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A B S T R A C T

The first part of this thesis focuses on Keyword Extraction, with the goal of selecting the
words that represent the "true" meaning of the text. Inspired by the PositionRank algorithm,
in order to overcome its limitations in some specific cases, a TF-IDF-biased version of the
TextRank algorithm is implemented and used to extract keywords. The results show that the
system here proposed constitutes a valid alternative to the PositionRank algorithm, and in
some cases it even outperforms the TextRank baseline. Going further, in the second part of
the thesis, an LSTM Neural Network is used to classify the extracted keywords as belonging
to either the problem, solution, evaluation or results section. Not only will this provide some
contextual information about the keywords, but it will also highlight the structure of each
paper, allowing for new possibilities of analysis.
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1
I N T R O D U C T I O N

1.1 background

Given the significant amount of scientific papers that get published every day, it has become
increasingly difficult to stay up-to-date with the latest research. It is necessary to organize
this huge quantity of information, in a way that allows easy identification and retrieval of
only the documents of interest. Various approaches have been proposed to tackle this prob-
lem. Automatic indexing and automatic filtering, for example, allow the retrieval of all the
documents that match with specific query terms provided by the user [1, 2]. Automatic sum-
marization allows for reduction of the amount of words in a document yet preserving all its
information. This yields a reduction of the time needed to analyze the content of the docu-
ment and determine if it is of interest [3]. Classification and clustering, that help in classifying
or grouping documents into specific categories, could be another approach to make sense of
all that information. During classification, each document is assigned a label chosen from a
predefined set, so that similar documents will be easily recognized by having the same label.
When clustering texts, the goal is to group them so that documents within the same group
will share common characteristics. After having identified one document as relevant, it would
then be easy to mark all the other documents with the same label or in the same cluster as
relevant as well [4, 5]. Last but not least, topic detection allows for selection of documents
based on their topic, which is another criterion to determine whether or not a document is of
interest [6].
In general, one could consider the presence of keywords to be beneficial in any task that re-
quires to have an overall understanding on the content of a document. In fact, keywords could
be considered to be the "true" meaning of the text, which in this context, has been chosen to
be the smallest set of words that preserves all the information contained in the text itself. The
process of Keyword Extraction aims at extracting words that best represent this "true" meaning,
and as such, it represents another way to fasten the retrieval of relevant documents. In fact, it
would be enough to analyze the keywords to know what the document is about, and it would
be enough to compare keywords to find similar documents, hence providing a quick way to
select relevant ones. After extracting keywords, it is also possible to classify them, through
the process of Keyword Classification. For example, by classifying keywords as belonging to
the problem, solution, evaluation or results section, one would be able to determine if two
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2 introduction

or more documents have similar problems or reach the same conclusion. In this work, both
Keyword Extraction and Classification will be explored. In order to evaluate the automation
of these processes, it is necessary to have a gold standard to compare the results to, but in
many cases this data does not exist. Despite the fact that identifying keywords in texts is
of vital importance for many Text Mining (TM), Information Retrieval (IR) and Natural Lan-
guage Processing (NLP) tasks [7], the vast majority of the authors still do not include a set of
keywords in their work. In addition to this, a much bigger problem is that even when they
do include them, there still is no standardized method for evaluating the results, meaning
there is no globally-recognized way to verify that this is actually the smallest set of words
that still preserves the information in the text. Furthermore, when the same text is given to
different people, it is highly probable that the words one considers to be keywords might be
different from the ones selected by another person. The high subjectivity of the task makes it
particularly difficult to have a ground truth to evaluate and compare new works with. On top
of all this, the huge volume of data to deal with makes it impossible to manually carry out
the keyword assignment process. It is important to stress though that even on smaller sets
of documents it is still difficult for humans to create a ground truth, and this makes it even
harder for a machine to perform well, having no ground truth to learn from. That is why the
topic of Keyword Extraction and Classification is currently an open issue, and that is also
why, as will be shown in Section 2.3, a considerable number of people have been focusing on
finding a way to automate this process.

This thesis was proposed by IRIS.AI, a company that developed a system for automatic
recommendation of scientific papers. Their A.I. is useful both for individuals and companies
who can benefit from a tool that speeds up their research process. The engine is in fact able
to understand the content of the papers it’s presented with, in order to propose interesting
similar works to the user. The work here presented will help them refine and improve their
recommendation engine by allowing to add more features to it.

1.2 goal and contribution

The goal of the first part of this thesis is to find a way to extract keywords from scientific
texts, in order to provide a good overview of the different documents. Note that, for this
work, all the documents are assumed to be in English, unless clearly stated otherwise. The
main contribution is a new algorithm that uses word embeddings together with classical key-
word extraction algorithms such as TextRank [8] to efficiently extract the "true" meaning of
the text. Going further, in the second part of the thesis the extracted keywords will be clas-
sified and grouped into 4 categories, which represent the building blocks of every scientific
paper: problem, solution, evaluation and results. By doing this, it will be possible to give ad-
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ditional information about each paper, on a much finer granularity level than just providing
the keywords. The structure of each document will be easily accessible, which will open the
doors to numerous new possibilities of analysis. For example, having access to the structure
of documents allows their comparison on a section-level: as previously mentioned, it could
be useful to compare documents based on the problem they are trying to solve or the solution
they propose. It is also interesting to mention that keyword extraction alone would not be suf-
ficient to determine in which context a keyword was used. With the additional classification
step, a keyword like "dimensionality reduction", that could have been used both to describe
a possible implementation technique and a potential problem, would be instead assigned to
one category only, hence providing some contextual information.
The work can be divided into two subtasks: the first subtask will focus on finding a way to
(efficiently) extract keywords from scientific articles, while the second subtask will consist in
grouping the extracted keywords into the aforementioned 4 categories.

1.3 thesis outline

The rest of the thesis will be structured as follows. Chapter 2 will provide some theoretical
background on Keyword Extraction and Classification, together with an overview of the re-
lated work on the topic. Chapter 3 will present the solution adopted, focusing on both the
mathematical and algorithmic point of view. Chapter 4 will describe the evaluation metrics
and the experiments conducted, together with information about the dataset used, and the
description of the experimental setup. Chapter 5 will present the most relevant results. Finally,
Chapter 6 will focus on commenting the work and discussing the results and Chapter 7 will
explore possible future work.





2
T H E O R E T I C A L O V E RV I E W A N D R E L AT E D W O R K

As mentioned in Section 1.1, extracting keywords is highly beneficial for many applications.
In fact, having keywords available helps to have an overview of what the text is about, which
in turn helps in selecting only the documents of interest. Moreover, the additional step of
classifying the keywords highlights the structure and composition, thus providing further
insight on the document. Given its importance, this topic has been extensively studied and
researched, hence explaining the vast literature available. Despite its popularity though, some
questions still remain unanswered, such as how to evaluate the results or how to provide a
ground truth given the level of subjectivity of the task, making it a currently open issue. The
importance and vast application of Keyword Extraction and Classification explains this being
the central topic of the thesis. In particular, this chapter will focus on explaining how the
extraction and classification of keywords is usually performed in the literature.

2.1 keyword extraction

The Keyword Extraction process aims at obtaining a list of words, ranked in order to show
which ones are more likely to be keywords and which ones are not. The ultimate goal is to
provide the minimum number of words that best describe the text without significant infor-
mation loss. More formally, given a document D containing N words (D = [w1,w2, ...,wN]),
the Keyword Extraction process aims at finding the smallest subset K ⊆ D of words that still
preserve the meaning of the text. Inspired by the work of Lahiri et al. [9] who identified 3

main phases in the process of Keyword Extraction, a similar division is presented here: first
a Pre-processing and Candidate Selection phase, in which the potential words to be keywords
get selected, followed by a Ranking/Classification phase, in which the selected candidates are
given a score which reflects the probability of being a keyword. Then an Extraction phase is
added, despite not being present in [9], to give more details about the criteria used to select
the final keywords, and finally a Post-processing phase, which constitutes an optional step in
this process. All the steps and their inputs and outputs are summarized in Figure 2.1.

2.1.1 Pre-processing and Candidate Selection

5



6 theoretical overview and related work

Figure 2.1: Keyword Extraction Pro-
cess

The Pre-processing phase aims at preparing and transform-
ing the text, in order to have it in a format which is conve-
nient for the analysis. In fact, the "raw" text contains many
words that carry no real meaning, and should therefore
be removed. This also reduces the dimensionality of the
problem space, which is always encouraged in order to
significantly cut down the computation time and the re-
quired storage space. In addition to this, stemming and
lemmatization [10] are usually performed on the remain-
ing words, so that all variations of the same word (in-
flectional forms and derivationally related forms) can be
counted as occurrences and not as different terms. The im-
portance of this step can be immediately seen anytime a
count-based or frequency-based algorithm is applied to
a piece of text, but it is also performed even in presence
of graph-based algorithms and Neural Networks (NN). In
fact, graph-based methods rank the nodes in the graph
similarly to frequency-based methods, while Neural Net-
works benefit from stemming and lemmatization because
it reduces the number of inputs, allowing for a speed-up
in the training time.

The next step is the Candidate Selection phase. The typical
strategy for selecting candidate words consists in using a
Part of Speech tagger (POS tagger) to filter out some of the
terms. A POS tagger, in fact, is able to assign each word
to a part-of-speech category, such as adjective, verb, noun
etc., which allows the user to easily spot and select the
words to keep as candidates. Typically the candidate key-
words are going to be chosen among nouns and adjectives
only, as it has been shown that they represent the most
frequently occurring POS tags in the manually assigned
keywords [11].

2.1.2 Ranking/Classification

The Ranking/Classification phase aims at finding a criterion to identify which of the words have
a higher chance of being a keyword. This could be achieved either by classifying the words
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as keywords or non-keywords, or by scoring the words so that the score would reflect the
chance that word is indeed a keyword. The different criteria can be based on the frequency
of words in the text, can rely on machine learning algorithms, or can be based on a graph
representation of the text. An overview of the literature available can be found in [3, 12].

2.1.3 Extraction

After the Ranking/Classification phase is completed, the Extraction phase is comparatively quite
easy, in that it only involves the selection of the top n words based on the ranking previously
performed, or, in case of classification, the extraction of the words classified as being key-
words. As previously stated, the score given to a word indicates how likely that words is to
be a keyword, hence the higher the score, the better the word. A common issue in this case is
how to determine the value of n. It usually is derived as a function of the number of words
in the text [8], but it could also be chosen experimentally after trying different values [13].

2.1.4 Post-processing

The post-processing phase can be performed if necessary. It might consist in the removal of
synonyms and/or variations of the same word from the list of selected keywords [14], or it
might involve the creation of keyphrases, as a result of the merging of two or more keywords
which appear consequently in the text [8, 13].

2.2 keyword classification

The logical continuation of this work, after extracting the keywords, is to classify them. This
section will cover the basics of classification, by first providing a definition and some common
algorithms, and then diving into the details of the more pertinent topic of text classification.
The term classification or categorization indicates the process that allows to assign a specific
piece of data to a pre-determined category. Formally, given a set of training records X =

x1, ..., xN such that each is labeled with a class value chosen from a pre-determined set C =

c1, ..., ck, a classification model is constructed, which will be able to classify test instances
whose class value is unknown [15]. It is important to mention that the assignment of a test
instance to a class can be a hard assignment, if the instance is assigned to one and only one class,
or a soft assignment, if the test instance is assigned to a class with a certain probability. Text
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Classification (or Categorization) is the category to which the process of Keyword Classification
belongs. As the name suggests, the goal of Text Categorization is to classify texts, hence
to provide a label that identifies the specific document. Inspired by the definition of Text
Categorization found in [4], one could state that Keyword Classification consists in assigning
a boolean value to each pair (wj, ci) ∈ W ×C, where D = w1, ...,w|W| represents the list of
words in a text and C = c1, ..., c|C| is the list of pre-defined categories. A value of T (True)
will be assigned to the pair (wj, ci) whenever the word wj belongs to the category ci, a
value of F (False) otherwise. Multiple classification algorithms are suitable for the task, such
as Decision Trees, Support Vector Machine (SVM) classifiers, Neural Networks and Bayesian
classifiers [15]. The focus of this work will be put on Neural Networks, in particular on Long
Short Term Memory (LSTM) Networks, which are able to handle sequential inputs and are
therefore suitable for texts.

2.3 related work

This section aims at presenting what has been done in the literature, for both keyword extrac-
tion and classification. Concerning keyword extraction, as mentioned in the previous section,
a vital step is to find a way to score and rank the words in the text. Depending on how this
step is performed, the different solutions can be divided in 4 categories: frequency-based,
machine-learning-based, graph-based and alternative solutions.

2.3.1 Frequency-based solution

One of the oldest yet effective methods for extracting keywords was based on the assumption
that the more frequent a word is in a document, the higher the probability that that word
is important for that document. This is known as TF (Term Frequency) and it is a simple
occurrence count on each term in the text. Considering only the term frequency though has
some limitations, since there are words that are generally more frequent than others, and
therefore the fact that they are found to be frequent inside a specific document is not to
be considered as something out of the ordinary. That is why people came up with what is
commonly referred to as TF-IDF (Term Frequency-Inverse Document Frequency).

wd = fw,dlog

(
|D|

fw,D

)
In its simple formula, the words that are generally frequent (those whose occurrence count
fw is high in a given corpus D) get somehow penalized, so that only the words that are
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representative for the specific document will obtain a high scorewd (see Section 3.1.3 for more
mathematical details). The simplicity of the formula and the fact that it yields competitive
results are the reasons why it is still used nowadays and why it is included in this chapter.
Despite the fact that it is quite an old formula [16], it wasn’t until the 2000s that it was used as
an actual way to identify important terms. In 2003 for example, Juan Ramos used TF-IDF to
find which words in a document were most suitable to be used as query terms [17]. In 2010, in
order to solve the SemEval task 5 "Automatic Keyphrase Extraction from Scientific Articles",
Pianta and Tonelli created KX: A flexible system for Keyphrase eXtraction [18], which used TF-
IDF to score each word and rank them accordingly, yet providing flexibility by letting the user
be able to choose some of the thresholds involved in the process. These are two examples of
how TF-IDF has been used directly to solve the problem of Keyword Extraction, but there are
many other cases in which it has been used indirectly, usually as a feature that contributed to
the score of the words, which in turn was part of a more complicated algorithm.

2.3.2 Machine-learning-based solutions

This category of algorithms aims at solving the Keyword Extraction problem by exploiting ma-
chine learning techniques. An example can be found with KEA [19], that turns the Keyword
Extraction task into a classification problem. This is also an example of the use of the TF-IDF
score as a feature, instead of a direct method to rank words. More in details, KEA utilizes the
Naïve Bayes algorithm to create a model capable of identifying keyphrases in a document.
It requires a training set where the keywords and keyphrases are known. For each training
document, it identifies candidate phrases and calculates their feature values (TF-IDF and first
occurrence position). Each phrase is then marked as keyphrase or non-keyphrase, which rep-
resent the classes of the model. After the model is created, in order to extract new keywords
from unseen documents, they are input into the model. Then, the process of extracting can-
didates and calculating features is performed. After that, KEA calculates two probabilities
P[yes] and P[no] (respectively the probability of a word being or not being a keyword), and
ranks each word by the final score p = P[yes]/(P[yes] + P[no]). Some post-processing is then
computed on the ranked words to decide which one to select. Even in [20] the TF-IDF was
used as one of the features to create a vector representation of each word in the document. In
this case though, the authors used the feature vectors as input in a Neural Network model
that was able to classify each word as Keyword or Non-Keyword.
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2.3.3 Graph-based solutions

Another set of approaches include those that rely on a graph representation of the document
to be able to infer properties about the text. The idea to use a graph structure to infer infor-
mation and properties of texts has a long history. Back in 1998, Kleinberg proposed HITS,
an algorithm capable of ranking web pages as a result of a search query. Right after this, a
milestone in the graph history was set by Page et al. with the famous PageRank algorithm
[21], which presented another effective way to rank web pages. This algorithm was able to
overcome the major limitation of HITS, which would only work on a limited subset of pages.
PageRank was based on the idea that the entire World Wide Web could be represented as
a directed graph, in which every vertex indicated a web page, and every directed edge in-
dicated a link pointing from a page to another. Given this representation, every page was
given a score that recursively depended on the scores of the pages that pointed at it. These
two algorithms can be easily adapted to the problem of Keyword Extraction: instead of web
pages and links, the graph would contain the words and the connections between the words
in the text. Considering this simple modification, both algorithms are extensively used in the
literature, so much that they could be considered to be the foundation of the graph-based
approaches for Keyword Extraction, in that almost every other method later developed is to
some extent based on them.
The perfect example is TextRank [8]. TextRank can be considered to be the baseline for this cat-
egory, being the first algorithm to use a graph representation of text as the basis for extracting
keywords. Each noun and adjective of the text is added as a vertex of the graph, and an edge
is added between two terms if they co-occur within a context window of N words. After the
graph is constructed, each vertex is given an initial value of 1, and the PageRank algorithm is
applied until a threshold is reached. The top T words are then selected for further processing,
where T is chosen depending on the number of vertices in the graph.
Even in more recent years, one can still find that PageRank has an influence on the proposed
solutions. In July 2017, a paper was published which presented PositionRank [13], again based
on the work of Page et al., which was able to achieve state-of-the-art results. The key idea
behind this work is that the authors believe that keywords are found at the beginning of a
document rather than at the end. Therefore, they propose a variation of the basic PageRank
formula, that would allow them to give more importance to the words which were found
earlier in the document. This way all the occurrences of each word in the text are taken into
account, but the biggest contribution is given from the earlier occurrences rather than the
later ones.
Finally, although not based on PageRank, it is worth to mention the RAKE algorithm. The
particularity of this algorithm resides in the fact that it has been proven to be over six times
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faster than TextRank in extracting keywords [22]. It uses stopwords and phrase delimiters to
extract candidate keywords from the text. It then construct a co-occurrence graph of all the
words in the text, where each vertex represents a word, and each undirected edge is weighted
with the number of times that the two words co-occur in the document. Three scores are then
calculated for every word: the degree of the word, which considers the number of edges inci-
dent to that vertex, the frequency of the word, which counts the occurrences in the text, and
the ratio between the two. Candidate keywords that are composed of more than one word
get the sum of the score of the single words as final score. The candidate keywords are then
sorted choosing one of the three score metrics proposed, and the top T words are selected as
keywords, where T is one third of the number of candidates.

2.3.4 Alternative solutions

To conclude the overview on all the possible solutions that have been proposed to solve the
task, here follow the so-called "alternative approaches". These approaches are valuable be-
cause, despite the fact that they haven’t always had a huge follow-up in the research world,
they allow to look at the problem from a completely different point of view.
For example, Yang et al. in 2013 published Keyword extraction by entropy difference between the
intrinsic and extrinsic mode [23]. Inspired by the physics domain, their idea was to use the
concept of entropy difference between the intrinsic and extrinsic mode to calculate a score
that could then be used to discriminate between the different words of the text. The reason-
ing behind this work is that a common word (non-keyword) is usually found evenly spread
inside the document, while this does not apply to keywords, which tend to be concentrated
in certain areas of the text and have a non-uniform distribution. This being said, the authors
calculated the intrinsic and extrinsic mode entropy and used their difference as the score by
which the words were ranked. The higher the score, the higher the probability of the word
being a keyword. A different approach consists in exploiting word embeddings. Word embed-
dings were first introduced by Mikolov et al. in 2013 [24], who presented word2vec, a model
capable of capturing relations between words, not only their meaning, through their vector
representation. In 2015, Kusner et al. presented the Words Mover’s Distance (WMD) [25], a
function designed to calculate distances between documents. In this work, vector represen-
tations are exploited in order to calculate the distance between words, and the document
dissimilarity is computed as the distance that words in a document have to "travel" to reach
the word vectors of the other document. Inspired by their work, the approach here proposed
consists in using the vector space and vector representation of words to find keywords.
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2.3.5 Classification

For what concerns the Keyword Classification part, it is hard to come by previous works that
deal solely with that problem. One the other hand, since as stated at the beginning of this
chapter Keyword Classification is a particular case of Text Classification, one could refer to
this category of works in order to have an idea of what has been done in that field. More gen-
erally, Classification can be applied to different tasks. A typical example is spam detection,
after which an email is classified as being spam or not spam [26]. Another area of research
on the topic concerns image classification. For example, in [27], it allowed the detection and
analysis anomalies found in digital images that could lead to breast cancer. Sentiment analy-
sis, which is another possible application, helps indicating if reviews express positive, neutral
or negative opinions [28], and it could be considered as a particular case of text classification,
which aims at classifying written documents or texts. A final example of classification can
be found in [29]. The model presented aimed at classifying the sentiment of a document as
either positive, negative or neutral. To do so, the authors use an LSTM Neural Network, in
combination with a Convolutional Neural Network to learn the semantics of the sentences
that compose each document.

For the Keyword Extraction task, the thesis will be centered on graph-based methods. In
particular, TextRank was chosen as the base algorithm, since it was the first algorithm to pro-
pose a graph representation of texts to solve the Keyword Extraction problem and it showed
promising results compared to the other methods. Inspired by the state-of-the-art results and
method proposed by Florescu et al. in PositionRank, which is build on top of TextRank using
a word position bias, several biasing criteria were explored and implemented, in order to un-
derstand which of those yielded the best results. Among them, TF-IDF, due to its simplicity
and effectiveness was able to produce the best results and is going to be explored in more
details in the next chapter. For the Keyword Classification task, a Long Short Term Memory
(LSTM) Network was implemented. The reason for this type of NN lies on the fact that it
is a particular type of Recurrent Neural Networks (RNN) which is able to capture the rela-
tionship between inputs, even when they are distant in time. This works perfectly with texts,
since often, in the English language, we find that two words, which are highly correlated, do
not appear close to each other. It is necessary for the network to have some kind of memory of
past inputs, in order for that correlation to be learned.
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The proposed idea will look at the problem as two subsequent parts of a process: first the ex-
traction of keywords will be performed in order to capture the "true" meaning of the text and
then the classification step will take place, to correctly assign the keywords to the problem,
solution, evaluation or results class. The Keyword Extraction will be performed using the
TextRank algorithm, which will be biased using the scores obtained by the TF-IDF algorithm.
Once the keywords are obtained, an LSTM Neural Network will be used to classify them
as belonging to one of the aforementioned categories. The following sections will provide
more details on the different parts that compose the approach, both from a mathematical and
algorithmic point of view.

3.1 mathematical framework

This section will provide a more detailed description of the algorithms involved in the key-
word extraction process, from a mathematical perspective. A fundamental part of the work in
this thesis is held by the biasing of the PageRank, reason for which the PageRank itself has
been included in this chapter as well.

3.1.1 The PageRank algorithm

The PageRank algorithm [21] was originally designed to rank web pages in response to a
search query, in order to be able to sort them and return the most relevant ones to the user.
In this context it is instead used to rank the words of a text. Every word is given a score
recursively based on the score of the words that are linked with it. The basic formula is quite
simple and accounts for directed graphs:

R(u) = c
∑
v∈Bu

R(v)

Nv
(3.1)

where Nv is the number of links from page v, Bu represents the pages that point at page u,
and c is a normalization factor. In the undirected graph case, the number of links incoming to
is equal to the number of links outgoing from the page. Being a recursive formula, depending
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on the configuration of the graph there could be infinite loops, which would generate what
is called a rank sink. This is for example the case when two pages point at each other but not
at any other page, and one of them has an incoming link. This would produce a constant
increase in the rank of the two pages, indefinitely. To account for that, a rank source vector E
is introduced, which allows to simulate a random walk on the graph:

R(u) = c
∑
v∈Bu

R(v)

Nv
+ cE(u) (3.2)

The source vector E represents the distribution of the pages in the web, and, as such, the
probability for each node to be jumped to in a random walk. In the basic version of PageRank
a random walker has equal probability to jump to any node, which leads to E(u) = 1/Nnodes,
∀u, where Nnodes is the number of nodes in the graph. By modifying the rank source vector
E, one could make some nodes more prone to be jumped into than others, making their score
higher. This idea is well explained in the original paper [21, section 6] and constitutes the core
of the work in this thesis.

3.1.2 The TextRank algorithm

TextRank [8] is used as a baseline in almost all the works related to Keyword Extraction, be-
cause it is easy to implement and understand, and generates fairly good results. The starting
point of the algorithm is the creation of the Graph G(V ,E). The vertices represent the words
of the text, while the edges represent the relations between the words. Not all the words will
be included in the graph, but only adjectives and nouns. Furthermore, an edge is added be-
tween two words only if they co-occur within a window of N words in the text. The Graph
G, as described in the paper, has been chosen to be undirected and unweighted, although the
algorithm can be easily extended to take into consideration both of those cases as well. The
core of any Keyword Extraction algorithm is to score and rank the words of the text so that
the best ones can be selected. The scoring phase for TextRank is based on the application of
PageRank onto the Graph G:

S(Vi) = (1− d) + d
∑

Vj=Adj(Vi)

S(Vj)

|Adj(Vj)|
(3.3)

where d = 0.85 is a dumping factor, Adj(Vi) represents the list of nodes adjacent to Vi and
|Adj(Vj)| represents the number of nodes adjacent to Vj. This formula is a slight variation of
the PageRank standard formula (Equation 3.2), and it is run for 20 to 30 iterations or until
convergence, with a threshold of difference between the new and the old scores of 0.0001.
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Following the scoring phase, the top T words are selected, where T is chosen as one third of
the number of words in the text. A post processing phase is then performed to collapse the
selected keywords into keyphrases, if they appear consequently in the original text.

3.1.3 The TF-IDF bias

The biasing algorithm which has yielded the best results is TF-IDF. As already mentioned
briefly in Section 2.1.2, this algorithm is based on the following mathematical formula, which
aims at finding a score that represents the importance of word w in document d:

wd = fw,dlog

(
|D|

fw,D

)
(3.4)

Taking one component at a time, fw,d indicates the number of times word w appears in doc-
ument d, fw,D indicates the number of times word w appears in the entire corpus D and |D|

indicates the number of terms in the document corpus. The first part, fw,d, represents what is
called TF, or Term Frequency, while the second part of the product, log

(
|D|
fw,D

)
, represents the

IDF, or Inverse Document Frequency. The IDF ensures that if a word with high TF appears
very frequently in the whole corpus, then its score will be lower than a word that has a high
TF for the document but is not generally frequent. This simple algorithm is very effective
in finding words which are specific for the document and not common to all documents in
the corpus. In the proposed solution, the corpus was composed of 1 290 000 documents, for a
total of 136 814 223 words.

3.1.4 Modifications to the original algorithms

In the proposed solution, some modifications were made with respect to the algorithms as
described in the original papers. Concerning the TextRank algorithm, the original paper does
not indicate a limit of keywords to collapse when forming the keyphrases, while in this
solution, the maximum number of terms to collapse was chosen to be 2. So in case of a
sentence such as "Python code for plotting linear functions", if "plotting", "linear" and "functions"
were chosen as keywords, the generated keyphrases would be "plotting linear" and "linear
functions". Another difference in TextRank, is that in the original paper, after creating the
keyphrases, the single words that compose the keyphrase were removed from the list of
candidates. In the proposed approach instead, both keyphrases and keywords are kept, and
the newly-created keyphrases are scored using the average of the score of the single terms.
One final difference concerns the maximum number of iterations for the convergence of the
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PageRank. While the TextRank original paper suggests 20 to 30 iterations, in the current work
the max_iter parameter was set to 100. The remaining parameters were kept as described in
the original paper.

3.2 algorithmic framework

This section will explore the approach described in this chapter from an algorithmic point
of view. Both the pseudocode and a summarizing graph of the algorithm will be presented.
Listing 3.1 presents the pseudocode for the 5 steps that compose the Keyword Extraction
algorithm: "text pre-processing", which aims at lemmatizing the words of the text and assign
a part-of-speech tag to each, "graph construction", which deals with the implementation of
the graph of word co-occurrence, "creation of bias dictionary", which produces a dictionary of
words and their score, based on the bias algorithm selected, "application of biased PageRank",
which includes the execution of the biased PageRank algorihm and "post-processing", which
aims at creating keyphrases. Listing 3.2 shows the pseudocode for the Classification part,
which is composed of two main steps: "Neural Network (NN) input construction", which
concerns the creation of the sentences which will be input to the LSTM and "class prediction",
which uses the model to predict a class for each input sample. The pseudocode does not
include the training of the Neural Network, which must be performed prior to the "class
prediction" step, in order to generate the model that allows the classification phase.

Listing 3.1: Keyword Extraction Algorithm

1 INPUT: textual document as text

2 window_size as ws

3 number of keywords as n_kw

4 OUTPUT: list of keywords

5

6 # step 1: text pre-processing

7 for word in text:

8 apply lemmatization

9 apply POS tagger

10 if tag=="ADJ" or tag=="NOUN":

11 words_of_text.add(word)

12 generate text_n-grams

13

14 # step 2: graph construction

15 for word1 in words_of_text:

16 determine window
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17 for word2 in window:

18 if word1 in window and word2 in window:

19 graph[word1][word2] = 1

20 normalize matrix per row

21

22 # step 3: creation of bias dictionary

23 compute TF-IDF score of words_of_text

24 create bias_dictionary in the format {word: TF-IDF score}

25

26 # step 4: biased PageRank

27 apply biased-pagerank to graph to get words_with_score

28

29 # step 5: post-processing

30 sorted(words_with_score.keys(), key=lambda i: words_of_text.index(i))

31 form my_n-grams with words_with_score

32 for ngram in my_n-grams:

33 if ngram in text_n-grams:

34 ngram_score = np.mean([words_with_score[w] for w in ngram.split(" ")])

35 words_with_score[ngram] = ngram_score

36 return list(words_with_score.keys())[:n_kw]

Listing 3.2: Keyword Classification Algorithm

1 INPUT: textual document as text

2 list of keywords as keywords

3 OUTPUT: keywords with classes

4

5 #step 1: NN input construction

6 for kwd in keywords:

7 for sentence in text:

8 if kwd in sentence:

9 add sentence to input_paragraph

10 tokenize input_paragraph

11

12 #step 2: class prediction

13 feed input_paragraph to NN

14 return {keyword: class}

Figure 3.1 schematically represents the complete algorithm. The two parts are clearly identi-
fied, and the steps of which they are composed of are listed in the order of execution. Note
that step 2 and step 3 of the Keyword Extraction process are placed side by side, indicating
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Figure 3.1: Main steps of the complete algorithm

that they could be excecuted in parallel if necessary, since they do not depend on one another.
The elements outside the Keyword Extraction and Keyword Classification areas represent the
inputs of the following area or the output of the previous one.
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M E T H O D O L O G Y

This chapter aims at describing the performed experiments and the evaluation methodology
used in the thesis. In particular, the first sections will present the different datasets used
for the experiments and the evaluation metrics adopted. After that, the section describing
the baselines, the biasing algorithms and the Neural Network will follow. The chapter will
conclude by presenting the experiments and the hypothesis that they aim to prove.

4.1 datasets

Three different datasets have been used to conduct different experiments, whose characteris-
tics are summarized in the following table:

Table 4.1: Datasets

Name Number
of documents

Average number
of words per document

Average number
of keywords per document

Small_full_texts 11 4261 6

IRIS_abstracts 1402 283 7

IRIS_full_texts 60000 3550 6

The Small_full_texts dataset includes 11 documents on the topic of Keyword Extraction and
Classification. A complete list of the documents included is available in Section A.1. The
IRIS_abstracts dataset contains abstracts of scientific papers coming from different domains.
The biggest dataset is the so-called IRIS_full_texts. It is composed of papers coming from
the medical domain, and it is constructed to provide access not only to the content and
author-assigned keywords, but also to each section of the paper. Its structure is illustrated in
Section A.2.

4.2 evaluation metrics

In order to evaluate the results obtained, the extracted keywords were compared with the
proposed ones, and precision, recall, and f-measure were computed. It is important to note
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that a strict evaluation was performed, which consisted in always extracting the same number
of keywords as the ground truth, and performing an exact match between the words. This
results in having the same value for precision, recall and, consequently, f-measure. In fact,
precision is computed as

precision =
|correctly identified keywords|

|keywords extracted|

while recall is computed as

recall =
|correctly identified keywords|

|true keywords|
,

which results in the same value for the two denominators, hence for the two measures. An-
other consequence of the use of a strict evaluation metric is the generally lower number of
correctly identified keywords. In fact, variation of the same word, such as message and mes-
sages, are considered to be a mismatch, and so are cases such as mass media and media. Also,
as mentioned in Section 3.1.4, the keyphrases generated by the algorithm are composed of a
maximum of 2 terms. Given the strict comparison metric, this means that if the ground truth
presented a keyphrase composed of 3 or more terms, there could never be a match. Evaluat-
ing the results with this metric allows the user to have an idea of the worst case performances.
It is important to keep these considerations in mind when looking at the results, yet knowing
that the constraints here applied can be easily softened to obtain better performances.
A different evaluation process is necessary for the classification of the keywords. The output
of the LSTM Network is a class that corresponds to a section type (problem, solution, eval-
uation or results). In order to evaluate the classification obtained, 10 papers were randomly
selected and the extraction of keywords was performed. After that, the extracted keywords
were manually classified, in order to generate a ground truth, since the classes were not
provided with the keywords in the data set. The evaluation of the results was performed sep-
arately for the Keyword Extraction and Keyword Classification, using precision, recall and
f-measure, and adopting the same strict comparison metric described above.

4.3 the algorithms

This section will present a detailed description of all the baseline algorithms and all the
biasing algorithms. It is important to note that the TextRank and TF-IDF algorithms have
already been addressed in Chapter 3, and are therefore not present in this list. Furthermore,
the ExpandRank algorithm has not been used in the final experiments, together with the Sin-
gleLinkage bias. ExpandRank and the SingleLinkage algorithms, after the first run, appeared
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to be computationally very expensive and not viable for a real life solution therefore were
chosen to be left for future experiments.

4.3.1 Baseline algorithms

This section will present a list of what have been considered to be the baseline algorithms for
the task of Keyword Extraction. A description of the TextRank and TF-IDF algorithms can be
found in Section 3.1.2 and Section 3.1.3.

PositionRank

The first baseline is the recently proposed PositionRank algorithm [13]. This algorithm, simi-
larly to TextRank, is based on a slight variation of the PageRank formula (Equation 3.2), here
presented in its matrix form:

S = α· M̃·S+ (1−α)· p̃. (4.1)

M̃ represents the co-occurrence normalized matrix. Differently from TextRank, this matrix
models a weighted graph, meaning that the entry M̃[i][j], prior the normalization, is equal to
the number of times word i and word j co-occur within a window of a certain size. Continuing
with the formula, α = 0.85 is the dumping factor and p̃ is the source vector. The difference
with PageRank lies precisely in the factor p̃: in order to give different importance to the words
based on their position in the text, the elements of the vector p̃ get biased. Instead of giving
equal probability to each word, each element of p̃ is calculated as the sum of the inverse of
the position of every occurrence of the word in a text. The elements are then normalized as
shown:

p̃ =

[
p1

p1 + p2 + ... + p|V |

,
p2

p1 + p2 + ... + p|V |

, ...,
p|V |

p1 + p2 + ... + p|V |

]
, (4.2)

where, considering [occ1, ...,occn] as the positions of the n occurrences of word i, pi is com-
puted as

pi =

n∑
x=1

1

occx
. (4.3)

So if word A is found in position 2, 7 and 39, pA = 1
2 + 1

7 + 1
39 . This allows words that are

found at the beginning of the text to have higher probability of being selected as keywords.
Once the keywords are extracted, the post-processing phase for this algorithm consists in
generating the keyphrases, by concatenating the keywords that appear consequently in the
text. In addition to this, the phrases get filtered, in order to match the following regular
expression: (ADJ) ∗ (NOUN)+, where ADJ indicates an adjective, and NOUN indicates a
noun, as per part-of-speech tag.
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ExpandRank

The Expand Rank algorithm [30] was chosen to be part of this list because of its two-phase
approach to the problem, which constitutes a change to the pattern presented in TextRank and
PositionRank. The first phase of the algorithm consists in a neighbor-based analysis, while
the second phase is focused on the document level. The idea behind this division resides
in the authors’ goal to incorporate both local (document-level) and global (neighbor-level)
information into the keyword extraction process. During the first phase, the current document
d0, gets expanded to a document set D, which contains the top k most similar documents to d0.
The similarity is computed by representing the documents as a vector of terms, each weighted
with their TF-IDF score, and by calculating the cosine similarity between these vectors. The
distances are also used to weight the contribution of the document: the more distant dx is
from the current document d0, the less its contribution. The neighbor-level contribution is
computed by first constructing a graph G = (V ,E) in which the vertices are all the nouns and
adjectives of the whole document set D, and the edges are weighted (aff(wi,wj)) depending
on the co-occurrence of the two words within a window of maximum w words:

aff(wi,wj) =
∑

dp∈D
simdoc(d0,dp)countdp

(wi,wj), (4.4)

where countdp
(wi,wj) represents the co-occurrence count of word i and word j in document

dp. Onto this graph, the PageRank algorithm [21] is applied to obtain the saliency scores
for each word, which represent the global information. The second step of the algorithm
aims at providing the local information, hence the document-level knowledge. It consists in
extracting keyphrases from the current document d0, by selecting the candidate words found
in the previous step and collapsing them into keyphrases if they appear consequently. The
score of a keyphrase is given by the sum of saliency scores of the words in the phrase. All the
candidate words and phrases from d0 are ranked according to their score, and the top m are
extracted.

Centroid

This method is based on the vector representation of the words in the text. In order to obtain
such representation, the gensim word2vec1 model has been used [24]. The result is a unique
100-dimensional vector for each English word contained in the specific dictionary. Given these
vectors, it is possible to calculate the centroid word as the average vector. The goal is to
compute the distance (here chosen to be euclidean) of every word to the centroid, normalize

1 Documentation available at https://radimrehurek.com/gensim/models/word2vec.html

https://radimrehurek.com/gensim/models/word2vec.html
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it (distnorm), and score each word with 1− distnorm so that the higher the score, the closer
the word is to the centroid. The top T words are then extracted and selected as keywords.

4.3.2 Biasing algorithms

This section will present the different algorithms that have been used as biasing criteria for
the PageRank algorithm. As stated in Section 1.2, the idea of biasing the PageRank algorithm
was inspired by the work in [13], but different experiments were carried out, in order to see
if they could lead to better results. The idea is to find different ways to score the words in the
text, and then use the normalized scores as source vector E, as described in Equation 3.2. Note
that a description of the TF-IDF biasing algorithm has already been addressed in Section 3.1.3.

Entropy Difference

This algorithm [23] provides a way to score the words by analyzing the entropy difference
between the intrinsic and the extrinsic modes. For every word, given the position of all its oc-
currences in the text (t1, t2, ..., tm), the distance between two consecutive occurrences (arrival
time difference) is calculated as di = ti+1− ti. The distance between the last occurrence and the
first is taken into account as well, and it is calculated considering the text to be circular by con-
necting the last and the first word. This distance is therefore computed as d∗m = N− tm + t1,
where N is the total number of words. At this point, the arrival time difference di belongs to
the intrinsic mode dI if di < µ, to the extrinsic mode dE if di > µ, where µ is the average of
the arrival time differences. Once the intrinsic and extrinsic modes have been computed, the
entropy of the two modes can be calculated as follows:

H(dI) = −
∑
d∈dI

Pdlog2Pd

H(dE) = −
∑

d∈dE

Pdlog2Pd
(4.5)

where Pd is the probability for the occurrence of microstate d in the system dI and dE respec-
tively. The entropy difference can finally be defined as:

EDq(d) =
(
H(dI)

)q
−
(
H(dE)

)q
(4.6)

where q ∈ N+ is set to be 2 and is used to weigh the entropy difference.
The higher the EDq(d) score, the higher the probability that word is a keyword. The normal-
ized score is used as source vector E for the PageRank algorithm, following Equation 3.2.
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Distance to median and average word vector

The Centroid baseline algorithm, as described in the previous section, involves the scoring of
the words in a text based on the distance from the average word. This score can be exploited to
create the source vector E, described in the PageRank algorithm (Section 3.1.1). If the centroid
vector is built as the average vector, this biasing criterion is referred to as centroid_average. The
centroid vector can also be built as the median vector, in which case this biasing criterion is
called centroid_median.

Distance to centroid using K-Means and DBSCAN

Both the K-means [31] and DBSCAN [32] clustering algorithms are well known. The main
difference between the two is that while K-means forms the clusters based on the distance of
the points to the centroid, DBSCAN is a density-based clustering algorithm, which determines
the clusters based on the number of points in a specific area. In this work, these algorithms
have been used to cluster the vector representations of the words of the text, to be able to
use the distance to the centroid as a score for each word, which in turn could be used as
a bias for the PageRank algorithm. For the K-means algorithm the number of centroids has
been chosen to be equal to 1/10 of the number of words in the text, and the algorithm has
been run by considering the centroids to be the average vector or the median vector. After the
clusters and the centroids have been created, the normalized distance (distnorm) from each
word vector to the centroid is computed and once again each word is scored as 1− distnorm,
in order to have the highest score corresponding to the closest word to the centroid. These
biasing algorithms are referred to as kmeans_average or kmeans_median, and dbscan_average or
dbscan_median depending on how the centroid vector is computed (average or median vector).

Distance to centroids using Single Linkage clustering

The single linkage clustering belongs to the category of hierarchical clustering techniques,
which can be agglomerative or divisive. The agglomerative (or bottom-up) clustering algorithms
start by considering every data point as a cluster, and then proceed by grouping every time
the two closest clusters, while the divisive (or top-down) clustering algorithms start by con-
sidering all the data points belonging to one single cluster, and then proceed by dividing
it into sub-clusters in order to maximize the dissimilarity between different clusters. Single
linkage clustering is an example of agglomerative clustering, in which the distance between
two clusters its calculated as the smallest minimum pairwise distance. The scipy linkage2

module has been used for the purpose. After all the possible clusters were computed, the

2 Documentation available at https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.
hierarchy.linkage.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html
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sklearn silhouette3 score was calculated and used in order to choose the best configura-
tion. Due to its protracted computation time, necessary to compute all the pair-wise distances
and the possible clustering configurations, this algorithm has not been included in the exper-
iments.

4.3.3 Neural Network

The classification task implemented in this thesis relies on a special type of Recurrent Neural
Networks, called Long-Short Term Memory (LSTM). These types of classification models
need to be trained, validated and tested. The training process aims at finding the optimal
values for the weights that characterize the network, which will ensure that the model is
general enough to be able to classify unseen data. In order to achieve that goal, one must
properly tune the hyper-parameters of the network, a list of which will be presented in the
next section. The next step is to feed the training set to the model so that the weights can be
recursively learned. Alongside the training set, a validation set is input as well into the model.
The purpose of this validation set is to assess the performances of the training process. In fact,
if the model were to be tested on the same data as it was trained, the results would lack
generality. The assessment of the training is performed by feeding the validation set into the
model and comparing the classification output to the ground truth. In this work, the accuracy
(i.e. the percentage of correctly identified classes) was used as a metric to evaluate the model.
The testing phase is performed separately from the training and validation phase, and aims
at verifying the performances on the newly-trained model on unseen data. In this work the
training and test data for the LSTM consisted in a set of sentences, obtained as described later
in Section 4.5.5.

4.4 experimental setup

The experiments described in this chapter have been run on an Amazon AWS EC2 instance
of type m4.4xlarge4. It consists of a 2.4 GHz Intel Xeon E5-2676 v3 (Haswell) physical CPU
with allocated 6 vCPUs for the machine and 64GB of RAM. The entire code was written in
Python, v3.45. Table 4.2 presents a list of the main libraries used for the implementation.

3 Documentation available at http://scikit-learn.org/stable/modules/generated/sklearn.metrics.
silhouette_score.html

4 https://aws.amazon.com/ec2/instance-types/
5 https://www.python.org/download/releases/3.4.0/

http://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html
http://scikit-learn.org/stable/modules/generated/sklearn.metrics.silhouette_score.html
https://aws.amazon.com/ec2/instance-types/
https://www.python.org/download/releases/3.4.0/
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Table 4.2: List and usage of the main Python libraries

Library name Version Usage

networkx 2.0
Creation of co-occurrence Graph

and implementation of the PageRank algorithm
gensim 2.3.0 Word2Vec model
Keras 2.1.2 Text tokenization and NN layers construction
tensorflow 1.4.1 Backend for Keras

4.5 experiments

This section will describe the experiments that have been conducted, starting from those
concerning the Keyword Extraction task and concluding with those related to the Neural
Network and the Keyword Classification.

4.5.1 Starting hypothesis

For the Keyword Extraction task, the core of the algorithm consists in using a biased version
of TextRank to try and achieve comparable results to PositionRank, which utilizes a position-
based bias. The reason for the following experiments lies in the fact that the premises of
PositionRank might not be true and as general as the authors make them sound. Florescu et al.
base their idea on the hypothesis that the sooner a word appears in a text, the more important
that word is for the text, hence the higher the chance that word will be a keyword. When texts
present an abstract at the beginning, this hypothesis holds pretty well, and PositionRank
actually outperforms all the other algorithms. This is not surprising if one thinks about what
is the role of the abstract in a paper: it represents a summary of the content, hence providing
an overview on all the main concepts of the paper. Therefore, when extracting few, general
keywords, it is highly probable they are going to be found at the beginning of the document.
But what would happen if the document did not contain an abstract? Or what if one was
interested in extracting more specific keywords that described all the different parts of the
paper, not only the general concepts? These are the questions that drove the work of the first
part of the thesis. The solution adopted aims at providing an alternative to PositionRank,
whenever its limitations prevent it from obtaining outstanding performances. To achieve this
goal, the chosen biases are not based on the position of the word anymore, but rather, for
example, on the entropy difference between the intrinsic and extrinsic modes, or on the TF-
IDF scores.
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4.5.2 Baseline choice

The first experiment aimed at determining which baseline was performing the best, so that
it could be used as the basic algorithm upon which to build the bias. The 4 selected baseline
algorithms are the following:

• TextRank

• PositionRank

• TF-IDF

• Centroid

For a detailed description the reader can refer to Section 4.3.1. As shown in the plots in Chap-
ter 5, three different window sizes were addressed: 3, 5, and 10. The window size concerns
only the two graph-based baselines, TextRank and PositionRank, since the other baseline al-
gorithms are not affected by this parameter. The size of the window, for every word w in
the text, indicates how many words before and after w to consider in order to determine the
co-occurrence of w with the other words. In practice, the bigger the window size, the more
connections will be present in the graph. The experiment was conducted on the IRIS_abstracts
dataset, and it is easy to observe that the overall best was achieved by TextRank, which was
therefore chosen as basic algorithm on top of which to try the different biases.

4.5.3 Bias analysis

The next experiments involved applying the biasing of the PageRank on top of the selected
TextRank algorithm. The first experiment consisted in applying the biased-TextRank on the
IRIS_abstracts dataset, in order to have a general idea of the performances. Nine were the
algorithms used as a bias for the TextRank:

• centroid_average

• centroid_median

• dbscan_average

• dbscan_median

• entropy_difference

• kmeans_average
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• kmeans_median

• position

• tf-idf

All the algorithms have been already described in details in Section 3.1.3 and Section 4.3.2.
The ’position’ bias refers to the same calculation proposed in the PositionRank algorithm,
though this time applied on top of the TextRank. TextRank and PositionRank, although being
very similar to one another, present a difference both in the graph construction and in the com-
putation of the keyphrases, as explained in Section 4.3.1, which may lead to different results
and was therefore worth observing. The results in terms of precision, recall and f-measure
were compared with the 4 baselines, with 3 different window sizes: 3, 5 and 10. Given the
promising results, as a follow-up, a second experiment was conducted on the Small_full_texts
dataset, to see how the algorithms would perform in a more realistic scenario. The results can
be seen in Figure 5.3. The third experiment involved a variation of the Small_full_texts dataset,
in order to verify the performances of the algorithms in a scenario in which the texts do not
present an abstract. Again the same conditions in terms of chosen biases and window sizes
were kept (results shown in Figure 5.5). The fourth and final experiment involved the modi-
fication of the ground truth keywords, which were chosen to be less general and cover more
details of each paper (results shown in Figure 5.6). As a consequence, the average number of
keywords per document raised to 15 (compared to the previous one which was 6, as shown
in Table 4.1).

4.5.4 Neural Network parameter tuning

Following the extraction of keywords, the second part of the experiments concerned their
classification. As mentioned in the previous chapter, an LSTM Neural Network was chosen
and built in order to complete the task. These kind of Networks present some parameters that
have to be tuned and properly set in order to determine the configuration that yields the best
results. This is the aim of the following experiments. The targeted parameters and their values
are summarized in Table 4.3. To conduct the experiment, all the combinations of these values
have been tested, and the setting that reached the best result in terms of validation accuracy
was selected. The chosen values for each parameter are indicated in bold in Table 4.3.

4.5.5 Training the Neural Network

The training of the Neural Network was performed using the IRIS_full_texts dataset. As stated
in Section 4.1 and shown in Appendix A, this dataset provides information about the differ-
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Table 4.3: Neural Network parameter names and tested values. In bold the chosen values.

Parameter Testing Values

Number of neurons for LSTM layer 128
Dropout Ratio 0.2
Recurrent Droput Ratio 0.2
Activation Function Sigmoid
Loss Function Categorical Crossentropy
Optimizer Adam
Batch Size 128
Number of epochs 15, 30

ent sections of each document, specifying their title and content. This was essential for the
training of the NN, since the goal is to classify keywords as belonging to a specific section
type.

Table 4.4: Section Types and Characterizing Words

Section Type Characterizing Words

Problem
introduction, background, problem definition,

problem formulation, problem area

Solution
implementation, method, model, approach, solution, algorithm,

overview, system, contribution, design
Evaluation evaluation, metrics, discussion, analysis, environment

Results results, experiments, conclusion

Therefore, the dataset was filtered in order to determine which documents contained both
keywords (necessary to evaluate the Keyword Extraction) and sections that corresponded to
either introduction, implementation, evaluation or solution. In order to do so, 3 to 10 words
which characterize the 4 types of sections were selected, as shown in Table 4.4. The sections
whose title contained one of the characterizing words were then used to build a training set
for the Network. The final section set contained 27450 sections of type "introduction/problem
definition", 5608 sections of type "solution", 24930 sections of type "evaluation" and 24391

sections of type "results". The input data to the LSTM was constructed as follows, considering
one section type at the time. (I) The set of unique words included in the section type was
identified. (II) For each unique word, the set of sentences that contain that word was identified.



30 methodology

Figure 4.1: Creation of LSTM input

(III) Among those a sample of 5 sentences6 was extracted and concatenated to form a training
sample. The process is repeated for every section type. The final set of samples was then
shuffled, and 80% was included in the training set, while the remaining 20% was saved and
kept for the validation of the model. Figure 4.1 schematizes the steps here described.

4.5.6 Experiment on Keyword Classification

The final experiment consisted in testing the combination of the two parts that compose the
algorithm presented in this thesis, in order to extract keywords and evaluate the performances
on the classification. In order to do so, a subset of the IRIS_full_texts dataset was saved and
used as input data. The data was obtained by filtering the documents and keeping only those
that presented at least one section per each class (problem, solution, evaluation and results)
and at the same time presented ground truth keywords. The final test set included 3985 files.

6 In case of a number of sentences lower than 5, all of the sentences available were selected.
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R E S U LT S

This chapter will present the results obtained from the different experiments. Figure 5.1 shows
the comparison of the 4 baseline algorithms (TextRank, PositionRank, TF-IDF and Centroid)
applied to the IRIS_abstracts dataset. On the x-axis 3 different window sizes are indicated, and
for each of them, on the y-axes the values of precision, recall, and f-measure are shown. It
is important to note that the TF-IDF and Centroid approaches do not involve a window size
parameter, explaining why their results are constant for all window sizes. The graph clearly
shows that TextRank is outperforming all the other algorithms, performing more than twice
as good as the Centroid approach, and presenting a margin of up to 4% with respect to the Po-
sitionRank algorithm. It is also noticeable that the a bigger window size seems to be beneficial
for PositionRank, but yields worse results for the TextRank. Figure 5.2 shows the same 4 base-

Figure 5.1: Comparison of baseline algorithms on IRIS_abstracts dataset. The y-axis represents the
value of precision, recall, and f-measure, calculated as described in Section 4.2.

lines, compared with the biased-TextRank on the IRIS_abstracts dataset. For each of the 3 ex-
plored window sizes, on the x-axis the 9 different biases are presented, sorted from left to right
in increasing performance order. On the y-axes the levels of precision, recall and f-measure
are indicated. As shown in the graph, the TF-IDF-biased TextRank is able to outperform both
the TextRank itself (by a margin of 2.5%) and all the other baselines. When applying the
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other biasing algorithms, the biased TextRank manages to perform better than PositionRank,
TF-IDF and the Centroid approach, except with the usage of the "entropy_difference" and
"position" biases. The same graph structure has been used in Figure 5.3, which presents the

Figure 5.2: Comparison of the biased TextRank with the baselines on abstracts. The y-axis represents
the value of precision, recall, and f-measure, calculated as described in Section 4.2.

comparison of the biased-TextRank with the baselines on the Small_full_texts dataset. The first
thing that can be noticed from the graph is that the PositionRank is now the leading algorithm,
with peaks of almost 25% f-measure. The position-biased TextRank is though able to meet the
PositionRank’s performances in the case of a window size equal to 5. The entropy_difference-
biased and position-biased TextRank are able to outperform the TextRank baseline and the
other biased versions of the algorithm, by a margin of at least 4%. Figure 5.4 presents instead
a comparison of the performance of PositionRank, in 3 different scenarios. The first (blue)
line shows the performance in terms of precision, recall and f-measure when the algorithm
is applied on full texts. The second (orange) line concerns the application of PositionRank on
texts that do not present an abstract. The last (green) line shows the performance in case the
ground truth is composed of more specific keywords. Figure 5.5 shows the comparison of
the biased-TextRank with the baselines on a modified version of the Small_full_texts dataset,
in which the abstracts have been removed from each text. The PositionRank algorithm and
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Figure 5.3: Comparison of the biased TextRank with the baselines on full texts. The y-axis represents
the value of precision, recall, and f-measure, calculated as described in Section 4.2.

the position-biased TextRank obtain once again the best results, this time with peaks as high
as 22.5% f-measure. All the versions of biased-TextRank are also able to at least meet the
results of the TextRank baseline, while the TF-IDF and Centroid baselines remain the worst-
performing algorithms. Figure 5.6 represents the same comparison between biased-TextRank
and baseline algorithms on the Small_full_texts dataset with modified ground truth keywords,
which have been chosen to be more specific and less general. By looking at the graph, one can
notice that the "position" bias is not anymore the leading biasing algorithm, replaced by the
"TF-IDF" bias, which outperforms it by a margin of 2%. The remaining biases perform simi-
larly to the TextRank baseline, except for the "entropy_difference" biasing algorithm, which
outperforms TextRank by a margin of up to 5%. The PositionRank baseline still obtains the
best results, with peaks of more than 22.5% f-measure.

The experiments regarding the Keyword Classification task concern the training of the LSTM
model and the evaluation of the classification of the extracted keywords. The training of the
Neural Network, with the parameters indicated in bold in Table 4.3, led to a validation accu-
racy of 54%. The model was then used to classify the keywords extracted by the TF-IDF-biased
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Figure 5.4: Performance of the PositionRank algorithm in case of full texts, full texts with no abstract,
and in case the ground truth keywords were chosen to be less generic. The y-axis represents
the value of precision, recall, and f-measure, calculated as described in Section 4.2.

TextRank, and the results were compared to the manually-generated ground truth. Both the
predicted and the ground truth classes are shown in Table B.3 and Table B.4. The classification
task obtains 22% in precision, recall and f-measure.
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Figure 5.5: Comparison of the biased TextRank with the baselines on full text after the removal of the
abstract. The y-axis represents the value of precision, recall, and f-measure, calculated as
described in Section 4.2.
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Figure 5.6: Comparison of the biased TextRank with the baselines on full texts, modifying the ground
truth keywords to be less general. The y-axis represents the value of precision, recall, and
f-measure, calculated as described in Section 4.2.
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C O M M E N T S A N D D I S C U S S I O N

6.1 biased pagerank : the reason behind it

The idea of a personalized PageRank had been introduced already in the original paper [21],
in 1998, but it wasn’t until recently that Florescu et al. applied it to the process of Keyword
Extraction [13]. Inspired by their work, the biased PageRank has been the central idea of
the first part of this thesis. The idea behind it is that the biasing of the PageRank algorithm
provides some additional knowledge to the overall algorithm, which will help obtaining better
quality keywords. Each bias gives a different contribution, and has the potential to provide
better results for the Keyword Extraction. For example, using the TF-IDF as bias should drive
the choice to those words which are characteristic of the document, those that best help to
distinguish it from others. On the other hand, the approaches that rely on clustering, the idea
is that each cluster would capture one of the aspects of the text, and the centroid words and
the ones closer to them would be a good representation of these concepts. When looking at the
position-based biasing, the words at the beginning of the text will have a higher importance
than the ones found towards the end, making the latter less likely to be selected as keywords.
When talking about using the distance to the central word as bias, the idea is that the central
word should capture the overall meaning of the document, and the closer a word is to it, the
better it is. Last but not least, by calculating the entropy difference between the intrinsic and
the extrinsic modes, the words that are equally spread in the text would get a lower score
than those that are found only in certain areas of the document. This reflects the idea that
keywords tend to attract each other, while common words are typically uniformly spread
within a document.

6.2 analysis of the results for keyword extraction

This section will analyze and explain the results shown in Chapter 5. Figure 5.1 represents
the first experiment, which aimed at understanding which baseline performed the best. It is
immediate to see that the TextRank algorithm performed better than the other candidates,
regardless of the window size used. It was therefore chosen as the designated baseline to per-
form the next experiments. Once the base algorithm was identified, the next phase involved
the application the biases on top of the TextRank to determine which of those was perform-
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ing the best. The results in Figure 5.2 show that the biasing of the PageRank on top of the
TextRank was able to outperform the baselines in multiple occasions, reaching peaks of more
than 27% F-measure. It is also noticeable how the newly-proposed centroid method, when
used as a bias on top of the TextRank, obtains comparable results to the baseline, proving the
validity of the algorithm. Given the promising results, as a follow-up, a second experiment
was conducted on the Small_full_texts dataset, to see how the algorithms would perform in a
more realistic scenario. In this case though, the results show that the PositionRank and the
position-biased TextRank obtain the best results (Figure 5.3). This is, however, not surprising,
since all the papers included in the dataset presented an abstract section at the beginning of
the document. In fact, as briefly mentioned in Section 4.5.1, the abstract represents a summary
of the content of the document, and as such, the words contained in it represent the perfect
candidate keywords. The reason why the PositionRank algorithm and the position-biased
TextRank are able to capture these words, highly depends on their location in the document.
But if the summary was not included, the PositionRank should not be performing as well
as it did. Similarly, if the ground truth keywords were not chosen to be general, but instead
selected to capture more detailed aspects of the document, the performances of the Position-
Rank should decrease. To verify these assumptions, different experiments were performed.
First, the performance of the PositionRank were calculated in 3 different scenarios: when the
algorithms was applied to full texts, when it was applied to full texts without abstracts, and
when the ground truth was modified so that the keywords were less general. As expected, the
performances in the two latter cases decrease compared to the case in which PositionRank is
applied to full texts (Figure 5.4). PositionRank was then compared to the other baselines and
to the biased-TextRank, on the Small_full_texts dataset, after removing the abstract from the
documents. As shown in Figure 5.5, despite the drop in performances of the PositionRank, it
still represent the leading algorithm, although now the biased TextRank is able to meet the
PositionRank’s performances in 3 occasions. The final experiment consisted in changing the
ground truth keywords. The newly selected words are more specific than the previous ones,
as shown in the example provided in Table 6.1. In the table, the left column presents the key-
words assigned by the authors of Keyword extraction by entropy difference between the intrinsic
and extrinsic mode [23] are shown, while on the right column the list gets expanded in order
to give a more thorough picture of the content of the document. The different algorithms
were ran again on the Small_full_texts dataset, with the new set of ground truth keywords.
The results in Figure 5.6 show a considerable drop in performance of the position-biased Tex-
tRank, of up to 4% in F-measure score, which caused this bias to lose its leading position.
This shows how the presence of the bias is able to influence the basic algorithm it is applied
to, confirming the good intuition behind the work.
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Table 6.1: Example of modified list of keywords on Small_full_texts dataset

Normal Keywords Specific Keywords

keyword extraction
entropy difference
intrinsic mode
extrinsic mode

keyword extraction
ranking

statistical analysis
spectra

entropy difference
intrinsic mode
extrinsic mode

occurrence
frequency

distribution
topic

local separation
microstate

entropy
word

word token
word type

term
book

boundary condition
statistical distribution

It is important to keep in mind that the results were obtained using a strict evaluation metric,
which puts hard constraints on what is considered to be a match with the ground truth, hence
presenting the performances in the worst case. For example, words like email and e-mail are
considered to be a mismatch. In the future, some pre-processing of the ground truth might
be needed to fix this imperfection of the metric used. It would be quite easy to relax these
constraint to obtain better results in terms of precision, recall and f-measure, for example by
considering as a match the cases in which a selected keyword is included in one of the ground
truth keywords, or allowing two keywords to match if they share the same origin of the word.
An example of the changes in performances when relaxing the constraint is available in Ta-
ble 6.2. Another factor that could influence the results is the subjectivity of the keyword
selection task. As discussed in Section 1.1, when two people are given the same text, it is
highly probable that the keywords selected by the first person are going to be different from
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Table 6.2: Difference in F-measure when relaxing constraints on the comparison of keywords. Matching
keywords indicated in bold.

True Keywords Selected Keywords Selected keywords
(Relaxed metric)

infancy
medium
education
mass
exposure
empowerment
socio
economic
mortality

infant
medium
study
mass medium
exposure
regional
mother
regional variation
infant mortality

infant
medium
study
mass medium
exposure
regional
mother
regional variation
infant mortality

F-measure with strict metric: 22%
F-measure with relaxed metric: 55%

the ones selected by the second person. The key point here is that the two sets of keywords
could be both equally good, therefore being different doesn’t necessarily mean that one of the
two sets is wrong. On this regard, sometimes texts yielding higher f-measure (30%) and texts
yielding lower f-measure (0%) when double-checked by human might be indistinguishable
in the sense that the keywords provided by the algorithm in both cases make equal sense
and seem to capture the "true" meaning of the texts (examples can be found in Table B.2 and
Table B.1). Cases like this highlight the difficulty of this task, particularly related to its eval-
uation. A different element influencing the results in this thesis is the choice of keeping the
maximum number of terms in a keyphrase equal to 2. As already mentioned in Section 4.2,
having this limit in combination with the strict comparison metric yields generally lower per-
formances. The reason why it was set to this value is due to the keywords in the IRIS_abstracts
dataset, which were for the most part composed of maximum two terms. When moving to
the IRIS_full_texts dataset though, the keywords seemed to be mostly composed of three or
more terms. Due to time constraints, it was not possible to investigate this further to deter-
mine the best value for the parameter, which was left as it was. One final remark concerns
some of the biasing algorithms which have not performed as well as the others. In particular,
the DBScan and Kmeans biases generally present the lowest performances. Although the two
methods have potential, they haven’t been explored in much details, to allow focusing on
more detailed experiments around the other more promising biases. In fact, the tuning of the
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DBScan and Kmeans parameters allows for a lot of possible outcomes, which haven’t been
addressed in this work, hence leaving space for further work and improvement.

6.3 analysis of the results for the keyword classification

This section will discuss the results obtained when classifying keywords, during the final
experiment on the IRIS_full_texts dataset. The system takes as input a subset of 3985 textual
documents, and outputs for each document a list of keywords and the class each belongs
to. As discussed in Section 4.2, 10 papers were randomly extracted, and the extracted key-
words were manually classified to generate the ground truth. The complete list of papers and
extracted keywords is available in Table B.3 and Table B.4. The first version of the classifier,
in terms of precision, recall and f-measure, obtained 22%. As can be seen from the detailed
results though, the output of the classifier appeared to be strongly biased towards the section
of type "Evaluation". The reason is to be found in the lack of time, necessary to explore and
tune all the hyper-parameters of the model. The constructed LSTM is though a good starting
point and with proper setting of the parameters and consequent re-training of the model, the
results would improve and the system would be able to show its full potential.

6.4 threats to validity

This section aims at presenting the limitation of this work, which could compromise its valid-
ity. In particular, as mentioned in Section 4.1, the dataset used to conduct the final experiment
included papers belonging solely to the medical domain, which limits the validity of the re-
sults on that area only. Moreover, the experiments on Keyword Extraction performed on full
texts were run on the Small_full_texts dataset, composed of only 11 papers. For the results to
be generally valid, the experiments need to be executed on a bigger dataset. In addition to
this, the IRIS_full_texts dataset contained a considerable number of ground truth keyphrases
which were composed of more than 2 terms, which meant that they could never be a match
with the extracted ones. Also, some of the ground truth keywords were not present in the
original document, meaning that the authors were rephrasing the main concepts, rather than
extracting them directly from the text. Again, this means that those keywords were automat-
ically a miss when computing precision, recall and f-measure. Given more time, the fixing of
these two aspects would be possible and the performances would consequently increase. Fi-
nally, the tuning of the parameters of the Neural Network could not be thoroughly explored,
due to time constraints concerning the thesis work, which led to the best model having a
strong bias towards one class. Table 4.3 shows the parameters that were chosen to create
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the LSTM model, which were, for the vast majority, left to the default values1. The process
for fixing this problem consists in the proper tuning of the hyper-parameters of the model.
Although straightforward, it could be time consuming.

1 Default values taken from: https://machinelearningmastery.com/use-word-embedding-layers-deep-learning-keras/

https://machinelearningmastery.com/use-word-embedding-layers-deep-learning-keras/
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F I N A L R E M A R K S A N D F U T U R E W O R K

7.1 conclusions

The work presented in this thesis focused on providing an efficient and effective way to ex-
tract and classify keywords. The presence of keywords, in fact, would significantly speed up
the automatic understanding of the content of a document, while their classification would
provide some more insights on the structure of the document itself. In order to achieve this
goal, inspired by the work of Florescu et al. in PositionRank [13], who use the position of the
words in the text to bias the score of the words, a different version of the TextRank algorithm
was proposed, which was biased using the TF-IDF score instead of the position. The results
are particularly good in the case of application of the algorithm to abstracts, in which the
TF-IDF-biased TextRank was by far the best performing algorithm. In the other cases, the pro-
posed solution is able to outperform the TextRank, TF-IDF and Centroid baselines in all the
experiments, and match the results of PositionRank in two occasions. For the classification
part, an LSTM Neural Network was adopted as a classifier to assign the extracted keywords
to the correct category: problem, solution, evaluation or results. Despite the promising out-
comes of the algorithm, the time frame of the thesis did not allow for a thorough examination
of all the possibilities, and some details have remained unexplored. The following section
aims at presenting some suggestions on how to continue and expand the work of this thesis.

7.2 future work

Different directions can be taken to improve, complete and expand the work of this thesis.
One could start by looking at the baseline algorithms, or focus on the biases, or work on
the classification task. Concerning the baselines, it was mentioned that the ExpandRank algo-
rithm was not included in the experiments due to its computational time. An optimization of
the code could be performed, in order to include it and have a more thorough comparison
of the proposed approach with existing algorithms. As for the biases, it would be interesting
to explore in more details the newly-proposed centroid approach. In particular, one could
start by analyzing why, despite the results of the TextRank and Centroid baseline present a
gap in performances of around 13%, when the centroid algorithm was applied as a bias the
results were comparable to those of the TextRank, if not better. This could lead to a broader
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analysis of the biases, for example trying to understand in what part does the bias influence
the results, and why. Still concerning the biases, one could think about performing a fine
tuning of the k-means and DBscan algorithms, in order to see if they could lead to better
results, or implementing the SingleLinkage algorithm in a more efficient way, so that it could
be included in the experiments as well. As future work, it could be possible to find a way to
automate the evaluation process for the classification part, which was manually performed
in this thesis. Regarding the classification part, the most significant contribution to this work
would be to automate the evaluation process for the keyword classification task. This would
allow the execution of the algorithm on a bigger dataset and a more precise measure of the
performances. Another possibility consists in thoroughly tune the hyperparameters of the
LSTM model, in order to be able to choose the best configuration. Finally, on a more general
note, it could be interesting to try to optimize the code and make some considerations and
comparisons about the time complexity of the algorithm.
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a.1 documents in small_full_texts dataset

1. Keyword extraction by entropy difference between the intrinsic and extrinsic mode [23]

2. Single Document Keyphrase Extraction Using Neighborhood Knowledge [30]

3. KEA: Practical Automatic Keyphrase Extraction [19]

4. Keyword and Keyphrase Extraction Techniques: A Literature Review [12]

5. Keyword Extraction from Emails [9]

6. KX: A flexible system for Keyphrase eXtraction [18]

7. The PageRank Citation Ranking: Bringing Order to the Web [21]

8. PositionRank: An Unsupervised Approach to Keyphrase Extraction from Scholarly Documents
[13]

9. Automatic keyword extraction from individual documents [22]

10. TextRank: Bringing Order into Texts [8]

11. Using TF-IDF to Determine Word Relevance in Document Queries [17]

a.2 iris_full_texts dataset format

The following code illustrates the format (JSON) of the files contained in the IRIS_full_texts
dataset. Squared brackets "[]" indicate a list, while curly brackets "{}" indicate a dictionary.

Listing A.1: Format of IRIS_full_texts dataset

1 {

2 "pmcid": <document id>,

3 "doi": <doi>,

4 "abstract": <abstract section>,

5 "author_info":
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6 [

7 {

8 "affiliation": <affiliation author 1>,

9 "name": <name author 1>

10 },

11 ...

12 {

13 "affiliation": <affiliation author M>,

14 "name": <name author M>

15 }

16 ],

17 "language": "en",

18 "author_notes": <notes of the author>,

19 "keywords": [<list of keywords>],

20 "fulltext":

21 [

22 {

23 "section_title": <title section 1>,

24 "section_text": <text section 1>

25 },

26 ...

27 {

28 "section_title": <title section N>,

29 "section_text": <text section N>

30 },

31 ],

32 "title": <title of the document>

33 }

a.3 documents for lstm evaluation

For the evaluation of the performances of the LSTM, a sample of 10 random documents was
extracted and the keywords provided were manually classified. The following list indicates
the PMCID and title of the papers utilized for the evaluation.

1. PMC4613277 - An Ensemble Method to Distinguish Bacteriophage Virion from Non-Virion
Proteins Based on Protein Sequence Characteristics

2. PMC4970041 - A Three-Dimensional Shape-Based Force and Stiffness-Sensing Platform for
Tendon-Driven Catheters
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3. PMC4447720 - A framework to observe and evaluate the sustainability of human–natural sys-
tems in a complex dynamic context

4. PMC4072843 - Rapid molecular genetic diagnosis of hypertrophic cardiomyopathy by semicon-
ductor sequencing

5. PMC4505166 - Transcriptome and ultrastructural changes in dystrophic Epidermolysis bullosa
resemble skin aging

6. PMC5676814 - Addressing sufciency of the CB1 receptor for endocannabinoidmediated func-
tions through conditional genetic rescue in forebrain GABAergic neurons

7. PMC3897982 - A systematic review and meta-analysis of the effects of antibiotic consumption
on antibiotic resistance

8. PMC4741544 - Mitochondrial mass, a new metabolic biomarker for stem-like cancer cells: Un-
derstanding WNT/FGF-driven anabolic signaling

9. PMC1173079 - Patient-initiated switching between private and public inpatient hospitalisation
in Western Australia 1980 – 2001: An analysis using linked data

10. PMC5527246 - Development and Optimization of a New Chemoenzymatic Approach for the
Synthesis of Peracetylated Lactosamine (Intermediate for the Synthesis of Pharmacologically
Active Compounds) Monitored by RP- HPLC Method





B
A P P E N D I X B : R E S U LT S

b.1 evaluation of results : beyond the numbers

This section aims at showing how, when performing the task of Keyword Extraction, the
numbers in the results are often misleading. In particular, Table B.1 shows a sample text and
the extracted keywords, where the results show a 30% in f-measure, while Table B.2 shows
another text and keywords, with a resulting f-measure of 0%. If one stops at the results,
it might seem that the keywords for the first text were better than the keywords for the
second text. Looking at them closely though, one could argue that they actually describe the
document pretty well, capturing its "true" meaning.

Table B.1: Example of Keyword Extraction performed with the TF-IDF biased TextRank on a sample
text taken from IRIS_abstracts dataset. F-measure: 30%. In bold the extracted keywords, at
the bottom the true keywords. The correctly identified keywords are underlined.

In this paper we first describe the class of log-Gaussian Cox processes (LGCPs) as models
for spatial and spatio-temporal point process data. We discuss inference, with a particular
focus on the computational challenges of likelihood-based inference. We then demonstrate
the usefulness of the LGCP by describing four applications: estimating the intensity surface of
a spatial point process; investigating spatial segregation in a multi-type process; constructing
spatially continuous maps of disease risk from spatially discrete data; and real-time health
surveillance. We argue that problems of this kind fit naturally into the realm of geostatistics,
which traditionally is defined as the study of spatially continuous processes using spatially
discrete observations at a finite number of locations. We suggest that a more useful definition
of geostatistics is by the class of scientific problems that it addresses, rather than by particular
models or data formats.
True Keywords: temporal, MCMC, cox process, hierarchical model, continuous, spatial, MAUP,

count data, INLA, geostatistics

b.2 results for the classification task
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Table B.2: Example of Keyword Extraction performed with the TF-IDF biased TextRank on a sample
text taken from IRIS_abstracts dataset. F-measure: 0% In bold the extracted keywords, at the
bottom the true keywords.

We propose an analytical framework for studying bidding behavior in online auctions. The
framework focuses on three key dimensions: the multi-stage process, the types of value-
signals employed at each phase, and the dynamics of bidding behavior whereby early choices
impact subsequent bidding decisions. We outline a series of propositions relating to the auc-
tion entry decision, bidding decisions during the auction, and bidding behavior at the end
of an auction. In addition, we present the results of three preliminary field studies that investi-
gate factors that influence consumers’ value assessments and bidding decisions. In particular,
(a) due to a focus on the narrow auction context, consumers under-search and, consequently,
overpay for widely available commodities (CDs, DVDs) and (b) higher auction starting prices
tend to lead to higher winning bids, particularly when comparable items are not available
in the immediate context. We discuss the implications of this research with respect to our
understanding of the key determinants of consumer behavior in this increasingly important
arena of purchase decisions.

True Keywords: dimension, analytical, process, framework, assessment, particularly
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Table B.3: Detailed results for the classification task (1/2). P: Problem, S: Solution, E: Evaluation, R:
Results.

Document
PMCID

Extracted
Keywords

True
Class

Output
Class

1. PMC4613277

virion protein
sequence
prediction
protein

P
P
S
E

E
E
E
E

2. PMC4970041

catheter
force
force stiffness
stiffness
estimation
tip

P
S
E
E
E
S

E
E
E
E
E
E

3. PMC4447720

sustainability
et
dimension
boundary
knowledge
new

S
P
S
E
S
S

E
E
E
E
E
E

4. PMC4072843

hcm
sequence
sanger sequence
cardiomyopathy hcm

P
S
E
P

E
E
E
E

5. PMC4505166

age
skin
rdeb
gene
protein
age process

P
P
p
R
E
P

E
E
E
E
E
E
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Table B.4: Detailed results for the classification task (2/2). P: Problem, S: Solution, E: Evaluation, R:
Results.

Document
PMCID

Extracted
Keywords

True
Class

Output
Class

6. PMC5676814

cb1

et
cb1 receptor
receptor
gabaergic

P
P
P
P
R

E
E
E
E
E

7. PMC3897982

resistance
journal
antibiotic
infectious

P
P
P
S

E
E
E
E

8. PMC4741544

cell
fgf3
wnt1
isogenic cell
cell model

S
E
S
S
S

E
E
E
E
E

9. PMC1173079

public
couplet
phi
interval

E
S
R
S

E
E
E
E

10. PMC5527246

product
hydrolysis
synthesis
oligosaccharide
substrate
yield

R
E
E
R
R
R

E
E
E
E
E
E
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