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Abstract

Energy Harvesting is one of the most relevant issues in today green economy; use of
the ”stray” energy radiated at Radio-Frequency (RF) by countless wireless devices
is one of the many aspects of present and future Energy Harvesting. On the other
hand, the intentional use of RF sources is also one of the possible approaches
to Wireless Power Transfer (WPT). A common energy harvesting device is the
rectenna, a circuit composed of an antenna, a matching circuit and a rectifier. The
main objective of this work is to understand how the antenna impedance affects
the charge of the capacitor used as load, to find a trade-off between charge time
and maximum achievable voltage.
The antenna choice drops on a patch antenna since it is quite easy to implement
in a circuit, modeled as a sinusoidal voltage generator connected in series to an
impedance starting from some specifications (shape, dielectric, physical dimensions
and so on). The rectifier is a half-wave rectifier, due to a high power conversion
efficiency and no matching circuit is used to prevent additional losses to obtain the
impedance matching.
The circuit was studied initially assuming the impedance purely resistive, then
using its complete model. From the analysis it can be noted that::

❼ the maximum input voltage achievable from the antenna is related to the
radiation resistance;

❼ fixing the antenna quality factor, the smaller is the radiation resistance the
faster is the charge;

❼ fixing the radiation resistance, the higher is the antenna quality factor the
faster is the charge. It is observed that the limit case with the resistance alone
has the slowest charge;

❼ the output voltage in steady state depends mainly on the diode.

These results are coherent with simulations performed by circuit simulators.
From tests done on half-wave rectifier and single stage voltage multiplier in the
anechoic chamber to charge a small capacitor, connecting them to a patch antenna
and a dipole and used to charge a small capacitor it can be concluded that:

❼ the half-wave rectifier produces a higher output voltage than the other topol-
ogy independently on the receiver antenna used;

❼ the patch allows to get a higher output voltage due to a higher gain with
respect the dipole;



❼ the measured voltages are lower than the theoretical expectations, since the
model does not consider any losses.
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Chapter 1

Introduction

Wireless power transfer (WPT) is the transmission of electrical energy without
wires. This technology enables to charge electrical devices where the connection
with a wire is difficult or not feasible. Wireless power technique can be subdivided
in three categories:

❼ near-field, or non-radiative technique in which the power is transferred over
short distance exploiting inductive coupling between coils of wires, or by elec-
tric field using capacitive coupling between metal electrodes; It is widely com-
mercialized but is suffers from extremely short charging distances:

❼ far-field directive, or radiative technique in which the power is transferred by
means of electromegnetic radiation such as laser beams or microwaves;

❼ far-field ambient radio frequency (RF) energy harvesting, in which the power
source is the ambient RF energy;

Far field techniques allows to overcome the distance problem. Furthermore, RF
energy harvesting becomes more fascinating during the last decades for growing
transmission broadcast RF energy. This ambient energy can be seen as ”free”
powering source. In this case the receiver efficiency is crucial due to the low input
power.

1.1 Objective and motivations

An RF power harvester capable to generate enough DC power to supply a wireless
system can be used as starting point for future wireless systems, such as portable
devices or mobile phones, with a self powered scheme without restoring the batteries
[1].
A common energy harvesting device is the rectenna, made up with an antenna
ad a rectifier circuit, used to convert the RF incident power to DC power. This
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1 – Introduction

device usually is connected to a storage element in order to collect all the received
electromagnetic power. In this thesis it is studied how the antenna parameters
(impedance and quality factor) impacts on the charge a capacitor used as load.

1.2 Thesis outline

This thesis is subdivided in many chapters:

❼ in chapter 2 it is described the rectenna structure, focusing on the antenna
and the rectifier:

– starting from the mathematical description of the antenna an equivalent
circuit is obtained;

– it is discussed about the proper rectifier topology for this application and
then the component choice.

❼ in chapter 3 the complete circuit is analyzed and simulated with many circuit
simulators;

❼ in chapter 4 are reported the experimental results obtained in laboratory,
testing the proposed circuit and commercial energy harvesting kit.

1.3 Thesis contribution

In this thesis it is studied the transient of the output voltage of a rectenna, focusing
on the charge time an the maximum achievable voltage level which is important
in an optic to use this collected energy to supply other circuits. In a low power
input scenario the charge time is quite long, so a complete simulation to estimate
the transient can take much time using standard circuit simulators, for this reason
an algorithm is developed to simulate the circuit in a much faster way. From these
results it is possible to choose the antenna and the other components in order to
get the best performances.
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Chapter 2

Rectenna

A rectenna is a circuit used to collect wireless transmitted power and to convert it
on DC power. A typical rectenna is composed by an antenna, a matching circuit,
a rectifier and a load (figure 2.1).

Matching
Circuit

Rectifier Load

Energy harvesting circuit
PRF

Figure 2.1: Rectenna structure

In an optic of low power level, all the circuit losses impact strongly on the system
funcionality. For this reason the matching circuit is not considered in this case, since
even with a matching net with lossless elements, in order to get a perfect matching
of impedance a lot of power must be despoiled by the matching circuit [2]. The
rectenna is supposed to work for frequencies of 915 MHz and 860 MHz, according
to the US and EU normative respectively.

2.1 Antenna

For this project the idea is to use a patch antenna, since it is quite easy to build
and in can be integrated in an electronic circuit with the other devices. Two kinds
of patch antenna may be used:

❼ microstrip-fed patch, by means of a stripline;
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2 – Rectenna

L

W

h

t

wa

Patch

Feeding line

Dielectric

Figure 2.2: Patch antenna - microstrip feed

❼ probe-fed patch with a coaxial cable;

L

W

h

t

Patch

Feeding probe

Dielectric

Figure 2.3: Patch antenna - probe feed

The focus point is to get an equivalent circuit of the structure. As first approx-
imation the antenna can be modeled as a voltage generator in series to a generic
impedance (figure 2.4):
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2.1 – Antenna

vin(t)

Za

Figure 2.4: Antenna equivalent circuit

2.1.1 Input voltage

The first step consist to determine the input voltage. An important parameter for
the antenna is the effective height h̄e that relates the induced voltage to the incident
electric field [3]:

Vin = h⃗e · E⃗ = |he||Einc|ĥe · E⃗inc (2.1)

Assuming the antenna oriented in the direction of the maximum reception, the
expression 2.1 can be simplified as:

Vin = |he||Einc| (2.2)

The effective height is related to the physical dimensions of the antenna and the
frequency:

|he(θ, φ)|2 = λ2G
Rrad

πZ0

→ |he(θ, φ)| = λ

√
G
Rrad

πZ0

(2.3)

where:

❼ G is the (maximum) gain of the antenna in linear unit;

❼ Rrad is radiation resistance;

❼ λ =
λ0√
εr

is the wavelength in the patch medium.

EIRP considerations

The maximum value of the incident electric field on the antenna can be evaluated
starting from the limitations on the maximum power density that can be radiated.
The first consideration is related to the Effective Isotropic Radiated Power (or
EIRP) that is the power density radiated by an ideal isotropic antenna. It refers
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2 – Rectenna

the effective power transmitted in a radio system. The EIRP (in dBm) is calculated
using this formula:

EIRP = Ptx − Ct +Gt [dB] (2.4)

where:

❼ Ptx is the transmitter power output (dBm)1;

❼ Ct is the signal loss in cable (dB);

❼ Gt gain of the antenna (dBi)2.

Since in this case the reciver side is considered, it is possible to neglect the cable
losses. In this case the EIRP can be simplified in linear unit as:

EIRP = Ptx ·Gt (2.5)

The normative ETS 300-328 fixes a limit on the maximum transmitted power with
an EIRP of 100 mW (20 dBm) for the frequency range involved on this project
(and the harmonics). The power density can be expressed as:

S(r, θ, φ) =

(
dP

dΣ

)
inc

=
Pinc

4πr2
=

|Einc|2

2Z0

(2.6)

Where Z0 is the free space impedance and r is the distance. Since:

Pinc = Pout ·Gt = EIRP

it is possible express the incident field in terms of EIRP:

|Einc| =
1

r

√
EIRP Z0

2π
(2.7)

Supposing to place the receiver at distance r = 1.5 m from the radiating source,
the corresponding maximum incident field is:

|Einc| = 1.633 V/m

From this result it is possible to get an order of magnitude of the voltage at the
antenna terminal, that can be used for the successive simulations.

1Power ratio in decibels (dB) of the measured power referenced to one milliwatt (mW).
2Power ratio in decibels relative to an isotropic radiator.
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2.1 – Antenna

Gain

The gain is defined to relate the power density to the input power:

g(θ, φ) =

(
dP

dΣ

)
r,θ,φ

Pin

4πr2

(2.8)

where the input power Pin may be obtained from the radiated power Prad through
the efficiency ν:

Prad = νPin

By making some calculation it is possible to evaluate the maximum gain as:

G =
4πν∫ 2π

0
dφ
∫ π

0
dθ sin θ|e⃗(θ, φ)|2

(2.9)

where e⃗(θ, φ)3 is the specific radiation vector of the antenna. In the case of a patch
antenna:

e⃗(θ, φ) ∝ φ̂ sin θ sinc

(
π cos θ

W

λ0

)
cos

(
π
L

λ0

sin θ sinφ

)
A plot of the gain in function of the ratios W/λ0 and L/λ0 is shown in figure 2.5:

Figure 2.5: Maximum patch gain at resonance [4] (the parameter is L/λ0)

3The polarization is linear;
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2 – Rectenna

A practical value of the gain of 6 dB was used, independently on the size ratio,
in order to take into account possible losses and non-idealities.

Radiation resistance

The radiation resistance can be evaluated starting from the definition of input
power:

Pin =
1

2
Grad|Vin|2 (2.10)

Considering a lossless case:

ν = 1 → Pin = Prad

it is possible rewrite the expression 2.10 as:

Prad =
1

2
Grad|Vin|2 =

|E⃗inc|2

2Z0

(2.11)

the incident field can be expressed in function of the specific radiation vector of the
antenna e⃗(θ, φ):

E⃗inc(r, θ, φ) =
1

4πr2

∫ ∫
sin θe⃗(θ, φ)dΣ → dΣ = r2 sin θdφdθ (2.12)

In the case of a patch antenna, e⃗(θ, φ) can be expressed as:

e⃗(θ, φ) =

⎧⎨⎩e0 sin θ sinc

(
π cos θ

W

λ0

)
cos

(
π
L

λ0

sin θ sinφ

)
φ̂ for− π/2 < φ < π/2

0 for− π/2 < φ ∨ φ > π/2

where

e0 = −jVin4π
W

λ0

So the radiation conductance can be derived as:

Grad =
4

Z0

(
W

λ0

)2 ∫ π

0

sin3 θ

[
sinc

(
π cos θ

W

λ0

)]2
dθ

∫ π/2

−π/2

cos2
(
π
L

λ0

sin θ sinφ

)
dφ

(2.13)
At resonance, since ℑ{Ya} = 0, it is possible to write:

Rrad(ωr) = ℜ{Za(ωr)} = ℜ
{

1

Ya(ωr)

}
=

1

Grad(ωr)

In particular it is possible to notice that the radiation resistance depends on the
physical dimensions W and L of the patch as it is shown in figure 2.6:
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2.1 – Antenna

Figure 2.6: Rrad at resonance [4]

From these considerations it is possible to represent the patch impedance: as-
suming the radiation produced just to two magnetic currents localized at the edges
of the patch and separated by a transmission line, it is possible to get the two
radiating edges model (figure 2.7). In this case:

Gedge(ω) ≃
1

2
Grad(ωr)

In reality this approximation that is valid at resonance frequency only.

Gedge Gedge

Feed line ”Patch” line

Figure 2.7: Two radiating edges model

By looking at the termination of the patch a strong field variation is present. This
electric field is called fringing field and it corresponds to a charge accumulation:

∇ · E⃗ = −jωρ
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2 – Rectenna

This effect can be represented in the circuit by adding a pair of capacitances, the
so called fringing capacitances CF , in parallel to the conductances (figure 2.8):

GedgeCF GedgeCF

Feed line ”Patch” line

Figure 2.8: Model with finging capacitances

The effect of these capacitances can be interpreted as a pair of increments ∆L
of the patch electrical length:

GedgeGedge

Leff = L+ 2∆L

Figure 2.9: Patch model (edge feeding)

Assuming Gedge constant for all the frequencies, the equivalent impedance shows
a frequency behaviour as figure 2.10:
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2.1 – Antenna

Figure 2.10: Example of patch frequemcy response

All the previous discussions were based on the assumption that the patch has
been feed at one of the edges, that is the case in which the radiating resistance
is the maximum. It is possible to change the antenna impedance by changing the
feeding point. Supposing to put the probe position at a distance x from the edge:

GedgeGedge

x

L

YFL(x) YFR(x)

Figure 2.11: Patch model (recessed feeding)

Yin(x) = YFL(x) + YFR(x)

So it is possible to get many value of impedance by properly choosing the tap
point:

❼ the impedance gets a high value when the patch is feed from one edge (Rrad(0));

15



2 – Rectenna

❼ when the tap point is at center,a very small resistance is present (r1/2).

Neglecting the center resistance, it is possible to express the variation of the ra-
diation resistance in function of the position of the feeding point by the following
relation:

Rrad(x)

Rrad(0)
≈ cos2

(
π
x

L

)
(2.14)

In figure 2.12 is present graphical representation of this behaviour:

Figure 2.12: Impedance variation along x of different models [4]

In this way it is possible to rewrite the effective height in function of the feeding
point:

|he(x)| = λ

√
G
Rrad(x)

πZ0

= |he(0)| cos
(
π
x

L

)
(2.15)

where he(0) is the maximum value evaluated at the edge:

|he(0)| = λ

√
G
Rrad(0)

πZ0
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2.1 – Antenna

Numerical results

Starting from all the considerations of chapter 2.1.1, it is well evident that the
input voltage depends on the dimensions of the antenna, so each project must be
considered stand alone. To get an order of magnitude of the input voltage for the
simulations, the following values are considered:

❼ f0 = 868 MHz → λ0 =
c

f0
= 345.6 mm

❼ εr = 1 (air) → λ = λ0 = 345.6 mm

❼ Rrad(0) = Rrad(x) = 200 Ω (supposing to feed the patch at the edge);

❼ GdB = 6 dB → G = 3.98;

it points out an effective height:

|he| = 283.3 mm

So the maximum input voltage has an order of magnitude of:

Vin ≈ 0.5 V

2.1.2 Antenna impedance

As already discussed, the frequency response of the patch is shown figure 2.10. This
behaviour is the same of a parallel RLC resonator in the frequency range around
the resonance frequency.

R

C

L

Figure 2.13: Parallel RLC resonator

The impedance can be written in the Fourier domain as:

Zres(jω) =
jωRL

jωL− ω2RLC +R

17



2 – Rectenna

or alternatively the admittance:

Yres(jω) =
1

R
− j

1

ωL
+ jωC

In order to simplify the computation it is needed to pass from the equivalent
circuit of the transmission line to an approximate resonator. Considering the circuit
already discussed in figure 2.14:

RedgeCF CFRedge

Z0 Z0

x

L

ZFL(x) ZFR(x)

Figure 2.14: Patch circuit

The impedance that can be seen from each side, neglecting all the line losses,
can be written as:

ZFi(l) = Z0

[
ZL + Z0 tan(kl)

Z0 + ZL tan(kl)

]
(2.16)

where:

❼ Z0 is the characteristic impedance of the patch;

❼ ZL is the termination impedance:

ZL = ZL(jω) = Redge//
1

jωCF

=
Redge

1 + jωRedgeCF

(2.17)

❼ k is the wavenumber:

k =
2π

λ
(2.18)

The equivalent impedance that can be seen from the feeding point can be evaluated
as:

ZFL = Z0

[
ZL + Z0 tan(kx)

Z0 + ZL tan(kx)

]
ZFR = Z0

[
ZL + Z0 tan [k(L− x)]

Z0 + ZL tan [k(L− x)]

]
Zin = ZFL//ZFR

18



2.1 – Antenna

In order to get the equivalent resonator, it is useful to consider also the input
admittance:

Yin =
1

Zin

The graphical representation is shown in figure 2.15:

Figure 2.15: Input admittance of the patch

From this result it is possible to get R, L ans C starting from the following
considerations:

❼ the real part is almost constant and it coincides with the reciprocal of the
resonator resistance:

ℜ{Yin} =
1

R
It is important to notice that also the resonator resistance is similar to the
radiation resistance, previously computed, if the feeding point is sufficiently
far from the center of the patch (where it is null).

R ≃ Rrad

❼ the resonance frequency can be approximated as:

ω0 =
1√
LC

→ L =
1

ω2
0C

❼ the imaginary part of the input admittance can be written as:

Im {Yin} = ωC − 1

ωL
= C

(
ω − ω2

0

ω

)
19



2 – Rectenna

So starting from some data obtained with Matlab it is possible to get all the pa-
rameters of the equivalent resonator. In conclusion the equivalent circuit for the
antenna is shown in figure 2.16:

R

C

Lvin(t)

Figure 2.16: Antenna equilvaent circuit

It is important to underline that this approximation is valid just for a small
range around the resonance frequency.

2.1.3 Simulations

The Istituto superiore Mario Boella (ISMB) provided a Matlab code to design
patch antennas: it allows to get the physical dimensions and the transmission line
parameters of a patch providing as input:

❼ the central frequency f0;

❼ the dielectric height h;

❼ the dielectric constant εr.

Furthermore it allowed to choose the kind of feeding (microstrip or probe) and the
design metrics (squared patch or fixed W).
The results obtained from this code were used to get the equivalent circuit discussed
in chapters 2.1.1 and 2.1.2. To this aim, two additional parameters must be used:

❼ antenna gain G;

❼ distance from the antenna r;

The first step was the choice of the substrate that is quite important, since the
correct value of the dielectric coefficient allows to get the resonance matching and
the circuit may work. Several metrics may be used for the choice of the most
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2.1 – Antenna

appropriate substrate, depending on the costs and the availability of the material.
For the project it was opted for the substrate ROHACELL. In the the table 2.1 the
main electric characteristics are reported:

Propriety
Frequency ROHACELL ROHACELL ROHACELL
[GHz] 31 HF 51 HF 71 HF

Dielectric Constant

2.5 1.050 1.057 1.075
5 1.043 1.065 1.106
10 1.046 1.067 1.093
26.5 1.041 1.048 1.093

Loss Tangent

2.5 <0.0002 <0.0002 <0.0002
5 0.0016 0.0008 0.0016
10 0.0017 0.0041 0.0038
26.5 0.0106 0.0135 0.0155

Table 2.1: Electrical Properties of ROHACELL HF

Two squared patch probe feed were realized. The design data are reported in
the following list:

❼ a ROHACELL HF 31 substrate with

– h = 0.508 mm

– εr = 1.050

❼ f0 = 868, 915 MHz

❼ G = 6 dB

❼ r = 1.5 mm

In table 2.2 are reported all the transmission line of the patches:

Squared patch (W=L)
Frequency Width Length εreff Redge CF Z∞
[MHz] [mm] [mm] [Ω] [➭F] [Ω]
868 163.185 163.185 1.0474 201.583 1.0506 8.2433
915 154.530 154.530 1.0473 202.294 0.9942 8.6704

Table 2.2: Patches - transmission line parameterss

For each patch, two versions were realized changing the feeding point (using the
edges as reference coordinate) in order to obtain two different input impedances:
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2 – Rectenna

❼ a 50 Ω input impedance, in order to be attached to others rectenna kit already
presents on the market;

❼ a maximum radiation resistance. In this case the feeding was placed at a
small distance from the edge for feasibility reasons. The frequency responses
are shown in figure 2.17 and 2.18 in which there is the comparison between
the transmission line and the equivalent circuit frequency responses:

In table 2.3 are reported the circuit parameters of each patch antenna:

Square patch (W=L)
Frequency Feeding position Rres Lres Cres

[MHz] [mm] [Ω] [pH] [pF]

868
54 50.152 245.153 137.140
2 200.010 980.075 34.304

915
50 51.856 253.097 119.540
2 200.804 982.662 30.789

Table 2.3: Patches - circuit parameters

Figure 2.17: 868 MHz patch frequency response comparison
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2.2 – Rectifier

Figure 2.18: 915 MHz patch frequency response comparison

2.2 Rectifier

Electronics circuits require to be supplied a constant voltage. So the received power
from the antenna must be converted from AC to DC. The circuits that perform
this conversion are called rectifiers. These devices are based on diodes, that are
nonlinear devices, and capacitors, that are storage elements, in order to demodulate
the AC input voltage.
The first step is is the topology choice. There are many circuits that can be used
as rectifiers rectifiers. The simplest example is the half-wave rectifier (figure 2.19).
Moreover, since the power involved are quite low, there are circuits that performs
the rectification plus a little boost of the input voltage (figure 2.20, 2.21 and 2.22).

CL RL

−

+

vout(t)

−

+

vin(t)

Figure 2.19: Half-wave rectifier
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2 – Rectenna

CL

RL

−

+

vout(t)CL

−

+

vin(t)

Figure 2.20: Single-stage voltage multiplier

CL

RL

+

−

vout(t)

CL

CL

−

+

vin(t)

Figure 2.21: Greinacher charge pump

CL

CL

CL

CL

−

+

vin(t)

RL

−

+

vout(t)

Figure 2.22: Dickson charge pump

24



2.2 – Rectifier

The power conversion efficiency is defined as:

ν =
Pdc

Pin

where:

❼ Pin is the RF input power collected by the antenna;

❼ Pdc is the DC power of the load resistor.

Once vout(t) is solved numerically, Pdc can be evaluated as:

Pdc =

(
1
T

∫ T

0
vout(t) dt

)2
RL

In [2] it was been analyzed that all the multiple-stages rectifiers produces a higher
output voltage but the power conversion efficiency is maximum in the half-wave
rectifier, independently on the frequency, due to the fact that the losses due to the
voltage are minimized since just many components are presents. For this reason
this topology will be used for this point on. The second step is the components
choice:

❼ the diode must have a very fast switching time due to the high frequency op-
eration and small device parasitics, especially the junction resistance Rj that
dissipates power in the semiconductor witch consequently reduction on the
conversion efficiency. Another important aspect that must be considered is
the harmonic generation: the non-linearity of the diode will generates har-
monics from the incident power, that corresponds to less DC power generated.
The best choice, accordingly on this kind of project, are the Schottky diodes
because the metal-semiconductor junctions allows fast operations and limited
voltage drops. In particular the choice for this design falls upon the HSMS-
286x diode by Avago Technologies. The main parameters are reported in table
2.4:
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2 – Rectenna

Parameter Units Value
BV [V] 7.0
CJ0 [pF] 0.18
EG [eV] 1 · 10−5

IBV [A] 5 · 10−8

N 1.08
RS [Ω] 6
PB(V J) [V] 0.65
PT (XTI) 2
M 0.5

Table 2.4: SPICE parameters of HSMS-286x diode

Considering the current range, from the datasheet, the threshold voltage as-
sumes values from 1.5 V to 2.5V;

❼ the rectifier capacitor is a AQ series of AVX, that is optimized for RF/ Mi-
crowave applications typically ranging from 10 MHz to 4.2 GHz;
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Chapter 3

Theoretical analysis

Starting from all the discussion done in chapter 2, it is possible to get the rectenna
connecting the antenna equivalent circuit to the half wave rectifier. The result is
shown in figure 3.1.

vin(t)

Zin id(t) + −
vd(t)

Cout

−

+

vout(t)

Antenna side Rectifier side

Figure 3.1: Rectenna generic circuit

❼ the antenna is modeled as a single tone voltage generator with amplitude V̂in

and frequency f connected in series to the antenna impedance Zin;

❼ the rectifier circuit consists in a diode in series to a capacitor C, both of them
assumed ideals;

❼ the load is a capacitor. Since it assumed to be much bigger than the one
present in the rectifier, just a single capacitor is considered in the schematic.

Initially the antenna impedance is modeled just as a resistance and successively
by a parallel RLC resonator. The purpose is to evaluate the impact of the antenna
impedance in the charge of the output capacitor. The most difficult element to
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3 – Theoretical analysis

treat in the analysis is the diode, since it is a non-linear device. So the fist point
consists to define a proper characteristic to model the diode.

Piece-wise linear characteristic

A possible way to represent the diode is through a linear piece-wise (PWL) char-
acteristic (figure 3.2):⎧⎪⎪⎪⎨⎪⎪⎪⎩

vd > Von (diode ON) → id =
vd − Von

Ron

vd < Von (diode OFF) → id =
vd

Roff

(3.1)

vd

id

1
RON

VON1
ROFF

Figure 3.2: Diode piece-wise characteristic

In this case in each region the device can be considered as a combination of
linear components and so a closed analytic solution can be obtained [7].

Shockley characteristic

Another way to model the diode, more realistic, is through a Shockley equation, in
which the voltage-current relation is exponential (figure 3.3):

id(t) = Is

(
e
vd(t)
ηVt − 1

)
(3.2)

where:

❼ Is is the reverse saturation current;

❼ Vt =
kbT

q
is the equivalent thermal voltage:
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3.1 – Simplified circuit

– kb is the Boltzmann’s constant;

– q is the charge of an electron;

– T is the absolute temperature;

❼ η is the diode emission coefficient.

vd

id

Is

Figure 3.3: Diode exponential characteristic

With this relation the element is non-linear consequently an analytic closed
solution cannot be found.

3.1 Simplified circuit

As first approximation, the antenna impedance is assumed purely resistive (figure
3.4).

vin(t)

R id(t) + −
vd(t)

Cout

−

+

vout(t)

Figure 3.4: Rectenna simplified circuit

This circuit is a first order circuit since there is just an element with memory.
In the following, it is analyzed modeling the diode with both diode characteristics.
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3 – Theoretical analysis

3.1.1 PWL diode

The circuit must be analyzed during each phase:

❼ during the ON-phase the diode can be considered as a small resistance con-
nected in series to a DC voltage source (figure 3.5);

❼ during the OFF-phase the diode can be considered just as a big resistance
(figure 3.6).

In both cases the system is a first order system. Then the solution will be a
combination of the two solutions.

vin(t)

R Ron

−+

Von

Cout

−

+

vout(t)

iout(t)

Figure 3.5: ON-phase circuit

vin(t)

R Roff

Cout

−

+

vout(t)

iout(t)

Figure 3.6: OFF-phase circuit

ON-Phase

The mesh circuit equations are the followings:⎧⎪⎪⎨⎪⎪⎩
vin(t) = (R +Ron) · iout(t) + Von + vout(t)

iout(t) = Cout
dvout(t)

dt

(3.3)
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3.1 – Simplified circuit

For a more simple formulation, by calling:

dvout(t)

dt
= ˙vout(t)

τon = (R +Ron) · Cout

the expression 3.3 can be rewritten as:

˙vout(t) +
vout(t)

τon
=

vin(t)− Von

τon
(3.4)

The solution of this differential equation, considering vin(t) = V̂in sin(2ωt), is:

vouton(t) = vtran(t) + v∞(t) (3.5)

where:

vtran(t) =

{
vout(t0) +

V̂in

ω2 + 1/τ 2on

[
ω cos(ωt0) +

sin(ωt0)

τon

]
+ Von

}
· e

t0−t
τon − Von

v∞(t) = − V̂in

ω2 + 1/τ 2on
·
[
ω cos(ωt) +

sin(ωt)

τon

]
OFF-Phase

In this case, the mesh circuit equations are the followings:⎧⎪⎪⎨⎪⎪⎩
vin(t) = (R +Roff ) · iout(t) + vout(t)

iout(t) = Cout
dvout(t)

dt

(3.6)

Similarly to the previous case, by calling:

dvout(t)

dt
= ˙vout(t)

τoff = (R +Roff ) · Cout

the previous expression can be rewritten as:

˙vout(t) +
vout(t)

τoff
=

vin(t)

τoff
(3.7)

Again, the solution of this differential equation gives out this result:

voutoff (t) = vtran(t) + v∞(t) (3.8)

where:

vtran(t) = vout(t0) · e
t0−t
τoff +

V̂in

ω2 + 1/τ 2off
· e

t0−t
τoff

[
ω cos(ωt0) +

sin(ωt0)

τoff

]
v∞(t) = − V̂in

ω2 + 1/τ 2off
·
[
ω cos(ωt) +

sin(ωt)

τoff

]
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3 – Theoretical analysis

Algorithm

Once that all the equations for each phase are known it is possible to evaluate
the charge of the output capacitor through a Matlab code: assuming the capacitor
initially discharged, the diode is initially OFF and the corresponding equation is
used. Than vd can be written as:

vdoff (t) = [vin(t)− vout(t)] ·
Roff

R +Roff

During the first half of a period vin(t) increases while vout(t) stays quite constant.
It is possible to evaluate numerically the time instant t0 in which vd(t) = Von. From
this time on the diode switched-ON and so both the diode equivalent model and
the output voltage’s equation changes:

vdon(t) = [vin(t)− vout(t)] ·
Ron

R +Ron

+ Von ·
R

R +Ron

The new initial condition corresponds to the final voltage reached in the previous
phase vstart = vout(t0). Again it is possible to evaluate the time in which vd(t)
intercept Von and consequently the diode switched-OFF and so the process continue
until the capacitor completely charges. The pseudocode is reported as following
(appendix A.1):

Pseudocode for PWL diode (simplified)
1: set initial condition: vstart = 0
2: set initial time: tstart = 0
3: start a cycle for t = 0 to Tsim do:
4: use OFF-Phase equations: vout(t) = voutOFF

(t)
5: solve the equation: vdoff = Von → t = t0
6: set new initial time: tstart = t0
7: set new initial condition: vstart = vout(t0)
8: use ON-Phase equations: vout(t) = voutON

(t)
9: solve the equation: vdon(t) = Von → t = t0
10: simulation end end for

3.1.2 Shockley diode

In this case the circuit cannot be subdivided anymore in two sub-circuits. The
Kirchhoff’s laws are: {

vin(t) = Rid(t) + vd(t) + vout(t)

id(t) = iout(t)
(3.9)
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3.1 – Simplified circuit

and the following constitutive relations are valid:

id(t) = Is

(
e
vd(t)
ηVt − 1

)
(3.10)

iout(t) = Cout
dvout(t)

dt
(3.11)

Euler’s Method

It possible to study the circuit through a time discrete simulation:

❼ the fist step consists to subdivide the continuous time in in many time instants
∆T :

t → k ·∆T k = 1,2,3...

Where ∆T is a fraction of the period T :

∆T =
T

Npoints

❼ the second step consists to replace replace the derivative with the incremental
ratio:

dx(t)

dt
≃ x(t)− x(t−∆T )

∆T

This approach is called inverse Euler’s Method [8]. It can be demonstrated that
this method prevent numeric instability, differently form a direct Euler’s Method,
and for this reason it gives a more accurate solution, moreover if the system is
stable, the error is kept limited even increasing the value of k. This method is
particularly useful when it is needed to deal with time dependent generators, as in
this case. Calling:

vink
= vin(k∆T )

voutk = vout(k∆T )

vdk = vd(k∆T )

It is possible tho write the current equation as:

idk =
vink

− vdk − voutk
R

= Is

(
e
vdk
ηVt − 1

)
(3.12)

In each time instant, it is possible to define the increment of vd(t) and vout(t) as

∆vd = vdk − vdk−1

∆vout = voutk − voutk−1
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3 – Theoretical analysis

The equation 3.12 can be rewritten as:

vink
− (vdk−1

+∆vd)− (voutk−1
+∆vout)

R
= Is

(
e

vdk−1

ηVt e
∆vd
ηVt − 1

)
By choosing ∆T → 0 ⇒ ∆VD → 0 it is possible to express the exponential

term with a Taylor expansion stopping at the first order:

e
∆vd
ηVt ≃

(
1 +

∆vd
ηVt

)
In this way it is possible to write the increment ∆vd in a closed form:

∆vd =

vink
− vdk−1

− voutk−1
−∆vout −RIs

(
e

vdk−1

ηVt − 1

)
1 + IsR

ηVt
e

vdk−1

ηVt

(3.13)

The next step is to obtain the other increment ∆vout:

vink
− (vdk−1

+∆vd)− (voutk−1
+∆vout)

R
= Cout

∆vout
∆T

Replacing ∆vd with the previous expression it is possible to get also a closed form
of ∆vout:

∆vout =

(
vink

−vdk−1
−voutk−1

ηVt
+ 1
)
e

vdk−1

ηVt − 1

1 + IsR
ηVt

(
1 + ∆T

RCout

)
e

vdk−1

ηVt

Is∆T

Cout

(3.14)

It is possible to notice that for all the time instants:

voutk , vdk = f(vink
, voutk−1

, vdk−1
)

So the resulting system is the following:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆vout =

(
vink

−vdk−1
−voutk−1

ηVt
+ 1
)
e

vdk−1

ηVt − 1

1 + IsR
ηVt

(
1 + ∆T

RCout

)
e

vdk−1

ηVt

Is∆T
Cout

∆vd =

vink
− vdk−1

− voutk−1
−∆vout −RIs

(
e

vdk−1

ηVt − 1

)
1 + IsR

ηVt
e

vdk−1

ηVt

voutk = voutk−1
+∆vout

vdk = vdk−1
+∆vd

(3.15)
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3.2 – Complete circuit analysis

If ∆T → 0 the series of voutk and vdk converges to the exact solution of the equa-
tion 3.11. A Matlab code can be implemented to solve the system 3.15 (appendix
A.2:

Pseudocode for Shockley diode (simplified)
1: set initial condition: voutk−1

= 0
vdk−1

= 0
2: start a cycle: for k = 0 to kmax do:
3: evaluate the increments : ∆vout = f(vink

, voutk−1
, vdk−1

)
∆vd = f(vink

, voutk−1
, vdk−1

,∆vout)
4: evaluate the nonlinear variables: voutk = voutk−1

+∆vout
vdk = vdk−1

+∆vd
5: simulation end: end for

3.2 Complete circuit analysis

The next step consist to replace the resistance by the resonator derived in chapter
2.1.2. The circuit is shown in figure 3.7.

R ir(t)

C
ic(t)

L

+ −vant(t)

il(t)vin(t)

+ −
vd(t)

id(t)

Cout

−

+

vout(t)

iout(t)

Figure 3.7: Rectenna complete circuit

The resonator that adds two new state variables as consequence the circuit
becomes a third order circuit. In this case Kirchhoff’s laws are:{

vin(t) = vant(t) + vd(t) + vout(t)

id(t) = ir(t) + ic(t) + il(t)
(3.16)
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3 – Theoretical analysis

and the constitutive relations are:

iout(t) = Cout
dvout(t)

dt
(3.17)

ir(t) =
vant(t)

R
(3.18)

ic(t) = C
dvant(t)

dt
(3.19)

il(t) =

∫ t

0

vant(t)

L
dt (3.20)

Again the circuit is solved by modeling the diode by both piece-wise linear and
exponential equation.

3.2.1 PWL diode

Similarly to the simplified version, the circuit was analyzed during each phase:

R ir(t)

C
ic(t)

L

+ −vant(t)

il(t)vin(t)

Ron

−+

Von

Cout

−

+

vout(t)

iout(t)

Figure 3.8: ON-Phase circuit
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3.2 – Complete circuit analysis

R ir(t)

C
ic(t)

L

+ −vant(t)

il(t)vin(t)

Roff

Cout

−

+

vout(t)

iout(t)

Figure 3.9: OFF-Phase circuit

ON-phase

All the equations of the circuit can be rewritten in a more compact matrix form:

ẋ(t) = Aonx(t) + bonuon(t) (3.21)

where:

x(t) =

⎡⎣ vc(t)
vout(t)
il(t)

⎤⎦ ⇒ ẋ(t) =

⎡⎣ v̇c(t)
˙vout(t)
i̇l(t)

⎤⎦
Aon =

⎡⎢⎣− 1
C

(
1
R
+ 1

Ron

)
− 1

CRon
− 1

C

− 1
CoutRon

− 1
CoutRon

0
1
L

0 0

⎤⎥⎦
bon =

⎡⎣ − 1
CRon

− 1
CoutRon

0

⎤⎦
uon(t) = V̂in sin(ωt)− Von

This system can be transformed in a diagonal system in order to be solved more
simply.

VTAonV = Λon → Λon =

⎡⎣son11 0 0
0 son22 0
0 0 son33

⎤⎦
where sonii are the eigenvalues of the matrix Aon. Then multiplying both terms of
the equation 3.21 by VT:

VTẋ(t)  
ξ̇(t)

= ΛonV
Tx(t)  
ξ(t)

+VTbon  
βon

uon(t)
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3 – Theoretical analysis

it is possible to get an equivalent diagonal system that is easier to solve:

ξ̇(t) = Λonξ(t) + βonuon(t) (3.22)

Each row of this system is a first order linear differential equation that can be
solved as:

ξonii (t) = ξ0e
sonii (t−t0)  
ξh(t)

+ es
on
ii t

∫ t

t0

es
on
ii τβiuoni

dτ  
ξf (t)

(3.23)

that is composed by a homogeneous solution ξf (t), that depends on the initial
conditions

ξ0 = VTx0

plus a forced solution ξf (t) that depends on the input signal. In this case the input
is:

uon(t) = vin(t) + Von

so the corresponding forced solution becomes:

ξf (t) = ξvinf (t) + ξVon
f (t)

where

ξvinf (t) = V̂inK
[
(ω cos(ωt0) + sonii sin(ωt0)) e

sonii (t−t0) − (ω cos(ωt) + sonii sin(ωt))
]

ξVon
f (t) = Von

βi

sonii

[
1− es

on
ii (t−t0)

]
with:

K =
βiω

ω2 + sonii
2

Then it is needed to move back to the original state variables:

xk(t) =
3∑

j=1

Vjkξ
on
j ((t) k = 1,2,3

⎧⎪⎨⎪⎩
vantON

(t) = V11ξ
on
1 (t) + V12ξ

on
2 (t) + V13ξ

on
3 (t)

voutON
(t) = V21ξ

on
1 (t) + V22ξ

on
2 (t) + V23ξ

on
3 (t)

ilON
(t) = V31ξ

on
1 (t) + V32ξ

on
2 (t) + V33ξ

on
3 (t)

(3.24)
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3.2 – Complete circuit analysis

OFF-phase

Similarly a matrix form of the circuit equation is defined:

ẋ(t) = Aoffx(t) + boffuoff (t) (3.25)

where:

x(t) =

⎡⎣ vc(t)
vout(t)
il(t)

⎤⎦ ⇒ ẋ(t) =

⎡⎣ v̇c(t)
˙vout(t)
i̇l(t)

⎤⎦
Aoff =

⎡⎢⎣− 1
C

(
1
R
+ 1

Roff

)
− 1

CRoff
− 1

C

− 1
CoutRoff

− 1
CoutRoff

0
1
L

0 0

⎤⎥⎦
boff =

⎡⎢⎣ − 1
CRoff

− 1
CoutRoff

0

⎤⎥⎦
uoff (t) = V̂in sin(ωt)

Again the system is transformed in a diagonal system in order to be solved more
simply.

VTAoffV = Λoff → Λoff =

⎡⎣soff11 0 0

0 soff22 0

0 0 soff33

⎤⎦
where soffii are the eigenvalues of the matrix Aoff . Then it is possible to get an
equivalent diagonal system that is easier to solve:

ξ̇(t) = Λoffξ(t) + βoffuoff (t) (3.26)

Each row of this system is a first order linear differential equation that can be
solved as:

ξoffii (t) = ξ0e
soffii (t−t0)  
ξh(t)

+ es
off
ii t

∫ t

t0

es
off
ii τβiuoff i

dτ  
ξf (t)

(3.27)

The solution is almost equal to the on-phase with the only difference of the forced
solution since in this case the input is just:

uoff (t) = V̂in sin(ωτ)

so the corresponding forced solution becomes:

ξf (t) = V̂inQ
[(

ω cos(ωt0) + soffii sin(ωt0)
)
es

off
ii (t−t0) −

(
ω cos(ωt) + soffii sin(ωt)

)]
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3 – Theoretical analysis

with:

Q =
βiω

ω2 + soffii

2

Then it is needed to move back to the original state variables:

xk(t) =
3∑

j=1

Vjkξ
off
j (t) k = 1,2,3

⎧⎪⎨⎪⎩
voutOFF

(t) = V11ξ
off
1 (t) + V12ξ

off
2 (t) + V13ξ

off
3 (t)

voutOFF
= V21ξ

off
1 (t) + V22ξ

off
2 (t) + V23ξ

off
3 (t)

ilOFF
(t) = V31ξ

off
1 (t) + V32ξ

off
2 (t) + V33ξ

off
3 (t)

(3.28)

Algorithm

It is possible to evaluate the charge of the output capacitor through a Matlab code
similarly to the simplified circuit: assuming the capacitor initially discharged, the
diode is initially OFF and the corresponding equation is used. The main difference
with respect the simplified circuit is that the expression of vd(t) is the same for
both phases:

vd(t) = vin(t)− vant(t)− vout(t)

The difference is in the evolution of vant(t),vout and il(t) during each of them. Again
it is possible to evaluate numerically the time instant t0 in which vd(t) = Von so all
the state variable at this time instant becomes the new initial conditions for the
next phase:

vantstart = vant(t0)

voutstart = vout(t0)

ilstart = il(t0)

From this time on the diode switched-ON and the process continue until the ca-
pacitor completely charges. The pseudocode is reported as following (appendix
A.3:
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3.2 – Complete circuit analysis

Pseudocode for PWL diode (complete)

1: set initial condition:

⎧⎪⎨⎪⎩
vantstart = 0

voutstart = 0

ilstart = 0

2: set initial time: tstart = 0
3: start a cycle for t = 0 to Tsim do:

4: use OFF-Phase equations:

⎧⎪⎨⎪⎩
vantstart = vantOFF

voutstart = voutOFF

ilstart = ilOFF

5: solve the equation: vd(t) = Von → t = t0
6: set new initial time: tstart = t0

7: set new initial condition:

⎧⎪⎨⎪⎩
vantstart = vant(t0)

voutstart = vout(t0)

ilstart = il(t0)

8: use ON-Phase equations:

⎧⎪⎨⎪⎩
vantstart = vantON

voutstart = voutON

ilstart = ilON

9: solve the equation: vd(t) = Von → t = t0
10: simulation end end for

3.2.2 Shockley diode

Again, it is possible to use the Euler approach. The first step consists to define the
discrete voltages:

vink
= vin(k∆T )

voutk = vout(k∆T )

vdk = vd(k∆T )

and defining the voltage increments as:

∆vin = vink
− vink−1

∆vout = voutk − voutk−1

∆vd = vdk − vdk−1

where ∆vin is notice and ∆vout and ∆vd are unknown. All the current are considered
constant during each time step, so starting from the equation 3.16:

idk = irk + ick + ilk (3.29)
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The left hand side can be written as:

idk = Is

(
e

vdk−1
+∆vd

ηVt − 1

)
≃ Is

[
e

vdk−1

ηVt

(
1 +

∆vd
ηVt

)
− 1

]
The right hand side becomes:

irk =
vantk−1

R
+

∆vin −∆vout −∆vd
R

ick =
C

∆T
(∆vin −∆vout −∆vd)

ilk = ilk−1

where vantk−1
is:

vantk−1
= vink−1

− vdk−1
− voutk−1

The expression 3.29 can be rewritten as:

Is

[
e

vdk−1

ηVt

(
1 +

∆vd
ηVt

)
− 1

]
=

vantk−1

R
+

(
1

R
+

C

∆T

)
(∆vin −∆vout −∆vd) + ilk−1

This result can be rewritten in order to get the increment ∆vd:

∆vd =

vantk−1

R
+
(
1
R
+ C

∆T

)
(∆vin −∆vout) + ilk−1

− Is

(
e

vdk−1

ηVt − 1

)
1
R
+ C

∆T
+ Is

ηVt
e

vdk−1

ηVt

(3.30)

Calling:

Y =
1

R
+

C

∆T

Yd =
1

R
+

C

∆T
+

Is
ηVt

e

vdk−1

ηVt

idk−1
= Is

(
e

vdk−1

ηVt − 1

)
it is possible to rewrite the expression 3.30 in the more compact form:

∆vd =
1

Yd

[vantk−1

R
+ Y (∆vin −∆vout) + ilk−1

− idk−1

]
(3.31)

The next step consists to consider the output voltage variation variation:

vantk−1

R
+ Y (∆vin −∆vout −∆vd) + ilk−1

= Cout
∆vout
∆T
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3.2 – Complete circuit analysis

By replacing the result 3.31 in this expression it is possible to get:

∆vout =

(vantk−1

R
+ Y∆vin + ilk−1

)(
1− Y

Yd

)
− idk−1

Y
Yd

Cout

∆T
+ Y

(
1− Y

Yd

) (3.32)

Then, once both increments are evaluated, it is possible to compute the new
value of vantk :

vantk = vink
− voutk − vdk = vantk−1

+∆vin −∆vout −∆vd

so it is possible to evaluate also the new value of ilk :

ilk = ilk−1
+

∆T

L
vantk (3.33)

So the resulting system is the following:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆vin = vink
− vink−1

∆vout =

(vantk−1

R
+ Y∆vin + ilk−1

)(
1− Y

Yd

)
− idk−1

Y
Yd

Cout

∆T
+ Y

(
1− Y

Yd

)
∆vd =

1

Yd

[vantk−1

R
+ Y (∆vin −∆vout) + ilk−1

− idk−1

]
voutk = voutk−1

+∆vout

vdk = vdk−1
+∆vd

vantk = vink
− voutk − vdk

ilk = ilk−1
+

∆T

L
vantk

(3.34)

Again a Matlab code can be implemented to solve the system 3.34 (appendix
A.4:
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3 – Theoretical analysis

Pseudocode for Shockley diode (complete)
1: set initial condition: voutk−1

= 0
vck−1

= 0
ilk−1

= 0
vdk−1

= 0
2: start a cycle: for k = 0 to kmax do:
3: evaluate the increments: ∆vout = f(vink

, voutk−1
, vdk−1

)
∆vd = f(vink

, voutk−1
, vdk−1

,∆vout)
4: evaluate the nonlinear variables: voutk = voutk−1

+∆vout
vdk = vdk−1

+∆vd
vantk = vink

− voutk − vdk
5: evaluate the inductor current: ilk = f(ilk−1

, vantk)
6: simulation end: end for

3.3 Transient simulations

All the algorithms were implemented on Matlab and tested ford for many impedances.
An output capacitor not so big is used to get fast simulations. All the settings are
reported as following:

❼ single tone input voltage:

vin(t) = V̂in sin(2πft)

with:

– V̂in = 1 V

– f = 868 MHz;

❼ R = 50, 100, 150, 200 Ω

❼ Cout = 10 nF

❼ PWL diode with:

– Von = 0.25 V

– Ron = 6 Ω

– Roff = 1 MΩ

❼ exponential diode with:

– T = 27 ◦C → Vt = 25.8 mV;

– Is = 80 nA;
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3.3 – Transient simulations

– η = 1.08.

The patches used are reported in table 3.1:

Squared patch (W=L)
Design R Rres Lres Cres

[Ω] [Ω] [pH] [pF]
50 50.152 245.153 137.140
100 100.341 490.152 68.592
150 150.719 736.685 45.637
200 200.010 980.075 34.304

Table 3.1: Patches parameters

Successively a simulator for analog circuit was used as confront for the pro-
posed algorithms. Many simulators are available. In this case the choice drops on
LTspice,va high performance simulation software produced by Linear Technology
based on a SPICE (Simulation Program with Integrated Circuit Emphasis) simu-
lation engine. This software provides useful and free design simulation tools for
analog circuit as well as device models (appendix B.1 and B.2). In figure are re-
ported the circuit schematics:

SINE(0 1 868meg)
V_in

R

50 Cout

10n

D

ExpDiode

.tran 0 100u 0 0.001n

.model ExpDiode D(Is=5e-8 N=1.08 XTI=0 EG=0)

.model PWLDiode D(Ron=6 Roff=1meg Vfwd=0.25 Vrev=20)

(a) Simplified circuit

L_res

245.153p

Cout

10nSINE(0 1 868meg 0 0 0)
V_in C_res

137.140p

R_res

50

D1

ExpDiode

.model PWLDiode D(Ron=6 Roff=1meg Vfwd=0.25 Vrev=1000)

.tran 0 100u 0 0.01n

.model ExpDiode D(Is=5e-8 N=1.08 XTI=0 EG=0)

Abstoll = 1e-010 , Reltoll = 1e-008, Rser = 0 (impostazioni induttore)

(b) Complete circuit

Figure 3.10: LTspice schematic

The simulator allows to choose as integration methods to solve the net equations
the modified trapezoidal and the Gear methods. Both of them were used with an
absolute tolerance of 10−10 and a relative tolerance of 10−8.
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3 – Theoretical analysis

3.3.1 PWL diode

In the following section are reported the transients for 50 ➭s of both circuit versions
evaluated by Matlab. The only uncertainty introduced is due to the precision by
which the software evaluates numerically the commutation time from a phase to
the another. It is possible to estimate the stead-state voltage:

vout∞ ≃ V̂in − Von = 0.75 V

Simplified circuit

As expected, the higher is the resistance value, the slower will be the capacitor
charge.

Figure 3.11: Transient simulation for PWL diode
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3.3 – Transient simulations

Figure 3.12: Trnsient in detail for the first 20 ns

In figure ?? it is possible to observe the difference in the charge from phase-ON
to phase-OFF in the case of R = 50 Ω:

Figure 3.13: Difference between phase-ON and phase-OFF
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Complete circuit

Also in this case the bigger is the resistance, the slower is the transient. In figure
3.15 is shown the behaviour during the first time of the transient.

Figure 3.14: Simulation comparison

Figure 3.15: Simulation comparison in detail for the first 20 ns
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3.3 – Transient simulations

An interesting observation: fixing the resistance value and the input voltage, the
circuit with the resonator shows the faster transient (figure 3.16 and 3.17).

Figure 3.16: Responce differences - R = 50 Ω

Figure 3.17: Responce differences - R = 200 Ω

49
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3.3.2 Shockley diode

In the following section are reported the transient for 100 ➭s of both circuit ver-
sion evaluated with Matlab, using Npoints = 1000. The results are successively
confronted to LTspice simulations.

Simplified circuit

As expected, the bigger is the resistance, the slower is the voltage transient. More-
over, it is interesting to notice that the transient is slower than the case of a piece-
wise linear diode by using the same parameters and the same simulation time, but
it allows to reach a higher voltage.

Figure 3.18: Transient simulation for exponential diode
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3.3 – Transient simulations

Figure 3.19: Transient simulation for exponential diode in detail for the first 20
ns

Similarly to the piece-wise linear diode, the transient shows some steps due to
the non linearity introduced by the diode, as can be seen in figure 3.20:

Figure 3.20: Non-linearity effect on the output voltage introduced by the diode

A comment on the number of points for the simulation (Npoints) must be done:
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choosing Npoints small implies a ∆T not so small, and so the approximation will
be inaccurate, on the contrary a Npoints too big implies a very small ∆T and so
the number of steps required to get the solution increases, so the truncation error
increases and the solution can be perturbed. In figure 3.21 is shown the variation
on the output voltage due to the different time step used. For more than 1000
points the results are almost the same. For this reason this value was used to get
a trade-off between precision an simulation time.

Figure 3.21: Variable number of points

In figure 3.22 is shown a comparison between Matlab and LTspice in which ϵ1
(red curve) is the difference with respect the modified trapezoidal method, while ϵ2
with respect the Gear method (blue curve). The maximum errors are reported in
table 3.2:

R
ϵ1 ϵ2

[mV] [mV]
50 Ω 1.031 2.642
100 Ω 1.193 2.577
150 Ω 1.319 2.616
200 Ω 1.432 2.757

Table 3.2: Difference simplified circuit
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3.3 – Transient simulations

(a) R = 50 Ω (b) R = 100 Ω

(c) R = 150 Ω (d) R = 200 Ω

Figure 3.22: Differences between Matlab and LTspice

It is possible to notice that there is a consistent difference between the results
obtained by LTspice depending on the integration method used but this problem
is mainly due to the absolute and relative tolerances of the simulation. Increasing
the resolution reduces this problem but the simulation takes a longer time. The
situation is shown in figure 3.23, taking as example the case R = 50 Ω:
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3 – Theoretical analysis

(a) Relative tolerance of 10−8

(b) Relative tolerance of 10−10

(c) Relative tolerance of 10−12

Figure 3.23: Relative tolerance impact
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3.3 – Transient simulations

RToll
ϵ1 ϵ2

[mV] [mV]
10−8 1.031 2.642
10−10 0.105 0.142
10−12 0.023 0.028

Table 3.3: Difference simplified circuit

Complete circuit

Again the higher is the resistance, the slower is the voltage transient. Moreover it
is possible to notice that the resistance contribution can be seen in the first part of
the transient and then all the curves assumes almost the same slope.

Figure 3.24: Simulation comparison - Matlab

In figure 3.25 it is possible to see more in detail the transient for the first 20 ns.
Two followings steps int this case can have a decreasing amplitude due to the
oscillation in the voltage over the resonator. This effect is well evident at the
beginning of the transient and then it reduces.
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Figure 3.25: Simulation comparison in detail for the first 20 ns

In figure 3.26 are reported the difference between Matlab and LTspice simula-
tions in which ϵ1 (red curve) is the difference with respect the modified trapezoidal
method, while ϵ2 with respect the Gear method (blue curve). From the figure it
is possible to notice that the maximum difference stands at the beginning of the
transient and then it assumes a value almost constant. The maximum differences
are reported in the table 3.4:

Patch
ϵ1 ϵ2

[➭V] [➭V]
50 Ω 53.117 92.513
100 Ω 53.437 94.491
150 Ω 53.381 94.779
200 Ω 53.730 94.998

Table 3.4: Difference complete circuit
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3.3 – Transient simulations

(a) 50 Ω patch (b) 100 Ω patch

(c) 150 Ω patch (d) 200 Ω patch

Figure 3.26: Differences between Matlab and LTspice

There are still small differences on the results obtained by LTspice, depending
on the integration method evaluated by Matlab.
Also in this case, fixing the resistance value, the voltage shows a faster transient
with a resonator instead of a resistance only, as can be seen in figure 3.27 and 3.28.
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Figure 3.27: Responce differences - R = 50 Ω

Figure 3.28: Responce differences - R = 200 Ω

3.3.3 Q variation

The quality factor defines the qualitative behaviour of a simple damped oscillators.
Phisycally speaking it is proportional to the total energy stored divided by the
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3.3 – Transient simulations

energy lost in a single cycle:

Q = 2π · Energy stored

Energy dissipated per cycle
(3.35)

In the case of a parallel RLC resonator it can be expressed as:

Q = R ·
√

C

L
=

R

ω0L
= ω0RC (3.36)

The quality factors of the used patches are reported in table 3.5. It is important
to underline that they are evaluated considering the resonator only and not the rest
of the circuit.

Design R
Q

[Ω]
50 37.5103
100 37.5361
150 37.5134
200 37.4191

Table 3.5: Patches quality factor

To better understand how the quality factor impact on the charge a resistance
value of 200 Ω was fixed and then the quality factor swept from 10 to 50 (varying
L and C), accordingly on the order of magnitude of the results. It points out that
the higher is the quality factor, the faster is the charge. The main difference can
be noticed mainly during the step of the first period (figure 3.29). The limit case
of a resistance only shows the slowest charge.
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3 – Theoretical analysis

Figure 3.29: Quality factor impact on vout(t) (R = 200 Ω)

An interesting fact is that except for the first steps, the all the responses with a
resonator have almost the same time constant and they increase in the same way,
while the case with the resistance only is quite slower, as can be seen better in
figure 3.30.

Figure 3.30: Transient for the first 100 ns (R = 200 Ω)
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3.4 – Steady state conditions

3.4 Steady state conditions

In the case of the diode with a Shockley characteristic it is possible to estimate
the output voltage in steady state starting by making some simplifications starting
from the system 3.15:

1. at the end of the transient vout(t) can be considered almost constant, so: In
this way the system can be simplified as:

voutk ≃ voutk−1
= v∞out ∀ k

2. since vout(t) is almost constant the current id(t) becomes negligible;

3. starting from the previous assumptions it is possible to simplify the expression
of vdk :

vdk ≃ vink
− v∞out ⇒ vdk−1

= vink−1
− v∞out

4. v∞out becomes comparable to the amplitude V̂in so vdk < 0 for most of the period
T and during the positive time it has a negligible amplitude. In this way it is
possible to simplify all the exponential terms:

e
vdk−1
ηVt ≃ 0

Consequently it is possible to rewrite the expression 3.14 as:

∆vout ≃

[(
vink

− vink−1

ηVt

+ 1

)
e
vink−1

−v∞out
ηVt − 1

]
Is∆T

Cout

(3.37)

Considering that during each period the initial and the final value assumed by
voutk are equal means that:

Np∑
i=1

∆voutk = 0

So the expression 3.37 can be rewritten as:

Is∆T

Cout

·
Np∑
k=1

[(
vink

− vini−1

ηVt

+ 1

)
e
vink−1

−v∞out
ηVt − 1

]
= 0

This step means that during each period the voltage over the capacitor increases
due to the input signal, but this increment is equal and opposite to the discharge
due to the reverse current saturation Is of the diode. In the transient the charging
phase is higher and so the voltage increases. Simplifying this result:

e
−
v∞out
ηVt

Np∑
k=1

(
vink

− vini−1

ηVt

+ 1

)
e
vini−1

ηVt = Np
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By solving this equation it is possible to get the following result:

v∞out = ηVt ln

[
1

Np

Np∑
k=1

(
vink

− vini−1

ηVt

+ 1

)
e
vini−1

ηVt

]
(3.38)

It immediately points out that, at first approximation, the voltage in steady state
v∞out depends just on the diode and the amplitude on the input signal. This result is
an upper limit of the maximum voltage that can be reached. The real value will be
less because of the strong approximation used. In figure 3.31 is reported the value
of v∞out evaluated by Matlab starting from the result 3.38 for a variable number of
points Np:

Figure 3.31: Relation between v∞out and Np - Case V̂in = 1 V

It points out that forNp > 1000 the value of v∞out is almost constant. In particular
for, taking as reference Np = 1000:

v∞out = 924.476 mV

In order to check this result, the algorithm previously used has been tested for 5
periods for R = 50 Ω and by using as initial conditions:

voutk−1
= v∞out

vdk−1
= −v∞out

The result is shown if figure 3.32:
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3.4 – Steady state conditions

Figure 3.32: Steady state results obtained with Matlab

In order to evaluate the correctness of the results, the difference between the
initial value, that is v∞out, and the final value at each period was computed. As
expected this error is different from zero and it has a monotonic behaviour (figure
3.33). This means that the voltage considered is too high and so in the output
capacitor the discharging phase prevails with respect the charging one. On the
contrary, by using a smaller v∞out, this error increases since the capacitor charges.

Figure 3.33: v∞out − vout(N · T )

After many iterations it points out that the correct value of v∞out that gives a null
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error is:

v∞out = 924.441 mV

In the table 3.6 are reported the different values of the steady state voltage in
function of the resistance. As expected the higher is the resistance, the smaller is
the output voltage since less current can pass.

R v∞out
[Ω] [mV]
50 924.441
100 924.417
150 924.393
200 924.369

Table 3.6: v∞out for different values of R

making similar approximations also in the circuit completed leads to the same
result.

3.4.1 AWR comparison

LTspice performs time domain simulations and it is not able to detect the cir-
cuit steady state conditions. To this purpose a software that perform a frequency
domain simulation for the circuit analysis must be used. A good choice is AWR
Microwave Office, a software that can be used to create integrated systems, RF
or analog circuits. Microwave office is the environment used to design circuits
composed of schematics and electromagnetic structures taken from a database. A
feature of this software particularly useful for this kind of simulation is the possi-
bility to simulate the circuit by using as simulation engine the APLAC Harmonic
Balance, that is a frequency domain method used to detect the steady state condi-
tions. The circuit is reported in figure 3.34:
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3.4 – Steady state conditions

Figure 3.34: Circuit with resistance sweep

For the simulation the following settings has been used:

❼ Tone 1 Harmonics: 100;

❼ TAUDC : 0;

❼ HB Matrix Solver: Sparse;

❼ Integration Method: Euler;

❼ Small Resistor Limit R0 : 0;

❼ Relative Error: 10−8;

❼ Absolute Error: 10−10;

❼ Maximum Relative Truncation Error: 10−8.

For the simulations the same resistances already considered was used plus R =
0 Ω, that simulates a short circuit. The results are reported in figure 3.35:
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Figure 3.35: AWR results

In the table 3.7 are reported the voltage estimated by Matlab and AWR, the
absolute error ϵabs and the relative error ϵrel (in percentage) defined as:

ϵabs = |v∞outMatlab
− v∞outAWR

|

ϵrel =
|v∞outMatlab

− v∞outAWR
|

|v∞outMatlab
|

· 100

It is possible to notice that the absolute error is almost constant (≃ 13 ➭V) for
each resistance. So the solution is almost the same but shifted and this difference
may be due to the numerical methods used by AWR, different model, particular
settings, finite precision of computation and so on.

R v∞outMatlab
v∞outAWR

ϵabs ϵrel
[Ω] [mV] [mV] [➭V] [%]
50 924.441 924.427 13.767 1.489229 · 10−3

100 924.417 924.403 13.629 1.473991 · 10−3

150 924.393 924.379 13.473 1.457495 · 10−3

200 924.369 924.356 13.309 1.439745 · 10−3

Table 3.7: Comparison between Matlab and AWR

In conclusion, the value of v∞out obtained with Matlab script is used as reference
for the following discussions.
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3.5 Analytic approximation

Another step consists to find an approximate analytic solution for the exponential
case in order to roughly estimate the charge time required to reach percentage of
v∞out. By looking at the simulations, it is possible to notice that the contribution
of the resistance in the transients act just at the beginning, while, for long times,
in which vout(t) increases very slow, and all the behaviours converge on the same
curve, independently on the value of R. This means that for very long time the
resistance acts a negligible effect. So the following hypotheses are valid in the time
discrete domain:

❼ R → 0 ⇒ vdk ≃ vink
− voutk

❼ ∆vout → 0 ⇒ voutk ≃ voutk−1
= vout

So starting from the discrete result 3.14, by using the previous assumption and
neglecting the denominator, it is possible to get the following result:

∆voutk =

[(
vink

− vink−1

ηVt

+ 1

)
e
vink−1

−vout

ηVt − 1

]
Is∆T

Cout

The next step consist to consider the sum over a period in order to simplify the
term that depends on the on the index k:

Np∑
k=1

∆voutk =
Is∆T

Cout

·
Np∑
k=1

[(
vink

− vink−1

ηVt

+ 1

)
e
vink−1

−vout

ηVt − 1

]

Assuming ∆voutk ≃ const → ∆vout this expression can be simplified as:

∆vout =
Is∆T

Cout

·

[
e
−vout

ηVt
1

Np

Np∑
k=1

(
vink

− vink−1

ηVt

+ 1

)
e
vink−1

ηVt − 1

]
(3.39)

considering that:

1

Np

Np∑
k=1

(
vink

− vink−1

ηVt

+ 1

)
e
vink−1

ηVt = e
v∞out
ηVt

so the result 3.39 can be rewritten as:

∆vout =
Is∆T

Cout

·
(
e
v∞out−vout

ηVt − 1

)
(3.40)
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Then, considering a sufficient small time step, both ∆vout and ∆T can be replaced
by infinitesimal increments:

∆T → dt

∆vout → dvout

in this way the result 3.40 becomes a separable variables differential equation:∫
1

e
v∞out−vout

ηVt − 1

dvout =

∫
Is
Cout

dt (3.41)

By solving this differential equation:

vout(t) = v∞out + ηVt · ln
[
1− e

− Is
ηVtC

t · A
]

(3.42)

The particular solution of this differential equation may be found by imposing an
initial condition: {

vout(t) = v∞out + ηVt · ln
[
1− e

− Is
ηVtC

t · A
]

vout(t0) = vout0
(3.43)

By fixing vout(0) = 0 it is possible to solve the Cauchy problem:

vout(0) = v∞out + ηVt · ln [1− A] = 0 ⇒ A = 1− e
−vC∞

ηVt

So the complete solution becomes:

vout(t) = v∞out + ηVt · ln
[
1− e

− Is
ηVtC

t ·
(
1− e

−
v∞out
ηVt

)]
(3.44)

From this result it is possible to estimate the time tp required to reach a per-
centage p of v∞out:

vout(tp) = p · v∞out = v∞out + ηVt ln

[
1− e

− Is
ηVtCout

·tp ·
(
1− e

−
v∞out
ηVt

)]
By solving this equation:

tp =
ηVtCout

Is
· ln

⎡⎣ 1− e
−
v∞out
ηVt

1− e
−
(1−p)·v∞out

ηVt

⎤⎦ (3.45)

In figure 3.36 it shown a comparison between the analytic solution and the
discrete solution of the simplified circuit for 0.5 ms:
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3.5 – Analytic approximation

Figure 3.36: Comparison between Euler solution and Analytic solution

It is important to notice that this result is valid just for a time sufficiently high.
At the beginning it well evident the difference due to the resistance.

From this result 2 considerations can be done:

❼ fixing the value of Cout, tp depends on the value of vout∞ so on the amplitude

of the input voltage V̂in. This relation is shown in figure 3.37:
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Figure 3.37: tp for different values of V̂in (Cout = 10 nF)

❼ with a fixed value of V̂in, tp depends linearly on the value of Cout (figure 3.38).

Figure 3.38: tp for different values of Cout (V̂in = 1 V)

This result is more accurate for low values of the input voltage, since the ap-
proximation at the denominator is valid in that cases.
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Chapter 4

Measurements

Two circuit were realized and tested together with an energy harvesting circuit
already present on the market in the anechoic chamber of the Poitecnico di Torino.
The anechoic chamber chamber is a laboratory environment that prevent the reflec-
tion. In this way it allows to recreate in a closed space a simulated open space of
infinite size useful to perform high precision measurements. In figure 4.1 is reported
the schematic used for the measurement:

RF
generator

Meas.
system

r
TX antenna

Circuit to test

Figure 4.1: Measurement schematic

The main components are:

❼ the RF generator, a 83650L Synthesized Swept-CW Generator of HP (figure
4.3a);
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❼ the measurements system, that consists in a computer connected throw a GPIB
line to a digital multimeter, the Agilent 34401A (figure 4.3b). In this way the
measurements could be controlled directly by the computer;

❼ the transmitting antenna, a horn antenna (figure 4.3c);

❼ the circuit to test, the powercast in this case (figure 4.3d).

The complete setup is reported in figure 4.2:

Figure 4.2: Measurement setup
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(a) RF generator

(b) Measurement system

(c) Transmitting antenna (d) Powercast
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4.0.1 Powercast P2110B

The Lifetime Power➤ Energy Harvesting Development Kit for Wireless Sensors
is a demonstrative platform for creating battery-free wireless sensor applications
powered by RF energy (radio waves). It is designed and configured for extremely
low power operation optimized for a RF energy at 915 MHz.

Figure 4.4: Lifetime Power➤ Energy Harvesting Development Kit

The kit (figure 4.4) includes an RF transmitter, RF energy harvesting receiver
boards, two and antennas (a dipole and a patch of 50 Ω), a wireless sensor boards,
a PIC➤ MCU-based development board and radio and a programming tool. Just
the receiver board was used (figure 4.5).
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Figure 4.5: P2110B receiver

The receiver features are the following:

❼ receives power and data;

❼ converts RF to DC power and stores it in a capacitor;

❼ Charge / Power management unit;

❼ I/O interface.

The schematic is reported in figure 4.6.

Figure 4.6: Powercast functional block diagram
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The circuit offers the possibility to choose between 3 different capacitors by
changing the position of a pin:

❼ C3 = 1 mF

❼ C4 = 1 F (supercap - user selectable)

❼ C5 = 50 mF

When the capacitor voltage VCAP reaches a threshold, the the P2110B boosts the
voltage to the set output voltage level and enables the voltage output (VOUT ). In
this phase the VCAP decreases, and when it declines to the low voltage threshold
the voltage output is turned off and so the capacitor charges again. The situation
is explained is figure 4.7:

Figure 4.7: Powercast timing diagram

The datasheet states that VCAP can reach values from 1.02 V to 1.25 V with
a maximum input power of 23 dBm. The attention is focused on the time tcharge
required to charge the capacitor up to VMAX starting from 0 V, using both the
antennas present in the kit.

4.0.2 Results

For the measurements the transmitting antenna was used to radiate a signal of
20 dBm with a frequency of 915 MHz to the powercast, placed a at a distance
r = 1.5 m from it. The measurement system was set to measure the voltage from
the proper terminal of the powercast every second. In the table 4.1 are reported
the charge time for the different capacitance values, using the both antennas of the
kit.
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Capacitance Patch Dipole
C = 1 mF 9 s 31 s
C = 50 mF 5 min 15 min
C = 1 F 140 min 458 min

Table 4.1: Charge time

It was not possible to measure the steady state output voltage rectifier since the
circuit stops the charge when the capacitor voltage reaches the threshold. Using
the patch is is possible to reach the maximum voltage approximately in a third of
the time it would take using the dipole, for all the output capacitor. This result
can be expected since the patch has an higher gain and so a higher input voltage.
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(a) Case C = 1 mF

(b) Case C = 50 mF

(c) Case C = 1 F
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4.1 – Circuit implementation

4.1 Circuit implementation

A half-wave rectifier and a single stage voltage multiplier were realized in the ISMB.
The schematics with all the components are reported in figure 4.9 and 4.10:

SMA

HSMS286C

15 pF

100 pF

2.2 nF

vout

Figure 4.9: Half-wave rectifier schematic

SMA

100 pF HSMS286C

100 pF

vout

HSMS286C

Figure 4.10: Single stage voltage multiplier schematic

The presence of 3 capacitors with different capacities in the first circuit is due to
the fact that each capacitor must deal with different frequency components. The
final results are shown in figure 4.11:
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(a) Half wave rectifier (b) Single stage voltage multiplier

Figure 4.11: Circuit prototypes

Both circuits were tested with and without load, using a sinusoidal input voltage
with an amplitude of 0.5 V and a frequency of 10 MHz (approximately two decades
below the interested frequencies). All the measurements are reported in table 4.2:

Circuit Load
vout iout
[mV] [➭A]

Half wave rectifier
R = 12 Ω 270 22
No load 450 0

Single stage voltage mult.
R = 12 Ω 500 41.6
No load 930 0

Table 4.2: Prototypes meas

Successively they were connected the antennas of the powercast kit and placed
inside the anechoic chamber to measure the output voltage in no load conditions
placing the circuit at different distances from the transmitting antenna, that was
used to radiate in the same conditions as the powercast (figure 4.12).
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Figure 4.12: Half-wave rectifier connected to the patch antenna

The results are reported in table 4.3 and 4.4 and in figure 4.13b:

Patch Dipole
Distance vout vout

[m] [mV] [mV]
0.5 524.617 322.721
1 211.689 135.198
1.5 63.325 15.389
2 42.034 8.089

Table 4.3: vout measurements - half-wave rectifier

Patch Dipole
Distance vout vout

[m] [mV] [mV]
0.5 221.054 117.511
1 52.270 6.401
1.5 7.332 0.144
2 2.153 0.102

Table 4.4: vout measurements - single stage voltage multiplier
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As expected, the half wave rectifier shows better performances with respect the
single stage voltage multiplier. This can be imputed a lower reflected power and
less voltage drop on the circuit components. The patch allows again the get a
higher output voltage.
The datasheet of the powercast states that the patch has s resistance of 50 Ω.
Knowing this value and using all the hypotheses of chapter 2.1.1 it was possible to
estimate the maximum input voltage and so the steady state output voltage from
the rectifier, using the expression 3.38. In figure 4.13a it is possible to confront the
difference between the theoretical output voltage and the measured one. The real
value is below the theoretical one due to losses in the circuit and reflections. This
is more evident for higher distances.

(a) Comparison between circuits

(b) Comparison between circuits

Successively the half-wave rectifier was connected to a signal generator and sup-
plied with a sinusoidal input signal with an amplitude of 1 V and a frequency of
868 MHz. In this condition an output voltage of 0.8765 V mas measured from the
output terminals,that is below the theoretical 0.924 V derived in similar conditions
in chapter . Then the circuit was used to charge a capacitor of 470 ➭F.
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Figure 4.14: Measurements

In order to reach the 0.871 V (≃ 99% of the charge) it takes an hour. The
transient is shown in figure 4.15:

Figure 4.15: Output voltage transient
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Chapter 5

Conclusions and perspectives

The purpose of this thesis was to understand the impact of the antenna impedance
on the charge of the output capacitor of a rectenna.
In chapter 2.1 it was estimated an equivalent circuit of the patch antenna. It
is discovered that the maximum input voltage depends on the distance from the
source and the radiation resistance.
From the simulations of chapter 3.3 it can be notice that:

❼ the transient in the circuit with a resonator;

❼ considering many input impedances with the same quality factor, the charge
is faster when the resistance is low;

❼ considering the same input resistance, the higher is the antenna quality factor
the faster is the charge. The limit case of a resistance only shows the slowest
charge;

❼ the steady state conditions depends mainly on the diode.

In general an antenna with an input impedance is a better choice since it allows to
get a higher steady state voltage at the expense of greater charge time.
From the measurements of chapter 4.1 the following conclusions can be done:

❼ the half-wave rectifier shows a higher output voltage than the single stage volt-
age multiplier using both the patch and the dipole. This result is in agreement
with the discussion of chapter 2.2;

❼ connecting the patch to the half-wave rectifier, the real output voltage is lower
than the theoretical expectations since the model does not consider any losses.
This is more evident for higher distances.

From these preliminary results the radiation resistance is able to affects the
output voltage. Future work will focus on:
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❼ a more complex model capable to take into account all the parameters present
in the circuit, like the diode and the capacitor;

❼ the impact of a matching circuit on the output voltage;

❼ more analysis using different kind of antennas;

❼ use this rectenna to charge a big capacitor or other circuits in a energy har-
vesting environment.
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Appendix A

Matlab Codes

A.1 Simplified circuit

Listing A.1: Algorithm 1

1 clear all

2 close all

3 clc

4 %

5 % Inputs

6 Vin = 1; % [V] - input voltage amplitude

7 R = 50; % [ohm] - antenna resistance

8 Cout = 10e-9; % [F] - output capacitor

9 f = 868e6; % [Hz] - input frequency

10 T_sim = 1e-6; % [s] - simulation time

11 Ron = 6; % [ohm] - diode Phase -ON resistance

12 Roff = 1e6; % [ohm] - diode Phase -OFF resistance

13 Von = 0.26; % [V] - Forward threshold voltage

14 %

15 % Initial settings

16 omega = 2*pi*f;

17 T = 1/f;

18 DT = T/100;

19 tau_on = Cout*(Ron+R);

20 tau_off = Cout*(Roff+R);

21 vout = [];

22 t = [];

23 t_prev = 0;

24 t_next = 0;

25 %
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26 % Initial conditions

27 vout_0 = 0;

28 %

29 V_i = @(t) Vin*sin(omega*t);

30 tSimul = tic;

31 %

32 % Main code

33 while(t_next <T_sim)

34 %

35 % OFF -Phase

36 t_prev = t_next;

37 Vout = @(t) vout_0*exp(( t_prev - t)/tau_off) + Vin

/( tau_off *(omega^2 + 1/ tau_off ^2))*(exp(( t_prev -

t)/tau_off)*(omega*cos(omega*t_prev) + sin(omega*

t_prev)/tau_off) - (omega*cos(omega*t) + sin(omega

*t)/tau_off));

38 V_d = @(t) (V_i(t) - Vout(t))*Roff/(R+Roff) - Von

;

39 %

40 t_inf = t_prev + DT;

41 cond = 1;

42 t_sup = t_inf;

43 while cond >0

44 t_sup = t_sup + DT;

45 cond = V_d(t_sup)*V_d(t_inf);

46 end

47 t_next = fzero(V_d ,[t_inf t_sup ]);

48 vout_0 = Vout(t_next);

49 t_int = linspace(t_prev ,t_next ,20);

50 for ind1 = 1: length(t_int)

51 v(ind1) = Vout(t_int(ind1));

52 end

53 vout = [vout v];

54 t = [t t_int ];

55 %

56 % ON-Phase

57 t_prev = t_next;

58 Vout = @(t) vout_0*exp(( t_prev - t)/tau_on) + Von

*(exp(( t_prev - t)/tau_on) - 1) + Vin/( tau_on *(

omega^2 + 1/ tau_on ^2))*(exp(( t_prev - t)/tau_on)*(

omega*cos(omega*t_prev) + sin(omega*t_prev)/tau_on

) - (omega*cos(omega*t) + sin(omega*t)/tau_on));

88



A.1 – Simplified circuit

59 V_d = @(t) (V_i(t) - Vout(t)- Von)*Ron/(R+Ron);

60 %

61 t_inf = t_prev + DT;

62 cond = 1;

63 t_sup = t_inf;

64 while cond >0

65 t_sup = t_sup + DT;

66 cond = V_d(t_sup)*V_d(t_inf);

67 end

68 t_next = fzero(V_d ,[t_inf t_sup ]);

69 vout_0 = Vout(t_next);

70 t_int = linspace(t_prev ,t_next ,20);

71 for ind1 = 1: length(t_int)

72 v(ind1) = Vout(t_int(ind1));

73 end

74 vout = [vout v];

75 t = [t t_int ];

76 end

77 %

78 tSimulTot = toc(tSimul);

79 %

80 % Picture

81 figure , hold on

82 plot(t,vout);

83 xlabel(✬t [s]✬);

84 ylabel(✬v_{out}(t) [V]✬);

85 grid on

Listing A.2: Algorithm 2

1 clear all

2 close all

3 clc

4 %

5 % Constants

6 kb = 1.38064852e-23; % [m^2 kg s^(-2) K^(-1)]

7 q = 1.60217662e-19; % [C]

8 %

9 % Inputs

10 v_i = 1; % [V] - input voltage amplitude

11 R = 50; % [ohm] - antenna resistance

12 Cout = 10e-9; % [F] - output capacitor

13 f = 868e6; % [Hz] - input frequency
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14 n = 1.08; % Diode emission coefficient

15 T_rel = 27; % [Celsius] - temperature

16 Is = 5e-8; % [A] - reverse saturation current

17 T_sim = 1e-6; % [s] - simulation time

18 Npts = 1000; % Number of points per period

19 %

20 % Initial settings

21 T_abs = 273.15 + T_rel;

22 vt = kb*T_abs/q;

23 nvt = n*vt;

24 T = 1/f;

25 omega = 2*pi*f;

26 N_periods = floor(T_sim/T);

27 t = linspace(0,N_periods ,N_periods)*T;

28 DT = T/Npts;

29 k1 = (Is*DT/Cout);

30 k2 = (Is*R/nvt);

31 k3 = DT/(R*Cout);

32 k4 = R*Is;

33 %

34 % Initial conditions

35 vout = zeros(1, N_periods);

36 vd_new = 0;

37 vout_new = 0;

38 %

39 % Temporal variables

40 vd_old = 0;

41 vout_old = 0;

42 %

43 tSimul = tic;

44 %

45 % Main code

46 for ind2 = 2: N_periods

47 for ind1 = 1 : Npts

48 k5 = exp(vd_old/nvt);

49 vin = v_i*sin(omega*DT*ind1);

50 %

51 Dvout = k1*(((vin -vout_old -vd_old)/nvt +1)*k5 -1)

/(1+k2*k5*(1+k3));

52 Dvd = (vin - vd_old - vout_old - Dvout -k4*(k5

-1))/(1 + k2*k5);

53 vout_new = vout_old + Dvout;
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54 vd_new = vd_old + Dvd;

55 %

56 vout_old = vout_new;

57 vd_old = vd_new;

58 end

59 vout(ind2) = vout_new;

60 end

61 %

62 tSimulTot = toc(tSimul);

63 %

64 % Picture

65 figure , hold on

66 plot(t,vout);

67 xlabel(✬t [s]✬);

68 ylabel(✬v_{out}(t) [V]✬);

69 grid on

A.1.1 Complete circuit

Listing A.3: Algorithm 3

1 clear all

2 close all

3 clc

4 %

5 % Inputs

6 Vin = 1; % [V] - input voltage amplitude

7 R = 50; % [ohm] - patch resistance

8 L = 245.153e-12;% [H] - patch inductance

9 C = 137.140e-12;% [F] - patch capacitance

10 Cout = 10e-9; % [F] - output capacitor

11 f = 868e6; % [Hz] - input frequency

12 T_sim = 10e-9; % [s] - simulation time

13 Ron = 6; % [ohm] - diode Phase -ON resistance

14 Roff = 1e6; % [ohm] - diode Phase -OFF resistance

15 Von = 0.26; % [V] - Forward threshold voltage

16 %

17 % Initial settings

18 omega = 2*pi*f;

19 T = 1/f;

20 DT = T/100;

21 vout = [];
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22 t = [];

23 t_0 = 0;

24 t_1 = 0;

25 %

26 % ON-Phase system

27 A_on = [-1/C*(1/R + 1/Ron) ,-1/(C*Ron) ,-1/C;-1/( Cout*

Ron) ,-1/(Cout*Ron) ,0;1/L 0 0] ;

28 b_on = [1/(C*Ron);1/( Cout*Ron);0];

29 [V_on , S_on] = eig(A_on);

30 s_on = diag(S_on);

31 beta_on = V_on\b_on;

32 %

33 % OFF -Phase system

34 A_off = [-1/C*(1/R + 1/Roff) ,-1/(C*Roff) ,-1/C;-1/( Cout*

Roff) ,-1/(Cout*Roff) ,0;1/L 0 0] ;

35 b_off = [1/(C*Roff);1/( Cout*Roff);0];

36 [V_off , S_off ]=eig(A_off);

37 s_off = diag(S_off);

38 beta_off = V_off\b_off;

39 % Initial conditions

40 vc_0 = 0;

41 vout_0 = 0;

42 il_0 = 0;

43 x0 = [vc_0;vout_0;il_0];

44 %

45 V_i = @(t) Vin*sin(omega*t);

46 tSimul = tic;

47 %

48 % Main code

49 while(t_1 <T_sim)

50 %

51 % OFF -Phase

52 t_0 = t_1;

53 x0 = [vc_0;vout_0;il_0];

54 xi0 = V_off\x0;

55 %

56 xi_1_forced = @(t) Vin*( beta_off (1)/( s_off (1)^2 +

omega ^2))*(( omega*cos(omega*t_0)+ s_off (1)*sin(

omega*t_0))*exp(s_off (1)*(t-t_0)) - omega*cos(

omega*t)- s_off (1)*sin(omega*t));
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57 xi_2_forced = @(t) Vin*( beta_off (2)/( s_off (2)^2 +

omega ^2))*(( omega*cos(omega*t_0)+ s_off (2)*sin(

omega*t_0))*exp(s_off (2)*(t-t_0)) - omega*cos(

omega*t)- s_off (2)*sin(omega*t));

58 xi_3_forced = @(t) Vin*( beta_off (3)/( s_off (3)^2 +

omega ^2))*(( omega*cos(omega*t_0)+ s_off (3)*sin(

omega*t_0))*exp(s_off (3)*(t-t_0)) - omega*cos(

omega*t)- s_off (3)*sin(omega*t));

59 %

60 xi_1_homo = @(t)(xi0 (1))*exp(s_off (1)*(t-t_0));

61 xi_2_homo = @(t)(xi0 (2))*exp(s_off (2)*(t-t_0));

62 xi_3_homo = @(t)(xi0 (3))*exp(s_off (3)*(t-t_0));

63 %

64 xi_1 = @(t) xi_1_forced(t) + xi_1_homo(t);

65 xi_2 = @(t) xi_2_forced(t) + xi_2_homo(t);

66 xi_3 = @(t) xi_3_forced(t) + xi_3_homo(t);

67 %

68 x1 = @(t) real(V_off (1,1)*xi_1(t) + V_off (1,2)*xi_2

(t) + V_off (1,3)*xi_3(t));

69 x2 = @(t) real(V_off (2,1)*xi_1(t) + V_off (2,2)*xi_2

(t) + V_off (2,3)*xi_3(t));

70 x3 = @(t) real(V_off (3,1)*xi_1(t) + V_off (3,2)*xi_2

(t) + V_off (3,3)*xi_3(t));

71 V_d = @(t) V_i(t) - x1(t) - x2(t) - Von;

72 %

73 t_inf = t_0 + DT;

74 cond = 1;

75 t_sup = t_inf;

76 while cond >0

77 t_sup = t_sup + DT;

78 cond = V_d(t_sup)*V_d(t_inf);

79 end

80 t_1 = fzero(V_d ,[t_inf t_sup ]);

81 vc_0 = x1(t_1);

82 vout_0 = x2(t_1);

83 il_0 = x3(t_1);

84 t_int = linspace(t_0 ,t_1 ,20);

85 for ind1 = 1: length(t_int)

86 v(ind1) = x2(t_int(ind1));

87 end

88 vout = [vout v];

89 t = [t t_int ];
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90 %

91 % ON-Phase

92 t_0 = t_1;

93 x0 = [vc_0;vout_0;il_0];

94 xi0 = V_on\x0;

95 %

96 xi_1_forced = @(t) Vin*( beta_on (1)/(s_on (1)^2 + omega

^2))*(( omega*cos(omega*t_0)+ s_on (1)*sin(omega*t_0

))*exp(s_on (1)*(t-t_0)) - omega*cos(omega*t)- s_on

(1)*sin(omega*t)) + Von*beta_on (1)*(1-exp(s_on (1)

*(t-t_0)))/s_on (1);

97 xi_2_forced = @(t) Vin*( beta_on (2)/(s_on (2)^2 + omega

^2))*(( omega*cos(omega*t_0)+ s_on (2)*sin(omega*t_0

))*exp(s_on (2)*(t-t_0)) - omega*cos(omega*t)- s_on

(2)*sin(omega*t)) + Von*beta_on (2)*(1-exp(s_on (2)

*(t-t_0)))/s_on (2);

98 xi_3_forced = @(t) Vin*( beta_on (3)/(s_on (3)^2 + omega

^2))*(( omega*cos(omega*t_0)+ s_on (3)*sin(omega*t_0

))*exp(s_on (3)*(t-t_0)) - omega*cos(omega*t)- s_on

(3)*sin(omega*t)) + Von*beta_on (3)*(1-exp(s_on (3)

*(t-t_0)))/s_on (3);

99 %

100 xi_1_homo = @(t)(xi0 (1))*exp(s_on (1)*(t-t_0));

101 xi_2_homo = @(t)(xi0 (2))*exp(s_on (2)*(t-t_0));

102 xi_3_homo = @(t)(xi0 (3))*exp(s_on (3)*(t-t_0));

103 %

104 xi_1 = @(t) xi_1_forced(t) + xi_1_homo(t);

105 xi_2 = @(t) xi_2_forced(t) + xi_2_homo(t);

106 xi_3 = @(t) xi_3_forced(t) + xi_3_homo(t);

107 %

108 x1 = @(t) real(V_on (1,1)*xi_1(t) + V_on (1,2)*xi_2(t

) + V_on (1,3)*xi_3(t));

109 x2 = @(t) real(V_on (2,1)*xi_1(t) + V_on (2,2)*xi_2(t

) + V_on (2,3)*xi_3(t));

110 x3 = @(t) real(V_on (3,1)*xi_1(t) + V_on (3,2)*xi_2(t

) + V_on (3,3)*xi_3(t));

111 %

112 V_d = @(t) V_i(t) - x1(t) - x2(t) - Von;

113 t_inf = t_0 + DT;

114 cond = 1;

115 t_sup = t_inf;

116 while cond >0
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117 t_sup = t_sup + DT;

118 cond = V_d(t_sup)*V_d(t_inf);

119 end

120 t_1 = fzero(V_d ,[t_inf t_sup ]);

121 vc_0 = x1(t_1);

122 vout_0 = x2(t_1);

123 il_0 = x3(t_1);

124 t_int = linspace(t_0 ,t_1 ,20);

125 for ind1 = 1: length(t_int)

126 v(ind1) = x2(t_int(ind1));

127 end

128 vout = [vout v];

129 t = [t t_int ];

130 end

131 tSimulTot = toc(tSimul);

132 %

133 % Picture

134 figure , hold on

135 plot(t,vout);

136 xlabel(✬t [s]✬);

137 ylabel(✬v_{out}(t) [V]✬);

138 grid on

Listing A.4: Algorithm 4

1 clear all

2 close all

3 clc

4 %

5 % Constants

6 kb = 1.38064852e-23; % [m^2 kg s^(-2) K^(-1)]

7 q = 1.60217662e-19; % [C]

8 %

9 % Inputs

10 v_i = 1; % [V] - input voltage amplitude

11 R = 50; % [ohm] - patch resistance

12 L = 245.153e-12;% [H] - patch inductance

13 C = 137.140e-12;% [F] - patch capacitance

14 Cout = 10e-9; % [F] - output capacitor

15 f = 868e6; % [Hz] - input frequency

16 n = 1.08; % Diode emission coefficient

17 T_rel = 27; % [Celsius] - temperature

18 Is = 5e-8; % [A] - reverse saturation current
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19 T_sim = 1e-6; % [s] - simulation time

20 Npts = 1000; % Number of points per period

21 %

22 % Initial settings

23 T_abs = 273.15 + T_rel;

24 vt = kb*T_abs/q;

25 nvt = n*vt;

26 T = 1/f;

27 omega = 2*pi*f;

28 N_periods = floor(T_sim/T);

29 t = linspace(0,N_periods ,N_periods)*T;

30 DT = T/Npts;

31 Y_res = 1/R + C/DT;

32 k1 = Is/nvt;

33 k2 = 1/R;

34 k3 = Cout/DT;

35 k4 = DT/L;

36 k5 = C/DT;

37 %

38 % Temporal variables

39 vd_old = 0;

40 vout_old = 0;

41 % Initial conditions

42 il_o = 0;

43 vc_o = 0;

44 id_o = 0;

45 vout = zeros(1,N_periods);

46 %

47 tSimul = tic;

48 %

49 for ind2 = 2: N_periods

50 %

51 for ind1 = 1:Npts

52 %

53 vin = v_i*sin(omega *(DT*ind1));

54 vin_end = v_i*sin(omega *(DT*(ind1 -1)));

55 Dvin = vin - vin_end;

56 %

57 Yd = Y_res + k1*exp(vd_old/nvt);

58 Dvout = ((vc_o*k2 + Dvin*Y_res + il_o)*(1-Y_res/Yd

)+(Y_res/Yd)*id_o )/(k3 +Y_res*(1-Y_res/Yd));
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59 Dvd = (vc_o*k2 - id_o + Y_res*(Dvin -Dvout) +

il_o)/Yd;

60 vd_new = vd_old + Dvd;

61 vout_new = vout_old + Dvout;

62 vc_o = vin - vd_new - vout_new ;

63 %

64 vd_old = vd_new;

65 vout_old = vout_new;

66 il_o = vc_o*k4 + il_o;

67 id_o = Is*(exp(vd_old/nvt) -1);

68 end

69 %

70 vout(ind2) = vout_new;

71 %

72 end

73 tSimulTot = toc(tSimul);

74 %

75 % Picture

76 figure , hold all;

77 plot(t,vout);

78 ylabel(✬v_{out}(t) [V]✬);

79 xlabel(✬t [s]✬);

80 grid on;
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Appendix B

LTspice device models

B.1 Diode model

There are two types of diodes available: one is a conduction region-wise linear
model, that yields representation of an idealized diode, and the other model avail-
able is the standard Berkeley SPICE semiconductor diode, with an exponential
voltage-current relation.

B.1.1 Conduction region-wise linear model

The piece-wise linear diode model in LTspice is characterized by three conduction
regions: ON, OFF and reverse breakdown. Forward conduction and reverse break-
down can non-linear by specifying some parameters. The main parameters for this
type of diode are reported in table B.1:

Name Parameter Default value Units
Ron Resistance in forward conduction 1 Ω
Roff Resistance in reverse conduction 1/Gmin Ω
Vfwd Forward threshold voltage 0 V
Vfwd Reverse threshold voltage ∞ V
Rrev Breakdown impedance Ron Ω
Ilimit Forward current limit ∞ A
RevIlimit Reverse current limit ∞ A
Epsilon width of quadratic region 0 V
Revepsilon width of quadratic region reverse 0 V

Table B.1: LTspice Diode model parameters

In this case just the idealized case is required, so just the parameters Ron, Roff,
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B – LTspice device models

Vfwd and Vrev must be defined, accordingly on the diode datasheet:

❼ Ron = 6 Ω

❼ Roff = 1 MΩ

❼ Vfwd = 0.25 V

❼ Vrev = 20 V

The resulting characteristic is shown in figure B.1:

vd

id

Vrev Vfwd

Figure B.1: Diode piece-wise model in LTspice

B.1.2 Berkeley diode model

The standard Berkeley SPICE semiconductor diode is diode model with an expo-
nential characteristic. With appropriate precautions it is possible to refer to the
shape of the Shockley equation. The equivalent circuit is shown in figure B.2:
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B.1 – Diode model

id

Rs

D1

+

−

vd Gmin

−

+

vf

Figure B.2: DC Large-signal LTspice Diode model

This model contains an active diode D1, a series resistance Rs and a shunt
conductance Gmin. The dc model variables are the voltage across the diode vf , the
voltage across the internal diode vd and the terminal current id. In the table B.2
the most important parameters are reported:

Name Parameter Default value Units
Is Saturation current 10 · 10−15 A
Rs Series resistance 0 Ω
η Emission coefficient 1
Gmin Shunt conductance 1 · 10−12 S
EG Activation energy 1.11 eV
XTI Is temperature exponent 3
BV Breakdown voltage ∞ V
IBV Saturation current 1 · 10−13 A

Table B.2: LTspice Diode model parameters

From these parameters it is possible to define the device characteristic from the
following equations:

vf = Rs · id + vd (B.1)

id = f(vd) (B.2)

Four operative regions define the relation between the internal diode voltage and
diode current:
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B – LTspice device models

1. For vd ≤ −5 · ηVt

id = Is ·
(
e

vd
ηVt − 1

)
+Gmin · vd (B.3)

2. For BV < vd < −5 · ηVt

id = −Is +Gmin · vd (B.4)

3. For vd = BV

id = −IBV (B.5)

4. For vd < BV

id = −Is ·
(
e
−BV+vd

Vt − 1 +
BV

Vt

)
(B.6)

The model takes also into account the temperature effect on the parameters. TNOM

is the nominal temperature that have a default value of 27 ◦C. For the saturation
current Is the parameters η, EG andXTI are used to model its variation in function
of the temperature:

Is(T ) = Is(TNOM) ·
(

T

TNOM

)XTI
η

· e
(

qEG
kbη

)
·
(

1
TNOM

− 1
T

)
(B.7)

The model is much more complicated than the one used to get the Euler solution.
For this reason many parameters was set in order to get a model as similar as
possible to the expression 3.2:

❼ Rs = 0 Ω → vd = vf

❼ XGI = 0 and EG = 0 eV → Is(T ) = Is(TNOM) ∀ T

B.2 Inductor model

The inductor model model is represented in figure B.3:
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B.2 – Inductor model

RSER

< L >

RPAR CPAR

Figure B.3: LTspice inductor model

The parameter RSER, that is a series resistance, has a default value of 1 mΩ
that is not mentioned the inductance statement. This allows LTspice to integrate
the inductance as a Norton equivalent circuit instead of Thevenin equivalent in
order to reduce the size of the circuit’s linearized matrix. This parameter makes
errors in the simulation, especially when the value of L is quite low (that is the
case of a patch with a high value of Q). In order to avoid this error this parameter
has been set to a null value. The disadvantage is that LTspice requires to use the
more cumbersome Thevenin equivalent of the inductor during transient analysis
and consequently all the simulations are longer. In conclusions, for the inductor
model:

❼ RSER = 0

❼ RPAR = ∞ (default)

❼ CPAR = 0 (default)
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