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Chapter 1

Introduction

1.1 Directive antennas

Directive antennas are a class of radiators able to concentrate the radiated energy
in a narrow beam around a given direction. They are specifically used in those
applications where a precise targeting is needed, like in point-to-point links and
radar.

Due to physical limitations, they are inherently narrowband, with directivity
proportional to their size [7]. As such, they are usually realized by means of elec-
trically large structures (e.g. parabolic reflector, helix antenna, etc.) with obvious
drawbacks due to space occupation.

Large values of directivity can be also achieved by arranging multiple small
elements in arrays, with specific geometric and feeding constraints. This technique
has the advantage of being low-profile, meaning that they take less space than usual
(Fig. 1.1). However, the complexity and losses introduced by the feeding network
limit their performances. In the present work, the starting point is represented by

Figure 1.1: A 4-by-4 patch array working at 2.4 GHz
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1 – Introduction

simple structures, finely optimized to obtain non-intuitive geometries which meet
the required performances.

1.2 Optimization strategies

Optimization is classically carried out by parameterizing the antenna with respect
to a small set of essential features, then optimizing this reduced model. This
approach has inherent limits, given that antenna structures can rarely be described
using a limited set of parameters.

Historically, most of the effort has been devoted to deterministic optimization
methods. However, electromagnetic problems usually present non-linear, non-
differentiable and unconstrained objective functions, which often lead to premature
convergence to local minima. For this reason, in the last decades the use of global
optimization strategies is favored, thanks to their stochastic nature and ability to
deal effectively with large solution spaces and non-differentiable functions. Among
them, Genetic Algorithms (GA), which are based on principles derived from natural
evolution, have been applied successfully to a number of electromagnetic problems
[18].

For the aforementioned reasons, in [11] a novel technique was introduced to
combine the Method of Moments (MoM) with Genetic Algorithms to perform full-
wave optimization. It allows to fill the matrix resulting from the discretization only
once during the setup phase. Modification to the structure are accounted for by
eliminating rows and columns corresponding to removed parts.

Despite all that, optimization tools still suffer from the lack of physical insight
into antenna behaviour. Therefore, algorithms need to be fine-tuned with the
knowledge available to the designer, through the definition of objective functions
able to express feasible goals and trade-offs commonly found in antenna design.

1.3 Objective

The present work is based on [14], where the GA/MoM algorithm was applied to
the optimization of compact frequency reconfigurable antennas. Reconfigurability
was achieved by means of switches integrated into the antenna. Each structure
was analyzed as a multiport equivalent circuit, with an exhaustive search of switch
configurations, with focus on the achieved input matching over a wide frequency
range.

Regarding directive antennas, Genetic algorithms have been applied extensively
to the optimization of arrays [4, 12] due to a convenient mathematical formulation.
To apply a full-wave optimization to arbitrary structures, a need arises to decouple
the discretization mesh from the optimization process, since large geometries require
a finer resolution.
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1 – Introduction

This work presents the development of optimization tools capable of handling
complex structures, like those needed for directive antennas, by allowing the de-
signer to define custom optimizable geometries of arbitrary size and shape, all
within the preprocess phase.

The thesis will be organized as follows: Chapter 2 recalls the electromagnetic
theory underlying this work. Chapter 3 introduces the Method of Moments ap-
plied to electromagnetic problems. Chapter 4 covers the optimization algorithms
employed. The results of theoretical and practical activities are presented in Chap-
ter 5 and 6. Finally, in Chapter 7 conclusions are drawn and future developments
are suggested.
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Chapter 2

Electromagnetic formulation

This chapter is devoted to the presentation of the general electromagnetic theory
that allows to solve scattering and radiation problems. In section 2.1 the wave
equation is derived from Maxwell’s equations, and an expression for the radiated
field is obtained in terms of electric and magnetic source currents. In section 2.2
an equivalence theorem will be introduced which will allow to derive an integral
equation for the solution of source currents, known as Surface Integral Equation
formulation (SIE). Finally, in section 2.3.1, a series of parameters for the analysis
of antennas will be presented.

2.1 EM radiation in homogeneous space

2.1.1 Vector wave equation

Maxwell’s equations in frequency domain (time variation ejωt) for a homogeneous
isotropic media of constitutive parameters ε and µ can be written as [10]:

∇× E = −jωµH−M (2.1)

∇×H = jωεE+ J (2.2)

∇ · E =
ρe
ε

(2.3)

∇ ·H =
ρm
µ

(2.4)

where µ = µrµ0 and ε = εrε0. The magnetic current M and charge density ρm
have no physical meaning, but are introduced because of their usefulness in the
derivation of equivalence theorems.

Electric and magnetic currents are related to the corresponding charge densities
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2 – Electromagnetic formulation

by the continuity equations

∇ · J = −jωρe (2.5)

∇ ·M = −jωρm (2.6)

Eqs. (2.1)–(2.4) combined with Eqs. (2.5)–(2.6), allow the determination of
fields E, H in terms of the source currents J, M only. The resulting equations are
known as vector wave equations :

∇2E+ k2E = jωµJ− 1

jωε
∇(∇ · J) +∇×M (2.7)

∇2H+ k2H = jωεM− 1

jωµ
∇(∇ ·M)−∇× J (2.8)

where k = ω
√
µε is the wavenumber in the medium.

The same vector wave equation can be written in terms of magnetic vector
potential A and electric vector potential F as:

∇2A+ k2A = −µJ (2.9)

∇2F+ k2F = −εM (2.10)

Once eqs. (2.9) and (2.10) are solved, the electric and magnetic fields are given by:

E = −jωA+
1

jωµε
∇(∇ ·A)− 1

ε
∇× F (2.11)

H =
1

µ
∇×A− jωF+

1

jωµε
∇(∇ · F) (2.12)

2.1.2 Boundary conditions

For the solution of Eqs. (2.7) and (2.8), we also need boundary conditions. At the
interface between two materials with constitutive parameters ε1, µ1 and ε2, µ2 we
have:

n̂× (H2 −H1) = Js (2.13)

n̂× (E2 − E1) = −Ms (2.14)

n̂ · (ε2E2 − ε1E1) = ρe,s (2.15)

n̂ · (µ2H2 − µ1H1) = ρm,s (2.16)

where n̂ is the unit vector normal to the interface, Js and Ms are surface current
densities and ρe,s, ρm,s are surface charge densities.

Since the surface between two dielectrics cannot support surface currents or

5



2 – Electromagnetic formulation

charges, Eqs. (2.13)–(2.16) reduce to:

n̂× (H2 −H1) = 0 −→ Ht
2 = Ht

1 (2.17)

n̂× (E2 − E1) = 0 −→ Et
2 = Et

1 (2.18)

n̂ · (ε2E2 − ε1E1) = 0 −→ ε2E
n
2 = ε1E

n
1 (2.19)

n̂ · (µ2H2 − µ1H1) = 0 −→ µ2H
n
2 = µ1H

n
1 (2.20)

Eqs. (2.17)–(2.18) express the continuity of tangential component, while (2.19)–
(2.20) state that the normal component is discontinuos due to different constitutive
parameters on each side.

For a perfect electric conductor (PEC) instead, surface electric charge and cur-
rent densities are induced by an external electromagnetic field and E = H = 0
everywhere inside. Boundary conditions become:

n̂× (H− 0) = Js −→ n̂×H = Js (2.21)

n̂× (E− 0) = 0 −→ Et = 0 (2.22)

n̂ · (εE− 0) = ρe,s −→ En =
ρe,s
ε

n̂ (2.23)

n̂ · (µH− 0) = 0 −→ Hn = 0 (2.24)

Eq. (2.21) relates the tangent component of magnetic field to the surface current
density, Eq. (2.22) forces the tangential electric field to vanish on a PEC surface.
Eq. (2.23) relates the normal component of electric field to the surface electric
charge and finally Eq. (2.20) imposes the normal magnetic field to vanish on the
surface.

For an unbounded domain, the only requirement is for the field to vanish at
infinity according to the Sommerfeld radiation condition [20]

lim
|r|→∞

|r| (∇× E+ jk r̂× E) = 0 (2.25)

lim
|r|→∞

|r| (∇×H+ jk r̂×H) = 0 (2.26)

2.1.3 Green’s function

One way to solve Eqs. (2.9) and (2.10) is to first find the solution due to a point
source in an unbounded homogeneous domain:

∇2G(r, r′) + k2G(r, r′) = −δ(r− r′) (2.27)
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2 – Electromagnetic formulation

where G(r, r′) is the Green’s function, or fundamental solution, of the problem.
δ(r− r′) is called the Dirac delta function and is defined as

δ(r− r′) = 0 if r /= r′∫
D
δ(r− r′) dD′ =

{
1 if r ∈ D
0 if r /∈ D

due to these properties, it follows that for a function f(r) continuos at point r

∫
D
f(r′) δ(r− r′) dD′ =

{
f(r) if r ∈ D
0 if r /∈ D

The solution of Eq. (2.27) in a three-dimensional unbounded domain, subject
to radiation boundary conditions, is given by:

G(r, r′) =
e−jk|r−r′|

4π|r− r′|
(2.28)

This solution represents a scalar spherical wave propagating away from point r′.

2.1.4 Field-source relations in homogeneous space

Once the Green’s function is found for a specific domain, the vector potentials can
be written in terms of source currents:

A(r) = µ

∫
D
J(r′)G(r, r′) dD′ (2.29)

F(r) = ε

∫
D
M(r′)G(r, r′) dD′ (2.30)

These can be plugged into Eqs. (2.11) and (2.12) to find the complete source-field
relation in an homogeneous space:

E(r) =

∫
D

{
−jωµJ(r′) +

1

jωε
∇′ [∇′ · J(r′)]−∇′ ×M(r′)

}
G(r, r′) dD′ (2.31)

H(r) =

∫
D

{
−jωεM(r′) +

1

jωµ
∇′ [∇′ ·M(r′)] +∇′ × J(r′)

}
G(r, r′) dD′ (2.32)
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2 – Electromagnetic formulation

We can define two linear operator L and K as:

L[X] = jk

∫
D
G(r, r′)X(r′) dD′ − 1

jk
∇
∫
D
G(r, r′)∇′ ·X(r′) dD′ (2.33)

K[X] =

∫
D
X(r′)×∇G(r, r′) dD′ (2.34)

with this definition, Eqs. (2.31) and (2.32) can be rewritten as:

E(r) = −ηL[J](r) +K[M](r) (2.35)

H(r) = −K[J](r)− 1

η
L[M](r) (2.36)

where η =
√

µ/ε is the wave impedance in the medium.

2.2 Radiation and scattering formulation

2.2.1 Surface Equivalence Theorem

The formulation of the electromagnetic problem in terms of a surface integral relies
on the uniqueness theorem [10, 3] which states that in a lossy domain where sources
J and M radiate, the field solution is unique if the tangential component of E or
H is specified on the boundary of the domain.

This allows to develop a Surface Equivalence Theorem: consider a volume V1

with parameters ε1, µ1 and a volume V2 with ε2, µ2 completely inside it. In V1,
sources radiate a field Einc,Hinc in homogeneous space (Fig. 2.1a).

Thanks to the uniqueness theorem, the solution Etot
1 ,Htot

1 is the same as if we
choose the field inside V2 arbitrarily, and put equivalent current sources on the
surface S to satisfy the boundary conditions of the original problem.

Since the field in V2 can be chosen freely (as long as it is a solution of Maxwell’s
equations), one particular choice is to set it to 0 everywhere (Love’s theorem or Ex-
tinction theorem [3]). To compensate the field discontinuity on surface S, according
to boundary conditions (2.17)–(2.18), we need:

J1 = n̂1 × (Htot
1 − 0) = n̂1 ×Htot

1 (2.37)

M1 = −n̂1 × (Etot
1 − 0) = −n̂1 × Etot

1 (2.38)

where the normal unit vector n̂1 points inside V1.
This choice allows to modify the medium inside V2 without affecting the solu-

tion. If we assign the constitutive parameters ε1, µ1 the equivalent problem in V1

reduces to that of a set of equivalent currents J1 and M1 radiating in a homoge-
neous unbounded medium superimposed to the incident field already present in the
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2 – Electromagnetic formulation

absence of the scatterer (Fig. 2.1b):

Etot
1 = Einc + Es

1(J1,M1) (2.39)

Htot
1 = Hinc +Hs

1(J1,M1) (2.40)

where Es and Hs, the scattered fields, can be evaluated with Eqs. (2.35) and (2.36).

The same reasoning can be applied to V2 (Fig. (2.1c)). In this case, a set of
equivalent current J2 and M2 are defined on surface S such that the field outside
is equal to 0 everywhere, and equal to the original field inside the surface.

J2 = n̂2 × (Htot
2 − 0) = n̂2 ×Htot

1 (2.41)

M2 = −n̂2 × (Etot
2 − 0) = −n̂2 × Etot

1 (2.42)

this time n̂2 points toward V2. Internal fields can be written as:

Etot
2 = Es

2(J2,M2) (2.43)

Htot
2 = Hs

2(J2,M2) (2.44)

These equivalent settings can be used to develop integral formulations that are
suitable to approximation and solution with the help of numerical methods.

2.2.2 Surface Integral Equation

The equivalent problems presented in Sec. 2.2.1 allows to formulate the radiation
and scattering problems as integral equations [21]. Focusing on the equivalent
problem in V1, Eqs. (2.39) and (2.40) on surface S imply[

Einc + Es
1(J1,M1)

]
tan

=
[
Etot

1

]
tan

(2.45)[
Hinc +Hs

1(J1,M1)
]
tan

=
[
Htot

1

]
tan

(2.46)

The fields components tangent to the surface can be expressed in terms of equivalent
currents (2.37) and (2.38) as: [

Etot
1

]
tan

= n̂1 ×M1 (2.47)[
Htot

1

]
tan

= −n̂1 × J1 (2.48)

9



2 – Electromagnetic formulation

Thus we can write Eqs. (2.45)–(2.46) in terms of known incident field and unknown
equivalent currents as:[

Es
1(J1,M1)

]
tan

− n̂1 ×M1 = −
[
Einc

]
tan

(2.49)[
Hs

1(J1,M1)
]
tan

+ n̂1 × J1 = −
[
Hinc

]
tan

(2.50)

Using the radiation operators (2.35) and (2.36), we can further develop these
expressions: [

− η1 L1[J1] +K1[M1]
]
tan

− n̂1 ×M1 = −
[
Einc

]
tan

(2.51)[
−K1[J1]−

1

η1
L1[M1]

]
tan

+ n̂1 × J1 = −
[
Hinc

]
tan

(2.52)

The operator K is singular when we evaluate it in a point inside its domain [10].
In this particular case, we can express it as:

K[X](r) = KPV[X](r) +
1

2
n̂×X(r) r ∈ S (2.53)

taking into account this singularity, Eqs. (2.51)–(2.52) become[
η1 L1[J1]−KPV

1 [M1]
]
tan

+
1

2
n̂1 ×M1 =

[
Einc

]
tan

(2.54)[
KPV

1 [J1] +
1

η1
L1[M1]

]
tan

− 1

2
n̂1 × J1 =

[
Hinc

]
tan

(2.55)

Eq. (2.54) is known as Electric Field Integral Equation (EFIE), while Eq. (2.55) is
called Magnetic Field Integral Equation (MFIE), since they involve the tangential
electric and magnetic fields respectively.

An alternative formulation can be obtained by taking the cross product of (2.54)–
(2.55) with n̂:

n̂1 ×
(
η1L1[J1]−KPV

1 [M1]
)
− 1

2
M1 = n̂1 × Einc (2.56)

n̂1 ×
(
KPV

1 [J1] +
1

η1
L1[M1]

)
+

1

2
J1 = n̂1 ×Hinc (2.57)

These equations are called Normal–Electric Field Integral Equation (N-EFIE) and
Normal–Magnetic Field Integral Equation (N-MFIE) respectively. To distinguish
between the two, Eqs. (2.54) and (2.55) are also referred to as tangential equations,
T-EFIE and T-MFIE.

10



2 – Electromagnetic formulation

We can also write integral equations for the volume V2. In this case, the incident
field is null inside the volume. The integral equations become:[

η2 L2[J2]−KPV
2 [M2]

]
tan

+
1

2
n̂2 ×M2 = 0 (T-EFIE)[

KPV
2 [J2] +

1

η2
L2[M2]

]
tan

− 1

2
n̂2 × J2 = 0 (T-MFIE)

n̂2 ×
(
η2L2[J2]−KPV

2 [M2]
)
− 1

2
M2 = 0 (N-EFIE)

n̂2 ×
(
KPV

2 [J2] +
1

η2
L2[M2]

)
+

1

2
J2 = 0 (N-MFIE)

These equations cannot be solved analytically, but are suited to numerical approx-
imations, as will be seen in chapter 3.

At the resonance frequencies of the structure, the solution of these equations is
not unique and the condition number of the discretized system will be high, yielding
unreliable results. Since the resonances for the EFIE and MFIE are not the same,
a linear combination of these two equations will guarantee a robust solution [8].

Linear operators 1
η
[Es(J,M)]tan and n̂ × Hs(J,M) map the surface currents

(J,M) to the space of tangential electric currents J, while operators η [Hs(J,M)]tan
and n̂×Es(J,M) map the surface currents (J,M) to the space of tangential electric
currents M. For this reason, a well conditioned system is obtained by combining
the different formulations as follows [19]:

a
1

η
T-EFIE + bN-MFIE (2.58)

−cN-EFIE + d ηT-MFIE (2.59)

These combinations are known as Combined Field Integral Equation (CFIE).

Scattering by a dielectric

If medium 1 and 2 are both dielectric, boundary conditions (2.17)–(2.18) force the
tangential components of the electric and magnetic fields to be equal on S. With
regard to Eqs. (2.47) and (2.48) and corresponding ones in medium 2, we derive[

Etot
1

]
tan

=
[
Etot

2

]
tan

−→ n̂1 ×M1 = n̂2 ×M2[
Htot

1

]
tan

=
[
Htot

2

]
tan

−→ −n̂1 × J1 = −n̂2 × J2

11



2 – Electromagnetic formulation

since n̂2 = −n̂1, the relation between tangential currents is

M1 = −M2 (2.60)

J1 = −J2 (2.61)

Integral equations can be solved together with Eqs. (2.60) and (2.61) to find the
field everywhere.

Scattering by a perfect electric conductor

The case of a PEC scatterer is simpler than the general one. In a perfect conductor
the internal field is known to be 0 everywhere, so we only need to solve for the
outside field in V1. Furthermore, boundary condition (2.22) forces the tangential
electric field to be 0 on S. This means that magnetic currents are not present on
the surface [

Etot
1

]
tan

= 0 −→ M1 = 0 (2.62)

Integral equations (2.54)–(2.57) in this case reduce to:[
η1 L1[J1]

]
tan

=
[
Einc

]
tan

(T-EFIE) (2.63)[
KPV

1 [J1]
]
tan

− 1

2
n̂1 × J1 =

[
Hinc

]
tan

(T-MFIE) (2.64)

n̂1 × η1L1[J1] = n̂1 × Einc (N-EFIE) (2.65)

n̂1 ×KPV
1 [J1] +

1

2
J1 = n̂1 ×Hinc (N-MFIE) (2.66)

Only one of these equations need to be solved in order to find the unknown surface
electric current J1 on S.
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2 – Electromagnetic formulation

V2

V1

S

ε2, µ2

ε1, µ1

Etot
2 ,Htot

2Etot
1 ,Htot

1

Einc,Hinc

(a) Original scattering problem

V2

V1
S

ε1, µ1

ε1, µ1

E = 0

H = 0

M1 = −n̂1 × Etot
1

J1 = n̂1 ×Htot
1

n̂1

Etot
1 = Einc + Es

1

Htot
1 = Hinc +Hs

1

Einc,Hinc

(b) Equivalent problem in V1

V2

V1
S

ε2, µ2

ε2, µ2

Etot
2 = Es

2

Htot
2 = Hs

2

M2 = −n̂2 × Etot
2

J2 = n̂2 ×Htot
2

n̂2

E = 0

H = 0

(c) Equivalent problem in V2

Figure 2.1: Original and equivalent problems for scattering
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2 – Electromagnetic formulation

2.3 Antenna parameters

Antenna performances can be evaluated with respect to a set of different parame-
ters. The main ones are those related to input characteristics and far-field radiation.
For aperture and low-profile antennas, also the effective area and beam efficiency
play an important role in assessing the properties of the antenna. In this section,
all parameters employed in the present work will be defined.

2.3.1 Input matching

From a circuit standpoint, the antenna can be represented as a passive load Zant.
The resistive (real) part is related to the radiated and dissipated energy due to
ohmic losses, while the reactive (imaginary) part is linked to the energy stored in
the electromagnetic field.

Zant = Rrad +Rloss + jXant (2.67)

the radiation efficiency can be expressed as:

ηR =
Rrad

Rrad +Rloss

(2.68)

Rloss

Rrad

jXant
Zant

Figure 2.2: Antenna equivalent circuit

If the antenna is fed by a transmission line of characteristic impedance Z0, we
can define an input reflection coefficient:

Γin =
Zant − Z0

Zant + Z0

(2.69)

14



2 – Electromagnetic formulation

The input power can be written as:

Pin = Pav (1− |Γin|2) (2.70)

where Pav is the available power from the generator, considered matched to the
transmission line.

The objective is to provide the maximum power to the load, in this case the
antenna, by making its input impedance equal to that of the feed line as much as
possible. With this regard, the Return Loss is defined as:

RL = −20 log10 |Γin| (2.71)

Vg

Z0

ZantZ0 Γin

Figure 2.3: Antenna feeding schematic

2.3.2 Far-field radiation

The far-field radiation refers to the fields radiated by the antenna at a distance much
larger than its dimensions and of the wavelength, where they can be approximated
by a plane wave. The electric and magnetic fields can be computed easily from the
current distribution on the surface of the antenna. Neglecting higher order terms,
in far region they decay as 1/r. For the vector potentials, we have [2]:

A(r) −−−→
r→∞

µ
e−jkr

4πr

∫
D
J(r′) ejk r̂·r′dD′ (2.72)

F(r) −−−→
r→∞

ε
e−jkr

4πr

∫
D
M(r′) ejk r̂·r′dD′ (2.73)

Where the radiating currents are the impressed and equivalent ones in the outer
volume. Plugging these in Eqs. (2.11) and (2.12) and neglecting higher order terms,
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2 – Electromagnetic formulation

we get:

Efar(r) ≈ −jω
[
(Aθ + ηFφ) θ̂ + (Aφ − ηFθ) φ̂

]
(2.74)

Hfar(r) ≈ −jω

[(
−1

η
Aφ + Fθ

)
θ̂ +

(
1

η
Aθ + Fφ

)
φ̂

]
(2.75)

The field has no radial component, since it decays faster than 1/r and is therefore
negligible in far field.

One parameter of antennas related to the far-field is the radiation intensity,
which is defined as the radiated power per unit solid angle:

I(θ, φ) = r2Wrad = r2
1

2η

(
|Efar

θ |2 + |Efar
φ |2

)
(2.76)

We can also define the directivity of an antenna, the ratio of radiation intensity
with respect to an isotropic radiator that transmits the same power:

D(θ, φ) =
4π

Prad

I(θ, φ) (2.77)

Gain, instead, is defined as the ratio of radiation intensity with respect to input
power, which takes into account ohmic losses:

G(θ, φ) =
4π

Pin

I(θ, φ) = ηR D(θ, φ) (2.78)

Furthermore, the definition can include the input mismatch at antenna port by
considering the available power of the generator, giving the realized gain [1]:

GR(θ, φ) =
4π

Pav

I(θ, φ) = (1− |Γin|2)G(θ, φ) (2.79)

where Γin is the reflection coefficient at the antenna input.

2.3.3 Effective area

The effective area is a quantity used to evaluate the radiation properties of the
antenna with respect to its physical size. It is defined as the equivalent area that,
when multiplied by the incident power density of a plane wave, gives the available
power at the input terminals [2]. It is related to the directivity and is defined for
its maximum value:

Aeff =
λ2

4π
Dmax (2.80)

The effective area can be compared to the physical one, considered as the surface
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2 – Electromagnetic formulation

on which the field radiates in free space, giving an aperture efficiency :

ηap =
Aeff

Ageom

(2.81)

It must be noted that Eq. (2.81) does not constitute a physical efficiency when
applied to low-profile planar antennas, since the geometric area is usually taken to
be the surface occupied by metallizations. Aperture efficiencies > 1 are possible for
very directive antennas. Nonetheless, it remains a meaningful parameter to asses
the geometrical efficiency.

2.3.4 Beam efficiency

In the context of directive antenna, an important parameter is the so called beam
efficiency, which quantifies the fraction of power radiated within a cone of half-
angle θ1 compared to the total radiated power [2]. Considering an antenna with its
main radiation direction along the z-axis, the beam efficiency can be calculated as:

BE =

∫ 2π

0

∫ θ1

0

I(θ, φ) sin θdθdφ∫ 2π

0

∫ π

0

I(θ, φ) sin θdθdφ

(2.82)

In reception, beam efficiency can be used to judge the ability of the antenna to
discriminate between signals received through its main lobe and those from the
minor lobes. High values are necessary for those applications where received signal
from the minor lobes must be minimized, like in radar or astronomy.

A related quantity is the Half-Power Beamwidth (HPBW) which is defined as the
angle between the two directions in which the radiation intensity is one-half of the
maximum [1].
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Chapter 3

Computational electromagnetics

In this chapter, the computational electromagnetics involved in the present work
will be introduced briefly: in Sec. 3.1 the Method of Moments is formulated, then
in Sec. 3.1.3 it is applied to EM radiation problems. Finally, source modeling and
field calculation are discussed.

3.1 Method of Moments for electromagnetic sim-
ulation

In the field of computational electromagnetics (CEM), a range of simulation tech-
niques are available for the solution of complicated problems, for which an analytical
solution is not feasible. Between them, the Method of Moments [9, 8] is particularly
suited to the treatment of scattering from homogeneous bodies. This is especially
true for antenna design, where one is usually interested in the far field radiation.

By means of equivalence theorems presented in section 2.2.2, only the boundary
of homogeneous bodies need to be discretized, not free space, and the solution
will be in terms of equivalent electric and magnetic surface current densities which
constitute the sources of the field. This allows a great reduction of the problem size
with respect to other methods, namely Finite Element (FEM) and Finite Difference
(FD), which require a discretization of the entire solution domain.

Furthermore, the radiation condition at infinity is automatically satisfied by the
use of analytical Green’s function, and the space need not be artificially terminated
as in other methods. This is also true for planar multilayer and periodic structures.

In the following, the general formulation of the electromagnetic problem will
be outlined, then the Method of Moments will be used to obtain an approximate
solution.
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3 – Computational electromagnetics

3.1.1 Method of Moments formulation

The general Method of Moments formulation [9] allows to solve integro-differential
(linear) equations. The problem can be formulated as that of determining the
unknown source term f due to excitation g:

L[f ] = g (3.1)

where the linear operator L describes the specific problem.

The first step toward the solution consists of expanding f into a combination of
basis functions :

f̃ =
N∑

n=1

an fn (3.2)

where f̃ is the approximation of f in the space spanned by the basis functions.
Since the accuracy of the algorithm depends greatly on the ability of the basis
functions to represent the actual solution, they must be chosen depending on the
problem and must belong to the domain of operator L.

Substituting Eq. (3.2) in (3.1), and using the linearity of L we can write:

N∑
n=1

an L[fn] = g (3.3)

The problem is reduced to the determination of coefficients an. The residue of the
solution is given by:

R =
N∑

n=1

an L[fn]− g (3.4)

We then need to introduce a suitable inner product defined as:

⟨f, w⟩ =
∫
D
f · w dD (3.5)

which is clearly symmetric and satisfies linearity conditions. The domain D repre-
sents the range of operator L and can be a curve, a surface or a volume.

In order to obtain a linear system of N equations from (3.3), we define a set of
N linearly independent testing functions wm in the range of L. The residue (3.4)
is then projected onto each of the testing functions, forcing it to be orthogonal to
them:

⟨wm, R⟩ =

⟨
wm,

N∑
n=1

an L[fn]− g

⟩
= 0 m = 1, . . . , N
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3 – Computational electromagnetics

N∑
n=1

an ⟨wm , L[fn]⟩ = ⟨wm , g⟩ m = 1, . . . , N (3.6)

Eq. (3.6) can be written in matrix form as:

La = b (3.7)

where

L =

⎡⎢⎢⎢⎣
⟨w1 , L[f1]⟩ ⟨w1 , L[f2]⟩ · · · ⟨w1 , L[fN ]⟩
⟨w2 , L[f1]⟩ ⟨w2 , L[f2]⟩ · · · ⟨w2 , L[fN ]⟩

...
...

. . .
...

⟨wN , L[f1]⟩ ⟨wN , L[f2]⟩ · · · ⟨wN , L[fN ]⟩

⎤⎥⎥⎥⎦

a =

⎡⎢⎢⎢⎣
a1
a2
...
aN

⎤⎥⎥⎥⎦ b =

⎡⎢⎢⎢⎣
⟨w1 , g⟩
⟨w2 , g⟩

...
⟨wN , g⟩

⎤⎥⎥⎥⎦
The linear system (3.7) can then be solved by means of direct or iterative solvers.
The choice can be influenced by matrix properties, which in turn depend on the
chosen basis functions.

The case where the basis and testing function coincide (wn = fn) is known as
Galerkin’s method.

3.1.2 Basis functions

In the treatment of scatterer in 3D space, it is useful to discretize boundaries
by subdiving them into planar triangular patches. This option allows to mesh
arbitrary continuos surfaces. The higher the number of patches, the better the
algorithm resolution.

Once meshed, a number of local basis functions are assigned on the surface.
One particular choice is that of Rao-Wilton-Glisson (RWG) functions [15], which
are defined on couples of triangles sharing an edge. A function fn assigned to edge
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en, shared by triangles T+
n and T−

n , is defined as

fn(r) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ln

2A+
n

(r− p+
n ) r ∈ T+

n

ln
2A−

n

(p−
n − r) r ∈ T−

n

0 otherwise

(3.8)

Here A±
n are the areas of triangle T±

n , ln is the length of the common edge en and
p±
n are the “free” vertex of T±

n as represented in fig. 3.1.

O

r

r− p+
n

p+
n

en

ln

T+
n

T−
n

p−
n − r

Figure 3.1: RWG function fn assigned on the edge en

One important property of these basis function is that its curl is constant and
opposite on the two triangles that form its support.

∇ · fn(r) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ln
2A+

n

r ∈ T+
n

− ln
2A−

n

r ∈ T−
n

0 otherwise

(3.9)

When used to represent the surface current density Js, their divergence is propor-
tional to the surface charge density through the continuity equations (2.5) and (2.6).
This means that the sum of surface charges on both side will be zero, avoiding the
accumulation of spurious charges on the edge. For this reason, RWG functions are
said to be divergence conforming.
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3.1.3 Discretization by Galerkin’s method and RWG basis
functions

The Method of Moments discussed in Sec. 3.1 can be readily applied to solve the
integral equation derived in Sec. 2.2.2. RWG functions are used to discretize the
current density J on the surface of objects:

J(r) =
N∑

n=1

Jn fn(r) (3.10)

The same basis functions are used for the magnetic current M:

M(r) =
N∑

n=1

Mn fn(r) (3.11)

With these expansions, we can rewrite Eqs. (2.56) and (2.57) in terms of un-
known coefficients Jn and Mn:

N∑
n=1

Jn

(
n̂× ηL[fn]

)
−

N∑
n=1

Mn

(
n̂×KPV[fn] +

1

2
fn

)
= n̂× Einc (3.12)

N∑
n=1

Jn

(
n̂×KPV[fn] +

1

2
fn

)
+

N∑
n=1

Mn

(
n̂× 1

η
L[fn]

)
= n̂×Hinc (3.13)

Of course, these two equations cannot be solved since there are 2N unknows. Fol-
lowing the Galerkin’s testing procedure described in Sec. 3.1, we proceed to test
each equation against all the basis functions, with the inner product defined in
(3.5):

N∑
n=1

Jn η
⟨
fm , n̂× L[fn]

⟩
−

N∑
n=1

Mn

⟨
fm , n̂×KPV[fn] +

1

2
fn

⟩
=

⟨
fm , n̂× Einc

⟩
(3.14)

N∑
n=1

Jn

⟨
fm , n̂×KPV[fn] +

1

2
fn

⟩
+

N∑
n=1

Mn
1

η

⟨
fm , n̂× L[fn]

⟩
=

⟨
fm , n̂×Hinc

⟩
(3.15)
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Defining:

Amn =
⟨
fm , n̂× L[fn]

⟩
Bmn =

⟨
fm , n̂×KPV[fn]

⟩
Imn =

⟨
fm , fn

⟩
V E
m =

⟨
fm , n̂× Einc

⟩
V H
m =

⟨
fm , n̂×Hinc

⟩
we can express Eqs. (3.14) and (3.15) in matrix notation as:[

ZEJ ZEM

ZHJ ZHM

][
J

M

]
=

[
VE

VH

]
(3.16)

where: [
ZEJ ZEM

ZHJ ZHM

]
=

[
ηA B+ 1

2
I

B+ 1
2
I 1

η
A

]
(3.17)

Each entry Zij quantifies the interaction of the j-th source with the i-th function.
Interactions are considered for each combination of electric and magnetic currents.
The required integrals are calculated as follows:

Amn = jk

[ ∫∫
Sm

fm(r) · n̂×
∫∫

Sn

fn(r
′)
ejkr

4πr
dS ′ dS

+
1

k2

∫∫
Sm

fm(r) · n̂×∇
∫∫

Sn

∇′
s · fn(r′)

ejkr

4πr
dS ′ dS

]
(3.18)

Bmn =

∫∫
Sm

fm(r) · n̂×
∫∫

Sn

fn(r
′)×

(
jk +

1

r

)
ejkr

4πr
r̂ dS ′ dS (3.19)

Imn =

∫∫
Sm

∫∫
Sn

fm(r) · fn(r′) dS ′ dS (3.20)

V E
m =

∫∫
Sm

fm(r) · n̂× Einc(r) dS (3.21)

V H
m =

∫∫
Sm

fm(r) · n̂×Hinc(r) dS (3.22)

where Sm and Sn are the support surfaces of functions fm and fn respectively. ∇′
s
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indicates the surface divergence in primed coordinates.

Case of a dielectric

Referring to the problem of scattering by a dielectric object, analyzed in Sec. 2.2.2,
the above discretization must be valid in both medium 1 and 2. In particular, we
will have 2 sets of coefficients, one for each medium as indicated by the superscript:

J1 =
N∑

n=1

J (1)
n f (1)n M1 =

N∑
n=1

M (1)
n f (1)n

J2 =
N∑

n=1

J (2)
n f (2)n M2 =

N∑
n=1

M (2)
n f (2)n

By a convenient placement of basis functions on both sides, we can easily enforce the
continuity boundary condition for the field (Eqs. (2.61) and (2.60)). In particular,
if the function on side 1 is opposite to that of side 2, the unknown coefficient will
be equal [21]:

f (1)n = −f (2)n = fn −→ J (1)
n = J (2)

n = Jn , M (1)
n = M (2)

n = Mn (3.23)

therefore, we can drop the superscript for the unknown coefficients. The system
matrix for both sides can be computed as:

A(1)
mn =

⟨
fm , n̂× L1[fn]

⟩
A(2)

mn = −
⟨
fm , n̂× L2[fn]

⟩
(3.24)

B(1)
mn =

⟨
fm , n̂×KPV

1 [fn]
⟩

B(2)
mn = −

⟨
fm , n̂×KPV

2 [fn]
⟩

(3.25)

I(1)mn =
⟨
fm , fn

⟩
I(2)mn =

⟨
fm , fn

⟩
(3.26)

and

VE(2) = 0

VH(2) = 0

since the incident field is zero inside region 2. The system to be solved is obtained
by combining matrices of the type (3.16) for both regions:[

η1A
(1) + η2A

(2) B(1) +B(2) + I

B(1) +B(2) + I 1
η1
A(1) + 1

η2
A(2)

][
J

M

]
=

[
VE(1)

VH(1)

]
(3.27)
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Once solved, the currents in both regions can be recovered by multiplying the
coefficients by corresponding basis functions.

Case of a PEC

The case of a PEC surface is much simpler. In fact, the field inside the surface is
null, thus also the internal currents are zero on the inner surface; moreover, the
magnetic currents are not present on the outer surface due to boundary condition
(2.62). The unknowns are only the electric current coefficients for the outer region,
and the system reduces to: [

ZEJ
] [
J
]
=

[
VE

]
(3.28)

Case of a PEC on a junction between two dielectric domains

A particular case is that of a junction of two dielectric domains where part, but not
all, of the surface is covered by a perfect electric conductor. The field penetrates
inside the volume. On the junction of the two pure dielectric domains, the situation
is analogous to that already discussed, with the continuity of electric and magnetic
currents:

fn on dielectric −→ J (1)
n = J (2)

n , M (1)
n = M (2)

n

On the PEC, magnetic currents cannot be present, therefore their coefficients must
be zero. At the same time, electric currents on both sides are allowed to radiate
independently in their respective medium, so their coefficients can be different:

fn on PEC −→ J (1)
n /= J (2)

n , M (1)
n = M (2)

n = 0

In the assembly of the system matrix, it is useful to split the coefficients of the
currents on the dielectric junction (Jd and Md) and of those on the PEC (Jm).
With this convention, the matrix can be written as:⎡⎢⎣Z

EJ
dd ZEM

dd ZEJ
dm

ZHJ
dd ZHM

dd ZHJ
dm

ZEJ
md ZEM

md ZEJ
mm

⎤⎥⎦
⎡⎢⎣ Jd

Md

Jm

⎤⎥⎦ =

⎡⎢⎣V
E
d

VH
d

VE
m

⎤⎥⎦ (3.29)

where the subscript d stands for dielectric, while m stands for metal.
It is worth noting that the total number of coefficients is still equal to 2N (where

N is the number of basis functions) because, referring to a function on the PEC,
we have one less coefficient due to the absence of magnetic current, but we have
two independent coefficients, instead of one, for the electric currents on both sides.
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Functions that lie on the boundary of the PEC surface must be treated carefully:
on the triangle that lies on the conductor, magnetic current are not allowed, while
on the other triangle boundary conditions impose the equality of electric currents
on both sides. This means that, for these functions, there is only one associated
coefficient which is that of electric currents on dielectric [19].

3.1.4 Source modeling

The solution of an electromagnetic problem requires the definition of a source (forc-
ing term). In the case of scattering, the incident field is usually defined as a plane
wave impinging on the structure. For antenna radiation, instead, the incident field
is expressed in terms of lumped port voltage. In the so called Delta-gap model [8],
a potential difference is considered applied to two infinitesimally close edges (Fig.
3.2). If we take the limit of the applied electric field for the gap approaching 0
length, it can be represented as a Dirac delta source on the edge in the direction
normal to it:

Einc = Vinδ(r) n̂m r ∈ em (3.30)

where n̂m is the normal unit vector to edge em. Since the basis function has a unity
normal component along the edge, the integral becomes simply the product of the
voltage times the length of the edge:

V E
m =

⟨
fm ,Einc

⟩
=

∫∫
Sm

fm(r) · Vinδ(r) n̂m dS = ±Vin lm (3.31)

the + sign is when the direction of the function is coherent with the applied voltage,
the − sign when they are opposite. In this way, the construction of the RHS of the
system is greatly simplified. The current flowing through edge em can be calculated

Vin

T−
m T+

m

d

em

Einc = Vin

d
ûm

Figure 3.2: Delta-gap feed model

taking into account the basis expansion (3.10) and it is equal to the basis coefficient
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multiplied by the edge length:

Im =

∫
em

J · n̂m dl = Jm

∫
em

fm · n̂m dl = ±Jm lm (3.32)

since, along the edge, the component of the basis function normal to it is always
unitary. The sign takes into account the orientation of function with respect to
reference direction of the current.

Finally, the input impedance can be calculated as the ratio of the applied voltage
to the current as:

Zin =
Vin

Im
=

Vin

am lm
(3.33)

In case the port spans more than one function, the total current will be the sum
of currents flowing through each edge.

3.2 Analysis of multiport structures

The analysis of multiport electromagnetic structures is tackled by reducing the
problem from a three-dimensional one to a one-dimensional circuit equivalent. In
particular, a solution is obtained by exciting one port at a time with a known
voltage, with the others short-circuited. This allows to extract the admittance
matrix of the structure seen as a multiport device:⎡⎢⎣ I1

...
IN

⎤⎥⎦ =

⎡⎢⎣Y11 . . . Y1N
...

. . .
...

YN1 . . . YNN

⎤⎥⎦
⎡⎢⎣V1

...
VN

⎤⎥⎦ (3.34)

Antenna

Port 1

Port 2

Port N

...

Figure 3.3: Antenna as a multiport equivalent circuit

In the case of reconfigurable antennas, one port is usually considered as the
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input, while others represent switches that can be either open or closed depending
on their impedance value. From this, a number of possible combinations can be
simulated by closing each port with the corresponding impedance, and calculating
the current flowing through them. Considering the admittance matrix, we have:{

I = YV

V = Vin − Zsw I
(3.35)

where Zsw is the diagonal matrix representing switch impedances at each port. This
system can be solved for the port voltages

V = (1+ ZswY)−1 Vin (3.36)

The total current coefficients are recovered by the superposition of those produced
by each port alone, weighted by the voltage amplitude measured at the input:⎡⎢⎢⎢⎣

J tot
1

J tot
2
...

J tot
N

⎤⎥⎥⎥⎦ = V1

⎡⎢⎢⎢⎣
J1,1
J2,1
...

JN,1

⎤⎥⎥⎥⎦+ V2

⎡⎢⎢⎢⎣
J1,2
J2,2
...

JN,2

⎤⎥⎥⎥⎦+ . . . + VN

⎡⎢⎢⎢⎣
J1,N
J2,N
...

JN,N

⎤⎥⎥⎥⎦ (3.37)

With this technique, an exhaustive search can be obtained by computing the
equivalent circuit, then testing all possible switch configurations and looking at the
resulting output (far field,reflection coefficient, etc.).

3.3 Far Field calculation

Once the coefficients of basis function are obtained, the antenna far field radiation
can be calculated easily using Eqs. (2.74) and (2.75). These requires the integra-
tion of surface currents on each triangle to obtain vector potentials A and F. A
sufficiently accurate estimate of the pattern can be achieved by approximating the
surface integral for each function with the value that it possess at the centroid of
the cell, multiplied by its area:

A(r) = µ
e−jkr

4πr

∫∫
S
J(r′) ejk r̂·r′dS ′

≈ µ
e−jkr

4πr

Ncell∑
i=1

J(rci) e
jk r̂·rci · area(Si) (3.38)
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where Si indicates the i-th cell and rci is the position vector of its centroid. De-
pending on the cell position (internal, boundary or corner), the number of functions
that are defined on it vary between 1 and 3. Each contribution must be summed
to obtain the centroid value in Eq. (3.38).

The same can be done for the electric vector potential F. Far field vectors are
then recovered through Eqs. (2.74) and (2.75).
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Chapter 4

Optimization techniques in

antenna design

In this chapter, the algorithms employed for antenna optimization will be presented
and the process adopted for this work will be outlined. In Sec. 4.1 Genetic algo-
rithms are introduced, followed by a brief description of local optimization (Sec.
4.2). The combination of GA and MoM is discussed in Sec. 4.3.

4.1 Genetic algorithms

The optimization of antennas requires algorithms able to explore large solution
spaces in a reasonable time, and to treat highly non-linear objective functions (this
is the case for the mapping of antenna geometry to the parameters of interest, like
input matching or far field radiation). Furthermore, this kind of problem are known
as unconstrained, since constraints are not embedded in the algorithm; instead,
unfeasible solutions are usually dealt with at a subsequent stage, by removing them
from the solution set. With this regard, Genetic algorithms (GA) have been proven
appropriate for a variety of electromagnetic design problems [18].

GA work by mimicking the evolutionary process found in nature, by which a
population evolves based on the fitness of each individual. The main nature-derived
features are [17]:

❼ the evolution is based on chromosomes, which are a coded representation of
individuals, not on individuals themselves

❼ selection operates on individuals and decide which are more likely to reproduce
based on their fitness

❼ evolution takes place during reproduction, when the recombination of genetic
information from parents generates new individuals
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❼ mutation ensures that the genetic variability is mantained throughout evolu-
tion

❼ the evolution process is memoryless, meaning that all information needed for
reproduction is contained in the current generation of individuals.

GA differs from other traditional algorithms because it operates on a repre-
sentation of the solution, called chromosome, and the optimization is carried out
at population level, instead of single individuals, granting an inherent parallelism.
This means that what is actually optimized is the mean fitness of the population,
not the best individual overall. A suitable choice of parameters should allow good
solutions to propagate quickly to subsequent generations, allowing a fast conver-
gence of the algorithm.

The coding scheme defines the representation of solutions in the form of chro-
mosomes. It is heavily dependent on the type of problem and may influence the
algorithm efficiency. In most cases the solution is coded as a binary string, because
they can be easily manipulated, although more sophisticated schemes can be useful
to ease the decoding process or the definition of custom operators.

Given its characteristics, a few GA pros are:

❼ Ability to explore large solution spaces

❼ High flexibility due to its abstract implementation

❼ Ability to deal robustly with highly non-linear, stiff and non-differentiable
objective functions

❼ Simultaneous exploration of several solutions due to its parallel nature

❼ Simplicity in the treatment of multi-objective optimization

4.1.1 Evolutionary operators

In this section, the operators involved in GA will be introduced and described in
detail. They are:

❼ Selection

❼ Crossover (reproduction)

❼ Mutation

❼ Elite
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Selection

The selection process picks individuals from the population based on their fitness
value, which quantify their suitableness in fulfilling the optimization goal.

The probability of an individual being selected can be related to its fitness value
in two different ways, roulette wheel or rank-based. In the first case, the probability
of each individual pi is calculated as its fitness value fi normalized to the sum of
fitnesses of all individuals:

pi =
fi∑N
k=1 fk

(4.1)

where N is the population size. This is valid for maximization problems. In the
minimization case, the scheme can be applied with a change of objective function
through a linear transformation.

Rank-based selection sorts the individuals according to their fitness value. The
probability is in this case proportional to the position of the individual in sorted
order:

pi =
i∑N
k=1 k

f1,...,i−1 ≤ fi ≤ fi+1,...,N (4.2)

The selection operator is the only one involving the objective function value and
is therefore crucial in the convergence of the algorithm.

Crossover

The crossover operator is responsible for creating a new generation by hybridizing
the genetic information of individuals chosen by the selection process. In the sim-
plest case, two individuals a and b are randomly chosen and then coupled to create
a new one. This coupling can be done in different ways, mainly 1-point (also called
standard), 2-point or uniform crossover.

1-point crossover works by selecting a random location k along the chromosome
length. The new chromosome is then assembled by combining genes of parent a
from beginning to position k and those from parent b for the remaining part, as
schematized in Fig. 4.1a.

2-point crossover is similar to the previous scheme, but this time two locations
k1, k2 are chosen independently and the genes between positions k1 and k2 are taken
from parent b, while those outside are taken from parent a (Fig. 4.1b).

In uniform crossover each gene of the new chromosome is inherited randomly
from parent a or b with an equal probability (Fig. 4.1c).

Mutation

Mutation works on single chromosomes. Its operation consists in changing the
content of a single gene randomly. This operator is applied only to a small set of
individuals, controlled by the mutation rate parameter.
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Figure 4.1: Different crossover operators

Mutation is vital in keeping the genetic variability needed to explore the solution
space effectively. This avoids a possible stall of the algorithm due to the individuals
being too similar after a number of iterations.

Elite

The elite operator propagates best individuals unmodified from one generation to
the next. This is done to ensure that good chromosome do not get lost during the
crossover and mutation phases. It is usually applied to a very small fraction of the
population.

4.1.2 Optimization flow

Having listed all the operators involved in GA, the following step is the description
of the process flow (as schematized in Fig. 4.2).

The first step requires the generation of a starting population, that is often
completely random, although sometimes a priori knowledge of the chromosome
coding can be used to start the algorithm with good individuals. This population
is then evaluated through the fitness function, and the actual optimization loop
starts.

First, selection defines a subset of individuals that will propagate their genetic
information, then crossover generates a new population based on the coupling of
these individuals. Finally, mutation acts on some of them by modifying their genes
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randomly. After these stages, which embody the evolution process, the fitness of
the resulting population is evaluated. If any of the stop criteria is met, the process
ends, otherwise it starts all over again by acting on the present population. Stop
criteria can include particular fitness values that are deemed sufficient for the task
or a maximum number of generations.
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Figure 4.2: Flow diagram of Genetic Algorithm
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Figure 4.3: Flow diagram of 1-bit neighbor Local Optimizer

36



4 – Optimization techniques in antenna design

4.2 Local optimization

Since GA does not guarantee to converge to a minima of the objective function,
it is customary to combine it with a local optimization algorithm. In fact, global
optimization often stops in the surrounding of a local extrema, and a deterministic
approach ensures the best possible outcome from a given starting point, which in
this case is the output of GA.

It is also possible to embed local optimization inside the main GA loop (Hy-
bridization): each newly generated chromosome is optimized locally before putting
it into the next population.

Greedy 1-bit neighborhood search

In the context of local binary optimization, which deals with binary strings, one
of the simplest algorithm is the Greedy 1-bit neighborhood search (Fig. 4.3). In
particular, starting from the best solution obtained with the GA, the algorithm
first generates all 1-bit neighbors (all the individuals obtained by flipping one bit
at a time), then it evaluates them with the fitness function. If a better solution
is found among them, the best solution is updated with this new chromosome and
the local optimization cycle starts again until no further improvement is possible.
This means that the output corresponds to a local minima.

4.3 GA and MoM for antenna design

In the simulation of antennas, the most computation intensive step is that involving
the filling of the matrix arising from the application of MoM to the SIE. This
dramatically limits the application of optimization algorithms, since even a slight
modification of the antenna geometry usually requires the matrix to be recomputed
completely or in part.

To avoid this problem, a solution is the combination of the Method of Moments
with Genetic Algorithms (GA/MoM), introduced for the first time in [11], which
allows to compute the structure matrix only once at the start of optimization
process.

To illustrate the process, consider a structure composed of metal patches. Each
independent portion is represented by a bit in the chromosome: a 1 means the
presence of metal, while 0 means that it is removed. The Z matrix is computed
considering all metal portions that are allowed to be present, which constitute the so
called “mother” structure (Fig. 4.4a). Setting a bit to 0 removes the corresponding
portion, which is equivalent to forcing the current on it to be zero. This in turn
means that the rows and columns of the Z matrix involving the removed part will
be filled with zeros (Fig. 4.4b).
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In practice, setting entire rows and columns to zero makes the matrix singular.
This is easily prevented by removing the required coefficients, creating the sub-
structure matrix Z̃. Accordingly, the corresponding current coefficients and forcing
terms need to be deleted.

[1 1 1 1 1 1 1 1 1 1 1 1]  
N

⎡⎢⎢⎢⎢⎣
Z11 · · · Z1i · · · Z1N
...

. . .
...

...
Zi1 · · · Zii · · · ZiN
...

...
. . .

...
ZN1 · · ·ZNi · · ·ZNN

⎤⎥⎥⎥⎥⎦
(a) Full structure

[1 1 1 1 1 1 1 0
i
1 1 1 1]

i

⎡⎢⎢⎢⎢⎣
Z11 · · · 0 · · · Z1N
...

. . .
...

...
0 · · · 0 · · · 0
...

...
. . .

...
ZN1 · · · 0 · · · ZNN

⎤⎥⎥⎥⎥⎦
(b) Substructure

Figure 4.4: Comparison between “mother” structure (a) and a substructure ob-
tained by removing one square (b): chromosome (left), geometry (center) and MoM
matrix (right)

The linear system corresponding to the reduced structure will then be solved
for the current coefficients. Currents are then mapped back to the original geom-
etry and the parameters of interest (far field pattern, input impedance,...) can be
calculated from them.

Since all the manipulations are done directly on the matrix, without referring
to the geometry, this technique is called Direct Matrix Manipulation (DMM) and
its flow is schematized in Fig. 4.5. In a GA algorithm, for each individual of the
population, a different Z̃ matrix is obtained and solved. Finally, the corresponding
fitness value is calculated.

Matrix partitioning can also be used to further reduce computational cost, es-
pecially when the number of modifiable elements is less than or equal to that of
fixed ones. Since this work deals with structure with a high degree of flexibility,
this technique has not been implemented.
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Figure 4.5: Flow diagram of Direct Matrix Manipulation for GA/MoM
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Chapter 5

Optimization of low-profile

directive antennas

The optimization of antennas with GA is introduced in [11]. Much of the present
work originates from the code developed in [14] for the optimization of compact
frequency-reconfigurable antennas. There, due to the complexity of the optimiza-
tion process, the chromosome was rigidly mapped to the geometry mesh, with
sectors defined as squares composed of two adjacent triangular cells, thereby not
allowing a flexible choice of optimizable portions.

The requirements for optimization of directive antennas are different, since a
finer mesh is needed for larger structures, rendering the problem size impractical if
treated as in [14]. Therefore, the need to decouple the simulation mesh from the
optimization arises.

The proposed approach exploits the flexibility offered by the preprocessor soft-
ware GiD [5]. It allows the definition of custom properties useful to the optimization
process, as well as an efficient meshing of the geometry. Then, the full structure is
simulated with a MoM solver and the Z matrix is extracted. All these informations
are gathered in Matlab for the optimization process. After that, the best design
is validated with the help of commercial EM softwares (CST and FEKO). If all
the criteria are met, it is finally prototiped and tested. This entire workflow is
summarized in Fig. 5.1.

In case the required performances could not be met, this flow can be iterated,
modifying the structure or the optimization mask accordingly.
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Optimization
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Figure 5.1: Proposed workflow for antenna optimization

5.1 Preprocessing

The preprocess stage starts with the construction of the full antenna geometry.
Individual surfaces must be created for each independent optimizable sector, as
shown in Fig. 5.2a.

For the optimization definitions, a custom problem type has been developed for
GiD, which allows to assign a flag to specific geometry surfaces before meshing,
defining which portions of the metal structure can be removed during optimization
(Fig. 5.2b).

After that, the software runs through all the marked entities and assigns a
progressive index that is mapped to the associated chromosome bit. Indexes can
also be modified manually and the same index can be assigned to non-adjacent
portions, providing more degrees of freedom to the designer. These values will
be then transferred to each cell once the structure is meshed with the required
resolution (Fig. 5.2c).
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Having more optimizable surfaces means a larger solution space, which can help
the convergence, but can also slow the process excessively. An acceptable trade-off
must be found between speed and flexibility.

y

z

x

GiD

(a) Structure

y

z

x

GiD

(b) Optimization mask (green)

y

z

x

GiD

(c) Mesh

Figure 5.2: Example of geometry (a) with optimization mask (b) and correspond-
ing mesh (c)

5.2 Matrix manipulation

Once the structure has been preprocessed and the Z matrix calculated, the opti-
mization loop can start. This section is devoted to the step by step description of
the manipulation required to obtain a substructure matrix from the full one. The
case for metal structure is derived from [11], while the formulation for composite
metal/dielectric structures has been developed from ground up during the present
work.
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5.2.1 Metal structures

The transition from a full matrix to the target submatrix for a metal-only structure
is relatively straightforward. The crucial step in expanding the capabilities of the
existent code is to map each optimazible cell onto the sector to whom it belongs,
effectively decoupling the chromosome from the mesh (Fig. 5.3a). This information
is then transferred to each basis function. All functions lying on edges inside a given
sector are grouped (Fig. 5.3b), together with those lying on a boundary edge: this
because the removal of a metal portion means that surface currents can no longer
flow perpendicular to its boundary. Thus, these basis are not needed anymore to
represent the current.

Fi = {fn | en ∈ Si} (5.1)

where Si is the i -th sector. The function to be removed are then grouped together:

Irem = {i | gi = 0} (5.2)

Frem =
⋃

i∈Irem

Fi (5.3)

sector boundary

(a) Sector definition (over mesh) (b) Removed functions

Figure 5.3: Sector definition (a) and functions that are cancelled when the sector
is removed by the optimizer (b)

After this preliminary step, the procedure follows that described in Sec. 4.3:
functions belonging to removed sectors are indexed and corresponding rows and
columns of the matrix are discarded. This leaves the reduced Z matrix that can be
solved to obtain input parameters and asses the performances of the antenna.

5.2.2 Composite metal/dielectric structures

The case for composite metal/dielectric structure is much more complicated, since
there are many possible combinations. Before proceeding, all possible type of cells
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are listed in Fig. 5.4, depending on mediums on both sides:

air

air

PEC
1
2

(a)

air

dielectric

1
2

(b)

air

dielectric

PEC
1
2

(c)

Figure 5.4: Possible cell types based on medium 1 and 2: PEC in air (a), boundary
between air and dielectric (b) and PEC on a boundary between air and dielectric
(c)

Each function is then categorized based on the nature of the two cells on which
it is defined. A total of 4 combinations are possible, as shown in Fig. 5.5.

PEC

PEC

J1

(a)

diel.

diel.
J1 J2 = −J1

M1 M2 = −M1

(b)

PEC over

diel.

diel.

J1 J2 = −J1

(c)

PEC over
diel.

PEC
over diel.J1 J2

(d)

Figure 5.5: Possible function types with corresponding unknowns: PEC (a),
dielectric (b), boundary between dielectric and PEC over dielectric (c) and PEC
over dielectric (d)

For the optimization of metal/dielectric structures, it is essential to compute
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the Z matrices for the inner and outer region independently. Doing this allows to
combine them in different ways during the optimization process. Depending on the
required modification, these matrices are manipulated and then summed to obtain
the complete linear system of Eq. (3.29).

During the structure definition, optimizable sectors are dealt with in different
ways depending on their placement. For metal patches in air, the situation is
analogous to the previously described one. Instead, when one wants to place an
optimazible metal surface on a dielectric, the structure must be defined as a pure
dielectric interface anyway. This because it is the case where all possible surface
current coefficients are defined, allowing for any possible matrix modification.

The mapping of sectors is similar to the metal-only case. However, in presence
of dielectrics, one needs to compute the cell modification first. Only after that, the
resulting function is determined. This because multiple combinations are possible.
Given how the algorithm is defined, only the addition of PEC is possible on a
dielectric surface, reducing the total number of possibilities to just four. Depending
on the original and modified function, all possible changes of the Z matrices are
described.

Removal of PEC on a function in air

This case is straightforward, and follows exactly the procedure outlined in Sec.
5.2.1. In fact, magnetic currents are not present, so only electric currents with
their respective rows and columns need to be removed from the two Z matrices.⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦

i

i

ZJ
1

⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦

i

i

ZJ
2

Addition of PEC on a dielectric function

The addition of PEC on a dielectric function removes the possibilities of magnetic
current flowing on it, but at the same time it makes the electric currents on both
sides independent of one another. Keeping in mind that the final system is given
by the sum of the two matrices, this means that the rows and columns of matrix
ZJ

2 linked to the i-th electrical function must be moved to a new position, leaving
the old ones filled with zeros; meanwhile, matrix ZJ

1 is modified with new rows and
columns to accommodate this change.
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⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦

N+1

N+1

ZJ
1

⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦

i N+1

i

N+1

ZJ
2

⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦

i

i

ZM
1

⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦

i

i

ZM
2

Addition of PEC on half of a dielectric function

The addition of PEC on only one cell of a function shorts the magnetic currents,
leaving the electric ones unchanged due to the dielectric cell left. The rows and
columns related to magnetic functions are thus removed from both matrices.

⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦

i

i

ZM
1

⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦

i

i

ZM
2

Addition of PEC on a PEC/dielectric function

The last possibility is the addition of PEC on dielectric for a function that is already
covered with a conductor in the other cell. Magnetic currents are not present, so no
modification is needed for them. Electric currents, instead, are made independent
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and the same aforementioned procedure is employed to create a new independent
equation from the rows and columns of the modified functions.

⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦

N+1

N+1

ZJ
1

⎡⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎦

i N+1

i

N+1

ZJ
2

Junctions have not been treated due to the complexity involved. This problem is
easily overcome by excluding these parts from the optimization process, considering
them as fixed features in the structure, which is often the case, for example in feed
lines.

5.3 Fitness function

The fitness function is at the core of the optimization process. Its definition in-
fluences the convergence of the algorithm to a suitable solution. Care must be
exercised in order to take into account the required performances, without slowing
the computation too much. In the previous work [14] the focus was on the multi-
band behaviour of a compact reconfigurable antenna. For this reason, the design
was optimized with respect to the return loss at multiple frequency points, with a
fitness value equal to the highest RL (worst performance) over all the bandwidth.

Here, instead, the aim is to design directive antennas able to concentrate the
radiated energy in a narrow beam. The fitness function must therefore be able to
quantify this performance effectively. The choice has been to sample the far field
radiation at different equispaced points in spherical coordinates around the z-axis
(broadside direction) as in Fig. 5.6. The total radiated power is then obtained by
integrating numerically these values:

P fit
rad =

∫ 2π

0

∫ θ1

0

⏐⏐Efar(θ, φ)
⏐⏐2

2η
sin θ dθdφ (5.4)

≈ 1

2η

N∑
i=1

⏐⏐Efar(θi, φi)
⏐⏐2 sin θi ∆θ∆φ (5.5)

where ∆θ and ∆φ are the discretization steps.
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Figure 5.6: Integration region for beam efficiency calculation (broadside direction)

The evaluation of the input matching is still important, since the far field is
computed by considering an input voltage of 1V, regardless of the input impedance.
This means that the input power is different for each individual:

Pin =
1

2
Re

{
|Vin|2

Zant

}
=

1

2
1V2Re

{
1

Zant

}
=

1

2
1V2Re {Yant}

By normalizing the radiated power with respect to the input power, neglecting
ohmic losses, the beam efficiency is obtained (Eq. (2.82)).

To take into account the power reflected back to the generator, we should also
consider the fraction of input power with respect to the available power of the
generator. Thus, a fitness function that takes into account both the beam efficiency
and the input matching can be constructed by multiplying these two factors:

fitness =

(
Pin

Pav

)
·
(
P fit
rad

Pin

)
=

(
1− |Γin|2

)
· BE (5.6)

where the input reflection coefficient is calculated from Eq. (2.69), recalled here:

Γin =
Zant − Z0

Zant + Z0

=
Zant − 50Ω

Zant + 50Ω

Due to the complexity of the optimization strategy, the algorithm could converge
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to a solution which has an extremely good directivity, but poor matching properties,
as emerged from preliminar tests. This would be undesirable in the validation phase,
when the introduced losses can detriment the performances, and the solution would
be rendered useless.

To avoid this behaviour, we can assign different exponents to the two factors in
order to weight them differently:

fitness =
(
1− |Γin|2

)α · BEβ (5.7)

Since both of them lie in the range [0,1], an exponent > 1 will decrease the relative
weight, while if it is between 0 and 1 the weight is increased. In the trial of the
optimizer, it has been found that the beam factor usually leads the optimizer to
premature convergence. For this reason, a value of α between 3 and 5 is chosen,
while β is kept between 0.3 and 0.6.

5.4 Computational cost reduction techniques

A series of techniques have been devised in order to reduce the computational
bargain posed by large problems. Geometric symmetry and inherent parallelism of
the optimizer are discussed next.

5.4.1 Geometric symmetry

A quite common solution for the reduction of problem size is that of considering
an infinite ground plane, instead of a finite one, with PEC boundary conditions.
Its presence is taken into account by modifying the Green’s function. Considering
a current radiating in presence of the ground plane, from image theory [3], we
can conclude that an image source can be placed below the ground plane with the
orientation given in Fig. 5.7. The field in the upper space is the superposition of
those radiated in free space by the original and image sources.

A further simplification can be achieved by exploiting symmetries in the ge-
ometry: if we allow a reduction of the solution space by considering only those
structures with a defined symmetry plane, we only need to simulate half of the
problem, relying on symmetry for the reconstruction of the complete one. This
assumption does not affect the algorithm effectiveness, since most actual design
require symmetric radiation patterns.

Currents cannot flow perpendicularly to the symmetry plane, otherwise they
would violate physical symmetry. For the same reason, current must be mirrored
across the plane. This produces a purely normal electric field on it, which is equiv-
alent to a PMC boundary condition as shown in Fig. 5.8.

The electromagnetic problem can be formulated equivalently considering half of
the structure with a symmetry plane over which PMC boundary conditions are
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Figure 5.7: Image currents orientation for a PEC ground plane
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Figure 5.8: Image currents orientation for a PMC plane

enforced, as schematized in Fig. 5.9.

Regarding the pre-process phase, this modification is easily implemented: since
no current can flow perpendicular to the symmetry plane at the intersection, there’s
no need to place basis functions there, much like for a real boundary. This means
that the geometry can be drawn for only half of the structure, without further
modification needed. Also the feed need to be symmetric. The input impedance is
then halved with respect to the simulated one:

Zant =
1

2
Zsym (5.8)

since two identical half-structures are placed in parallel from the input standpoint.

It is important to note that, contrary to the infinite ground plane assumption,
this technique relies on true geometric symmetry. Therefore, it does not introduce
any approximation in the solution.
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Figure 5.9: Geometric symmetry: full structure (left) and equivalent symmetric
problem with PMC boundary condition at x = 0 (right)

The EM solver will take into account image sources by modifying the Green’s
function. Limiting the analysis to electric currents, if we consider a PMC plane
place at x = 0, the radiation operators become:

E(r) = −ηLsym[J](r) (5.9)

H(r) = −Ksym[J](r) (5.10)

where

Lsym[J](r) = L[J](r) + L[Jim](r) =

= jk

∫
D
G(r, r′)J(r′) dD′ − 1

jk
∇

∫
D
G(r, r′)∇′ · J(r′) dD′

+ jk

∫
Dim

G(r, r′im)Jim(r
′
im) dD′ − 1

jk
∇
∫
Dim

G(r, r′im)∇′ · Jim(r′im) dD′ (5.11)

Ksym[J](r) = K[J](r) +K[Jim](r) =

=

∫
D
J(r′)×∇G(r, r′) dD′ +

∫
Dim

Jim(r
′
im)×∇G(r, r′im) dD′ (5.12)

51



5 – Optimization of low-profile directive antennas

The image quantities are related to the original ones by:

rim = −rx x̂+ ry ŷ + rz ẑ

Jim(rim) = −Jx(r) x̂+ Jy(r) ŷ + Jz(r) ẑ

A depiction of the radiation of original and image sources for a symmetric struc-
ture is shown in Fig. 5.10.

y
z

x

Jim

J

r′
r′im

r

Figure 5.10: Radiation of original and image currents to a point r for calculation
of the interaction matrix

5.4.2 Code parallelization

The most computation intensive step is the fitness calculation for each individual,
which requires the solution of a rather large linear system, depending on the mesh
finesse. A significant reduction of simulation time can be obtained by exploiting
the intrinsic parallelism of the genetic algorithm. In fact, each individual can be
evaluated independently of others, allowing to run multiple instances at the same
time on different threads of a multicore structure. To this purpose, the code has
been modified making use of the parfor command provided by Matlab Parallel
Computing Toolbox, which runs a for loop in a parallel fashion.

With the computation resources provided by HPC@POLITO, the code has
been deployed to a cluster node composed of 16 cores, with a sensible reduction in
the overall simulation time.
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Chapter 6

Results

This chapter presents the results obtained with the proposed optimization proce-
dure. The code has been applied to large planar antennas with different geometries
and feed mechanisms. The optimization parameters, as well as resulting structure
are described for each case.

6.1 Optimization of multiband antenna

Before attempting to optimize large structures, the code has been applied to the
design presented in [14]. Here, a compact multiband reconfigurable antenna was
considered. It is composed of an upper patch of size 0.17λ × 0.17λ, connected to
ground through 40 straps around the border, each representing a switch. The patch
is excited by means of an L-feed which is also optimizable.

The employed approach is to optimize both the patch and the switches together:
first, the matrix is solved and a multiport S-matrix is obtained, then a exhaustive
search among all switch configuration is performed to recover the best switch pat-
tern at each considered frequency in terms of return loss. The fitness is then equal
to the worst performance over the bandwidth:

fitnessRL = max
f

{min
i
{20 log10 |Γin(f, swi)|} (6.1)

Switches are modeled as ideal open and closed circuit, and they can be removed
by the optimization of metal straps to which they are attached. It is clear that a
large number of switches will likely result in better perfomances. However, since
each switch must be driven, the complexity of the network (not considered here)
grows accordingly, balancing the performances. For this reason, the total number
of switches has been considered as a penalty in the fitness evaluation, with a linear
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combination of factors:

fitness = α fitnessRL + β
1

Nsw

(6.2)

In order to initialize the population efficiently, a series of consideration have been
made. First, a design with plenty of metal will result in a more robust structure
once it is realized; this is especially important if, as in this case, the inside is filled
with air and no dielectric supports the patch. For this reason, the metallic surfaces
of individuals have been initialized with an higher probability of being present
(around 70%− 80%).

Following the same reasoning, if a large number of switches is present from the
beginning, it will slow down the optimization process. In this case the choice is to
place switches with an initial probability of 20%.

All the important parameters of the genetic algorithm are summarized in Tab.
6.1.

Parameter Value
Generations 300
Population size 400
Chromosome length 156
Fitness RL+Nsw

Crossover 2-points
Selection rank-based
Mutation rate 0.3%
Spontaneous 2%
Elite 1%

Table 6.1: Summary of GA parameters

Each structure has been simulated at 10 linearly spaced frequencies between
1.7GHz and 2.7GHz. Two different runs of the algorithm have been made, with
different weights for the cost function. In the first case, the focus was on the input
matching, while in the second one a lower number of switches has been preferred by
increasing the relative weight. Results are summarized in Tab. 6.2, while optimized
structures are shown in Fig. 6.1a and 6.1b.

Plots of the input matching for the two cases are reported in Fig. 6.2. It is
clear that an higher number of switches results in much better performances, at
the expense of a complicated driving network.

It can be interesting to look at the different switch configurations: in Fig. 6.3a it
is clear that most of the switches are needed to obtained the prescribed behaviour
over all the bandwidth. In particular, only switch 11 is always open, meaning that

54



6 – Results

α = 0.8 α = 0.3
β = 0.2 β = 0.7

S11max −10.08 dB −15.85 dB
S11min −30.09 dB −43.90 dB

N➦ switch 14 4
Opt. time 12h34m 15h12m

Table 6.2: Optimization results

z

x y

(a) Case α = 0.8, β = 0.2

z

x y

(b) Case α = 0.3, β = 0.7

Figure 6.1: Resulting structures for the two cases

it can be removed without modifying the performances. In Fig. 6.3b, as expected,
a lower number of switches results in a simpler configuration.

It is useful to compare the simulation time for the two cases: as expected, when
the input matching is favored the number of switches increases quickly and the
simulation time for each generation increases exponentially (Fig. 6.4a) due to the
time required to explore all the 2Nsw possible configurations. In the second case,
instead, the number of switches does not increase significantly from one generation
to the next, yielding an almost constant simualation time per generation, as shown
in Fig. 6.4b.
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Figure 6.2: S11 of the two optimized structures
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(b) Case α = 0.3, β = 0.7

Figure 6.3: Switch patterns for the two cases
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Figure 6.4: Simulation time comparison (only the first 40 generations are shown
for clarity)
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6.2 Pin fed planar antenna

In order to obtain a low-profile directive antenna, a planar geometry has been
considered. It consists of an upper patch of dimensions 2λ × 2λ suspended above
a ground plane. The antenna is fed through a small pin placed at the center of
the patch (Fig. 6.14a). Since the simulator can only deal with surfaces, the pin
has been modeled as a thin strip, with a width much shorter than a wavelength,
respecting the symmetry imposed by the model (fig. 6.5).

xy

z

Figure 6.5: Particular of the pin feed modeling with assigned mesh

6.2.1 Infinite ground plane

In the first iteration, the structure has been simulated above an infinite ground
plane at z = 0 and with a symmetry plane at x = 0. This allowed to benchmark the
simulation time and the feasibility of the expected performances. The optimizable
portions have been chosen to cover all the upper patch, with square sectors of
dimensions λ/16 × λ/16. A guard area has been left around the feed junction to
ensure a correct excitation, as can be seen in Fig. 6.14b. The whole structure has
been meshed adaptively with a finer resolution (≈ λ/30) near the feed and a coarser
one (≈ λ/16) far away from it (Fig. 6.6c).

The used GA parameters are listed in table 6.3.
The resulting geometry is shown in Fig. 6.7.

6.2.2 Finite ground plane

The same structure has been optimized embedding the finite ground plane in the
simulation. The ground plane is essentially a rectangular conductor, without so-
phisticated features and as such it has been meshed with a coarser resolution with
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(b) Optimization mask (green)

xy
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(c) Mesh

Figure 6.6: Pin fed planar antenna

respect to the upper patch. The geometry is shown in Fig. 6.8a. The optimization
mask and mesh for the upper patch are the same of Fig. 6.6, while a cut of the
ground plane is shown in Fig. 6.8b to highlight the mesh.

A comparison of the performances with infinite and finite ground plane are
summarized in Tab. 6.4, while far field patterns are shown in Fig. 6.9 for the two
cases.
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Parameter Value
Generations 300
Population size 500
Chromosome length 510
Fitness RL+FF
Weights α = 4, β = 0.6
Crossover 2-points
Selection roulette-wheel
Mutation rate 0.3%
Spontaneous 2%
Elite 1%

Table 6.3: Summary of GA parameters for pin fed structure

y

x

z

Figure 6.7: Optimized design with pin feed and infinite ground plane

6.2.3 Coaxial feed

To model the source in a realistic way, the structure in Fig. 6.7 has been modified
with a coaxial feed. This resulted in the structure of Fig. 6.10, where a piece of
coaxial with a length of λ/10 has been placed below the ground plane, with the
inner conductor extending to contact the upper patch. A waveguide port has been
placed on the cable cross section at a distance of λ/10 from the ground plane.

A simulation has been run in CST, with a frequency span from 2.2GHz to
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(b) Cut of the ground plane mesh

Figure 6.8: Pin fed planar antenna with finite ground plane

S11 [dB] Dmax [dBi] HPBW ηap
Inf. ground −8.36 17.73 23.6◦ 1.18

Finite ground −6.16 16.33 24.48◦ 0.85

Table 6.4: Comparison of pin fed structure in presence of infinite and finite ground
plane

2.8GHz. It is clear from Fig. 6.11 that the resonance frequency shifts below the
one optimized with the pin feed, which oversimplifies the behaviour. Nonetheless,
although being very directive, the structure maintains a sufficient matching of at
least −6 dB over a frequency range from 2.25GHz to 2.45GHz.

The directivity of the optimized antenna is shown in Fig. 6.12. In this case, the
backlobe radiation is significant, due to a more realistic feed modeling.

62



6 – Results

−90◦

−60◦

−30◦
0◦

30◦

60◦

90◦

−
2
0

−
1
00

1
0

2
0

Inf. ground plane

Finite ground planes

(a) φ = 0◦

−90◦

−60◦

−30◦
0◦

30◦

60◦

90◦

−
2
0

−
1
00

1
0

2
0

Inf. ground plane

Finite ground plane

(b) φ = 90◦

Figure 6.9: Far field directivity [dBi] of pin feed design with infinite and finite
ground plane
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Figure 6.10: Coaxial feed model with lumped source excitation (red)
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Figure 6.11: |S11| of the coaxial fed structure
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Figure 6.12: Far field directivity [dBi] of coaxial fed structure
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6.3 Slot coupled microstrip planar antenna

Performances obtained with the pin fed patch were not satisfactory in terms of
bandwidth. This is probably due to the pin itself, which has a narrow frequency
response. Therefore, a slightly different feed mechanism has been considered: it
consists of a rectangular aperture on the ground plane, fed by a microstrip trans-
mission line placed on a substrate below the ground plane. An advantage of this
feeding, known as aperture coupling [13], is that the feed network is isolated from
the radiating element by the ground plane, which prevents spurious radiation.

A cross section of the microstrip line is shown in Fig. 6.13a, while the slot
dimensions are reported in Fig. 6.13b. To improve coupling, a stub of length λ/4
has been placed on the microstrip line beyond the slot.

h = 4 mm

w = 19.66 mm

(a) Microstrip line cross section

w = λ
4 = 30.71 mm

=3.07 mm

h = λ
40

(b) Slot dimensions

Figure 6.13: Feeding characteristics

The upper patch has been subdivided in 504 optimizable sectors, each with
dimensions λ/16 × λ/16, with a guard area above the slot in order to ensure a
correct coupling between the microstrip feed and the upper patch (Fig. 6.14). The
meshing of the structure is detailed in Sec. 6.4.2, where an in-depth analysis is
carried out on the mesh accuracy.

GA parameters used are summarized in Tab. 6.5. With respect to previous
runs, the size of the population has been slightly decreased and the crossover is
done based on ranking to prevent a premature convergence of the algorithm. The
optimization took about 15 hours, after which the resulting geometry of Fig. 6.15
was obtained.

A frequency sweep has been simulated to check the bandwidth of the optimized
structure. As can be seen in Fig. 6.16, the resonance has shifted slightly to an higher
frequency of 2.51GHz. The reflection coefficient is coherent with the optimized
values.

The resulting radiation pattern are shown in Fig. 6.17 for the optimized fre-
quency and for the resonance one.

A summary of the performances is presented in Tab. 6.6.
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Figure 6.14: Slot coupled planar antenna
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Parameter Value
Generations 500
Population size 400
Chromosome length 504
Fitness RL+FF
Weights α = 3, β = 0.8
Crossover 2-points
Selection rank-based
Mutation rate 0.3%
Spontaneous 2%
Elite 1%

Table 6.5: Summary of GA parameters for slot coupled structure

y

x

z

Figure 6.15: Optimized design for slot coupled structure (ground plane not shown
for clarity)

S11 [dB] Dmax [dBi] HPBW ηap
Slot coupled −6.8 14.15 22.44◦ 0.51

Table 6.6: Comparison of pin fed structure in presence of infinite and finite ground
plane
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Figure 6.16: |S11| of the slot coupled structure
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Figure 6.17: Far field directivity [dBi] in the two principal planes, at 2.44 GHz
(optimized frequency) and 2.51 GHz (resonance)
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6.4 Modeling evaluation

6.4.1 Effect of mesh singularities

During the optimization process it frequently happens that, in the resulting struc-
ture, two nearby metal sectors share a common node without touching each other
(Fig. 6.18). The employed mesh will therefore be singular, without the ability to
represent real situations. This can cause problems in the prototyping phase where,
due to fabrication tolerances, regions that are not meant to overlap can slightly
touch, allowing current to flow between them. Thus, the optimization mesh can
not be considered reliable with respect to the final prototype.

Figure 6.18: Mesh singularity

For this reason, in the postprocessing phase all singular points are removed by
trimming the edges near corners (Fig. 6.19). The geometry can be then meshed
again and simulated with a commercial EM software. Results did not show sig-
nificant changes in the radiation pattern, as can be seen in Fig. 6.20 for the two
principal planes, with slight differences probably due to the different meshes em-
ployed.

This process has been automated by creating a custom geometry that can be
subsequently subtracted from the original one by a boolean operator on surfaces.

Microstrip source definition

The definition of the source excitation for microstrip lines is particularly challeng-
ing, since the MoM can only deal with lumped edge sources. Different approxima-
tions have been tested, placing a shorting wall at the beginning of the microstrip.
The source has been placed in three different positions, as shown in Fig. 6.21. No
significant changes in the obtained input impedance have been noticed between
them. For simplicity, all subsequent models have been simulated with the configu-
ration of Fig. 6.21c.
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(a) (b)

Figure 6.19: Example of optimized structure features: before (a) and after (b)
the trimming process to remove mesh singularities
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Figure 6.20: Far field directivity [dBi] in the two principal planes, before and
after the removal of singularities

6.4.2 Mesh size

Large discrepancies have been found in the calculation of the input impedance in
relation to the mesh size. In particular, for a thin microstrip height of about 1
mm, the resolution must be on the order of λ/240 to model the feed correctly. This
is due to the inherent limit of the mesh resolution when geometrical features are
much smaller than the wavelength. Moreover, at the feed edge, the mesh must be
fine enough to describe the current distribution along the width of the microstrip.

For this reason, a parametric analysis has been carried out. In FEKO, a simple
slot coupled rectangular patch of dimensions λ/2×λ/2 has been simulated above a
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(a) (b) (c)

Figure 6.21: Different positions for the lumped edge source on the microstrip line:
at the junction with the ground plane (a), in the middle (b) and at the height of
the microstrip (c)

ground plane, for different mesh sizes. Since the modeled structure is well known for
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Figure 6.22: S11 as a function of mesh size (normalized to the wavelength)

its good matching properties, a computed S11 of around−10 dB has been considered
reliable. As indicated by Fig. 6.22, a mesh with a dimension of λ/30 has been
deemed suitable for the optimization, considering the trade-off with computation
time.

Moreover, it has been found that the upper patch mesh is crucial in the simula-
tion phase. This can be explained considering that, due to the optimization process,
different metal parts are removed randomly. Without an a priori knowledge of the
final geometry, it is almost impossible to forecast where the electromagnetic field
will have the fastest variations. This means that a conservative resolution must be
chosen onto and near optimazible surfaces.
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On the contrary, the mesh on ground plane can be relaxed, since the geometry
is regular and fixed. To sum up, the upper patch and the microstrip line have been
meshed with a size of λ/30, while for the ground plane a dimension of λ/10 has
been chosen (with a refinement below the microstrip) as shown in Fig. 6.23.

Figure 6.23: Exploded view of the upper patch and ground plane mesh

6.5 Prototyping

After a thorough validation of the design optimized in Sec. 6.3, the next step
involved the prototyping of the structure. Due to the complex geometry, a series
of techniques have been used to reproduce a faithful real model.

6.5.1 Layout

Since the structure was optimized in air, a need for a dielectric to provide mechanical
support to the structure arose. This prompted the choice of ROHACELL 31HF,
a foam based material with low dielectric constant and negligible absorption in
the high frequency range, so as to approximate as good as possible the electrical
properties of air. The final layout is schematized in Fig. 6.24.

Due to the intricate geometry of the upper patch, a mask has been manufactured
in resin with a laser 3D printer (Fig. 6.25). This procedure allowed a low cost, fast
prototyping with a satisfactory precision.
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Figure 6.24: Layout of the prototyped structure

Figure 6.25: Manufactured resin mask placed over the geometry outline
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Chapter 7

Conclusions

This work presented a novel approach to the optimization of directive antennas.
By virtue of an efficient combination of computational methods and optimization
algorithms, the automated design of complex antennas has been demonstrated to
be feasible.

The proposed method allows to model large structures with full-wave accuracy,
giving results that require only minor modifications in the post-process phase.

Due to the large size of solution space, results are characterized by non-intuitive
geometries, which would not be conceivable with analytical tools.

Different starting structures have been tested, for which the resulting optimized
design have been validated with the help of commercial softwares. The impact
of mesh dimensions have been investigated, finding satisfactory trade-offs between
accuracy and solution time.
Future developments can include:

❼ combination of directive antennas with reconfiguration capability to allow the
optimization of beam reconfigurable antennas

❼ inclusion of bandwidth constraints in the optimization, which requires the
computation of one matrix for each considered frequency

❼ addition of dielectrics in the simulation of large structures, for which a conve-
nient formulation has been developed. However, at the moment, the resulting
size of numerical problem limits its application to real cases

❼ refinements the objective function, taking into account the complexity of the
resulting structure and different performances, for example the polarization
properties of radiated fields

❼ improvements in the solution of the linear system resulting from the discretiza-
tion, through matrix partitioning of portions of the modeled structure which
are not modified during optimization

74



Appendix A

GiD Problem type

One of the goals of this work was the creation of a suitable procedure to define an
optimizable design, regardless of the employed code. This has been achieved by
exploiting the customization offered by the GiD preprocessor. In particular, the
software allows to define custom problem types, namely a set of arbitrary condi-
tions that can be applied over simulation entities and are then transferred to the
corresponding mesh elements.

CONDITION: Sector

CONDTYPE: over surfaces

CONDMESHTYPE: over body elements

QUESTION: SectorNumber

VALUE: 1

END CONDITION

CONDITION: Optimize

CONDTYPE: over surfaces

CONDMESHTYPE: over body elements

END CONDITION

First of all, the geometry must be drawn with each optimizable sector defined as
a different surface, even if it is coplanar with other adjacent ones. Then, to obtain
the sector mapping described in Sec. 5.1, a boolean condition, named optimize, is
applied over all the surfaces that the designer wishes to optimize. The last step
requires the numbering of each sector with a progressive index; in a realistic case,
the number of sectors could reach the hundreds, so the indexing process has been
automated with a customized macro written in Tcl/Tk language.
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A – GiD Problem type

proc ::assign_sector {} {

set point_ids [list]

foreach item [GiD_Info conditions Optimize geometry] {

lappend sector_ids [lindex ✩item 1]

}

set sector_ids [lsort ✩sector_ids]

for { set index 0 } { ✩index < [llength ✩sector_ids] }

{ incr index } {

GiD_AssignData condition Sector Surfaces [expr

✩index +1] [lindex ✩sector_ids ✩index]

}

}

Having done these steps, the structure can finally be meshed and all required
informations are passed to the optimizer code by means of custom generated text
files.
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Appendix B

Matlab code

This appendix contains the Matlab code developed during this thesis work. The
most notewothy scripts are included, namely the MoM solver routine (including
matrix manipulation) and the fitness function.

B.1 MoM solver

1 function [Y,I,Imap] = MoMsolver_v2(meshdata ,Z1,Z2,individual)

2 % [Y,I] = MoMsolver_v2(meshdata ,Z1,Z2,individual)

3 % Solves the MoM linear system and provides the admittance

matrix of the n-port

4 % where port 1 is the excitation , and the remaining are the

switch ports

5 % INPUT:

6 % - meshdata: structure containing the mesh information

of the structure

7 % - Z1: MoM matrix for volume 1

8 % - Z2: MoM matrix for volume 2

9 % - individual: chromosome of the individual to analyze

10 % OUTPUT:

11 % - Y: admittance matrix of the ✬reduced ✬ system after

optimization

12 % - I: vector of current coefficients for each port

13 % - Imap: array for mapping the current coefficient to the

basis

14 % functions

15
16 %% Geometry manipulation

17 % Change of optimized cells properties. Different treatment

for dielectric
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18 % and PEC cells

19 % PEC: 1->present 0->removed

20 % Dielectric: 1->PEC over dielectric 0->only dielectric

21 if isfield(meshdata ,✬sectorCell ✬)

22 die_mask = meshdata.cellType == 1; %mask for optimizable

dielectric cells

23 pec_mask = meshdata.cellType == 2; %mask for optimizable

PEC cells

24
25 %PEC cells changed when 0

26 opt_mask = false(length(pec_mask) ,1);

27 opt_mask ([ meshdata.sectorCell{individual ==0}]) = true; %

optimization mask for PEC

28 pec_mask = pec_mask & opt_mask; %true for changing cells

29 %dielectric cells changed when 1

30 opt_mask = false(length(die_mask) ,1);

31 opt_mask ([ meshdata.sectorCell{individual ==1}]) = true; %

optimization mask for dielectric

32 die_mask = die_mask & opt_mask; %true for changing cells

33
34 newCellType = meshdata.cellType;

35 % change die to PEC/die 1->3

36 newCellType(die_mask) = 3;

37 % remove PEC 2->0

38 newCellType(pec_mask) = 0;

39 end

40
41 if isfield(meshdata ,✬sectorFunc ✬)

42 die_mask = (meshdata.funcType == 1) | (meshdata.funcType

== 4); %mask for optimizable dielectric functions

43 pec_mask = (meshdata.funcType == 2) | (meshdata.funcType

== 5); %mask for optimizable PEC functions

44
45 opt_mask = false(length(pec_mask) ,1);

46 opt_mask ([ meshdata.sectorFunc{individual ==0}]) = true; %

optimization mask for PEC

47 opt_mask ([ meshdata.sectorBoundary{individual ==0}]) = true

;

48 pec_mask = pec_mask & opt_mask; %true for changing cells

49
50 opt_mask = false(length(die_mask) ,1);

51 opt_mask ([ meshdata.sectorFunc{individual ==1}]) = true; %

optimization mask for dielectric

52 opt_mask ([ meshdata.sectorBoundary{individual ==1}]) = true

;

53 die_mask = die_mask & opt_mask; %true for changing cells
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54
55 changed_mask = die_mask | pec_mask;

56 changedFunc = unique(find(changed_mask == 1));

57 end

58
59 %% port information computation

60 Vin=1; %input voltage , just for clarity (can be omitted)

61 Nrow=max(meshdata.funcs (:,8)); %number of unknowns

62 Nport=size(meshdata.ports ,1); %total number of ports

63
64 % check which ports are still present

65 portOpt = [];

66 for iPort =1: Nport

67 %check which port has been removed after optimization

68 portFunc=meshdata.ports{iPort }(:,1);

69 if ~all(ismember(portFunc ,changedFunc)) %port still

present

70 portOpt = [portOpt iPort]; %add port to remaining

ports

71 elseif iPort ==1

72 warning(✬Port 1 (feed) has been removed by

optimization ✬);

73 end

74 end

75 Nport = length(portOpt); %number of ports after optimization

76
77 %% creation of port RHS vectors

78 V = zeros(Nrow ,Nport); %matrix of excitation vectors

79 portID = zeros(Nport ,Nrow);

80 for iPort =1: Nport

81 portFunc = meshdata.ports{portOpt(iPort)}(:,1); %port

function index

82 l = meshdata.ports{portOpt(iPort)}(:,4); %function side

length

83 u = meshdata.ports{portOpt(iPort)}(:,5); %port reference

direction

84
85 rowFunc = meshdata.funcs(portFunc ,8);

86 V(rowFunc ,iPort) = Vin*l.*u; %excitation vector of port

87
88 % compute vector that identifies each port taking into

account the

89 % reference direction and length

90 portID(iPort ,rowFunc) = (l.*u) ✬; %vector for port current

extrapolation

91 end

79



B – Matlab code

92
93 %% Z matrix manipulation

94 rowMap = 1:Nrow;

95 Imap = cell(Nrow ,1);

96 for iRow = 1:Nrow %loop on matrix rows

97 rowFunc = find(meshdata.funcs (:,8)==iRow); %select

function associated with same unknown

98
99 if all(ismember(rowFunc ,changedFunc)) %function is

changed

100 % cells of function (only on one side because they

change in the same way)

101 cells = meshdata.funcs(rowFunc (1) ,1:2);

102 cellsType = newCellType(cells);

103 % check new function type

104 newFuncType = evalFuncType(cellsType (1),cellsType (2))

;

105
106 % evaluate possible changes

107 if (meshdata.funcType(rowFunc (1))==2) && (newFuncType

== 0) %PEC removed

108 % only electric current , don ✬t need to check

109 Z1(rowMap(iRow) ,:,:) = []; %remove row and column

from region 1

110 Z1(:,rowMap(iRow) ,:) = [];

111 Z2(rowMap(iRow) ,:,:) = []; %remove row and column

from region 2

112 Z2(:,rowMap(iRow) ,:) = [];

113
114 V(rowMap(iRow) ,:) = []; %remove row from

excitation vector

115 portID(:,rowMap(iRow))=[]; %remove portID column

116 % update map to new row configuration

117 rowMap(iRow +1: end) = rowMap(iRow:end -1);

118 Imap(rowMap(iRow)) = [];

119
120 elseif (meshdata.funcType(rowFunc (1))==1) && (

newFuncType == 3) %add PEC on dielectric

121 if meshdata.funcs(rowFunc (1) ,10)==0 %electric

current

122 Z2 = [Z2; Z2(rowMap(iRow) ,:,:)]; %add new

independent equation in Z2

123 Z2 = [Z2 Z2(:,rowMap(iRow) ,:)];

124 Z2(rowMap(iRow) ,:,:) = zeros(1,size(Z2 ,2),

size(Z2 ,3)); %set to 0 column related to J

on other side
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125 Z2(:,rowMap(iRow) ,:) = zeros(size(Z2 ,1) ,1,

size(Z2 ,3));

126
127 Z1 = [Z1; zeros(1,size(Z1 ,2),size(Z1 ,3))]; %

add row and column to the Z1 matrix

128 Z1 = [Z1 zeros(size(Z1 ,1) ,1,size(Z1 ,3))];

129
130 V = [V; V(rowMap(iRow) ,:)]; %add row to

excitation vector

131 portID = [portID portID(:,rowMap(iRow))]; %

add portID column

132 % update map information

133 Imap{rowMap(iRow)} = rowFunc (1); %add

electric current to map for region 1

134 Imap{size(Z1 ,1)} = rowFunc (2); %add electric

current at bottom of map for region 2

135
136 else %magnetic current

137 Z1(rowMap(iRow) ,:,:) = []; %remove row and

column from region 1

138 Z1(:,rowMap(iRow) ,:) = [];

139 Z2(rowMap(iRow) ,:,:) = []; %remove row and

column from region 2

140 Z2(:,rowMap(iRow) ,:) = [];

141
142 V(rowMap(iRow) ,:) = []; %remove row from

excitation vector

143 portID(:,rowMap(iRow))=[]; %remove portID

column

144
145 % update map to new row configuration

146 rowMap(iRow +1: end) = rowMap(iRow:end -1);

147 Imap(rowMap(iRow)) = [];

148 end

149 elseif (meshdata.funcType(rowFunc (1))==4) && (

newFuncType == 3) %add PEC on PEC/dielectric

150 % only electric current , don ✬t need to check

151 if meshdata.funcs(rowFunc (1) ,10)==0 %electric

current

152 Z2 = [Z2; Z2(rowMap(iRow) ,:,:)]; %add new

independent equation in Z2

153 Z2 = [Z2 Z2(:,rowMap(iRow) ,:)];

154 Z2(rowMap(iRow) ,:,:) = zeros(1,size(Z2 ,2),

size(Z2 ,3)); %set to 0 column related to J

on other side
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155 Z2(:,rowMap(iRow) ,:) = zeros(size(Z2 ,1) ,1,

size(Z2 ,3));

156
157 Z1 = [Z1; zeros(1,size(Z1 ,2),size(Z1 ,3))]; %

add row and column to the Z1 matrix

158 Z1 = [Z1 zeros(size(Z1 ,1) ,1,size(Z1 ,3))];

159
160 V = [V; V(rowMap(iRow) ,:)]; %add row to

excitation vector

161 portID = [portID portID(:,rowMap(iRow))]; %

add portID column

162 % update map information

163 Imap{rowMap(iRow)} = rowFunc (1); %add

electric current to map for region 1

164 Imap{size(Z1 ,1)} = rowFunc (2); %add electric

current at bottom of map for region 2

165 else %magnetic current

166 error(✬Wrong function type definition ✬); %

magnetic current not possible on this type

of cell

167 end

168 elseif (meshdata.funcType(rowFunc (1))==1) && (

newFuncType == 4) %add PEC on dielectric for half

function

169 if meshdata.funcs(rowFunc (1) ,10)==0 %electric

current

170 %nothing to do, except for updating the

current map

171 Imap{rowMap(iRow)} = rowFunc;

172 else %magnetic current

173 Z1(rowMap(iRow) ,:,:) = []; %remove row and

column from region 1

174 Z1(:,rowMap(iRow) ,:) = [];

175 Z2(rowMap(iRow) ,:,:) = []; %remove row and

column from region 2

176 Z2(:,rowMap(iRow) ,:) = [];

177
178 V(rowMap(iRow) ,:) = []; %remove row from

excitation vector

179 portID(:,rowMap(iRow))=[]; %remove portID

column

180
181 % update map to new row configuration

182 rowMap(iRow +1: end) = rowMap(iRow:end -1);

183 Imap(rowMap(iRow)) = [];

184 end
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185 else

186 error(✬Manipulation not possible ✬);

187 end

188 else %function not changed

189 Imap{rowMap(iRow)}= rowFunc;

190 end

191 end

192 Nfreq = size(Z1 ,3);

193 Nfunc = size(Z1 ,1); %number of unknowns after optimization

194
195 %% computation of Y matrix

196 I = zeros(Nfunc ,Nport ,Nfreq); %initialize matrices

197 Y = zeros(Nport ,Nport ,Nfreq);

198 Ztot = Z1 + Z2; %PMCHWT formulation

199 Vtot = V + zeros(size(V)); %add zero forcing vector in region

2 because there is no incident field there

200
201 for iFreq = 1: Nfreq

202 I(:,:,iFreq) = Ztot(:,:,iFreq)\Vtot; %solution of MoM

system at each frequency

203 Y(:,:,iFreq) = (1/Vin)*portID*I(:,:,iFreq); %computation

of Y matrix

204 end

205
206 end

B.2 Fitness function

1 function fitness = fitnessFF_4(pop ,filepath ,filename)

2 % Evaluates the fitness value for each individual of the

population

3 % INPUT:

4 % - pop: array with population chromosomes

5 % - filepath: name of the directory of the project

6 % - filename: name of the .mix.msh file of the structure

7 % OUTPUT:

8 % - fitness: array with fitness values for each individual

9
10 %% global parameters

11 Z0 = 50;

12 Vin = 1; %input voltage

13
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14 %% process input parameters

15 Ninds = size(pop ,2); %number of individuals

16
17 simFreq = readSimFreq(filepath); %read simulation frequencies

from file

18 Nfreq=length(simFreq);

19
20 meshdata = meshRead(filepath ,filename); %read structure

geometrical data

21
22 Z = readZmatrix(filepath); %read structure Z matrix

23 if size(Z,3)~=Nfreq

24 error(✬Number of Z matrices does not correspond to number

of simulation frequencies ✬);

25 end

26
27 wRL = 4; wDir = 0.6; %weigths for return loss and directivity

28
29 phi = deg2rad(linspace (-90,90,91)); %grid points (only half

because of symmetry)

30 theta = deg2rad(linspace (0,5,5));

31 deltaPhi = phi(2)-phi(1);

32 deltaTheta = theta (2)-theta (1);

33
34 %% loop over individuals to calculate fitness

35 fitness = ones(1,Ninds);

36 parfor iInds =1: Ninds

37 individual=pop(:,iInds); %select current individual

38
39 %% calculation of individual electrical performances

40 % solve MoM system for Y matrix

41 [Y, Jport] = MoMsolver(meshdata ,Z,individual);

42 Y=squeeze (2*Y); %symmetry

43
44 Zin = 1./Y; %input impedance

45 Pin = 0.5*1* real(Y); %input power

46
47 gamma = (Zin -Z0)./(Zin+Z0); %reflection coefficient

48
49 % Far Field fitness calculation

50 Jfunc = Jport;

51 Jcell = Jfunc2cell(meshdata ,Jfunc);

52
53 FFdata = FFcalculator_symm(meshdata ,simFreq ,Jcell ,phi ,

theta);

54 fitDir = (1/ Pin)*...
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55 sum(FFdata.Emag (:) .^2* deltaPhi*deltaTheta .*sin(FFdata

.Theta (:))); %far field power

56
57 % Fitness calculation

58 fit = (1-abs(gamma)^2)^wRL * fitDir^wDir;

59
60 % Fitness assignment

61 fitness(iInds) = -fit; %worst far field

62 end

63 end
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[21] Pasi Ylä-Oijala, Matti Taskinen, and Jukka Sarvas. Surface integral equation
method for general composite metallic and dielectric structures with junctions.
Progress In Electromagnetics Research, 52:81–108, 2005.

87


	Introduction
	Directive antennas
	Optimization strategies
	Objective

	Electromagnetic formulation
	EM radiation in homogeneous space
	Vector wave equation
	Boundary conditions
	Green's function
	Field-source relations in homogeneous space

	Radiation and scattering formulation
	Surface Equivalence Theorem
	Surface Integral Equation

	Antenna parameters
	Input matching
	Far-field radiation
	Effective area
	Beam efficiency


	Computational electromagnetics
	Method of Moments for electromagnetic simulation
	Method of Moments formulation
	Basis functions
	Discretization by Galerkin's method and RWG basis functions
	Source modeling

	Analysis of multiport structures
	Far Field calculation

	Optimization techniques in antenna design
	Genetic algorithms
	Evolutionary operators
	Optimization flow

	Local optimization
	GA and MoM for antenna design

	Optimization of low-profile directive antennas
	Preprocessing
	Matrix manipulation
	Metal structures
	Composite metal/dielectric structures

	Fitness function
	Computational cost reduction techniques
	Geometric symmetry
	Code parallelization


	Results
	Optimization of multiband antenna
	Pin fed planar antenna
	Infinite ground plane
	Finite ground plane
	Coaxial feed

	Slot coupled microstrip planar antenna
	Modeling evaluation
	Effect of mesh singularities
	Mesh size

	Prototyping
	Layout


	Conclusions
	Appendix GiD Problem type
	Appendix Matlab code
	MoM solver
	Fitness function

	Bibliography

		Politecnico di Torino
	2018-04-03T12:57:23+0000
	Politecnico di Torino
	Giuseppe Vecchi
	S




