POLITECNICO DI TORINO

Corso di Laurea in Ingegneria Informatica

Tesi di Laurea Magistrale

Packer-Complexity Analysis in PANDA

Advisors
prof. Antonio Lioy
prof. Davide Balzarotti

Samuele AICARDI

JANUARY 2018

Summary

Run-time packers are very popular among malware authors, who employ them as a way to prevent
static analysis and signature matching on malicious samples. While the concept of packing is
simple, modern packers often adopt very complex mechanisms to protect the code of the target
application by interleaving multiple layers of decryption and execution. To capture this complexity,
in 2015 Ugarte-Pedrero proposed a six-value metric to measure the complexity of runtime packers
[1]. In the paper, the authors performed a number of experiments using a set of dynamic binary
analysis techniques implemented on top of TEMU [2]. Unfortunately, this choice limited the
applicability of the solution to only Windows 32bit applications. The first goal of this project is
to take advantage of the PANDA analysis framework [3] to implement a packer analysis plugin
that can dynamically analyse a running application and compute the features required for the
complexity classification. This can bring this packer analysis approach to the tens of thousands
of malware samples that have been recorded with PANDA by other researchers. The goal of the
second part of the project is instead to investigate how the classification tool can be applied to
other architecture (e.g., ARM) and other operating systems (e.g, Linux) to allow for cross-system
comparisons of the packer complexity

111

Contents

1 Introduction 1
1.1 Context o o e 1
1.2 History o e e e 1
1.3 Thearmsrace. o e 2
1.4 Need for a global picture 2

1.4.1 A Longitudinal study of the complexity of run-time packers 3
1.4.2 TImplementation L Lo 5
1.4.3 Results e 5
1.5 Goal . . . o 6

2 Used Tools 7
2.1 Introduction 7
2.2 QEMUo e 7
2.3 TEMU and DECAF e 7
2.4 PANDA . . . 8

24.1 Record & Replay e 8
242 How-To e 10

3 The Framework 12
3.1 Deep Packer Inspection L 12
3.2 Produce the Graph 13
3.3 Complexity Ranking 14

4 Implementation 15
4.1 Goal Description L 15
4.2 Why PANDA e 15

4.2.1 Advantages and Limitations oL Lo 16
4.3 The Starting Framework L Lo 16
4.4 Porting to PANDA 17
4.4.1 How PANDA works 17
4.4.2 Steps . .o o e 18

4.4.3 Plugin Components 19

4.4.4 Problems e 19
4.5 Windows 7 o e e e 19
4.5.1 Plugin Components 20
4.5.2 Heuristics oL 20
4.5.3 Results e 20
4.5.4 Problems 21
4.6 Linux e e 22
4.6.1 Plugin components L Lo e 22
4.6.2 Results e 23
4.6.3 Problems 23
4.7 ARM . . o 24
4.7.1 Plugin components Lo e 24
4.7.2 Results 24
4.7.3 Problems 24
4.8 Porting to Pandal L 24
4.8.1 Results 25
4.8.2 Problems 29
4.9 Non-implemented features Lo 29
Automated Testing Framework 30
5.1 The architecture L L 30
5.2 Simplify the execution L Lo 30
5.2.1 Requirements 31
5.22 How-to e e 33
5.2.3 Create therecording L L 33
5.2.4 Perform the analysis L L o 34
5.2.5 Produce the final results L oL o 34
5.3 Automate large scale tests L. L 34
5.3.1 Requirements L e e 34
5.3.2 How-to e 35
5.3.3 Scripts execution 36
5.4 Performance 36
Comparison with the State of the Art 37
6.1 Comparison with the State of the Art 37
6.2 Interpret the graphs oL 39
6.2.1 Colour Blindness 39
6.2.2 Processes 39
6.2.3 Layerso 39

6.2.4 Memory regions (boxes) Lo e 40

6.2.5 Memory write operations (green and red connectors) 41

6.2.6 Execution transitions (grey and blue connectors) 41

6.2.7 Frames 41

6.3 Comparisons e e 42
6.3.1 Example 1. o e 42

6.3.2 Example 2. 42

6.3.3 Example 3. 43

7 How-to 45
8 Conclusions 47
A Results of the analysis 50
B Simplify the Execution 54
B.1 run_target-mal.py 54
B.2 automated_graph_production.sh Lo oo Lo 64

C Large Scale Analysis 65
D How to run the replays 67
Bibliography 73

VI

Chapter 1

Introduction

1.1 Context

Nowadays malicious programs represent a real threat against normal users. In the fight against
malware authors, researchers need to come up with new techniques to instrument Anti-Viruses
(AV) the proper way to detect new malware families. Malwares can be analysed using two main
approaches. The first one is called static analysis. It consists in looking at the target binary
without executing it, typically with the help of some disassembler tools such as Ida [4], Radare
[5], Hopper [6] and BinaryNinja [7], disclosing the malware’s disassembled code. This gives a
broad view of what the target executable can do, regardless of all the environmental factors (time,
location, machine, operating system and so on) that can influence the particular execution of the
target executable. The second approach is called dynamic analysis. It consists of analysing the
execution of the target binary without looking at its disassembled code. It gives a narrow view
showing what that specific malware execution actually does with that precise set of environmental
factors (at that time, on that machine and operating system, in that location).

These techniques can be combined to spot malicious behaviours among a set of executables.
What a normal anti-virus does to check whether a target file is malicious or not is to compare
it to some known malwares. The comparison is performed by checking the target executable’s
signature against a list of signatures, each of them corresponding to a well-known malware family.
A signature is just a composition of some of the distinguishing traits of the target executable,
typically something that can be derived from its source code, e.g. a list of used functions or the
unkeyed hash of part of its code

1.2 History

The first runtime packers were designed when there still was the problem of running out of storage
capacity. Runtime packers were in fact able to reduce (compress, or “pack”) the space an executable
required to be stored on disk without modifying the executable’s behaviour at runtime. Packing an
executable means to take its code and compress it as if it was a normal file that needs to be put in
a zipped archive. Typically an executable can be compressed because its binary code contains on
average several repeated instructions that can be represented in a more compact way. Packing an
executable increases thus the entropy of the file itself. A packed executable is thus a smaller-in-size
version of the original executable. Nevertheless, it doesn’t show any modification to its original
behaviour, so that it will execute almost the same instructions at runtime: the only thing that
differs at runtime is the execution of a small routine that has the task of “unpacking” the code, i.e.
to bring the original code back in memory, so that it can be executed. Typically the unpacking
stub is one of the first routines to be executed after the program starts.

1

1 — Introduction

1.3 The arms race

Runtime packers are also very popular among malware authors because they can be used to trick
AVs. The main idea is to use a runtime packer to hide the malicious code. By doing so an AV
would not find anything suspicious after a normal scan, given that a typical scan performs only
some static analysis. In such a way runtime packing can be considered a technique to “obfuscate”
a part of the code (rather than to compress it), i.e. to shuffle the corresponding bytes such that
the original code cannot be understood with static analysis.

Runtime packing has become quite a common technique in the last years, such that anti-viruses
have developed good countermeasures against it, at least against the most common versions of pack-
ing. As it happened for many other arms races (e.g. the arms race between virtual machines and
the anti-virtual machines techniques!), the better anti-viruses became in de-obfuscating (unpack-
ing) malwares, the better malware authors became in finding new and more complicated ways to
obfuscate malicious code. There are several techniques to increase the complexity of the unpacking
routine such that unpacking cannot be done automatically by an anti-virus. Effort-wise, since a
normal anti-virus scan tries to unpack the target executable with a standard unpacker (e.g. UPX
[8]) one of the least expensive approaches consists in packing the original code multiple times. In
this way the anti-virus would stop at the first unpacking round, flagging the executable as "not
malicious”. Another approach that malwares adopt to counter-attack automatic anti-virus scans
is to interleave the unpacking routine with the execution of the already unpacked code, leaving
no distinct separation between the unpacking routine and the original code. Some malwares even
use multiple processes to disguise the malicious code: the unpacking routine can be split among
different processes or there could be one process that accesses another process’ memory to write
the original code.

The former techniques are just some examples of how difficult to instruct an anti-virus in a
proper way (i.e. to be able to identify malicious code in those different scenarios) can be. There
are several packing tools that can be found on the internet. Some of them are even tunable and
it is possible to choose different settings that will be applied while packing the executable. Some
malware authors prefer instead developing their own packing program, in order to be able to
fully customize it according to which malware they want to pack. This is the worst scenario for
researchers because there would be no chance for them to apply some automated tools/analysis
upon malwares packed by a custom packer. Either it is possible to get the source code of the
packer or there is no way to statically understand it by looking at the source code.

A lot of malwares are being created every day, far too many to think about analysing them
manually one by one. In this scenario it is more and more important to develop new dynamic
analysis techniques because it seems to be the only efficient way of approaching a packed malware,
if we want to detect it.

1.4 Need for a global picture

Nowadays it is more and more important to find a way to understand what are the most common
packing techniques used by malware authors in order to be able to set up a proper instrumentation
for anti-viruses. The need to have a global picture on the distribution of all the different techniques
that can be used to obfuscate a malware started urging: what are the most used ones? Which is
the most targeted operating system? For which architecture are they compiled?

In 2015 Ugarte-Pedrero et al. proposed an answer to those questions. They tried to verify
what is the percentage of malwares that are packed with off-the-shelf packers with respect to the
ones that use custom (and thus not so widespread) programs. They targeted malwares running for
Windows XP 32bit (Windows PE executables). Subsections 1.4.1, 1.4.2 and 1.4.3 are taken from
the paper by Ugarte-Pedrero et al. [1].

Ihttps://www.cyberbit.com/anti-vm-and-anti-sandbox-explained/

2

https://www.cyberbit.com/anti-vm-and-anti-sandbox-explained/

1 — Introduction

1.4.1 A Longitudinal study of the complexity of run-time packers
The contribution of the paper can be summed up in:

e a taxonomy for run-time packers to measure their structural complexity
e a complete framework to analyse the complexity of run-time packers

e a study of the complexity of both off-the-shelf packers and custom packed malware submitted
to the Anubis on-line sandbox covering a period of 7 years?

They designed a new way to classify the complexity of runtime packers according to a series of
factors that were chosen as the most relevant:

Unpacking Layers A layer is, intuitively, a set of memory addresses that are executed after being
written by code in another layer. When the binary starts its execution, the instructions loaded
from its image file belong to the layer £y. Later on, if an address written by any of those
instructions is executed, it will be marked as part of the next layer (in this case layer £;).

Parallel Unpacker Many packers employ several processes in order to unpack the original code.
Some packers take the form of droppers and create a file that is afterwards executed, while
others create a separate process and then inject the unpacked code into it.

Transition Model A transition between two layers occurs when an instruction at layer L; is
followed by an instruction at layer £; with i # j. In particular, forward transitions (j >
i) bring the execution to a higher layer, while backward transitions (j < i) jump back to a
previously unpacked layer. In the simplest case, there is only one transition from each layer
to the next one. This behaviour is called linear transition model. In case a packer does not
satisfy this definition, and therefore contains backward transitions from a layer to one of its
predecessors, the transition model is called cyclic.

Packer Isolation This feature measures the interaction between the unpacking code and the
original program. Simple packers first execute all the packer code, and once the original
application has been recovered, the execution is redirected to it. For these cases, a tail
transition exists to separate the two independent executions.

Unpacking Frames One form of interaction between the protected code and the unpacking rou-
tine can lead to a situation in which part of the code (either the unpacking routine or the
original binary) is written at different times. To model this behaviour, the concept of Frame
needs to be introduced. Intuitively, an unpacking frame is a region of memory in which we
observe a sequence of a memory write followed by a memory execution. Traditional run-time
packers have one unpacking frame for each layer, because the code is fully unpacked in one
layer before the next layers are unprotected. We call these packers single-frame packers.
However, more complex cases exist in which the code of one layer is reconstructed and ex-
ecuted one piece at a time. These cases involve multiple frames per layer and are called
multi-frame packers in our terminology.

Code Visibility In most of the cases the original code of the application is isolated from the
unpacking routines, and no write to the original code occurs after the control flow reaches
this code. However, more advanced multi-frame examples exist that selectively unpack only
the portion of code that is actually executed. This approach is used as a mechanism to
prevent analysts and tools from easily acquiring a memory dump of the entire content of the
binary.

Unpacking Granularity In case the protected code is not completely unpacked before its exe-
cution, the protection can be implemented at different granularity levels. In particular, we
distinguish three possible cases:

2http://anubis.iseclab.org/

http://anubis.iseclab.org/

1 — Introduction

1. Page level, in which the code is unpacked one memory page at a time.
2. Function level, in which each function is unpacked before it gets invoked.

3. Basic Block or Instruction level in which the unpacking is performed at a much lower
level of granularity.

Layers Transitions Isolation Frames Code Visibility: Granularity
Incremental > [Plage
[Single] SR S . v Ta[il Transiti]on A [Type V]
Type |l Sao Type 1l .
Cyclic <~ Multi-Frame » [Flunction
/ ~A > 4 -
Multi-layer < A |nter|eaved< X\ Shifting [Blasic block
decode » X
A > or instruction
Linear Single Frame frames
[Type 1] [Type IV] [Type VI]

Figure 1.1: Six-value metric to rank the packer complexity.

If used together with Ugarte-Pedrero’s classification, dynamic analysis can show how packers
behave at runtime. The classification also divides the huge number of packer malwares into few
bigger families, each one with a specific profile. The combination of all the former factors can be in
fact used to distinguish six different packer families, from the most simple to the most complicated
use of techniques. Figure 1.1 shows how to classify the complexity of a packer according to the
features it presents at runtime. Each column represents a specific feature and it shows how it can
be used to rank the packing complexity. From left to right we can distinguish the following families
of complexity:

Type 1 Packers represent the simplest case, in which a single unpacking routine is executed before
transferring the control to the unpacked program (which resides in the second layer).

Type 2 Packers contain multiple unpacking layers, each one executed sequentially to unpack the
following routine. Once the original code has been reconstructed, the last transition transfers
the control back to it.

Type 3 Packers are similar to the previous ones, with the only difference that now the unpacking
routines are not executed in a straight line, but organized in a more complex topology that
includes loops. An important consequence of this structure is the fact that in this case the
original code may not necessarily be located in the last (deepest) layer. In these cases, the
last layer often contains integrity checks, anti-debug routines, or just part of the obfuscated
code of the packer. However, a tail transition still exists to separate the packer and the
application code.

Type 4 Packers are either single- or multi-layer packers that have part of the packer code, but not
the one responsible for unpacking, interleaved with the execution of the original program. For
instance, the original application can be instrumented to trigger some packer functionality,
typically to add some protection, obfuscation, or anti-debugging mechanisms. However, there
still exists a precise moment in time when the entire original code is completely unpacked
in memory, even though the tail jump can be harder to identify because the final execution
may keep jumping back and forth between different layers.

Type 5 Packers are interleaved packers in which the unpacking code is mangled with the original
program. In this case, the layer containing the original code has multiple frames, and the
packer unpacks them one at a time. As a consequence, although Type-V packers have a tail
jump, only one single frame of code is revealed at this point. However, if a snapshot of the

4

1 — Introduction

process memory is taken after the end of the program execution, all the executed code can
be successfully extracted and analysed.

Type 6 Packers are the most complex in the taxonomy. This category describes packers in which
only a single fragment of the original program (as little as a single instruction) is unpacked
at any given moment in time.

In late 2015 a website [9] was created to host the service proposed in the paper for analysing
the complexity of runtime packers [1]. It is hosted by the two universities where the authors of the
paper worked, EURECOM [10] and DeustoTech [11].

1.4.2 Implementation

The main idea was to analyse the behaviour of a target executable at runtime, differentiate the
unpacking stubs from the original code, understand which combination of techniques the executable
uses for unpacking its code, then rank its complexity on a scale according to the six-value metric.
In the paper, the authors performed a number of experiments to show the distribution of the
most used packing techniques among malware authors for writing Windows 32bit executables. To
compute the analysis, they developed a testing framework on top of TEMU [2] [12], a dynamic
analysis platform built upon the emulator called QEMU [13]. They leveraged the binary tracing
capabilities present in TEMU, extending them to fully support all the monitoring techniques that
the analysis required. Since the framework needed to deal with complex runtime packers that
could spawn multiple processes it was necessary to trace even the inter-process interactions. The
framework is able to monitor inter-process interactions such as remote memory writes, shared
memory sections, disk I/O, and memory-mapped files. It also tracks several Windows system calls
that may interact with the program’s memory. The analysis on a malware can be divided in the
following steps:

1. Trace the execution of the sample with TEMU. The target executable will run inside the
emulated environment, where its execution will be monitored by the code written for the
analysis. The code is written as a TEMU plugin. Before starting the analysis it is necessary
to add that specific plugin to the ones already running in the host part of TEMU. When the
analysis is started and the program is being traced, the execution can proceed as normally.
The target program will be dynamically monitored and the analysis will be performed on the
go, at runtime (this will slow down the original execution of the target executable).

2. Perform the analysis of the output of the first part. When the live execution is finished
the dynamic analysis has produced some output files that will be used in this phase of the
analysis to produce the complexity graph. This graph will show a “general idea of how the
unpacking routines have recovered the protected code” [17].

3. Compute the complexity and the general statistics. This third phase will take as inputs the
outputs of the second phase and it will produce the ranking in the six-value metric according
to the packer complexity. It will also retrieve some statistics about the packer family, the
API calls done during the execution and other related information.

1.4.3 Results

In the paper the authors presented a packer taxonomy capable of measuring the structural com-
plexity of run-time packers. They also developed an analysis framework that was evaluated on two
different datasets: off-the-shelf packers and custom packed binaries. The lack of reference data-sets
and the lack of tools for the analysis of the behaviour of packers suggests that the (un)packing
problem has been put prematurely aside by the research community. Among the number of types
of packers that have been found during the experiments, the authors described three packers that
belong to three different categories: UPolyX 0.4 (Type 3), ACProtect 1.09 (Type 4), Armadillo
8.0 (type 6). Except for that, the authors also applied the analysis to two sets of malwares, the

5

1 — Introduction

first ones packed using off-the-shelf packers, the second ones packed with custom packers. The
results of the experiments show that, while many runtime packers present simple structures, there
is a significant number of samples that present more complex topologies. The first conclusion is
that every unpacked code is not necessarily part of the original code. This goes against the way
automatic unpackers work, showing that there is the need of further studying the implementation
of automatic unpackers. The situation gets complicated even more if we consider that around
10% of the off-the-shelf packers and 14% of the custom packed malware did not have the original
code in the last layer. The second conclusion is that the average packer belongs to the Type 3
category, i.e. cyclic unpacking routine working on multiple layers, with a visible tail jump and
the original code in the deepest layer. Even though Type 5 and Type 6 packers existed in the
off-the-shelf dataset, they are not very common in the wild. These packers require a significantly
more complex development and they also impose a run-time overhead that may not be desired by
malware writers.

This study can help security researchers to understand the complexity and structure of run-
time protectors, to reverse engineer such malwares and to develop effective heuristics to generically
unpack binaries. Unfortunately, the way the framework was developed limited the applicability of
the six-value metric only to Windows XP 32bit executables. This is a pity because even though
the framework is useful to classify a group of malwares, it is not able to give a proper view of
the global situation regarding runtime packers usage. A considerable number of malware families
simply cannot be classified by the 6-value scale of unpacking complexity because they have been
compiled either for another architecture or for another operating system (or operating system
version).

1.5 Goal

With this in mind, the overall goal of this thesis is to extend the range of such malware analysis.
For the most part of this project I used a dynamic analysis platform called PANDA, which is
able to 'record’ the execution of a target application and to ’replay’ it as many times the user
wants. This offers a lot of freedom because one can replay an execution even without having access
to the original executable. The first goal is to take advantage of such platform to implement a
packer analysis plugin that can dynamically analyse a running executable and compute the features
required for the complexity classification. This can bring the packer analysis approach to the tens
of thousands of malware samples that have been recorded with PANDA by other researchers.

The second goal of the project is instead to investigate how the classification tool can be
applied to other architectures (e.g., ARM) and other operating systems (e.g, Linux) to allow for
cross-system comparisons of the packer complexity. In this way the six-value metric classification
would cover a larger set of malware families, aiming to give an overall picture about the usage
distribution of the different runtime packing techniques.

Chapter 2

Used Tools

2.1 Introduction

In 2015 Ugarte-Pedrero proposed a six-value metric to measure the complexity of runtime packers.
In the paper, the authors performed a number of experiments using a set of dynamic binary analysis
techniques implemented on top of TEMU [2].

TEMU is a whole-system emulator (built upon QEMU [13]) which is able to perform dynamic
binary analysis. Among all the functionalities that it provides, Ugarte-Pedrero’s analysis relies on
the following:

e OS awareness. Information about OS-level abstractions, like processes and files, is important
for many kinds of analysis. Using knowledge of the guest operating system (Windows XP
or Linux), TEMU can determine what process and module is currently executing, what API
calls have been invoked (with their arguments), and what disk locations belong to which files.

e In-depth behavioural analysis. TEMU is able to understand how an analysed binary interacts
with the environment, such as what API calls are invoked, what files are read/written and
what outstanding memory locations are accessed.

In 2016 the analysis has been converted to be run on DECAF [14]. It is the successor of the
binary analysis techniques developed for TEMU and it is built upon it.

The first part of the current thesis was about porting the whole analysis from DECAF to
PANDA [3] in order to exploit PANDA'’s capability of record and replay a malware execution.

2.2 QEMU

The three platforms included in the description (TEMU, DECAF and PANDA) are all based upon
QEMU. QEMU is a processor emulator which can be run in two ways:

e user mode: it emulates the target architecture in order to execute a single application.

e full-system mode: it emulates a whole system running over the target architecture. This was
the mode used for my experiments.

2.3 TEMU and DECAF

TEMU is the system which Ugarte-Pedrero’s framework was initially based on.

7

2 — Used Tools

It has the same basic behaviour of QEMU in full-system mode. In addition to that it offers
specific functionalities to perform dynamic binary analysis.

DECAF (Dynamic Executable Code Analysis Framework) integrates TEMU’s capabilities by
extending them with:

e Precise Tainting
e Instruction Tracing

e Event-driven API (API tracing, key-logger detection)

As TEMU, it is a “platform-neutral full-system dynamic binary analysis platform” [14]

2.4 PANDA

PANDA (open-source Platform for Architecture-Neutral Dynamic Analysis) was the platform
mainly used for the thesis. Based on QEMU, it is a full-system emulator that is able to per-
form Record & Replay of a target executable.

7

Write Analysis Run Replay RE
Plugins and Analyze Understanding

_/

Since it is a whole-system emulator its analyses have access to all data and all code executing
in the guest. It offers the ability to record and replay executions, enabling iterative, deep, whole-
system analyses. Moreover, the replay log files are compact and shareable, allowing for repeatable
experiments.

Record Whole

System
Execution

PANDA leverages QEMU’s support of different CPU architectures to make analyses of those
diverse instruction sets possible within the LLVM IR (Low-Level Virtual Machine Intermediate
Representation). In this way, PANDA can have a single dynamic taint analysis, for example, that
precisely supports many CPUs. PANDA analyses are written in a simple plugin architecture which
includes a mechanism to share functionalities between plugins. They can interact with each other
to increase code re-use and to simplify complex analysis development.

Ugarte-Pedrero’s framework has been ported as a PANDA plugin having in mind the plugin-
plugin interaction power. The most effective work-flow in PANDA is to record a piece of execution
of interest (i.e. the malware’s execution) and then analyse that recording over and over again.

2.4.1 Record & Replay

PANDA supports whole system deterministic record and replay in whole-system mode on the 1386,
x86_64, and arm targets. Deterministic record and replay is a technique for capturing the non-
deterministic inputs to a system. This includes all the things that would cause a system to behave
differently if it were re-started from the same point with the same inputs, from things like network
packets to hard drive reads, mouse and keyboard input, etc.

The implementation of record and replay focuses on reproducing code execution. That is, the
non-deterministic inputs that PANDA records are changes made to the CPU state and memory
such as DMA, interrupts, and so on. Because of some implementation simplifications PANDA does
not record the inputs to devices. In order to get an idea of what is recorded one could imagine

8

2 — Used Tools

drawing a line around the CPU and RAM: things going from the outside world to the CPU and
RAM, crossing this line, must be recorded. Thanks to this feature it is possible to perform even
the kind of analyses that would consume too much time with a common emulator. By creating a
recording, which has fairly modest overhead, and performing analyses on the replayed execution,
one can do analyses that simply aren’t possible to do live.

Recording will create two files: <replay_name>-rr-snp, the VM snapshot at the beginning of
the recording, and <replay_name>-rr-nondet.log, the log of all non-deterministic inputs. They are
both necessary to replay the segment of execution.

Virtual machine instrumentation can be done at different granularity levels. In order to under-
stand them it is necessary to describe how QEMU emulates guest code.

Let’s consider a basic block of guest code that QEMU wants to emulate. It disassembles
that code into guest instructions, one by one, simultaneously assembling a parallel basic block of
instructions in an intermediate representation (IR). From this IR, QEMU generates a corresponding
basic block of binary code that is directly executable on the host. This basic block of code is
actually executed, on the host, in order to emulate guest behaviour. QEMU toggles between
translating guest code and executing the translated binary versions. As a critical optimization,
QEMU maintains a cache of already translated basic blocks.

Translation Execution

PANDA_CB_BEFORE_BLOCK_TRANSLATE PANDA_CB_BEFORE_BLOCK_EXEC

Guest Code TCG IR

: opush esp movi_i64 tmpl2,$
: push ebp st_i64 tmpl2,env,$
¢ push ebx 1d_164 tmpl2,env,$

Basic Block

LLVM IR

PANDA_CB_AFTER_BLQCK_EXEC
%2 = add i64 ¥enw_wv,

%3 = inttoptr 164 %2 to i64*
store i64 , 164* %3

PANDA_CB_INSN_TRANSLATE

Basic Block
PANDA_CB_AFTER_BLOCK_TRANSLATE

PANDA_CB_VIRT_MEM_READ
PANDA_CB_VIRT_MEM_WRITE
PANDA_CB_PHYS_MEM_READ
PANDA_CB_PHYS_MEM_WRITE

Basic Block

PANDA_CB_GUEST_HYPERCALL

Plugins allow you to register callback functions that will be executed at various points as
QEMU executes. While it is possible to register and run callbacks during record, it is more usual

for plugins to be used during replays. Here are some examples of the instrumentation granularity
that PANDA offers:

e PANDA_CB_BEFORE_BLOCK_TRANSLATE, before the initial translation of guest code. The length
of the block is not known at this point.

e PANDA_CB_AFTER_BLOCK_TRANSLATE, after the translation of guest code. In this case the
length of the block is known.

2 — Used Tools

e PANDA_CB_BEFORE_BLOCK_EXEC, after the block of guest code has been translated into code
that can run on the host and immediately before QEMU runs it.

e PANDA_CB_AFTER_BLOCK_EXEC, immediately after the block of translated guest code has ac-
tually been run on the host.

e PANDA_CB_BEFORE_BLOCK_EXEC_INVALIDATE_OPT, right after the guest code has been trans-
lated into code that can run on the host, but before it runs.

e PANDA_CB_INSN_TRANSLATE, just before an instruction is translated, and allows inspection of
the instruction to control how translation inserts other plugin callbacks such as the INSN_EXEC
one.

e PANDA_CB_INSN_EXEC is just before host code emulating a guest instruction executes, but
only exists if INSN_TRANSLATE callback returned true.

2.4.2 How-To

The procedure to record the execution of a binary can be summed up in the following steps:

1. Get a working qcow2 image. This can be done by either:

e downloading a snapshot of the target Operating System in the qcow2 format
e creating a qcow2 image in this way:

(a) gemu-img create -f qcow2 <qcow2_image> <size_in_GB>G
[add the o compat=0.10 option for the real qcow3]
where <qcow2_image> is the name we want to give to the new image and <size_in_GB>
specifies how big we want to make the image.

(b) <PANDA_folder>/target-i386/qemu-system-i386 -boot d \
-cdrom <0S_iso> -hda <qcow2_image>
where <PANDA_folder> is the path where PANDA is installed and <0S_iso> is a
.iso image of the operating system we want to install on the gcow2 image.
2. Launch PANDA’s version of QEMU:
<PANDA_folder>/qemu-system-i386 -hda <qcow2_image> -monitor stdio
The option -monitor stdio lets us interact with QEMU through its monitor. In this way
we can write commands to interact with QEMU.
3. When PANDA has loaded the qcow2 image, prepare the executable we want to record and
start recording. In the QEMU monitor write:
begin_record <replay_name>
This will create the two files needed for the replay phase, <replay_name>-rr-snp and
<replay_name>-rr-nondet.log. They will be filled as long as the executable is being
recorded.
4. Once the executable has finished running, stop the recording. In the QEMU monitor write:
end_record

This will save the two files created in the previous step.

Now the the target executable can be replayed over and over as many times as we want.
Thanks to the <replay_name>-rr-nondet.log file the execution will always be the same. In
order to execute a replay it is sufficient to write:

<PANDA_folder>/gemu-system-i386 -replay <replay_name>

The next reasonable step is to execute some plugins along the basic replay. This will introduce
the actual power of performing effective dynamic analysis:

10

2 — Used Tools

<PANDA_folder>/gemu-system-i386 -replay <replay_name> -panda <plugin_name>

It is possible to load multiple plugins at the same time, always in the form -panda <plugin_name>.

By doing so, several plugins can be combined together to perform even more powerful dynamic
analysis. This is the basic idea behind the utilization of the plugin written for the topic of this
thesis. It bases in fact part of the Operating System Introspection upon two plugins, namely
syscalls2 and osi. The former is in charge of placing hooks on specific system calls that the
user wants to keep an eye on, the latter implements the Operating System Introspection, i.e. it
monitors everything that is related to processes: process creation, process termination, retrieve
the list of processes, get the current one, and so on and so forth. They will be explained more in
details in the following chapters.

11

Chapter 3

The Framework

In this chapter I will explain how the starting framework is structured and how it is possible to
get a complete report about the runtime packer complexity.

3.1 Deep Packer Inspection

The first implementation of the framework was developed to be a plugin for DECAF. Because of
that Deep Packer Inspection (the name of the framework) contains some configuration files that
truly depend on DECAF and only work for this specific implementation. The main idea is that,
since DECAF is an emulator based on QEMU, it can emulate a whole operating system, Windows
XP in this case. As QEMU, DECAF offers to the user an interface to give commands to the
platform itself: the gemu monitor. Thanks to the gemu monitor it is possible to control the guest
OS, see what is going on during a live execution and even modifying some structures. DECAF also
offers the possibility to load what are called plugins on the live guest system: with those plugins
the user can extend the control that she has over the running OS. To do so type in the gemu
monitor:

load_plugin <plugin_name>

Deep Packer Inspector (DPI) implements thus a way to instruct the analysis through some config-
uration files, which specify e.g. the name of the sample that the user wants to analyse. The main
information required to run such plugin are the following:

e The name of the process and its Entry Point

e The maximum time to spend waiting for the process to start. If the process has not started
yet after this time, just close everything and exit

e The minimum analysis duration. The plugin will keep analysing the sample at least this
number of seconds

e The maximum analysis duration. The plugin will keep analysing the sample at most this
number of seconds

e The exception recovering time threshold. When an exception is produced, the plugin starts
counting seconds. If the execution does not return to user code before the set threshold the
analysis stops

e The granularity to monitor the process’ activity. The plugin checks every N seconds if the
process being monitored have a significant activity in the system (it checks the consumed
CPU parameter from internal Windows kernel structures). If the process is idle and has not
consumed any CPU in a period of 2 minutes, the analysis will be stopped

12

3 — The Framework

e The maximum size of the memory dumps to extract at the end of the execution
When the DPT plugin is loaded in DECAF it will :

1. Wait for a given process to start by monitoring the Program Counter (PC) of the guest OS
2. Start tracing the target process as soon as the PC reaches its entry point
3. Monitor several conditions in order to stop tracing and finalize everything:

e wait up to N seconds for the sample to start
e monitor it for a minimum number of seconds to a maximum number of seconds

e between these 2 points, it will stop the analysis if all the analysed processes are killed,
if none of the analysed process show a significant activity or if an exception is produced
and the process does not recover.

The DPI plugin is composed of around 8000 lines of code, divided into several C/C++ files.
The authors kept one file or a group of files (that interact with each other) for each of the main
parts (and tasks) that compose the framework:

e Definitions of the main hooks, for windows functions that are somehow related to remote
process memory injection. These functions include WriteProcessMemory, but also indirect
ways of writing from process one process to another, e.g. the first process writes a certain
file to disk, then the second process reads that same file from disk and executes the buffer

e Hooks for a number of API calls and then trigger all the necessary events. For instance,
whenever there is a WriteProcessMemory, the framework delivers to the execution model
(one of the main structures used for the analysis, in ErecutionModel.cpp) a memory write
event. These events are generally logged to one of the log files (namely events.log) through
the EventLogWriter.cpp proxy

e Virtual Machine Introspection (VMI) for Windows XP Service Pack 3. These functions are
used to inspect the kernel data structures to retrieve information about the running system,

such as getting the list of processes or extracting properties for each process (e.g. open
handles)

e Definition of the execution model as a representation of the memory layers and regions. It
is populated during the first execution of the sample with the different memory write and
memory execution events that occur in the emulated guest OS.

The composition of those files can be seen as a black box that receives notifications about memory
write and memory execution events, showing the address and size of each affected memory, along
with source and destination process, as well as notifications about certain file write and file read
operations. It will then take care of populating the execution model. Finally it will generate the
output files that will be used in the next phase of the analysis.

3.2 Produce the Graph

At the end of the analysis described in Section 3.1 the DPI plugin will have produced some output
files:

e cxecution_model.log. Tt lists the layers and the regions computed during the dynamic analysis
with DECAF

e trace.log. It contains the extracted trace of the execution

e cvents.log. It contains the operating system specific events, such as which process created a
process or which process wrote to another process’ memory using which technique

13

3 — The Framework

e quto_start.log. It contains the details about the auto_start engine, and the analysis hit thresh-
olds. It should answer questions like “Why did the analysis stop?”

e functions.log. For each monitored process it contains a list of addresses for each imported
library and their names

At this point the dynamic analysis can be considered finished, while it is time for the post-
processing analysis. This phase is in fact in charge of taking some of the output files of the dynamic
analysis, elaborate them to understand the behaviour of the runtime packer and produce the output
files that will be taken into account to produce the behavioural graph, showing how the packer
unpacked the original code at runtime (i.e. how many layers of unpacking code did it use, how
many processes were spawned during the execution and so on).

To run the second phase of the analysis:
./makegraph trace.log execution_model.log functions.log output_dir/

where the first 3 parameters are the result of running the first phase of the analysis and output_dir/
is the directory where the tool will place:

e general_statistics.log. 1t contains several statistics about the graph, it is parsed by the fol-
lowing phase

e graph.dot. It contains the description of how to build the graph. It is in the graphviz format.
To generate the actual graph:

dot -Tpng -ograph.png graph.dot

e regions_apis.log. Tt is a list of APT calls called by each region, in order to feed the database
in the next phase

e transitions.out. It contains a serialized list of transitions. They will be parsed in the following
phase too

3.3 Complexity Ranking

The final step of the analysis will produce the complexity ranking (on the six-metric scale) of the
runtime packer, according to the results that can be gathered from the previous phases. It will also
produce some information about the general behaviour of the packer based on what it did during
the execution. The only output of this phase is a tzt file similar to what is described in Appendix
A.

14

Chapter 4

Implementation

4.1 Goal Description

Ugarte-Pedrero’s work from 2015 mainly delivered two outputs. The first one is the six-value
metric to measure the complexity of runtime packers, the second one is a plugin for DECAF that
is able to bring out such analysis on Portable Executable (PE) files for Windows XP. Even though
the analysis can be done on hundreds of malwares, there are a lot of other samples that cannot be
analysed because either they are for other architectures (designed for x86_64 or ARM machines)
or they have been compiled for other operating systems.

The main goal of the thesis is thus to extend the analysis to as many malware samples as
possible. This implies adding the support for other architectures and operating systems. Once
Ugarte-Pedrero’s plugin had been ported on the PANDA framework it was divided into subsections,
one subsection for each part of the analysis: process/thread monitoring, OS-specific introspection
and memory read/write. The idea was to keep the part of the analysis that works for multiple
systems ’as-is’ and to replace only the pieces of the plugin that are architecture-dependent. In
this way the plugin can be seen as a combination of pluggable components that can be combined
together to analyse different classes of malwares.

At the end of the development of the plugin a long test session has been carried out to test
several malware samples, with the final intent of generating an overview of statistics to see what
is the packer usage scenario for a specific set of operating systems and architectures.

4.2 Why PANDA

Given the main goal of the thesis one can argue that it could have been carried out even by keeping
the plugin implemented for DECAF, since DECAF supports multiple architectures and operating
systems. The reason why it has been decided to go for PANDA is because of its capability to
replay already recorded executions. Several malware families rely on the communication with a
Command and Control (C&C) server to receive instructions or to download some infected payloads.
It typically means that once the C&C server is not online any more the malware will just stay silent
without doing anything suspicious. Situations like this one happen many times and they represent
a huge problem for dynamic malware analysis: if someone wants to perform dynamic analysis on a
piece of malware three years after it has been discovered, it may be simply not feasible to replicate
the external environment inputs and outputs.

By using PANDA it is not necessary to have the original malware executable nor to be in the
same external conditions of the original execution. It will always be the same no matter how
different the environment will be, PANDA logs will keep the relevant not-deterministic inputs as
they were at the moment of the recording. Citing the description on the PANDA man page, “To

15

4 — Implementation

get an idea of what is recorded, imagine drawing a line around the CPU and RAM; things going
from the outside world to the CPU and RAM, crossing this line, must be recorded.”?

Another reason for using PANDA is that it has been used by other researchers to record
executions of several malwares. This gives us the chance to test the framework with a lot of already
recorded samples. Dolan-Gavitt alone is hosting a database with more than 90000 records?. It is a
database that receives malware samples on a daily basis. They are executed on PANDA and then
their recordings are saved together with some statistics coming from virustotal.com.

4.2.1 Advantages and Limitations

In these days the panorama of dynamic analysis and reverse engineering frameworks include several
academic projects, such as DECAF, PANDA, AVATAR [15] and PyReBox [16]. As one of them,
PANDA has some advantages and limitations.

Advantages: Any kind of dynamic analysis that panda offers can be done during the replay
phase, without interacting with the live system during the recording phase. This means that the
execution of the target executable is not affected by any analysis (that will be done in the future).
As a consequence, there is no need of tampering the original process execution, for example by
attaching a debugger to the target process, to have additional information on the execution. This
is a great advantage because a lot of malwares try to see if they are being traced at runtime. With
PANDA, malwares will never see their execution tampered by some external agents.

Limitations: Since it is based on QEMU, which is an emulator, PANDA suffers all those prob-
lems that are typical of emulators. First of all, when there is the need of dealing with malwares
there is always the (quite likely) chance that the target malware implements some anti-emulator
techniques: the most common thing for a malware would be to look for emulator artefacts inside
the emulated environment, because it may happen that the emulated environment presents several
objects (such as specific system folders or files) whose name contains an emulator-specific word
(e.g. “gemu-"), even though this scenario is more common in a virtualised environment. Another
approach for a malware to detect n external analysis is to trigger some assembly instructions that
produce different results in an emulated environment with respect to a bare-metal machine: an
instruction useful to test this behaviour will be one that makes the physical machine crash on a
bare-metal execution, while the crash will be handled by the emulator in the emulated environ-
ment. There is thus the chance that the target malware applies one of those emulator-detection
mechanisms, triggering for example some particular instructions that would crush on a real system
and not on an emulated one. It could also look for some “panda-” strings in the guest’s filesystem.

4.3 The Starting Framework

The starting framework (by the authors of the paper) was firstly designed and written for TEMU,
in 2015. When TEMU has been upgraded and the DECAF emulator was proposed out of it, the
framework for analysing the complexity of runtime packers was ported to DECAF, to support and
increase some of its functionalities. The decision to port the framework from one system to another
was decided by the authors of the paper. As already said, both TEMU and DECAF are whole-
system emulators based on QEMU. The packer complexity classification is currently available as
a web service, where users can submit their executables. The service will analyse them and it
will output the complexity analysis, ranking the sample in the six-value metric. The user can
also specify if he wants to make the analysis results public or private. The framework originally
supported only Windows XP Portable Executable (PE) files, which is the format adopted by all the
recent Windows operating systems for executable programs and applications. PE executables can
be compiled both for x86 and x86_64 machines but the support of this framework was specifically

Thttps://github.com/panda-re/panda/blob/master/panda/docs/manual .md#background

?http://panda.gtisc.gatech.edu/malrec/

16

virustotal.com
https://github.com/panda-re/panda/blob/master/panda/docs/manual.md#background
http://panda.gtisc.gatech.edu/malrec/

4 — Implementation

only for 32bit programs. The choice did not represent a big issue because typically Windows
malwares are designed to be run on as many machines as possible, thus most of them are 32bit
executables. However, the limited support in terms of operating systems (and versions of the
same OS) represents instead a considerable limitation in terms of applicability of the complexity
classification (e.g. the OS support does not include the Unix family of operating system).

The internship can be divided into several temporal parts, each of which corresponds to a period
in time where I worked for a specific goal of the thesis. There were two big phases: in the first one
the objective was to have a working version the framework written as a plugin for PANDA. The
first step was to port the whole plugin to PANDA, while the second step was to test if the new
plugin was giving the same results as the old one. To do so I tested the plugin against some samples
which T already had the results of (because I previously submitted them to packerinspector.com).
By completing this first phase I had the same framework implemented as a PANDA plugin. In
this way it was possible to extend the analysis to the thousands of samples that other researchers
recorded using PANDA. I did this to achieve the first goal of the internship, that is to exploit
the possibility of re-using samples that were recorded in the past, even for different purposes. In
the second phase the main objective was to extend the plugin to support other architectures and
other operating systems. We decided to extend the support of the analysis to Linux 32bit elf
executables (running on x86 machines) and to the ARM architecture (again testing it with Linux
elf executables). This led to the achievement of the second goal of the thesis, which was to extend
the original support of the complexity analysis to other types of executable files.

4.4 Porting to PANDA

As previously stated, PANDA is a “Platform for Architecture-Neutral Dynamic Analysis”, a full-
system emulator based on QEMU. The main peculiarity that PANDA has with respect to other
dynamic analysis platforms is the capability of performing record and replay of a live system.
With PANDA one can record the execution of an executable and then replay it as many times as
necessary to perform whichever kind of analysis, without affecting the 'real’ execution in any way.
PANDA also offers the possibility to perform some kinds of analyses that are not possible to be
done with a live system, either because they require too much computation power or because they
would drop down the performances for the runtime execution of the target sample. It is especially
useful when dealing with malwares that implement logic bombs and anti-debugging techniques to
detect when they are being traced and to avoid the analyst to spot the malicious behaviour. An
example of such logic bombs could be a defence mechanism as simple as waiting some minutes
(at runtime) before starting the actual malicious activity: in this way if an automatic dynamic
analysis (which typically lasts few minutes) is performed on the malware it would be impossible to
spot any malicious activity. Or the malware could also detect that it is under analysis by detecting
any debugger attached to one of its processes (again, at runtime) by trying to call the sys_ptrace
system call on itself: if the call does not succeed it is a symptom that something else is already
tracing the same process. By replaying a recording the malware is not able to detect that it is
under analysis: the analysis will be done on the execution itself, without attaching any debugger
of just waiting the right amount of time. However, it can still detect that it is being run under an
emulated system, but this is inevitable because PANDA is an emulator.

4.4.1 How PANDA works

PANDA implements several callbacks that can be registered to hook on a specific event, such as the
creation/termination of a process, a memory write, the translation/execution of a basic block or a
context switch. It offers several plugins to perform specific analyses, so there is no need of writing
any code if the user needs to perform some already implemented analyses, such as tainting, tracing
the system calls, monitoring the context switches, logging the open/closed file descriptors, logging
the processes’ start/termination time and duration. These are just some examples of what PANDA
can offer in terms of analyses. If for some reasons the user needs to perform a different analysis, it
is possible to create a new PANDA plugin that can both do something completely new in terms

17

4 — Implementation

of analysis and combine the already existing plugins, to perform even more powerful/complex
analyses.

4.4.2 Steps

The first thing I needed to do in order to port the framework to PANDA was to study how the
plugin was implemented in the original version, to understand the role of each part of the code
and to see how different sections of code were combined together to perform the analysis of the
complexity. Figure 4.1 shows the dependency graph of the initial implementation of the framework
that I computed in order to have an idea of the interaction between the several files that compose
the framework. Each node represents a file that was present in the original implementation as a
DECAF plugin. All of them are C/C++ files, some of them are header files. Each arrow shows
the dependency that occurs between two different files. A dependency from a generic file A to
a file B is defined if there is a line of code file B that “includes” (in the C sense of the term)
file A. Most of the files are distributed by following a hierarchical structure of dependencies. The
names of the files are not visible because I wanted to give only a qualitative view of how things
were organised at the beginning. Since the original plugin was written for DECAF there were

M \r/
VAN \
o™ ™ N R T /wj}
N~ (N ACAATAVAVAVAV/ NG
(e N g ! /\W
|| eched | [Gt (ol) (babicag) { il (b / Bethezs)| b
N I~ NN v

| b) (B " Bzt)
I~ N—

|

NS

)

i) (ke)|\ @

o \\’ /
m il)| i

Eiilani

Figure 4.1: Dependency graph of the files composing the initial framework in DECAF

a lot of dependencies in the code that made the porting phase difficult at the beginning, in the
sense that I needed to study how the dynamic analysis of DECAF interacted with the QEMU
backbone, in order to be able to distinguish between the dependencies coming from DECAF and
those coming from QEMU, because while I would have needed to modify the first ones, at the same
time I could have re-used the second ones (because PANDA is built on top of QEMU too). Once
I finished this preliminary part of understanding the general structure of the framework I started
the porting phase by dividing the plugin into several components, each one with a specific purpose.
I differentiated three main components of the plugin: one that deals with process tracing, a second
one for all the OS-dependent parts, such as API call and system calls, a third one for the memory
read/write tracing. I did so because I had in mind that this separation would have helped in the
future to implement the plugin for other operating systems and architectures.

Once 1 finished this part I needed to test it in order to see if everything went the way it was
supposed to go, so that there were no errors in the porting process. To test it I did the following:
first of all I got some packed samples, I submitted them to the online service packerinspector.com
and I received the results of those packed samples. Then I performed the complexity analysis on the
same samples, this time using my version of the framework (i.e. the PANDA plugin). Eventually
I compared the results of the two analyses to see if there were some discrepancies.

18

4 — Implementation

4.4.3 Plugin Components

To perform the complexity analysis I needed to combine my plugin with some of the plugins that
PANDA offers, because I wanted to use some of the already implemented analyses. For the process
tracing part the plugin that best suited for this role was the osi plugin. The name osi stands
for “Operating System Introspection” and it is in charge of providing a set of callbacks that are
useful to deal with process creation/termination (on_new_process, on_finished_process), retrieve a
list of processes (on_get_processes) or retrieving just the running process (on_get_current_process).
Figure 4.2 from the osi man page® shows how to use it. Because of its implementation, the osi
plugin is just a “glue” layer that does not actually implement those callbacks, but it makes it
easier to use the callbacks independently of the final operating system. This set of callbacks has

o e e e e emeao--- + Femmmmmemmemoooo-- +
| Your Plugin | Your Plugin |
o e e e e emeao--- + Femmmmmemmemoooo-- +
| osi | osi |
R T L R e +
| osi_linux | win7x86intro |
LT PP I e T T TP +

Figure 4.2: The osi plugin that acts as a “glue layer”

multiple implementations, one for each operating system that PANDA supports: the picture shows
one implementation for Windows 7 (win7z86intro) and one implementation for Linux (osi_linux),
then there is one for Windows XP as well, but it is also possible to create other plugins that work
under osi if it is necessary. For the OS-dependent part (API calls, system calls) T used syscalls2.
Previously there was another version of the same plugin, that only supported the previous version
od PANDA (Pandal). This is the new version of the plugin that is able to hook system calls for
different operating system versions also for the new version of PANDA, Panda2. For the memory
write tracing there is on_virt_mem_after_write, which is a simple callback that the PANDA main
infrastructure offers. There were then other methods that will be described later because they
were different according to the operating system that I was analysing.

4.4.4 Problems

The trickiest part I had to go through during this phase was the beginning, because it took quite
some time to figure out how the framework was organised in DECAF. Except for the time I had to
spend in studying the DECAF dependencies there was also the issue of discerning which parts of
the original code were useful to compute the complexity of the packer and which were not. Some
parts of code had the only purpose of implementing some heuristics to try to guess the family of
the packer, but this had nothing to do with the computation of the complexity. I took the general
decision not to implement the part regarding the heuristics because I considered it as a side work
that could be done after the completion of the relevant part. A final comment on this first part is
that it was not possible to move from a stable version to another one. To see the first results it was
necessary to port the whole plugin, otherwise nothing would have compiled. This ended up in a
time consuming and error-prone approach, because at the end of the porting phase I had to solve
all the dependency errors that occurred because of something that I could not test in advance.

4.5 Windows 7

The first implementation of the code supported Windows XP 32bit executables. To check that the
porting has been completed successfully I started implementing the plugin with the intention of

3https://github.com/panda-re/panda/blob/master/panda/plugins/osi/USAGE.md

19

https://github.com/panda-re/panda/blob/master/panda/plugins/osi/USAGE.md

4 — Implementation

support the same kind of executables. I decided thus to write the PANDA plugin for Windows 7
recordings. This allowed me to test the plugin functionality with Windows XP executables, but

at the same time I was able to extend the support for more executables, including the ones for
Windows 7.

4.5.1 Plugin Components

For the process tracing part the osi plugin was needed as a “glue” plugin, but other two plugins
were required for the Windows introspection. The first one was win7z86intro, the plugin that
actually implemented the already-cited callbacks (on_new_process, on_finished_process, etc.). The
second one is wintrospection and it was required by win7z86intro to work. For the OS-dependent
part I used the plugin syscalls2 provided hooks to system calls and I used those related to Windows
7 system calls. For the memory write tracing there were two different ways of tracing a memory
write. The first one was to use on_virt_mem_after_write, the PANDA callback that is called every
time there is a memory write. The second one was to log API calls to WriteProcessMemory by
hooking every call to the on_NtWrite VirtualMemory_enter syscall. This hook was in charge of
logging every remote memory write, stating that there was inter-process interaction during the
execution of the target sample.

4.5.2 Heuristics

Part of the original plugin implemented some heuristics to guess the packer family. The heuristic
is based on some well known patterns of the target executable’s behaviour, such as the list of
imported Dynamic-Link Libraries (DLLs) or the list of exported symbols, for each of the processes
belonging to the target executable. The parts of the code that implemented the heuristics were
not required to compute the packer complexity. As a consequence of it, I decided to implement
the heuristics only for Windows 7 and not for other operating systems/architectures.

The basic behaviour of the heuristic can be summarized as follows: first of all, a list of the
exported symbols from kernel modules is required. on_get_modules, a PANDA callback, works
perfect for this purpose. Then for each element of the list it is necessary to get to two arrays that
are stored in a kernel structure A similar process can be done for retrieving the loaded DLLs, using
this time on_get_libraries

4.5.3 Results

In this section I will show some of the results that this particular implementation (for up to
Windows 7 PE executables) produced, highlighting the peculiar aspects that appear in each graph.

Figure 4.3 shows the output graph of a simple UnPackMe executable. It comes from a collection
of Windows PE executables that are packed with some runtime packers. These executables are
not malwares nor useful programs. Their main purpose is to show how different runtime packers
work. They are simple programs that output a “success” message when their code comes to an end.
This means that the typical behaviour of such executables is to first be unpacked by the runtime
packer and then to show that they finished their execution, either by prompting out a graphical
pop-up message or by simply printing a line on the command prompt, accordingly to how they
have been launched. The graph represented in Figure 4.3 shows how the executable behaved during
the execution (recorded with PANDA) and how was the interaction with the runtime packer code
(namely UnPackMe_WinKrypt). As we can see, the graph shows two layers of code, the upper one
containing the initial code, i.e. the unpacking code from the runtime packer, while the lower layer
contains the unpacked code (the original code of the program). We can see that the transition
model is linear because there are only downwards arrows, meaning that there was no interleaving
between the unpacking stub and the original code. The features described so far can be summed up
by saying that the packer that packed (and unpacked) the code of this program was of complexity
type 1. This is the simplest case of runtime packer. If we analyse the executable by using some
reverse engineering technique we can see that the original code is preceded by what is called tail

20

4 — Implementation

jump, which is basically a assembly JMP instruction that separates the unpacking code (which
comes first in the execution) and the original code.

PO

0#0

N:40705]

BF1#

1 200

1#1

Figure 4.3: UnPackme WinKrypt

Figure 4.4 shows the output graph of another UnPackMe Windows PE executable. This time
the simple program is packed with another runtime packer called Zprotect. This graph looks more
complicated than the previous one, in fact the packer is classified as a complexity 3 runtime packer.
We can see that there are three layers of code, the top one is again the code where the execution
started, while the other two layers represent the unpacked code. This case is more complex than
the previous one because the layer in the middle is at the same time an unpacked layer (unpacked
by the top layer) but also an unpacking layer since it unpacks the code contained in the bottom
layer, where the original code is. The transition model is cyclic as we can see there are multiple
interactions between the middle and the bottom layers (i.e. there are both downwards and upwards
arrows). Even though it is more complex than the graph in Figure 4.3 we would find again a tail
jump if we analysed the assembly code of this program.

4.5.4 Problems

Due to an improper implementation of the callback win7z86intro the callback on_get_modules
always returned NULL. The reason for that was that the value for the KDBG offset was always
zero. To cope with that, I modified the implementation of win7z86intro by computing the KDBG
offset for each sample using the volatility plugin imageinfo on a memory dump of the running
sample. There is still a open problem regarding the inter-process interaction between two processes
of the same target executable. Some samples call the WriteProcessMemory function. The online
service packerinspector.com correctly recognized and logged those calls, while my implementation
of the plugin did not produce any traces of that in the output log files. Up to now there is still no
solution for that.

Figure 4.5 shows an example of what a misinterpreted graph looks like. As we can see, there
are two processes that were spawned by the program. The one on the left apparently does not
present any unpacking behaviour, the one on the right instead has multiple layers of unpacking.
What is missing here is the interaction between the two processes, in fact we can see there is no
arrow connecting the first process with the second one, while it is known that Armadillo should

present that kind of inter-process interactions®.

4https://www.packerinspector.com/example/6

21

https://www.packerinspector.com/example/6

4 — Implementation

PO
0#0
N: 1015000
HT
[~ 1R o ———
o T — —_
(S 1 A 15 ks \‘I.\\KII.‘.H m lees ke --'-"'--..___l\(qu
/) 11 N Ny \
< Y 4 4 1
N 356 N:43561d N:dcbel NS0 N:466000 N:do1450
d77 dlgd lef3 bt Gbe3 T
35452328 40187#23228 1680858 254485008 196730839554 [
1 1 1 1 1 1
I.__}\‘wa O ltee ""--._._____n_u\m 03 o oh o0 b o o okt Ol T 100 ke Jossn 2 3
~ ~— - /
AN . 21 / ,
‘ h
. N:41002f N:ATO00a N:4BH00 N:45d0530
L 44 cliad g3 Jeba
(g0 2#l# 19660328064 367 (0 ‘
1 1 1 1

PO P1

0#0 0#0

Ny Nz Nee3 Nt Nt Maxos Met1a040 Aet31e0 Mid2sesn AT Aet361c0
s I F) 165t i s ot 1037 25 165t os7
e oms__ S0 2#n__ 1o18__ xssimen__ a__ a__ e e xseusie__ |
o @ [@ @ o @ @ o o o ~

Niseami NiscsseT Nese1om NSk Nt NSt N3

Yy et i cots et [103
1306301203 i, 125161628, s, asisenls, 21 16w33200 I34s23IR2ITETe
1 1 1 1 1 1

Figure 4.5: UnPackme_Armadillo v. 3.70

4.6 Linux

4.6.1 Plugin components

For the process tracing part the osi plugin was required as for the Windows 7 implementation.
This time the fundamental callbacks were implemented in the osi_linuz plugin, that was required
as well. For the OS-dependent parts, again the syscalls2 plugin was needed to be able to palce
hooks on the Linux kernel system calls. This plugin implemented the system calls only for the
32bit version of the Linux kernel, and that is unfortunate because it means that complexity analysis
cannot be extended to support 64bit versions of the Linux family of operating systems. For the
memory writes several methods were possible with Linux to write to a process’ memory. The first
one is the classic on_virt_mem_after_write callback (that I used also for the other implementations),
then there are a couple of ways to write a remote process’ memory using some system calls. In
this sense I hooked the following system calls:

e on_sys_ptrace, that is necessary to write on a remote process’ memory. It is also possible to
remotely write using only this system call, by specifying some specific flags

22

4 — Implementation

e on_sys_pwritev and on_sys_pwrite64, that are two system calls to write respectively arrays of
integers or a single 64bit integer on a remote process’ memory

4.6.2 Results

Here I will show some of the results I obtained after finishing the implementation for x86 Linux of
the framework. The first thing I tried to do was to see the difference between the graph a normal
program would have produced with respect to the graph produced by the same program, this
time packed with a runtime packer. Figure 4.6 shows two instances of the same Linux program,
foremost®. foremost is a command line program that takes as argument a file, typically a disk
image, and tries to recover the files that are contained in that image according to their headers. I
chose this program because its code is big and complex enough to be packed. To pack foremost 1
used UPX. Figure 4.6a represents the basic behaviour of a not packed program, with a single layer
of code, containing the whole original code that has been executed at runtime. Figure 4.6b shows
instead the behaviour at runtime of the same executable, this time packed with UPX. As we can
see there are multiple layers of packed code, showing that the first executed code is the unpacking
stub. Another thing that is worth to be mentioned is that here the original code is definitely not
in the deepest layer (the lowest one), because it is too small to contain the original code of the
program. This means that the original code is located in layer 1 (the one in the middle).

PO

0#0
5 % 5 B e ES 2 = &
N I G e = M= N §
: ; ; : 4 ; : ¢ ;
PO o ot o o ' e i
O#0 1#2
N "TS;‘H’ N "7;";”“] N b’;"’"’ N:bT6be 30 N:bT6HISI0 N9 NibT6bied0 N:bTEb3194
" . 1k Han 65 8 04
e oon one_ | o ot oo oo e ‘
N
2#1
(a) foremost, not packed

(b) foremost, UPX packed

Figure 4.6: Different graphs for the same instance of foremost

Figure 4.7 shows instead a malware. It was packed as in the previous case with UPX. As a
consequence, the resulting graph looks like the previous one. We can see that there are multiple
layers, the top one containing the unpacking stub and the middle one containing the code of the
application. The transition model is cyclic because there are both upwards and downwards arrows,
showing that the execution went from the unpacking routine to the original code and vice versa.
The graph overall classifies the malware as a complexity type 3 packer.

4.6.3 Problems

The process creation in a Linux shell was a bit problematic for the process monitoring part. All
the samples were started from a shell, this means that they followed the classic process of process
creation in Linux, i.e. at the beginning, the shell process forks itself, then the child calls the
execve syscall. on_new_process from the osi plugin was able to spot only the newly created process
(still named ’bash’) and it was missing the process 'renaming’ after the erecve. The solution to
this problem was to add a check for this scenario in the implementation of on_new_process in the
osi_linuz plugin.

Shttps://linux.die.net/man/1/foremost

23

https://linux.die.net/man/1/foremost

4 — Implementation

Figure 4.7: An x86 Linux malware, UPX packed

4.7 ARM

4.7.1 Plugin components

As for the other two implementations of the plugin, for the process tracing osi was required as a
glue layer, under which there was again osi_linuz because I developed the ARM plugin for a Linux
32bit operating system. For the OS-dependent parts, the syscalls2 plugin offered the system calls
for the Linux kernel, while for logging the memory writes the configuration were exactly the same
that T used for the Linux x86 implementation, i.e. the on_virt_mem_after_write PANDA callback
and the hooks on on_sys_ptrace, on_sys_pwritev, on_sys_pwrite64

4.7.2 Results

In this section I will present some example results of ARM recordings. To be able to make a
comparison between two different implementations of my plugin I decided to test the same Linux
program, foremost, which I beforehand packed with UPX for Linux ARM. Figure 4.8 shows the
results of this first test. As we can see there are some differences between this graph and the one
in Figure 4.6b. There is one additional layer of unpacked code here (four layers in total instead of
three layers, as in the Linux x86 case). The overall classification of the complexity does not change
though (still complexity type 3 packer), because the transition model is still cyclic and there would
still be a tail transition if we had a look at the disassembled version of this elf executable. Figure
4.9 shows another complexity type 3 output graph. This time I packed with UPX another Linux
command line program, find, whose behaviour is well known. As we can see, its graph is similar
to the previous one. This is because the version of the packer (and so the family of the packer)
was the same one I used for the previous test. Figure 4.10 shows instead a real malware that
was already packed by its author. As for the other cases, there are multiple layers of unpacked
code (two layers) and the double-arrow edges that connect different layers together mean that the
transition model is cyclic.

4.7.3 Problems

The callback on_asid_changed was not defined for ARM targets. To cope with it, I added a check
after every basic block execution (with the on_after_block_exec callback) to check for a possible
context switch (i.e. every time there is a change of the page directory that identified each process’
virtual memory mapping to the physical memory).

4.8 Porting to Pandal

The previous plugins were developed for Panda2, a newer version of PANDA. B. Dolan-Gavitt (one
of the authors of PANDA) hosts a huge collection of malware recordings (http://panda.gtisc.

24

http://panda.gtisc.gatech.edu/malrec/
http://panda.gtisc.gatech.edu/malrec/

4 — Implementation

ke 55b4 N:bxdbe bS8 N:bécibbeed N: béxdbaas0 N:bédbTefe N:blac Sfi N:becda97c0 N:bécla3lcO N:b6[96718
0 1= <00 104 388 fle s 13 94
o o oo onon_ won_ oo owon_ oon_
0 0 L o 0 o o o
N:b6f 11274
48
OHOR__
1
N:bOfI£258 N:b6EX67c N:b6(13220 N6l e
e 4 5hos HO
ot onon o o
1 1 1 1
Figure 4.8: foremost, UPX packed
badTe91e N:bidTa X0 N:bad 9014 N:bedTod 34 N:bédS3760 N:bocHi 34 N:bicHdete N:bixHbse N:bicH4b14 N:19290
ace <0 130 6f8 8 3 50 Tec
L3 080% 080%. 080#. 080% OR0%_ OR0%. 0808 0#0% 080
o 0 o o 0 o o o 0 o
., |
1#1
N:513le
2
. 08,
1
- & AR W WL N
/ 2 \
¥ ¥ ¥ ¥ \ 3
N80 N:ic70 N:11590 N:l6dbs Nl N:S1424 N:lfase
8 90 c 538 cac al4 as0
OHOK_ ORos_ OROR_ OROK___ OHOR_ OHOK. Onos_
1 1 1 1 1 1 1
)
£l 57 i i ms 1 . m_»: = e 1
/3#1
¥ ¥ ¥ ¥
N:ac00 N:ltckd N:1hbs N
14 48 1190 4
O80%_ OR0%_ 0808 _ OROF_
1 1 1 1

Figure 4.9: find, UPX packed

4.8.1 Results

gatech.edu/malrec/). There are almost 90000 samples, all of them were recorded in a Windows
7 32bit environment with Pandal. Unfortunately, recordings cannot be converted from Pandal to
Panda2, so I needed to re-implement the plugin for Windows 7 on Pandal. I decided to do that
because it was a huge dataset thanks to which I was able then to perform a lot of tests to see what
is the distribution of packed samples in the wild.

Here are described some of the results that I obtained from tests I ran in the last phase of the
internship. Tests have been done on Windows 7 samples (from Dolan-Gavitt’s database). They
were all recordings of 32bit PE malwares. Around 10000 samples have been tested. Here are some
statistics of the distribution of the complexity among the malwares that have been tested:

25

http://panda.gtisc.gatech.edu/malrec/
http://panda.gtisc.gatech.edu/malrec/

4 — Implementation

PO
040
N:hf0sec 54 N:h30
2% =
a8 o
0 0
1 s Ik
1#1
\ J
Nil43s
cc
[

Figure 4.10: An ARM Linux malware, UPX packed

Complexity type 0: 30.2 %

Complexity type 1: 2.6 %

Complexity type 2: 3.3 %
Complexity type 3: 62.9 %

Complexity type 6: 0.9 %

As we can see the most common class of complexity of runtime packers is Type 3. Almost every
other sample was simply not packed, but there were some few cases where the packer belonged to
a different complexity class. Here I will show one graph per category that has been found. The
following graphs are representative for the majority of the samples that have been analysed by the
framework.

Figure 4.11 shows how a graph of a non-packed executable looks like. As we can see, the graph
is similar to the one in Figure 4.6a that showed the graph for a not packed binary for Linux. The
features are the same: there is a single layer (layer 0) where the whole executed code lays.

PO

Figure 4.11: Complexity type 0, not packed.

Figure 4.12 shows a graph of a complexity type 1 runtime packer that has been found operating
on a malware in one of the tested recordings. It has only two layers, one unpacking layer (on the
top) and an unpacked one (on the bottom). The former contains the unpacking stub that de-
obfuscates the latter. The transition model is linear because there are only downwards arrows.

Figure 4.13 shows a complexity type 2 graph. Here multiple layers start appearing. The
highest one (on the top) contains the starting code, while the other three are unpacked layers. The

26

4 — Implementation

[
sz foxa o mu\ux

M:d0e 2h MO M9 14
o Zadl 1e93
[[[
1

Figure 4.12: Complexity type 1, linear transitions, single layer, tail transition.

original code is contained in the deepest layer (the bottom one) since the transition model is linear
(downwards arrows).

PO

O##0

MNH01T4E
28hel

¥

z
E

2#1
\ J

MN:410728

1

Figure 4.13: Complexity type 2, linear transitions, multiple layers, tail transition.

Figure 4.14 shows the most common graph so far. Type 3 is the complexity level that occurred
the most while running the tests. Here we can see also upwards arrows that link together different
layers, which means that the transition model is cyclic. As a consequence, the original code may
not be found in the deepest layer.

Figure 4.15 shows a complexity type 6 output graph. It is clearly visible that this does not
represent the actual graph of a Type 6 packer, but every other graph belonging to this category
resulted in the same profile. This behaviour is due to the Windows issue with the WriteProcess-
Memory API call and the corresponding Nt Write VirtualMemory system call. Because of that the
inter-process interaction between the two processes that appear in the figure is missing, resulting
in a not reliable source of information.

27

4 — Implementation

PO
00
N:A401000 NiAT50:0
244 1b46
D408 0407
[[
i

NA01794

Figure 4.14: Complexity type 3, cyclic transitions, multiple layers, tail transition.

PO P1
0#0 0#0
N:AME40 M:A24640
e e
oR0E___ ORF___
i a
1#2 1#2
Y y

N:AOLO00
Ifeh
OE___
2

Figure 4.15: Complexity type 6, two processes, graph may depend on the Pandal issue of NtWrite-
VirtualMemory in the process interaction.

28

4 — Implementation

4.8.2 Problems

In this phase of the thesis I did not encounter many problems. Being another version of a plugin
for analysing Windows PE files there were the aforementioned issues involving the monitoring of
Windows executables, one for all the failing implementation of the Nt Write VirtualMemory system
call. Even in this case there were situations in which that system call correctly traced API call
to WriteProcessMemory while other times it did not register any system call, bringing erroneous
results, as I explained Figure 4.15. Apart from that, the only other problem was the amount of
samples that I needed to analyse in order to build up the statistics. Many samples did not produce
a valuable result that could be compared and classified in the six-value scale for the unpacking
complexity. For this reason I actually had to analyse way more samples than the thousand that
produced a valid output to compute the statistics.

4.9 Non-implemented features

The original implementation of the framework, developed as a plugin for TEMU/DECAF, included
some additional features that were not necessary to compute the complexity of the runtime packer.
Such features were, for example, all the heuristic parts necessary to determine the packer family.
As T have already said in Section 4.5.2 I decided not to implement those features because they
were not relevant in computing the complexity of the runtime packer. In my implementation of
the framework there is also another part missing, which is the one in charge of computing how
many and what type of API calls the program does during its execution. This is also related to
try to guess the family of the packer.

29

Chapter 5

Automated Testing Framework

In the final phase of the internship I wanted to assess the actual working status of the framework.
To do so, I needed to perform a series of tests that required an automation process. I decided to
build what I called “automated testing framework”, that is a combination of Python and Bash
scripts (totalling approximately 1100 lines of code) that make the analysis of one or more samples
automatic.

5.1 The architecture

When I wanted to create the Automated Testing Framework (ATF) there were several situations
where having it would have made sense. Among all the possible scenarios where the ATF would
have helped I decided to focus on two main situations. The first one required an easy way to
perform all the analysis by running a single command, without the need of running every single
part of the analysis to come to the final result. To do so I combined together the components of
the framework as if they were in a pipeline, connecting the outputs of one phase to the inputs of
the next one. The second one dealt with the multiple samples I wanted to test from Dolan-Gavitt’s
collection of recordings. In this case I extended the automation done for the first scenario to test
a long list of recordings. In the following sections I will go through the important aspects of this
part of the internship that contributed to the final results of the thesis.

5.2 Simplify the execution

The original plugin was divided into three main parts, each one producing some outputs to be
combined together to obtain the final results. The beginning part of the analysis simply took the
sample recording and performed the preliminary analysis (dynamic analysis) thanks to PANDA.
The second part organised the results of the dynamic analysis to produce the behavioural graph
that shows what the packer did at runtime. The final part computed the complexity of the runtime
packer according to the results of the first two phases. In the last phase of the internship I wanted
to simplify the computation of the complexity by making everything more user-friendly and easy
to be executed. I decided then to write a script that is in charge of doing everything, starting from
the sample executable file to the final results. To do so there were three main steps that needed
to be done. For each file that I wanted to analyse I needed at first to create a PANDA recording
from the sample, then to dynamically analyse the recording again with PANDA and in the end to
produce the final results for the runtime packer complexity analysis. Appendix B shows the code
of the Python script (run_target_mal.py) I wrote to accomplish this task.

30

5 — Automated Testing Framework

5.2.1 Requirements

Before running the script it is necessary to understand how it will combine things together and
how the required files will be used to generate the final report. The first step of the automation is
the generation of a recording of the target sample’s execution in PANDA. The PANDA commands
described in Chapter 2 are sufficient to complete the first step. A requirement to be able to record
the execution of a sample in PANDA is having the actual sample executable in the emulated
operating system. To do so there are several methods that depend on the emulated OS. If it is a
Windows OS one option is to transfer the target file using a USB image:

1. Create a USB image:

e On the host:
gemu-img create usb_image.img 50M

e Start the guest OS with the —usb option as an additional command line argument:
<path/to/PANDA/gemu-system-i386 -hda <image> [other_options] -usb

e Add a USB device using the PANDA-qemu monitor:
usb_add disk:<path/to/usb_image.img>

e Wait until the guest installs the drivers
e Open the disk administrator, initialize and create a partition (with FAT32 format)

e Eject the USB image

(Optional) Tt is also possible to take a snapshot at this point
2. Copy the sample executable into the USB image

e Mount the USB image on the host:
mount -o loop,offset=<offset> <path/to/usb_image.img> </mnt/point>

e Copy the sample executable into the USB image:
cp <path/to/target_file> </mnt/point>

e Un-mount the USB image:
umount </mnt/point>

3. Attach the USB drive with data to the guest OS

e Start the guest OS with the -usb option as an additional command line argument (it
is possible to start from a snapshot in the same way):

<path/to/PANDA/gemu-system-i386 -hda <image> [other_options] -usb
e Add a USB device using the PANDA-qemu monitor:
usb_add disk:<path/to/usb_image.img>

4. Copy the sample executable to the target directory according to the guest OS

Another option for a Windows guest OS is to download the target executable from the internet,
e.g. from a private repository on a cloud service. It is thus necessary to provide the guest with an
internet connection. A simple PANDA-gemu command line argument to get connectivity is the
-net nic -net user option:

<path/to/PANDA/qemu-system-i386 -hda <image> [other_options] -net nic -net user
If the guest operating system is instead Linux-based (e.g. Ubuntu or Debian) a possible choice

to transfer the sample executable from the host to the guest is to use a connection via ssh:

1. Install ssh-server on the guest OS:

apt-get install openssh-server

31

5 — Automated Testing Framework

2.

Copy the target file from the host to the guest:
scp -P <port> <target_file> <username>Qlocalhost:<path/to/file>

where:

e <port> is the port on which the guest’s openssh-server is listening for connections
e <target_file> is the target executable that we want to copy over the guest OS

e <path/to/file> is the path to the destination folder on the guest OS

PANDA recordings will produce two outputs, a log file for all the non-deterministic inputs of
the execution and a memory snapshot that is taken at the beginning of the recording. Both of
them can be very big, reaching few GB of size, so it is necessary to have at least 10 GB of free
space on the host machine.

Another requirement is to have a configuration file that needs to be set up in order have a
structure like the following:

[Main]

basedir = /home/samaicardi/replays

panda = /home/samaicardi/my_panda2

images = /home/samaicardi/.panda

makegraph_dir = /home/samaicardi/deep_packer_inspector_makegraph

dpi_

[vM]
mem

exec_time = 4
replay_time =
repeat_replay

home = /home/samaicardi/my_panda2/panda/plugins/packer_inspector

= 1G

200
=5

where:

basedir is the directory where your target file is, on the host
panda is the path to the folder where PANDA is installed, on the host
images is the directory where the qcow2 images are stored, on the host

makegraph_dir is the path to the folder where the code for second part of the analysis is
stored, on the host

dpi_home is the directory where framework for the complexity analysis as a PANDA plugin
is stored, inside the PANDA root directory, on the host

mem is the amount of RAM that we want to give to the guest OS, as a command line argument

exec_time is the maximum amount of time (in seconds) that the execution of the target
executable can last, on the guest OS. After exec_time seconds have passed, if the program
is still running, it is terminated.

replay_time is the maximum amount of time (in seconds) that the replay of the recording
can last, on the host OS. It corresponds to the first part of the analysis, i.e. the dynamic
analysis with the PANDA plugin.

repeat_replay is the maximum number of times that the ATF can replay the recording.
There are situations in which the first replay crashes because the execution reached a non-
stable point in the recording (due to several external factors depending both on PANDA-gemu
and the used plugins). In these cases the recording is started again with a timer that will
trigger a signal handler after (0.8*replay_time) seconds: by doing so it is less likely that the
program will crash in the next execution. If the second run still crashes this process will be
repeated until repeat_replay times, each time decreasing the time of previous run by 0.8

32

5 — Automated Testing Framework

5.2.2 How-to

The Python script I wrote to simplify the execution of a complete test is called run_target_mal.py
and it is typically called in this way:

./run_target_mal <path/to/sample_name> <output_dir> <config_file> <arch> \
<vm_folder> [--make]

where:

<path/to/sample_name> is the path to the executable we want to analyse

e <output_dir> is the directory that will contain the output files, both the intermediate and
the final ones

e <config_file> is a file that contains some global variables required by the program. They
have to be in a separate file because of scalability reasons. It is the one described in the
previous section.

e <arch> is the architecture which the executable is compiled for. It can be arm, i386 or
x86_64

e <vm_folder> is the directory that contains the instance of the sample executable on the
emulated operating system

e [--make] is an optional argument thanks to which it is possible to specify if the packer_inspector
plugin needs to be recompiled. One situation where the plugin needs to be recompiled may
be, for example, when we want to test a Windows 7 PE executable after having tested a
Linux elf file. There would be some internal configuration files that depend on the type of
the executable we want to analyse

5.2.3 Create the recording

The script is divided into three main parts, each of them is called by the main function that
manages the command line arguments and sets up the required signal handlers and the file loggers.
The basic idea of the main function (better described in Appendix B is to execute each part of the
script one after the other, stopping the execution as soon as it comes across an error or an exception.
The first part of the script (corresponding to the code inside the function called run_sample) is
in charge of record the execution of the target malware, which needs to be already in the guest
OS’s filesystem. There is an important if condition that divides the execution in three branches
according to the value of {arch} (either 386, arm or x86_64). If the architecture is i386 or ©86_64
then the execution is quite similar: first of all the script sends to the gemu monitor the command to
start the recording (begin_record <record_name>), then it types in the guest OS the commands
to start the target executable. If the architecture is arm then the recording of the target executable
will be taken twice. The reason behind it is that it seems that the recording of an arm executable
does not work the first time that it is taken, while the second time it works normally. When the
executable has finished running (either because it terminated or it was stopped) the script sends
to the qemu monitor the command to stop the recording (end_record).

The interaction between the script and the gemu monitor is handled by the function mon_cmd
that sends the commands character by character via a telnet connection. This method is also
used for the interaction between the script and the guest OS because the gemu monitor offers a
command (sendkey) that serves for this specific purpose.

33

5 — Automated Testing Framework

5.2.4 Perform the analysis

Once the first part is finished we have the recording of the execution of the target sample, i.e.
the log file of all the non-deterministic inputs and the memory snapshot taken at the beginning
of the execution. Now it is time to perform the first round of analysis on the recording. It will
be a dynamic analysis using PANDA record&replay. The second function that is called by the
main function is perform_analysis. In this phase the script calls PANDA-gemu and it specifies
packer_inspector as a command line argument. It is time to use my PANDA plugin version of the
framework to dynamically analyse the recording of the target executable. First of all, the script
sets up a time alarm that will notify when the execution of the replay needs to be stopped because
the time exceeded a fixed threshold. When the dynamic analysis has finished (and PANDA stops
replaying the execution) the script will save the intermediate results that will be required by the
last phase of the analysis. If the replay did not end in the correct way the analysis will be performed
again, this time by decreasing the time threshold for the test, hoping there will not be errors due
to a shorter execution time.

5.2.5 Produce the final results

The final part of the script (function third_part) takes care of the intermediate outputs of the
previous part (events.log, execution_model.log, functions.log and trace.log) by moving them in the
right directory. After that it calls a bash script, automated_graph_production.sh. This script is
in charge of producing the unpacking behaviour graph and the complexity analysis. Additional
information on the structure of the script can be found in the Appendix B. At the end of the
execution of run_target_mal.py we can find all the results (both the intermediate and the final
ones) in a single folder inside deep_packer_inspector_makegraph/.

5.3 Automate large scale tests

The second scenario where I decided to implement the ATF was to test a lot of samples from Dolan-
Gavitt’s collection of malware recordings. As already said, all the recordings from that database
were taken with Pandal, the previous version of PANDA, on a 32bit version of a Windows 7 guest
OS. The basic idea for this part of the work was to create a series of pluggable scripts that could
be used to apply the runtime packer complexity analysis to a large set of recordings, without the
need of executing manually the analysis for each sample. With the current status of the work,
a potential user would just need to execute the script called start_analysis.sh by specifying some
parameters that will be described later in this section. This time the procedure is a little different
with respect to the previous one, in fact there is no need of recording the target executable because
it has already been recorded by Dolan-Gavitt’s framework '. Appendix C shows the main scripts
that are required by this part of the internship.

5.3.1 Requirements

There are few things that need to be done to be able to start the large scale analysis. First of
all we need to get the recording of target executable. Since a single recording (snapshot 4+ non-
deterministic log) can be very heavy in terms of space on disk, Dolan-Gavitt’s database does not
store every memory snapshot. They can instead be derived from a starting memory snapshot that
is taken as a reference by computing a sort of binary diff between the two snapshots. What
typically happens on Dolan-Gavitt’s framework is the following:

1. The execution of the target malware is recorded, producing a memory snapshot and a log of
all the non-deterministic inputs of the CPU

Ihttps://github.com/moyix/panda-malrec

34

https://github.com/moyix/panda-malrec

5 — Automated Testing Framework

2. A binary diff between this memory snapshot and the reference snapshot is computed and
saved in a text file (<malware_hash>.patch)

3. The non-deterministic log and the patch are compressed in a tzz archive and then stored in
the database

4. Some additional files are stored in the database too, especially a json file containing the
information coming from a VirusTotal report (we will need it later)

There is a Python script that can be used to generate the snapshot for a specific sample, starting
from the original reference snapshot and the non-deterministic log. It is called bpatch.py and it is
well described in a post by Irfan Ul Haq?.

Since we want to apply the analysis to a large set of malwares we need to create a list of all
the samples we want to analyse. The script is designed to download the tzz archive containing the
necessary files directly from one of the two websites that host Dolan-Gavitt’s collection, http://
panda.gtisc.gatech.edu/malrec/ and http://giantpanda.gtisc.gatech.edu/malrec/. As
we can see if we visit any of the two websites there are several textual columns, each one displaying
information about the malware hosted on a particular row. Specifically, to download the tzz archive
we need the information contained in the first column, the UUID of the sample, because the archive
is called < UUID>.txz. Once we have decided which samples we want to analyse we will need to
write a list of their UUID in a tzt file that has to be called panda_-malware_list.tzt.

5.3.2 How-to

To start the large scale analysis it is sufficient to run the script called start_analysis.sh:
./start_analysis.sh

The script will launch automated_win7_script.sh.:

./automated_win7_script.sh

which will take care of all the required input to the Python script that actually performs the
analysis, execute_win7-malware_replay.py:

./execute_win7_malware_replay.py <sample_dir> <config_file> <arch> \
<sample_name> <exe_name>

where

e <sample_dir> is the directory where the recording is stored

e <config_file> is the configuration file that contains all the global variables, in the same
format of the one explained in Sub-Section 5.2.1

e <arch> is the architecture used for the emulated guest OS (z86_64 in this case)
e <sample_name> is the UUID of the sample, taken from one of the two websites

e <exe_name> is the actual name of the executable, used in the guest OS

2https://irfanulhaq.info/2015/12/09/replay-panda-malware-recordings/

35

http://panda.gtisc.gatech.edu/malrec/
http://panda.gtisc.gatech.edu/malrec/
http://giantpanda.gtisc.gatech.edu/malrec/
https://irfanulhaq.info/2015/12/09/replay-panda-malware-recordings/

5 — Automated Testing Framework

5.3.3 Scripts execution

If we satisfied all the requirements we are ready to run start_analysis.sh. The script just cleans
up some directories and then calls another script, automated_win7_script.sh. This one reads the
UUIDs from the list and for each of them it performs the following actions:

1. It downloads the tgz archive from one of the two websites

2. It extracts the non-deterministic log file and the patch for the memory snapshot
3. It restores the actual snapshot starting from the reference snapshot and the patch
4. Tt starts execute_win7_malware_replay.py

5. It does some clean-ups for the next iteration

execute_win7_malware_replay.py is the final script that is executed for this type of analysis. It is
quite similar to run_target_mal.py: it calls the same functions except for run_sample that is not
necessary any more.

5.4 Performance

Few words need to be spent regarding the performances of all these analyses. For what concerns
the computational power there are no big issues. The framework itself is quite complex in terms of
memory accesses and control flow instructions, but the way PANDA manages the memory usage
is very good. There are a lot of structures that need to be created (i.e. allocated in the heap)
during the execution of a replay, e.g. all the OsiProc structures that are returned when calling
get_current_process or get_processes. Nevertheless PANDA implements also the corresponding func-
tions to free the memory allocated for those structures, so if a proper use of memory is adopted
when writing a plugin the amount of memory required to run the whole recording can be as small
as 0.23 GB. If we talk about time performances, instead, we need two separate two main families of
analyses: the Linux family and the Windows family. While the former does not have big duration
issues (we are talking about seconds of total time per analysis), the latter typically needs several
minutes. This is due to the fact that Windows replays tend to last way more time than Linux
replays, both because the emulation of a Windows OS (with a graphical interface and so on) is
heavier and the CPU cannot go as fast as the one in a Debian Linux Server (no graphics, only the
essential shell), and also because Linux executables typically last less seconds than the Windows
PE files.

36

Chapter 6

Comparison with the State of the
Art

6.1 Comparison with the State of the Art

In this section I will compare some of the results I obtained from my implementation with the
State of the Art (SoA) for this particular problem. As I already explained before, there is a web
service that is available at www.packerinspector.com. This service is what can be considered the
SoA for evaluating and ranking the complexity of runtime packers. In order to be able to compare
my results with the SoA, I submitted several samples of packed executables to the online service
and I retrieved the results of those analyses, especially by taking into account the output graph
showing how the packer behaved at runtime.

As we can see from Figure 6.1 the website is very simple: it is possible to select a sample from
your local machine, upload it and then start the analysis by clicking on the Analyze button. The
service will analyse the sample according to its behaviour at runtime and it will show the results
of the analysis in a format similar to what is represented in Figure 6.2. I will focus on the output
graph because it is the best and most immediate way to understand the behaviour of the tested
runtime packer.

Once I had enough results from the web service I started analysing the same group of samples
with my implementation of the framework. Then I compared the corresponding results for each
sample by paying particular attention to shape and the content of the two graphs (mine and the
one resulting from packerinspector.com). Unfortunately, the web service can only analyse PE
executables, i.e. programs that can run only on a Windows operating system. For this reason I
could not compare all of my samples against the SoA, but only the ones that were designed for
Windows. Besides, it was anyway a good mean to test whether my initial implementation of the
complexity analysis was OK and if it was producing the correct outputs. In the next sections I will
show some of the results I got from my experiments and how I compared them with the SoA. I will
not show all the comparisons I have done during the testing phase, neither half of them because
they simply are too many. Furthermore, they are not all relevant for the purpose of this thesis,
they are required only to show that everything worked fine and that my implementation produced
the same results of the web service. With that in mind, I will thus show only a couple of examples
of the comparisons I did in order to test my system, pointing out for each of them something that
is peculiar of that particular comparison.

37

www.packerinspector.com

6 — Comparison with the State of the Art

Deep Packer Inspector

a service based on:
SoK: Deep Packer Inspection: A Longitudinal Study of the Complexity of Run-Time Packers

© How does it work?

Upon submitting any file/s you are accepting the Terms of Service
We only support PE files.

Please do not exceed the 8MB upload limit.

This analysis is private

Tell us if you know which packer it is!

Analyze

Figure 6.1: Main page at www.packerinspector.com

Static PE information Layers & regions VirusTotal scans

& Summary ~
Visibility Public
Main file's SHA256 ecae6a2f3690f1b7ce565¢c2b2ac19ad37ade638cc75/04b275595086d5d9e679
© Complexity Type IV
Packer identification (signature based) Upack_v0_39_final_Dwing, Upack_V0_37_Dwing
Number of processes 1
Number of layers 3

e
B I g 4 ol moaly gl meedy peof pela pley poog ploey Do ey Do plem ploay gl
W wdne wd - W el sl wdfe sl Wl wdl Wl WfE Wl ewle Wil Wl sl el
Click to open on new tab @ How do | read the graph?
o . .
I File identification
© General information ~
SHA256 ecae6a2f3690f1b7ce565c2b2ac1 9ad37ade638cc75f04b275595d86d5d9e679
SHA1 b1b784356e5681ebdadb4379f5b30520c35a4447
MD5 abac6e69ce?2e16841e8cadd4fbf7casa

Figure 6.2: A sample result

38

www.packerinspector.com

6 — Comparison with the State of the Art

6.2 Interpret the graphs

The results of my implementation present the information about the complexity analysis in the
same way packerinspector.com does. It is thus reasonable enough to explain how to interpret the
web service’s output graph, that represents the behaviour of the analysed sample. This section is
taken from packerinspector.com [17]

6.2.1 Colour Blindness

The unpacking graphs are colour-coded and the explanations below use colours to refer to certain
parts of the graphs. Figure 6.3 shows the colours and colour names that we will refer to. Note that
there are two types of greens, Arrow Green and Box Green, that appear on arrows (connectors)
and boxes respectively.

Figure 6.3: Colour Blindness

6.2.2 Processes

The web service monitors all the processes created during execution, as well as those the sample
interacts with. A graph may show one or several processes, if the system detects, for example,
that the binary has injected code to another process. Each process is designated by a process
number (e.g. PO, P1). The unpacking layers and memory regions of each process are contained in
a separate box for each process. The graph in Figure 6.4 shows 2 processes.

PO P1

0#0

B ——
T~
\\“\0\154 2 0x2001 1 0x1000 1 OxB4
'S i 1#4‘i

Figure 6.4

6.2.3 Layers

Each process will have at least 1 layer of code (if some code was executed), and up to any number
of layers. Each layer is represented as a blank box containing horizontally aligned coloured boxes
(that represent memory regions). Each layer has a header that follows the format [LayerNum-
ber]#[NumberOfFrames]. The first one indicates the layer number: 0 for the executed code that
was present in the binary (typically, the code of the packer), and greater than 0 for every unpacked
layer. The second number represents the number of frames of code that the layer contains. Figure
6.5 represents a packer with 4 layers (3 of them containing unpacked code, because they are grey,
see Subsection 6.2.4). All the layers contain a single frame. Nevertheless, if we look at the previous
example, the layer 1 in process P1 contains 4 different frames, given that it is an incremental packer

39

6 — Comparison with the State of the Art

that unpacks memory pages on-demand, just before they are executed (i.e., there is one frame per
memory page executed).

PO

0#0

M 407b39
63

10#E8#
o]

|

1 xa 02352

1#1

M 401000 M: 4079b1
a 1a9

0#03# 0#0#
1 1

i

1 %xzds

2%

M: 4079cB
16b
5094463
1

Bxbee 1\K.1'4

M 407b5a
3e
10%B%_
1

Figure 6.5

6.2.4 Memory regions (boxes)

The coloured boxes inside each layer are memory regions. Each memory region represents a set of
contiguous memory addresses that were executed. Furthermore, we group into the same region all
executed instructions located at a distance lower than one memory page (4096 bytes). This does
not mean that the binary executed ALL the possible instructions in that region, but we group
them together to facilitate visual representation. These regions follow a simple colour scheme:

Yellow regions. Represent regions in which there is not a single instruction that wrote the mem-
ory of another region. In other words, it represents a piece of code with no unpacking
behaviour.

Gray regions. These regions, on the contrary, contain at least one instruction that wrote the
memory of another region: it shows some unpacking behaviour.

Green regions. There regions represent memory that has been written remotely from another
process (either via WriteProcessMemory, shared memory regions, or by loading a file that
was written by another process).

Red regions. You will only find one red region in each graph, and it contains the last instruction
that was executed during analysis.

Also, the regions contain 4 lines of text with different types of information:

Line 1: Type of memory and base address. The online service distinguishes between 3 types
of memory. “M” for module address space, “H” for heap, “S” for stack, and finally, we will use
“N” whenever our system does not properly retrieve the memory type. In my implementation
there is no such distinction because it was not needed for computing the packer complexity,
it was only needed by some heuristics to try to guess the packer family.

40

6 — Comparison with the State of the Art

Line 2: Size. The size of the region in bytes (in hexadecimal).

Line 3: APIs executed. It shows 3 attributes separated by #:
[NumAPICalls]#[NumDiffAPICalls]#[APICallsByFamily].

The first one represents the total number of API calls made from the region. The second,
the number of different API calls executed, and finally, there are 4 spaces for 4 letters:
“VCGM”. Each letter represents the presence of a given family of API calls (an underscore
“” represents the absence of such API call). “V” corresponds to the GetVersion function
family, “C” corresponds to the GetCommandLine function family, “G” corresponds to the
GetModuleHandle function family, and finally “M” corresponds to the MessageBox related
group of functions. The first 3 groups of APIs are related to typical C runtime API calls, and
are sometimes used as a way to locate the original entry point of an application. MessageBox
related functions were also monitored for testing purposes, and are left because many unpack-
me challenges show a message box as a payload. See API call families for more information.
Also this information is not present in my implementation because of the same reason, it was
not needed to compute the packer complexity.

Line 4: Frames. Finally, the last line represents the number of frames that the region contains.

6.2.5 Memory write operations (green and red connectors)

Memory write operations between regions are represented as green and red connectors. The green
colour is used whenever a region writes the memory of another region. In contrast, the red colour
is used whenever there is a memory write and a execution transition between the same pair of
regions. If a region writes another region and then the execution jumps to this code, the connector
will be represented in red. Each connector has an hexadecimal number next to it, showing the
number of bytes written. For clarity, only the connectors between contiguous layers are shown.
Showing all the connections would produce and unreadable graph in certain cases.

6.2.6 Execution transitions (grey and blue connectors)

Execution transitions are depicted as grey connectors, and show the execution jumps from one
region to another region in the following layer. Like for memory write operations, execution tran-
sitions that occur inside the same layer are omitted, as well as transitions between non-contiguous
layers. The number shown next to each connector represents the number of transitions observed.
If the connector is blue instead of grey, it means the transition occurred between two different
processes. An inter-process transition does not imply process synchronization and might just be a
consequence of process scheduling.

6.2.7 Frames

As described before, the number of frames is represented at two different points: at layer level, and
at region level. These numbers may not coincide, but why? A frame represents a set of memory
regions written and executed at one time. For instance, imagine a packer that first unpacks and
executes a given routine, then goes back to the packer code, unpacks another one, and then executes
it. This packer would present two frames, one for each routine. The explanation for counting the
number of frames with two different granularities (layer and region) is simple: these two frames
may be located in the same layer (and therefore, the layer header would show “2” next to the
layer number), but the code for each frame might be located in different regions, and thus each
region would contain only one frame of code. Now, look at Figure 6.4. Layer 1 in process 1 has 4
frames. Nevertheless, only the region starting at 0x401000 contains 2 frames. This packer protects
each memory page separately, so, whenever the execution jumps to a protected memory page, the
packer comes in and decrypts its contents (resulting in a new frame). The only region with a size
greater than one page is the one at 0x401000 (with 0x1001 bytes), and as a consequence, it presents
2 frames.

41

6 — Comparison with the State of the Art

6.3 Comparisons

6.3.1 Example 1

Figure 6.6 shows the comparison between my results and the SoA. In this example I submitted the
PE executable to the online service and I got back the graph on the right and the information on
the upper part of the figure. The results of my implementation can be seen on the leftmost graph
(the one in the window called ImageMagic: graph.png). The executable I chose for this first test
was a simple program that was packed with EXECryptor [18], a Type 3 packer. As we can see the
two graphs are very similar, in fact they have the same number of regions, layers and arrows, and
each arrow connects the same pair of memory regions. This means that in both graphs (and thus
in both analyses) the behaviour of the analysed runtime packer was the same: there was a single
layer of unpacking code (the upper one, 0#0) that unpacked the original code (the lower one,
1#1). By looking at the numbers on the arrows and on the second line of the boxes we can also
see that the memory writes were of the same size. The red box, which indicates the last executed
memory area, is different in the two graphs, but this can be related to some differences in the final
behaviour of the application in the two executions, also because this particular executable had a
graphical interface to show the end of the unpacking stub. The grey arrow on the right of both
pictures links together two blocks on different layers. This is the result of the cyclic transition
model that the packer has. Finally my graph does not present information on the type of API
calls because, as previously said, it was not relevant for the final purpose of my thesis.

File identification

& Summary
Visibility
Main file's SHA256

@ Complexity

Public

17f08f7:

Static PE information

1f2a249d2161ce663423550ed87456f3a80c262a83cf4

Type lll

Layers & regions.

VirusTotal scans

EXECryptor_2_x_SoftComplete_Developement, EXECryptor_2_2 4 Strongbit_SoftComplete_Development_h3, EXECryptor_2_1_17_Strongbit_SoftComplete_Development,
EXECryptor_2_xx_max_compressed_resources, EXECryptor_V2_1X_SoftCemplete_com, EXECryptor_2_0_2_1_protected_IAT

Packer identification
(signature based)

File entropy 753135

Number of processes 1
Number of layers 2
o ImageMagick: graph.png
PO
PO
0#0
0#0
M:40a1f0 M:40d7a2
NeAalfo N2 26 1322
x 1322 o0 4150#1654VCG_
omn__ 232504 o o
o
I |
1 |

zzzzz

4 o
1#1 l J \

M:408041 M:40dcas

5 5ee

= 3 0#0%#. 0#0%

25303124308 omr__ T T

1 T

Click to open on M

@ How do | read the graph?

Figure 6.6: Example 1. Comparison between my implementation (left) and the SoA (right)

6.3.2 Example 2

Figure 6.7 shows a similar result in terms of accuracy. This time I used an actual malware which
was packed with an unknown packer (md5: cecf3c6e7139985101e181a235e90aea, it can be found
on virustotal.com [19]). In this case we can see that there are two layers of unpacked code (the
middle and the bottom layer) and two layers of unpacking code (the top and the middle layer).
This means that the executable started with the first unpacking stub, which unpacked the first
layer (1#1), which in a second time wrote itself into memory where the execution finally jumped,
generating the second (and final) unpacked layer (where the execution finished, given the red box).
As in the previous example the packer has a cyclic transition model. This time we can see from
the information on top of the graphs something unusual for a packed executable, i.e. that the

42

6 — Comparison with the State of the Art

entropy of this particular malware was below 7.0. This is something unusual, in fact the entropy
of a packed executable typically ranges between 7.0 and 8.0, since the original code is obfuscated
as much as possible (generating thus a lot of randomness with few redundancies, which means
high entropy). By looking at the graphs it is possible to deduce that the two executions that the
malware performed (one in my framework and the other on the web service) were pretty much the
same. One thing that is different between the two graphs is that layer 1 was mapped on different
memory areas, as we can see from the first line of information in the grey box (N:<address>).
This could be the consequence of a normal memory allocation for that region of code during the
execution. It is in fact common that normal mallocs are done without specifying the destination
address of the memory allocation in the heap. As in the first example there is no information (in
the graph resulting from my implementation) about neither the API calls nor the types of the
memory regions (Module, Stack, Heap, None) and in this case the web service was not able to
determine the packer family based on a signature.

© Complexity Type Il

Packer identification (signature based)

File entropy 6.77175
Number of processes 1
MNumber of layers 3
—
PO PO
0#0 0#0
N: 4a8fed N: 401000 N:4al3c8 M: 4aBfed M: 401000 1 4al13c9
35 61
7467 4#3878# 4164#782# 4151#1070# 697901#9# 0#0# 0#0%#
0 0 0 0 0 0
L
0z 1,0x58e o01108d L0x58e
1#1 1#
N: 1370000 M. afoD00
! 2cB
T9BE#1E63# 003
1 1
i
ozt x4d18 01108d x1bHido
2#47 2#69789
- -

Figure 6.7: Example 2. Comparison between my implementation (left) and the SoA (right)

6.3.3 Example 3

Figure 6.8 shows instead a scenario in which there were some differences between the two executions
of the sample. Like in the previous example I used a packed malware (md5: ¢63bb9913158e8afcdcc6-
80e02a027de on virustotal.com [20]) with entropy equals to 7.78. As we can see from the figure, the
web service produced the graph in 6.8b with two distinct processes that had the same behaviour:
they have the same structure and number of layers (the top one containing the original code, the
other two containing the unpacked code), both processes wrote the same memory regions. They
look like two copies of the same process. On the left side of the figure (6.8a) is the result of my
implementation of the framework. The main difference with 6.8b is that there is only a single
process. This is due to a different behaviour of the execution of the sample when the recording was
taken. It could depend on some logic bombs inside the malware that were triggered by PANDA,
or it could simply mean that one process did not start before the end of the recording. I wanted
to stress out that situations like this one are quite common, because they fall into the big category
of those problems related to the dynamic analysis of an hostile executable, which will do anything
it can to prevent us from understanding its behaviour.

43

6 — Comparison with the State of the Art

PO
0#0 PO P1
N-4808f2 N: 401000 N:47bofs 0#0 0#0
41 48
314#285% 4029#788% B044#988% M: 480982 M: 401000 M:47bofs M. 480812 M. 401000 M 47bei8

o o 0o © 41 [41 48
BHEH BEEE 0#0H 0#OE
] 0 [[0

/
1 42 { }Im

1# 1# 1
N: 1c0000 N:380000
269 cron
T3I26#BE2#, 1
1 i L
0BaTe 2110 ko He o3t 2580
o o= 2#625278 2#47
\
2#50 380600
A

(a) My implementation

453122282 CG_
98aTe

(b) packerinspector.com

Figure 6.8: Example 3. Differences between the two executions

44

Chapter 7

How-to

In this chapter I will explain in few words how to install my implementation of the plugin and how
to execute the PANDA replays. PANDA replays can be recorded in the way explained in chapter
2.4.1. First of all we need to get access to the GitHub repository on which I worked during the six
months of internship, so:

git clone https://github.com/SamAicardi/My-Panda.git panda

This command will download the whole PANDA repository with all the modifications that I did
in order to make everything work. The downloaded directory will have three different branches:

e master. This is the main branch, where we can find the version of the plugin designed to
analyse Windows executables.

e [inuz. In this branch we can find the implementation of the plugin that supports the analysis
of Linux executables for the x86 architecture.

e grm. In this branch we can find the implementation of the plugin that supports the analysis
of Linux executables for the ARM architecture.

To change from one implementation to the other:

cd panda/
git checkout <branch>

where <branch> can assume one value among master, linux and arm. To see which branch is the
current one:

git branch

It will show the list of all the branches that we visited so far, highlighting the current one as in
figure 7.1.

samaicardi@rob: /tm
$= git branch

*

linux

master

samaicardi@rob: /tm
&=

=

Figure 7.1: There are three different branches

The implementation of the framework as a PANDA plugin can be found under . /panda/plugins/packer_insp
At this point it is possible to configure the plugin itself to be able then to compile the whole PANDA
repository:

45

7 — How-to

cd <panda_folder>/panda/plugins/packer_inspector
./configure --panda-path=<panda_folder>

where <panda_folder> is the absolute path to where PANDA has been downloaded. Then we
need to open the Makefile and change DPI_HOMEDIR in the first line:

DPI_HOMEDIR=<panda_folder>/panda/plugins/packer_inspector
Finally we just have to build the whole PANDA project as any other project:

cd <panda_folder>
./build.sh

Once we have built the PANDA repository we can just use the newly-compiled plugin to analyse
a normal replay. There are three different ways to execute the packer complexity analysis, one for
each version of the plugin. Appendix D explain in details what the three different methods do in
order to accomplish to the results. To summarise the options in few words, we can see the three
different commands that will be called by each script in the different scenarios. To run Windows
replays we can use the following command:

$> <path_to_panda>/i386-softmmu/qgemu-system-i386 -replay <replay_name> -panda \
syscalls2:profile=windows7_x86 -panda packer_inspector:name=<exe_name>,os=win \
-os windows-32-7 -m <size>

To run Linux x86 replays we can use the following command:

$> <path_to_panda>/i386-softmmu/gemu-system-i386 -replay <replay_name> -panda \
syscalls2:profile=linux_x86 -panda osi -panda osi_linux:kconf_file=\
<path_to_panda>/panda/plugins/osi_linux/kernelinfo.conf,kconf_group=\
my_debian_i386 -panda packer_inspector:name=<exe_name>,os=linux \
-os linux-32-* -m <size>

To run Linux ARM replays we can use the following command:

$> <path_to_panda>/arm-softmmu/qemu-system-arm -M versatilepb -kernel \
<path_to_images>/vmlinuz-3.2.0-4-versatile -initrd \
<path_to_images>/.panda/initrd.img-3.2.0-4-versatile -hda \
<path_to_images>/.panda/debian_wheezy_armel_standard.qcow2 -append \
’root=/dev/sdal’ -panda syscalls2:profile=linux_arm -panda osi -panda \
osi_linux:kconf_file=<path_to_panda>/panda/plugins/osi_linux/kernelinfo.conf\
,kconf_group=my_debian_arm -panda packer_inspector:name=<exe_name>,os=linux \
-0s linux-32-* -replay <replay_name> -m <size>

For each of the three commands listed above:

e <path_to_panda> is the root directory for the PANDA repository. It is where we decided to
clone my version of the plugin

e <replay_name> is the prefix name of the files that are necessary to run a replay, i.e. the
memory snapshot and the non-deterministic inputs log file

e <exe_name> is the name of the executable, either for Linux or Windows, that was started in
the emulated guest operating system

e <size> corresponds to how much space we want to assign to the RAM memory of the
emulated OS. It must be expressed either in MB or in GB

e <path_to_images> is the absolute path to the folder where we stored the gcow?2 images that
are required to emulate the guest operating system

46

Chapter 8

Conclusions

During the six months I spent working on this thesis I had two main tasks: as a first step I needed
port the complexity classification of runtime packers from DECAF to PANDA in order to get
the access to the thousands of malware executions that other researchers already recorded with
PANDA. The second main task was to extend the applicability of the runtime packer complexity
classification to other operating systems and other architectures (with respect to Windows XP PE
executables).

As a result of the six months of work I was able to port the framework as a working PANDA
plugin, being able to test over ten thousands of malware recordings taken from Dolan-Gavitt’s
collection. I also extended the applicability of the analysis to ARM machines and to Linux x86
elf executables. With Dolan-Gavitt’s collection of malware samples it was possible to observe
how runtime packers are used in the wild and what is the usage distribution in terms of packing
complexity. Since it is typically easier to find malware designed for Windows with respect to Linux
malwares (and also there are way more packer families for Windows rather than for Linux) this
was the fastest way to draw some statistics on a huge test set.

I I I I I
60 - s
]
%0407 R
E
8
o}
oot .
O, - - [
| | | | |

Type 0 Typel Type2 Typed Typeb
Complexity type distribution

By looking at the results of these tests we can see that the most used runtime packer was a
Type 3 packer (multiple unpacking layers, cyclic transition model, typically single process, tail
transition, for more details see Section 1.4). It is a confirmation that Type 3 runtime packers
are the optimal trade-off between complexity and performance. The more complex the packer is
(i.e. the more unpacking layers and/or processes it has) the better is the achieved obfuscation
and the harder is for an automatic scanner to detect potentially malicious hidden code, but it is
also true that the more complex the packer is the more onerous the unpacking routine will be.
As a consequence, the execution of a malware packed with a very complex runtime packer (e.g.
a Type 6 packer) may not be the best thing for the author of the malware, because the malware

47

8 — Conclusions

may become so slow in unpacking itself that an anti-virus can detect it even before the unpacking
routine is finished. Type 3 packers seem to be a good compromise between unpacking effectiveness
and unpacking efficiency.

For what concerns the analysis of Linux runtime packers, there was no such a big collection of
samples, so I did some preliminary tests by analysing a series of sample programs (packed with
UPX) which did not have malicious code. After this initial phase I tested a small set of 32bit elf
real malwares. There were 788 Linux x86 executables that I tested using the Automated Testing
Framework. The samples were already labelled as either packed or not_packed so that I could then
check the accuracy of the ATF. It produced 868 results (some of the samples have been executed
twice because the first run just crashed for some reasons), out of which I got the following statistics:

e 589 finished the analysis, producing a final report as explained in Chapter 3
e 85 aborted because of some errors during the first phase (the dynamic analysis)
e 83 produced an error message in the second phase of the analysis

e 111 did not finish for other reasons

The total number of samples that ended up being classified as packed was 58, with respect to 63,
which is the total number of malwares that were present inside the 788 tested samples. The five
samples that are missing from the packed list were not recognised because it was not possible to
dynamically analyse them, as the executable files ended up being corrupted (they prompted a “bus
error” message). The only way to spot their maliciousness was to manually analyse each one of
them statically, by looking at their disassembled code.

I used then a similar process for the analysis of Linux 32bit ARM executables. 1 tested 738
samples, where 45 of them were already classified as packed malwares. Here is the need of pointing
out that the record&replay platform in PANDA for ARM images is not a hundred percent reliable.
There were in fact a lot of samples whose recordings simply did not work for some reasons. This
is why I needed to repeat, for many of them, the execution in the guest OS multiple times just to
be sure that eventually I would have got at least one working recording. The ATF produced in
this scenario 1960 results, out of which I got the following statistics:

e 430 samples finished and produced a proper analysis

e All the other recordings just did not finish for the reasons I explained before

In this case there were almost half of the packed samples (20 out of 45) that could not be executed
because of some problems at runtime: either they produced a segmentation fault, or they had
illegal instructions, or again they reported a bus error. In the small group of packed malwares that
the framework was able to execute 21 out of 25 were correctly detected as packed.

Further Work

As I have already explained in the previous sections, my implementation of the framework is not
as complete as the one available at packerinspector.com. I decided to skip all those parts of the
code that were implementing the heuristics to determine the packer family: the collection of API
calls, the separation between different types of memory (i.e. stack, heap or modules), imported
and exported symbols, because I preferred to focus on implementing what was actually necessary
to compute the complexity of runtime packers. A further step towards the complete realization of
the framework in PANDA can be achieved by implementing those features.

As the plugin is implemented up to now, it would be quite easy to extend the support the 64bit
versions of both Linux and Windows executables. I could not extend the support to the x86_64
architecture because there were some missing PANDA plugins, specifically the syscalls2 plugin
did not support neither Linux nor Windows 64bit replays. The syscalls2 plugin is fundamental
because it implements all the hooks that the user can register on system calls (and thus on API

48

8 — Conclusions

calls), and up to now it does not offer the support for 64bit system calls. It would be quite easy
to extend this support by looking at the implementation of the 32bit version of the same system
calls that can be found in the PANDA man page'.

Another improvement could be trying to extend the support of the analysis to another archi-
tecture. We have already taken into account the three main architectures, x86, x86_64 and ARM.
By looking at the PANDA man page: “PANDA support is reasonably strong only for x86, arm,
and ppc” 2. So the next target in terms of architectures may be Power PC, but further investiga-
tions would be required in order to be sure that the main PANDA plugins used for the complexity
classification can extend the support to this new architecture.

Thttps://github.com/panda-re/panda/blob/master/panda/docs/syscalls2.md

2https://github.com/panda-re/panda/blob/master/panda/docs/manual .md#emulation-details

49

https://github.com/panda-re/panda/blob/master/panda/docs/syscalls2.md
https://github.com/panda-re/panda/blob/master/panda/docs/manual.md#emulation-details

Appendix A

Results of the analysis

In this Appendix I will show how the file results.tzt looks like. Just to remind it, this is the
output file that is produced at the end of the analysis, when the runtime packer has already been
monitored and when the behavioural graph has already been produced.

Figure A.1 shows the output graph of a runtime packer called UnPackMe_Obsidium. As we
can see there are multiple layers of unpacking code, starting from the top layer, which contains the
first piece of code that has been executed at runtime.

Figure A.1: Behavioural graph of the unpacking routine for UnPackMe_Obsidium v. 1.4.0.9

results.txt

GENERAL FEATURES

Transition model: cyclic

Footprint:

Original code located in last level: True
Number of regions with special API calls: O
Granularity:

Layer with original code: None

COMPLETITY TYPE: 3

Total analysis (execution) time: 0.0

Number of instructions decoded: 0

Number of exceptions: O

Number of processes: 1

Number of upward transitions: 94916

Number of downward transitions: 92479
Number of processes with interprocess communication: 0
Termination reason: Process exit

LEVEL STATISTICS

50

A — Results of the analysis

Number of regions: 1
Number of frames: O
Min. BB size: 2
Avg. BB size: 6
Max. BB size: 85

Region number 0O

Region address 4c0000

Region size 41f

Region Type N

Region nb frames 0

Region has been modified remotely: O
Region total API calls: 203
Region different API calls: 79
Region sp_v: False

Region sp_c: False

Region sp_g: False

Level number 1
Number of regions: 4
Number of frames: 6
Min. BB size: 1

Avg. BB size: 13
Max. BB size: 165

Region number O

Region address 4c025f

Region size b46

Region Type N

Region nb frames 2

Region has been modified remotely: O
Region total API calls: 87
Region different API calls: 79
Region sp_v: False

Region sp_c: False

Region sp_g: False

Region number 1

Region address 4c2a97

Region size 1a95

Region Type N

Region nb frames 1

Region has been modified remotely: O
Region total API calls: 202
Region different API calls: 1
Region sp_v: False

Region sp_c: False

Region sp_g: False

Region number 2

Region address 4c5863

Region size 232c

Region Type N

Region nb frames 1

Region has been modified remotely: O
Region total API calls: 112872
Region different API calls: 9092
Region sp_v: False

Region sp_c: False

Region sp_g: False

Region number 3

51

A — Results of the analysis

Region address 4ca83f

Region size 2389

Region Type N

Region nb frames 2

Region has been modified remotely: O
Region total API calls: 100

Region different API calls: 79
Region sp_v: False

Region sp_c: False

Region sp_g: False

results.txt

Level number 5
Number of regions: 3
Number of frames: 13
Min. BB size: 2

Avg. BB size: 6

Max. BB size: 53

Region number 0O

Region address 3b73f0

Region size 16fa

Region Type N

Region nb frames 11

Region has been modified remotely: O
Region total API calls: 1621
Region different API calls: 78
Region sp_v: False

Region sp_c: False

Region sp_g: False

Region address 3bdbd3

Region size 5

Region Type N

Region nb frames 1

Region has been modified remotely: O
Region total API calls: O

Region different API calls: O
Region sp_v: False

Region sp_c: False

Region sp_g: False

Region address 5e0004

Region size ff0

Region Type N

Region nb frames 1

Region has been modified remotely: O
Region total API calls: O

Region different API calls: O
Region sp_v: False

Region sp_c: False

Region sp_g: False

Level number 6
Number of regions: 1
Number of frames: 5
Min. BB size: 1

Avg. BB size: 4

Max. BB size: 20

52

A — Results of the analysis

Region number O

Region address 3b73f0

Region size 1fd

Region Type N

Region nb frames 5

Region has been modified remotely: O
Region total API calls: 344
Region different API calls: 84
Region sp_v: False

Region sp_c: False

Region sp_g: False

POTENTIALLY ORIGINAL REGIONS

MORE GENERAL STATISTICS

Number of layers with multiple frames: 6

...out of 7 layers

...that have 49 regions together

...of which O have calls to special APIs

Last executed region: Proc: O Level: 3 Number: O Address 3b0380 Size: a465

INFO ABOUT MONITORED PROCS

PID: 430
Position: O
Loaded modules:

No_name - 6d0000(281000)

REMOTE MEMORY WRITE INFORMATION

At the end of the file we can find other information that summarize the content of the analysis
(e.g. the number of layers with multiple frames, the total number of layers), the Process Identifier
(PID), the list of loaded modules (if any) and also the remote memory write statistics (in this case
there were no remote memory writes as there was only one process). There are also some missing
information, such as the potentially original regions or the runtime packer footprint (at the very
beginning of the file) because they are part of the heuristics to understand and try to guess the
packer family, which did not succeed in this case.

53

Appendix B

Simplify the Execution

Listing B.1 shows some utilities that will be called by the three main functions, plus few data struc-
tures (Python dictionaries) to store global values. keymap is a dictionary that contains associations
between ASCII characters and their representation in the gemu-monitor. In this way it will be
possible for the script to send keystrokes to the guest operating system, using the gemu-monitor
command sendkey <character>. arch_set and src_port_base are other two dictionaries that
just keep track of the guest operating system that has been selected by the corresponding com-
mand line argument. Function mon_cmd is used to send any command to the gemu-moniror, while
guest_type is used for the communication between the gemu-monitor and the guest operating
system. handler, SnoozeAlarm and snoozealarm represent the implementation of a timer, that
will be used by the function perform_analysis in the second phase of the execution. The timer
is implemented through a signal handler and a daemon that will send the SIGALRM signal to
the signal handler. download_log is a function that can be called if the user wants to download a
specific file from the guest to the OS. It is basically a wrapper of the bash command scp, handling
all the possible exceptions that it may throw. md5_for_file is a function that computes the md5
hash of a target file.

B.1 run_target_mal.py

Listing B.1: ”"Helper functions”

#!/usr/bin/env python

import ConfigParser
import logging
import os

import shutil
import socket
import subprocess
import sys

import telnetlib
import time
import hashlib
import samples
import pexpect
import signal
import threading
import logging
import time
import string

key mapping for the guest-host interaction
keymap = {

’=?: ’minus’,

’=’: ’equal’,

’[’: ’bracket_left’,

54

B — Simplify the Execution

’]’: ’bracket_right’,
’>;?: ’semicolon’,
’\’’: ’apostrophe’,
’\\’: ’backslash’,
’,?: ’comma’,

.7 ’dot’,

’/’: ’slash’,

’%?: ’asterisk’,

)): ’SPC’,

’_?: ’shift-minus’,

’+’: ’shift-equal’,

’{’: ’shift-bracket_left’,
’}’: ’shift-bracket_right’,
’:?: ’shift-semicolon’,
>">: ’shift-apostrophe’,
’|’: ’shift-backslash’,

’<?: ’shift-comma’,
’>>?: ’ghift-dot’,
’>?2: ’shift-slash’,

‘\n’: ’ret’,

}
arch_set = [’i386’, ’x86_64’, ’arm’]

scp_port_base = {
’i3867 : 11022,
’x86_64° : 12022,
’arm’ : 10022

}

some global variables for debugging
CLEAN_ALREADY_ANALYZED_SAMPLES = 0 # not used for the moment
PARTIAL_ANALYSIS = 1

if PARTIAL_ANALYSIS == O but we still want to log everything
LOG_ANYWAYS = 1

DELETE_SNAPHOTS = 1

to enable writing to a logfile
LOG_DEBUG = 0

global_start_time = 0
global_var_child = 0

Interaction with the guest 0S

def mon_cmd(s, mon):
mon.write(s)
logging.info(mon.read_until (" (gemu)"))

def guest_type(s, mon):
for ¢ in s:
if ¢ in string.ascii_uppercase:
key = ’shift-’ + c.lower()
else:
key = keymap.get(c, c)
mon_cmd (’sendkey {0}\n’.format(key), mon)
time.sleep(.1)

def handler(signo, frame):
print "Timeout exceeded, sending SIGTERM (elapsed time: {0})".format(time.time() -
global_start_time)
global global_var_child
global_var_child.kill(signal.SIGTERM)
sys.stdout.flush()

Timer

class SnoozeAlarm(threading.Thread):
def __init__(self, zzz):

55

B — Simplify the Execution

threading.Thread.__init__(self)
self.setDaemon(True)
self.zzz = zzz

def run(self):
time.sleep(self.zzz)
os.kill(os.getpid(), signal.SIGALRM)

def snoozealarm(i):
SnoozeAlarm(i) .start ()

Utils
B I R R R S I R I I R R R e R | | I IR 1 iR R A R R (SIS SIS I
download some files from the guest 0S
def download_log(srcpath, dstpath, port):
try:
var_password = "user"
var_command = "scp -P {2} user@localhost:{0} {1}".format(srcpath, dstpath, port)

var_child = pexpect.spawn(var_command)
i = var_child.expect(["password:", ’(yes/no)? ’, pexpect.EOF])

if i==0: # send password
var_child.sendline(var_password)
var_child.expect (pexpect .EOF)
elif i==1: # send yes
var_child.sendline(’yes’)
i = var_child.expect(["password:", pexpect.EQF])
if i==0: # send password
var_child.sendline(var_password)
var_child.expect (pexpect .EOF)
elif i==1:
print "Got the key or connection timeout"
pass
elif i==2:
print "Got the key or connection timeout"
pass
except Exception as e:
print "Oops Something went wrong buddy"
print e

def md5_for_file(fname, block_size=2%%20):
f = open(fname, ’rb’)
md5 = hashlib.md5()
while True:
data = f.read(block_size)
if not data:
break
md5.update (data)
digest = md5.hexdigest()
f.close()
return digest

Listing B.1 shows the first function that is called by main. It is in charge of recording the exe-
cution of the target sample inside the guest OS. It supports three different architectures that can
be emulated with panda-qemu: z86, £86_64 and arm. According to the command line arguments
that the script receives the corresponding combination of architecture and operating system will
be emulated. The command line arguments that need to be passed when launching panda-gemu
also differ from version to version. To cope with that, some global and local structures (Python
dictionaries) are used to keep track of the selected OS/architecture, so that it is easy to choose
the right parameters. run_sample will produce the PANDA recording files (i.e. the initial mem-
ory snapshot and the non-deterministic input log file), that will be used by the second function,
perform_analysis.

Listing B.2: "Run sample”

56

B — Simplify the Execution

def run_sample(filename, sample_dir, conf, arch, vm_folder):

Setup from config

instance = 0

monitor_port = 1234 + instance

basedir = conf.get(’Main’, ’basedir’)

qcow_dir = conf.get(’Main’, ’images’)

exec_time = int(conf.get(’VM’, ’exec_time’))

panda_exe = os.path.join(conf.get(’Main’, ’panda’), ’{O}-softmmu’.format(arch), ’qemu-system
-{0}’ .format (arch))

basedir = conf.get(’Main’, ’basedir’)
sample_name = filename + ’_’ + time.strftime(’%Y/m%d.%H.%M.%S’)
logfile = sample_name

if LOG_DEBUG:
logger = logging.getLogger ()
logger.handlers[0] .stream.close()
logger.removeHandler (logger.handlers[0])

file_handler = logging.FileHandler("{0}.log".format(logfile))
file_handler.setLevel (logging.DEBUG)

formatter = logging.Formatter(’/ (asctime)s %(levelname)s % (message)s’)
file_handler.setFormatter (formatter)

logger.addHandler (file_handler)

Startup msgs

logging.info("Config file: {0}".format(sys.argv[2]))
#logging.info ("UUID: {0}".format(run_id))
logging.info("Sample: {0}".format(filename))

arch_params = {
’1386°: [’-hda’, ’{0}/debian_wheezy_i386_standard.qcow2’.format(qcow_dir), ’-m’, ’1G’,
’-loadvm’, ’4’, ’-net’, ’user,hostfwd=tcp::{0}-:22’.format(scp_port_base[arch]+
instance),
’-net’, ’nic’
#,’-nographic’ # if there is no need to see the guest 0S
]’
’x86_64’: [’-hda’, ’{0}/debian_wheezy_x86_64_standard.qcow2’.format(qcow_dir), ’-m’, ’1G’

’-net’, ’user,hostfwd=tcp::{0}-:22’.format(scp_port_base[arch]+instance), ’-net’
, ’nic’, ’-loadvm’, ’3’

#,’-nographic’ # if there is no need to see the guest 0S

1,

’arm’: [’-M’, ’versatilepb’, ’-kernel’, ’{0}/vmlinuz-3.2.0-4-versatile’.format(qcow_dir),
’~initrd’, ’{0}/initrd.img-3.2.0-4-versatile’.format(qcow_dir), ’-hda’,
’{0}/debian_wheezy_armel_standard.qcow2’.format(qcow_dir), ’-append’,
’"root=/dev/sdal"’, ’-loadvm’, ’7’,

’-net’, ’user,hostfwd=tcp::{0}-:22’.format(scp_port_base[arch]+instance), ’-net’,
’nic’
#,’-nographic’ # if there is no need to see the guest 0S
]
}

if LOG_DEBUG:
compute sample mdb5
sample_md5 = md5_for_file(filename)
logging.info("MD5: {0}".format(sample_md5))

panda_args = []
panda_args.append(panda_exe)
for el in arch_params[arch]:
panda_args.append(el)
panda_args.append(’-monitor’)
panda_args.append(’telnet:localhost:{0},server,nowait’.format (monitor_port))

57

B — Simplify the Execution

Start the QEMU process

panda_stdout_file = ’{0}.stdout’.format (sample_name)

panda_stdout = open(panda_stdout_file, ’w’)

panda_stderr_file = ’{0}.stderr’.format (sample_name)

panda_stderr = open(panda_stderr_file, ’w’)

panda = subprocess.Popen(panda_args, stdin=subprocess.PIPE, stdout=panda_stdout, stderr=
panda_stderr)

Connect to the monitor
Give it time to come up...
tries = 10
mon = None
for i in range(tries):
try:
if LOG_DEBUG:
logging.info(’Connecting to monitor, try {0}/{1}’.format(i, tries))
mon = telnetlib.Telnet(’localhost’, monitor_port)
break
except socket.error:
time.sleep(1)

if not mon:
if LOG_DEBUG:
logging.error("Couldn’t connect to monitor on port {0}".format(monitor_port))
sys.exit (1)
else:
if LOG_DEBUG:
logging.info("Successfully connected to monitor on port {0}".format(monitor_port))

Wait for prompt
mon.read_until (" (qemu)")

NOTE: for arm it seems necessary to record the same execution twice
with the same gemu session. the first attempt rarely works.
it needs to be mutually exclusive with i386
if arch == ’arm’:
Write the sample name
if LOG_DEBUG:
logging.info("Writing sample name.")
guest_type(os.path. join(vm_folder, filename), mon)
#guest_type("./{0}".format (filename), mon)
#guest_type("strace ./{0} 2>{0}_strace_stdout.trace".format(filename), mon)

Begin the record
if LOG_DEBUG:
logging.info("Beginning record.")
#record_name = os.path.join(’./’, ’recs’, sample_dir, ’{0}_debian_{1}’.format(arch,
sample_name))
mon_cmd ("begin_record {0}\n".format(logfile), mon)

Run the sample
if LOG_DEBUG:

logging.info("Starting sample.")
guest_type("\n", mon);

Wait
if LOG_DEBUG:
logging.info("Sleeping for {0} seconds...".format(exec_time))

time.sleep(exec_time)

End the record
if LOG_DEBUG:

logging.info("Ending record.")
mon_cmd ("end_record\n", mon)

—_——

now do it again
Recall sample name

58

B — Simplify the Execution

if LOG_DEBUG:
logging.info("Recalling sample name.")
send_ctrl_c(mon)
send_ctrl_c(mon)
send_ctrl_c(mon)
send_up (mon)

Begin the record
if LOG_DEBUG:

logging.info("Beginning record.")
mon_cmd("begin_record {0}\n".format(logfile), mon)

Run the sample
if LOG_DEBUG:

logging.info("Starting sample.")
guest_type("\n", mon);

Wait
if LOG_DEBUG:
logging.info("Sleeping for {0} seconds...".format(exec_time))

time.sleep(exec_time)

End the record
if LOG_DEBUG:

logging.info("Ending record.")
mon_cmd("end_record\n", mon)

1386

if arch == ’i386’:
Write the sample name
if LOG_DEBUG:
logging.info("Writing sample name.")
guest_type(os.path.join(vm_folder, filename), mon)
#guest_type("strace ./{0} 2>{0}_strace_stdout.trace".format(filename), mon)

Begin the record
if LOG_DEBUG:
logging.info("Beginning record.")
#record_name = os.path.join(’./’, ’recs’, sample_dir, ’{0}_debian_{1}’.format(arch,
sample_name))
mon_cmd ("begin_record {0}\n".format(logfile), mon)

Run the sample
if LOG_DEBUG:

logging.info("Starting sample.")
guest_type("\n", mon);

Wait
if LOG_DEBUG:
logging.info("Sleeping for {0} seconds...".format(exec_time))

time.sleep(exec_time)

just to be sure that the program stops
send_ctrl_c(mon)
send_ctrl_c(mon)
send_ctrl_c(mon)

End the record
if LOG_DEBUG:

logging.info("Ending record.")
mon_cmd("end_record\n", mon)

it needs to be mutually exclusive with arm
if arch == ’x86_64’:

chmod u+x <sample_name>

if LOG_DEBUG:

59

B — Simplify the Execution

logging.info("chmod u+x <sample_name>")
guest_type("chmod u+x {0}\n".format(os.path.join(vm_folder, filename)), mon)

Write the sample name
if LOG_DEBUG:
logging.info("Writing sample name.")
guest_type(os.path.join(vm_folder, filename), mon)
#guest_type("strace ./{0} 2>{0}_strace_stdout.trace".format(filename), mon)

Begin the record
if LOG_DEBUG:
logging.info("Beginning record.")
#record_name = os.path.join(’./’, ’recs’, sample_dir, ’{0}_debian_{1}’.format(arch,
sample_name))
mon_cmd ("begin_record {0}\n".format(logfile), mon)

Run the sample
if LOG_DEBUG:

logging.info("Starting sample.")
guest_type("\n", mon);

Wait
if LOG_DEBUG:
logging.info("Sleeping for {0} seconds...".format(exec_time))

time.sleep(exec_time)

just to be sure that the program stops
send_ctrl_c(mon)
send_ctrl_c(mon)
send_ctrl_c(mon)

End the record
if LOG_DEBUG:

logging.info("Ending record.")
mon_cmd("end_record\n", mon)

if LOG_DEBUG:
logging.info("Quitting PANDA.")
mon.write("q\n")

#print "closing files.."
panda_stderr.close()
panda_stdout.close()

os.remove (panda_stderr_file)
os.remove (panda_stdout_file)

#os.remove (logfile)

return logfile

Listing B.1 shows the content of the second function that main calls during the main loop,
perform_analysis. It is in charge of analysing the output files that have been produced in the
first phase to produce the intermediate results for the analysis, i.e. execution_model.log, events.log,
functions.log and trace.log. First of all perform_analysis moves those files in the right directory,
checking also if those files exist or not. In case any of them is not present, the execution is
terminated with an exception. Then it will start the dynamic analysis by replaying the recording
with panda-qemu. This function is also in charge of setting a timer (which is handled by a signal
handler) to notify when the execution reaches the maximum time threshold. If this happens, the
execution is stopped and the function returns.

Listing B.3: ”Perform analysis”

def perform_analysis(arch, record_name, filename, output_dir, elapsed_time, do_make, vm_folder):
script_os = {

arm’ : ’arm’,
’i386° : ’linux_32°,
’x86_64’: ’linux_64’
}
arch_options = {

’arm’ ¢ ?--null’,

60

B — Simplify the Execution

,1386} : ll’_m 1G7Il
’x86_64’: "’-m 1G’"’
}
arch_setup = {
arm’ : ’--null’,
’i386’ : ’--null’,
’x86_64’: ’--null’
}
try:
run_replay = os.path.join(conf.get(’Main’, ’panda’), ’panda/plugins/packer_inspector’, ’

run_replay_{0}.sh’.format (script_os[archl))

exe_name = filename[:15] # in the replays program names are truncated to the first 15
chars

options = arch_options[arch]

setup = arch_setup[arch]

folder = ’results_malware/test_{0}’.format (arch)

this is to stop execution_model.log even though all the processes didn’t finish

i.e. stopping the program with ctrl-C

exit_method = ’--dirty’

replay_output_log = os.path.join(sample_dir, ’{0}.replay_log’.format(filename))

var_command = run_replay +’ ’+ record_name +’ ’+ exe_name +’ ’+ options +’ ’+ setup +’ '+
folder +’ ’+ exit_method +’ ’+ do_make

print ’\t’ + var_command

sys.stdout.flush()

replay_time = int(conf.get(’VM’, ’replay_time’))

global global_var_child
global_var_child = pexpect.spawn(var_command, timeout = replay_time)

./run_replay_<arch>.sh > outfile
outfile = file(replay_output_log, ’w’)
global_var_child.logfile = outfile

set an alarm equal to the 80% of the previous elapsed time
if elapsed_time ==

snoozealarm(replay_time)
else:

snoozealarm(elapsed_time)

global global_start_time
global_start_time = time.time()

start the script
i = global_var_child.expect(["End of Plugin", pexpect.EOF, pexpect.TIMEOUT])

if i==0: # send password
disable the timer
signal.alarm(0)
print "plugin finished"
sys.stdout.flush()
return 1
elif i==1: # send yes
disable the timer
signal.alarm(0)
print "plugin stopped before finishing"
sys.stdout.flush()
return 0
elif i==2:
disable the timer
signal.alarm(0)
print "\tReplay didn’t finish after {0} seconds, sending SIGTERM".format(replay_time)
#global_var_child.kill(signal.SIGTERM)
#sys.exit (1)
return 1
except Exception as e:
print "Oops Something went wrong buddy"
print e

61

B — Simplify the Execution

return 0

return O

Listing B.1 shows the last function that is called by main, third_part. It is in charge of
parsing the intermediate output files to produce the behavioural graph, that shows how the packer
unpacked the original code at runtime, and the unpacking complexity ranking on the six-value
scale. When the output files are produced, it cleans up the environment and sets up all the files
produced in the current run to be all in a single directory, in order to be as clean and easy as
possible.

Listing B.4: ”Third part”

def third_part(sample_name, arch, output_dir):
makegraph_dir = conf.get(’Main’, ’makegraph_dir’)
results_dir = os.path.join(conf.get(’Main’, ’dpi_home’), ’results_malware/test_{0}’.format(
arch))

try:

os.rename(os.path. join(results_dir, ’functions.log’), os.path.join(makegraph_dir, ’TRACE’
, ’functions.log’))
except Exception:

print ’creating file {0}’.format(os.path.join(results_dir, ’functions.log’))

with open(os.path.join(results_dir, ’functions.log’), ’w’) as f:

f.write(’Functions for PID 000’)

os.rename(os.path. join(results_dir, ’functions.log’), os.path.join(makegraph_dir, ’TRACE’

, ’functions.log’))

try:

os.rename(os.path.join(results_dir, ’events.log’), os.path.join(makegraph_dir, ’TRACE’, °
events.log’))

os.rename (os.path. join(results_dir, ’execution_model.log’), os.path.join(makegraph_dir, °’
TRACE’, ’execution_model.log’))

os.rename(os.path. join(results_dir, ’trace.log’), os.path.join(makegraph_dir, ’TRACE’, °
trace.log’))
except Exception as e:

print e
print "\t{0} didn’t produce the correct results. Exiting.".format(sample_name)
return 0
script_name = os.path.join(conf.get(’Main’, ’makegraph_dir’), ’automated_graph_production.sh’

)

var_command = script_name +’ ’+ sample_name +’ ’+ arch

var_child = pexpect.spawn(var_command, timeout = 30)
var_child.logfile = sys.stdout

./automated_graph_production.sh

i = var_child.expect(["Done.", "Wrong.", pexpect.EOF])
if i==0:

print "\tScript finished"

try:

shutil.move(os.path. join(makegraph_dir, ’all{0}’.format(arch)), os.path.join(
makegraph_dir, ’test_{0}’.format(arch)))
except Exception:
print ’ERROR moving files directory {0} to directory {1}’.format(os.path.join(
makegraph_dir, ’all{0}’.format(arch)), os.path.join(makegraph_dir, ’test_{0}’.format(arch)))

return 1
elif i==1:
print "\tWrong arguments"
return 0
elif i==2:
print "\t[{0}] - Error".format(sample_name)
return O

Listing B.1 shows the starting point of the script. It is is charge of initialising the data structures
which will be required in the three main functions that will be called during the execution. First of

62

B — Simplify the Execution

all, it checks that each of the input parameters has been passed correctly to the script, then it opens
some log files to keep track of the execution and it retrieves the global variables from malrec. config,
which will be assigned to config_file. Then it comes the main loop, which is iterating over
two variables: until everything went OK (ok is initialised as false) or we overcame the maximum
number of iterations (set to 5 for this specific analysis). Inside the main loop there are three
important function calls. The first one calls run_sample, which will start panda-gemu and will
record the execution of the target sample. The second one calls perform_analysis, which will
perform the actual dynamic analysis with PANDA, producing the intermediate outputs. The third
one will call third_part, which will start the final part of the analysis, producing the behavioural
graph and the complexity ranking, and setting up the output files in the right directory. The
main loop is repeated exactly the same every iteration, except for the maximum time threshold
for the second function call: it decreases from time to time according to how much time it took in
the previous round (elapsed_time * 0.8). This is done in order to avoid some samples to crash
unexpectedly because the recording lasted too much.

Listing B.5: ”"Main function”

if __name__ == ’__main__’:
if len(sys.argv) < 6:
print ’Usage: {0} <path/to/sample_name> <output_dir> <config_file> <arch> <vm_folder> [--
make]’ .format (sys.argv[0])
sys.exit(1)

if sys.argv[4] not in arch_set:
print ’Error: <arch> not in arch_set’
sys.exit(2)

rename all the arguments
sample_name = os.path.basename(sys.argv[1])
sample_dir = os.path.dirname(sys.argv[1])
output_dir = sys.argv[2]
config_file = sys.argv[3]
arch = sys.argv[4]
vm_folder = sys.argv[5]
do_make = ’--nomake’
if len(sys.argv) ==

if sys.argv[6] == "--make":

do_make = sys.argv[6]

instantiate the event logger
conf = ConfigParser.ConfigParser()
conf.read(config_file)

if LOG_DEBUG:

Init the logger

logging.basicConfig(filename=’/tmp/tmp’, level=logging.DEBUG, format=’%(asctime)s 7%(
levelname)s %(message)s’, filemode=’w’)

instantiate a signal handler for perform_analysis()
signal.signal(signal.SIGALRM, handler)

print "Executing sample: " + sample_name

sys.stdout.flush()

ok =0

count = 0

max_count = int(conf.get(’VM’, ’repeat_replay’))

elapsed_time = 0

while not ok and count<max_count:
1. record the execution
record_name = run_sample(sample_name, sample_dir, conf, arch, vm_folder)
time.sleep(2)

2. try to perform the analysis with the plugin

start_time = time.time()

ok = perform_analysis(arch, record_name, sample_name, output_dir, (elapsed_time * 0.8),
do_make, vm_folder)

end_time = time.time()

3. compute elapsed time

63

B — Simplify the Execution

elapsed_time = end_time - start_time
print ’\tElapsed time: ’+str(elapsed_time)

sys.stdout.flush()

count += 1

if DELETE_SNAPHOTS:
print "\tDeleting snapshot and non-det log file of file {0} ..".format(record_name)
os.remove(record_name+’-rr-snp’)
os.remove(record_name+’-rr-nondet.log’)

if count < max_count:
print "\tReplay saved."

4. go on with the third part only if the analysis was successful
third_part (os.path.basename (record_name), arch, output_dir)

B.2 automated_graph_production.sh

Listing B.2 shows the bash script to automate the generation of the behavioural graph and the
complexity ranking log file. They were initially generated during different steps, now they can be
generated with a single script execution. automated_graph_production.sh receives the output files
of the dynamic analysis as an input and it produces the graph and the complexity classification
as an output. In the meantime it manages all the required directories that are touched during the
execution, moving and deleting the appropriate files. The output graph is generated by calling
make test, while the file containing the complexity ranking and other statistics can be obtained
by the final call to parseLogs.py.

Listing B.6: ” Automated graph production”

#!/bin/bash

set -e
set -o xtrace

if [[-z $1 11 ; then
echo "usage: $0 <sample_name> <arch>"
echo "Wrong."
exit 1

fi

basedir=/home/samaicardi/deep_packer_inspector_makegraph
sample_name=$1
arch=%2

cd $basedir
make test > ./make_graph.out

cd $basedir/TRACE-output-cpp
dot -Tpng -ograph.png graph.dot
cd ..

mv TRACE/* TRACE-output-cpp/

mv ./make_graph.out TRACE-output-cpp/
mv TRACE-output-cpp $sample_name

rm -f TRACE/*

mv $sample_name ./all$arch/

cd ./all$arch/

generate auto_start.log file since the analysis doesn’t produce it anymore
echo -e ’[FINISHED]\nReason: process exited’ > ./$sample_name/auto_start.log

python ../post_processing/parselogs.py ./$sample_name/ > $sample_name/results.txt

echo "Done."

64

Appendix C

Large Scale Analysis

Listing C shows the bash script that is in charge to start the large scale analysis. It basically calls
automated_win7_script.sh redirecting its output both to standard output and to a txt file. It is
wrapped in a for loop in case something crashes during execution.

Listing C.1: ”Start analysis”

#!/bin/bash

for i in {0..200} ; do
1s ./logs/rr/ | grep -v references | while read line; do rm -f ./logs/rr/$line ; done
rm -f *.txz
rm -f *.json
./automated_win7_script.sh | tee -a output_analysis.txt
done

Listing C shows the script that is called by start_analysis.sh. The first thing that it does
is to prepare the list of the samples that it will need to analyse. To do so, the script compares the
list of samples that are written in panda_malware_list.txt and it removes all the already executed
samples that are stored in already_executed_samples_<arch>.txt (which starts empty). Then it
downloads the tzz sample from the database, unpacks it and creates the PANDA recording with
bpatch.py

Listing C.2: ”Initialization”

#!/bin/bash

set -e
#set -o xtrace

save current working directory

current_wd="‘pwd ¢

#cat panda_malware_list.txt | while read malware_name; do
cat already_analysed_samples_x86_64.txt already_analysed_samples_x86_64.txt panda_malware_list.
txt | sort | uniq -u | while read malware_name; do

echo " "

echo " $malware_name"
echo n n

echo $malware_name >> already_analysed_samples_x86_64.txt

download sample

H* O O

#echo http://panda.gtisc.gatech.edu/malrec/rr/$malware_name.txz
wget http://panda.gtisc.gatech.edu/malrec/rr/$malware_name.txz

H*

65

C — Large Scale Analysis

generate snapshot

+*

tar xvf $malware_name.txz
bpatch.py logs/rr/$malware_name.patch

launch replay and store results

H* H B

wget http://panda.gtisc.gatech.edu/malrec/vt/$malware_name.json
exe_name=$(cat ‘echo -n $malware_name.json‘ | egrep -o ’md5[~,]1%*,’ | awk ’*BEGIN{FS="\"}{print

$3}7)

cd $current_wd
./execute_win7_malware_replay.py ~/results ./malrec_win7.config x86_64 $malware_name
$exe_name

delete not needed files

H* H

cd $current_wd

rm $malware_name.json

rm $malware_name.txz

rm logs/rr/$malware_name.patch

rm logs/rr/$(echo -n $malware_name)-rr-nondet.log
rm logs/rr/$(echo -n $malware_name)-rr-snp

done

The script calls then execute_win7_malware_replay.py, which is in charge of performing the
actual analysis of the target sample. execute_win7_malware_replay.py is a script which is derived
from run_target_mal.py, shown in Appendix B, where basically function run_sample (Listing B.1)
is stripped out, as there is no need to generating another PANDA recording.

66

Appendix D

How to run the replays

Listing D shows the content of the script that is used to run replays for Windows 7 executables.
It contains a lot of comments, in this way it is easy to understand the script because it is rather
self explanatory.

Listing D.1: ”Run replay Windows 7”

#!/bin/bash

DPI_HOME="/home/samaicardi/my_panda2/panda/plugins/packer_inspector"
#REPLAY_DIR="/home/samaicardi/replays"

stop on any error
set -e

if [[-z $1 1] ; then
echo "Usage: $0 <replay_name> <exe_name> <options> <setup> <folder>"
echo "<replay_name> has to be in the usual PANDA format"
echo "<exe_name> is the name of the executable we want to trace"
echo "<options> for other PANDA options (--null if not used)"
echo "<setup> is --setup (to recompute the address of psActiveProcessHead and the KDBG) or --
null"
echo "<folder> is where to store the log files"
exit 1
fi

output_dir="$DPI_HOME/$5"

if [[! -d $output_dir 1] ; then
echo "$output_dir: no such file or directory"
exit 2

fi

echo "#define PLUGIN_PATH \"$output_dir\"" > $DPI_HOME/output_dir.h
touch $DPI_HOME/packer_inspector.cpp

#echo ’#define O0S_WINDOWS 1’ > $DPI_HOME/os_define.h

OPTIONS

options=$3

if [[$3 == "--null"]] ; then
options=""

fi

if [[$4 == "--setup"]] ; then

PsActiveProcessHead

H* H

echo -ne "\e[ilm[$(basename $0)] Retrieving PsActiveProcessHead from ./$1-rr-snp ... \e[Om"

67

D — How to run the replays

psActiveProcessHead=$(vol.py -f $1-rr-snp --profile=Win7SP1x86 kdbgscan 2>&1 | grep

PsActiveProcessHead | uniq | awk ’BEGIN{FS=": "}{print $2}’)
#psActiveProcessHead=$(vol.py -f $1-rr-snp --profile=Win7SP1x86 kdbgscan | grep
PsActiveProcessHead | uniq | awk ’BEGIN{FS=": "}{print $2}’)

re=’"0x[0-9a-f]+$’
if ! [[$psActiveProcessHead =~ $re 1] ; then

echo -e "\e[lmerror: unable to find psActiveProcessHead\e[Om" >&2; exit 1
fi
if [[-z $psActiveProcessHead]] ; then

echo -e "\e[lmerror: unable to find psActiveProcessHead\e[Om" >&2; exit 1
fi

echo -e "\e[1m$psActiveProcessHead\e[Om"
echo "#define psActiveProcessHead $psActiveProcessHead" > $DPI_HOME/psActiveProcessHead.h #
already included by VMI_win7.cpp

KDBG

H OH B

el

fi

IMPORTANT: I need to hardcode the value of the kdbg in win7x86intro.cpp every time I run

another recording
if [[! -e ./$1.d4d 1] ; then

echo -e "\e[i1m[$(basename $0)] Generating memory dump $1.dd ... \e[Om"

#echo "“/my_panda2/i386-softmmu/qemu-system-i386 -replay $1 $options -panda memsavep:
percent=1,file=$1.dd 1>/dev/null 2>&1"

#7~/my_panda2/i386-softmmu/gemu-system-i386 -replay $1 $options -panda memsavep:percent=1,
file=$1.dd 1>/dev/null 2>&1

command="/home/samaicardi/my_panda2/i386-softmmu/gemu-system-i386 -replay $1 $options -
panda memsavep:percent=1,file=$1.dq4"

echo -e "\e[1m[$(basename $0)] $command \e[Om"

#$command 1>/dev/null 2>&1

$command

echo -e "\e[lmdone.\e[Om"
fi

echo -ne "\e[im[$(basename $0)] Retrieving KDBG from ./$1.dd ... \e[Om"

imported_kdbg=$(vol.py -f $1.dd imageinfo 2>&1 | grep ’KDBG :’ | awk ’BEGIN{FS=": "} print$2
}’ | awk ’BEGIN{FS="L"}{print $1}’)

#imported_kdbg=$(vol.py -f $1.dd imageinfo | grep ’KDBG :’ | awk ’BEGIN{FS=": "}{print$2}’ |
awk ’BEGIN{FS="L"} print $1}’)

re=’"0x[0-9a-f]+$’
if ! [[$imported_kdbg =~ $re 1] ; then
echo -e "\e[lmerror: unable to find KDBG (res = $imported_kdbg)\e[Om" >&2; exit 1

if [[-z $imported_kdbg 1] ; then
echo -e "\e[lmerror: unable to find KDBG (zero)\e[Om" >&2; exit 1

echo -e "\e[1m$imported_kdbg\e [im"
echo -n "#define imported_kdbg $imported_kdbg" > $DPI_HOME/../win7x86intro/import_kdbg.h
touch $DPI_HOME/../win7x86intro/win7x86intro.cpp

if [[$4 !'= "--null" 1] ; then
echo "error: wrong <setup>" >&2; exit 1

H H B

0S HEADER GENERATION

#e
#e
#e

cho ’#include "win7/VMI_win7.h"’ > $DPI_HOME/os_include.h
cho ’#include "win7/win7_api_call.h"’ >> $DPI_HOME/os_include.h
cho ’#include "win7/win7_functions.h"’ >> $DPI_HOME/os_include.h

H* H

MAKEFILE GENERATION

#echo -n "DPI_OS_DEPENDENT_FILES=" > $DPI_HOME/os_makefile.mak

68

D — How to run the replays

#echo "$DPI_HOME/win7/win7_api_call.o $DPI_HOME/win7/win7_functions.o $DPI_HOME/win7/VMI_winT7.o"
>> $DPI_HOME/os_makefile.mak

CLEAN-UP and MAKE

echo -e "\e[i1m[$(basename $0)] Clean-up and make ...\e[Om"

bash -c "cd $DPI_HOME && make clean"

bash -c "cd $DPI_HOME/../../../ && make"

echo -e "\e[1m[$(basename $0)] Removing old log files in $output_dir ...\e[Om"

rm -f $output_dir/functions.log $output_dir/events.log $output_dir/execution_model.log
$output_dir/trace.log

LAUNCH

H* H

echo -e "\e[Im[$(basename $0)] Launching PANDA... [command_injection?]\e[Om"

panda_command="/home/samaicardi/my_panda2/i386-softmmu/qemu-system-i386 -replay $1 -panda
syscalls2:profile=windows7_x86 -panda packer_inspector:name=$2,o0s=win -os windows-32-7
$options"

echo -e "\e[32m$panda_command\e [Om"

$panda_command

Listing D shows the content of the script that is used to run replays for Linux x86 elf executables.
As we can see there are differences from the previous Listing.

Listing D.2: ”Run replay Linux x86”

#!/bin/bash

DPI_HOME="/home/samaicardi/my_panda2/panda/plugins/packer_inspector"
#REPLAY_DIR="/home/samaicardi/replays"

stop on any error
set -e

if [[-z $1 11 ; then
echo "Usage: $0 <replay_name> <exe_name> <options> <setup> <folder>"
echo "<replay_name> has to be in the usual PANDA format"
echo "<exe_name> is the name of the executable we want to trace"
echo "<options> for other PANDA options (--null if not used)"
echo "<setup> is --setup (to recompute the address of psActiveProcessHead) or --null"
echo "<folder> is where to store the log files"
exit 1
fi

output_dir="$DPI_HOME/$5"

if [[! -d $output_dir]] ; then
echo "$output_dir: no such file or directory"
exit 2

fi

echo "#define PLUGIN_PATH \"$output_dir\"" > $DPI_HOME/output_dir.h
touch $DPI_HOME/packer_inspector.cpp

if [[$4 == "--setup"]] ; then
do nothing for the moment
echo -n ""

elif [[$4 != "--null" 1] ; then

echo "error: wrong <setup>" >&2; exit 1
fi

0S HEADER GENERATION

H* H

#echo ’#include "linux_32/VMI_linux_32.h"’ > $DPI_HOME/os_include.h

69

D — How to run the replays

#echo ’#include "linux_32/linux_32_functions.h"’ >> $DPI_HOME/os_include.h
#echo ’#include "linux_32/linux_32_api_call.h"’ >> $DPI_HOME/os_include.h
#echo ’#include "VMI_linux_32.h"’ > $DPI_HOME/os_include.h

#echo ’#include "linux_32_functions.h"’ >> $DPI_HOME/os_include.h

#echo ’#include "linux_32_api_call.h"’ >> $DPI_HOME/os_include.h

#echo ’#define OS_LINUX 1’ > $DPI_HOME/os_define.h

MAKEFILE GENERATION

H* H

#echo -n "DPI_OS_DEPENDENT_FILES=" > $DPI_HOME/os_makefile.mak
#echo "$DPI_HOME/linux_32_api_call.o $DPI_HOME/linux_32_functions.o $DPI_HOME/VMI_linux_32.0" >>
$DPI_HOME/os_makefile.mak

OPTIONS
options=$3
if [[$3 == "--null" 1] ; then
options=""
fi
if [[$6 == "--dirty" 1] ; then
echo ’#define DPI_DIRTY_EXIT 1° > $DPI_HOME/exit_strategy.h
else

echo ’#define DPI_CLEAN_EXIT 1’ > $DPI_HOME/exit_strategy.h
fi
touch $DPI_HOME/packer_inspector.cpp

do_make=1

if [[$7 == "--nomake" 1] ; then
do nothing for the moment
do_make=0

elif [[$7 != "--make"]] ; then

echo "error: wrong <make> option" >&2; exit 1
fi

CLEAN-UP and MAKE

H* H

echo -e "\e[im[$(basename $0)] Clean-up and make ...\e[Om"

if [[$4 == "--setup"]] ; then
bash -c "cd $DPI_HOME && make clean"

fi

if [[$do_make == 1]] ; then
bash -c "cd $DPI_HOME/../../../ && make"

fi

echo -e "\e[Ilm[$(basename $0)] Removing old log files in $output_dir ...\e[Om"

rm -f $output_dir/functions.log $output_dir/events.log $output_dir/execution_model.log
$output_dir/trace.log

LAUNCH

H H ®

echo -e "\e[im[$(basename $0)] Launching PANDA... [command_injection?]\e[Om"

panda_command="/home/samaicardi/my_panda2/i386-softmmu/qemu-system-i386 -replay $1 -panda
syscalls2:profile=linux_x86 -panda osi -panda osi_linux:kconf_file=/home/samaicardi/my_panda2
/panda/plugins/osi_linux/kernelinfo.conf,kconf_group=my_debian_i386 -panda packer_inspector:
name=$2,0s=linux -os linux-32-* $options"

echo -e "\e[32m$panda_command\e [Om"

$panda_command

Listing D shows the content of the script that is used to run replays for Linux ARM elf ex-
ecutables. It is quite similar to what is shown in Listing D because the executions in the two
architectures (x86 and arm) have many points in common, as already said previously.

70

D — How to run the replays

Listing D.3: ”Run replay Linux ARM”

#!/bin/bash

DPI_HOME="/home/samaicardi/my_panda2/panda/plugins/packer_inspector"
#REPLAY_DIR="/home/samaicardi/replays"

stop on any error
set -e

if [[-z $1 1] ; then
echo "Usage: $0 <replay_name> <exe_name> <options> <setup> <folder>"
echo "<replay_name> has to be in the usual PANDA format"
echo "<exe_name> is the name of the executable we want to trace"
echo "<options> for other PANDA options (--null if not used)"
echo "<setup> is --setup (to recompute the address of psActiveProcessHead) or --null"
echo "<folder> is where to store the log files"
exit 1
fi

output_dir="$DPI_HOME/$5"

if [[! -d $output_dir 1] ; then
echo "$output_dir: no such file or directory"
exit 2

fi

echo "#define PLUGIN_PATH \"$output_dir\"" > $DPI_HOME/output_dir.h
touch $DPI_HOME/packer_inspector.cpp

if [[$4 == "--setup" 1] ; then
do nothing for the moment
echo -n ""

elif [[$4 !'= "--null" 1] ; then

echo "error: wrong <setup>" >&2; exit 1
fi

0S HEADER GENERATION

H H

#echo ’#include "arm/VMI_arm.h"’ > $DPI_HOME/os_include.h

#echo ’#include "arm/arm_functions.h"’ >> $DPI_HOME/os_include.h
#echo ’#include "arm/arm_api_call.h"’ >> $DPI_HOME/os_include.h
#echo ’#include "VMI_arm.h"’ > $DPI_HOME/os_include.h

#echo ’#include "arm_functions.h"’ >> $DPI_HOME/os_include.h
#echo ’#include "arm_api_call.h"’ >> $DPI_HOME/os_include.h

MAKEFILE GENERATION

H OH ®

#echo -n "DPI_OS_DEPENDENT_FILES=" > $DPI_HOME/os_makefile.mak
#echo "$DPI_HOME/arm_api_call.o $DPI_HOME/arm_functions.o $DPI_HOME/VMI_arm.o" >> $DPI_HOME/
os_makefile.mak

OPTIONS
options=$3
if [[$3 == "--null"]] ; then
options=""
fi
if [[$6 == "--dirty" 1] ; then
echo ’#define DPI_DIRTY_EXIT 1’ > $DPI_HOME/exit_strategy.h
else

echo ’#define DPI_CLEAN_EXIT 1’ > $DPI_HOME/exit_strategy.h
fi
touch $DPI_HOME/packer_inspector.cpp

71

D — How to run the replays

do_make=1

if [[$7 == "--nomake" 1] ; then
do nothing for the moment
do_make=0

elif [[$7 != "--make"]] ; then

echo "error: wrong <make> option (you typed: $7)" >&2; exit 1
fi

CLEAN-UP and MAKE

H OH

echo -e "\e[im[$(basename $0)] Clean-up and make ...\e[Om"

if [[$4 == "--setup" 1] ; then
bash -c "cd $DPI_HOME && make clean"

fi

if [[$do_make == 1]] ; then
bash -c "cd $DPI_HOME/../../../ && make"

fi

echo -e "\e[i1m[$(basename $0)] Removing old log files in $output_dir ...\e[Om"

rm -f $output_dir/functions.log $output_dir/events.log $output_dir/execution_model.log
$output_dir/trace.log

LAUNCH

H* H

HOMEDIR=/home/samaicardi

echo -e "\e[im[$(basename $0)] Launching PANDA... [command_injection?]\e[Om"

panda_command="$HOMEDIR/my_panda2/arm-softmmu/qemu-system-arm -M versatilepb -kernel $HOMEDIR/.
panda/vmlinuz-3.2.0-4-versatile -initrd $HOMEDIR/.panda/initrd.img-3.2.0-4-versatile -hda
$HOMEDIR/ .panda/debian_wheezy_armel_standard.qcow2 -append ’root=/dev/sdal’ -panda syscalls2:
profile=linux_arm -panda osi -panda osi_linux:kconf_file=/home/samaicardi/my_panda2/panda/
plugins/osi_linux/kernelinfo.conf,kconf_group=my_debian_arm -panda packer_inspector:name=$2,
os=linux -os linux-32-* -replay $1 $options"

echo -e "\e[32m$panda_command\e [Om"

$panda_command

72

Bibliography

[1] X. Ugarte-Pedrero, D. Balzarotti, I. Santos, P. G. Bringas, “SoK: Deep Packer Inspection:
A Longitudinal Study of the Complexity of Run-Time Packers”, Proceedings of the IEEE
Symposium on Security and Privacy, San Jose, 2015 DOI 10.1109/SP.2015.46

[2] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G. Kang, Z. Liang, J. Newsome,
P. Poosankam, P. Saxena, “BitBlaze: A New Approach to Computer Security via Binary
Analysis”, Proceedings of the 4th International Conference on Information Systems Security,
Keynote invited paper, Hyderabad, India, Dec 2010, DOI 10.1007/978-3-540-89862-7_1

| PANDA, https://github.com/panda-re/panda#panda

] IDA, https://www.hex-rays.com/products/ida/

| Radare, http://rada.re/xr/

| Hopper, https://www.hopperapp.com/

] BinaryNinja, https://binary.ninja/

] UPX, https://upx.github.io/

| packerinspector.com, https://wuw.packerinspector.com/

| EURECOM, http://wuw.eurecom.fr

] DeustoTech, http://deustotech.deusto.es

] BitBlaze: Binary Analysis for Computer Security, http://bitblaze.cs.berkeley.edu/

] QEMU, https://qemu.org/

] A. Henderson, A. Prakash, L. K. Yan, X. Hu, X. Wang, R. Zhou, H. Yin, “Make It Work,

Make It Right, Make It Fast: Building a Platform-neutral Whole-system Dynamic Binary

Analysis Platform”, Proceedings of the 2014 International Symposium on Software Testing

and Analysis, San Jose, CA, USA, 2014, pp. 248-258, DOI 10.1145/2610384.2610407,

[15] AVATAR, http://www.s3.eurecom.fr/tools/avatar

[16] PyReBox, https://github.com/Cisco-Talos/pyrebox

[17] How to read graphs on packerinspector.com, https://www.packerinspector.com/

reference#ex-graphs

[18] EXECryptor, http://www.strongbit.com/execryptor_inside.asp

[19] Virustotal results of a malware with md5: cecf3c6e7139985101e181a235e90aea, https://www.

virustotal.com/#/file/0aa794ec929696e378e25835119e7ab86e1c0ee9edf41£09d70235fe5822ad9f/
details

[20] Virustotal results of a malware with md5: c63bb9913158e8afc4cc680e02a027de, https://www.

virustotal.com/#/file/186eal3eab61ba34cba9382db452ab16£2b369e4e2e5f65432c2ec35e4211bda/
details

73

http://dx.doi.org/10.1109/SP.2015.46
http://dx.doi.org/10.1007/978-3-540-89862-7_1
https://github.com/panda-re/panda#panda
https://www.hex-rays.com/products/ida/
http://rada.re/r/
https://www.hopperapp.com/
https://binary.ninja/
https://upx.github.io/
https://www.packerinspector.com/
http://www.eurecom.fr
http://deustotech.deusto.es
http://bitblaze.cs.berkeley.edu/
https://qemu.org/
http://dx.doi.org/10.1145/2610384.2610407
http://www.s3.eurecom.fr/tools/avatar
https://github.com/Cisco-Talos/pyrebox
https://www.packerinspector.com/reference#ex-graphs
https://www.packerinspector.com/reference#ex-graphs
http://www.strongbit.com/execryptor_inside.asp
https://www.virustotal.com/#/file/0aa794ec929696e378e25835119e7ab86e1c0ee9e4f41f09d70235fe5822ad9f/details
https://www.virustotal.com/#/file/0aa794ec929696e378e25835119e7ab86e1c0ee9e4f41f09d70235fe5822ad9f/details
https://www.virustotal.com/#/file/0aa794ec929696e378e25835119e7ab86e1c0ee9e4f41f09d70235fe5822ad9f/details
https://www.virustotal.com/#/file/186ea13ea561ba34cba9382db452ab16f2b369e4e2e5f65432c2ec35e4211b4a/details
https://www.virustotal.com/#/file/186ea13ea561ba34cba9382db452ab16f2b369e4e2e5f65432c2ec35e4211b4a/details
https://www.virustotal.com/#/file/186ea13ea561ba34cba9382db452ab16f2b369e4e2e5f65432c2ec35e4211b4a/details

	Introduction
	Context
	History
	The arms race
	Need for a global picture
	A Longitudinal study of the complexity of run-time packers
	Implementation
	Results

	Goal

	Used Tools
	Introduction
	QEMU
	TEMU and DECAF
	PANDA
	Record & Replay
	How-To

	The Framework
	Deep Packer Inspection
	Produce the Graph
	Complexity Ranking

	Implementation
	Goal Description
	Why PANDA
	Advantages and Limitations

	The Starting Framework
	Porting to PANDA
	How PANDA works
	Steps
	Plugin Components
	Problems

	Windows 7
	Plugin Components
	Heuristics
	Results
	Problems

	Linux
	Plugin components
	Results
	Problems

	ARM
	Plugin components
	Results
	Problems

	Porting to Panda1
	Results
	Problems

	Non-implemented features

	Automated Testing Framework
	The architecture
	Simplify the execution
	Requirements
	How-to
	Create the recording
	Perform the analysis
	Produce the final results

	Automate large scale tests
	Requirements
	How-to
	Scripts execution

	Performance

	Comparison with the State of the Art
	Comparison with the State of the Art
	Interpret the graphs
	Colour Blindness
	Processes
	Layers
	Memory regions (boxes)
	Memory write operations (green and red connectors)
	Execution transitions (grey and blue connectors)
	Frames

	Comparisons
	Example 1
	Example 2
	Example 3

	How-to
	Conclusions
	Results of the analysis
	Simplify the Execution
	run_target_mal.py
	automated_graph_production.sh

	Large Scale Analysis
	How to run the replays
	Bibliography

		Politecnico di Torino
	2018-04-08T19:35:44+0000
	Politecnico di Torino
	Antonio Lioy
	S

