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Summary

Context

This Master Thesis has been written in collaboration with Magneti Marelli S.p.A., at
Venaria Reale plant, under the supervision of engineer Fabio Tosetto, Project Leader
of “Technology Innovation – Innovation & Connectivity” department.

The research team is focused on the field of next generation Intelligent Transport
Systems, called Cooperative–ITS.
C–ITS are systems that allow vehicles to connect to each other, to other road users
and to the road infrastructure through wireless technology, in order to allow data ex-
change for improving road safety and optimizing traffic flows to reduce environmental
pollution.
For what concerns cars, the Cooperative Intelligent Transport System is implemented
through a technology called V2X, Vehicle–to–Everything, that is a vehicular commu-
nication system through which vehicles sense the environment and send information to
any entity that may affect or be affected by their presence.
The team has currently developed a prototype of V2X communication which is being
tested on company cars both on track and on road.

Goals

This paper is going to illustrate the design of two Android applications addressing
likewise different topics concerning V2X.

The first one concerns a specific type of V2X communication, called Vehicle–to–
Pedestrian or V2P, which is the one occurring between a vehicle and a non–motorized
road user such as, indeed, a pedestrian. The application implements the pedestrian–
part of the communication and brings the V2X connectivity on the smartphone of the
user, thanks to a special plug–in hardware designed by Magneti Marelli.
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The hardware, along with the application, are one of the innovations that the Company
has brought to the Consumer Electronic Show 2018 in Las Vegas, USA.

The second topic is related to the V2X system mounted on a car: the testing phase
is currently uncomfortable because the events appear only on the dashboard in front
of the driver and the logs reading require a laptop to be connected to the system.
The goal of the second application is to implement a replica of the V2X system mounted
on a vehicle so that all the passengers can see what is happening on the dashboard and
easily read the logs.

This paper, after a brief introduction to Vehicle–to–Everything communication, is
going to present the design of the two applications describing the reasons of the selected
implementations and comparing them with alternative ones.

Results
Both the applications developed for this thesis are based on a client–server architecture
and carry out the client role.
They have been written in Java, following Agile approaches such as product backlogs
and exploratory testing and the rules of Material Design for what concerns the Graph-
ical User Interface. Indeed, particular attention has been given to that in order to
obtain usable solutions, that means the user can interact with the applications in an
effective, efficient and satisfactory way.
All the images used by the applications have been especially drawn and rendered respec-
tively with Adobe Illustrator and Blender in order to be compliant with the Material
Design guidelines.
Both applications have been written in a modular way for allowing further changes and
expansions.

The V2P application is made of a background service that connects to the V2X
infrastructure and retrieves the real–time position of a vehicle. If the distance between
that and the user is below a certain value, a warning notification is sent to the user.
The Graphical User Interface allows the user to know the current state of the service
and manage the settings of the application.

The V2X mirroring application (also called V2X HMI application) allows the user
to connect to the V2X board of the car and see, on a mobile device, the V2X events
currently displayed on the car’s dashboard. Beyond that, the application can also show
the logs produced by the V2X Connectivity board, allowing the user to filter them by
priority.
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1.1 – The Company

1.1 The Company
Magneti Marelli S.p.A. is an international company committed to the design and pro-
duction of hi–tech systems and components for the automotive sector in the following
business areas: Electronic Systems, Automotive Lighting, Powertrain, Suspension Sys-
tems, Exaust Systems, Motorsport, Plastic Components and Modules and After Market
Parts and Services[21].
The plant in Venaria Reale, Italy, also have a research department called Technology
Innovation, which is composed by four groups, each committed to a specific mission.

1.1.1 Innovation & Connectivity

Innovation & Connectivity is one of the four groups of Technology Innovation and its
mission is to analyze all the aspects concerning connectivity from a 360 degrees point
of view.
Currently the team is committed to the development of a vehicular On–Board Unit
implementing the V2X DSRC technology, which allows equipped vehicles to commu-
nicate to each other for increasing the drivers’ awareness of possible road hazards that
may be out of line–of–sight[25].
Alongside V2X DSRC, the team is also investigating new connectivity technologies like
5G, in order to design the evolution of V2X DSRC, Cellular-V2X (CV2X).
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1 – Introduction

1.2 C–ITS and V2X

Nowadays road safety is mostly managed by stand-alone driver assistance, which helps
drivers to maintain safe behaviors at the wheel[15]. However, road safety could be
further increased if vehicles were able to communicate with each other and with the
road infrastructure.
Cooperative Intelligent Transport Systems, C–ITS, represent the next revolution in
this sense: through digital connectivity, vehicles will be able to communicate and share
information to coordinate their actions, improving road safety and traffic efficiency[16].
The cooperation among the road entities (i.e. vehicles, infrastructure and other road
users) is also the intermediate step for allowing the further full integration of future
automated vehicles in the overall transport system.
For what concerns the automotive field, the communication between vehicles and other
road entities is called Vehicle–to–Everything or V2X. This technology provides drivers
with a 360 degrees awareness of similarly equipped vehicles within a range of about
300 meters[25].
Thanks to a wireless Dedicated Short Range Communication, DSRC, each vehicle
can broadcast its own data to nearby vehicles, which use that information to identify
potential hazards and warn drivers to avoid imminent crashes[25].
The National Highway Traffic Safety Administration of the United States estimates that
Vehicle–to–Everything could reduce “the severity of up to 80 percent of non-impaired
crashes, including crashes at intersections or while changing lanes”[24].

In order to communicate, vehicles must be equipped with a radio interface, called On
Board Unit (OBU), which allows them to access the network created by other similarly
equipped vehicles and Road Side Units (RSUs) such as, for example, intelligent traffic
lights. Such a network is usually referred to as Vehicular Ad-hoc NETwork (VANET)
and is based on decentralized nodes, represented by vehicles and Road Side Units.
This means that the infrastructure is not fixed, since vehicles are continuously moving,
hence traffic must be routed by the nodes themselves[3].
Currently VANETs rely on dedicated short range communication technologies, such as
IEEE 802.11p, but other access methods are being investigated by research institutions,
universities and automobiles manufacturers.

The most promising path for new communication technologies is represented by 5G,
which would be a more reliable and efficient technology for the realization of Cellular
V2X. C–V2X is the evolution of V2X based on 802.11p and exploits the cellular network
to extend the range of awareness of road entities up to one mile[14].
Moreover, since the 5G provides higher thoughput, vehicles will not only be able to

14



1.2 – C–ITS and V2X

share simple messages, but also other kinds of information, from data collected by
sensors, radars and LIDAR to map or multimedial data sharing[14].

1.2.1 V2X Standards and Legislation

Currently, V2X communication is mostly described by two main standards: ETSI and
WAVE, which respectively serve Europe and United States.
Both standards rely on a wireless transport layer especially designed for enabling con-
nectivity in vehicular environments: IEEE 802.11p (called ITS-G5 in Europe). The
two standards are quite similar because the European one is a variant derived from US
WAVE, adapted to Europe’s requirements[17] but, for what concerns the work done
for this paper, the differences between the European and American standard are not
important as they are managed by the modules on Magneti Marelli’s V2X Communi-
cation board and do not affect the mobile applications.

At the moment, the V2X technology is not ruled by any legislation as it is still
evolving. However, the U.S. National Highway Traffic Safety Administration is trying
to propose a rulemaking standard for what concerns motor vehicle safety, in order to
force all the car manufacturers to install DSRC systems on all new vehicles, starting
from 2020[18].

Such a proposed standard also states how those systems have to implement secu-
rity and privacy protection: V2X may store lots of personal information and vehicular
trajectory data, which, if not correctly protected, could disclose the users’ habits and
traces. A system that does not protect the user’s privacy is hardly accepted by the
majority of people[3].
For this reason, the IEEE 1609.2 standards states that DSRC shall provide authen-
tication and optional encryption of messages, based on digital signatures and certifi-
cates[14]. Such certificates however are frequently changed and do not contain driver’s
data, in order to make tracking more difficult[14].
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1.3 Goals of this thesis
The goal of this thesis is the development of two applications for bringing the Vehicle–
to–Everything communication on Android devices.

The research team is developing the prototype and is also trying to expand the us-
ages of the V2X in order to encompass other entities, such as for example, pedestrians.

Part I of this work is dedicated to this specific type of V2X communication, which
is called Vehicle–to–Pedestrian or V2P, and, after a brief introduction to the topic, it
will illustrate the design and development details of the related application.

Part II illustrates the design and development of an application concerning the
most important type of V2X communication: Vehicle–to–Vehicle, V2V. The goal of
this application is to reproduce, on a mobile device, the behavior of the dashboard
of a vehicle mounting Magneti Marelli’s V2X communication board. For a better
understanding of the mechanisms at the base of the application, a chapter will be
dedicated to the description of the interactions between the board and the dashboard
of the vehicle.

The third and last part of this work reports the overall results and the possible
further expansions of both applications.

1.4 Tools
Beside code, the projects of this thesis required the creation of images both to be used
as icons and backgrounds in the applications and to illustrate some V2X use cases
during internal demonstrations.

Android Studio

Android Studio is the official IDE for developing Android applications. Beside the
base functionalities provided by common integrated development environments, it also
provides a layout editor, for building Graphical User Interfaces in a what–you–see–is–
what–you–get way, an Android emulator and a profiling tool, for real-time monitoring
of CPU, memory and network usages[11].

Adobe Illustrator

Illustrator is a program of the Adobe Suite that is meant for creating and editing vector
images.
Vector images easily allow to generate the set of scaled images the operating system
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needs for correctly displaying the interface on the different screen sizes and resolutions
of the devices running Android[4].
Indeed, starting from a vector image, i.e. an icon, it can be scaled up and down without
loosing quality.

Blender

Blender is an open source software for managing the whole 3D pipeline, from modeling,
to rendering and compositing[12].
Blender has been used for the renderings of the images used in the demonstrations,
but also for the photo–realistic images used in both applications.
The 3D models have been mostly created specifically for the renderings, while some
have been found on the Internet.
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1.5 Development methodology: Agile
The projects of this thesis have been developed by following the Agile approach, which
requires close cooperation between the customer and the development team. The goal
is to organize the process in order to periodically deliver a working version of the
product, starting from a prototype implementing basic features and gradually refining
the solution. This allows the requirements to be defined or modified based on priority
during the development process, by adding more and more details[29].

Since the applications developed for this thesis are intended for internal use, the
customer was represented by the researchers of the Innovation & Connectivity team,
who defined the requirements mostly through user stories1 and periodically reviewed
both applications to report problems.
The exchange of information was done mostly face to face, but also via conference-call
with the colleagues of the team at Magneti Marelli in Auburn Hills, USA, for what
concerns the V2P application.

The whole development process was based on two Agile strategies: product backlogs
and Exploratory testing. The first one lists, according to a priority, the required
changes and the known bugs that need respectively to be implemented and fixed. The
second one carries out the test of the application by having the tester using it both in
the standard way and also in a clever one, in order to break the software and disclose
misbehaviors[26].

Graphical user interfaces fall in the umbrella of interaction design, which deals with
the design of the graphical layout and the behavior of the graphical elements when
they are being used. Interaction design requires feedback from the end users in order
to test usability and can be integrated in the Agile development with some difficulty.
In fact it assumes that requirements are not being changed any more, but this does
not happen in Agile[28]. For this reason, for both applications, most of the graphical
interface has been designed before starting the implementation of the code, making
little changes after each further delivery.

1User stories represent an informal way for defining requirements starting from few details written
from the stakeholder’s perspective, which are going to be refined in further iterations[1][30].
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1.6 Graphical User Interface
Graphical User Interface deservers special attention, because is one of the key element
that establishes success for an application. In fact, a product whose interface is not
tailored for its target user and does not provide a good user experience, is likely to be
quickly left behind.
The applications designed for this thesis are not intended for the big audience of Google
Play Store, as the infrastructure they rely on is still a prototype and it is not yet on
the market. Yet, this does not exempt the application from compliance with UI design
and usability guidelines.

1.6.1 Usability

The ergonomics of human-computer interaction standard, ISO 9241-11, defines usabil-
ity as “the extent to which a product can be used by specified users to achieve specified
goals with effectiveness, efficiency and satisfaction in a specified context of use”[20].

Usability studies take into account the human psychology for creating products that
are easy to use, other than beautiful to see. In other words, user interfaces must be
designed in a way that allows the user to quickly and easily learn (and then recall) the
sequence of actions required for achieving a specified goal.
Since usability of a product is tied to its specific category of users, the ease of use of
the interface is tested through the observation of a group of people trying to complete
a specific task. Usually, the test is repeated many times during the development of
the product, as the earlier a problem is identified the cheaper is the correction, both
in terms of time and work[19].

The applications developed for this thesis have been tested following the above
approach, by having the researchers of the team attempting to complete some tasks
during all the phases of the development process, since the prototyping.

1.6.2 Material Design

Nowadays mobile devices are widespread and used by a great number of people having
diffrent levels of expertise. Mobile application must consider this fact and provide
interactions and graphical layouts that accomodate the majority of the users.

Material Design is a collection of guidelines for creating simple, clean and intuitive
interfaces for different platforms and device sizes.
Material Design helps the application to implement usability since it is based on the
material metaphor, inspired by paper and ink: surfaces, edges, lights, shadows and
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movement are visual cues that recall the patterns of physics reality, leading the user
to understand how the layout components move and interact with each other[23].
The hierarchies within the layout are also highlighted by specific color choices combined
with white spaces and typography[23].

Figure 1.1: The layout components are placed in a three-dimensional space as if they
were built and assembled in the real-world[22]
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V2P application
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Chapter 2

Vehicle–to–Pedestrian

Vehicle-to-pedestrian, V2P, technology is a more-specific type of V2X communication
that focuses on vehicles and Vulnerable Road Users such as pedestrian, bicyclists,
people using wheelchair, etc.
This kind of communication is bidirectional and aims at notifying both parties about
each others’ presence through the dashboard, on vehicles, and through a wearable
or handheld device for non-motorized road users, in order to increase road safety by
reducing the number of fatalities due to poor visibility.

A typical use case scenario concerns a person, who is going to cross the road in
front of a bus idling on the stop. Due to the presence of the bus, such a person is
hidden from view for the vehicles incoming in the same travel direction, thus creating
a dangerous situation both for the pedestrian and for the vehicles that may hard brake
and possibly incur in rear-end collisions.

Figure 2.1: V2P use case scenario

The goal of the first part of this the-
sis is to develop a smartphone appli-
cation that is able to connect to the
V2X network and warn the pedestrians
against the presence of vehicles near
them. It is supposed that the vehicles
implement the dual counterpart of this
application in order to warn the drivers
against the presence of pedestrians so
that they can adjust the speed and be
ready to brake.
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Chapter 3

Architecture

This chapter will briefly introduce the architecture of the V2P system in order to
describe how it works and how it has been customized for meeting the goals of this
paper.

3.1 V2P Architecture

Vehicle–to–Everything is characterized by a distributed architecture, that means each
peer receives the messages of all the other nodes and broadcasts its own information.

In order to have the pedestrian–entity be compliant to this paradigm, Magneti
Marelli designed an electronic device that works as plug–in extension for the smart-
phone, providing the connectivity towards the V2X control units installed on vehicles.
The device appears as an additional shell enveloping the phone and it contains a little
electronic board that is connected to the phone through the latter’s USB–C port and
sends it the data received from other V2X entities.
Such data is then processed by the V2P application running on the phone and, when
necessary, a notification or warning is sent to the user.
As other V2X entities, also the V2P board attached to the phone communicates via
DSRC, which requires GPS signals in order to provide the other entities’ locations.

The V2P technology was one of the innovations that were going to be presented
in January at Magneti Marelli’s booth at the Consumer Electronic Show 2018 in Las
Vegas, USA, hence, for demonstration purposes, GPS could not be used because of the
shielding of the signal and the small distances of the indoor environment.
For the occasion the V2P Communication board has been replaced with a custom
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solution able to provide a good indoor positioning. The choice fell on Skypersonic’s1

SkylocTM system, which provides indoor triangulation through a set of little electronic
devices, tags, that communicate with each other via Ultra-Wide Band (UWB). The
software loaded on the tags is customized for trasmitting CSV–formatted messages to
other devices either via UWB or Bluetooth.

3.2 Customized V2P Architecture

The implementation with the SkylocTM system required some changes to the V2P ar-
chitecture. The most important one is that the whole system becomes centralized: the
real–time location is performed by a special tag called anchor, which collects the data
transmitted by all the tags, computes their position with respect to itself and sends a
custom message via Bluetooth to a paired device: the pedestrian’s smartphone. Due to
the kind of Bluetooth module attached to the anchor, the only type of communication
allowed is one–to–one instead of one–to–many, which means that at any time there can
be at most one device connected to the master.
Of course, this limitation would be unreasonable for a real–use system but, for the pur-
poses of the demonstration, it was not a problem since Magneti Marelli was equipped
with two smartphones, used one at a time for battery efficiency.

3.2.1 SkylocTM devices

To summarize what has been written before, the Skypersonic’s indoor positioning sys-
tem is made of a set of tags, which share the same hardware but provide different
functionalities depending on the software loaded into memory. The two most impor-
tant behaviors are:

• anchor, the center of the whole system. It is the one that collects all the data
sent by the tags attached to moving entities, i.e. smartphone, vehicle, and builds
the output messages to be transmitted via Bluetooth to the paired device every
90 ms. Being the central element, the anchor also represents the origin of the
coordinate reference system for real–time location, so its location is (0,0,0).
The anchor is able to triangulate the position of all the simple tags thanks to two

1Skypersonic is a company specialized in designing and producing drones and real–time location
systems for indoor applications[31]
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special tags called “eyes”, which are placed at the corners of Magneti Marelli’s
booth.

• simple tag, whose position gets tracked by the anchor, with precision in the order
of centimeters, and communicates with it via UWB.
Simple tags are attached to the moving entities in the V2P system, i.e. pedestrians
and vehicles.
For what concerns the booth at the CES2018, such entities were represented by
the shell enveloping the smartphone, carried around by a person simulating the
pedestrian, and a Chrysler Pacifica, which actually did not move as it was also
used to show innovations in its interior.

Figure 3.1: The SkylocTM infrastructure. For sake of simplicity, the z coordinate has
not been considered.
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Chapter 4

V2P App Requirements

Before describing the user requirements, it is necessary to introduce the context in
which the application is going to operate and how it shall interact with the external
entities depicted in Figure 4.1. The interactions can be of two types: control flow
and data flow. The first one describes the actions that an actor may perform on
the system and vice versa; the latter draws the path followed by the data exchanged
between the system and the actors. Thanks to such flows it is possible to draw the
main requirements: the application shall communicate with the anchor and retrieve
the data. After some processing, if certain conditions are met, a notification is sent to
the user.

USER

V2P Ap-
plication
(System)

SKYLOCTM ANCHOR

Stop

Start

Close notification

Notification

Connect

Tags’ locations

Data flow

Control flow

Figure 4.1: Context diagram of the V2P system

The next two paragraphs will describe more in details what the application should
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do and how it should behave, but, before proceeding, it is important to notice that the
only SkylocTM entity communicating with the application is the anchor. In fact, as
previously said, it represents the center of the customized V2P infrastructure and it is
the one that collects the data about all the tags.

4.1 V2P Functional Requirements

The functional requirements, i.e. what the system should be able to do[27], are listed
in tables 4.1 and 4.2: the first one concerns the interaction between the system and the
user, the second one describes the communication between the system and the anchor.
The two tables only describe the most important functional requirements, which are
the ones that have been defined through the user stories.

Function Warn the user whenever a possible hazardous road event occurs
Description Send a notification to the user whenever a vehicle is approaching

and its distance from the user is below a certain threshold
Input Formatted string containing the positions of the tags assigned to

the pedestrian’s phone and to the vehicle
Source SkylocTM anchor via Bluetooth
Output Issue a warning notification to the user about the incoming vehi-

cle
Action The user is notified if and only if the distance between the tag as-

signed to the vehicle and the one assigned to the phone is smaller
than a certain threshold and he/she has not already dismissed a
notification about the same vehicle.
If the distance increases and becomes greater than the threshold
while the notification is still up, clear it

Requires The current distance between the tags and the old one
Pre-condition The received string is correctly formatted
Post-condition The new distance replaces the old one if it is below the threshold,

otherwise the old distance is reset

Table 4.1: V2P Functional Requirements for the interaction between the system and
the user
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Function Retrieve data from the SkylocTM anchor
Description Connect to the anchor via Bluetooth and keep listening for in-

coming messages containing the real-time locations of both tags
Output Values extracted from the string
Action Once the connection has been established, keep listening for string

messages
If connection is dropped, try reconnecting until success

Pre-condition Bluetooth is enabled, the phone has already been paired to the
anchor, and the latter is within the Bluetooth range

Table 4.2: V2P Functional Requirements for the interaction between the system and
the anchor

4.2 V2P Non-Functional Requirements

Table 4.3 lists the non–functional requirements, which state how the system should
achieve the result, by also considering the user interface and the general performance.

NF1 User eXperience (UX) The application must require little interaction with
the user

NF2 UX Notification shall catch the user’s attention even if
the mobile device is stored into a bag or a pocket,
hence it must use vibration, sounds and lights (if
available)

NF3 UX Vibration shall not be turned off by the user
NF4 UX When the screen is interactive, the warning about

the incoming vehicle should visually interrupt what
the user is doing, by dragging a screen over the ap-
plication currently in foreground

NF5 Connectivity Connection issues shall be automatically handled by
the application

Table 4.3: V2P Non-functional Requirements

4.3 Use Cases

In order to better define how the application should behave, two use cases are presented.
They will mainly consider the normal flow followed on normal use of the application,
when everything goes well and no exceptions or errors occur.
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Each use case, however, will also introduce the possible alternate flows that generate
from issues.

4.3.1 Use case: Connection Handling

This use case is triggered when the user enables Bluetooth on the smartphone and, of
course, if the application has already been started.
In the basic flow the application succeeds in connecting and starts to receive messages.

If errors or exceptions occur during this process, the use case falls into an alternative
flow, which usually warns the user and then handles the issue.
In order to have the centralized architecture be invisible, connection issues like out-of-
range or connection lost must be automatically handled by the application, without
requiring any action by the user. This means that each time the connection is dropped
for some reason other than Bluetooth disabled, the application must try to reconnect
until success.

V2P application
V2P application

�extend�

Handle
connection

Handle re-
connection

User

Anchor

Figure 4.2: V2P Use case: Connection Handling

4.3.2 Use case: Send/Clear Notification

As soon as the system receives a string from the anchor, it analyzes the positions of
the two tags and, if they are below a certain threshold, the notification is sent to the
user.
The notification must capture the attention of the user, even if the phone is stored in
a pocket or in a bag, so it must make use of vibration, sounds and visual effects.
In the basic flow, the warning notification is issued and the user taps the screen to
agree and clear it.
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V2P application
V2P application

�include�

Send
notification

Auto-clear
notification

Clear
notification

User Anchor

Figure 4.3: V2P Use case: Send/Clear Notification

An alternative flow concerns the case in which the event disappears, i.e. the vehicle
moves away from the user without the latter having cleared the notification. In this
case the notification clears itself as the event is no more interesting.
Another possible flow is represented by the user stopping the application right when a
notification is issued. This is a rare case but it must be managed as well in order to
avoid a dangling notification that can never be cleared.
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Chapter 5

Overview of the V2P app

This chapter, after some brief considerations about the tools provided by the Android
APIs, will present the main components of the application, along with their Graphical
User Interface, describing how they are connected to each other in order to satisfy the
requirements presented in the previous chapter.

The application has been developed as a home screen widget provided with two
activities for first–run configuration and settings.

A home screen widget1 can be described as a summarizing view of the most im-
portant features offered by an application directly on the Android Home Screen of the
smartphone[32][9].
Since a widget is a summary, it cannot exist as standalone element without an un-
derlying application as the only action it is allowed to perform is the update of its
graphical appearance. Moreover, any action performed by the widget must necessarily
complete within five seconds, otherwise the Android operating system will kill it auto-
matically[32].
For these limitations, heavy computation and other potentially long–taking operations,
such as the ones concerning the Bluetooth socket, have been moved into a Service.

From the point of view of Android OS, a home screen widget is a BroadcastReceiver
that captures the action android.appwidget.action.APPWIDGET_UPDATE and inflates
its layout into a RemoteViews object, which is then delivered to the operating system

1According to the Android documentation, home screen widgets are different from widgets: the
first one are "at-a-glance" views of the most important data and functionality of an application[9],
while widgets are the objects of class View, which are used to build Graphical User Interfaces.
To avoid confusion, this text is going to call widget the home screen widgets, dropping the usage of
the word widget for referring to View objects.
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and placed on the home screen[32].

The widget can also work as a listener for clicks, so if the user taps it, the Settings
Activity is launched. From there the user can see the state of the connection towards
the anchor and change the settings about the notifications.
From the Settings Activity is also possible to reach a hidden menu which has been
developed for debug purposes and shall not be used by common users.
Each time the Activity is launched, an if statement checks whether the V2P applica-
tion has already been configured, otherwise a first–configuration Activity is launched
to help the user in the set up through a step–by–step wizard.

Besides the widget, there are two more BroadcastReceivers, whose goal is to listen
for Bluetooth state changes, i.e. enabled, disabled, etc., and for intents driving the
notifications, i.e. issue a notification, clear notification, show overlay, hide overlay, etc.

The following paragraphs are going to describe the main elements that compose the
application. Figure 5.1 shows the connections between such elements in order to give
a clearer overview of the whole system.

Figure 5.1: Main components of V2P application
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5.1 Widget

The widget is the most important part of the application since it is the one that en-
ables the V2P connectivity on the phone: when the user drags it on the home screen,
the BroadcastReceivers for Bluetooth state changes and notification events are reg-
istered.
As previously introduced, the widget itself is a BroadcastReceiver and it reacts to
actions regarding its graphic layout being dragged on the screen.
The Android operating system allows multiple instances of a widget to be placed on
the screen, but, for this application, this functionality is useless, as the connection to-
wards the V2X infrastructure is at most one. For this reason, the only actions that are
captured by the V2P widget are the ones concerning the first instance dragged on the
screen, ACTION_WIDGET_ENABLED; the last one that is removed, ACTION_WIDGET_DISABLED;
and the update of the graphic layout of all the instances, ACTION_APPWIDGET_UPDATE.
The following paragraphs better describe the behavior of the widget based on the kind
of captured action.

(a) (b)

Figure 5.2: (a) The layout of the V2P widget , (b) the V2P widget (with the red badge)
as it appears on the home screen
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5.1.1 ACTION_WIDGET_ENABLED

As previously introduced, this action is captured when the first instance of the widget
is dragged on the screen[10].
If the Bluetooth is currently on and the application has already been configured, the
connectivity Service is started. Otherwise, the widget issues a local broadcast event
to signal the absence of V2P connectivity to the LocalNotificationManager, which
will issue a notification and put a badge on the widget for warning the user about the
issue.
If the application was not yet configured when ACTION_WIDGET_ENABLED was captured,
the badge is shown on the layout and the action associated to the click on the layout is
toggled to head to the Configuration Activity, so, whenever the user taps the widget,
the Configuration Activity is launched.
The ACTION_WIDGET_ENABLED broadcast is also sent each time the phone is rebooted,
therefore it is the action that provides the persistence of the V2P functionality, without
requiring the user to manually enable the application each time the phone is turned
off.

5.1.2 ACTION_APPWIDGET_UPDATE

ACTION_APPWIDGET_UPDATE is captured each time a layout refresh is required[10].
For what concerns the V2P application, a refresh is required each time the badge must
be shown or hidden, that means each time the connection is lost or gained or the status
of Bluetooth changes between On and Off or vice versa.
The Android OS provides two kinds of triggers for layout updates: a periodic one,
occurring after a specific amount of milliseconds, and a “manual” one, issued by a call
performed by some other components of the application[10].
The V2P application relays on the second case because there is no reason for having
periodic updates, since the widget only needs to signal changes about the connectivity
state.
Moreover periodic updates are heavy for the operating system, as they wake it up even
when the device is sleeping, resulting in a quick battery drain if they are not properly
managed[10].

5.1.3 ACTION_WIDGET_DISABLED

This action is captured whenever the last instance of the widget is thrown away from the
screen[10]. In fact, by throwing away the widget, the user means to stop receiving V2P
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notifications, therefore the connectivity towards the infrastructure must be stopped
based on the current state of Bluetooth.
In the scope concerning this action, both the BroadcastReceivers are unregistered,
since they are no more needed and would cause a memory leak.

5.2 ReceiveService

The core component that provides connectivity towards the V2P infrastructure is
ReceiveService, which extends the Android Service.

Figure 5.3: Service flow chart

ReceiveService must be
started every time there is at
least a widget instance is on the
screen, the Bluetooth is on and
the application has already been
configured.

Since the goal of the V2P
application is to warn the user
about a possibly nearby haz-
ardous event, the Service must
keep running both in mem-
ory critical conditions and also
when the user is not interacting
with the phone.
When the first situation occurs,
the Android system automati-
cally selects, among the running
applications, a victim to kill in
order to free resources[7].
For preventing the system from
selecting the V2P application as
a victim, the Service has been
marked as foreground. In fact,
foreground Services differ from
background ones because they can be marked as victims only if the system is in des-
perate memory conditions. Moreover they are components which the user is aware of
and provide an ongoing notification for the status bar.
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Android Services usually run on the main thread hence they cannot be used for
performing blocking operations or heavy–computation. For this reason all the actions
concerning sockets have been delegated to two separate threads: one for instantiating
the connection towards the SkylocTM device, ConnectThread, and one for receiving
data over the socket stream, ReceiveThread. If the connection fails, the corresponding
thread sends a Message object to the main thread, the Service, to communicate the
issue before stopping and getting garbage collected.
The main thread collects all the Messages sent by the secondary threads with the
help of a Handler object, which allows the inter-thread communication through a
MessageQueue.

Figure 5.4: Threads of the V2P application

Such a Handler can manage two kinds of Message2: one containing the data re-
ceived from the socket stream, HANDLE_MESSAGE, and one containing the state of the
connection and possible issues, HANDLE_CONNECTION_FAILED. The first one processes
the CSV-formatted String contained in an extra field of the Message object and de-
termines if the notification should be triggered. The algorithm that drives this choice
will be described in details in the next chapter.
The latter type is used for issuing the automatic reconnection after an IOException
occurred on the socket.
However, since the Service can be stopped from other components, such as Widget
and BluetoothStateReceiver, the secondary threads must stop as well, without send-
ing any HANDLE_CONNECTION_FAILED Message. In fact, if the user throws away all the
instances of the widget or if Bluetooth is turned off, all the resources used by the
Service and its threads must be released.

2Actually what distinguishes a Message from another is the user-defined code contained in the
what field of the object[5]. In this case, what can assume two values: HANDLE_CONNECTION_FAILED
and HANDLE_MESSAGE
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5.2.1 ConnectThread

Figure 5.5: ConnectThread flow chart

ConnectThread is the thread that is in
charge of starting the connection towards
the device.
This is a blocking operation since the
connect() method implements a select,
which has the thread block until the con-
nection succeeds or until the timeout (12
seconds) expires. If any exception occurs,
ConnectThread closes the socket and, be-
fore, terminating, checks whether the issue
is due to the user having thrown away the
widget or turned off Bluetooth. If any of the
two conditions is met, the thread simply ter-
minates. Otherwise, it sends a Message to
the main thread’s Handler with HANDLE_CONNECTION_FAILED code.

5.2.2 ReceiveThread

ReceiveThread is the thread that reads data from the InputStream and passes the
received String to the main thread as an argument of the HANDLE_MESSAGE Message.

Figure 5.6: ReceiveThread flow chart

The reading process can be interrupted
if the counterpart goes offline or if the
user throws the widget away, turns off
Bluetooth or changes the anchor de-
vice’s address. In order to decide how
to behave, the thread checks whether
the variable storing the connection state
equals either to WIDGET_DISABLED or to
CONNECTION_DROPPED. These states respec-
tively address the Bluetooth Off case and
the widget thrown away one. If none of the
two conditions is met, then the connection
should be re-established, hence the thread
sends a HANDLE_CONNECTION_FAILED Mes-
sage to the Handler.
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5.3 BluetoothStateReceiver

BluetoothStateReceiver is a BroadcastReceiver that is dynamically registered3

when the first instance of the widget is dragged on the home screen. The two Bluetooth
broadcasts captured by this receiver are:

• STATE_ON, broadcast when the Bluetooth is turned on.
This broadcast is not sticky, hence it is captured by BluetoothStateReceiver
only if it is issued after the widget has been dragged on the screen.
As soon as STATE_ON is captured, an if statement checks whether the application
has already been configured, i.e. the device has already been selected: if it is,
then the ReceiveService is started.

• STATE_OFF broadcast is captured when the Bluetooth is turned off. The Service
is stopped and a local broadcast is sent to the LocalNotificationManager, for
having it cancel the ongoing notification in the status bar.

5.4 LocalNotificationManager

LocalNotificationManager is a local4 BroadcastReceiver that also provides static
methods for managing the notifications to show on the status bar. This class can
capture the following broadcast intents:

• SHOW_BADGE. This action sets the visibility of the badge (Figure 5.7a) to VISIBLE
and triggers the APPWIDGET_UPDATE broadcast for refreshing the layout of all the
instances of the widget on the home screen.

• HIDE_BADGE. This action is the opposite of the previous: it sets the badge visibility
to INVISIBLE (Figure 5.7b) and triggers the APPWIDGET_UPDATE broadcast for
refreshing the layout of all the instances of the widget on the home screen.

3Dynamic registration of a BroadcastReceiver means that it is not declared in the Manifest,
hence it is instantiated only when the application is alive.

4Local BroadcastReceivers are intended for exchanging informations among components of an
application, without having the intents broadcast in the whole operating system. This ensures more
efficiency and security for the application, as a local BroadcastReceiver does not react to intents
sent by other applications installed on the phone.
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(a) (b)

Figure 5.7: V2P Widget (a) with and (b) without badge

• SHOW_OVERLAY. This action is captured when a vehicle is close to the user and the
notification must be shown in the status bar, along with a screen that is dragged
on whatever application currently on foreground.
The overlaying screen must be explicitly authorized by the user in the application’s
page in Android Settings as it can be very annoying, if not properly managed by
the application.
When a SHOW_OVERLAY broadcast is captured, the notification text and icon are
changed respectively to "car approaching" and to the car icon. If the permission
to drag overlays was not granted, the notification is marked as clickable, in order
to allow the user to clear the notification and restore it to the previous value.
The SHOW_OVERLAY broadcast also carries a Bundle with extras fields, which
provide informations about the current distance between the user and the vehicle.

• HIDE_OVERLAY. This broadcast is sent when the V2P event clears itself because the
distance between the vehicle and the user has become greater than the threshold.

If the permission to drag screen onto other applications had been granted, the
overlay screen is removed and the notification is cleared and restored to the value
describing the current status of the service: V2X available or V2X not available.

• RESTORE_V2X_NOTIFICATION. This broadcast restores the notification after an
event has been canceled. Depending on the current state of Bluetooth, either
On or Off, it sets the notification to V2X available or V2X not available due to
Bluetooth disabled. Normally the notifications can never be cleared by the user,
because they are linked to the underlying Service and its activity, in fact they
are all marked with the ongoing flag.
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All the above mentioned broadcasts make use of notifications, hence the LocalNoti-
ficationManager class provides methods for issuing them with different parameters.
The most important one regards the vibration, which can be either short of long based
on the screen state. If it is interactive then it is probable that the user is currently
watching it or even tapping on it, meaning that the vibration shall not be long, as
the attention of the user is already on the phone. Differently, if the screen is not
interactive, it is probable that the phone is currently stored in a bag or a pocket, hence
the vibration shall be longer in order to catch the user’s attention.

5.5 The Settings Activity (MainActivity)

The Settings Activity is the Activity that supports the V2P widget and is the one
that is always called when the user taps the layout of the widget. The Graphical User
Interface of this Activity is a TabLayout made of two tabs hosting two Fragments:
one showing the current status of the connection one for the application Settings. Each
time MainActivity is started, an if statement checks whether the application has
already been configured, otherwise the configuration Activity, FirstRunActivity, is
started, pushing MainActivity on the backstack.
The following paragraphs are going to illustrate the layout of the two Fragments that
can be attached to MainActivity.

5.5.1 StatusFragment

This Fragment allows the user to check the current state of the connection and provides
two buttons with different levels of visibility: from Figure 5.8a it is possible to see the
standard button that allows the user to change the anchor device, but, actually also
the splash screen can react to clicks. From there, in fact, it is possible to reach a
debugging screen where the expert user (i.e. a Magneti Marelli researcher) can tune
the parameters of the algorithm that computes the distance between the tags. In order
to prevent a common user from entering such a screen, the image must be tapped four
times before the secondary Activity is launched.

The Activity launched by both the buttons of the StatusFragment is the same,
but loads the proper Fragment based on an extra field passed with the Bundle of the
calling Intent.
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(a) (b) (c)

Figure 5.8: (a) the StatusFragment attached to the MainActivity, (b) the debug
screen reached through the button hidden in the splash image, (c) the change anchor
device screen reached by clicking the button in the StatusFragment

5.5.2 RecycleSettingsActivity

RecycleSettingsActivity is the Activity that act as container for either the device
selection Fragment or the debugging one. The correct Fragment is loaded based on an
extra field in the Bundle passed with the calling Intent.
Since the device selection Fragment is the same used for the configuration steps of the
application, it will be described together with the FirstRunActivity in Section 5.6.2.

5.5.3 DebugSettingsFragment

DebugSettingsFragment is the hidden debug screen that can be reached by tapping
multiple times the V2X and Magneti Marelli logos depicted in Figure 5.8a in the Status
tab.
Here the user can tune the parameters driving the algorithm that manages the trig-
gering of the notifications.
The way this screen can be accessed is inspired by the way the easter eggs of Android
and the Developer Mode are enabled: the user has to navigate in the system Settings
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and tap multiple times on the right item in the menu list. During this operation, a
toast appears to tell the user how many times left the button must be tapped in order
to activate the feature.

In order to speed up the access to the menu, in the V2P application, the number
of taps required to enable the hidden screen is lower than the one required by the
hidden features in Android Settings. This is to simplify the tuning of the parameters
at Magneti Marelli’s booth at CES2018.

5.6 The Configuration Activity (FirstRunActivity)

The goal of FirstRunActivity is to lead the user through the steps required for
configuring the application.
Such steps are represented as nodes in the state diagram depicted in Figure 5.9a and
each of them is managed by a specific Fragment.
Figure 5.9b illustrates the layout of the Activity, where it is possible to notice a sort
of navigation bar at its bottom, which has been conceived for telling the user which is
the current step of the configuration and how many ones are left.

(a) (b)

Figure 5.9: (a) Configuration steps. Each node represents a Fragment; (b) Layout of
FirstRunActivity: the bottom bar and the fragment stub
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5.6.1 WelcomeFragment

WelcomeFragment (Figure 5.10) is the first screen of the configuration process. It is
made of an image, which depicts a classical scene where a user is crossing the road in
front of a car equipped with V2P, and a button. When the user taps the button, the
Fragment triggers the transition to the next screen in the underlying Activity.

Figure 5.10: Layout of the WelcomeFragment

5.6.2 DeviceSelectionFragment

DeviceSelectionFragment is the second screen of the process and asks the user to
select the Bluetooth device that acts as anchor.

The layout is made of two overlapping FrameLayout objects to cover the cases
Bluetooth On and Bluetooth Off. As soon as the Fragment is attached to the Activity,
an if statement checks the current Bluetooth state. If it is off, an dialog appears to ask
the user to turn it on, and the FrameLayout depicted in Figure 5.11a is set to visible.
As it is possible to see, a textual description explains the user why the Bluetooth is
needed, together with an image depicting the V2P infrastructure.

As soon as Bluetooth is turned on, the FrameLayouts are swapped: the one shown in
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Figure 5.11a is set to invisible, and the new one is set to visible. The transition occurs
smoothly, by having both layouts coexisting with inverted values of transparency for
a while. This Fragment can also be recalled from the Settings Activity, if the user
wishes to change the anchor device.

(a) (b) (c)

Figure 5.11: (a) FrameLayout for Bluetooth disabled, (b) FrameLayout for Bluetooth
enabled and device not yet selected, (c) Anchor device selected and “Next” button
enabled

Figure 5.11b shows the FrameLayout set to visible when the Bluetooth is on: the
devices currently paired with the phone are listed, and the user has to select the one
corresponding to the anchor.
As soon as the device is selected (Figure 5.11c), the underlying Activity is notified
and enables the button to proceed to next step.

5.6.3 RequestEnableOverlayFragment

The third step asks the user to allow the application to draw screens over other appli-
cations (Figure 5.12a). This feature needs the user to explicitly grant the permission
in the system Settings, because of security reasons. As usual, the screen describes
the feature together with an image. In order to increase the probabilities that the
user grants the permission, there is a button that leads to the Settings menu of the
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application, in system Settings, where the user just has to tap on the toggle button.
Since this feature can be turned on and off by the user, the application must be

able to work in both cases. For this reason, the Next button is not disabled but only
renamed to Skip.

5.6.4 EndOfConfigFragment

EndOfConfigFragment (Figure 5.12b) is the last step of the configuration, and it is the
one that sets the variable indicating the end of the configuration to true when the user
taps the Done button. If the user closes the Activity before having tapped the Done
button, the variable is not set and the configuration is not considered as finished, and
will start again next time the user launches the application. As soon as the user taps
the Done button, FirstRunActivity terminates and the Settings Activity is popped
from backstack.

(a) (b)

Figure 5.12: (a) Screen for overlay permission request, (b) Screen for teaching the user
how to enable the V2P.
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5.7 Notifications & Screen Overlay
Notifications and the screen overlay are the final goal of the V2P application.

5.7.1 Notifications

Notifications accompany the whole life of the V2P widget, from the moment its first
instance is dragged on the home screen until its last deletion. This is mainly due to
the fact that the ReceiveService is marked as foreground, hence it requires a non-
dismissable notification to be issued as soon as its onStartCommand method is executed.
In order to cover also the cases in which the Service is not running due to absence
of connection, an ongoing notification is also issued when at least an instance of the
widget is on the screen.
Below are reported the values that a notification can assume:

• V2X not yet configured (Figure 5.13). This happens when the user drags the
first instance of the widget on the home screen without having first launched the
application from the app menu. This notification is clickable, that means if the
user taps it, it will launch the configuration wizard.

Figure 5.13: V2X not yet configured

• V2X available (Figure 5.14). In this case ReceiveService is running as the Blue-
tooth is on, the connection with the anchor is established and ReceiveThreadis
reading from the InputStream. Data is being received and processed but the car
and the user are far from each other.

Figure 5.14: V2X Not Available: connected to the anchor

• V2X not available (Figure 5.15). This case signals either a problem in the con-
nection towards the anchor or that the Bluetooth is currently disabled.
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The first case can occur when the ReceiveService is trying connect to the an-
chor, either for the first time or after the connection was lost. The second one,
tells the user that the Service can not start because the Bluetooth is currently
disabled.

Figure 5.15: V2X Not Available: Bluetooth is disabled or the device is trying to estab-
lish a connection

• Car approaching (Figure 5.16). This notification is issued every time a car is
in the user’s area of interest. If the application is allowed to drag screens over
other applications, this notification comes with the screen overlay, otherwise, the
notification is given a parameter that allows the user to reset it with a tap.

Figure 5.16: Car Approaching

5.7.2 Overlays

Figure 5.17 shows the warning screen that is drawn onto whatever application is cur-
rently on foreground when the vehicle enters the pedestrian’s area of interest.

The screen is very simple and is designed to catch the eye of the user.
The peculiarity of screens dragged on top of other applications is that they disable all
the buttons but theirs. For this reason, in order to dismiss the warning, the user has
to tap on the Got it button. This is also the reason why the overlay feature requires
an explicit authorization in Android Settings.

If the event disappears without the user having seen it, the screen is automatically
dismissed together with the notification.
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Figure 5.17: Overlaying screen
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Chapter 6

V2P Algorithm

This chapter illustrates the algorithm that triggers the V2P events on the pedestrian’s
smartphone. The corresponding code is part of the ReceiveService class and is run
every time a correctly formatted message from the anchor is received.

To summarize, notifications shall be sent every time a vehicle enters the pedestrian’s
area of interest, which is defined as the radius of a variable amount of millimeters
centered on the user.

Figure 6.1: Example of message
sent by the anchor

Such an amount is the sum of two measures, one
called distance and one called tolerance. Both will
be discussed later, after having introduced the for-
mat of the message sent by the anchor.
The SkylocTM anchor device broadcasts a CSV-
formatted message every 90 milliseconds with a
connection-less protocol. The connected device, i.e.
the smartphone, has to listen to the stream and con-
catenate the read characters until they form a suit-
able string starting with the word “timestamp” and
ending with the sequence “\0”. The complete mes-
sage is shown in Figure 6.1 and it is possible to notice that it is composed by the
following key-value pairs:

• timestamp (not used). The value represents the number of milliseconds elapsed
since the anchor device has been turned on. The timestamp field has been pre-
pared for further expansions of the application but currently the version described
in this work does not use it.
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• cardID. It corresponds to the carID field of the V2X Communication board in-
stalled on vehicles. In this case, it represents the identifier associated to the Skyloc
TM device.

• distance (not used). This field represents the point-to-point distance between
two tags (the vehicle’s and the pedestrian’s) measured by the anchor. This field
has not been used as it is not as accurate as the distance obtained by triangulating
each tag.

• position. This value is made of three coordinates that represent the location of
the tag associated to the vehicle in the Cartesian coordinate system centered on
the anchor. Their value is expressed in millimeters.

• usrPosition. This field represents the coordinates of the tag associated to the
pedestrian. They are expressed in millimeters and belong to the Cartesian coor-
dinate system centered in the anchor.

Skypersonic’s SkylocTM system can triangulate real-time indoor locations with an
accuracy of ±20cm, but in particular situations it can decrease due to interference.
For this reason the radius of the user’s are of interest also had to include the tolerance
value, in order to reduce the noise affecting the values of consecutive messages.

To support the message processing, the V2P application defines a custom class,
named Vector3D, to store the received coordinates of each tag and compute the distance
between them by using the Pythagorean theorem. Moreover, it also uses an int type
variable, oldMin, to store the distance that triggered the notification and a boolean
one to remember whether the vehicle is within the pedestrian’s area of interest.

It is important to highlight that this algorithm has been prepared for supporting
more than one vehicle, but for demonstration purposes a single vehicle was enough.
The following description will then make the assumption that there is at most a vehicle
at a time approaching the pedestrian.

Figure 6.2 illustrates the flow of the algorithm, which starts as soon as the Handler
of ReceiveService receives a well-formatted string from the ReceiveThread running
on a secondary thread.

First of all, if the overlay screen is not currently displayed, that is the vehicle is not
near the pedestrian, the variable oldMin is reset to the maximum value admitted for
the int type.
Now the usrPosition and position coordinates are extracted from the string, inserted
into two Vector3D objects and the distance between the two is computed.
This distance is then compared against the threshold distance, whose value can be
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modified by the expert user in the Debug Settings screen: if the computed one is lower
then the vehicle has just entered the pedestrian’s area of interest.
Before triggering the notification, however, it is necessary to verify that the vehicle
is heading towards the user, hence the distane is also compared to the oldMin value,
which represents the distance between the two tags in the previous cycle. If also this
condition is true, then the SHOW_OVERLAY broadcast is sent, after having verified that
in the meantime the widget has not been thrown away. In fact, if all the instances of
the widget are deleted from the screen, the SHOW_OVERLAY broadcast shall not be sent,
since the user is no more interested in receiving V2P notifications.

As the reader may recall, the overlaying screen also shows the distance between the
vehicle and the pedestrian. This is possible because the SHOW_OVERLAY broadcast can
also carry extra fields, such as the distance indeed.
The LocalNotificationManager, while drawing the warning screen layout, also con-
verts the distance expressed in millimeters to either meters or feet, based on the measure
the user selected in the application’s Settings.

If the overlay is currently displayed when a new message is received, the oldMin
variable is not reset, as the vehicle is currently within the pedestrian’s area of interest.
If the newly computed distance is greater than the threshold then the vehicle may be
getting far from the user. To ensure that two conditions are checked: the vehicle is
in range and the distance is greater than the sum of the threshold distance and the
tolerance. If both are verified then the HIDE_OVERLAY broadcast must be sent after
having reset oldMin and after having marked the vehicle as outside the range. Beside
removing the warning screen, this broadcast also has to reset the notification to the
proper value, based on the current state of Bluetooth. However, there is still a third
case to take into account: if the last instance of the widget is thrown away while the
warning screen is drawn on the current application, the onDestroy method of the
ReceiveService will take care of sending a HIDE_OVERLAY broadcast. In this case, the
notification should be definitely canceled and not updated, as as soon as the Service
dies, the user will no longer be able to clear it due to its ongoing flag.
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Figure 6.2: Service flow chart
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Chapter 7

Design Choices for the V2P
App

This chapter is going to illustrate the chosen design strategies and compare them
against alternative ones, focusing on the pro and cons. For better clarity, it will be
divided into two sections, one for the hardware and one for the software.

7.1 Hardware choices

As said in the previous chapters, the hardware architecture for the demonstration was
composed by a set of real-time indoor positioning devices made by Skypersonic whose
Skyloc devices were able to communicate with the phone via Bluetooth. Two consid-
erations can be done about the hardware: one concerning the wireless communication
and the other concerning the choice of the SkylocTM system to provide the indoor
positioning.
The booth at the CES2018 in Las Vegas was set up for showing innovations of all the
departments of Magneti Marelli, hence the displacement of the devices was not man-
aged by the researchers of the Innovation & Connectivity group. This means that they
had to stick to some space and logistic limitations, such for example the computers
that ran the demonstration software and the number of screens.

7.1.1 Bluetooth

The wireless communication between the phone and the anchor device could either use
Bluetooth or WLAN. The main reason Bluetooth was chosen in spite of WLAN is that
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Bluetooth modules provide a method to easily detect the signal strength of another
Bluetooth device and thus detect the approximate distance of two devices. Another
reason is that the room where the booth was placed had many wifi networks that may
have interfered with the WLAN used for V2P.

7.1.2 The infrastructure

The solution using Bluetooth RSSI would have required a program or a script on the
computer behind the booth, which continuously checked the signal strength and sent
the information to the phone. This solution is affected by two issues: the first one is
that the RSSI value, for Android devices, differs from device to device, based on the
chipset vendor[13], hence the value needs to be normalized in order to make the V2P
application portable; the other issue is that RSSI varies depending on interference, such
as a body between the two devices. This would have been a big issue at the CES2018,
where there was a lot of people.

These reasons made the choice of the infrastructure fell on the SkylocTM system,
because it can provide very precise indoor positioning and it already came with a
ready–to–use software that sent the information required by the application.

7.2 Software choices

The next subsection will analyze how the application was designed and why some
implementations have been preferred over others.

7.2.1 Android OS support

Starting from Android 6.0 Marshmallow, the operating system introduced some major
changes in the permission management. One of them was indeed the permission that
allows an application to draw screens over another one, which was not supported by
older versions. This reason initially led to the choice of developing the V2P application
for Android M, however, on some smartphones running such a version, were affected
by a bug which prevented that permission to be shown on the system’s Settings screen.
The support for Android M was then definitely dropped in favor of Android 7.0 Nougat.
Another reason that made the older versions to be abandoned is that they do not
support the Material Design theme and they would have required a lot of efforts to
develop a backwards–compatible Graphical User Interface.
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7.2.2 Home Screen Widget vs. auto-starting Activity

The reason why the application has been developed as a home screen widget instead
of a simple Activity is that the main requirement was that the V2P functionality
should have been always running once started, without needing the user to manually
start it every time. Once widgets are dragged on the home screen, they are under the
control of the home screen application, which automatically takes care of restarting
them every time the phone is rebooted.
Instead, a standard Activity would have required the user to manually start it at every
reboot or, in order to start automatically, should have required special permissions.
Moreover, an Activity would require more memory, as it is a standalone element,
while the widget lives as a BroadcastReceiver and little graphics on the home screen
application.

Another advantage of widgets is that their view is directly visible on the home
screen and can communicate issues through changes in their layouts without being as
invasive as an Activity brought to foreground would be.

7.2.3 The debug screen

Since the infrastructure of the V2P in Venaria Reale was different from the one set up
at the CES2018, the thresholds triggering the V2P notifications could have been very
different from each other. For this reason and for avoiding bad performances during
the demonstration, such thresholds have been made editable. Since in outdoor usage,
V2P is based on DSRC, such parameters have no reason to exist anymore, hence they
have been placed in a hidden debug screen, in order not to be seen by common users.

7.2.4 V2P algorithm & Pythagorean theorem

As previously discussed, the algorithm that computes the distance between two tags
uses the Pythagorean theorem to obtain the result:

√
a2 + b2 = c

Many other strategies could have been used for that, for example the Pythagorean
trigonometric identity:

sin2 θ + cos2 θ = 1

However, even though the result is the same, from the computational point of
view, the Pythagorean trigonometric identity is heavier than the Pythagorean theorem
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because of the trigonometric functions, sine and cosine.
Computational load is important to take into account when programming for mobile
devices as the more the CPU works, the more the battery is drained quickly.
The V2P application already requires a lot of processing for managing the both the
Bluetooth and the communication between the receiving thread and the main one.
These operation could cause some delays since they also depend on the general load of
the operating system so, if computationally heavy operations are executed many times
per second, delays can increase and cause a bad user experience.

One could argue that modern high–end devices may have a special processor for
optimizing trigonometric operations, but mobile applications must be programmed to
work smoothly also on low–end devices, so a careful design will avoid bad behaviors.
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Chapter 8

V2P Testing

This chapter concludes the first part of this work by illustrating the test methodology
adopted for the V2P application and the issues that have been found.
The overall results, as well as further developments, will be discussed in Part III.

The testing of the V2P application has been done according to Agile principles,
hence it has been carried out before each delivery of intermediate versions of the prod-
uct.
The Graphical User Interface has been tested in collaboration with other members of
the team with the Exploratory testing strategy.

Exploratory testing consist trying to break the software by using it in a clever way,
without following scripted tests. This operation mimics in some way the usage of
the application in real life, also including accidental actions, which, if not correctly
managed by the code, could lead to misbehaviors or glitches[26].

Since the very first tests of the connectivity between the V2P application and the
anchor it was found that with the connection-less protocol adopted by the anchor
about two-thirds of the messages were not captured by the V2P algorithm. This was
mainly due to the fact that the application knows neither when the stream starts
nor how many bytes compose the message. For this reason it has to read a bunch of
data and then start concatenating further characters after having found the timestamp
sequence.
The loss of messages may seem huge but, as described in the previous chapters, the
anchor sends a message every 90 milliseconds, which is a lot, even for the purpose of
the V2P application. This is the reason why the issue was ignored. In fact, in real
life, neither vehicles nor pedestrian move so fast to cause big differences among two
consecutive messages.
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Part II

V2X HMI application
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Chapter 9

Vehicle–to–Vehicle

The mobile application developed for the second part of this thesis has been conceived
for allowing the researchers to easily debug the software loaded on the control units
of the test cars. Currently the debug requires a laptop to be connected to the V2X
board, taking a significant amount of space in the small interior of the vehicle.
Moreover, in order to further enhance this operation, the application was also required
to display, on a mobile device, the same V2X event alerts that are shown on the car’s
dashboard. In fact, those tests are carried out by groups of three or four researchers
per vehicle, who can hardly see the events displayed on the dashboard in front of the
driver.

The Innovation & Connectivity team is equipped with two cars for the tests, whose
Electronic Control Units have been conveniently modified to integrate with the V2X
Communication board made by Magneti Marelli. One of the two cars is also able to
display the V2X events on its dashboard, in the form of text and icons.

Before proceeding with the description of the mobile application, a quick reference
to the functioning of the Vehicle–to–Vehicle communication on the company cars and
to the test methodology should be given.

9.1 Vehicle–to–Vehicle Communication

Vehicle–to–Vehicle communication denotes the exchange of information between two
vehicles that is then translated into alerts for the driver.
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9.1.1 V2X Use Cases

The use cases currently implemented on the V2X communication board of Magneti
Marelli are Control Loss Warning (CLW), Emergency Electronic Brake Light (EEBL),
Forward Collision Warning (FCW), Left Turn Assist (LTA), Intersection Movement
Assist (IMA), Stationary Vehicle warning (SV).

Additional use cases are Road Side Unit (RSU) and IVRS, which concern the
communication between a vehicle and the road infrastructure, also called Vehicle–
to–Infrastructure, V2I.
The icons and the texts for the alerts have already been arranged on the control units
in contemplation of a further software implementation.

The following paragraphs are going to illustrate the V2V use cases listed above.

Control Loss Warning (CLW)

Control Loss Warning is an event generated and broadcast by a vehicle whose sensors
detect loss of traction. Upon receiving such information, the surrounding vehicles eval-
uate the relevance of the event and, if appropriate, provide a warning to the driver[2].

Figure 9.1: Control Loss Warning event
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Emergency Electronic Brake Light (EEBL)

Emergency Electronic Brake Light is an event generated and broadcast by a vehicle
performing an emergency brake. Upon receiving such information, the surrounding
vehicles evaluate the relevance of the event and, if appropriate, provide a warning
to the driver. This event is particularly important when the transmitting vehicle is
out-of-sight of other drivers[2].

Figure 9.2: Emergency Electronic Brake Light event

Forward Collision Warning (FCW)

Forward Collision Warning is an event generated by a vehicle whose sensors detect an
impending rear-end collision with the vehicle ahead in traffic, in the same lane and
direction of travel[2]. This event is intended for the driver of the vehicle detecting the
impending collision.

Left Turn Assist (LTA)

Left Turn Assist is generated by a vehicle attempting to turn left at an intersection in
order to warn its driver an oncoming vehicle that may be out-of-sight. As for FCW,
the LTA event is intended for the driver of the vehicle generating the event.
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Figure 9.3: Forward Collision Warning event

Figure 9.4: Left Turn Assistant event

Intersection Movement Assist (IMA)

Intersection Movement Assist is an event generated by a vehicle approaching an inter-
section, which detects a crossing vehicle. The goal is to warn the driver about the high
collision probability[2].
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Figure 9.5: Intersection Movement Assist event

Stationary Vehicle (SV)

Stationary Vehicle is an event generated and broadcast by a vehicle having flashing
emergency lights on. The goal is to warn other drivers and have them reducing their
speed and possibly making a lane change.

Figure 9.6: Stationary Vehicle event
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9.2 Test methodology
The tests are carried out using two vehicles in the following way: one acts like the
vehicle out of the other driver’s line–of–sight, hence it is used as the V2X event “gen-
erator” and for this reason is called Remote vehicle; the other is the car that receives
the events and displays the alerts on the dashboard, hence it is called Ego vehicle.
Of course the above is a simplification as both cars are actually able to transmit and
receive V2X events. In fact, in some use cases, the events are captured and displayed
by both vehicles.

Since the Remote vehicle is used as “transmitter”, it usually does not require pas-
sengers but the driver, hence the testers ride on the Ego vehicle, to which they can
connect with a laptop in order to read the logs.
The majority of the tests is carried out in the private parking lot of the company. The
tests requiring special conditions, such as for example GPS coordinates far from each
others, are done either on the road or on track.

9.3 A note about the images for the use cases
The scenes illustrating the use cases presented above have been created with Blender
in order to help the researchers explain the Vehicle-to-Everything events to other col-
leagues during internal demonstration.
The majority of the 3D meshes has been modeled for the purpose, while some have
been downloaded from the Internet. The texturing, as well as the lighting and the ma-
terial set up, are original works set up for making the renderings more photo-realistic.
The set up of these scenes is a minor part of the work done for this thesis, which
however required a special dedication.
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Chapter 10

V2V Architecture

This chapter is going to describe the hardware and software architecture of the mobile
application and the V2X communication board mounted on the Ego vehicle.
The latter will be illustrated first, by paying specific attention to the interaction be-
tween the board and the instrument cluster of the vehicle, so that the reader can easily
spot the similarities with the software architecture of the mobile application.

10.1 Hardware Architecture

The V2X Communication board is a control unit integrated on the vehicle and equipped
with a GPS, that is able to interface both with the CAN bus and the dashboard, and
with near vehicles. The goal is to know at any time the position and the state of the
vehicle on which the board is mounted but also of the surrounding vehicles, in order to
show warning alerts to drivers about the V2X events extrapolated from received data.
This operation is carried out by comparing the values of some types of CAN messages
and the GPS positions of each vehicle with threshold values: based on the result, the
control unit can understand whether there is a hazardous situation. If the answer is
positive, the board tells the dashboard which event has to be displayed and its level of
criticality.
At the same time, the data read from the CAN bus and the GPS, is wrapped into a
message and periodically broadcast to near vehicles, in order to have them processing
the informations and possibly alert their drivers.
Figure 10.1, beside showing the architecture discussed so far, also illustrates how the
application has been integrated in the system: whenever the V2X control unit detects
an event, it sends a message both to the instrument cluster and also to the mobile
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devices connected to the Wi-Fi hotspot of the vehicle.
It is important to notice that the application is currently unable to damage the vehicu-
lar system because the V2X framework is not able to receive messages from the outside
and is not directly connected to the CAN bus anyway, for obvious security reasons.

Figure 10.1: Hardware architecture of the Vehicle–to–Everything technology installed
on the Ego vehicle. The Android mobile devices connect to the V2X Communication
board via Wi–Fi

10.2 Software Architecture

The software loaded on the V2X Communication board is made of many modules,
each managing a specific type of V2X event. Such modules are independent from each
others, that means each of them can be either activated or deactivated at will, without
the functioning of the board being compromised.
In order to manage the communication towards the mobile devices, it was necessary to
add an additional module, called dispatcher, to the framework to broadcast via Wi-Fi
the messages meant for the dashboard.
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Figure 10.2: Software architecture of the framework loaded onto the V2X Communi-
cation Board

10.3 The Instrument Cluster of the Ego vehicle

The instrument cluster of the Ego vehicle assigned to the team is equipped by a 7
inches display, premium version1, which is mainly composed by three areas, as shown
in figure 10.3: the central part (B) is committed to the visualization of alerts in form
of images and texts.

The presence of the V2X control unit on the Company’s Ego vehicle brings with
it a few changes to the alerts shown on the central area of the display, in order to
allow also the visualization of V2X events. Usually, in the central area of the display,
the original Ego vehicle, i.e. the one without the V2X control unit, shows the vehicle
speed. The modified one instead shows a little Ego vehicle on a road. This kind of
layout is able to show both the state of the V2X connectivity and the detected events,
beside, of course, the classic telltales for faults.
The layout showing the little car on the road has been named “grid”, since the V2X
events can be placed in fixed cells of an invisible grid overlapping the road image. That

1The premium display differs from the base one because it can show color images and simple
animations. Moreover it can be reconfigured by adding/editing image mappings in the control unit.
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Figure 10.3: The multifunctional display of the Ego vehicle is divided into three areas:
(A) Upper zone, where the date, titles and other short informations are displayed;
(B) Central zone, used for displaying menus and V2X events;
(C) Bottom zone: displays the fuel level and the temperature

grid, shown in figure 10.4a, is made of two rows and three columns in order to represent
far and near events (rows), whose position can be on the right, on the left or at center
with respect to the road (columns).
There is a second way to show the events to the driver: whenever the level of criticality
is high and the distance of the events from the vehicle is below a certain threshold,
the grid is temporarily replaced by a popup (Figure 10.4b), which shows an icon rep-
resenting the event, a text message and a sort of compass to indicate the origin of the
event.
The V2X connectivity state is represented through the icon of the car in the grid lay-
out, together with a telltale indicating also the V2X standard currently used by the
car.

(a) (b)

Figure 10.4: The display modes for V2X events on the Ego vehicle’s dispay: (a) grid;
(b) popup.
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10.3.1 Functioning

Both the images and the texts used to form the alerts are stored as values in a key–
value map data structure, where the key is represented by an integer contained in a
specific range.
The selection of the elements to be displayed is made by a CSV formatted string that is
sent to the instrument cluster, which contains, for each field, either the key correspond-
ing to the specific value that must be retrieved from memory or a numeric variable to
indicate distance or time.
Internally, the logic of the dashboard requires the last message to be repeated every
100 milliseconds for maintaining images and texts on the display. In this way, the
instrument cluster can notice any possible failure of the underlying control units, be-
cause they would stop updating the messages. This concept will clarified later with an
example even if it does not directly affect the way the application and the framework
module work. The next three paragraphs are going to describe the three types of V2X
messages the dashboard is able to understand.

V2X_INFO_1

The V2X_INFO_1 message type (Figure 10.5) controls the image of the car at the bottom
of the grid view and the icon for the V2X standard. The dashboard can autonomously
load two kinds of state: not present and not available, since the V2X Communication
board usually takes few seconds to become operational and to start sending messages.
On startup the dashboard displays the not present configuration, represented by the
yellow car with the yellow exclamation mark and the red state icon (Figure 10.6c).

Figure 10.5: Syntax of the V2X_INFO_1 message

As soon as the V2X framework is ready, it sends a V2X_INFO_1 message for notifying
that the state has now been changed to available. The dashboard then loads the grey
car over blue waves and the blue icon displaying the V2X standard currently in use
(Figure 10.6a).

If the instrument cluster does not receive any V2X_INFO_1 message for at least 30
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seconds, the state is automatically set to not available, which is represented by the
grey car and the yellow state icon (Figure 10.6b).

If one of the modules of the V2X framework crashes, the state will be changed to
not present.

(a) V2X Available (b) V2X Not Available (c) V2X Not Present

Figure 10.6: Images for the V2X state

V2X_INFO_2

The V2X_INFO_2 message type (Figure 10.7) controls the images shown on the grid,
which can manage up to three icons at the same time.
The dashboard has three slots for representing likewise events. Each slot is assigned
to an index, from 1 to 3, to which an icon and the coordinates of a cell of the grid can
correspond.
For what concerns each slot, the dashboard is restricted to turn on and off the corre-
sponding cell, based on what has been read from the received CSV formatted string.
It is the sender’s duty to correctly manage the set and reset operation for the cells,
because for each slot the dashboard keeps in memory the coordinates of the last cell
that has been set. For this reason, before turning on another cell, it is mandatory to
turn off the current one, otherwise the coordinates of the latter will be overwritten.
This behavior is due to the fact that the reset of a cell is done by setting to zero all
the fields assigned to the slot. For example, in order to turn off slot number one, the
fields CodeIcon1, RowIcon1 and ColumnIcon1 must be set to zero.

Some use cases are represented by more that one icon so that, when it is displayed
on the grid, the whole screen appears more graceful. An example is given by the
Stationary Vehicle use case depicted in Figure 10.8, which is mapped to three icons
where the emergency warning triangle is placed in different positions.
When an event mapped on multiple icons is received, the dashboard retrieves the
proper one based on the cell in which the icon must be placed. For what concerns the
Stationary Vehicle use case, the icon with the emergency warning triangle is placed on
the right is meant to be placed on the leftmost cells, the one having the triangle at
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Figure 10.7: Syntax of the V2X_INFO_2 message

center must be placed in the central cells and the one with the triangle on the right is
meant to be placed in the rightmost cells.

(a) (b) (c)

Figure 10.8: The three types of icon for the Stationary Vehicle use case

V2X_INFO_3

The V2X_INFO_3 message type controls the popups, that are the full screen alerts ap-
pearing when the distance of a V2X events is below a certain threshold.
The syntax of the message (Figure 10.9) has been set up for supporting also the
messages about V2I events, such as the RSU and IVRS use cases. In particular,
TrafficLight_GreenSpeed, TrafficLight_TimeToChange and TrafficLight_Distance
fields are dedicated to the RSU event, respectively describing the duration of the red
light, the duration of the green light and the distance from the traffic light.

As for the V2X_INFO_2 message type, also for the V2X_INFO_3 ones the dashboard
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Figure 10.9: Syntax of the V2X_INFO_3 message

is committed to carry out the switch between the grid view and the popup and vice
versa. The field acting as switch between the two views is TypeOfWarning, whose value
modifies the background of the popup screen. In fact, based on the level of criticality,
the background can be either yellow (low criticality) or red (high criticality). There is
an additional yellow background for V2I events, but currently it is not used.

Whenever the instrument cluster receives a message of type V2X_INFO_3, it displays
the popup screen, updating it if other messages of the same type are received, but at
the same time it also keeps updating the events on the grid, if V2X_INFO_2 messages
are received.
The transition from popup to grid view takes place when the dispatcher module sends
a V2X_INFO_3 message where the value of the TypeOfWarning field is set to zero.

Multiple images mapped to the same events also exist for popup messages. This is
the case of the Front Collision Warning event (Figure 10.10): based on the background
type, either yellow or red, the dashboard loads the proper image.

78



10.3 – The Instrument Cluster of the Ego vehicle

(a) (b)

Figure 10.10: Two icons for the Front Collision Warning use case: (a) yellow lines
and background for the low criticality alert; (b) red lines and background for the high
criticality warning.
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Chapter 11

V2X HMI App Requirements

This chapter is going to describe the requirements for the V2X HMI application, which
has to reproduce, on a mobile device, the instrument cluster display of the Ego vehicle,
for what concerns the V2X functionality.
The diagram of Figure 11.1 depicts the interactions between the application and ex-
ternal entities, represented by the user and the dispatcher module loaded of the V2X
Communication board. As usual, the diagram illustrates both the control flows and
the data flows.

USER

V2X HMI
Appli-
cation

(System)

DISPATCHER MODULE

Stop

Start

QDB screen

Connect

Tags’ locations

Data flow

Control flow

Figure 11.1: Context diagram of the system

The next two sections will list the functional and non–functional requirements for
the V2X HMI application that have been pulled out from the user stories defined during
the conversations with the team researchers.
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11.1 V2X HMI Functional Requirements
Tables 11.1 and 11.2 list the functional requirements for the two most important inter-
actions between the application and the external entities, which are the visualization of
the V2X state and events and the reading of the string messages sent by the dispatcher
module. Since the application has to communicate with an external module, it must
be compliant to the communication method of the latter, which sends the messages
via Wi–Fi. This requirement falls in the Functional Requirements category because it
is imposed by the an entity that is external to this system.

Function Display V2X events
Description Display on mobile device the same V2X events displayed on the

instrument cluster
Input Formatted string containing the informations to display the cor-

rect images and texts that describe the event
Source Dispatcher module on the V2X Communication board
Output Retrieve images and texts from memory and display alerts on the

screen
Action Based on the type of message received from the dispatcher, re-

trieve and display the proper icons and texts
Requires Depending on the type of message, either the current message or

the current message and informations of the previous one
Pre-condition The received string is correctly formatted
Post-condition Info about a specific message type must be stored into memory

Table 11.1: Functional Requirements for the interaction between the system and the
user

11.2 V2X HMI Non-Functional Requirements
Table 11.3 lists the most important non–functional requirements for the application.
Most of them concern the features that make the application usable and describe how
it has to perform the required actions.

11.3 V2X HMI Use Cases
The Use Cases presented in the following paragraphs will help the reader clarify how
the requirements are linked together by mainly illustrating the basic flow. Next to
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Function Retrieve messages from the dispatcher module
Description Connect to the dispatcher module via WLAN and keep listening

for incoming messages
Output Values extracted from the received string
Action Once the connection has been established, keep listening for string

messages
If connection is dropped, attempt to reconnect for n times: if all
of them fail, wait for the user to explicitly ask to try again

Pre-condition Wi-Fi is enabled on the device and the mobile device is within the
range of the car’s Wi-Fi hotspot

Table 11.2: V2X HMI Functional Requirements for the interaction between the system
and the dispatcher module

NF1 User eXperience (UX) The appearance shall recall the one of the instru-
ment cluster display of the Ego vehicle: same icons,
same texts and same backgrounds

NF2 UX The log screen shall recall the Linux terminal
NF3 UX Logs shall be filterable based on their priority: de-

bug, info, verbose, etc.
NF4 Architecture The application shall be implemented in a modular

way, to allow further expansions with new features
NF6 Connectivity The communication between the application and

the dispatcher module shall be connection oriented
and possibly offer reliability

NF5 Connectivity The application shall provide a menu for allowing
the user to change the IP and port for the connection

NF6 Connectivity Connection issues shall be reported as much pre-
cisely as possible, covering the most frequent cases:
i.e. connection dropped by server, by client; connec-
tion lost due to low signal strength; Wi–Fi disabled;
connection parameters not configured;

Table 11.3: V2X HMI Non–Functional Requirements

that, exceptions and other issues are treated as alternative flows.

11.3.1 V2X HMI Use Case: Connection Handling

This Use Case will follow the basic flow of actions taken when the user enables the
Wi–Fi to connect to the V2X dispatcher module. It makes two assumptions:
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• the application has been started and has already been configured, that means the
user has already provided the IP address and the port of the server;

• no error occur during the whole process, that means that at the end the application
succeeds in connecting and starts to receive messages.

If the connection fails for some reason other than Wi–Fi disabled by the user, the
Use Case falls in the alternative flow and warns the user through a specific screen. In
the meantime the application attempts to reconnect to the dispatcher module for three
times.

If all the attempts fail then the user can choose to manually reconnect by tapping
a specific button on the screen.

V2X HMI application
V2X HMI application

�extend�

Handle
connection

Handle re-
connection

User

Dispatcher Module

Figure 11.2: V2X HMI Use case: Connection Handling

11.3.2 V2X HMI Use Case: Display V2X Events

As soon as the connection between the mobile device and the dispatcher module has
been established, the latter starts sending the messages to set up the mirrored view.
The messages belong to three different type of V2X information and form the two kind
of V2X alert layouts on the car’s instrument cluster display.
The basic flow for this Use Case assumes that received the message is well formed.
The values of the fields composing the string are pulled out and used as indices for
retrieving the images and the texts from the data structures of the application. Then,
based on the kind of message, the elements are depicted on or removed from the screen.

If a string were not well formed, the application would simply ignore that message.
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V2X HMI application
V2X HMI application

�include�

Display
V2X Events

Read
Message

User

Dispatcher Module

Figure 11.3: V2X HMI Use case: Display V2X Events

11.3.3 V2X HMI Use Case: Display Logs

This Use Case is triggered as soon as the application is started. Logs are messages
issued by the normal functioning of the application, which also include the strings
received by the dispatcher module. They are stored in a temporary data structure to
allow the retrieval and printing as soon as the user navigates to the log screen in the
application.

V2X HMI application
V2X HMI application

�include�

Display
Logs

Read
Message

User

Dispatcher Module

Figure 11.4: V2X HMI Use case: Display Logs
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Chapter 12

Overview of the V2X HMI
app

This chapter will present the main components, depicted in Figure 12.1, of the V2X
HMI application along with their Graphical User Interface, describing how they are
linked together to fulfill the requirements.

Differently from the V2P application presented in Part I, from the graphical point
of view, this application appears simpler as it is made of a set of standard Activities,
each made of one or more Fragments. Since Activities and Fragments are run on
the main thread, that is the one also carrying out the Graphical User Interface, the
connectivity towards the dispatcher module on the V2X Communication board required
additional components to be implemented:

• a Service, for managing the secondary threads operating on the sockets;

• two BroadcastReceivers, for displaying either on a dashboard-like screen or on
the log console the information received by the Service’s threads and for managing
the state of Wi-Fi.

12.1 MainActivity
MainActivity is the Activity that supports the core of the application and is the one
that is being run when the user taps the launcher in the apps drawer of the phone.
The layout is made of Fragments and a navigation drawer, which can be opened either
by tapping the icon in the leftmost part of the application bar or through a sliding
gesture from the leftmost part of the screen towards the center.

87



12 – Overview of the V2X HMI app

Figure 12.1: Elements composing the V2X HMI application

The navigation drawer (Figure 12.2) contains four items: Cockpit, Logcat, Modules
and Settings, which, if tapped, trigger the transition to the correspondant Fragment.

Figure 12.2: App’s Navigation Drawer
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The Modules item is currently not attached to any special screen, as it is meant for
a functionality that has not been developed yet, but will be presented in Part III of
this paper.
On start, MainActivity instantiates a BroadcastReceiver to listen for Wi-Fi state
changes, in order to be able to start and stop the Service handling connection towards
the dispatcher module. The functioning of both the latter and the Wi-Fi state receiver
will be discussed later, in separate sections.
Instead, the following paragraphs will describe the layout of the Fragments correspond-
ing to the items Cockpit and Logcat of the navigation drawer.

12.1.1 CockpitFragment

The CockpitFragment reproduces the same layout of the instrument cluster display
of the Ego vehicle and is loaded as soon as the connection with the dispatcher module
has been established. As it happens for the display of the car, the view is initially set
on the grid with the little car on the road.
The car is set through a message of type V2X_INFO_1 sent by the dispatcher. Any other
event will trigger the fetching and the visualization of the proper image or message,
either on the grid layout or on the popup layout.
Popup and grid have been placed on two different FrameLayouts, for a better per-
formance. Figure 12.3 shows the comparison between the screens displayed by the
application and the ones displayed on the instrument panel of the Ego vehicle.

(a) (b)

Figure 12.3: Stationary vehicle use case displayed on the application (left) and on the
dashboard (right). (a)(b) show the grid view.
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(c) (d)

Figure 12.3: Stationary vehicle use case displayed on the application (left) and on the
dashboard (right). (c)(d) show the popup view.

Figure 12.4 shows the layout bounds for each element that may be displayed. In
fact, each of them has a fixed position on the screen and is stored in a specific data
structure. It can happen that an image is stored in two or more key-value maps, in
order to distinguish whether it has to be fetched for a popup screen or for the grid one.

(a) (b)

Figure 12.4: (a) Layout bounds for grid (a) and popup (b). The different colors
represent a specific V2X_INFO message

12.1.2 SplashFragment

The SplashFragment is a Fragment that is used for warning the user about the con-
nection issues that may arise when the Wi-Fi state of the mobile device changes. It
can load different images and backgrounds for providing detailed information about
the issue. Each screen is listed below, together with the condition that triggers its
visualization:

• Wi-Fi disabled (Figure 12.5a). The Wi-Fi radio of the mobile device is turned off.
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• No Wi-Fi networks available (Figure 12.5c). The Wi-Fi radio is on but the device
has not yet established a connection to a network or is performing the handshake
for obtaining the IP address and other parameters.

• App not yet configured (Figure 12.5b). The Wi-Fi is on and connected but the ap-
plication cannot establish the connection towards the dispatcher module because
the parameters, that are the IP and the port, have not yet been configured.

• Remote peer seems to be offline (Figure 12.5d). The Wi-Fi is on and connected but
the Service did not succeed in establishing the connection with the dispatcher
module, probably because the latter is either not listening on the specified port
or is offline. This screen appears after a certain number of connection attempts.
In order not to drain the battery of the device, the Service is stopped and it can
be restarted manually by the user by tapping the screen.

• Connecting (Figure 12.5e). The Wi-Fi is on and connected and the Service is
trying to establish the connection towards the dispatcher module. The splash
screen is animated in order to indicate that the application “is doing something”
and it is not freezed.

(a)

Figure 12.5: (a) Wi-Fi disabled;
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(b)

(c)

(d)

Figure 12.5: (b) No Wi-Fi networks: the grey waves signal the failed parameters
negotiation attempts; (c) App not yet configured: the configuration problem is signaled
through the gear behind the V2X logo; (d) Cannot connect due to peer probably offline:
in this case the grey waves signal the failed connection attempts towards the dispatcher;
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(e)

Figure 12.5: (e) Connecting: waves are blue and they are animated for signaling the
ongoing connection attempt.

12.1.3 LogcatFragment

The LogcatFragment, shown in Figure 12.6, reproduces a console that captures all
the logs printed through an interface overriding the Android.Log one. Currently all
the messages received from the dispatcher are printed here, together with some debug
messages concerning the state of the connection.
This Fragment adds two buttons to the application bar for allowing the user to filter
and search for messages. The latter function has not yet been implemented.

Figure 12.6: The console-like screen showing application logs.
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The filtering button starts an Activity providing a list of priority types with check
buttons (Figure 12.7). Each check allows the messages with that priority to be dis-
played in the console.

Figure 12.7: Log priority filters

12.2 SettingsFragment
The SettingsFragment (Figure 12.8) is the screen that lists the Settings of the appli-
cation. Currently, such a list is made of only one entry that is Connection parameters,
which opens a dialog for editing the IP address and port of the dispatcher module.

Figure 12.8: V2X HMI Settings screen

This Fragment is not attached to the MainActivity but to another one, in order
to suggest that the Settings screen concerns the settings of all the application and not
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just the Fragment currently on display. This cue is conveyed to the user thanks to the
animated transition occurring between two Activities, which visually separates them.

12.3 IOService

The IOService is the one that manages the connection towards the dispatcher module,
hence is started every time the Wi-Fi is turned on. Differently from the V2P appli-
cation, it does not require to run also in memory critical conditions: the V2X HMI
application is intended as a support for debugging, hence it assumes the user keeps it
in foreground. When a low memory situation occurs the Android system tries to free
memory by selecting as victims applications that are in background, hence it should
not kill neither the V2X HMI application nor its Service.

Since Android Services run on the same thread of the Graphical User Interface,
the operations on socket are delegated to two separate threads, which communicate
with it through a message queue. Figure 12.9 shows the components instantiated by
the IOService: the two threads and the handler of the message queue.

Figure 12.9: Threads of the V2X HMI application

12.4 WifiStateReceiver

The WifiStateReceiver is an extension of BroadcastReceiver that listens for state
changes of Wi-Fi and, based on that, start or stops the Service. This BroadcastReceiver
is dinamically instantiated by MainActivity, because it is not needed if the application
is not running.
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12.5 LocalV2XEventsReceiver
When the IOService is running and the dispatcher sends a message, the latter is passed
from the receiving thread to the message handler. In order to pass that message to the
cockpit, the handler exploits a local BroadcastReceiver: LocalV2XEventsReceiver.
This BroadcastReceiver is a private class of CockpitFragment and it is registered
and unregistered respectively when the Fragment is attached to and detached from
the MainActivity. In fact, there is no need to process the V2X_INFO messages if the
cockpit is not currently on display.
Since the IOService cannot know which Fragment is currently attached to MainActivity,
it broadcasts the message anyway. On the other side, the broadcast will be received
if the LocalV2XEventsReceiver is currently listening and properly processed through
specific methods that will be discussed in the next chapter.
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Algorithm

This chapter will discuss the algorithm that allows the application to display the same
alerts shown on the instrument cluster display of the ego car.
As introduced in Chapter 10, the dispatcher module of the V2X Communication board
sends the same messages intended for the dashboard to all the devices connected to
its port. This means that the syntax of such messages has been chosen based on the
features provided by the dashboard, therefore the mobile application should implement
similar ones.
Images and texts are saved on key-value maps, from which they are retrieved through
an integer index used as key.
The message handler in the Service broadcasts the received strings as Bundle extras
of the RECEIVED Intent.
If the CockpitFragment is currently attached to the MainActivity, the Intent will be
received by the LocalV2XEventsReceiver, which extracts the infromation from the
Bundle and, based on the type of the message, fills the suitable object: V2XInfo1,
V2XInfo2 or V2XInfo3.
The constructors of those objects are designed to automatically retrieve the correct
resource ID from the maps, based on the specific use case. The list below describes the
operations that each constructor takes when initializing the object:

• V2XInfo1. Since the not present icon uses two images (the car and the exclamation
mark), the one depicting the exclamation mark must be loaded on cell (2,2) of the
grid, hence there must be a variable in the V2XInfo1 object that signals whether
the object is representing such a use case or not;

• the grid–related objects, V2XInfo2, are characterized by the three images mapped
to the Stationary Vehicle use case. The constructor assigns the resource ID to the
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images accordingly to the column value in which the icon should be placed;

• also the popup–related objects, V2XInfo3, have a use case which is mapped to two
images. The Front Collision Warning has two images, representing two different
level criticalities for the distances between the two cars: a yellow one and a red
one. The constructor loads the correct image by considering the color of the
screen background: if it is yellow, then the level of criticality is medium, hence
the yellow FCW image is loaded; if the background is red, then the situation is
dangerous and the image should be red.

Once the received string has been translated into a specific object, the latter has to
be drawn on the screen by calling the suitable method. For what concerns the three
type of objects, V2XInfo1, V2XInfo2, V2XInfo3, the above–mentioned methods are
nomimetodi.

setV2XStatusCar

The setV2XStatusCar method is in charge of setting the little car image below the
grid view, based on the boolean variable of the V2XInfo1 object passed as parameter.

setGridEvent

As the name suggests, the setGridEvent method manages the three images that can
be loaded on the grid view. Each V2XInfo2 message can contain the reference to up
to three events. Based on the values of the coordinates of each cell, the method can
either set or reset the image on the cell.
Since the reset operation requires that the coordinates are both set to zero, the appli-
cation must remember the old ones in order to reset the correct cell.

setPopupEvent

This method is called when the received string is of type V2X_INFO_3. A popup is
drawn on top of the grid view, since its layout is on a different FrameLayout object.
Popups are displayed and removed from screen based on the value that sets the color of
the background: yellow and red mean “issue the popup”, grey, instead, means “delete
popup”.
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Chapter 14

Design choices for the V2X
Mirroring App

This chapter will illustrate the software choices concerning the development of the V2X
Mirroring application, focusing on the reasons that led to select a strategy in spite of
another.

14.1 Communication protocol: TCP

According to the requirements of this application, the communication with the dis-
patcher module shall use Wi-Fi and be connectin oriented and reliable. For these
reasons, the choice of the protocol fell on TCP, which also offers, beside the above–
mentioned features, the ordered delivery of packets and error detection.
Since the car environment where the application will be used is very noisy, TCP is the
best choice because it automatically handles transmission–level issues.
However, all those features increase a lot the overhead of the transmission, as the two
peers need to send many service packets, which can have an impact on performances.
The overhead of TCP led the researchers to consider also UDP for its higher speed in
transmission. However, UDP is not connection–oriented, hence two peers just listen
for datagrams. This is a drawback since the team is planning to add a feature to
the application for remotely enabling and disabling the use case modules on the V2X
Communication board and this would require the dispatcher to know which device is
sending the instruction.
Moreover, UDP would have required both the dispatcher module and the application
to implement error detection, reliability and strategies for packet reordering, which
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14 – Design choices for the V2X Mirroring App

would have ended in less performant programs.

14.2 Recycled Bitmap Images

One of the features of Java language is the automatic management of memory through
the use of the garbage collector, which allows the programmer to forget about freeing
memory allocated for no-more-needed variables. This characteristic is very useful but
has a drawback: the garbage collection can be done at any time but not so frequently[6]
hence, if the application loads many images, an out–of–memory exception can occur
in the meantime.
Furthermore, Android applications must also take portability into account as they can
be run on a big number of devices with different screen sizes and densities, therefore
images and icons must fit all the situations.
The Android system can automatically adapt the layouts (and therefore the images) to
the screen dimension, by reducing their sizes, even if this operation can be unefficient.
For this reason the majority of the images used by the V2X Mirroring application
has been managed with methods for bitmaps recycling made available by the Android
APIs, which allow the reusing of the same blocks of memory to load different images. In
fact, once the current image is no more needed, instead of having it garbage collected,
its memory is reset and used for loading a new one.
Moreover, before being loaded into memory, images are sampled based on a reduction
factor that fits the dimensions of the layout, allowing an additional saving of RAM.

14.3 Image and texts maps

Images and texts for the cockpit have been stored into a custom class extension of
SparseArray data structure: ImmutableSparseArray.

SparseArray is an Android-typical key–value map, having integer numbers as keys
and any Object as value. The peculiarity of this structure is that, unlike normal arrays
of Objects, it allows to have gaps between indices and is more memory efficient than
HashMaps, because it avoids auto-boxing of the keys and does not require an additional
object to support each entry of the data structure[8].
Since, for the purposes of the V2X Mirroring application, the content of this structure
should be immutable, the SparseArray class has been extended in order to override
the methods that allow the editing of the entries.
A drawback of this structure is that instead of providing O(1) access to its elements,
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14.3 – Image and texts maps

like HashMaps, it relies on binary search, whose access cost is O(log2 N).
For what concerns this application however, this is not a problem because the num-

ber of entries for each structure goes from about ten to sixty, which makes the binary
search more affordable with respect to the copious boxing and unboxing operations
required to transform the int keys into Integers and vice versa for each map access.
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Chapter 15

V2X HMI Application
Testing

This chapter concludes the second part of this work by illustrating how the tests on the
application have been carried out and which are the issues that emerged. The further
improvements and future developments, as well as the obtained results, are discussed
in Part III.

The testing on the application has been mainly done with the help of a stress test
readjusted from the one used for the instrument cluster display of the Ego vehicle.
The goal was to have all the use cases displayed sequentially in all the cells of the grid
with an update rate of few tens of milliseconds, in order to test the response of the
application.
At first, the same test used for the Ego vehicle was used, but it sent messages too fast,
ending up in saturating the buffer of the TCP socket of the application.
The test has then been modified by increasing the lapse between two messages until
the TCP buffer became able to handle all of them.
The reason why the test for the Ego vehicle has not been used is that it the lapse
between two messages was too low and the TCP buffer of the application was not able
to manage all that traffic, resulting in a denial–of–service even for the graphical user
interface. In fact, the main thread was overloaded too because it had to process all the
broadcast Intents coming from the background Service.

The test written specifically for the application, instead, simulated a more realistic
situation, where no more than five or six messages are sent in a second.
In this case, the application behaved correctly, with rare delays due to the instability
of the Wi-Fi signal.
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15 – V2X HMI Application Testing

Later, the application was also successfully tested on the car, by simulating all the
available use cases.

15.1 Graphical User Interface Testing
The user interface was tested by following the Agile Exploratory testing strategy, by
using the application trying to break it[26]: i.e. by inserting alphabetic characters in
text fields expecting only numeric inputs, etc.
Tests have been carried out before each intermediate delivery.

15.2 Logcat Testing
The testing of the log screen gave some problems of visualization when the events were
too fast, even when running the app-customized test. Those issues were due to the
implementation of the priority filter, which does not allow the addition of new lines
while performing the filtering operations.

This is not acceptable but, currently, it does not represent a big issue since the main
goal of the application, that is the mirroring of the instrument cluster display, has been
achieved.
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Part III

Results
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Chapter 16

Results

This chapter concludes the work done for this thesis by first recalling the goals and then
by reporting the obtained results and introducing further improvements and possible
future developments.

This thesis required the development of two mobile applications addressing two
aspects of the V2X technology.

The first one, was related to the communication between a vehicle and a pedestrian,
with the help of a mobile device. The goal of the first application was to bring the
V2P connectivity on smartphones through a special communication board developed
by Magneti Marelli, in order to notify users about the presence of nearby vehicles. As
a requirement, once started by the user, it had to require little manteinance and be
able to auto-start after phone reboot. For this reason it has been implemented as a
home screen widget, so that it is handled by the system’s home screen application and
its state is always visible both as notification and on the phone’s main screen.

The second aspect concerned the V2X system installed on test cars, which needed
to be debugged in a more comfortable way, by allowing the researchers to see the
V2X events displayed by the instrumet cluster also on a tablet. The mirroring of the
Human-Machine-Interface of the instrument cluster was indeed the goal of the second
application, which was also prepared for displaying log messages. For a better user
experience, the application is only available in landscape mode, due to the massive use
of images and texts.

Both applications met all the defined requirements and, once tuned, they behaved
correctly during the tests. In addition, thanks to the modular design, their components
can be easily modified or enhanced without requiring changes to the whole architecture.
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16 – Results

16.1 Further Improvements
Some examples of improvements can be made for both applications.

The V2P one, for example, could optimize the RAM usage by managing images
through the recycle bitmap methods made available by the Android APIs and could
enhance user experience by showing badges signaling approaching vehicles onto its
widget layout.

For what concerns the V2X HMI application, the most straight away improvement
could be the addition of regular expression-based filtering and logs highlighting features
to the logcat screen.

16.2 Future Developments
The addition of more complex features can be scheduled as a future development.

Thanks to its modularity, the V2P application can easily switch from the SkylocTM

architecture to the DSRC one and, later, even to the C-V2X communication. The latter
would allow it also to abandon the V2P DSRC board in favor of the cellular antenna of
the mobile device itself. Beside that, the support for different vehicle cathegories could
be added, together with their priority levels, in order to have the application behave
as its counterpart on vehicles already does.

Also the V2X HMI application can be expanded with the addition of further mod-
ules. In order to ease the debug of the V2X Communication board installed on test
vehicles, the Modules management screen could be added, allowing the researchers to
remotely enable and disable specific parts of the V2X Framework, without needing to
physically connect to the car’s control unit with their laptops.
As soon as C–V2X will become widespread, this application could take advantage of
that by implementing a top view on a map of V2X events, potentially by giving the
user the possibility to filter them based on different choices.
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