QCA, both times the circuit and

supplies it with power. Physically, it is a field (depending on the implementation

could be electric, magnetic of both) that provides the energy needed to overcome

4
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the energy barrier. The clock scheme is a four-phases one, shown in figure 1.6. The

t=0

t=1

t=2

t=3

Clock
Zone 0

Clock
Zone 1

Clock
Zone 2

Clock
Zone 3

Clock
Zone 0

Clock
Zone 1

Clock
Zone 2

Clock
Zone 3

Figure 1.6: QCA clock zones and possible time evolution

meaning of the drawing should be self-explanatory, but in figure 1.7 the “legend” is

shown. A preliminary thing to say is that the introduction of the clock, that lowers

Hold

Release

Relax

Switch

Figure 1.7: Representation of cell states in every clock phase

the cell’s potential barrier, adds a possible state to the already existing two. This

state is a “Null” state, something like the boolean “X” state; in this state the cell

is in neither of the two logical values, and is highly influenced by the neighbors.
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As the figure shows, the four phases are:

• Relax: the potential barrier of the cell is low, the cell is not in a defined logical

state, and is ready to get into the one forced by the neighbor. The clock keeps

the potential barrier low;

• Switch: the cell is starting to get into a defined state, influenced by the

neighboring cell; the clock is being released, so that the energy barrier is

raising and the state of the switching cell is becoming less easy to influence;

• Hold: the potential barrier is high, the cell stays in a well-defined state and

can be used to set the state of the next one. The lowering-barrier feature of

the clock is now turned off on this cell;

• Release: the clock is lowering the energy barrier, and the cell is loosing its

state.

This way, the currently switching cell always stays in between a cell with a strong

influencing ability (the one in the Hold state) and one with almost no influencing

ability (the one in the Relax state). This avoids backdriving and sets the direction of

propagation of the wire. Hence, the circuit is made of several “strips”, and in every

one of these strips the clock is in a certain phase: these strips are also called “clock

zones”. Some variations to this scheme could be found, for example, the clock could

be made of just three phases, provided they overlap for a certain portion [2]. The way

QCA circuits are clocked and powered makes them a sort of highly pipelined circuit,

where each signal undergoes a delay equal to the number of clock zones it travels

through. This is also known as the characteristic (or problem) “Layout=Timing”.

6
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1.3 Nanomagnetic QCA

One of the possible implementations of QCA is the nanomagnetic one. It leverages

nanomagnets, which are magnets whose size is about tens or hundreds of nanometers.

When the magnet is so small, it only contains one magnetic domain; this makes its

magnetic field well-defined. Moreover, in these nanomagnets the magnetic field is

very likely to have just two, opposite directions. This property is called “anisotropy”,

and will be further elaborated in chapter 7. For the time being, let us just say that it

is caused by the elongated shape of the nanomagnets, and that the axis where these

two preferred directions lie is called “easy axis”, whereas the orthogonal axis is called

“hard axis”. These two features make the magnet particularly suited to represent

the two digital states. If the easy axis lies in the same plane the nanomagnet is lying,

the technology is called “in plane Nano Magnetic Logic” (iNML); if the easy axis

lies on a plane perpendicular to the one where the nanomagnet lies, the technology

is called “perpendicular Nano Magnetic Logic” (pNML).

1.3.1 in plane Nano Magnetic Logic

In figure 1.8 two lines of magnets, one horizontal and one vertical, are shown. Notice

Figure 1.8: iNML wires

that when magnets are lined up in the same direction as the one of their magneti-

zation vector (the vertical line of the figure), each magnet forces into the next one

its own state. On the other hand, if the nanomagnets are lined up in a direction

orthogonal to the one of their magnetization vector, each nanomagnet forces into

the next one the opposite of its own state. The two possible coupling between mag-

nets are called respectively “ferromagnetical” (F) and “antiferromagnetical” (AF).

7
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A line of antiferromagnetically coupled nanomagnet is also the way the inverter is

made: a line of an odd number of nanomagnets will always hold opposite values on

its ends. The majority voter is still the main logic gate, and is also made in the

same way seen before. A nanomagnet is influenced by three other nanomagnets, as

in figure 1.9. The only difference is that in this case two inputs are coupled one way

Figure 1.9: iNML majority voter

(the top and bottom ones, F coupled), and the remaining one the other way (the

middle one, AF coupled). Of course, inverting the signals as needed is all what is

needed to deal with this new characteristic of the device.

Next thing to describe is how the circuit is clocked. There still are clock zones,

but the clock phases could be just three (some conditions are to be met), as in here.

The nanomagnes are brought to a “Null” state by means of a magnetic field that

causes the direction of the magnetization to be parallel to the hard axis. As soon as

this clocking magnetic field is removed, the magnetization direction moves back to

the hard axis, in the direction forced by the neighboring nanomagnets. Clock zones

still exist, and the easiest way to technologically implement them is by means of

wires running below the planes of the nanomagnets [2],[3]. Figure 1.10 shows how a

nanomagnetic wire evolves across the three clock zones. The three phases are: Hold,

Switch and Reset, and appear, from left to right, in this same order in the figure. The

nanomagnets in the switch zone are orienting their magnetization vectors according

to the influence of the last nanomagnet in the hold zone, without the nanomagnets

on the right, in reset zone, able to interfere. The principle is the same as the one

seen for generic QCA. The blue arrow shows the direction of the clock field. Another

possible way to reset the nanomagnets leverages piezoelectricity and absorbs much

less power [4], but a detailed description is beyond the scope of this thesis. There is

8
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SwitchHold Reset

Clock direction

Figure 1.10: Clock phases on a iNML wire

nothing preventing a nanomagnet from being placed above another one, rather than

besides: this is a multi layer technology. In order to produce one of the known gates

(AND, OR, NAND, NOR) with a majority voter, one of the inputs should hold a

fixed logical value. In iNML, this can be easily done: a possible solution consists

in placing a nanomagnet rotated by 90 degrees. Given the clocking field direction

(figure 1.10), the clock will force a magnetic field on it along the easy axis. When

the clocking field is removed, the magnet will stay in this magnetic configuration.

By placing it close to either the top or the bottom of the nanomagnets it can be set

whether if forces a 1 or a 0 on the nanomagnet. Another way employs nanomagnets

with “slanted” edges [5]. The slant produces a slight rotation of the easy axis,

so that when the clocking field is removed, the magnetization vector will be much

more likely to turn to one side rather than to the other. Figure 1.11 shows what

these solutions look like. Figure 1.11a shows how a rotated nanomagnet can serve as

“fixed-input”; figure 1.11b shows the rotation of the easy axis, and how consequently

the magnetization vector rearranges when the clock field is removed; figures 1.11c

and 1.11d show example of the application of the two devices two build a AND/OR

gate with a majority voter. The clock direction is the one indicated by the blue

arrow.

9
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(a) Rotated
Magnet

(b) Magnet with slanted edge

Clock direction

(c) AND/OR gate with a rotated magnet (d) AND/OR gate with a “slanted-
edge” magnet

Figure 1.11: Examples of AND/OR nanomagnetic logic

1.3.2 out of plane Nano Magnetic Logic

The preferred anisotropic direction in a nanomagnet might be also be out of the plane

the nanomagnet is placed on. In this case the technology is called “perpendicular

Nano Magnetic Logic” (pNML). Usually, this property is achieved by manufacturing

the nanomagnets as a stack of two different, alternating, materials, and making them

very thin. This difference has a lot of consequences, that make pNML technology

quite different from all the rest of NML. First of all, the nanomagnets can have

whatever shape. Second, clock zones are not needed anymore. The reason is a little

10
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elaborated, and next subsection is devoted to its illustration.

Figure 1.12 shows some of the pNML nanomagnets. In the picture they are

about squared, but they can have any shape.

Figure 1.12: pNML nanomagnets in the two possible magnetization states

Local Anisotropy Reduction

In general terms, the way a logical value is propagated through a series of lined up

pNML nanomagnets is the same as any other NML technology: the magnetization

direction of a nanomagnet influences the magnetization direction of the next one,

with the help of a clock. Since in a line of regularly spaced nanomagnets every one

of them would be influenced by the one on its right as much as it would be by the

one on its left, an appropriate timing of the clocking field is necessary to set the

direction of propagation of the information. This last point is exactly what changes

in pNML technologies. As mentioned above, the perpendicular anisotropy feature is

achieved by manufacturing the nanomagnets as a stack of two different materials. If,

in one spot of the nanomagnets, this order is somehow upset or destroyed, that same

spot will show a more limited anisotropy. The spots with the lowest anisotropy in a

magnet happen to be the ones more sensitive to the influence of neighbors’ fringing

fields. Therefore, it is much easier forcing a particular direction of the magnetic

field within that area. This anisotropy reduction is made by means of a Focused

Ion Beam irradiation (FIB), that mixes up the molecules of the two materials the

nanomagnets is made of [6]. The spot with modified structure is called Artificial

Nucleation Center (ANC). All these concepts are shown in figure 1.13. The figure

11
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FIB irradiation

(a) FIB irradiation process

(b) Propagation direction

(c) pNML nanowire

Figure 1.13: pNML wire manufacturing

shows also why the propagation direction is set: if the nanomagnets is irradiated on

the lefthand side, the ANC will be much closer to the nanomagnet on its left. With

a careful study of the technological and geometrical parameters, the ANC can be

made very sensitive to the magnetic field of the left hand nanomagnets, and almost

insensitive to the on the right side, as shown in row b of figure 1.13. This is what

sets the propagation directions. “Nucleating” an ANC means that a magnetic field

direction has been forced into the ANC itself. The expression “the ANC nucleates

itself” can be found too. Notice that in a line of coplanar pNML nanomagnets, their

coupling is antiferromagnetical.

Gates in pNML

The universal gate in pNML is the majority voter. It can be made by a nanomagnet

whose ANC is influenced by more than one other nanomagnet (but always an odd

number), as it is draw in figure 1.14. The picture also shows an important design

feature of pNML: it is a 3D technology, with nanomagnets that can be placed one

above the other.

The three input nanomagnets are draw in a different color with respect to the

12
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Layer 2

Layer 1

Layer 0

Figure 1.14: 3D pNML majority voter

output nanomagnet. Notice also that the two nanomagnets above and below the

output one are ferromagnetically coupled, and the output nanomagnet behaves ac-

cordingly. The coupling between two nanomagnet in different layer is called a “via”,

because of the functional similarity with the CMOS element bearing the same name.

In place of one of the input nanomagnets in figure 1.14 there could be a fixed-

values nanomagnet, which of course are available for pNML too. Unlike iNML,

though, usually just one logical value (that is, magnetic direction) is available for

them, rather than two. This could seem a massive hindrance, but it will be discussed

at great length, and it will turn out that it is not a big issue.

pNML Clocking

pNML circuits still need a clock to propagate signals, because the magnetic field

generated by the nanomagnets is not strong enough to nucleate the ANC. The clock

is also a magnetic field, that is applied over the whole circuit surface with no clock

zone or any other spatial distinction. Its direction is the same as the magnetization

vector of the nanomagnets, that is, perpendicular to the plane where the magnets

are placed, and alternates between two opposite values. In order to understand

better, it is very helpful thinking that the clock alternates between logical value 1
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and logical value 0. The intensity of the clock field is such that it cannot nucleate an

ANC if the nanomagnet on the left of that ANC does not have a field that supports,

rather than oppose, the nucleation of that value. In other words, an ANC nucleates

with a magnetic field representing the value 1 only if the clock is currently at the “1”

value, and the nanomagnet on the left side is holding a “0” value (remember, the

coupling is antiferromagnetical, so each nanomagnet forces its opposite value into

the next ANC). The propagation of zeros and ones is out-of-phase by 180 degrees, as

it is shown in figure 1.15. The first row represents a steady situation, where all the

Figure 1.15: Example of signal propagation in pNML

nanomagnets are already updated and coherent. If the input on the left (big, pink

arrow) does not change, the line of nanomagnets will never change either. In the

second row the input changes indeed, and the remaining rows show the evolution,
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1.3 – Nanomagnetic QCA

pointing out which nanomagnet is being updated.

According to this description, a wire in pNML is made in pretty much the same

way it is done in iNML: a line of basic nanomagnets is built. Several clock cycles

are needed for a token to travel all the way through the wire, and this could jeopar-

dize the performances and be challenging for the designer to handle. An alternative

is available thanks to the ability of pNML nanomagnets to retain the basic char-

acteristic so far listed regardless of the shape they have, that allows to draw long

nanomagnets which are in fact wires. To understand how a long wire behaves, it is

necessary to introduce the concept of domain wall.

Domain Walls

A domain wall is the border between two adjacent domains within a nanomagnet

whose magnetization is different. The subject is very complicated; here only the

concepts useful to understand their use along with the pNML technology will be

addressed. The domain wall can be “shifted” towards a certain direction by means

of an appropriate magnetic field, and the usual way to work with them consists

in manufacturing long nanomagnets which contain some domain walls, and then

analyzing their movement along the wires. What happens in a pNML nanomagnet

is that the magnetization vector is changed in the ANC area, and then is propagated

towards the rest of the nanomagnet in the way described above. Figure 1.16 shows

how the domain wall moves along a nanomagnet. Domain walls can also be used

to build digital circuits: bends, branches and tips within the domain wall path,

together with the exposure to a magnetic field with varying direction and intensity,

provide logical functions such as AND, OR and NOT ([7]). The most relevant point

is that domain walls do not propagate in the high-pipelined fashion described for all

the other QCA technologies, but rather as signals in a combinational network. This

makes them really attractive to reduce the delay, in terms of clock cycles, needed

for signals to run through long wires. Basically, the computation could be carried

out in the usual way, whereas the long rows of nanomagnets, with a high latency,

are changed with domain walls. The clock period will increase, because what causes

the domain wall movement is the clock field, but the wire will deliver its values

in just one clock cycle. Thus, three main elements make up this new variation
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Figure 1.16: Domain wall propagation along a nanomagnet

to the NML technology: nucleation centers, stretched nanomagnets through which

a domain wall propagates (really often called just “domain wall”: the two terms

are interchangeable in practical use, and it is almost impossible to confuse the two

meanings. Other words could be “wire” or “nanowire”), and the notch, that will be

addressed later on. Of course, these are not separated items, as ANC and notches

are both adjustments made on the stretched nanomagnet. This design approach,

that combines domain walls and standard pNML coupling, is called Domain Magnet

Logic (DML,[8]). Figure 1.17 shows how circuits can be made. The figure presents

two alternatives of the same circuit, a majority voter, with the inputs on the bottom

and the output on the top. The elements like the one in the red circle are nucleation

centers, while in the green circle there is a “Pad”, that is just the end of a domain

wall, but it is drawn that way to make clear that it is influencing an ANC. The

black circle encloses a domain wall antiferromagnetically coupled with an ANC: in

practice, an inverter. There is no functional difference between that element and

the configuration of two adjacent nanomagnets in figure 1.13, bottom row; however,

the actual structure is different, and the configuration inside the circle is specifically

designed to increase the coupling between the two nanomagnets. This configuration

is usually considered an independent design element, called, of course, “inverter”.

The key difference between the circuits is that in the 1.17a, long nanowires run

from the input ANC to the one of the majority voter, whereas in the 1.17b those
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(a) Non pipelined (b) Pipelined

Figure 1.17: Alternative circuit designs with different maximum wire length

nanowires have been considered too long, and the clock period would have been

excessive. Hence, it has been divided in sections with a couple of inverters: this

way, the signal takes one more clock cycle to reach the majority voter ANC, but the

clock period is lower. In other words, the 1.17b is a pipelined version.

Notches

The last feature of pNML technology, very important, is the notch. A domain wall

moving along a nanomagnet is sensitive to the geometry of it: this is how domain

wall logic is build. Some “deformations” of the nanomagnet cause the domain wall to

be trapped in it, and it will not move any farther, unless a stronger magnetic field is

applied (different from the usual clocking magnetic field). The expression “pinning

a domain wall” is the one used to describe this phenomenon. The magnetic field

could be applied to the whole circuit, causing all the notches of the circuit to “open”,

or “release” (“depin the domain wall”)the value the have in input (meaning that

the domain wall is again allowed to run through the nanomagnet), or just locally

applied by means of other nanomagnets close to the notch [9]. This feature is really

useful to implement memory elements with no internal loop, latching devices and
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even a pNML equivalent of the CMOS pass-transistor. Figure 1.18 shows how the

propagation works. As drawn there, the domain wall moves along the nanomagnet,

Figure 1.18: Pinning and depinning of a domain wall in a notch

but as soon as it reaches the shrunk section, it gets stuck. A particular value of the

magnetic field is able to release it, and once the domain wall gets past the notch, it

can propagate with the usual clock values. Notches can be used in many different

ways: in all the circuits of this thesis work, they will be opened on a regular basis by

the proper clock field, as it is done for registers in CMOS. Thus, a “notch period”

can be defined.

1.3.3 Clocking Terminology

The description of the previous sections should have made clear that in pNML there

are multiple “levels” of clock. These are:

• The clock that causes the nucleation of ANCs and the propagtion of domain

walls;

• The clock that allows domain walls to get past the notches;
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Therefore, there are two kinds of clock periods:

• The one that considers the amount of time needed for a domain wall to propa-

gate through a single nanowire, expressed in seconds. This is usually referred

to as “Clock Period”;

• The one that considers the number of clock cycles (as defined in the previous

point) needed for a signal to propagate from the output of a notch in the

circuit to the input of another notch. It is expressed in number of clock cycles,

or sometimes half clock cycles, and it is usually referred to as “Clock Period

in terms of clock cycles”, or “Notch period”;

If the circuit does not contain notches, the second kind of clock period is not defined.

This description shows how a signal is always considered to need an integer number

of half clock cycles to propagate from a point to the other: if the absolute time

is needed, it could be obtained by multiplying the clock period by the number of

clock periods needed to propagate. Hence, a general delay too might be expressed

either in terms of clock cycles or in terms of absolute time. The first approach

is by far the most frequent. Comparisons with the CMOS circuits, that just have

one clock, will be frequent, so it is absolutely worth it solving possible ambiguities.

Since a signal delay is usually considered in terms of half clock cycles, in general a

circuit without notches is mentally associated with a CMOS combinational circuit.

On the other hand, a pNML notch will be associated with a CMOS register. Next

chapters will show a pNML circuit descripted in CMOS: the pNML logical paths

become combinational paths in CMOS, and the notches becomes registers. The

similarity is so deep that this conversion could even be made automatically (with

some workarounds). Therefore, really often (at least in this thesis work) the pNML

delay in terms of clock cycles of a signal is thought as the counterpart of the CMOS

combinational delay.

Last, the concept of “pipelining” will be used at length. If not otherwise stated,

this expression refers to the insertion of pairs of inverters along very long domain

walls, in order to reduce the clock period. The expression used to insert notches,

the same ways as registers are inserted in CMOS, will be “notch insertion”. The

context will hopefully reduce the ambiguity in the use of these words.
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Chapter 2

Delay Analysis

In this chapter, the main characteristics of the timing and signal propagation are

addressed, with particular regard to the traits that might turn into troubles and to

the ways to deal with them.

2.1 Basic propagation

pNML has the peculiar feature that logical zeros and logical ones do not propagate

at the same time, but rather one after the other by half cycle based steps. Figure 2.1

shows how this happens, using an inverter as example.

1 2 3

Clock

Input

Output

Figure 2.1: Example of propagation through an inverter

Notice, there are three changes of the input signal, numbered within the figure,

but the delay is always different. In the first transition, the input signal goes from

0 to 1; the next clock edge is a positive one, and it does not propagate zeros. Thus,

the propagation occurs after the next, negative, clock edge. Two clock edges stay in

between input and output transition. In the second transition, the input goes back

to zero, just before a negative clock edge, that propagates the output: this time,
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the output is ready after a single clock edge. The third transition still shows a half

clock cycle delay. A few things can be observed:

• The delay depends on the moment in which the transition occurs: it might

happen either in the “good half cycle” (sign of the transition and current phase

of the clock match), as it does in case 2 and 3, or in the “wrong half cycle”

(sign of the signal transition and current phase of the clock do not match). If

the input is free to change at any moment, predicting the exact delay entity

is not possible (there will always be an half clock cycle of slack);

• Transitions 2 and 3 show the same delay in terms of clock cycles, even though

the absolute time is a little different. The reason is that input transition 2

occurs just before the clock edge, whereas transition 3 occurs long before the

clock edge. Actually, this happens in CMOS technology too, and is due to the

edge-triggered nature of the propagation;

• As already said, in case 2 the input changes very close in time to the clock

edge. The change may not get arbitrarily close, since a setup time condition

must be met;

• On the other hand, the output transition occurs always with the same delay

with respect to the clock edge (apart from tolerances) that causes it (no matter

what is its sign). This delay can be considered the propagation delay;

• All these considerations about the sign of the clock edge that propagates the

input to the output are so simple because there is only one input, so that the

output depends only on a single signal. Gates with more than one input, of

course, cannot be left out of the analysis, and must be handled in a slightly

more complicated way.
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A

B

O

A

B

Figure 2.2: AND gate in planar pNML technology

2.2 Propagation through a logic gate and glitches

Now, let us consider a simple two-input circuit, such as an AND. The pNML, one-

layer circuit, is shown in figure 2.2; keep in mind that this is just a case study, a

circuit like that is not even feasible.

The delay depends on both inputs: for example, if B is zero, and A rises from

zero to one, the output will stay unchanged. This case, however, is very trivial.

Considering the inputs one at once should not be too difficult. A more elaborated

problem might be the following one:

Suppose that A=1 and B=0. At the same time, A → 0 and B → 1. What will

happen? The steady output will still be zero, but will there be a glitch?

To answer the question, let us draw the timing diagram in figure 2.3.

No glitch occurs: even though there is a time span where both pads (the rounded

spots near to the nucleation center, bearing the A and B labels) are high, and a clock

edge occurs within that time span, that edge is a negative one. Thus, no logical

one can be propagated. However, this is just a lucky case. Consider now figure 2.4:

in this case, a glitch shows up, with the output going to one even if the two input

values are never both one at the same time. Of course, this is due to the out-of-phase

propagation between zeros and one: in this particular case, the 0 → 1 transition
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Clock

A

B

A

B

O

Figure 2.3: Glitch case study for an AND gate, no glitch occurring

is faster than the 1 → 0 transition in propagating towards the output, because the

next clock edge is a negative one. It is easy to find a case (or a logical gate) where

the opposite phenomenon takes place.

Clock

A

B

A

B

O

Figure 2.4: Glitch case study for an AND gate, glitch occurring

Glitch occurrences were not uncommon at all in CMOS technology. However, in

pNML, because of the clock-based propagation, a glitch lasts for an integer number

of half clock cycles, that is at least half clock cycle. Unfortunately, half clock cycle

might be the length of a “true” signal, where “true” means here that a value is the

correct outcome of the input configuration, not due to glitches. Let us have a look

at figure 2.5.

Input signals last for exactly one clock cycle, as it happens in regular CMOS

circuits, where a clock cycle is usually enough. It would seem a perfectly sensible

choice for pNML as well, inasmuch as a full clock cycle must contain both clock

transitions and both logical values possibly present are sampled. They are indeed,

producing the outcome on the output, which has exactly the same length as the

glitch in figure 2.4.

The problem of telling apart steady values from glitches arises. A different way
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Clock

A

B

A

B

O

Figure 2.5: Delay case study for and AND gate, output length = 1 half clock cycle

to express the problem might be: how can be found the time instant where the output

value is the correct value, rather than just a glitch manifestation? Once the answer

to the problem is found, output values can simply be sampled in that moment.

Moreover, the solution to that problem also provides the delay value for a logic

gate, which is referred to the time instant where the output is free from glitches.

Before moving forward, it might be interesting looking the same input configu-

ration seen in 2.5, but with an half clock cycle shift. Figure 2.6 represents this exact

scenario.

Clock

A

B

A

B

O

Figure 2.6: Delay case study for and AND gate, output length = 3 half clock cycle

It turns out that the time length of the output signals depends also on the

relative order of the two clock transitions within the clock cycle. Bear in mind that

there are cases where the inputs are under control, so that, if need be, they might be

generated right before the most useful clock edge (though it enormously complicates

the control), and cases where the inputs are actually outputs of another network,

and there is not a direct control over them. A signal driven by the clock (as any

signal within the network is, besides, possibly, the inputs) retains the same value

for an odd number of half clock cycles. If, for sake of simplicity, inputs are kept
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stable for an integer number of clock cycles, as they are in this example, outputs

and inputs will always have a different duration.

2.3 How to deal with glitches in a simple manner

So, all the previous problems, namely, finding the correct time to sample, telling

apart glitches and steady values, and finding the delay of a gate, are all different

expressions of the very same problem. A really simple solution, used when just the

functionality of the circuits is tested, without a fine timing characterization, can be

seen in figure 2.7.

Clock

Input 1

Input 2

Output 1

Output 2

Figure 2.7: Example of the “easy” method to handle pNML delays

In order to understand properly how this works, the context must be somehow

outlined. Suppose an arbitrary network with two inputs and two outputs, where

each input represents a condition to be checked, and whose outputs are driven this

way:

• Output 1 is always low, except when input 1 is a logical one and input 2 is a

logical zero;

• Output 2 is always high, except when input 1 is a logical zero and input 2 is

a logical one.

Hence, the easiest test to perform consists in checking whether output 1 issues

a logical one or output 2 issues a logical zero, because only one out of four possible

input configurations produce that outcome. For the time being, let us focus on the

former. Output 1 is expected to be always zero, except when the input configura-

tion is 1-0. If the inputs are set for long enough in that combination, the output

25



2 – Delay Analysis

should get high, which is exactly what happens in figure 2.7. Of course, this is a

simplification, the other input configurations are ignored here: the point here is just

proving the concept. In some real cases, one input/output configuration could be

more interesting or meaningful than the other (an AND checking whether a set of

conditions is met), in others, all the combinations could be equally important (a

counter).

The idea is this: when the condition for input 1 or input 2 to get high is met,

they are kept high for a long time, several clock cycles. This produces in output

a burst long enough, much more than the time span where glitch might occur. In

figure 2.7, the input configuration in the blue box causes the output burst in orange

box, and the input configuration in red box causes the output burst in green box.

This way, the time where the output cannot show glitches is much longer than the

time where glitches may occur. All it is left to do is sampling the outputs in these

“glitch-free” time periods. To sum up, the method boils down to this: set an input

configuration for long enough until the expected output shows up, possibly after

some glitches, and keep the inputs steady so that the outputs are steady too for a

suitable amount of time. This method mirrors what happened in CMOS technology:

there were glitches in CMOS too, but the clock period was long enough so that they

only took up a small fraction of the clock cycle. The only difference is this one: since

in pNML all the evolution is clock-based, it comes out that glitches are latched as

well as any other signal is. This is also why they last as long as the correct outcomes

do. Clock cycles cannot be stretched to wait for glitches to die out, because only the

clock transitions cause the circuit the evolve. And, given that the glitches are due

to the input transitions, it follows that the clock cycles where inputs change must

be much fewer than the clock cycles where inputs are steady. This is just another

way to express the same thing.

This method has two drawbacks, that make it in fact only feasible for simple cases

or study cases rather than an actual solution. The first one is that determining the

burst-length of the inputs is not easy for an arbitrary network: an AND gate is made

up with a handful of gates; it is easy to guess that roughly after five clock cycles

all the glitches are gone. A more complicated network might not be that easy to

analyze. The second drawback is that this method is essentially based on oversizing,

causing a performance fall.
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A way to sum up all these concepts is this one:

• In pNML, it happens that some clock cycles present input transitions, some

other do not. This is quite obvious, but a there is something to point out: in

CMOS, there is nothing preventing inputs from changing at every clock cycles,

whereas a pNML circuit with an input changing rate so high would be hardly

useful;

• Signal transitions cause glitches, exactly like CMOS technology; unlike CMOS

technology, glitches are sampled and propagated by the same clock that prop-

agates all the signal values;

• Thus, when looking at the output, it turns out that some glitches reached all

the way to it (others might be filtered out by the logical function or by delay

mismatches). It means that if a pNML gate is fed with an input configuration

lasting N clock cycles, the output might last N − m clock cycles, where m

is a number of clock cycles where the output is affected by glitches. Hence,

glitches must be distinguished from the correct output values. In this regard,

an interesting fact is that in a correctly clocked CMOS circuit, glitches are

always locally generated: they come from the transient of the local gate. In

pNML, glitches are sampled by the clock and might propagated through many

gates.

• In order to neutralize the effects of glitches, a simple solution consists in making

N � m. Further delay knowledge is needed to define what exactly is “much

greater”, otherwise the throughput will be strongly affected.

In conclusion, a designer that just wants to test the logical functionality of his/her

circuit could set the inputs to wait an appropriate number of clock cycles (usually

an rough assessment is quick to do, or, in alternative, a very high number might be

chosen), and, at simulation time, it will be very easy to check whether the circuit

issues the expected outputs.
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2.4 Delay balancing

The most important reason why understanding correctly the timing is crucial in

pNML can be proved by the following example. Suppose to have a set of inputs

and two networks. Each one of the two networks evaluates the inputs according to

whatever logical function, and then, if some conditions are met, outputs a logical

one. If the two networks are both high at the same time, some actions must be

taken; therefore, the two outputs are AND-ed. The two networks have, of course, a

different logical function, that means different delays, since in pNML the two things

are strictly related. Thus, after having designed the two networks, it might happen

something like what is shown in figure 2.8.

Clock

Input 1

Input 2
...

Input nth

Output Network 1

Output Network 2

Output AND gate

Figure 2.8: Example of time evolution for gates with strongly unbalanced delay. The network does
not work

The two networks, having a different logical function, also exhibit a different

delay: they outputs are dramatically out of phase, they do not overlap for a single

time instant (remember, the inputs are the same for both) and the AND gate never

outputs a one, inasmuch as it never has both inputs high. The solution is simple:

network 1 will be “slowed down” by means of inverters insertion (actually, pair of

inverters). Of course, to put in place the solution, the delays of the two networks

must be know in great detail. Why the outputs are out of phase has already been

said. Someone might still wonder however why they also have different time lengths

(the first one outputs a logic one two clock cycles long, the second one is three cycles

long). The reason can be showed resorting to this same example, slightly modified.

Have a look at figure 2.9. What happens is more or less the same thing seen in
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Clock

Input 1

Input 2
...

Input nth

Output Network 1

Output Network 2

Output AND gate

Figure 2.9: Example of time evolution for gates with unbalanced delay. The network works very
badly

figure 2.8; nevertheless, the delays here are slightly less out of phase, and the AND

gate manages to output a one for a very short time. The AND gate brings out a

signal much shorter than supposed (basing on the inputs lengths, almost three clock

cycles for both). So the reason why in figure 2.8 the outputs of the two networks

stay high for different amounts of time is exactly this: probably inside network 1

a phenomenon alike to the one of figure 2.9 occurred, and, due to internal delays

unbalancing, the output got shorter.
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2.5 Delay characterization

So far, all the main singularities of pNML timing have been illustrated. The aim of

that was proving how necessary a way to compute delays was needed, and in this

chapter it will be expressed. Once the delays are know, it will be possible to know

in which exact time instant (or, better said, clock edge) an input configuration will

show up in output, steady and free from any glitch. Referring to the N and m

parameters defined in page 27, it means knowing both the N − m and the clock

edge where those N −m clock cycles begin. The rules to compute a delay are very

simple:

Follow the path between the two points of interest (even with gates in between),

consider half clock cycle delay for each antiferromagnetically coupled pair of domain

walls, and a full clock cycle delay for each ferromagnetically coupled pair of domain

walls.

Just to test the rule with an example, let us try it on a real circuit, for example,

a multiplexer. A multiplexer (designed in [10]) is a good circuit to test the rule

with, because is essentially made of an OR gate with inputs coming from two AND

gates. The feature that makes it interesting is that the two AND share one of the

three inputs, even though for one of the ANDs it is inverted. Figure 2.10 contains

the circuit. Since the signal values will be checked all along the circuit, each piece

of domain wall is labeled with a letter.

The two figures, 2.11 and 2.10, share the same color code, that works this way:

in the time diagram some signal names on the left column are colored, it means they

are each one the inversion of the previous (from top to bottom) and can be found

in the circuit layout along an arrow of the same color. Then, there are triads of

signal in the diagram, all with the same color, one of them in dashed line. The two

solid-line signals are the inputs of a gate, whose output is the dashed-line signal.

In the multiplexer layout figure this gate is marked with a circle whose color is the

same as the three signals. The kind of gate is, however, left unspecified. Hopefully,

these colors make easier reading the two figures.

Let us check some paths, for example, the one starting from the signal Input

1 to the output (signal Out) of the multiplexer. Six antiferromagnetically coupled

steps are found: B0, B1, B2, B3, D, Out. By looking at figure 2.11, it can be
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Input 0

Sel

Input 1

A0

C0

A1 A2

C1

C2

B0 B1 B2

B3

A3

D Out

Figure 2.10: A multiplexer in planar pNML technology. Domain walls, inputs and outputs, logical
gates and some inverters chains are marked

noted that Input 1 changes in half-cycle 2 and in half-cycle 20. Since the first

transition occurs when the multiplexer is open on the other side, it is much better

considering the transition starting in half-cycle 20. By half-cycle 27, the output has

changed. It makes 7 half cycles delay. Only 6 half cycles were predicted, and it is

correct: the input transition occurs right before a negative clock transition, unable

to sample the input value, so that it does not count. Notice that every inverting

function has a delay made of an odd number of half cycles; on the contrary, in a

non inverting function the delay is made of an even number of half clock cycles.

Even though this is a pretty trivial consideration, it might come in handy to check

correctness of layouts or delays counts. A short expression for delay values equal to

an even number of half clock cycles that will be used, for convenience, in future, is

“even delay”, while the opposite case will be called “odd delay”. As an example,

notice that Input 0 and Input 1 must both have an even delay, because, when the

multiplexer is open on their side, it copies their value in output. If, when assessing

the delays of a network, this sort of rules are violated, it certainly means that the

circuit carries out the wrong logical function.

Signal Sel is more interesting, because it branches in two different gates, whose

outputs then converge in the same gate. In this case the delay to be considered as the
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Cycle # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1
2
cycle # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37

Clock

Input 0

A0

A1

Sel

C0

C1

C2

Input 1

B0

B1

B2

A2

B3

A3

D

Out

Figure 2.11: Example of possible time evolution of the circuit in figure 2.10

characteristic delay from point to point is the greatest among the two. Sometimes

the delay is actually lower, and, being the whole process completely deterministic,

it is possible to find out these cases, but it is not always trivial. Just to make things

a little more clear, figure 2.12 shows an example with the same level of detail of the

previous one.

Roughly speaking, in this case the longer of the two paths from signal Sel to

signal Out is not sensitive to the signal change; therefore, the delay of the transition

is the one of the other path. It was not difficult to spot this case, this circuit has

only three gates whose function is very intuitive, but much more complicated cases

exist. This is why it is much better to stick to the worst case delay rule.

To sum up, once it is known how to compute delays, it can be predicted the time

when an input configuration will have reached the output without any glitch, how
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Cycle # 0 1 2 3 4 5 6 7 8 9

1
2
cycle # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Clock

Input 0

A0

A1

Sel

C0

C1

C2

Input 1

B0

B1

B2

A2

B3

A3

D

Out

Figure 2.12: Example of possible time evolution of the circuit in figure 2.10

to balance networks with a different delay, and so on. The only missing concept is

how to handle feedbacks, and it will be addressed in the following section.

2.6 Feedbacks

When in a circuit an output signal is brought back to the inputs, a feedback is

put in place. Some further considerations about delays and timing are necessary.

First off, one might wonder what is the delay in this case, and a off-hand answer

could be: the delay is given by the input-output path, exactly as the previous cases.

In fact this answer is correct, but something more must be said. Let us refer to a

simple feedback circuit, which is basically a variation of the multiplexer already seen.

Figure 2.13 shows it. It is a memory cell, namely, a circuit able to retain indefinitely

33



2 – Delay Analysis

a signal brought in input in a previous moment, ignoring then the current value of

the input.

D

En

D0

En0

En1

En0

D1

L1

L1

L0

L0

L0

L0

Q

Figure 2.13: A latch made with a multiplexer with the output brought back to one of the inputs.
Domain wall, logical gates and loops are marked

Three paths have been drawn in figure 2.13, three “standard ones” and a loop.

The characterization of the circuit might be done this way:

• Enable signal has a delay equal to 5 half clock cycles. It is a branched path,

so it actually has a 4 half cycles delay on one side and 5 on the other, but the

same considerations as before apply in this case;

• D signal has a 4 half cycles delay;

• The loop has a 2 half cycles delay. All signals that share some elements along

their path with the loop will have to stay constant at least for as long as the

loop delay, which is a full clock cycle.

It will be now shown what happens when the loop delay rule is ignored. It is easy

to guess that the circuit will probably get into a metastable state. Anyway, it might

be worth saying that in order for the circuit not to get into metastability, beside

the loop delay condition, it has also to be stable from the logical point of view. In

other words, the output that is brought back in input must not cause a new output
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change, otherwise it will endlessly change. This is a matter of logical function, not

of inputs timing. A very good example of this is a NAND gate, whose output is fed

back to the input. Suppose the output is 0 and the input is 0. The NAND stays

in this state forever. As soon as the input becomes a logical 1, the output switches

back and forth between zero and one. In this regard, notice that the loop delays

is an even number of half clock cycles: it means that its “logical function” is non

inverting. If we consider the loop as a series of inverters (and, to some extent, this is

correct), one can say that exactly as a series of an even number of inverters in a loop

is not supposed to oscillate, this loop is not supposed to oscillate either. Actually,

it is much more sensible saying that a loop whose delay is even (or, whose logical

function is non inverting) can, from a theoretical point of view, be stable, whereas

a loop whose delay is odd cannot.

Figure 2.14 shows a possible input configuration and timing that brings the cir-

cuit into metastability. The color code previously used cannot be used here (because

of the loop), and a different one is employed: colored arrows run between some sig-

nals, starting from the inputs and reaching the output. In the circuit figure the

color of the circles on the gates is the same as the arrows. Some black arrows are

there, they simply indicated that the two signals are one the inverted of the other

The two domain walls that make the loop always have the same logical value, which

continuously changes at each clock edge. The output should take the opposite value

with respect to the domain wall marked with L0, and it does indeed. It looks like

Q follows L0 because they both change after every clock edge.

Again, it is important to know that the same violation of the loop delay rule

(namely, keeping signal En to 1 for just half a clock cycle) does not always lead

to metastability. Had the input been a logical one, no metastability would have

occurred. This idea seems obvious and one could think to take it for granted, since

the output and the new input would have had the same logical value; yet, it is

uncorrect, because if the initial state is Q = 0, D = 0, metastability still sets in.

Therefore, even if these particular cases in which a violation of the condition does

not lead to oscillations, once more it is better never triggering them, and always

follow the strictest timing rules. Figure 2.15 represents another case of oscillation,

caused by a slightly different input timing. In the example, both D and En never

change twice within 2 half clock cycles, and yet the circuit oscillates. The reason is
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Cycle # 0 1 2 3 4 5 6 7 8 9 10

1
2
cycle # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Clock
D
D0
En

En 0
En 1
D1
L0
L1
Q

Figure 2.14: Time diagram of a latch led to metastability by signal En too rapidly changing

that the loop delay rule should be casted in this form:

When a circuit has an internal loop whose delay is N half clock cycles, a new

change of the inputs must wait N half clock cycles from the previous input change.

That having been said, the D transition in half clock cycle number 4 and the En

transition in half clock cycle number 5 (which are both sample at the same time) can

be considered two different input changes, whose time distance is smaller than the

loop delay (2 half cycles). Given the storing function of the circuit, these constraints

might also be interpreted as setup/hold time conditions.

Cycle # 0 1 2 3 4 5 6 7 8 9 10

1
2
cycle # 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Clock
D
D0
En

En 0
En 1
D1
L0
L1
Q

Figure 2.15: Time diagram of a latch led to metastability by signal En and D changing too close
in time to each other
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Chapter 3

3D Architectures and

Memories

pNML technology, like other NML technologies, allows stacking multiple layers on

top of each other. There is no definite difference between wires and logic circuitry

in this technology, as the logic gates are basically made with an odd number of

wires magnetically coupled; thus, it follows that processing elements can be placed

wherever it is most suitable. This cannot be done in CMOS: multiple layers are

available, but the processing elements are placed at the bottom, with the upper

layers hosting only interconnections. Hence, the mere logic is spread over a plain

surface; on the other hand, in pNML technology processing elements can be grown

one over the other, with conspicuous area savings.

This chapter shows a few circuits that have been designed trying to exploit as

effectively as possible the layers above the bottom one. To this aim, logic gates tend

to be built by stacking nucleation centers and pads one over the other. The most

obvious way to build a gate is a three layer solution, shown in figure 3.1.

Of course, this way of coupling magnets is ferromagnetic, so that logic connec-

tions must be rearranged accordingly (for examples, in figure 3.1 the multilayer

implementation has a further inverter). Moreover, placing a certain number of nu-

cleations centers and pads throughout the layers might result in unwanted magnetic

coupling: care must be taken in order to avoid this side effect. Inverters too might

get coupled, since they contain a nucleation center. Last, passing a signal from a
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(a) Planar AND gate (b) 3D AND gate (c) 3D AND gate, alternative version

Figure 3.1: Basic method to build gates in multi layer pNML. The two multi layer gates are
equivalent to the on in (a). In 3.1b the fixed magnet and the input B are placed on the sides just
to make the circuit easier to be visually analyzed. The actual circuit implemented is something like
the one in 3.1c. The inverter must not couple with fixed magnets in layers below and above, that
is why the piece of domain wall inside the red rectangle (layer 0 and layer 2) is there, otherwise
the gate could have been narrower

layer to the one above (or below) adds a full clock cycle delay to the signal path (it is

a ferromagnetic kind of coupling). From the technological point of view, chances are

that fixed magnets cannot be biased both ways; this, in terms of boolean logic, means

that either a fixed zero or a fixed one is available, not both together. Therefore,

circuits must be designed using only one of the two fixed magnets, coupled either

ferromagnetically or antiferromagnetically according to the needs. Alternatively, an

inverter placed at the “output” of the fixed magnet might be used, provided that

it does not get coupled with the layers above and below. Needless to say, these are

further constraints to be met when designing the circuit.

Once the circuits have been designed, it is necessary to characterize them with

respect to their timing. It has already been shown that pNML timing is quite

complicated, and, generally speaking, input signals might have to last several clock

cycles. A solid knowledge of the timing behavior allows to reduce the number of clock

cycles to the minimum possible value. Memory elements too must be addressed. As

already seen in chapter 2, this means having loops within the circuit, which in turn

cause a slow-down of the throughput by a certain factor, proportional to the delay

of the loop path. Violating this constraint invariably leads to non working circuits,

and sometimes to a metastable behavior. A possible alternative consists in using

notches, which makes dealing with loops much easier, and reduces metastability

risks too. Nevertheless, delay analysis is still necessary, in order to appraise the
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3.1 – Decoder

length of the notch-opening period. Following sections will give some examples of

the concepts above mentioned. Areas are expressed in an arbitrary area unit, called

“square”, which is the smallest area that an element can occupy in MagCAD, and

also the area of a grid cell. The word “square” can be used to define a length as

well. Refer to Appendix E for details.

3.1 Decoder

In this section a few decoders are shown. From the logical point of view they are

all very much alike, but technologically they are different. Figure 3.2 shows the first

attempt. Three layers make up the design, with the top and bottom ones holding the

inputs, and the middle one holding the fixed magnets and the nucleation centers: in

other words, it is in the middle layer that the computation takes place. As previously

mentioned, this is the “standard” way of designing gates with many layers available.

Notice that the circuit could not be built as it is, because of two main reasons: fixed

magnets are placed above and below inverters (which contain nucleation centers),

and also, both fixed-one and fixed-zero magnet are used at the same time. It is

shown here just because of its simplicity. Bear in mind that MagCAD does not

check any of the above mentioned conditions, and they remain completely up to the

designer. The reason is that sometimes introducing inverters where it is not allowed

might be convenient when studying how to reduce the critical path, without having

to start the whole design from scratch. Examples of this inverter insertion will be

provided later on. A second, almost technologically correct, version, is shown in

A0

A1

A2

A3

Sel0 Sel1 Sel2 Sel3 Sel4 Sel5 Sel6 Sel7 Sel8 Sel9 Sel10 Sel11 Sel12 Sel13 Sel14 Sel15

0
1
2

Figure 3.2: Decoder, first version, technology non compliant

figure 3.3. All the pads belonging to the A2 and A3 branches have been turned to
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the other side. This leaves room enough to allocate the fixed magnets in places not

above or below inverters. However, it takes up a little more space. The presence of

both fixed-ones and fixed-zeros magnets is the only technological constraint not yet

met.

A0

A1

A2

A3

Sel0 Sel1 Sel2 Sel3 Sel4 Sel5 Sel6 Sel7 Sel8 Sel9 Sel10 Sel11 Sel12 Sel13 Sel14 Sel15

0
1
2

Figure 3.3: Decoder, second version

Finally, it is shown in figure 3.4 how the design is made completely compliant with

the technological constraints. The difference between this and the previous version

is a good example of how a designer might get by with only a kind of fixed-magnet:

the type of coupling must be changed, that means moving signals to other layers. In

this case it has been quite easy to do, but in other cases, with denser designs, finding

the space might be slightly trickier. Since in this implementation only three-way

majority voters were available, one of the other signals too has been coupled the

other way, so that the inverter has been removed. Again, in this case it is easy,

because the domain wall is long enough. In other cases placing an inverter might

not be easy, as the space may be missing, or the inverter might get coupled with

surroundings layers. The last one marks a difference with the previous approach. A

quick look to the image 3.5 reveals that the delay is not the same for all the outputs:

for instance, in the path running from input A0 to output Sel0 the delay is 4 half

clock cycles shorter with respect to the path A0-Sel4. This is quite usual for this

technology; sometimes the unbalancing is offset by means of the use of a notch (this

concept will be further elaborated in next sections), some other times there is very

little to do. In this case the difference between this approach and the previous one

consists in only a minor area reduction for the current implementation, but in some

cases implementations other than this are very expensive in terms of area, or even

unfeasible. In future, when referring to the approach used to build the first example
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A
0

A1

A
2

A3

Sel0 Sel1 Sel2 Sel3 Sel4 Sel5 Sel6 Sel7 Sel8 Sel9 Sel10 Sel11 Sel12 Sel13 Sel14 Sel15

0
1
2

Figure 3.4: Decoder, third version, fully technology compliant

of the decoder, the expression “flat delay” might be used, because the delays are all

equal for every output, whereas this last approach might be referred to as “scaled

delay”, since the delay increases as the outputs get farther away from the inputs.

A
0

A
1

A
2

A
3

Sel0 Sel4 Sel8 Sel12Sel1 Sel5 Sel9 Sel13Sel2 Sel6 Sel10 Sel14Sel3 Sel7 Sel11 Sel15

0
1
2

Figure 3.5: Decoder, solution with scaled output delays

Table 3.1 shows the differences in area occupation and delay for the four version

of the decoder.

These two possible approaches do not concern only the decoders: almost any circuit

Decoder version Delay Area occupation
Feasible

First version 9 8 · 33 = 264 No
Second version 9 9 · 33 = 297 No
Third version 9 9 · 33 = 297 Yes

Fourth version


9 if 0 ≤ i ≤ 3

7 · 36 = 252 Yes10 if i = 4
i+ 5 if i ≥ 5

i index is the output number index 0 ≤ i ≤ 15

Table 3.1: Comparison of area (expressed in squares) and delays (expressed in half clock cycles)
for the decoders described in section 3.1
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can be designed in either way. Thus, it is important to underline a further difference

between the two models, by means of the timing diagrams of the circuits. Figure 3.6

and 3.7 show a time evolution where all the input combinations are tested. Each

input combination is kept stable for a great amount of clock cycles, and this is why

the clock signal is not drawn, it would be too dense to be readable.

A 0

A 1

A 2

A 3

Sel 0

Sel 1

Sel 2

Sel 3

Sel 4

Sel 5

Sel 6

Sel 7

Sel 8

Sel 9

Sel 10

Sel 11

Sel 12

Sel 13

Sel 14

Sel 15

Figure 3.6: Test of the whole set of input combination for the circuit in figure 3.4

Comparing the two time diagrams, one can see that:

• The output are more regular in the flat version, they all last the same amount

of time, whereas, for example, in the scaled delay version the Sel15 stays at

one for less than most of the other output signals. Notice that the input

configuration is the same in both tests;

• The scaled version is more prone to glitch. 4 glitches occur in the flat decode

test, 10 in the scaled one. Glitches are outlined with a blue ellipse. Moreover,
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A 0
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A 2

A 3
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Sel 11

Sel 12

Sel 13

Sel 14

Sel 15

Figure 3.7: Test of the whole set of input combination for the circuit in figure 3.5

the glitches occurring in the flat decoder test cannot be avoided by changing

the circuit configuration, they depend on the logical function;

• The glitches too have varying length in the scaled decoder version. They tend

to last longer in the outputs placed farther away from the inputs. In output

Sel15, the last glitch is similar in duration to the correct output.

The comparison shows that a scaled delay solution is possible and might be more

appropriate, but also requires more care in delay analysis.
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3.2 Folded Decoder

In order to save space and to try an effective use of the upper layers, the decoder

can be “folded”. The circuit is in figure 3.8. The outputs from 8 to 15, and relative

combinational networks, are brought to three separated layers above. This way the

footprint of the decoder is about half of the original one. However, this introduces a

delay shift between the outputs 0-7 and the outputs 8-15. This happens because the

inputs are placed on the bottom layers; signals run through the 0-7 outputs, climb

up to the top layers, and then reach the outputs 8-15. In section 3.1, page 40, it has

been already said that a progressively increasing delay among the bits of the output

vector is perfectly normal. Hence, this folding just introduces a step-increase of the

delay difference between the two groups of outputs (otherwise, the difference would

have increased more or less as shown in 3.1) Anyway, another option is available:

the input signals should get to the top half without passing through the bottom one.

Rather than a “series connection” (inputs → bottom half → top half), there would

be a “parallel connection” (inputs → bottom half; inputs → top half; both at the

same time). Being this just a study case, it did not seem necessary. Furthermore,

this example shows what are the limits when trying to develop the circuitry along

the vertical direction: an increasing share of the area is devoted to the routing of

signals among the various layers. Given the features of this technology, this also

adds to the delay of the paths.

A
0

A
1

A
2

A
3

Sel0

Sel8

Sel4

Sel12

Sel1

Sel9

Sel5

Sel13
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Sel10

Sel6

Sel14

Sel3

Sel11

Sel7

Sel15

0
1
2
3
4
5

Figure 3.8: Folded Decoder
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Table 3.2 lists the delays from each input to each output, and the area occupation.

The rightmost column contains the highest value, which can be considered the “true”

delay of the output signal, because it is the worst case. The reason why the full

table is shown lies in the delay pattern: if each odd delay value is changed with

a 1, and each even delay value is changed with a 0, one gets exactly the code for

that output. This is not casual at all, but rather a direct consequence of the fact

that opposite values propagate with delays whose parity is opposite. Furthermore,

between output 7 and 8 can be seen the delay step increase due to the folding of the

decoder.

A0 A1 A2 A3 Typical delay

Sel0 4 4 8 8 8
Sel1 5 4 8 8 8
Sel2 6 5 8 8 8
Sel3 7 5 8 8 8
Sel4 8 6 9 8 9
Sel5 9 6 9 8 9
Sel6 10 7 9 8 10
Sel7 11 7 9 8 11
Sel8 18 14 16 15 18
Sel9 19 14 16 15 19
Sel10 20 15 16 15 20
Sel11 21 15 16 15 21
Sel12 22 16 17 15 22
Sel13 23 16 17 15 23
Sel14 24 17 17 15 24
Sel15 25 17 17 15 25

Area 8 · 23 = 184

Table 3.2: Delays of the Folded Decoder, expressed in half clock cycles. Area (expressed in squares)
is reported at the bottom line
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3.3 Multiplexer

Traditional word lines and bit lines are very expensive in pNML technology in terms

of area occupation. It has been shown in [10] that a clever and efficient alternative

can be a multiplexer, allowing either to feed the current cell with the datum to

be written, or to let the latter pass by towards the next cell. Hence, it has been

implemented. Figure 3.9 shows a possible solution. Table 3.3 reports the delay for

the circuit.

D1

D2

Enable

Q
0
1
2

Figure 3.9: Multiplexer in three layers

Delays

D1 8
D2 8
Enable 9 (8) 1

Area 6 · 6 = 36
1 Signal Enable reaches

the output through two
different paths

Table 3.3: Delays of the Multiplexer, expressed in half clock cycles. Area (expressed in squares) is
reported at the bottom line

3.4 Storing Cell

If the output of the multiplexer is fed back to one of the inputs, the multiplexer

becomes an element with storing capabilities, that from now on will be referred to as

“storing element” or “storing cell”. The name “memory element” (or “memory cell”)

will be used for the combination of the storing cell with a multiplexer. Figure 3.10

shows the circuit, whereas timing and area are described in table 3.4.
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D

Enable

Q data

0
1
2

Figure 3.10: Storing cell

Signal Delay

Data 8
Enable 9

Loop length=10

Area 3 · 6 = 18

Table 3.4: Delays of the Storing Cell, expressed in half clock cycles. Area (expressed in squares)
is reported at the bottom line

3.5 Memory Cell

A set of two multiplexers can be used to build the generic memory cell. The input

data (D) enters both the storing cell and the multiplexer; the output data (Q data)

of the storing cell enters the other input of the multiplexer. The multiplexer will

be switched to the storing cell output data in case the current one is the selected

memory location, otherwise will bypass the cell and take D as output, making it

available for the next location, that will behave likewise. The cell will be always in

read mode, unless it is selected and the instruction is a write one.

Figure 3.11 shows the layout of the circuit (a) and a logical representation of it (b).

Table 3.5 shows the “truth table” of it, and table 3.6 contains the delay and area

figures.
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(a) pNML layout (b) Logical representation

D

Enable

Sel

D

Q data

Q

0

1

2

Figure 3.11: Basic memory cell

Inputs Outputs
Sel Enable Q Q data

0 0 D Stored Datum
1 0 1 D D

1 0 Stored Datum Stored Datum
1 1 Stored Datum D

1 In practical use, this is a forbidden input configuration

Table 3.5: Logical behavior of the Memory Cell

Delay to Q data signal Delay to Q signal

Data 8 8
Enable 9 19

Sel - 8
Q data - 10

Loop length=10

Area 6 · 6 = 36

Table 3.6: Delays of the Memory Cell, expressed in half clock cycles. Area (expressed in squares)
is reported at the bottom line
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3.6 Memory Cell - Notched version

It is well know that pNML technology offers the chance to “pin” a certain logical

value in a specific point of the nanowire, depending on the geometrical features of

the point. This provides the designer with a latch-like device, the only difference

being the different conditions needed to output a logical one or a logical zero. Hence,

the memory cell might be latched this way. The storing principles is still the same,

namely, the feedback, but the notch reduces the risk of metastability (output os-

cillating between one and zero because of improper timing). The reason why this

happens can be easily explained. First, let us recap that a loop is updated this way:

it must be logically “broken” somehow, then a new value is fed into the loop. The

updated value must be kept stable long enough for the signal to reach the other

end of the broken loop, otherwise, when closed, the loop will retain two incoherent

values. This is exactly what is called “metastability”. That being said, the way a

notch manages to avoid metastability risks is straightforward: a notch keeps stable

a certain signal, so that as long as the notch opening period is longer than the loop

delay metastability cannot occur. Figure 3.12 shows the layout of this solution.

D

Sel

Enable

D

Q data

Q

0
1
2

Figure 3.12: Memory Cell with notches

The way a notch is clocked is shown in figure 3.13. The length of the pulse for
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3 – 3D Architectures and Memories

the notch clock (often known also as “depinning clock”), its phase with respect to

global clock (the only other clock mentioned thus far), and any other parameter is

determined basing on technological and layout-related grounds. In this case, the

notch is always followed by an inverter, and this makes the timing simpler to design.

In some cases (which will be addressed later on) things might get slightly more

twisted.

Global Clock

Dep Clock

Notch Input

Notch Output

Figure 3.13: Timing of a signal passing through a notch

In order to clarify a little more the matter, let us reconsider the example in

figure 2.14, where a metastability condition was triggered by signal Enable being

too short. Figure 3.14 shows what happens in this case. Consider input Enable and

the notch marked in red.

1 2

Global Clock

Dep Clock

D

Enable

Enable

Notch Input

Notch Output

Figure 3.14: Metastability prevention property of a notch

They are all represented in the timing diagram. It can be seen that how quickly

the Enable signal changes no longer matters: either it finds its way through the

notch, as it happends in case 2, or does not as it happens in case 1. In either case,

the output of the notch changes at most at the notch opening period, which is set

long enough for the circuit not to get into metastable states. This is not different

at all from what happens in CMOS when flip-flop are introduced in order to filter

out glitches.
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The numeric values of the delays are the same as the non-notched version; they

can be found in table 3.4. Only three delay parameters, conceptually very similar

to the usual setup and propagation delay, listed below:

• Signal Enable must be stable 6 half clock cycles before the clock cycle where

the notch is opened;

• Signal Data must be stable 3 half clock cycles before the clock cycles where

the notch is opened;

• Signal Q data is ready 5 half clock cycles after the clock cycle whre the notch

is closed

In fact, first two parameters are a sort of setup time, whereas the last one is a

propagation time.

3.7 Memory Array

The elements shown so far are all is needed to build a memory array with the usual

interface, consisting of an input vector, called D, and address vector, called A, a bit

that defines the writing\reading nature of the operation, called R\W. Apart from

some wiring, the circuit, shown in 3.15, is only a cut-and-paste and composition of

the previous circuits. Each horizontal line made of Memory Cells makes up a differ-

ent word. A few remarks are needed here. First, this version is not technological

correct. It contains two of the most common technological mistakes: domain walls

over/below inverters and presence of fixed magnets of both signs. This was a mere

test version. Second, the decoder is a shade different from the circuits shown so

far, but this is not particularly unsettling. Third, and probably the most important

point, very long domain walls can be spotted in the circuit. This makes the clock

period very long, which means that the circuit cannot be very fast. Fourth: D sig-

nal behaves unlikewise, it has to go through all the Memory Cells that have been

described previously.

This prompts a more general consideration about pNML.

A very well-known, and sometimes annoying, feature of all the QCA

technology is known as “Layout=Timing”. pNML technology suffers
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0
1
2

Figure 3.15: Memory Array

from this problem, but offers a further degree of freedom. While in the

other QCA implementation a very long wire causes an increase of the

delay in terms of clock cycles, pNML provides the designer with two

alternatives:

• A domain wall is drawn from the starting point to the arriving

point. This way, the clock period increases significantly. This is the

possibility that other QCA implementation do not offer;

• The domain wall mentioned in the previous point is drawn, but this

time and even number of inverters is staggered along the wire. This

way the clock period does not increase tremendously, but the signal

will take more than one clock cycle to reach the end of the wire.

This is somehow equivalent to other QCA cases;
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3.7 – Memory Array

In other words, pNML is not affected by the “Layout=Timing” issue,

as long as only wires are concerned (logic gates will always show such

kind of behavior). The problem could be eliminated, provided that one

is willing to work with a clock period likely to be very high.

In order to better understand this idea, suppose that the last word must be

written. The D signal must travel through all the chain of Memory Cells, so that it

takes several clock cycles for it to reach the Memory Cells belonging to the last word.

Compared to the path signals such as Write Enable must go through, it comes out

that the latter signal gets to the needed point much earlier than the D signal. If,

by choice, all the signals, no matter they are data, address, or control signals, are

made to last the same amount of time (a very convenient choice), this means that

Write Enable signal will stay active for the whole time needed to D signal to reach

the point.

The decoder is a 4-to-16, and the memory 8 Words x 8 bits. It is clearly mis-

matched, but this format is easier to understand than a 16 Words x 8 bits when

looking at the circuit.

This problem about signals that have to stay active for very long can be mitigated

somehow by means of some circuital modifications. These are shown in figure 3.16.

From a timing point of view, the solution simply consists in pipelining the wires

that deliver signals such as Write Enable or Address, so that they reach each cell

together with the D signal.

It might be interesting noticing that the amount of space allocated for the in-

verters that balanced the path of all the signals is quite large, even if this layout is

not technologically correct, for the two reason mentioned above. Sometimes finding

the room for the path balancing might be troubling.

A schematic representation of the memory connections is depicted in figure 3.17,

where the Write Enable signal has been ignored to keep the analysis simpler. Hence,

there are the Address signals, delivered through long wires, and Data signals, that

travel all the way through the Memory Cells, and therefore their trip is interrupted

by several inverters and logic gates. Suppose a signal, lasting 3 clock cycles, is

generated and pushed both into Address and Data lines. The timing might be

something like what is shown in figure 3.18 (in all these wave representations, the

fact that zeros and ones propagate on opposite clock edges is ignored). Address
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Figure 3.16: Memory Array with balanced paths

signals cross much less logic and get to the farthest cells much earlier than the Data

signal. A Memory Cell must receive all the signals at the same time, otherwise an

incoherent operation will be carried out.

Thus, two possible solution can be chosen:

• The Address signals are issued later than the Data signal, so that they reach

the selected cell at the same time. This means that the time difference be-

tween the two signals depends on the cell in use. This solution is extremely

complicated, even though slightly more effective;

• A worst case solution is put in place: the Address signal will stay active long

enough so that, if the cell in use is the farthest one, it will still have Address

and Data signals active for a sufficient amount of time.
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Figure 3.17: Schematic representation of the memory in figure 3.15 (unbalanced paths)

Global Clock

D3 Data

C03 Data

C13 Data

C23 Data

C33 Data

A Address

Sel Address

Figure 3.18: Signals’ timing when no analysis is carried out. This way, the circuit does not work

The second solution can be seen in figure 3.19. In this case, for every cell the

signal SEL and the signal Data are both valid for some clock cycles. However,

having Address and Data that last for different amounts of time might complicate

the control. Therefore, the solution actually implemented is shown in figure 3.20.

The memory can be modified and made with all the delay carefully trimmed: it is
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Global Clock

D3 Data

C03 Data

C13 Data

C23 Data

C33 Data

A Address

Sel Address

Figure 3.19: Signals’ timing when Address signal is stretched so that it gets to each cell joined
with the Data one. This timing works, but its generation is complex

Global Clock

D3 Data

C03 Data

C13 Data

C23 Data

C33 Data

A Address

Sel Address

Figure 3.20: Timing actually implemented

schematically represented in figure 3.21. The “buffer” blocks are nothing more than

an even number of inverters. Its time wave is shown in figure 3.22. Notice how all

the signals reach a cell at the same time: this way, the signal are active for a much

shorter time.

Figure 3.22 shows how in each cell delays are perfectly matched. Because of

the active time reduction for the signals, the throughput increases too. The delays

of this circuit can be calculated from the ones of its components. Just a further

delay must be taken into account: from a Memory cell to the next one the delays is

exactly one clock cycle.

Last, the 16-outputs decoder is fully exploited with the memory in figure 3.23,
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Figure 3.21: Schematic representation of the memory in figure 3.16 (balanced paths)

Global Clock

D3 Data

C03 Data

C13 Data

C23 Data

C33 Data

A Address

Sel 0 Address

Sel 1 Address

Sel 2 Address

Sel 3 Address

Figure 3.22: Timing of memory whose delays have been balanced

where two plains of 8-words 8-bits memories are stacked one over the other. At

the bottom, a line of multiplexers, driven by the last bit of the decoder’s output,
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Figure 3.23: Double-plane Memory Array

switches between the two memory planes. This choice avoids the long delay that

passing through 16 memory cells would have caused. Anyway, this circuit is just

an extreme test of the opportunities given by the multi layer features, but is rather

unlikely to be found in practical use.

Areas for these two memories are respectively 70 · 57 = 3990 for the single plane

version, and 70 · 63 = 4410 for the two plane version.

58



3.8 – Programmable Logic Array

In0 In1 In2 In3 In4 In5 In6 In7

SA0
1

SA0
3

SA0
4

SA0
5

SA0
6

SA0
7

SA0
0

SA0
2

SA1
3

SA1
4

SA1
5

SA1
6

SA1
7

SA1
0

SA1
2

SA2
3

SA2
4

SA2
5

SA2
6

SA2
7

SA2
0

SA2
2

SA3
3

SA3
4

SA3
5

SA3
6

SA3
7

SA3
0

SA3
2

SA1
1

SA2
1

SA3
1

SO0
0

SO0
1

SO0
2

SO0
3

SO1
0

SO1
1

SO1
2

SO1
3

Or0

Or1

And0

And1

And2

And3

0
1
2
3
4
5

Figure 3.24: Programmable Logic Array

3.8 Programmable Logic Array

A PLA has been designed, following the same criteria (maximum use of the third

dimension). Even though a PLA is seldom used in hand-crafted circuits such as

the ones studied here, it could nevertheless be considered as an attempt to produce

a regular combinational circuit, as more dense and three-dimensional as possible.

Figure 3.24 and 3.25 show a PLA with 4 ANDs and 2 ORs; a complete list of the

delays is presented in table 3.7, along with the area occupation.

The circuit is technologically compliant; the most interesting thing to point out

is the presence of long domain walls, which slow down the clock frequency. Given

the relative rarity of use of the circuit, trying a “scaled delay” version would increase

59



3 – 3D Architectures and Memories
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Figure 3.25: Programmable Logic Array, two layers removed from top for a better view

the area and possibly the delay, and here is not worth it. However, in chapter 6,

section 6.5, when some of these circuits are redesigned in only two layers, an example

of PLA built according to that principle is proposed.
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Start point End point Delays [Half clock cycles]

In0 ANDs output 30
In1 ANDs output 30
In2 ANDs output 26
In3 ANDs output 22
In4 ANDs output 18
In5 ANDs output 14
In6 ANDs output 10
In7 ANDs output 6
AND0 output ORs output 8
AND1 output ORs output 12
AND2 output ORs output 16
AND3 output ORs output 16
1SA0 ANDs output 31
1SA1 ANDs output 29
1SA2 ANDs output 27
1SA3 ANDs output 25
1SA4 ANDs output 21
1SA5 ANDs output 17
1SA6 ANDs output 13
1SA7 ANDs output 9
2SO0 ORs output 7
2SO1 ORs output 11
2SO2 ORs output 15
2SO3 ORs output 15

Area 27 · 25 = 675
1 These are the AND plane switches
2 These are the OR plane switches

Table 3.7: Delays of the PLA, expressed in half clock cycles. Area (expressed in squares) is reported
at the bottom line

3.9 Finite State Machine

The last circuit designed was also the most advanced from the conceptual point of

view, namely, a Moore finite state machine. The function implemented is a sequence

identifier, chosen for its simplicity and for its one-input-one-output property. No

matter what technology is used, a FSM is fundamentally a series of memory elements

that encode the state, plus some logical networks that make the next-state logic.
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Many possible state encoding are available, but the one that makes the hand-made

layout the easiest to be designed is the one-hot encoding. Furthermore, this style

tends to make simpler the combinational networks at the cost of a higher number of

memory elements that represent the state. However, the increase of these memory

elements is not tremendous when the number of states is low (about 10). In pNML,

notches are used to implement the memory elements. The use of notches to make a

FSM is suggested in [10]: the circuits might become unstable otherwise.

The circuit can be seen in figure 3.26: from the topological point of view, the

notches are placed on the right side (green box), whereas on the left side the combi-

national networks carry out the operations to determine the evolution of the circuit

(blue box). This is just a rough scheme, some of the logic is placed on the right side

as well. In the middle it has been placed the domain wall holding the current datum

value, making it available for the combinational networks across the whole circuit

width. Besides that domain wall runs the domain wall holding the Reset value (the

two red lines). The circuit is less regular than all the other ones seen so far, because

the task it carries out is arbitrary, so there is no particular symmetry in its logical

function, and, hence, in its layout. Consequently, the area exploitation turns out

to be less effective. Besides that, in this layout the chance to grow the circuit on

multiple layers is probably leveraged in the most regular way: each notch, repre-

senting a state of the FSM, is located on a different layer, in order to keep apart the

wires needed to carry out the combinational operations. These are located mainly

at the bottom layers: nevertheless, drawing the wires from the notch output to the

logic gate is easier when the notches are placed on different layers (less entangling

and twisting). This circuits contains both signs for the fixed magnets, so it would

need some rearranging before actual technological manufacturing. The timing and

area analysis are reported in table 3.8. The notches are considered equivalent to

standard flip flop, so that all the paths running to their input or from their output

are listed.
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Figure 3.26: Layout of the FSM sequence identifier
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From To Delay [Half clock cycles]

D

Notch Q0 5
Notch Q1 8
Notch Q2 10
Notch Q3 11
Notch Q4 14

Reset

Notch Q0 2
Notch Q1 5
Notch Q2 7
Notch Q3 9
Notch Q4 11

Q0
Notch Q0 20
Notch Q1 18

Q1
Notch Q0 26
Notch Q2 22

Q2
Notch Q2 16
Notch Q3 18

Q3
Notch Q0 18
Notch Q4 22

Q4
Notch Q0 16
Notch Q1 18

Area 18 · 14 = 252

Table 3.8: Delays of the FSM, expressed in half clock cycles. Area (expressed in squares) is reported
at the bottom line
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Chapter 4

Implementation of the

Summed Area Table

Algorithm

The SAT (Summed Area Table) algorithm involves a two-dimensional array of nu-

merical values, and returns another numerical value for every element of the array.

The value of each location is given by the sum of all the locations’ contents, ex-

cluding the ones that are either below or to the right of the one considered. From

a geometrical point of view, the locations included belong to the rectangle whose

opposite corners are the top left corner of the array and the location considered. In

formula:

I(x,y) =
x∑

x′=0

y∑
y′=0

i(x′,y′)

The algorithm lends itself very well to an “incremental” implementation, because

the SAT value for every location can be thought to be:

• The SAT value of the location above, plus the sum of the values of the locations

in the same row as the location considered, from the left edge to the location

considered (included);

• The SAT value of the location just on the left of the location considered, plus
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4 – Implementation of the Summed Area Table Algorithm

the sum of the values of the locations in the same column as the location

considered, from the top edge to the location considered (included);

A more elaborate way to calculate the SAT values might be the following one:

The SAT value of each location is equal to the SAT value of the location above plus

the SAT value of the location just on the left of the location of interest, minus the

SAT value of the location above and just on the left of the location of interest

The previous statement is simply expressed with the formula:

I(x,y) = I(x− 1,y) + I(x,y − 1)− I(x− 1,y − 1)

Therefore, it leaps to the eye that a modular or incremental routine implementing

the algorithm is conceivable and might also be very effective, since the value of every

location is strictly related to the one of the neighboring ones.

Consider figure 4.1

Figure 4.1: Example of a matrix where SAT algorithm can be applied

Now suppose the matrix is split in four groups, each one with four locations;

then, the SAT algorithm is applied locally for each group, disregarding the others.

It is easy to realize that the sub-matrix on the top left corner already contains the
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Location SAT value

I00 i00

I01 i00+i01
...

I10 i00+i10
...

I22 i00 + i01 + i02 + i10 + i11 + i12 + i20 + i21 + i22
...
...

I33 i00 + i01 + i02 + i03 + i10 + i11 + i12 + i13 + i20

+ i21 + i22 + i23 + i30 + i31 + i32 + i33

Table 4.1: How the SAT values are calculated in terms of the original values of the matrix

SAT values both when considered alone and as part of the main matrix. This is

due to its being the top left corner of the whole matrix. The locations in the other

submatrices do not contain the value that they would contain if the SAT algorithm

had been applied to the whole matrix. However, some of the missing values are

already calculated in other locations. For example, if location 01 and location 02

are added together, the resulst is the value location 02 would have after having

applied the SAT algorithm globally. The same thing holds true for every location,

and the rest of the steps are explained in table 4.1. These 2 by 2 matrices represent

the building blocks of this SAT routine, and from now on might be referred to as

“Cells”, especially when discussing the hardware. A size other than 2 by 2 could

have been chosen and would work, but in this whole chapter the 2 by 2 size is never

changed. There is a reason for this, and will be given later on.

Figure 4.2 represents the state of the matrix just after the algorithm has been

applied to each submatrix. The black text shows what elements are inside that

location(each one summed to the other). The red text shows what elements are still

missing (meaning that they should be added to the black colored value) to get the

value of the SAT when applied to the matrix as a whole.
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Figure 4.2: SAT Table split in four matrices and after the first step of the algorithm

Notice that:

• In the top left submatrix, “local” or “global” SAT are the same thing;

• Location 02 and 03, that is, the top row of the top right submatrix, are missing

the content of the 01 location;

• Location 12 and 13, that is, the bottom row of the top right submatrix, are

missing the content of the 11 location;

• Location 20 and 30, that is, the lefthand column of the bottom left submatrix,

are missing the content of the 01 location;

• Location 21 and 31, that is, the righthand column of the bottom left submatrix,

are missing the content of the 02 location;

• The bottom right submatrix is missing values from all the other three subma-

trices (each one written in a different row); more specifically, from locations

11, 12, 13, 21 and 23. The situation is more complicated, for the time being,

let us put it aside;
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Now each cell delivers, if needed, its content to the cell besides. Figure 4.3 shows

the final outcome.

Figure 4.3: SAT Table after the second step of the algorithm

Now the top right submatrix now contains the final values, which are those that

a global SAT application would yield. The bottom left submatrix is left unchanged,

whereas the bottom right one is closer to the final values, but is not yet there. The

same sums as before are made, but this time, vertically. Figure 4.4 shows the final

result.

Of course, the algorithm can be applied iteratively as many times as needed.

Suppose there were other three 4 by 4 matrices, aside and below this one, and

suppose also that those matrices had gone through the same steps carried out on

this one. At this point, the same horizontal and vertical passing of the values on

the cells on the boundary would produce the same results.
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Figure 4.4: SAT Table after the last step of the algorithm

4.1 Datapath Hardware

In this section the hardware needed to implement a basic 2 by 2 matrix able to

perform all the steps of the SAT algorithm shown above is presented. The bit

parallelism is four, because the adder chosen (see subsection 4.1.2) is a ripple carry

one, and a greater number of bits would have excessively slowed it down. On top

of that, such a small number of bits makes easier checking whether the outcomes of

the operations are right. Once the architecture structure is tested, the number of

bits can be chosen at will.

4.1.1 Memory

The first thing needed is some sort of memory. It holds the values of the four cells,

outputs them when needed, and takes in new values, either from the external inputs

or from local calculations. Its layout can be seen in figure 4.5. It can be noted that it

has changed a little with respect from the one presented in chapter 3. The memory

has the decoder placed in the middle (in the red box). This makes the footprint of
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4.1 – Datapath Hardware

the circuit more square-shaped, and cuts in half the long horizontal domain walls

delivering the control signals, which reduces the total critical path. Furthermore,

the cells now contain two notches each, making the general handling of the memory

easier.

0
1
2

Figure 4.5: Memory element, it is able to store four values of the matrix seen in figure 4.1, or one
of the four 2 by 2 matrices in figure 4.2
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4.1.2 Adder

The algorithm requires some adding up of numbers; hence, an adder is necessary.

In order to keep the design simple, the type of adder chosen is a ripple carry adder.

On one hand, it is quite easy to design in a majority voter based logic. On the other

hand, its delay is not excessive, given that the bit parallelism is four bits. More

effective solutions can be analyzed later on. The circuit can be seen on figure 4.6.

On the right there is the only half adder.

0
1
2

Figure 4.6: Full Adder used in the SAT circuit
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4.1.3 Full Datapath

The union of the adder shown in subsection 4.1.2 and the memory seen in subsec-

tion 4.1.1 makes all the datapath hardware needed to run this SAT algorithm. Of

course, the two building blocks are equipped with some adapting hardware. In more

detail, the adder becomes an adder-accumulator, and now is able to store the result

and, if needed, use it as input for the next sum. A multiplexer is now at the input of

the memory part, switching between input coming either from the outside or from

the adder. Last, the control signals that handle the reset and switching of inputs

and memories are added. The datapath is pictured in figure 4.7.

0
1
2

Figure 4.7: Datapath for the SAT algorithm

The circuit exhibits some technologically incorrect elements, namely inverters
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right above or below domain walls. In this case, this has been done on purpose after

having designed the circuit, that was originally technology compliant. It has been

done because, once one achieves a working circuit, he or she might be interested in

assessing how the critical path would change when trying to shorten the wires. A

new design of it sometimes is not worth it: if the delay reduction is not relevant,

quite a lot of time would be wasted. This is what was meant in section 3.1 by the

“inverter insertion”.

4.2 Control Hardware

The hardware seen in section section 4.1 is able to carry out the SAT algorithm

over a cell, but it is still lacking the control part. In principle, a single finite state

machine would be needed; however, given that all the hardware here is hand-crafted,

it is much easier to deal with the complexity when there are multiple, simpler FSMs

rather than a single one much more complex. This choice will turn out to be more

flexible too.

Hence, there is an FSM for each step of the algorithm, namely:

• RESET: The initial values are placed into the memory locations;

• LOCAL: The 2 by 2 matrix carries out the SAT algorithm over the 4 locations;

• INPUT: The 2 by 2 matrix takes in the values calculated by an adjacent

matrix, and sums it to the local contents, either in horizontal or in vertical

direction;

• OUTPUT: The 2 by 2 matrix places at its output the values of specific cells,

for the other cells to update their values.

Four operations are identified; nonetheless, the INPUT and OUTPUT step can

be performed in two different directions, with different cells involved. Hence, six

FSMs should be needed: however, the choice made consists in designing only four

FSMs, with a combinational network that switches the values of the outputs when

needed. Simplicity reasons caused the two FSMs to be designed as Mealy machines.
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This is usually extremely harmful and should be avoided; nonetheless, here we are in

total control of the data running through the architecture, and signals going outside

of the circuits are known. Anyway, several notches are placed within the circuit;

luckily, this completely overcomes the issues of a Mealy machine.

4.2.1 Control Signals

Five signals are enough to control the datapath. They are:

• R/W : Read/Write. The input datum (either coming from the outside or from

the adder) is to be stored into the memory according to this signal;

• Sel : Selection. The input datum for the memory comes either from the outside

or from the adder, depending on the value of this signal.

• Add0,Add1: The two address bits, both for the read and for the write mode;

• En Add : Adder Enable. When high, the adder sums the value coming from

the memory to the previously stored result;

• Reset : Adder Reset. It clears the content of the adder’s accumulator when a

new addition chain has to be started

These signal are all “active high”. Therefore, they can be just OR-ed all together

before reaching the datapath: as long as just one FSM is active at once, the datapath

is driven correctly. Thus, it is of the utmost importance preventing FSMs from

running at the same time.

4.2.2 Reset FSM

This finite state machine’s purpose is to reset the memory, meaning that the initial

values to be processed are fed to the memory. Of course, if need be, the values can

be all zeros, performing this way a “regular” reset, which might be useful at testing

time. The FSM is made with the already mentioned strategy: every state has its

own notch, and each notch is placed on a different layer. The FSM is also quite

compact, due to its simpleness and to the fact that no condition is evaluated to pass

to the next state, and it has just one input, which is the reset. This way, it will start
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4 – Implementation of the Summed Area Table Algorithm

as soon as the Reset signal is pulled down, and stop, regardless of its current state,

when the Reset signal is pulled up again. Figure 4.8 is a picture of the FSM. From

0
1
2
3
4

Figure 4.8: Reset FSM for the SAT algorithm

the point of view of the layout, it can be seen here that the spacing between notches

of consecutive states is narrower than in section 3.9. There, it was two squares, here

the notches are adjacent. The main reason is that in this FSM (and in all but one

of the others in this chapter) no condition is evaluated before moving to the next

state. This makes considerably simpler the next state network, resulting in a more

compact one.The state dataflow diagram is shown in figure 4.9. As previously said,

it is sensitive only to the FSM Reset signal. The outputs signals of the FSM are

Figure 4.9: State flow chart of Reset FSM

shown in table 4.2.
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Signal
Logic value

State 0 State 1 State 2 State 3 State 4

R/W 0 1 1 1 1
Add0 0 0 1 0 1
Add1 0 0 0 1 1

Table 4.2: Outputs of the Reset FSM

4.2.3 Local FSM

This finite state machine performs the SAT algorithm among the four values of the

cell. The design style is the same as the previous, and all the others, FSMs. It is

made of 12 states, always passing to the next one without conditions evaluated, and

driven only by the Reset signal. The FSM is pictured in figure 4.10.

0
1
2
3
4
5
6
7

Figure 4.10: Local FSM, that drives the SAT algorithm in a single cell

In figure 4.11 is represented the state dataflow diagram of the FSM, whereas

table 4.3 shows the outputs’ configuration.

4.2.4 Input FSM

This finite state machine writes the values coming from another cell into the proper

locations of its own cell. This FSM does not evaluate any conditions through states,

however, it issues an output signal called Go, needed to trigger the FSM described
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Figure 4.11: State flow chart of Local FSM. Red dotted lines indicate that, from any state, if signal
FSM Reset is high, the FSM is set back to the IDLE state

State Output Signals
R/W Sel Add0 Add1 En Add Reset

State 0 0 0 0 0 0 0
State 1 0 0 0 0 1 0
State 2 0 0 1 0 1 0
State 3 0 0 0 0 0 0
State 4 1 1 1 0 0 0
State 5 0 0 1 1 1 0
State 6 0 0 0 1 1 0
State 7 0 0 0 0 0 0
State 8 1 1 1 1 0 1
State 9 0 0 0 0 1 0
State 10 0 0 0 1 1 0
State 11 0 0 0 0 0 0
State 12 1 1 0 1 0 1

Table 4.3: Outputs of the Local FSM

in subsection 4.2.5 (Output FSM ), that will move into the next state. Therefore,

Input FSM and Output FSM always work in pairs and at the same time. Every
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time an Input FSM is running on a cell, an Output FSM is running in the cell to

its left or above. That’s why they need synchronization signals. This is certainly

the most articulated FSM. Basically, two FSMs are in place: one (referred to as the

master FSM) phases the operations that allow the input data to be stored, summed

to the local ones, and then stored; the other one (the salve FSM) defines the address.

Hence, for every run of the first FSM the second one changes address. Moreover,

a XOR network takes as input the address bit, so that they can be inverted when

needed, in order to distinguish between an horizontal and a vertical data transfer.

Figure 4.12 shows an overview of the FSM, with two vertical lines drawn to identify

the three components (left the one that drives the algorithm, center the one that

defines the addresses, right the XOR network). This is a Mealy Machine: State 0 is

both the “IDLE” state and the first active state. If the signal FSM Reset (the main

input reset for this FSM) is high, all the outputs are zero, otherwise the outputs’

state is the one shown in column “State 0 ” of the table 4.4.

0
1
2
3
4
5

Figure 4.12: Input FSM, red lines drawn to distinguish the three components of it

Figures 4.13 show the State flow chart of this FSM. Notice that this is just a

logical representation: the circuit is only one, even if, as it can be seen in 4.12 the

two parts are clearly defined and easy to identify.

Table 4.4 shows the outputs for each state. Addresses are not indicated, for they
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(a) “Address” FSM, addresses in
brackets are the ones outputted
when signal Switch is 1

(b) “Main” FSM

Figure 4.13: The two “logical” Input FSM

are clear enough in figure 4.13.

Signal
Logic value

State 0 State 1 State 2 State 3 State 4

R/W 0 1 0 0 1
Sel 0 0 0 0 1

En Add 1 0 1 0 0
Reset 0 0 0 0 1

Table 4.4: Outputs of the Input FSM

4.2.5 Output FSM

This finite state machine brings out of the cell the value to be passed to an adjacent

cell. It is the FSM with the lowest number of states, but also the only one needing

a signal to step to the next state. The signal, called here Move, is matched with

the Go signal coming from the Input FSM described in subsection 4.2.4. A picture

of the FSM can be found in figure 4.14, its flow chart is in figure 4.15. A vertical,

dotted, red line is drawn in the middle of the picture. On its left there is the

pure FSM, while on its right there is the XOR network that switches between the

vertical data transfer and the horizontal data transfer. Notice that this is the only

FSM that evaluates conditions before moving to the next state, and is also the only
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0
1
2
3

Figure 4.14: Output FSM, a red line marks the boundary between actual FSM and XOR network

one that does not have the notches adjacent. However, they are closer than the ones

of section 3.9.

Figure 4.15: State flow chart of the Output FSM

4.2.6 Vertical/Horizontal data transfer

The description in subsection 4.2.4 and subsection 4.2.5 mentioned the presence of a

XOR network switching the outputs, and provided the values of the outputs, but did
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Signal
Logic value (Switch = 0) Logic value (Switch = 1)
State 0 State 1 State 2 State 0 State 1 State 2

Add0 0 0 1 0 1 1
Add1 0 1 1 0 0 1

Table 4.5: Outputs of the Output FSM

not elaborate anything in further detail. Here the matter is elaborated a little. The

addresses are assigned to the four cell’s locations from left to right and from top to

bottom, starting from 00 in the top left location, as shown in figure 4.16. Figure 4.25

(third and fourth image) and figures 4.3 and 4.4 shows how the transfers between

neighboring cells are done, and table 4.6 list the addresses. Consider the column

Starting location Ending location

01 00

To the cell on the right
01 01
11 10
11 11

10 00

To the cell below
10 10
11 01
11 11

Table 4.6: Addresses when data are exchanged between cells

Starting locations : row 1-2 and 5-6 are one the bit-wise inversion of the other. Then,

consider the other column: row 2-3 and 6-7 are again equal after bit-wise inverting

one of them. This is exactly why having a two input FSMs and two output FSMs did

not sound worth it. Inverting the value of some addresses will be enough, and this

is the point where the choice of using many subFSMs rather than a single one pays

off. A XOR gate is placed after the Add0 and Add1, and is driven by a specific signal

called Switch. This network makes the two FSMs, Input FSM and Output FSM,

Mealy machines. However, the notch stages added for control reasons overcome all

the possible side effects of this kind of finite state machines. This trick is also the

reason why a 2 by 2 cell is really convenient: inverting the bits is not complicated.

Had the cell been a 4 by 4, rearranging the bits of the addresses would not have
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Figure 4.16: Address assignement within a cell

been that easy.

4.3 2 by 2 cell

Once all the circuitry described in section 4.2 is ready, the cells can be built. As

previously mentioned, OR-ing all the corresponding outputs of each FSM is enough.

These control signals are eventually placed as inputs of the datapath. Remember

that no signal coming from the datapath is needed to run the FSMs. This cell alone

is not able to deliver useful calculations besides the SAT among its four elements, so

that only two of the FSMs are put to work: the Reset FSM and the Local FSM. On

the other hand, when arranged with other similar cells, they can all together carry

out a SAT algorithm among a number of cell greater than 4. Here, in figure 4.17,

is placed a representation of the three bottom layers, composing the datapath; fig-

ure 4.18 contains a view of the four FSMs OR-wired together, making up the whole

control circuit. Unlike figure 4.7, now all the pipeline stages (in hardware, notches)

have been placed. Once again, the circuit is not perfectly compliant with the tech-

nological requirements, both fixed-one and fixed-zeros have been used, and some

inverter over or under a domain wall might be found

This circuit is a good example of the space-saving chances offered by the layer

stacking: supposing that no more than three layer had been allowed, and that control

and datapath circuits were roughly the same size, the area occupation would have
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0
1
2

Figure 4.17: Basic cell datapath, made on the three bottom layers

been approximately three or four time as much. The fourth layer (counting from

the bottom) is just a link-layer, meaning that the datapath lies on 0 to 2 layers,

and control on layers 4 to 11. The reason, pretty straightforward, is that unwanted

magnetic coupling between datapath and control circuit has to be avoided.
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0
1
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5
6
7
8
9
10
11

Figure 4.18: Basic cell control, made on the seven top layers. Pink rectangle marks the input FSM;
green one marks the reset FSM; blue one marks the output FSM; orange one marks the local FSM

4.4 Putting cells together

When the number of locations is greater than four, more than one cell is needed.

Of course, these cells need to exchange some of their values, and this implies that

some sort of synchronization/coordination must be be arranged. In other words, the

control problem must be tackled.
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4.4.1 Hierarchical control

A first control style might be a hierarchical one. The whole matrix is parted into

four sub-matrices. These four sub-matrices will carry out a certain amount of cal-

culations, always involving only locations internal to the sub-matrix. At

the end, a vertical and a horizontal (just one for every direction) transfer of data

completes the process. If, after the 4-part split of the main matrix, the sub-matrices

are not 2 by 2, they are iteratively split exactly the same way, until a “minimum

block”, namely, a 2 by 2 cell, is reached. The main steps of the dataflow are:

1. Split the matrix in four sub-matrices;

2. Calculate the local SAT within the four sub-matrices. If their size is not 2

by 2, split them again and calculate the local SAT for each sub-matrix. To

calculate it, follow this same dataflow. If the size is 2 by 2, calculate the SAT

and carry on with the algorithm;

3. Perform a horizontal and a vertical data transfer. Now the matrix split in four

at point 1 has its local SAT calculated.

The dataflow above needs as precondition the ability to calculate the SAT for

a 2 by 2 matrix, which is exactly what a cell is able to do. Nevertheless, from a

circuital point of view, this dataflow is very unconvenient. The reason lies in wiring

problems. Have a look at figure 4.19. The matrix is larger than 2 by 2. It has to

be split. Figure 4.20 shows that. Sub-matrices are larger than a 2 by 2 size too. A

further (and final) split needs to be done. Figure 4.21 shows the outcome. Each one

of the red matrices are 2 by 2, so they fit exactly in an hardware cell and the local

SAT algorithm is easily carried out. Then, a local SAT is done involving the matrix

made by the four red 2 by 2 matrices: all one has to do is to perform a vertical

and horizontal data transfer between the four blocks. Of course these same steps

are taken at the same time in the other cells. Once the four 4 by 4 matrices have

their local SAT ready, they should perform the well-known vertical and horizontal

data transfer in order to conclude the algorithm. Now, consider the blue cell in
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Figure 4.19: A generic matrix that will undergo SAT algorithm

Figure 4.20: Matrix of figure 4.19 after the first split

figure 4.22. In the last horizontal data transfer, it needs data from the border cells

of the top left 4 by 4 matrix, and precisely from the green locations. There are two

options to do this:

• A direct wire between the locations involved;
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Figure 4.21: Matrix of figure 4.19 after the second split

Figure 4.22: Matrix of figure 4.19. Marked locations are the ones involved in the data transfer
currently under consideration

• The locations in between must be able to pass the values from green locations

to the red ones.

The first solution implies a huge amount of wiring (consider a case with much more

locations than in this one, the problem shows up iteratively). The second one might

be put in place, but would give up all the benefits of such a hierarchical control.
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Anyway, a second control strategy, which is the one used, exists.

4.4.2 “Flat” control

In this control style, there are only two levels: the one encompassing the four lo-

cations cell, and the one including the whole set of cells, with no further division.

Briefly explained, it works like this: at every algorithmic step, one horizontal and

then one vertical transfer are done. The first horizontal transfer encompasses the

cells lying across the leftmost vertical border; the first horizontal transfer encom-

passes the cells lying the top horizontal border. At next step, the border involved

will be the one just on the right (for the horizontal transfer) and just below (for the

vertical transfer). Figure 4.23 and 4.24 clearly show how it works. This control

style is probably less effective than the hierarchical one, at least from an algorithmic

point of view, because it can be parallelized much less. However, for the reasons

already said, it is less complex to cast in hardware. Nevertheless, should it be nec-

essary to speed up the calculation, this implementation might be pipelined: after

the first step,the content of the top left locations is no longer needed. If needed, it

could be saved, and then a new value (belonging to a new matrix) might be stored.

Anyway, this is beyond the scope of this thesis. There is just one point to make

a little clearer: the example did not mentioned any grouping of memory locations;

however, it can be shown that if cell are grouped in 2 by 2 blocks, and they perform

a “local” SAT among those 4 locations, then they can go through the same steps

shown in figures, and the final values will be correct. This is how it is done in the

hardware presented in this section, and is briefly illustrated in figure 4.25.

4.4.3 Implementation

Four basic SAT cells have been gathered in order to arrange a 16-locations structure.

The control step to take with such a tiny array are:

• Perform the local SAT on each of the four cells

• Horizontal transfer: North-Western cell delivers some of its contents to the

North-Eastern one; South-Western cell delivers some of its contents to the

South-Eastern one;
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(a) (b)

(c) (d)

Figure 4.23: Example of flat control on a 4 by 4 array, first four steps. Light blue locations are the
ones whose value is the final SAT value

• Vertical transfer: North-Western cell delivers some of its contents to the South-

Western one; North-Eastern cell delivers some of its contents to the South-

Eastern one;

Figure 4.25 clearly shows all these actions.
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(a) (b)

(c) (d)

Figure 4.24: Example of flat control on a 4 by 4 array, last four steps. Light blue locations are the
ones whose value is the final SAT value

Global FSM

A control circuit able to carry out the steps previously described must be designed,

and figure 4.26 contains that very circuit. Figure 4.27 shows its state-flow diagram.

This FSM might be referred to as “Global FSM” in future.
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Local SAT Local SAT

Local SATLocal SAT

Subdivision Local SAT Horizontal Transfer Vertical Transfer SAT Completed

Figure 4.25: Steps of the algorithm as they are carried out in the designed hardware

0
1
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3
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5
6

Figure 4.26: Global FSM, which controls the SAT over a 2 by 2 array of 4-locations cells

The FSM does not have any output network, because of its function. It defines

five time-steps, and every time a FSM within the cells must be active in that time-

step, the output of the state-notch in the Global FSM is connected to the Reset

signal of that FSM (possibly OR-end, if more than one signal drives that FSM).

The exact timing these signals are driven is shown in table 4.7. Table 4.7 unveils

that the state number 2 is there just for timing reasons, and it is not an actual

algorithmic step.

2 by 2 cell array

The circuit made up with four cells and the Global FSM is shown in figure 4.28.

The four cells are placed as “components” in MagCAD, and this is why they are

represented as black-boxes. Beware: a cell is made of four locations, so that a 2 by
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Figure 4.27: State flow chart of the Global FSM

Cell Signal
State

State 0 State 1 State 2 State 3 State 4

FSM Reset 1 0 0 0 0

North-West
FSM Local 1 0 1 1 1
FSM Input 1 1 1 1 1

FSM Output 1 1 0 0 0

FSM Reset 1 0 0 0 0

North-East
FSM Local 1 0 1 1 1
FSM Input 1 1 0 1 1

FSM Output 1 1 1 1 0

FSM Reset 1 0 0 0 0

South-West
FSM Local 1 0 1 1 1
FSM Input 1 1 1 1 0

FSM Output 1 1 0 1 1

FSM Reset 1 0 0 0 0

South-East
FSM Local 1 0 1 1 1
FSM Input 1 1 0 1 0

FSM Output 1 1 1 1 1

Table 4.7: “Outputs” of the FSM Global. A “1” means that the particular FSM is reset, a “0”
means it is running
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2 cell array makes 16 locations (a 4 by 4 matrix). The circuit inside the black-box is

the basic cell, made up with the two circuits shown in figure 4.17 and 4.18, stacked

one on top of the other.
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Figure 4.28: 16-location SAT hardware, made up with four 4-location cells
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4.5 Use of notches

The arrangement of four cells has shown that sometimes timing must be rearranged

by means of register insertions. In this case, their pNML equivalent, the notch, is

used. It happens that some signals must be delayed by more than one clock cycle:

this would imply the insertion of two notches in series. Figure 4.29 zooms on the

specific area where these elements are placed. Two inverters are placed exactly in

Figure 4.29: Detail of figure 4.28, with the two notches in series and two inverters in the middle

between the two notches. This is absolutely necessary, and it is proved by means of

a couple of timing diagrams. Consider figure 4.31, which is referred to two notches

in series without the pair of inverters in the middle. Refer to figure 4.30 for names.

A B C

Figure 4.30: Two notches in series. The signals evolution is shown in figure 4.31

In the example, the notch stays open for such a long time that the second notch

too is updated. Since we use notches as registers are used in CMOS, this must be

absolutely avoided. A possible solution is shown in figure 4.32. In this case, the

Depinning clock stays high (that is, opens the notch) for a shorter time-span, just
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Global Clock

Dep Clock

A

B

C

Figure 4.31: Example of signal passing thorough two notches in a single “notch cycle”

Global Clock

Dep Clock

A

B

C

Figure 4.32: Possible solution to the problem of figure 4.31

enough for one notch to let the input propagate towards the output: as it can be seen

in the time diagram, the second notch will have to wait for the next notch opening.

This solution works and avoids the two inverters, which are not functionally needed

and slow down the circuit by one clock cycle. Its only drawback is that it requires

a very precise knowledge of the propagation delays of the circuits. Sometimes the

designer does not have such a precise knowledge; moreover, delays have their own

tolerances, and finding a suitable time length of that depinning clock pulse might be

impossible. Using the couple of inverters is much easier and safer. The time diagram

in figure 4.34 shows the exact timing of that solution. Names and signal are referred

to figure 4.33. Notice that the notch is open for a long time, about half of the

A B C D E

Figure 4.33: Two notches in series with a pair of inverters in the middle. It solves the problems
seen in figure 4.31

length of the clock pulse, and yet the second notch has to wait next notch period:

before reaching the input of the second notch, the signal must propagate through

the two inverters. This propagation needs two clock edges, so that when eventually
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Global Clock

Dep Clock
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B

C

D

E

Figure 4.34: Solution to the problem of figure 4.31 with two inverters

the signal has reached the input of the second notch, the latter is no longer open.
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Chapter 5

Performance Analysis of the

SAT

There are a few motives for which the SAT algorithm has been selected to be tested

on hardware. It is an incremental algorithm, that can be optimized in many ways,

as the modular one implemented. It does not need complex hardware such as a

multiplier, and works with limited word parallelism and number of words. It in-

volves a matrix of memory locations, that might be mapped on an actual matrix

of hardware cells able to send and receive values from the neighboring cells. And

on top of that, there was another work [11], made in CMOS technology, that could

provide interesting data to compare performances. In that work, among many other

algorithms, the SAT one has been described in VHDL, simulated and synthesized.

5.1 Independent Design

All the SAT description is obviously the same for this work. The hardware imple-

mentation however is quite different. Let us briefly illustrate it. With reference to

the two kinds of control approaches to deal with a large number of locations, this

work is definitely a hierarchical one (in that work, the flat control is called “Inclusive

Scan Algorithm”, the hierarchical one “Balanced Trees Parallel Scan Algorithm”).

At first the matrix is split in 2 by 2 submatrices, at next step 4 by 4 matrices are
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considered, and so on until the algorithm is complete. Moreover, all these steps

are assigned to different physical hardware planes, so that each plane gets the val-

ues to process from the plane below, computes its part of the algorithm and then

passes the results to the plane above. Hence, each of these planes has to do with

matrices whose size is always the same. The presence of planes promptly suggests

that between everyone of them a pipeline stage could be placed; this is exactly what

has been done. The architecture is described in VHDL and is fully parametric: the

code takes care of everything, and all it needs in input is the number of bits of the

word, the number of columns of the SAT array and the number of rows. It turns

out that 16 locations (the highest number of location of the pNML architecture, a 4

by 4 array) are not enough to split the hardware in two pipeline stages. Therefore,

the whole operation is performed in just one algorithmic step. Besides the possible

pipeline stages, a single plane of the architecture does not contain registers, resulting

in a completely combinational circuit that calculates everything in one clock cycle.

The way the two architectures are tested is quite different. First, the CMOS

architecture is synthesized in Synopsys Design Compiler, on a Nangate 45 nm cell

library [12]. In this step, the parameters are set (word width and number of loca-

tions). Design Compiler outputs a circuit that can be simulated on Mentor Graphics

Modelsim. By linking the same library in Modelsim, the simulation will consider

the delay of each node of the network. The testbench contains instructions whose

purpose is measuring and storing the delay. The area can be easily assessed from

Design Compiler’s reports.

On the other hand, pNML architecture’s performances are investigated differ-

ently. First of all, there is no synthesis, as it is easy to guess because this is still

a pretty new technology. Nevertheless, MagCAD delivers a VHDL description that

already includes the delays. These delays are found by means of an analytical model,

grounded on the physical description of magnetics nanodomains’ motion. Therefore,

the simulation of the circuit (still done in Modelsim, or its higher-end equivalent,

Questa) will always show the delay of every signal. Anyway, what is to be found

for the pNML architecture is the number of clock cycles needed to complete the

algorithm. More specifically, since the architecture contains notches that are used

as registers, one has to know both how many notch cycles are needed, and how

many clock cycles make up a notch cycle. Then, since the clock period is know
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in the first place, this number will become a time. This whole process could be

done without a simulation: MagCAD provides the minimum clock period without

needing simulations, and the length of the notch cycle in terms of clock cycles can

be found from an inspection of the circuit (that will find the critical path); last,

the number of notch cycles the algorithm needs depends on the algorithm itself and

how it is mapped on hardware, it can be found from a circuit inspection as well

as the notch cycle. This way the total time needed to perform the algorithm can

be found. Despite all these observations, plenty of simulations have been carried

out. Two reason are behind them. One is that the correct functionality of the al-

gorithm had to be checked. The same data were put through the two circuits, and

the two outcomes were cross-checked. No unmatched cases occurred; furthermore,

they were also checked against the results issued by MATLAB. The second reason

is that the critical path can be searched within the layout of the circuit, but this

way mistakes are very frequent. The paths to analyze are many, and after having

found the (supposed) critical one, the circuit must be simulated to check whether

it works at that specific frequency, and stops working as soon as the frequency is

increased, even slightly. If all of these things happen, the critical path must be the

one found. Once the number of cycles is know, any variation either to the area

or to the technological timing parameters (see chapter 7) can be made: the clock

period will be recalculated and so will the total time. In pNML, a 2 by 2 cell has

been designed, as the basic component of an array of arbitrary size, and then four

of those cells have been gathered together in a 4 by 4 array. Thus, both the cell

alone and the four cell array have been tested. Let us now have a look to the result

of this comparison, in table 5.1 and table 5.2. As expected, the comparison shows

that the CMOS architecture is much faster than the pNML one. As CMOS is a

much older and tested technology, it should not surprise that the number of logical

operations per second that it is able to carry out is definitely higher than the one of

an emerging technology such as pNML is. Furthermore, the interest in pNML does

not reside in its speed, but rather in its being non-volatile and low-power. In other

(rough) words, a fast technology is compared with a slow one. This should account

for most of the difference, that is 6 or 7 orders of magnitude.

The matter can be elaborated a little. For example, this pNML circuit contains

several notches and takes some notch cycles to complete the algorithm, whereas this
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CMOS pNML

Minimum Clock Period 497 ps 1 1,676 µs
Notch Period Length - 29 Clock Cycles

# Notch Periods - 19
Total 497 ps 923,476 µs

Throughput 2,012 GOps 1,083 KOps(
ThroughputpNML

ThroughputCMOS

)
5,383 ·10−7

Area 310 µm2 169 um2(
AreapNML

AreaCMOS

)
0,544

Ops= Operations per second; KOps= Kilo Operations per secon; MOps=
Mega Operations per second; GOps= Giga Operations per second

1 The delay is the average among 136 simulations

Table 5.1: Delay and area comparison between the pNML architecture and the one of [11], with a
2 x 2 SAT size

CMOS pNML

Minimum Clock Period 1,747 ns1 1,750 µs
Notch Period Length - 29 Clock Cycles

# Notch Periods - 67
Total 1,747 ns 3,4 ms

Throughput 572 MOps 294 Ops(
ThroughputpNML

ThroughputCMOS

)
5,140 · 10−7

Area 2485 µm2 1249 µm2(
AreapNML

AreaCMOS

)
0,502

Ops= Operations per second; MOps= Mega Operations per second
1 The delay is the average among 28 simulations

Table 5.2: Delay and area comparison between the pNML architecture and the one of [11], with a
4 x 4 SAT size

CMOS one is not pipelined at all and takes a single clock cycle. By “pipeline” here

the insertion of notches is meant. It should be reminded that from a theoretical

point of view the notches in pNML are never necessary. With a meticulous study

of the timing in the circuit, everything can work. This circuit is too complex to do

that. Basically, here notches were used to deal with the complexity with a reasonable

effort, and they were inserted where it is particularly convenient to break the logical
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path. From the timing point of view however, they do not improve in any way the

delay. The critical path is greater than most of the other paths; in terms of the

classical pipelining theory, here the pipeline is not balanced, and this slows down

the circuit’s performances. There is also a logical loop (data comes out from the

memory, enters the adder and the result gets back to the memory), which makes

impossible for the circuit to get improved by means of a pipelining technique.

Another reason that might account, at least to some extent, for the perfor-

mance gap, is the great diversity of the architectures. The pNML one has an adder-

accumulator, that takes time the be loaded because has just an input port, whereas

in the CMOS version all the needed adders are present in hardware. The number

of sums carried out in the same time by the CMOS architecture is certainly larger.

In conclusion, even if CMOS technology is much faster than pNML, the compar-

ison cannot be considered fair. A last point to consider is the library: it plays a

very important, and possibly determinant, role in the performances of the CMOS

architecture. It should be noted however that this is not the most updated CMOS

library at all, and with more recent ones the gap between the two architectures will

be likely to increase.

The other characteristic to be discussed is the area. As both tables (5.1 and

5.2) show, pNML implementation takes up about half of the area that the CMOS

implementation takes. It would seem that in this aspect pNML is much better

than CMOS, but there are at least two points that are in favor of CMOS. First

off, CMOS allows to manufacture much smaller circuits, this is certainly not the

tiniest technological node. Second, the architectures are very different: the pNML

one is “minimal”, meaning that is carries out the algorithm with the least possible

hardware, because everything is hand-designed. The CMOS one follows a com-

pletely different approach: all the needed hardware is deployed, there is no reuse

and the computations go ahead in a mono-directional fashion (partial results are

never brought back to the same processing element, they always enter another one).

This is actually one of the most area-voracious styles of implementation. An im-

plementation with a different technology node can be tried; not in full detail, but

just analytically approximating the area. Let us consider the 22 nm and the 14 nm

nodes. The approximation could work like this: in this 45 nm technology, the ratio

between the technology node typical size and the total area was:
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310µm2

0,045µm 0,045µm = 1,531 · 105 (2 x 2)
2485µm2

0,045µm 0,045µm = 1,227 · 106 (4 x 4)

Now, the roughest estimation of how big the circuit would be if synthesized in those

two technological nodes consists in multiplying those numbers by the square of the

technological node typical size in use. However, pNML can be shrunk too. The

architecture was designed at first with a typical length equal to 330 nm, and one

can safely assume to be able to lower that value at least to 200 nm. As extreme

physical limit, let us assume 45 nm. With these new values, the data are those in

table 5.3. More recent CMOS nodes lead to much smaller circuits, yet larger than a

2 x 2 4 x 4

CMOS 22 nm 74,1 594
CMOS 14 nm 30,0 249
pNML 200 nm 61,9 459
pNML 45 nm 3,13 23,2

Table 5.3: Area estimates (in µm2) for implementations with smaller technology nodes

CMOS
pNML

330 nm 200 nm 45 nm

45 nm 0,544 0,200 0,0101
22 nm 2,28 0,836 0,0423
14 nm 5,62 2,06 0,105

Table 5.4: Area ratios (Area
pNML

Area
CMOS

) for a 2 x 2 SAT size for some pNML and CMOS nodes

CMOS
pNML

330 nm 200 nm 45 nm

45 nm 0,503 0,185 0,00934
22 nm 2,10 0,772 0,0391
14 nm 5,19 1,907 0,0965

Table 5.5: Area ratios (Area
pNML

Area
CMOS

) for a 4 x 4 SAT size for some pNML and CMOS nodes

very scaled pNML implementation, as table 5.5 shows. However, pNML architecture

is intrinsically smaller. Next section elaborates this point, considering the problem

from a different point of view.
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5.2 CMOS conversion

Because of what has been said in the previous section, another kind of comparison

has been tried. This time, the very same architecture has been described in VHDL,

synthesized in CMOS with the same library as before, and tested. In this case, pNML

notches become registers in CMOS; hence, the algorithm will not be completed in

just one clock cycle. The amount of notch cycles will be equal to the amount of

clock cycles in CMOS.

There is a possible source of problem: the synthesis is performed by the CAD

tool, and depending on the VHDL coding style, the circuit might be very different

from the one in pNML, making meaningless the whole comparison process. This

matter is tackled by choosing to write two different VHDL descriptions. The first

one just describes the function of the components, leaving to the compiler the task

of choosing the most suited hardware implementation. For instance, the memory

is written as a for loop, as it would be done in a software language. In the other

description, the elements designed throughout all this thesis work are described in

the most faithful way, with a large use of the “generation” structure of VHDL. Half

adders, full adders, memories and multiplexers are defined and allocated; even the

memory cell is made in way similar to the two-multiplexer way seen in section 3.5,

figure 3.11. A different way to express the concept could be that the former is a be-

havioral VHDL description, while the latter is a structural VHDL description. Both

versions will be useful and will shed light on different aspects of the comparison.

Table 5.6 contains the minimum clock periods for each size and description style.

In that table, the lowest clock period is considered. Table 5.6 shows that if the ar-

chitecture are more alike, the differences are lower. However, even though for these

CMOS circuits the delays have grown by about one order of magnitude, the gap

is still huge. This proves that the architecture too accounts for the difference, but

very little. Someone might legitimately wonder why these two CMOS architectures

are considered, since there was one in the previous section that was faster. This is

correct: in the end, each design should be free to exploit as much as possible the

strong points of the technology in use. What must be compared should be the final

outcome of a circuit made trying to achieve the most from the available resources.

In other words, the comparison should have the best pNML circuit on one side and
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5.2 – CMOS conversion

Behavioral
description

Structural
description

Clock period ps
2 x 2 420 480
4 x 4 470 570

Total time ns
2 x 2 7,98 9,12
4 x 4 31,49 38,19

Throughput
2 x 2 125 MOps 110 MOps
4 x 4 31,8 MOps 261 MOps

Total time ratio
(
pNML
CMOS

)
2 x 2 1,157 ·105 1,013 ·105

4 x 4 1,080 ·105 8,903 ·104

Ops= Operations per second; MOps= Mega
Operations per second

Table 5.6: Delay and throughput of the two CMOS versions with the same architecture used for
the pNML implementation

the best CMOS circuit on the other. That having being said, there are reasons that

justify this choice too. The most important one is that this is only one algorithm,

and it might be much more suitable for one of the two technologies: therefore, new

architectures, whose performances are better, might exist. Making the compari-

son independent from the architecture solves the problem. Furthermore, whatever

anyone could think about how two technologies must be compared, analyzing them

when the architectures are the same allows to investigate what are the causes of the

difference in performance.

So far, delay has been the only parameter considered. The two technologies

have been employed to build a circuit able to run the algorithm as fast as possi-

ble, regardless of power or area. It may be interesting to check out how goes the

comparison when, for example, the two sides have a constrained power budget, or

a constrained maximum area. In the early stages of this work, this was one of the

objectives. Unfortunately, to date no satisfactory power estimation tool for pNML

exists. Therefore, the comparison cannot be made, but the CMOS architectures
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power reports have been generated, and the data is listed in Appendix D, ready for

the time when such a tool will be developed. In chapter 6, the SAT architecture is

designed in a different fashion, using just two layers.

Now let us analyze the area. Table 5.7 shows the area of these CMOS versions

of the circuit. pNML proves again to be the smallest one, and in this case, the

Behavioral
description

Structural
description

Area [µm2]
2 x 2 427 471
4 x 4 1710 1799

AreapNML

AreaCMOS

2 x 2 0,375 0,340
4 x 4 0,716 0,681

The areas are the average of the differ-
ent values, one for each clock period con-
straint. The circuit with time constraint
equal to 500 ps was much bigger, and has
not been taken into account.

Table 5.7: Area of the two CMOS versions with the same architecture used for the pNML imple-
mentation

two technologies have been used to implement the same circuits, even though in two

different synthesis styles. The area does not change much between the structural

description and the behavioral description. Let us focus on the CMOS version.

It was said that the architecture difference could account for the fact that CMOS

circuit is larger than pNML. The pNML one is minimal, whereas the CMOS one

deploys as many processing elements as needed, with no reuse of any of them. This

is actually true, but it turns out that it does not explain the area difference, since

using the same architectures makes the CMOS circuit bigger. The memory element

should be responsible for that. The first architecture does not include a memory,

just combinational logic that carries out its part of the algorithm and then passes

the results to the next plane. A pipeline register could be placed between the two

planes, but no other memory element is there. Given that in CMOS the memory

takes up much more room than the combinational logic, it is reasonable to suppose

that the insertion of an element caused the circuit to increase its size.
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5.2 – CMOS conversion

To sum up all this discussion, in some cases the CMOS circuit was smaller than

the pNML version, but the most scaled pNML version considered is likely to be

smaller than any CMOS technological node. Notice also that the 200 nm version

of pNML is smaller than the 14 nm CMOS version: it shows that if a pNML

and a CMOS circuit are manufactured with the same process (and with the same

resolution), the former will probably be much smaller than the other.

In order for these area and delay figures to be checked later on, figure 5.1 shows a

screenshot of the parameters set in MagCAD to get the delays listed in this chapter.

This report is found in the file definitions pnml.vhd

Figure 5.1: MagCAD report of the technological parameters used in this chapter
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Chapter 6

Two-Layer flattening

The objective pursed in chapter 3 consisted in exploring good layout solutions that

take advantage of the layers above the first one or two. The assumption was that

as many layers as needed were available: in chapter 4, section 4.4 14 layers were

eventually used. However, to this day (February 2018), no experimental proof of

circuits with more than two layers exists. On one hand, there is no evidence of the

impossibility of manufacturing this number of layers; on the other hand, in order

not to rely too much in projections about future technological achievements, it is

extremely useful analyzing how the multi layer circuits built so far would look like

if they were leveled to just two layers. In next sections, some examples of two-layer

design will be given. The circuits have been adapted to two layers, then area and

timing are compared. In some cases, a few points concerning topological changes

are underlined too. When doing either area or length comparisons the units are

arbitrary, because they depend on the spatial resolution in use, that depends on

the technology. MagCAD draws a grid over the circuit, that represent this spatial

resolution. The side of each square is about as long as the width of the domain wall,

or as the diameter of the pads. Therefore, the most convenient choice consists in

using this square as a reference unit: its side will be the unit length, and its area

the unit area. The term “square” will be used in both cases, and the contest will

make clear whether it is referred to a length or to an area.
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6.1 Multiplexer

The circuit shown in section 3.3 is here redrawn using just two layers. The final

result can be seen in figure 6.1. Clearly, the aspect ratio of the circuit has changed.

Figure 6.1: Two-layer design of the multiplexer in figure 3.9

Figure 6.2 represents both versions of the circuit; this way, it is easier to spot size

differences by just looking at it. Then, table 6.1 contains all the details about

0
1
2

Figure 6.2: Multiplexer in figure 3.9 compared with its two-layer version

timing and area of the two circuits. As it is easy to see from image 6.2, the two-

layer version is bigger by one third. Nevertheless, with respect to the timing, the

two-layer option outperforms the other one. Unexpected though it might seem, this

is normal. In pNML, an half clock cycles delay is unavoidable to invert a signal.

A signal moving up or down to another layer undergoes a full clock cycle delay:

it means that this operation just adds delay without performing an either useful

or needed computation. Thus, something that slows down a signal by a full clock

cycle, as a VIA does, is always detrimental for the timing. It is just a waste. The

only reason they are used it is because it is a trade-off that saves area. Of course,
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6 – Two-Layer flattening

Area
3 layer version 2 layer version Ratio

Height 3 3 1
Width 6 8 1,33
Area 18 24 1,33

Delay
3 layer version 2 layer version Ratio

D1 → Q 8 6 0,75
D2 → Q 8 4 0,75
En → Q1 9 (8) 5 (4) 0,56(0,5)

Clock Period µs 1,448 1,480 1,02
Longest domain wall’s length 3 5 1,67

Height, width and domain wall length are expressed in arbitrary length units. Areas are expressed
in (arbitrary length units)2. Delays are expressed in half clock cycles. Ratios are expressed as

2 layer version
multi layer version

.
1 The path branches in two different ones; hence, there are two different delay counts.

Table 6.1: Area and delays of the multiplexer in figure 3.9 and of its two-layer version

a two-layer implementation of a circuit still has some inter-layer signal passing, but

when many layers are used, it is reasonable supposing that they will be on average

more frequent. Last, the clock period does not change much, even if the relative

difference of the longest domain wall’s length is quite high. This is due to the specific

technological parameters chosen, that make nucleation delays (independent from

domain wall length) the main contribute to the total delay (for further information,

refer to chapter 7). The delays and area are listed in table 6.1.

6.2 Full Adder

A second circuit analyzed is the one seen in subsection 4.1.2. Actually, that one is a

4-bit ripple carry adder, whereas the circuit here redesigned in two layers is just one

of the three left hand modules, namely, a full adder. In figure 4.6, they are shown all

wired together. The layout can be seen in figure 6.3. The circuit is quite compact,

and this compactness is partially due to the use of the “oblique pad”. It can be

seen alone in figure 6.4. A visual comparison between this version and the one of

chapter 4 can be made by looking at the tiny figure 6.5. However, the oblique pad
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6.2 – Full Adder

Figure 6.3: Two-layer design of a full adder (with oblique pad)

Figure 6.4: Oblique pad, a new technological feature

has never been used so far. Hence, to make the comparison fair, here is presented

a version which does not include that specific element. It can be seen in figure 6.6;

figure 6.7 draws both versions (the multilayer one and the two layer one); table 6.2

thoroughly compares timing and areas for the three versions. In this case the area

increase is similar to the one obtained in section 6.1. Delays are either unchanged or

reduced, confirming the assumption that a two-layer version should be faster. Unlike

the multiplexer case, the longest domain wall this time is longer in the multi layer

version, with the consequent (small) reduction in the total clock period. Anyway,

the total clock period is not supposed to change too much: the idea is that any time

0

1

2

Figure 6.5: Full adder compared with its two-layer version (with oblique pad)
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Figure 6.6: Two-layer design of a full adder (without oblique pad)

0
1
2

Figure 6.7: Full adder compared with its two-layer version (without oblique pad)

a domain wall gets too long, it is split with a couple of inverters. Hence, the total

clock period depends more on the technology than on the layout; a longer domain

wall will have a higher delay in terms of clock cycles. This is the most meaningful

timing parameter when comparing different version of the same circuit. Therefore,

the variations on the clock period will no longer be reported.

So far, simple circuits, with no internal modularity, have been analyzed. In all

cases, area came out larger and delay did lower. Basing on this analysis,it can

be stated that area increases by about 20-30%; in regard to the timing, it often

happened that the same input-output path were shorter in the two-layer version.

Nonetheless, since what actually characterizes the circuit is the longest path, it is

safer saying that the delay is about the same, sometimes slightly shorter.
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6.3 – Flat delay decoder

Area

3 layer
2 layer
w OP

2 layer
w/o OP

Ratio
w OP

Ratio
w/o OP

Height 5 5 6 1 1,2
Width 6 7 6 1,17 1
Area 30 35 36 1,17 1,2

Delay

3 layer
2 layer
w OP

2 layer
w/o OP

Ratio
w OP

Ratio
w/o OP

A → Cout 4 4 4 1 1
B → Cout 2 2 2 1 1

Cin → Cout 2 2 2 1 1
A → S 1 5 (4) 5 (4) 5 (4) 1 1
B → S 1 5 (4) 5 (4) 5 (4) 1 1

Cin → S 2 8 (6)(5) 6 (4)(3) 6 (4)(3) 0,75 0,75
Clock Period µs 1,528 1,495 1,512 0,98 0,99
Longest domain

wall’s length
8 6 7 0,75 0,875

Height, width and domain wall length are expressed in arbitrary length units. Areas are
expressed in (arbitrary length units)2. Delays are expressed in half clock cycles. Ratios

are expressed as 2 layer version
multi layer version

. OP = oblique pad.
1 The path branches in two different ones; hence, there are two different delay counts.
2 The path branches in three different ones; hence, there are three different delay counts.

Table 6.2: Area and delays of the three versions of the full adder

6.3 Flat delay decoder

In this section, the same layer-reducing operation is carried out over a decoder, seen

in section 3.1, figure 3.4. The decoders are chosen as examples of circuits with many

sections repeated, possibly with minor changes, such as the inversion of some inputs

according to the output number. They are in fact arrays of basic elements. In the

last sections it has been shown that for simple circuits the area increment was about

20-30%. Thus let us analyze figure 6.8, representing the outcome of this flattening

operation.

This circuit includes good examples of what is done to fit in just two layers

a circuit previously designed for at least three. Keep in mind that the idea is

not “redesign the multi layer circuit in two layers” but rather “convert the multi
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Figure 6.8: Two-layer design of the decoder in figure 3.4

layer circuit in a two-layer one”. It means that, as far as the reduced number of

layers allows, the two circuits are identical. Nonetheless, any interesting design

solution found out while “converting” the multi layer circuit in a two-layer one will

be applied, even if completely different from its multi layer counterpart. Figure 6.9

contains both decoder’s versions, with some marks. Red dots, circles and squares

are ideally located on the layer 0, green ones are located on layer 1. The blue lines

do not belong to any layer in particular. The circuits are turned by 90 degrees, so

that by “height” it is meant the dimension parallel to the short side of the page,

and by “width” it is meant the dimension parallel to the long side of the page. In

the two-layer circuit image, all the marks are relative to the second output because

the first one is different from all the other (the domain wall must not run above

the inverter in the solid red circle on the bottom layer, so it has been diverted).

As it can be seen, the circuit certainly has increased in size, both in height and

in width. Looking more in detail, it can also be seen that when only two layers

are available, some tricks to cross domain wall are needed. In the image it can be

seen that in order for the signal in the red dot (layer 0) to reach the green dot

(layer 1) the “bypass” made with the domain wall in green rectangle (layer 1) and

the one in the red rectangle (layer 0) were needed. This adds to the width of the

circuit: the circuit is larger by one or two squares. In the multi layer version of

the circuit there was no need to do such a thing: those signals are just laid on a

further layer, which of course does not cross with any other layer. The only thing

to care about is avoid placing inverters over domain walls. In conclusion, it is fair

to say that by giving up the third layer, the circuit has increased in width by one or

two squares. The blue double arrow defines the width of the logic circuitry devoted
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3 sq.

2 sq.

0
1
2

Figure 6.9: Decoder in figure 3.4 compared with its two-layer version

to a single output. This section is one square wider in the two-layer circuit: the

outputs are 16, and this account for most of the height increase. This is due to

the inverter inside the green circle: it must not couple with domain wall below, so

that the “spacing” marked with the red, dashed ellipse, has been inserted. Trying

to formulate a general criterion to predict the area increase when converting a three

layer circuit into a two-layer version, it can be claimed that, both in this case and in

the one in section 6.1, a simple circuit (a full adder, the circuitry that here produces a

single output) becomes more or less one square larger in footprint. Since the decoder

could be considered a 2 by 16 matrix of such simple circuits, a 16 square increase

in height and a 2 square increase in width are expected, which is close to what

actually occurred. Table 6.3 shows precisely how timing and area metrics changed.

In this case, something unseen before happened. The delay is sometimes greater in

the two-layer version, because of the bypass (the trick used to bring input A0 to

the output, see figure 6.9). Anyway, the characterizing delay is always the greatest

one, so that, once again, the delay stays unchanged between the two version (the

worst case is the same for both of them). The area is larger in the two-layer version,

which comes as no surprise; nevertheless, the ratio has considerably increased, and
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Area
3 layer 2 layer Ratio

Height 33 49 1,48
Width 9 13 1,44
Area 297 637 2,14

Delay
3 layer 2 layer Ratio

A0 6 (5) 10 (9) 1,67 (1,8)
A1 6 (5) 8 (7) 1,14 (1,17)
A2 10 (9) 6 (5) 0,6 (0,56)
A3 10 (9) 6 (5) 0,6 (0,56)

Height, width and domain wall length are expressed in arbitrary length units. Areas are
expressed in (arbitrary length units)2. Delays are expressed in half clock cycles. Ratios

are expressed as 2 layer version
multi layer version

.

Each input reaches every output, either inverted or non inverted. Hence, two delay
counts always differing by half a cycle.

Table 6.3: Area and delays of the decoder in figure 3.4 in section 3.1 and of its two-layer version

the surface has doubled. This is due to the mechanism discussed above: on average,

each gate increases its size by a few squares, and circuits made of an regular array of

gates increase their size proportionally to the number of gates, even if not linearly

(more complex circuits show a worse increase ratio).

6.4 Scaled delay decoder

A different kind of decoder has been analyzed too. In this version, seen in figure 3.5,

section 3.1, the delays are not equal for every output. The farther from the input

the output is, the higher the delay gets. Compared to the previous version of

the decoder, this has a greater delay but a slightly smaller area, and it might be

interesting checking how things change when it is reduced to only two layers. The

two-layer circuit is shown in figure 6.10, whereas figure 6.11 shows both multi layer

and two-layer version, in order to visually compare them. Notice that more or less

the same techniques used in the other decoder version are used here: the same

structure underlined in figure 6.9 can be seen. These two-layer version of the two

decoders are very similar indeed, much more than the multi layer versions are. Have
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Figure 6.10: Two-layer design of the decoder in figure 3.5 (scaled delay)

a look at figure 6.11. Four rectangles are drawn. As usual, red colored shapes must

0
1
2

Figure 6.11: Decoder of figure 3.5 compared with its two-layer version

be thought as belonging to layer 0, green color ones to layer 1, and here there is also

a blue rectangle, for something placed in layer 2. The whole point of the rectangles is

to show that two domain walls, bearing the values of signals A0 and A1, are perfectly

overlapped in the three layer version, and shifted by one square in the two-layer one.

The reason is know, and this is just an example of how leveling in two layers causes

the circuit to widen its footprint. However, the inverters needed to rearrange the

inputs according to each output are disposed along the height rather than the width,

as it was the case in the other decoder. This causes the width increase to be a little

more restrained, while the height incrementation is just the same. Table 6.4 lists all

the parameters in full detail. By analyzing the exact values for area and timing, it

can be seen that the area has increased a little less than before. The delay is larger

for inputs 0 and 1, and lower for inputs 2 and 3. This is due to the bypass structures

shown in figure 6.9: the delay is usually lower for two-layer implementations, but
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Area
3 layer 2 layer Ratio

Height 36 50 1,38
Width 7 10 1,43
Area 252 500 1,98

Delay

3 layer 2 layer
Ratio

Output 0 Output 15

A0 5 + i 9 + i 1,8 1,2

A1 5 +
⌊
i
2

⌋
7 +

⌊
i
2

⌋
1,4 1,67

A2 9 +
⌊
i
4

⌋
5 +

⌊
i
4

⌋
0,56 0,67

A3 9 +
⌊
i
8

⌋
3 +

⌊
i
8

⌋
0,33 0,4

Height, width and domain wall length are expressed in arbitrary length units. Areas are
expressed in (arbitrary length units)2. Delays are expressed in half clock cycles. Ratios

are expressed as 2 layer version
multi layer version

.

The delay of each input depends on the particular output, i represents the output
number, 0 ≤ i ≤ 15. Since the delay varies, both the ratio of input 0 and the one of
input 15 has been calculated.

Table 6.4: Area and delays of the decoder in figure 3.5 and of its two-layer version

when these structures are needed, they increase the delay value, which may get even

larger (as in here), than the multi layer implementation. Notice also that the two

delay values tend to get closer to each other as the output number increases, no

matter which implementation is the fastest on output 0. Anyway, because of the

usual worst case rule, the two-layer implementation is slower.

There is a last interesting point to analyze briefly about both versions of the

decoder. In chapter 3, it has been shown by means of two timing diagrams (in

figure 3.6 and 3.7) that the scaled version of the decoder is more affected by glitches

than the flat one (which was almost glitch-free). Figure 6.12 shows the time evolution

when all the outputs are tested, and represents fairly well the behavior of both the

versions: hence, the two-layer leveling has made them similar from this point of

view. By comparison to the two timing diagrams of chapter 3, it can be observed

that the glitching behavior here is stronger than both of those previous cases.
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A 0

A 1

A 2

A 3

Sel 0

Sel 1
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Figure 6.12: Test of the whole set of input combination for the circuit in figure 6.8 and in figure 6.10

So far two kinds of circuits have been analyzed, and they can be considered simple

circuits (the full adder and the multiplexer) or array of simple circuits (these two

decoders). A general assumption could be that simple circuits undergo an area

increase by 20-30%, while the delay changes very little. More complex circuits, such

as these two decoders, undergo a greater rise in area, about 100%; due to bypass

structures, delays might increase by almost the same factor (70-80%).

6.5 Programmable logic array

A PLA is used to implement an arbitrary combinational logic function; usually

in the other technologies the logical function is either one-time programmable or

reprogrammable, but not at execution time, while in pNML the PLA can be re-

programmed as many times as needed at execution time. Given its function, the

PLA contains a great deal of combinational logic, highly structured. The two-layer

reduction is pictured in figure 6.13. The first thing one notes regarding the lay-

out structure is that it is full of “voids”. These voids are chiefly caused by the

impossibility to access a nucleation center from many directions (in multi layer it
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Figure 6.13: Two-layer design of the PLA in figure 3.24

can be accessed from above, below and around, here from around and either below

or above) and by the need to fork some paths to make some signals reach farther

(the inputs must cross all the circuit and also join some gates along the way). This

latter thing was usually made by means of additional layers. Actually, voids could

be found in the decoders layouts too, but here are much more cumbersome.

Let us check this point by comparing, in figure 6.14, the two variations of the

circuit together. The usual colors are assigned to the drawings: red for the ones on

layer 0 and green for the ones on layer 1. All the other colors are “layer independent”.

The solid-line, light blue rectangle outlines a single minterm within the AND plane

in both circuits; the the dashed rectangles do likewise for the max terms within to

OR plane. The points worth mentioning are:

• In the multilayer circuit, the inputs have the same delay for every minterm,
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Figure 6.14: PLA in figure 3.24 compared with its two-layer version

whereas in the two-layer version the known bypass structure (green rectangle)

causes the bottom minterms to get the input value later with respect to the

top ones. However, in the multi layer circuit it was chosen to have all the

inputs with the same delay on each minterm, which means having no inverters

along the domain wall carrying the input values. A different, and probably

more likely choice, could have been breaking these too long domain walls. In

any case, the point is that in multi layer design there is a choice, whereas in

two-layer design there is no choice;

• In the multilayer circuit, the programming inputs are arranged over multiple

layers, resulting in a 7 square height of the single min term; since at most two

layers are available in the other circuit, some more vertical space is needed.

This results in a 11 square height. Notice that in the multi layer circuit, even

if a single minterm takes 7 squares in width, it can be partially overlapped

to the neighboring one, so that it is as if every minterm were 6 squares high.
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Needless to say, no overlapping can be done in the two-layer version, layers

are not enough;

• The same reason that makes necessary the bypass causes the branch off of the

domain wall holding the values of the input (red path). This causes a one

square width increase for each input (in the left hand circuit, each input needs

two squares in width, in the right hand it needs three). In general, it occurs

pretty frequently (but not always) that a long, single-layer domain wall in the

multi layer circuit becomes in a two-layer version a wire running up and down

in both layers;

• Surprisingly, in the OR plane the two-layer version max terms are shorter than

their multi layer counterpart. This is probably an exception. Anyway, since

the AND plane should always be higher than the OR one, the OR plane height

should not matter.

Let us list now the full set of value in table 6.5

Area
3 layer 2 layer Ratio

Height 26 45 1,73
Width 26 37 1,42
Area 676 1665 2.46

Delay

Path 3 layer 2 layer
Ratio/Difference
Shortest Longest

Input → 8 + 4ninput 3 + 2ninput + 4nand(+1) 0,5 0,83
→ Output 6 + 4ninput 5 + 4ninput + 4nor(+1) 1 1,12
SA diff −1 + 2 dninput

3 e 1− 4nand 2 -14

SO diff 0 1− 4nand + (−1)
bnand

2 c(4nor) 1

Height, width and domain wall length are expressed in arbitrary length units. Areas are expressed
in (arbitrary length units)2. Delays are expressed in half clock cycles. Ratios are expressed as

2 layer version
multi layer version

.

nand and nor is the index number of the particular minterm or maxterm under exam, as defined
in figure 6.14

Table 6.5: Area and delays of the PLA in figure 3.24 and of its two-layer version
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6.6 – SAT hardware in two layers

6.6 SAT hardware in two layers

In section 4.3, a circuit able to carry out the SAT algorithm among four cells was

shown. Since it is the most complex module of this thesis work, it is almost com-

pulsory to present a two-layer reduction of it. The main interest in this case was

the area and the difficulty of reducing such a complex circuit, originally made in 12

layer, in just two. On the other hand, timing has in part been neglected. There are

a few reasons for this. One is the complexity of the circuit: the circuit has not been

simulated, and analyzing tens or hundred of paths without a simulation verification

is time-consuming and error-prone. Another one is that the analysis of the previous

circuits has shown that timing does not change too much, and proving it with too

much data will be just a waste of time. A final reason could be that the critical

path of the multi layer version is known, and that almost certainly it will be the

same in the two-layer version, because all the rest of the circuit is densely pipeline.

Saying that the critical path is the same does not mean that the value is the same,

but rather that it is the same logical path, whose length might change.

6.6.1 Local FSM

This is the FSM within the SAT cell with the highest number of states and of layers.

It is also the only one discussed in full detail. Its layout is pictured in figure 6.15.

The design principles are the same as the multi layer structure: the center part of the

circuit contains notches, one for each state, with the output of every notch entering

the input of the next one. This area is pretty small, due to the nature of the FSM:

it moves to next state without conditions to be evaluated, thus no logical operations

(besides the reset one) are performed from a state to the next. Then, all around

run some domain walls, carrying out logical operations that define the value of each

output. Figure 6.16 shows both version together. The dashed black box marks the

area where the notches are placed, so that everything else, outside of that box, is the

output network. The size of the two circuits may appear not widely different (the

ratio is actually around 2.5), but it must be said that the multi layer circuit perhaps

could have been narrower: it was designed as a 15 state machine, then three states

have been removed. To take this into account, considering the width of the circuit 3

squares smaller should solve the ambiguity. Besides the size, it can be noted straight
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Figure 6.15: Two-layer design of the Local FSM

away that the two-layer version is much less dense: this is due to the spacing needed

to place fixed magnets and inverters. Furthermore, the area where all the outputs

are elaborated (a red box surrounds its, and the structure is the same for all the

FSMs) is full of voids: the are lines where just a few fixed magnets can be found

(on the top layer, green dashed lines). All the data are detailed in table 6.6.

The table shows that the area ratio is greater than it would seem, but it is within

the usual factors. A general analysis of the delays proves that the timing is usually

better for the two-layer version, as it was almost always the case; at most, the delay

is equal. Given that this FSM design style leverages to a great extent the multi layer

technology, it would seem that the area increase depends very little on the number

of layers.

6.6.2 Reset FSM

This finite state machine is quite commonplace, at least considering what has already

been shown and discussed. It is drawn in figure 6.17, along with its multilayer

counterpart. Areas are compared in table 6.7.
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Figure 6.16: Local FSM compared with its two-layer version

6.6.3 Input FSM

This finite state machine is probably the most elaborated one. It has two different

FSMs inside, one of them (the master) steps through its states any time the Reset

is low, evaluating no conditions. The other one, the slave FSM, advances by a

state every time the master FSM reaches the last state. Moreover, there is a XOR

network that negates the output when a certain signal is high, but only while the

slave FSM is in some of its states. This makes it a Mealy machine (the input-

output direct link is broken by pipelining, but from the point of view of the intrinsic

working of the FSM it does not matter). A pretty complex FSM indeed, which

is also why it is interesting. Four main areas can be defined, each one inside a

box in figure 6.18. They are: the master FSM (bottom left), the slave FSM (all

but the output network), in the bottom right box, the output network of the slave
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Area
Multi layer 2 layer Ratio

Height 14 20 1,43
Width 23 (20)1 30 1,30 (1,5)1

Area 322 (280)1 600 1,86 (2,14)1

Delay
R/W Sel Add0 Add1 Enadd Reset

ML 2L R ML 2L R ML 2L R ML 2L R ML 2L R ML 2L R

S0 - - - - - - - - - - - -
S1 - - - - - - - - 18 10 - -
S2 - - - - 12 8 - 0 10 8 - -
S3 - - - - - - - - - - - -
S4 10 6 10 6 4 6 - - - - - -
S5 - - - - 12 8 12 8 10 8 - -
S6 - - - - - - 18 10 8 6 - -
S7 - - - - - - - - - - - -
S8 8 4 4 4 4 4 10 8 - - 4 4
S9 - - - - - - - - 4 6 - -
S10 - - - - - - 10 6 4 4 - -
S11 - - - - - - - - - - - -
S12 4 2 4 2 - - 10 4 - - 4 2

Height, width and domain wall length are expressed in arbitrary length units. Areas are expressed
in (arbitrary length units)2. Delays are expressed in half clock cycles. Ratios are expressed as

2 layer version
multi layer version

.

ML= Multi Layer version; 2L= 2 Layer version; R=Ratio
1 In this value the multi layer circuits is considered 3 squares narrower, because of what has been said

about the reduction of the states in this FSM

Table 6.6: Area and delays of the Local FSM and of its two-layer version

FSM (top right box), the XOR switching network (top left). At design time, the

hardest problem is the fact that some conditions are evaluated to decide whether or

not leave the current state. This means that four signals (Reset, the current state

signal, the previous state signal, the trigger signal, this one both negated and non

negated) contribute to the determination of each state. Therefore, the solutions

found consists in passing the next-state wires in the same way the output wires

are drawn. This considerably stretches the layout. Alternative solutions might be

found, but the easiest to find are likely to be less regular than this one. Basically,

the design would be made by drawing the wires where free room can be found, by
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Figure 6.17: Reset FSM compared with its two-layer version

Area
Multi layer 2 layer Ratio

Height 6 11 1,83
Width 9 12 1,33
Area 45 132 2,93

Height, width and domain wall length are ex-
pressed in arbitrary length units. Areas are ex-
pressed in (arbitrary length units)2. Ratios are

expressed as 2 layer version
multi layer version

.

Table 6.7: Area and delays of the Reset FSM and of its two-layer version

a sort of “shortest distance” rule between the points to be connected; if successful,

this method might yield a result even smaller than the one shown here, but it would

be a trial-and-error method, and the solution would not be reproducible. Moreover,

should a change be made, it would imply reconsider the whole circuit. And last, it

is not guarantee that the design will be feasible: at a certain point, there might not
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Figure 6.18: Input FSM compared with its two-layer version

be any more room to design the whole circuit. Table 6.8 shows the area parameters.

6.6.4 Output FSM

This FSM (in figure 6.19, with parameters in table 6.9)is much simpler than the

previous one. It has just two outputs and three states. Unfortunately, it still

evaluates conditions to proceed to the next state. Therefore, the same method used

in the Input FSM has been used. There is just an interesting point: since the states

are three, and all the FSMs are made such that odd-number states and even-number
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Area
Multi layer 2 layer Ratio

Height 13 30 2,31
Width 31 27 0,87
Area 403 810 2,01

Height, width and domain wall length are ex-
pressed in arbitrary length units. Areas are ex-
pressed in (arbitrary length units)2. Ratios are

expressed as 2 layer version
multi layer version

.

Table 6.8: Area and delays of the Input FSM and of its two-layer version

states are on different layers, the next-state network between the last and the first

state has been a little trickier to design, because the two states were on the same

side. The details would be meaningless and complicated; this point just proves

how apparently silly things become problems when layers are just two. Usually the

solution impacts the area.

Another thing to point out is that, with respect to the previous FSM, this is less

“regular”, meaning that in this case the design rules are broken more often. This is

a general trend: the more complex the circuit is, the more structured it must be. As

said in the previous section, a non-structured design flow might be more effective

than a structured one, and if the case is not too complex, it can carried out easily.

This is a circuit so simple that a less structured approach is worth while. Table 6.9

contains the area values.

Area
Multi layer 2 layer Ratio

Height 8 13 1,63
Width 17 24 1,41
Area 136 312 2,29

Height, width and domain wall length are ex-
pressed in arbitrary length units. Areas are ex-
pressed in (arbitrary length units)2. Ratios are

expressed as 2 layer version
multi layer version

.

Table 6.9: Area and delays of the Output FSM and of its two-layer version
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Figure 6.19: Output FSM compared with its two-layer version

6.6.5 SAT Datapath

The datapath of the SAT cell, originally made in three layers, has been redrawn. It

is made with two of the components described: the full adder and the multiplexer.

The basic memory cell is also a variation of two cascaded multiplexer, so that in

practice the datapath is only made of multiplexers and full adders. Actually, the

only thing missing is an half adder, but there is always just one of the, regardless of

the bit parallelism. Since it is a composition of elements, it offers very little insight.

The assembling of the component has been quite smooth, maybe the only thing

worth mentioning involves the wires: in two or three cases there are wires running

in parallel (as it is shown in figure 6.20, green rectangles) that increase the area

of the circuit. In multi layer, they could be placed on independent layers, could

have been stacked and some area saving would have been possible. Remember also

that, even if here they have not been placed, usually long wires have inverters along

them; this makes unavailable even the area over/under them in the only layer left.

The inverters needed to balance the delays are missing very often, because these

circuits have not been simulated. Comparing area and the critical path is the main
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Figure 6.20: Two-layer design of the SAT cell datapath

objective. Along the critical path, however, they are placed, to have a more precise

estimate of the its length. In any case, not having simulated them requires to allow

a little of “tolerance”. The brown box outlines a very large empty space. This is

a bad feature of the circuit, but has a good consequence too: the room to allocate

the inverters that trim and balance the delays would hardly be missing. This is

one more reason not to worry too much about the precise timing of the non critical
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paths of the circuit, and a path where inverters must be inserted to balance the

delays cannot ever be a critical path. There is no picture with both versions here:

given the size of them, it would have been unclear. However, a red dashed rectangle

is drawn in figure 6.20, marking what would have been the perimeter of the multi

layer version. Table 6.10 shows the area parameters and the length of the critical

path.

Area
Multi layer 2 layer Ratio

Height 43 71 1,65
Width 36 48 1,33
Area 1548 3408 2,20

Critical path Critical path [half clock cycles] 58 39 0.67

Height, width and domain wall length are expressed in arbitrary length units. Areas are expressed in
(arbitrary length units)2. Ratios are expressed as 2 layer version

multi layer version
.

Table 6.10: Area and delays of the datapath of the SAT cell datapath and of its two-layer version

6.6.6 Full SAT Cell

Once all the elements have been assembled together, the result is that of figure 6.21.

There are just a few comments to make about this circuit. The most interesting

point is about the area. It is shown in detal in table 6.11, but from the image one

can tell that the area has more than doubled. Also, placing elements and connecting

them when just two layers are available, and when the elements themselves are made

in two layers (so that there is no chance to tailor their shape exploiting layers above),

yields a layout with a lot of wasted room. Table 6.11 shows the area parameters.

The increase in area is the greatest ever seen in the chapter, because a circuit whose

components where piled up one over the other has been spread all on the same level.

A good amount of notches have been inserted along the control paths, implying that

none of them might ever be longer than the critical path within the datapath, neither

there is a chance to sum paths of the control section with paths of the datapath,

because a line of notches separates them. Thus, the critical path is the same as the

datapath alone.
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Figure 6.21: Two-layer design of the SAT cell

Area
Multi layer 2 layer Ratio

Height 43 71 1,65
Width 36 92 2,63
Area 1548 6532 4,22

Critical path [half clock cycles] 58 39 0.67

Height, width and domain wall length are expressed in arbitrary length units.
Areas are expressed in (arbitrary length units)2. Ratios are expressed as

2 layer version
multi layer version

.

Table 6.11: Area and delays of the SAT cell and of its two-layer version

To summarize the most important findings of the analysis in this chapter, the

reduction in two layers of circuits originally made in many layers (up to 12 in this
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chapter) is always possible. The area increases, not too much for simple gates, but

the ratio gets higher and higher as the circuit gets more complex. In the examples

seen in here, the greatest factor was 4,33. Complex though it may seem, it just

carries out a very simple algorithm and has a bit parallelism equal to four. It

should not be unlikely a 10 or 20 factor when the design comes to more articulated

algorithms or words as wide as 8, 16 or 32 bits. Nonetheless, the circuits have been

redrawn with the lowest number of layers (besides the single layer case). One or

two layers more would certainly reduce the area. Things are much better for the

timing: to a first approximation, it does not change in one way or the other. It

might change, but usually very little. A very conservative and safe factor could be

the two-layer version delays as the double of the original one. Quite often, this is

a huge overestimation; in any case, it does not take much, at the first stages of the

design, to take a better guess.
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Chapter 7

Technological Parameters

Tuning

This chapter is devoted to a technological analysis in order to find out how the

designs made so far could increase their speed. The aim is finding which techno-

logical parameters influence the clock period, and check whether they can be set

to the desired value. Changing these parameters does not affect the layout of the

circuit, that would keep working in any case; on the other hand, some modifica-

tions (namely, reduction of the length of the domain walls) joined with the tuning

of the technological parameters, could remarkably improve the performances. In

order to understand how the technological parameters influence the clock speed, a

brief analysis of the theory of domain walls motion must be done. The sources for

this part are the works [13] and [14], but here only the theoretical elements strictly

necessary for the purpose said above will be mentioned, and their description will

not be rigorous. The reader interested in a deeper analysis is kindly addressed to

those works.

7.1 Delay Contributes

There are two contributes to the delay of a switching nanomagnet: it takes some

time for the clock field, along with the magnetic fields of the adjacent nanomagnets,
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to reverse the nucleation in the ANC spot; then, this reversed magnetization vector

must propagate and reach the far end of the nanomagnet. This end will be coupled

with the ANC of the next nanomagnet, and so on. These two contributions are called

respectively Nucleation delay and Propagation delay. Thus, the delay is described

completely by means of these two parameters, but there is a further constraint.

The description of the nucleation delay is a probabilistic one: one can say that,

after a certain amount of time, with definite conditions, the ANC has a certain

probability to have its magnetization vector reversed. Let us consider a nanomagnet

in an inverter, where the ANC is just sensitive to the magnetic field of one other

nanomagnet (it could be called “input nanomagnet”). Let Hclock and Cnanomagnet

be the magnetic field in the ANC spot, where the contributions are respectively the

one of the clock and the one of the neighboring nanomagnet. If the direction of the

two fields is the same, the absolute value of the overall magnetic field is Hclock +

Cnanomagnet, if the directions are opposite, that same quantity is Hclock−Cnanomagnet.
In the former case, the ANC magnetization vector must be reversed; in the latter

case, the ANC magnetization vector must not be reversed [15],[16]. In simpler words,

the field of the nanomagnets coupled with the ANC under consideration must be

determinant for it to nucleate: if their direction matches the one of the clock, the

ANC nucleates, otherwise, the directions are opposite, and the clock must not be

able to nucleate them. In formulas:

P (tnuc,Hclock + Cnanomagnet)→ 1 (7.1a)

P (tclock,Hclock − Cnanomagnet)→ 0 (7.1b)

For a majority voter, where more nanomagnets are involved, the worst case is con-

sidered (which is two nanomagnets matching the clock direction, one opposing it).

This condition is a very tight constraint: the clocking field cannot just be set so

that the time it takes to nucleate is very short, because most likely that would make

the nucleation quite probable even when it should not occur. Let us write down the

equations that described these delays. They will be full of terms not yet explained.

The most important ones will be briefly described later, whereas the ones that are

not mentioned can be considered constant values that, for whatever reason, cannot
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be changed. The propagation delay can be calculated by means of:

vpropagation



1 m
s

if Hpulse < Hint

v00 e
Epin

Hint
Hpulse if Hint < Hpulse < 330 Oe

v0 + µv(Hpulse −Hint) if 330 Oe < Hpulse < 750 Oe

57 m
s

if Hpulse > 750 Oe

(7.2)

Where Hint a the so called “intrinsic pinning field” (the field needed to release

a pinned domain wall at zero temperature); Hpulse is the external magnetic field

applied to the circuit (for sake of simplicity, just the clock field is taken into account);

µv is a proportionality constant between field and speed; and Epin is the energy

barrier. None of these quantities are particularly interesting, except Hpulse. In our

applications, its value is above 500 Oe, so that the two bottom equations are the

interesting ones for us. They show that the domain wall speed is proportional to the

field in a linear fashion, then speed saturates for Hpulse = 750 Oe. The propagation

delay will be:

tpropagation =
DWlength

vpropagation
(7.3)

Which is the reason why too long nanomagnets increase the delay: the numerator

becomes higher. Nucleation delay, on the other hand, behaves according to this

equation:

tnucleation = − 1

f0

e
E0

(
1−

Heff
H0

)2

log (1− P ) (7.4)

It is easier to understand broken down in two equations:

Pnuc(t,Heff ) = 1− exp

(
− t

τ(Heff )

)
(7.5a)

τ(Heff ) =
1

f0

exp

(
E0(1− Heff

H0
)2

kbT

)
(7.5b)
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The terms E0 and H0 can be expanded as:

E0 = VancKeff (7.6a)

H0 =
2Kanc

µ0Ms

(7.6b)

Rough definitions of all these parameters could be:

• Pnuc(t,Heff ) is the probability of nucleating an ANC by exposing it to an

external field equal to Heff for the time t;

• Vanc is the volume of the ANC;

• Keff is the effective anisotropy constant. As said in the introduction, the

anisotropy is the property of a generic field to “prefer” a particular spatial

direction, where by “prefer” it is meant that that direction is the most ener-

getically favorable. It is expressed as Jm−3, an energy density. When multi-

plied by Vanc, it could be interpreted as the additional energy needed for the

magnetic field to align the magnetization vector of the ANC to a direction

perpendicular to the easy axis. Therefore, the higher Keff , the more is the

energy difference between the directions. E0, thus, is considered an energy

barrier related to the anisotropy of the magnet;

• Kanc is a quantity linearly proportional to Keff ;

• H0 is the coercive field (or coercivity), the magnetic field needed to flip the

magnetization vector of the ANC at zero temperature;

• Ms is the saturation magnetization of the nanomagnet, and depends on the

geometrical characteristic of it;

• f0 is called “attempt frequency”, it is important because it is the inverse of

the minimum possible value of τ , but here it will never be changed.

Heff is the external field the ANC senses. It includes both the clock field and the

stray fields of the neighboring nanomagnets, so that its expression could be:

Hclock ± C (7.7)
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Where C is the overall contribution to the field sensed by the ANC and coming

from the nanomagnets. It must include all the contributes in a majority voter,

taking into account whether their sign is the same or the opposite, and so on. Now,

the conditions of 7.1 must be substituted into the 7.5. The simplest case is the

inverter, where there is just one input nanomagnet coupled with the ANC; this

coupling field could be either opposing to clock or supporting it. In the former case,

Heff = Hclock−Cinv, in the latter, Heff = Hclock +Cinv. The substitution results in

these conditions:Pnuc(tnuc,Heff ) = 1− exp
(
− tnuc

τ(Heff )

)
→ 1 Heff = Hclock + Cinv

Pnuc = Pnuc(tclock,Heff ) = 1− exp
(
− tclock
τ(Heff )

)
→ 0 Heff = Hclock − Cinv

(7.8)

In the first row Pnuc is the probability to nucleate when the input nanomagnet

and the clock field have the same direction. The time span considered is tnuc,

the nucleation delay. The second row has Pnuc, the probability not to nucleate the

ANC. In this case, the ANC must not nucleate, because the clock field and the input

nanomagnet’s field have opposite directions. The time span considered is now half

clock cycle (tclock), because the ANC is exposed to that field for that time. Notice

that the two time constants (τ) are different. The one related to Pnuc should be as

short as possible (the circuit would spend less time nucleating the ANC and will be

faster) and the one related to the Pnuc should be as long as possible (it would take

very long to nucleate the ANC, so that even if the clock period is long, the ANC does

not reverse its magnetization). These time constants could be called respectively

“nucleation time constant” and “non nucleation time constant”. These conditions

will be mentioned very often, so that they will be called for brevity “probability

conditions” or “feasibility conditions”.

7.2 Clock Field

The first parameter that could be considered is the clock field. The nucleation delay

has a minimum for a particular value of the clock delay, Hclock = H0−C. However,

that value is the minimum just for the nucleation delay, not for the overall delay.

Moreover, it could be the case that the conditions 7.1 are not met for that value.
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And last, there are actually three different C values, so that the scenario is much

more complex. Let us have a look at figure 7.1. The vertical line shows where the

Figure 7.1: Half clock period vs. clock field, critical path equal to 8 squares

minimum delay is found. Unfortunately, it is inside the shaded area, that represents

the clock values where the 7.1 conditions are not met. The other area could be

called in future “safe area”, and the clock field values belonging to it “allowed field

values”. Figure 7.2 represents a plot made with the same conditions, but with

shorter nanomagnets. The minimum is lower, but the most important thing is that

in this case the shaded area is smaller. The nanomagnets are shorter, so that they

are crossed in a shorter time, and the clock period too becomes shorter. Therefore,

the ANC is exposed to the field configuration that must not nucleate it for less time,

and the nucleation is less likely. This just provides a further reason not to have too

long nanomagnets.

7.2.1 Delay components

It could be interesting to check separately how the two components of the delay,

namely the nucleation delay and the propagation delay, change with the clock field

intensity. Of course the general trends are known from the formula, but also the
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Figure 7.2: Half clock period vs. clock field, critical path equal to 2 squares

numerical values are needed, in order to know if something is negligible, for which

field values, and so on. Figure 7.3 shows it. The minimum value of the nucleation

delay is much smaller than the one of the propagation delay, by about a factor of

10. Nevertheless, the propagation delay depends on the length of the nanomagnets.

In this cases the maximum length has been 8 squares: it is not an extremely high

value, and yet in a more performance oriented design could be halved. Notice

also that the minimum of the nucleation delay is in a region where the probability

conditions are not met. Last, there is a cusp in the minimum. The reason is that

the nucleation delay includes the factor C in its definition. This term represents

the overall magnetic field (only the one coming from other nanomagnets, the clock

field is separately accounted for) that an ANC is sensitive to. Since pNML is a

3D technology, a single ANC might be coupled with two other magnets placed

in the same plane and one above, or just one in the same plane, or any other

possible configuration. However, there are just three kinds of coupling: the one of

an inverter, the one of a via (two nanomagnet coupled one over the other), the one

of a majority voter. By “kinds of coupling”, it is meant that for manufacturing

reasons, the distances between the nanomagnets are different for each one of these
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Figure 7.3: Half clock period vs. clock field, by each delay component. The slight discontinuity
for H = 750 Oe is due to the model approximation when passing from the linear region to the
saturation region

cases, and the coupling fields are different. Hence, the nucleation delay must be

calculated separately for the three kinds of coupling, and then the worst case is

selected. Figure 7.4 shows the nucleation delay separately for each of these three

elements. The green, thicker line is maximum value for each clock field value. By

looking at the plot it is very easy to understand why there is that cusp. This

difference in the coupling factors of the three elements is what makes an analytical

study of these expressions quite complicated.

7.3 Propagation Delay

Studying the propagation delay is crucial, because is the only one of the two delay

components that can be determined when designing the layout. However, it is

quite obvious that the shorter the critical path, the shorter the propagation delay

becomes. The critical path might also get shorter because the nanomagnets used are

smaller (meaning that the technology is scaled). In this case, another factor is to be

considered. In equation 7.5b, the volume of the ANC is inside the exponent. If the
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Figure 7.4: Nucleation delays vs. clock field, by each delay component

technology is scaled, the volume of the ANC could be expected to scale accordingly.

This reduces both time constants; the nucleation time constant can be minimized in

other ways (as will be shown later on), so that the main effect of this ANC volume

scaling is decreasing the non nucleation time constant. This makes the probability

conditions harder to meet. Figure 7.5 contains a plot where the ANC is scaled along

with the nanomagnets’ size. In the plot the scaling values where the 7.1 conditions

are not met are highlighted with a red, dotted line. It is clearly shown that the as

soon as the ANC volume is reduced, the conditions are no longer met. Therefore,

when scaling the technology the ANC volumes shoud be kept as big as possible.
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Figure 7.5: Half clock period vs square size, with ANC volume scaled by the same factor

7.4 Anisotropy

As already mentioned, the anisotropy is one of the key features behind the working

mechanism of this technology. Equations 7.5b and 7.6b show that if Keff → 0,

the nucleation time constants increase; so they do when Keff →∞. Thus, there

should be a minimum between these extremes. In this work, Keff = 2 · 105Jm−3,

so let us draw a plot around this anisotropy value, as done in figure 7.6. The plot

proves that the trends for very high and very low values is the one just stated, and

also proves that the minimum discussed above actually exists. As happened for

the field plots in figure 7.1 and 7.2, the minimum is located in a region where the

probability requirements are not satisfied. Besides that, the standard anisotropy

value used seems to be very close to the minimum. Since the range of that plot is

too large, figure 7.7 shows that area. The standard value used is actually close to

the minimum, and given that the delay is really sensitive to the anisotropy, it is

advisable not to change its value: the only region where the sensitivity decreases is

the one containing the standard value. Tyring to set an anisotropy value where the

sensitivity is high might cause uncertainty-related issues.
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Figure 7.6: Half clock period vs. anisotropy constant

Figure 7.7: Half clock period vs. anisotropy constant, zoomed

The two previous plots have been drawn with the clock field value that minimized

the delay according to the plot 7.1. If the anisotropy is changed, that value could
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be no longer the best one. Figure 7.8 draws a two dimensional plot, with both the

anisotropy and the clock field as free variables. The plot has been drawn only where

the delay value is not too high, and where the probability conditions are met. By

Figure 7.8: Half clock period vs. anisotropy constant and clock field

looking at the plot one gathers that any delay value can be obtained by different

pairs of the two free variables. Therefore, there is no need to consider the effect of

both of them. One could choose to use for example, the anisotropy value that suits

best the manufacturing process in use, and change only the clock field, or the other

way around.

7.5 Coupling Fields

The intensity of magnetic field generated by a nanomagnet and sensed by an ANC

(that is, the coupling field) plays a crucial role. The reason can be found with a

simple analytical study of equation 7.5b, rewritten here for convenience:

τ(Heff ) =
1

f0

exp

(
E0(1− Heff

H0
)2

kbT

)
(7.9)
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If the C were always the same for all the kinds of coupling, the two time constants

would have been:

τnuc =
1

f0

exp

(
E0(1− Hclock+C

H0
)2

kbT

)
(7.10a)

τnuc =
1

f0

exp

(
E0(1− Hclock−C

H0
)2

kbT

)
(7.10b)

τnuc is minimum for Hclock + C = H0, and the resulting τnuc would be:

1

f0

exp

(
E0( 2C

H0
)2

kbT

)
(7.11)

Then, by tuning of either C or E0, the probability condition for τnuc could be

satisfied. The problem is much more complicated by the fact that three different C

values exist, and the solution must encompass all of these cases. Trying to reduce

the difference among the C values could be a solution: according to this analysis,

it should cause more clock field value to satisfy the conditions. Figure 7.9 shows a

multi window plot where two of the three C values progressively approach the third

one. The value all the coupling parameters tend to is the one of the inverter, which

is also the greatest one. The number above each plot is a difference factor, equal to

one when the differences have not been changed, and equal to zero when the three

elements exhibit all the same coupling field. This plot suggests that if the coupling

field is similar for all the cases, the safe area increases: notice that if the difference

is halved, the safe area includes the minimum. Even if the difference becomes just

the 80% of the original value, a delay very close to the minimum will be obtained.

However, the value the coupling fields tend to must be defined. Figure 7.10 shows

what happens if the coupling field value tend to the smallest one rather than the

greatest one. The four plots are almost identical. This means that the value the

coupling fields tend to (let us call it target value) should be chosen with some care.

For example, if the target value is lower than the lower coupling field value, the

region where the probability conditions are satisfied might become smaller, as in

figure 7.11. It could be guessed that the target value should at least be greater

or equal to the greatest coupling field. Actually, some trials have shown that any
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Figure 7.9: Half clock period vs. clock field, with C fields tending to 153 Oe

Figure 7.10: Half clock period vs. clock field, with C fields tending to 48 Oe
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Figure 7.11: Half clock period vs. clock field, with C fields tending to 25 Oe

value greater than the lowest coupling field should be fine, but exceeding the value

of the greatest coupling field is probably safer. Anyways, each design case could be

studied in its particular details, the aim here is just finding roughly the trends. A

last test could be done increasing the values of the coupling fields, without having

them converging to a common value. The outcomes are in figure 7.12, and are

quite interesting. The number above each plot is the factor each coupling field is

multiplied by. The safe area does not seem to move much, but the whole curve shifts

towards the left, with the minimum point ending up inside the allowed clock field

values. Therefore, just increasing the coupling field, without evening it out among

all the elements could be worth a try.

All this analysis should allow to reduce, in one way or the other, the nucleation

delay to its minimum value. Nonetheless, before taking too much effort to do so,

the contribute of the propagation delay must be considered. If it is the dominant

one, engineering the nucleation delay is completely pointless. For example, if the

scenario is the one in plot 7.3, the first delay to consider is the propagation delay;

this is also the most common situation.
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Figure 7.12: Half clock period vs. clock field, with progressively increasing C fields

To conclude the chapter, figure 7.13 shows the situation for the SAT architecture

designed in chapter 4, with the longest path equal to 22 squares, and the square

size equal to 330 nm. When it had been designed, the parameters were such that

the nucleation delay was the most important contribute, so that it was not strictly

needed to keep the nanomagnets short. This example suggests that, when a design

is started, it would be advisable to consider in the first place the technological

optimization allowed, in order to know whether drawing short domain walls is worth

it or not.
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Figure 7.13: Delay components for the SAT architecture
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Chapter 8

Conclusions and Future

Work

A few conclusions can be drawn from this thesis work. The first one involves the

design feasibility. The three main kinds of circuits, namely logic, memory and finite

state machines have been tested at length; as [10] suggested, all of them were feasible.

Here further proof of this assumption has been given. There does not seem to be

any reason preventing whatever digital circuit from being implemented in pNML.

Once feasibility is ascertained, performances should be taken into account as

well. First of all, from the point of view of the area this is a very good technology:

it has proven to be smaller than a 45 nm CMOS technology node. If scaled, though

not as extremely as CMOS has been, and if the multi layer feature will be supported

by technological progresses, pNML could easily become smaller than most, or even

all, CMOS technological nodes. In this regard, the 3D design possibility should not

be just considered a method to reduce area, but also to tune it, meaning that with

the same fabrication process, the number of layers used determines the final area.

In practice, a further design variable is available. There is also a more specific trait

when discussing area that makes pNML quite interesting: as shown in chapter 5,

CMOS architectures grew larger when memory elements were included. This is a

well-known characteristic of the CMOS: memory are much larger than pure logic,

and this influences design choices. Contrariwise, the difference is much less relevant

in pNML, dodging a problem that has affected digital design for years. Moreover,
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since pNML is not larger than CMOS, it can be stated that pNML solves the problem

without area penalties.

On the other hand, delay has not been that good. The delay gap that came to

light was huge, with CMOS technology being faster by some orders of magnitude.

Something has been tried to reduce delay, both on the design side and on the tech-

nology side, but the gap remains very large. Furthermore, the tests have shown that

it does not seem to depend on the architectural choices. Therefore, how fast pNML

could get will be probably determined by future technological achievements. In any

case, the findings of this thesis work depicts pNML as belonging to the field of very

low power, area constrained applications, not having very tight requirements about

delay performances. pNML could really find its way into this sort of applications,

and become perhaps a leading technology. It must be stressed that it is just at its

first design stages.

Of course, a lot of work has to be done. The number of designed architectures is

still limited, more and more data must be piled up in order to know precisely what

specific applications are more suited for pNML. Having “two levels of clock”, as said

in chapter 1, and having notches allows creative and alternative design styles. The

nanomagnets retain their state even without power supply, so that mixed solutions,

where the same elements implement both logic and memory must be implemented.

The notch element is fundamental in this regard, and should be used in as many

different ways as possible. Alternative clocking styles, with respect to one used in

this thesis (that replicates the standard CMOS clocking) exist, and should all be

explored.

The logic synthesis could be studied in more detail. Since the main logic gate

is the majority voter, some ways to effectively synthesize the logical functions with

the majority voter as building block must be found, and some researches are already

addressing this problem [17]. Even though in this work it has always been used with

three inputs, the majority voter can have any odd number of inputs, and this makes

it more flexible. Moreover, a five-way majority voter can implement a three input

AND (or an OR) gate, whereas in this thesis it would have been achieve with two

cascaded two-input AND. This would have saved both area and delay. To sum up,

there are many known design variables that have not been tested.

Last, a way to measure power consumption should be found. pNML is a low
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power technology, and it is expected to be less power demanding than CMOS; but

this must be analyzed with care.
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Appendix A

Caveat on the Delay Model

In all the circuits shown in this thesis work, a nanomagnet coupled with another one

in a different layer (basically, a VIA) is always modeled as having one clock cycle

delay. For example, suppose a wire is coupled with another one on the layer just

above. The input wire (the bottom one) is holding a 1, the top wire is holding a 0,

and the clock is in its 1 phase. In the model used, the domain wall traveling through

the bottom wire would reach the end of it, and stop right there. The clock will then

switch to 0. When it switches back to 1, the nucleation of the ANC of the top layer

occurs, and the domain wall starts traveling through the top wire. Therefore, the

signal moving from a layer to the other undergoes a full clock cycle delay.

Physically, this model is questionable. From the most general point of view,

a model where the nucleation of the top layer occurs without having the clock

switching twice would be much more representative of the actual phenomenon. On

the other hand, the first model is much easier to handle, and depending on the clock

period, it could be quite realistic.

A detailed discussion on this issue is off-topic in this work. All is needed to

know is that if the second model were used, all the delay figures of these circuits

would be reduced; hence, the delay performances have been measured with a sort

of worst-case method. The other point is about the comparison between two layer

and multi layer structures. The model used impacts a great deal the outcomes of

that comparison, possibly leading to opposite conclusions; nevertheless, since the

comparison showed that the delay is basically the same, in practice the model used
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should not seriously affect the delay in one way or the other.
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Appendix B

Design Fundamentals of

pNML

This chapter tries to provide practical and useful advices to draw the layout of a

logical function or a circuit. At first, looking at a pNML circuit and understanding

the function is not easy at all; pretty much every logical element inverts the value

of the input, so that getting something wrong is annoyingly frequent. At design

time, it goes the same way. Next, the layout from the topological point of view is

addressed. Some cases occur quite often, so that an analysis of the most common

solutions will be helpful and will spare some effort.

B.1 Majority Voter

The main, an almost unique, logical operator in QCA technology is the majority

voter, and pNML is no exception. Even though the majority voter is not a basic

element outside of the QCA field, its function, and its reduction to the known logical

operations (AND, OR) is quite intuitive; hence, it does not represent a problem. In

pNML, to some extent, it does. The reason is that if all the domain walls coupled

to the nucleation center are coplanar, the coupling is antiferromagnetic. This means

that the circuit is, in fact, a minority voter. A minority voter is far less intuitive

than a majority voter, and much more puzzling. For some reason, a circuit made
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in negative logic is much more misleading than a regular one, and a minority voter

could be thought as negative logic. When counting the number of inversion, which

is the core of the analysis, a mistake in the count might occur frequently. Moreover,

if the inputs come from the outside of the circuit, to get into a magnetic circuit they

have to nucleate a nucleation center, “forcing” into the domain wall a value opposite

to their own. To tackle the problem from the right perspective, let us start with

the AND/OR reduction of a majority voter, in table B.1. Thus, a very easy way to

Equivalent function
Inputs

Output
In1 In2 In3

And

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1

Or

1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Table B.1: Truth table of a majority voter

get an AND or an OR gate is available: an input fixed to 1 (OR) or to 0 (AND) is

enough. Associating 1 with the OR function and 0 with the AND function matches

very well the basic intuition.

B.2 Logical analysis

The previous section somehow associated the 0 value with the AND gate, and the 1

values with the OR gate. Hence, seeing a majority voter with a fixed-zero could make

someone think it is an AND gate, but sometimes this is not the case. Have a look

at the circuits in figure B.1; The circuit B.1a looks like an AND (because of the 0),

but it is actually a NAND. B.1b might seem an OR (because of the fixed-one), and

yet it is a AND. The one in B.1c is still a NAND, identical to the one the left. These

three examples are aimed at showing that in pNML, the kind of coupling, whether

there are the nucleations centers for the inputs (B.1b and B.1c) or not (B.1a) and
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(a) (b) (c)

Figure B.1: Examples of circuits that might look like AND gates but actually are not

(a) (b) (c)

Figure B.2: Example of circuits that are AND gates

the sign of the fixed magnet must be considered with great care, and are almost

always misleading. The reason why the circuits are misleading is that the majority

voter is “disguised” within the frequent inversions occurring inside a pNML circuit.

The correct way to make an AND gate is shown in figure B.2. Three possibilities

are shown, with different features: some have a zero fixed-magnet (that forces a one,

and this might seem incredible), some have either inputs or outputs inverted. In

order to correctly identify the logical function of a circuit, we must somehow “bring

to light” the “regular” majority voter function underneath the circuit. A good way
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to do so consists in checking the relationship between an input and the value it

forces into the nucleation center, rather than just looking at what the whole circuit

looks like. For example, consider the circuit in figure B.1b. The inputs nucleate the

domain wall, which will hold the negated value of the input. Then the signals run

along the domain wall and nucleate again the nucleation center of the gate, getting

inverted again. Therefore, we can say that the inputs force their non negated value.

The circuit in figure B.1c has the inputs that first nucleate their domain wall, so

that it gets their value inverted, but then each domain wall forces that value in

the nucleation center of the gate. Therefore, we can say that the inputs force their

inverted value in the gate nucleation center. In the analyzing method proposed,

every time a circuit is to be analyzed, a table like table B.2, with all the input

combinations, is written. The circuit considered is the on in figure B.1c. The table

Inputs
A B

0 0
0 1
1 0
1 1

Table B.2: Possible input configuration for a two-input gate

is filled in with the values that each input forces into the gate nucleation center,

as in table B.3. Every input may force either the direct or the inverted value into

the nucleation center. In this case, for each input, the Forced value column is the

Inputs Forced value
A B A B

0 0 1 1
0 1 1 0
1 0 0 1
1 1 0 0

Table B.3: Values forced by each input

opposite of the corresponding Inputs column, since it has been shown that the inputs

force their inverted value. Now, in that column everything is accounted: the number
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of signal inversion along the path, the kind of coupling and so on. Of course, the

fixed magnet is not different from the two inputs, so let us add it in the table, as

in table B.4. The fixed magnet value is zero, and is antiferromagnetically coupled.

Inputs Forced value

A B A B
Fixed
input

0 0 1 1 1
0 1 1 0 1
1 0 0 1 1
1 1 0 0 1

Table B.4: Values forced by each input and by the fixed magnet

Therefore, it forces a one. At this point, to get the final output of the whole gate, the

three rightmost columns can be considered the inputs of a regular majority voter.

Or, alternatively, A and B can be AND-ed. The reason why they must be AND-ed is

that the fixed magnet forces a zero. Had it forced a one, A and B had to be OR-ed.

Everyone will chose the way that suits him/her best. The table that one eventually

gets is table B.5. The table shows clearly that the circuit in figure B.1c is a NAND.

Inputs Forced value
Output

A B A B
Fixed
input

0 0 1 1 1 1
0 1 1 0 1 1
1 0 0 1 1 1
1 1 0 0 1 0

Table B.5: Output value eventually calculated

Needless to say, any other analysis (provided that it is correct and consistent with

respect to the definitions) will work, but this one is quite quick to carry out, and

seems more effective than just trying to remember the particular arrangement of

every kind of gate. It could be considered a good entry-level method, then after a

little of practice one finds his/her own methods and insight to the problem. This

table method is also easy to update in case some changes are made. For example,
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suppose the input A is inverted (or, as it often happens, the table is made, but later

on a mistake is spotted and the table has to be corrected). To update the table,

just swap the rows with A = 0 with the ones with A = 1, leaving B unchanged,

just for the “forced value” column, and for the “output” column. With reference to

table B.5, it means swapping row 1 with row 3, and row 2 with row 4. Table B.6

shows the result outcome of this permutation. s a lNotice that now the column

Inputs Forced value
Output

A B A B
Fixed
input

0 0 0 1 1 1
0 1 0 0 1 0
1 0 1 1 1 1
1 1 1 0 1 1

Table B.6: Example of row switch for an input

Inputs (A) and the column Forced value (A) are identical, whereas previously they

were one the inverted of the other. After all, the analysis boils down to just checking

whether the input signal forces its direct or its inverted value. And the main point

in this analysis is that: one must always consider the forced value in the nucleation

center, and focus on that. Never try thinking about anything else, such as for

example the multi layer version of the gate (like the on in B.2c) associated with the

“direct” logical function and the single layer with the inverted logical function, or

the any other possible association layout-function. Then, after having had to do

with a certain amount of circuits, some configurations are likely to be identified at

once, naturally, without any explicit classification. This method of row switching

works even if both inputs are inverted (as usual, either because an inverter is actually

placed along the domain wall, or because a mistake occurred in the analysis). All

the rows must be swapped: row 1 with row 4, row 2 with row 3. It is probably easier

to understand if considered as the inversion of one of the inputs first, and then of

the other one. It can be seen in table B.7, where the gate described in table B.5 has

both inputs inverted. Table B.7 is both the inversion of both inputs with respect to

table B.5, but also the inversion of input B with respect to table B.6, proving that

the row swapping can be performed either for both inputs at the same time or one
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at once. If the fixed magnet is changed (or it forced value was considered the wrong

Inputs Forced value
Output

A B A B
Fixed
input

0 0 0 0 1 0
0 1 0 1 1 1
1 0 1 0 1 1
1 1 1 1 1 1

Table B.7: Example of row switch for two inputs

way), the column of its forced value must be inverted, but this time the output must

be recalculated, whereas when the inputs are changed, the row switching operation

is enough in order to update also the output. For example, consider table B.8, which

is the same table as B.5 but with the fixed magnet switched. The output column

Inputs Forced value
Output

A B A B
Fixed
input

0 0 1 1 0 1
0 1 1 0 0 0
1 0 0 1 0 0
1 1 1 0 0 0

Table B.8: Example of fixed-magnet switched

cannot be obtained from the one in the original table by means of row permutation,

neither it can by means of inversion. It is something different, and this is why it

is much better to carry out again the majority voting function among the forced

values. Anyway, the fixed input is not a “special” input at all: the simple reason

why its switching does not cause a row swap in the output column is that not all the

input combinations are written in the table. The missing combinations are exactly

the one where the fixed input has the opposite value. If one considers the whole

set of input combinations, every input inversion cause an output row permutations.

Simply stated, in the truth table of a majority voter, the output corresponding to

the inversion of an input can always be obtained by means a row permutation. But
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this is just a theoretical consideration, always writing the full truth table of a gate

with a fixed input is not worth it.

B.3 Singular fixed-magnet

From the logical point of view, the third input of a majority voter can be kept stable

either to one or to zero, and the choice is made basing on mere functional reasons.

Nevertheless, when it comes to circuit manufacture, it turns out that technology

is not always able to provide both kinds of fixed magnets. Therefore, it could be

advisable to design the circuit with just one of the two fixed magnets. It might

sound impossible, but it can be done, and with far less effort than expected. Before

showing the possible ways to do so, let us say something about which of the two

values must be kept. In this work, the choice fell on the zero, just because some

circuits had already been designed, and it the most complicated one had only fixed-

zeros. Thus, anyone can choose any one of the two values: keep in mind that two

circuits with different signs of the fixed magnets must have separated clocking control

circuits, which makes manufacturing them together very cumbersome. Therefore,

a designer should choose one of the two values and always stick to that choice.

In an hypothetical world with a widespread use of pNML technology, there would

probably be an universal standard in one way or the other.

B.3.1 Inverter insertion

Suppose to have only the fixed-zero magnet available. The simplest solution consists

in using that magnet when needed, and the modified magnet shown in figure B.3

when a fixed-one magnet is needed. This solution is easy and does not require any

Figure B.3: Alternative way to produce a fixed-one magnet, sometimes referred to as “alternative
fixed-one”

elaboration. A circuit designed with magnets of both types can have its fixed-one
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magnets changed with this one, and will work. This magnet is however three times

bigger than the traditional one. In practice, really often the room to allocate a

triple-sized element is not available. Scenarios like the ones in figure B.4 are not

rare. In case B.4a, there is not room enough to place this “alternative fixed-one”.

(a) Not enough room (b) Fixed-magnet would get coupled

Figure B.4: Example of circuits where the “alternative fixed-magnet” cannot be used

In case B.4b, there would be room enough, but the domain walls placed all around

would influence the inverter of the fixed magnet. In some cases, both of these adverse

conditions might occur. One of the main aims of this work was packing some pNML

logic into the tightest possible space, and this makes these situations quite common.

In conclusion, this could be an interesting, simple solution, but other alternatives

are needed.

B.3.2 Layer switch

The second idea leverages the multi layer feature of pNML. A nucleation center is

antiferromagnetically coupled with a coplanar domain wall; when the domain wall

come from above or below, the coupling is ferromagnetical. This entails that the

same input forces two opposite values depending on whether it is placed on the

same plane or in another one with respect to the nucleation center. Thus, when

the logical operation needs a one-forcing fixed magnet, a fixed-zero magnet can be

placed in the same plane as the nucleation center, whereas when a zero-forcing fixed

magnet is needed the same fixed-magnet can be placed on the layer above or below

the nucleation center. Figure B.5 shows two circuits whose logical function is the
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same. The solution seems very effective, but has some disadvantages. The first one

(a) Original circuit (b) Adjusted version

Figure B.5: Rearrangement of a gate when just one fixed-magnet is available

is that sometimes layers are limited. Almost all this thesis work takes for granted

the availability of an arbitrary number of layers, but technology does not offer more

than two or three layers. When only two layers are available, this method sets a

very tight constraint on the design possibilities: if the fixed-magnet has to be placed

on the layer above the nucleation center, all the other signals, possibly also coming

from the layer above the nucleation center, have to reach to the layer below. If the

fixed-magnet has to be placed on the same layer as the nucleation center, it occupies

one of the three (sometimes five) slots available around the nucleation center. This

might not seem a big deal, but sometimes (because of domain walls tightly packed,

angular positions and so on) the geometry prevents some of the slots around the

nucleation center from being accessible, so that even just one more occupied might

makes thing very difficult. The second issue concerns the other signals reaching

the nucleation center. Consider figure B.5. The signal on the top layer goes to the

middle one (from the green layer to the orange one). Its coupling is changed, and

the signal must be inverted in order for it to force the same value into the nucleation

center. Therefore, an inverter is needed, as B.5b shows. However, most of the multi

layer gates shown here just as examples are made with the layers not overlapping

with each other: this is just a workaround to make the image easier to understand.

In fact, a real circuit will be more like the one in figure B.6. As it can be seen, the

domain walls on the different layers tend to overlap, so that the gates take up less
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Figure B.6: Standard way to build a 3D gate

volume. In these conditions, there is room for the inverter needed to rearrange the

input. The circuit would be the one in figure B.7 That rearrangement would work

Figure B.7: Technologically incorrect gate

in MagCAD, but is not technologically correct: the inverter is placed over a domain

wall, and will be influenced by it. The gate could happen to have domain walls

all around (even though here are not drawn), making difficult for it to be arranged

like in figure B.5a. In some cases, the input comes through a long domain wall,

along which is periodically inserted an inverter (there must even number of them in

overall) to reduce the critical path. In this case, this solution works very well: if the

inverters are used to break periodically the domain wall, it means that somewhere

the room for them has been found. All one has to do is eliminating or adding

an inverter and everything will be fine. The strong point of this solution, when

compared with the previous one, is that some times and inverter can be removed,

if there already is one, and that the inverter insertion/removal can be done far

away from the nucleation center, if the domain wall holding the input value is long

enough. On the other hand, the other solution, in subsection B.3.1 needs that the

room for the new element is found very close to the nucleation center. An example

of this is given in figure B.8 On the B.8a, the red box outlines the “off-limits” area:

no inverter can be placed here. The green ellipse contains a row of inverters that

are placed in the bottom layer (the color of the shapes drawn over the figure are

not related with the colors of the layers). All the others are on the top layer. On

side B.8b, all the inverters are removed from the “forbidden” area. The ones that

were into the the green ellipse are still into a green ellipse, but on a different spot.
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(a) (b)

Figure B.8: Example of layer switch with the removal of an inverter

The blue box outlines the area available to place the inverters needed. Actually in

this case one inverter was removed (one for every gate). Notice that the maximum

length between two inverters (that defines the critical path) has increased. This

might happen, but it is seldom critical.

B.3.3 Boolean logic rearrangement

The most used solution to design a circuit when only a kind of fixed-magnet is

available is neither the one with the inverter (which is rather poor) nor the one that

switches places between the fixed magnet and one of the signals (a good one, but

with some limitations). The analysis in section B.2 proves that a logic gate such as

the AND can be made with two inputs forcing their value and a fixed-magnet forcing

a zero. This holds true no matter what is the actual coupling, the relative position

of layers and so on, because, as demonstrated above, the forced value accounts for

everything. In a technology where signal inversion does not occur as often as it does

here (other QCA technologies, or even a CMOS majority voter) this would be the

most natural way to produce an AND. Therefore, this might lead to think that in

a majority voter, forcing a zero is necessary to produce an AND, but this is not

true. Let us use the method seen in section B.2 to show it, and let us start with

table B.9. The table contains only know information: the fixed input forces a one,

and the output must be the one of an AND (if a solution does exist). Therefore,

inputs A and B have to force a value so that the majority voting operation yields

that output. Two things must be said beforehand:

• The operation must be carried out coherently. In other words, the unknown

columns can be either equal to the corresponding input column or equal to

the negation of it: they cannot be filled with arbitrary values. It makes four
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Inputs Forced value
Needed output

A B A B
Fixed
input

0 0 ? ? 1 0
0 1 ? ? 1 0
1 0 ? ? 1 0
1 1 ? ? 1 1

Table B.9: Study to find a way to make an AND gate with a fixed-magnet that forces a logical one

total possible patterns. This is actually a little obvious;

• The AND is a “symmetrical” operation. This means that the inputs cannot

be distinguished: they can be swapped and nothing changes. If one has a

black box that performs the AND operations and must plug two inputs in it,

it does not matter which input goes in which socket. All this is to say that A

and B must force a value in the same way: either both force their value or the

negated one. This discards two of the four previous possible patterns.

The second point simplifies considerably the matter: after two tries all the possibili-

ties are explored. Let us do it, in table B.10. It seems there is no way to get an AND

Inputs Forced value
Output

A B A B
Fixed
input

Forcing non negated value
0 0 0 0 1 0
0 1 0 1 1 1
1 0 1 0 1 1
1 1 1 1 1 1

Forcing negated value
0 0 1 1 1 1
0 1 1 0 1 1
1 0 0 1 1 1
1 1 0 0 1 0

Table B.10: The two possible cases for table B.9
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from a majority voter with a forced one, and so the first intuition was correct, but

it does not take long to realize that the second pattern is the one needed provided

that it is negated. To recap, an AND can be made at least in two ways:

• Forcing a zero and the non negated value of the two inputs;

• Forcing a one and the negated value of the two inputs, and then negating the

output.

This method requires nothing but possible inverter insertions. It must be consid-

ered an alternative to the method of layer switching. With thee two methods the

designer can choose with much more freedom where to place the fixed magnet, re-

gardless of which logic function is to be implemented (this operation can be done

for any logical function, even if here only the AND case is illustrated in detail).

The drawbacks of the method are more or less the same as the ones of the layer

switching method: room for an inverter insertion must be found. Actually, the layer

switching method affected just one of the inputs, whereas this one affects the two

inputs and the output, meaning that three inverters must be added. In any case,

with two methods to choose between, the difficulty in inserting inverters could be

one of the factors that determine the choice. No images are shown of this method,

because the considerations are pretty much the same as the ones made for the layer

switching method. To finish off this section, some rules that someone might find

useful to mentally process the boolean functions and the gates are put in evidence.

Two expressions are used, and they have to be defined:

• “Dual gate” means the other kind of gate, so that the dual gate of an AND is

an OR, the dual gate of a NOR is a NAND;

• “Opposite gate” just means that the output of the gate is negated. Hence, the

opposite gate of a NAND is an AND.

Now, the rules are:

• If in a gate the fixed-magnet is switched (meaning that, in whatever way, it

ends up forcing the opposite value), the gate changes in its dual gate;

• If in a gate the inputs are negated, the gate changes in its dual and opposite

gate (e.g. an OR becomes a NAND);

170



B.4 – General rules and tricks for layout drawing

• If in a gate the output is negated, the gate changes in its opposite gate. This

is trivial;

• As a consequence, if in a gate the fixed-magned is switched, and both inputs

and the output is negated, the gate turns into its dual gate. This is the case

discussed above;

It is fair to say that all this playing with the boolean logic comes right from the

two De Morgan laws, as it is almost always the case when handling boolean logic.

B.4 General rules and tricks for layout drawing

Hand-making layout is a particular job. It is considered usually suboptimal, an

activity to resort to only when either computer CADs fail or the gate is so critical

that it has to be analyzed with the utmost care. In any case, in CMOS digital design

it is usually limited to a very little part of the circuit (the cell of a library, a critical

point of a CAD designed circuit). In pNML, the chances of automatically designing a

circuit are very few. Therefore, everything is hand-crafted, keeping in mind that the

optimization level of the circuit is inversely proportional to its complexity. Anyway,

after a little of practice, recurrent cases are identified, and reasonable solutions for

them are found. This section offers an illustration of the cases found during this

thesis work. They should be considered as a starting point or a series of advices,

that anyone, depending on his/her skills and knowledge, can either follow or ignore

in complete freedom.

B.4.1 Choosing layer to reach a nucleation center from

When many layers are available, the designer can choose if the input and the nucle-

ation center must be coplanar, or if the input comes from a layer above/below to

the one where the nucleation center lies, and couples with it from there. Some con-

siderations can be made. The first point is probably the most general: for a domain

wall reaching the nucleation center from above/below the direction does not matter,

whereas a domain wall one the same plane as the nucleation center is directional.

Thus, if the domain wall comes from above, all the solutions in figure B.9 work,
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whereas if the domain wall comes from the same layer, it must be turned in order to

approach the nucleation center from the correct direction, as in figure B.10, and this

sometimes (when the input comes from the same direction as the output goes) takes

up too much room. Any time room occupation is discussed, it is to be supposed

Figure B.9: Example of VIAs, where the direction of the input does not matter

Figure B.10: Example of coplanar coupling, where the coupling takes place only in certain directions

that other domain walls run all around the point considered, and sometimes must

reach that same nucleation center. The images are often kept minimal in order not

to be too confusing. Also, almost all the examples here are made in two layers (the

bottom one is blue, the top one is orange, and sometimes there could be a third one

on top of it, green-colored) because the two-layer constraint causes a very thorough

exploration of the design possibilities. Actually, choosing on which layer the wires

should be placed is a problem that might be elaborated much further. For example,

consider figure B.11. It shows two signals that are used as input of a gate. Suppose

that the output has to be on the bottom. At least two solutions exist, those shown

in figure B.12. The solution B.12a increases the width (consider the domain walls

running along the height direction, or the images turned clockwise by 90 degrees),
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Figure B.11: Case study: the output must be moved to the bottom layer

(a) (b)
Figure B.12: Possible solutions to the problem of figure B.11

the B.12b increases the height. The one to be preferred depends on the particular

case, that is, if it is less expensive increasing the width or the height. For example,

if this piece of circuitry is replied many times along the height, but just two along

the width, it is probably less expensive the B.12a solution (namely, the circuit area

is smaller). Let us see another variation: suppose the signal from the notch must

reach other points of the circuit too. Figure B.11 will become something like fig-

ure B.13. Solutions of figure B.12 turn into the ones of figure B.14. In this case there

is something more to take into account. The solution on the B.14a is larger, but

does not change in any way the path from the point of view of the red square. The

solution B.14b is narrower, but adds two inverters to the path going towards the red

square. And these new problems must be tackled along with the considerations of

the previous example, so that now both area and timing are affected: each variable

will carry a certain weight, and eventually a choice must be made. For example, if,

from the previous analysis, it has been ascertained that increasing the width of the
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Figure B.13: Variation of the case study in figure B.11: the output must be on the bottom layer,
and the signal from the notch must reach farther away

(a) Increased width (b) Increased delay
Figure B.14: Possible solutions to the problem of figure B.13

circuit does not increase too much the overall area, B.14asolution is the best one.

If the two inverters are not determinant (possibly because the critical path is else-

where), the B.14b solution in fact does not impact timing. Hence, different metrics

and options are on the table. Two particular points are worth discussing, as they

might not be evident from the images. Assume that the domain wall where the red

square is placed travels very far. It would be very likely to be broken periodically

with inverters, as was said above. In this case the new inverter (the one in the green

circle) could be removed along with another one, and the path rather than being

an half cycle slower, gets an half cycle faster. The second point concerns what is

above/below the orange layer. The solution B.14b does not allow another domain

wall to be placed just above or below it, because there is an inverter (unless it can be

eliminated), that would be influenced. In case passing this hypothetical domain wall

is absolutely necessary, the solution will be discarded. And this thought prompts
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another variation to this problem. The starting point is again figure B.11, but this

time there is a further constraint: there cannot be any inverter along the domain

wall in the top layer, probably because there is another domain wall (not shown)

below. Actually this is unlikely, because the notch too would be influenced by the

domain wall, but this is just an example. If no inverter can be placed, the signal on

the notch will have to force into the nucleation center its value, and not the negated

one as it would be required from figure B.11. Therefore, the designer must resort to

the same workaround used to make an AND gate even if a fixed-one is forced into

the nucleation center. Nevertheless, if the constraints that just allows one of the

two fixed magnets still holds, it means that either the fixed-zero is placed on third

layer, or that the solution seen in subsection B.3.1 must be used. And if just two

layers are available, this last solution is the only one feasible. That solution has an

inverter too, which might undergo the same coupling problems: in that case, the

wire can be made as long taking up more room, as shown in figure B.15. The wire

can be as long as needed, since, due to the steady nature of the input, it does not

cause any timing concerns. This case might be very rare happen in real design, but

it shows that, even if very strong constraints are set, there still are feasible choices.

Figure B.15: Possible alternative to place an “alternative fixed-one”

B.4.2 Sensible layer organization

When multiple layers are available, they must be used in the most structured pos-

sible way, otherwise the design of a moderately complex circuit can be impossible.

And, even if one manages to complete the design in an unstructured way, later

modifications might be prohibitive. Before drawing wires and gates, it is necessary

to conceive some sort of frame for the components of the circuit, so that there is

already a rough idea of where every gate should be placed. The frame changes de-

pending on the kind of circuits to be designed. For decoders and memories, which
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are basically an array of the same basic elements, possibly with some changes, it

should be defined approximately how the array will be structured. For simple gates,

such as a full adder or a multiplexer, the idea is trying to keep the design as small

as possible, but the particular arrangement depends on the logical function. Just

to give an example, a full adder is made of three majority voters, so that a regular

arrangement of them can be found. A multiplexer has two AND sharing a signal

(one of the ANDs has the signal negated) which are then OR-ed. Here too exist a

regular structure, as section 3.3 has endeavored to prove. So far, every time a circuit

has shown a certain regularity, it has been pointed out. Here some further examples

will be given.

FSM states

The first example has already been mentioned throughout the description of some

structures, but here it will be seen again, devoid of unnecessary details. It is about

a possible way an FSM with many states exploits the multi layer design feature. It

can be seen in figure B.16. Only three states are there, because the drawing would

0

1

2

3

Figure B.16: Possible arrangement on notches in a FSM

be too complicated and unreadable. The wire going from the last state notch back

to the first one (in blue) is not drawn either. Every notch is placed on a different

layer, in a sort of staircase-like structure. The structure includes the Reset network.

This is a useful method, that, as already said, works very well with FSMs that run
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through the states without conditions to be evaluated. If that is not the case this

arrangement can still be useful, but less effective and regular. Even if here only three

states are shown, the structure has been used to allocate up to 15 states, with no

particular issue. Nevertheless, when the number of states is quite high, a variation

of this structure comes in handy, since it is pointless having 15 layers on a circuit

just because of a single finite state machine. The variation consists in moving down

with the layers after a certain point, or to use again the staircase similarity, to make

the staircase climbing up and then down. The image is the B.17. Again, few layers

0

1

2

3

Figure B.17: Variation to the structure in figure B.16

are drawn to make the image simpler. The wire that brings the signal Reset to state

3 is made wider than needed, just to show how the signal can be brought to the

“second flight” of stairs.

Structured paths

When layers are just two, the designer may tend to use just one of them, saving

the other one as a sort of “bypass layer”, that is, using it just when wires in the

main layer cross with each other (by the way, it is interesting that, despite all

the interesting features pNML technology has, even when compared to other QCA

technologies, it does not allow coplanar wire crossing). Of course, this is not a good

practice: the circuit in figure B.18 is a good example of regular use of two layers. It
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Figure B.18: Example of a regular use of the two available layers

shows a circuit with very interesting details. It has already been seen in Figure 6.18,

and has been described as an FSM made with two “subFSMs”, a master one which

automatically moves to the next state each time the reset signal is low, and a slave

one, which steps into the next state as soon as the master reaches its last state.

There is something more, but not interesting here. The first thing that should draw

the attention is the notches’ arrangement. It can be considered a particular case

of the staircase method, with just two steps. Nonetheless, given that neither the

notches nor the inverters can have domain walls below or above, the notch horizontal
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spacing is greater. The most interesting feature of this FSM consists in its highly

structured arrangement of the wires within the layers depending on direction and

position. Let us be clear. Focus just on the section of the circuit inside the red

dashed rectangle. As already said, this part contains the logic necessary to move

through the steps of the slave FSM. A green horizontal line is drawn in the middle

of the circuit. Notice that below that line, almost all the vertical wires are on the

bottom layer, and almost all the horizontal wires are on the top layer. On the other

hand, above that line the bottom layer houses almost all the horizontal domain

walls, whereas the top layers includes most of the vertical domain walls. This is a

very good example of a structure that rationally finds a way for each needed wire,

avoiding congestion, twisting and wire crossing. It has a drawback: the room it

occupies is pretty large. But finding a more compact (but less regular) way to route

all those signals would have taken much more time, with no guarantee of success. As

explained in the SAT chapter, this is one of the two FSMs that evaluates conditions

to decide whether moving to next state. This increases the amount of wires, and

that is why a regular structure has been scrupulously followed.

Leveraging Coupling Mode

Another criterion that is almost necessary in two layer designed, but it is also a

very good rule in any case, has to do with the kind of coupling between the domain

wall and the nucleation center, which can be, as amply shown through all this work,

either ferromagnetic or antiferromagnetic. Since this means, in digital logic terms,

forcing respectively the value of the domain wall or the negated value, it would be

very nice to take advantage of it. Let us see two circuits, illustrated in figure B.19.

They are a XOR gate (B.19a) and a multiplexer(B.19b). A certain portion of the

circuit is outlined in a red box in both circuits, but first let us get to their logical

expression:

ĀB + AB̄ XOR gate (B.1)

In0S̄el + In1Sel Multiplexer (B.2)

In the XOR gate is made with two AND whose outcome is OR-ed, both AND get the

two inputs, but for one of them the input is negated; in the multiplexer, the signal
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(a) XOR gate (b) Multiplexer

Figure B.19: Example of circuits with two ANC on the same pad coupled in two opposite ways

Sel reaches two different inputs being negated in one of them. Every time a signal

in used once negated and once non negated, a single domain wall holding that value

can be coupled with two distinct nucleation center, once ferromagnetically, and once

antiferromagnetically. This is what is done in figure B.19, in the area within the

rectangles. This works very well when a signal is needed both in its negated value

and in its non negated one, and usually makes the layout very dense and compact.

Passing-through signal

A common design situation consists in delivering a signal that is used in several

gates. There are a lot of examples: the reset signal, the inputs of a decoder, the

inputs of a PLA, and so on. These examples suggest that this situation is common in

circuits that are arrays of basic elements, as the decoder or the PLA are. Sometimes

the signal is inverted periodically along its path, either for functional reasons (a

decoder) or just to split the domain wall and decrease the critical path. Here the

main solutions to this common problem are shown. A first observation could be: this
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case is one where passing the signal in further layer is absolutely worth it. When the

signal does not have to be inverted, and it does not cross a large area, a straight wire

solves the problem. An example of this is found in all the decoders of section 3.1. To

put in evidence the important domain walls, they have been drawn schematically

in figure B.20, where the unneeded circuitry has not been drawn. When many

(a) (b) (c)
Figure B.20: Possible solution to deliver a signal to many ANC

layers are available, this is practically the only way this need is answered. Solution

B.20a is the most compact one, but it is also rare, because usually the signal must be

inverted periodically, as in B.20b or B.20c. These two have already been discussed in

section 3.1: one of them is larger but with regular delays, the other one is extremely

small but slower, meaning that the signal is inverted (that is, delayed) along the path.

The way the Reset signal is brought to each notch in figure B.16 can be considered a

solution too, but is probably suited just to that structure. When the design must be

confined within two layers, these solutions have to be adjusted. In some cases, they

are applied basically in the same way, is in figure B.18. The dashed paths deliver the

Reset signal, and method B.20b is used, with the domain wall periodically broken

with a pair of inverters. In other cases, a different approach can be tried. A good

study case is the one of figure B.21, which is a detail of figure 6.14. The solution

is marked with the red path. Let us examine the conditions. The input cannot run

through the top layer, because it is already used for other signals. A solution that

travels along just one layer might be conceived, replicating solution B.20b but is

not viable here, because there are other domain walls blocking the path, the ones

in the black rectangle. Therefore, the piece of domain wall on the top layer (inside

the green dashed rectangle) that links the two red paths on the bottom layer is
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Figure B.21: Possible solution to deliver a signal to many ANC with just two layers available

necessary. It must not be neglected that the “branch” of the domain wall must

reach to a spot where there are no domain walls on the top, so that the top layer

can be “assigned” to the continuation of that path. From a theoretical standpoint,

this way to deliver a signal to multiple gates is the same as the one in figure B.20b

(imagine the inverters are taken off), except for the fact that here it runs on two

different layers. From a practical point of view, the solutions do not look like the

same, so it seemed better analyzing them separately.

The oblique pad

The oblique pad is an element first introduced in section 6.2, but then never used

again. This does not mean that it is not a useful item: on the contrary, it is extremely

useful. It has been used rarely because it was not available when the SAT circuits

were designed, and from that point on most of the work consisted in comparing new

solutions with those circuits. Hence, for consistency reasons it has not been used.

If all the circuits in this thesis work that do not contain that particular item were

to be redesigned using it, they would come out smaller and more regular. A general

rule should be this: always try using it. If it cannot be used, then the designer will

resort to bend the domain all in the direction needed.
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General advices

This chapter is concluded with small hints and tricks, not very much articulated

but anyway worth discussing. The first one concerns the design dataflow with big,

modular and complicated circuits such as the one in figure 4.28. The dataflow should

mimic the typical CMOS one: first components are placed one the workspace, and

this should be done with concern towards the relative position of them, so that

the connection are as short as possible, and the area as small as possible. Then

connections are made: sometimes no logic goes in between the connections, some

other many signals reach the same input, and they must be OR-ed, or multiplexed,

or elaborated in a suitable way. At this point the circuit should be fully working, but

a further action must be taken: the shrinking. It is extremely likely that somewhere

some space can be saved, and once the wires are routed it is much easier to notice it.

This way, the “routing” phase can be done with no concern for space saving, focusing

only on the topology, putting off the shrinking task for later. In this regard, the two

layer version of the SAT Input FSM serves a double purpose: when discussing how

to structure regularly the circuit, it provided a very powerful example. Now, it will

show how, after the regular design of the circuit, some changes to the latter, in a

direction that make it “less regular and structured”, can also make it more compact.

Figure B.22 contains two details of the circuit. Two domain walls have been bent

(a) (b)

Figure B.22: Example of wires bent to reduce room occupation

so that a fixed magnet could lie where originally they were. This allows to reduce

the size of the circuit by one square, taking advantage of the free space beside the

domain wall.
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Of course, this is a description of a fairly reasonable approach to produce a good

project, keeping in mind that a completely hand-made design of a complex circuit

very rarely can be perfectly optimized.

Another point involves layer number: it is probably a good rule using one more

layer only if it will host a good amount of circuitry, not just one or two domain walls.

However, if the structure is based on layers (as the examples about FSMs), and it

cannot be adapted easily, the only alternative could be considering using another

structure, and this might become mandatory if the number of layers is a critical

parameter of the technological process.
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Appendix C

3D Rendering of the pNML

circuits

Here is explained how to render in 3D the nanomagnetic circuits made with Mag-

CAD. Two more programs are needed: Blender and Inkscape, both of them free.

• Inkscape (https://inkscape.org/it/release/0.92.2/), for svg handling;

• Blender (https://www.blender.org/download/), for 3D images creation

First thing to do, open the project in MagCAD. Place a fake input always in the

same spot in all the layers of the circuit, as in figure C.1. It will serve as reference

point to align layers later on.

Figure C.1: Fake input as “orientation mark”

Then, export every layer separately. To do so, hide all the layers but the one to

185



C – 3D Rendering of the pNML circuits

be exported, and select File → Export image. Choose PNG image format, as in

figure C.2.

Figure C.2: PNG export

MagCAD can export in SVG format too, but for some reason its SVG causes some

issues when imported in Blender. It is better exporting the image in PNG format

and the converting it in SVG within Inkscape. Once all the layers are exported, close

MagCAD. Open Inkscape, then click File→ Open, or use the shortcut Ctrl + O.

Select the first layers within your folders, and open it. The window in figure C.3

will pop up. The parameters in figure should do, but none of them are critical, so

feel free to test different combinations. If something catastrophic occurs, roll back

to these ones.

Figure C.3: Inkscape PNG import

At this point, Inkscape contains the image, but it is not yet an SVG file. To

convert it, select the image, either with a mouse drag or with Ctrl + A, and then

strike Alt + Shift + B. The menu in figure C.4 shows up.
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Figure C.4: SVG conversion

Check the same options and click Ok. An SVG version of the image is gener-

ated and is placed over the other one. The two images are perfectly overlapped.

Remember, the one on the background is the PNG one, the other one is the SVG

one. If they are overlapped, the one that gets selected when clicking over them is

the one on the foreground, which is the SVG version. Drag it aside, as in figure C.5

(where the selected image is the SVG version, the one to be kept), and delete the

other one (select it and then hit Canc, or Double mouse click and then Delete).

Figure C.5: Separation of the two (SVG and PNG) overlapping images

The screen should look like in figure C.6.
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Figure C.6: SVG image after deletion of the PNG one

Now the SVG image needs some polishing. The SVG conversion chosen maps

the colors of the PNG image into paths of the SVG image. Just two colors are

needed, the one of the magnet (that changes for each layer) and the one of the

inputs/outputs (light blue). They will become two different objects in Blender.

However, the conversion adds some tiny spots of different color, that would hinder

the 3D extrusion in Blender. Thus, they must be eliminated. To do so, zoom in the

input zone. Click one the text until it is selected, and then Right mouse click and

Delete. Canc here does not work, for no known reason. When the text has been

canceled, the input appears as in figure C.7.

Figure C.7: Text deletion

Some unwanted colors are still there. Select them (as in the circle in figure C.8)

and eliminate them. Do the same until those areas can be found, and eventually,

when the circuit has just two colors, save it in SVG format (File → Save as, or
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Shift Ctrl S).

Figure C.8: Detail removal

These operations must be performed for each PNG file (one for every layer).

Close Inkscape and open Blender. In Blender, the first thing to do is to get rid of

the cube in the middle of the scene. Click on it with the right mouse button, a menu

pops up, click on it or strike Enter, as in figure C.9

Figure C.9: Cube deletion in Blender

Once the scene is free from useless things, import the first layer. To do so, click

File and then Import, and select SVG. Figure C.10 shows it.
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Figure C.10: Blender SVG import

The image of the first layer appears on the “floor” of the scene, as in figure C.11.

Figure C.11: SVG imported in Blender and scaled

Let us list some useful commands that allow to navigate the scene in Blender:
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• The mouse wheel zooms in and out;

• Shift + Center mouse button to strafe left or right;

• Center mouse button + mouse to move around the scene with the mouse;

• NumPad 7 to look from the top (the view in figure C.11);

• NumPad 3 to look from the side.

Now select with the right mouse button the magnets (selection in Blender is always

with right mouse button). When something is selected, its border becomes yellow,

as the magnets in figure C.11 or in C.12. Look at the window on the right. Click

on the icon within the red circle and set the scale in X and Y directions (blue

box). A factor around a 10-20 should be fine. Then, set the same scaling factor

for the inputs/outputs, after having selected them. This scaling step is not strictly

necessary, but the origin of the objects (see the rest of this tutorial) is set manually,

and a bigger objects reduces the error when doing that operation. Next step is the

one where the third dimension is generated in the circuit.

Figure C.12: Extrusion

Click on the icon inside the red box in figure C.12, and set a value for the

Extrusion field. This set the thickness of the layer. Typical values lie between 0.05

and 0.2. The magnets extruded can be seen in figure C.13.
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Figure C.13: Layer extruded

Now the origin of the two objects (the magnets and the inputs/outputs) must be

set, so that they will be aligned with the other layers. Move around the circuit, find

a point of view where that input added to the circuit can be clearly seen. Choose

one of its vertices, and click, with the left mouse button, as in figure C.14.

Figure C.14: Choice of the origin point

That cursor (in the red circle) is where the reference point of the objects will

be. To set it, select the magnets, then on the left menu, click Set origin and select

Origin to 3D Cursor. Figure C.15 shows the drop down menu with the magnets

selected.

192



Figure C.15: Setting of the origin point (magnets)

Select the other object and repeat this same procedure keeping the 3D cursor

in the same position as before. In order not to move it, avoid any left click of the

mouse within the scene should be enough. Figure C.16 shows the procedure, with

the magnets selected.

Figure C.16: Setting origin point (inputs/outputs)

Now the two objects have the correct origin, and they can be moved in any place.

The idea is to move every layer in the same position, so they will be correctly aligned.

To do so, the origin of the objects must be positioned at the same coordinates for

every layer. Of course, these coordinates can be whatever, but the choice X = 0

and Y = 0 is very easy to remember and to digit. Move the two objects at point
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(0,0). The coordinates can be set by clicking, on the right hand menu the icon in

the red box in figure C.11, and then by chosing the coordinates in the fields within

the green box. Figure C.17 shows the scene when the magnets have been moved to

that point, whereas the inputs/outputs have not.

Figure C.17: Magnets moved to the origin

After having moved the two objects, hit NumPad 7. The view becomes the one

in figure C.18. Select the inputs/outputs and hit Tab. The object “inputs/outputs”

enters the edit mode.

Figure C.18: Selection of the fake input

Hit B, which actives drag selection, and select all the vertices that make that
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input used as reference point,as in figure C.18. Once it is selected, hit Canc. The

window in figure C.19 shows up. Select vertices and click.

Figure C.19: Deletion of the fake input

Now the reference input is gone, and the work with the first layer is almost over.

The last operation is raising. To raise an object, refer again to figure C.11, and

choose a Z value other than 0. The value is not arbitrary. It works like this: when

an object is extruded, the reference point for the Z axis is in the middle. It means

that when an SVG is imported, the 2D objects are placed at the coordinate Z = 0;

then, when a ∆h quantity is set in the field of the blue box in figure C.12, the object

is extruded towards both Z directions. In other words, the bottom face of the object

is at Z = −∆h, and the top face is at Z = ∆h. The first layer will be moved to

Z = ∆h, so that its bottom face is at Z = 0 and its top face at Z = 2∆h. Therefore,

the second layer will be extruded by the same quantity, and its Z will be 2∆h, so

that its bottom face is at Z = ∆h, right over the top face of the first layer, and its

top face at Z = 3∆h. The two layers will look like in figure C.20.

195



C – 3D Rendering of the pNML circuits

Figure C.20: Second layer placement

Then, third layer will undergo these same operations, and its Z will be 5∆h, and

so on, and a odd-multiples progression, until the top layer is reached.
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Appendix D

Power Reports Of SAT

Architecture Turned Into

CMOS

As said in chapter 5, the CMOS versions of the SAT hardware were characterized

also with respect to power consumption. This little appendix chapter provides the

results obtained and explains the method. When doing power measurements over a

circuit, it is crucial how the switching activity of the nodes is determined. A large

variety of approaches to the matter exists; in this work the backannotation method

was the one chosen. Design Vision creates a netlist for the circuit, which will be then

filled out by Modelsim after a simulation. The simulation must have as input vectors

values representing fairly well the real use case; the whole process depends on this

particular point. When Modelsim has generated the file with the switching activity

of each node, Design Vision can elaborate it to eventually come out with a value for

the power consumption. In Modelsim, the simulation can be either pre-synthesis or

post-synthesis; in this case it has been a pre-synthesis, less accurate but quicker. As

for the input vectors, this is a pretty simple case: a number great enough of random

inputs will do. Since simulations are very quick, and the bit parallelism is just four

bits, thousands of input vectors can be tested. Four circuits are to be analyzed,

because each one could be either a four-locations array or a 16-locations array, and
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either a behavioral model or a structural model. Every one of these four circuits is

synthesized seven times, every one with a different maximum clock period allowed.

These values were set as constraints:

500 ps 1 ns 10 ns 100 ns 1 µs 10 µs 100 µs

Those values are not the clock period, but rather the constraint set on Design

Compiler. Anyway, the actual clock period is quite close to that. Thus, every

circuit is synthesized in seven different versions (all this work was automated by

means of scripts). For every version, Design Vision tries to reduce to the minimum

possible value the dynamic and the leakage power. Actually the library used is

not a low-power one, and does not allow supply voltage tuning or any other low-

power technique; hence, these power reduction attempts always leads to almost no

improvement. The script includes these steps because with a different library great

improvements could result. For a better reading, the power figures obtained are

plotted with MATLAB. The three plots are in figure D.1, D.2 and D.3. The raw

data the plots are made with are in table D.1 and D.2:

Clock
constraint

Power [µW ]
Behavioral Structural

Dynamic Leakage Total Dynamic Leakage Total

500 ps 917 9,21 927 1024 10,26 1034
1 ns 453 8,43 462 499 8,74 507

10 ns 45,7 8,62 54,3 49,4 8,67 58,0
100 ns 4,56 8,58 13,1 4,94 8,71 13,6

1 µs 0,453 8,48 8,93 0,493 8,70 9,19
10 µs 0,0460 8,56 8,61 0,0494 8,72 8,77

100 µs 0,00452 8,55 8,56 0,00494 8,68 8,69

Table D.1: Power consumption figures for the CMOS SAT architecture, with size 2 by 2

A possible way to compare power could be matching the delays, so that the

two circuits have the same speed, and check which one absorbs the lowest amount

of power. As said, pNML power consumption for a specific circuit cannot yet be

assessed. For what concerns CMOS the data shows that for this specific technology,

which is not low-power oriented, the value of power settles around 10 µW for the
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Figure D.1: Dynamic power for the CMOS SAT architecture

Clock
constraint

Power [µW ]
Behavioral Structural

Dynamic Leakage Total Dynamic Leakage Total

500 ps 3767 39,2 3807 3899 40,45 3940
1 ns 1725 33,5 1758 1747 34,8 1782

10 ns 172 33,6 205 179 36,0 215
100 ns 17,1 34,0 51,1 17,4 34,9 52,3

1 µs 1,72 33,5 35,2 1,79 35,6 37,4
10 µs 0,172 34,0 34,2 0,174 35,0 35,2

100 µs 0,0171 33,6 33,6 0,0179 35,6 35,7

Table D.2: Power consumption figures for the CMOS SAT architecture, with size 4 by 4

4-locations circuit and around 40 µW . The corresponding clock value is in the µs

range, 10 or even 100. A lower clock period would make the CMOS much faster

than the pNML: the latter has a clock period approximately equal to 1 or 2 µs,

but the comparison must be made between the CMOS clock period and the pNML
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Figure D.2: Leakage power for the CMOS SAT architecture

notch period. The notch period depends on the circuit, the SAT one has a notch

period as long as almost 30 clock periods. Therefore, the CMOS circuit is as fast as

the pNML one when its clock period is equal to about 30 pNML clock periods.
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Figure D.3: Total power, with the leakage and dynamic component, for the CMOS SAT architecture
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Appendix E

MagCAD Hints

MagCAD [18] is the software used to design all the pNML circuits of this work;

it has been entirely developed in Turin’s Polytechnic. It has a graphical interface,

with drag and drop elements that can be placed on the work space; in overall, it

is fairly intuitive and easy to use. Once the design is done it produces a VHDL

description that includes delays. This tutorial will just include some peculiarities of

the program, that might come in handy when designing a pNML circuits. Moreover,

this technology will be the only one described, even if the tool allows also iNML

design. For a more complete description of the software, the reader is addressed to

the manual in the website.

E.1 Geometrical Parameters

When starting a new design, the first thing the tool requires, after having selected the

technology (red oval in figure E.1) is the definition of the geometrical parameters

(in that same window). The two fields must be filled with the desired grid size,

which is what throughout this work has been called “square”, and the width of the

nanomagnet which is slightly narrower than the grid size. The magnet width size

will determine the appearance of the circuit: in figure E.2, two different values have

been chosen, and the wire aspect ratio changes accordingly.
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Figure E.1: Technology choice and geometry definition

(a) 330 nm (b) 150 nm

Figure E.2: Nanowires with two different nanomagnet width

E.2 Forbidden configurations

Once these parameters are set, the design can be started by dragging and dropping

elements on the workspace. Describing the elements one by one is absolutely un-

necessary, but some distinctive traits should be pointed out. Consider figure E.3,

where an input is placed and coupled with a nucleation center. The input behaves

Figure E.3: Input coupled with an ANC

in a way totally similar to a coplanar nanomagnet: it means that it will force the

opposite of its own value. Keep in mind this point, that at first is definitely mis-

leading. By the way, if the input is arranged in a different fashion, as in figure E.4,

the nanowires would get the same value as the input. But this configuration is

absolutely forbidden. Even if MagCAD allows it, such a configuration cannot be

manufactured. MagCAD does not issue any warning or error because it could be

useful when designing circuits to be exported as models (it will be described later
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Figure E.4: Forbidden input configuration

on). On the other hand, the arrangement in figure E.5 is the standard way to draw

an output.

Figure E.5: Output placement

There are other configurations that do not trigger any software error but are

not physically correct. Figure E.6 shows some of them. Case E.6a and E.6b are

(a) ANC over nanowire (b) Inverter over nanowire (c) Notch over nanowire

Figure E.6: Examples of forbidden configurations (unwanted coupling)

actually the same thing, because an inverter is nothing more than a nanomagnet

coupled with the ANC of the next one. Therefore, this is why the arrangement is

forbidden: the blue wire on the bottom would influence the ANC. For this same

reason, no fixed magnet should be placed over or under a nucleation center (unless

it actually must influence it) or an inverter. Case E.6c is different, because there

is no ANC: that element is a notch. Anyways, the effect is the same: notches are

sensitive to the magnetic fields of the elements nearby, and they would get coupled.

Sometimes the ANC must be actually influence by the wire below (or above). In
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this case, the VIA element must be used, so that MagCAD knows that it is a wanted

coupling. Anyways, in none of the forbidden cases mentioned MagCAD warns the

user, because sometimes the insertion of inverters is carried out in a later stage of the

design, to try to pipeline the circuit. In this stage, the inverters are usually placed

with no concern towards their position; then, if the pipelining actually improves the

circuit, the inverters are moved to allowed locations. Basically, it is just a matter of

convenience.

E.3 Coordinates System

The workspace could be considered a three dimensional discrete space, with every

element occupying a well-defined spot. Hovering the mouse over the workspace the x

and y coordinates are shown in the bottom right corner of the screen (figure E.7, the

red oval). The layer number can be thought as the third coordinate. The blue square

Figure E.7: MagCAD coordinates and forbidden location (the blue square)

is the location x = −1,y = −1, and nothing can be placed there. Moreover, the

design must be aligned to the top left corner of the workspace as in figure E.7, with

the leftmost inputs on line x = −1 and topmost input on line y = −1. If there are no
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inputs on the top or left edge, the magnets should anyway be placed as in figure E.7

(topmost elements on y = 0, leftmost one on x = 0). This is done in order to match

the coordinates of the workspace with the ones of the report. If something goes

wrong in the VHDL export, the error is reported on a .log file, with the coordinates

and layer of the failing element. The report assigns coordinates x = 0,y = 0 to the

top left corner of the design (as said, disregarding possible inputs or outputs), and

if the placement rule just stated is ignored, the two reference systems will be shifted

with respect to each other. In figure E.7, a grid is drawn over the workspace: to

turn it on/off, click on “drawing”, then “pNML”, and last “grid”, as in figure E.8.

It might be very helpful.

Figure E.8: Grid activation

E.4 Components

If the circuits design is correct, MagCAD is able generates a VHDL description that

could be simulated. If the circuit is not correct, MagCAD can export it as “com-

ponent”. A component is useful when a circuit includes many replicas of the same

building block: the building block is designed just once, then exported as compo-

nent and placed on the design as many times as needed. To export as component,

the procedure is the same as the one for the VHDL generation; if VHDL cannot be

generated, because the circuit could not work alone, the component is generated in

any case. To avoid the VHDL export error, uncheck the “export VHDL” box (as in

figure E.9). The components are linked in MagCAD library of component, that can
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Figure E.9: Disabling VHDL export

be opened by clicking on “Tools”, “Windows”, “Library components” (figure E.10).

This way, the library windows appears on the right hand side of the main window,

Figure E.10: Component import into the design

and by clicking “custom” (in the red oval), the whole set of exported components

pops up. The right mouse button click on one of them opens a windows, as in

figure E.11
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Figure E.11: Components’ options

with three options:

• Open component: a new window with the layout of the component opens.

It does not allow modifications, and not even selections. The only thing that

can be done is changing the layer visualization;

• Insert in drawing: the component is inserted in the design as a black box

(figure E.12). If the component is multi layer, the bottom layer of the inserted

component will be placed on the current layer, and all the layers above will be

placed accordingly. By clicking on the component, a new window opens as in

the previous point (so, no changes can be made);
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• Flat insert in drawing: the component is placed on the workspace, as a

modifiable entity. The layers are sorted following the rule on the previous

point. However, in this case inputs and outputs are not exported;

Figure E.12: Component placed in the workspace

The Insert in drawing option must be used when the component is already tested and

is not expected to undergo any modification or adaptation. Inputs and outputs must

be placed along the rectangular border, otherwise would not be reachable. Pretty

often, when testing, dummy outputs are placed on some points of the circuits, in

order to easily monitor some signals. These outputs must be removed. If, on the

other hand, the component is likely to be somehow changed in a non predictable

way (should it be predictable, it is better to do it before exporting), the Flat insert

in drawing is a better option, but the the removal of inputs and outputs must be

dealt with.

E.5 Pads coupling directions

The key feature of MagCAD is that nucleation centers placed besides pad are influ-

enced by them. However, the direction and relative orientation of these two elements

does matter. A pad couples with an ANC nearby only if the position is one of those

shown in figure E.13, and does not couple with nucleation center arranged as in

figure E.14
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Figure E.13: Example of pads coupled with ANC

Figure E.14: Example of pads not coupled with ANC

E.6 Reports

At the end of a successful compilation, the file “definitions pnml.vhd” (which is a

file actually used by the simulation tool to get the delay parameters) contains a

couple of interesting information. The first one is about the maximum length of the

path between any two elements that wait the clock edge to propagate (inverters,

nucleation centers, VIAs), reporting in fact the critical path in terms of squares.

The other one is “hidden”, meaning that it must be calculated starting from two

other values. A report looks like the image E.15 The critical path is the one in
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Figure E.15: Report with most important parameters outlined

green oval, whereas the two parameters in the blue one are propagation time and

nucleation time. The way the clock half period is calculated is in the three lines

in the red box. If the T rise parameter is T eff/4.0 (as it is supposed to be) the

full clock period is simply (Tprop + Tnuc) · 2.5. Consulting this file is useful when

the design must be somehow improved: for example, the design is done and the

designer decides that no nanowire should be longer than 5 squares. He/she could

trim the nanowires and then check this file. Or, the designer might be looking

for a specific maximum clock frequency: he/she could design the circuit and then
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check the clock period. If it is too long, an adjustment will be made accordingly.

Some technological variations can be done if needed, by simply exporting again the

desing and setting different parameters in the window in figure E.16. This allows to

check the circuit performances with different sets of technological parameters. The

nanomagnet geometry, even if it had already been set as in section E.1 can now be

changed.

Figure E.16: Technological parameters definition
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