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Summary

In recent years, the increasingly frequent and daily use of the Internet has made the cloud
sector, one of the fastest growing IT sectors especially thanks to all companies that base
their services on the Cloud.
In fact, all these companies receive billion of requests for second to access their web contents
and so their main purpose is to give to the final user the most performing experience in
term of quality of the service and especially, in the response time.
For this reason, in the last years, new technologies were born, for example the SDN 1 that
suggests to centralize network intelligence in one network component by disassociating
the forwarding process of network packets (Data Plane) from the routing process (Control
plane) and NFV (Network Function Virtualization) that consists to the decoupling network
functions such as routing, fire-walling, and load balancing for the enterprise data center.
All of these technologies have found its main application in the data-centers management
and networking in order to increase the speed and the performance.

Despite the rapid adoption of these cloud technologies, there is still a big important
problem to try to solve and it is the deficit in the ability to reliably distribute workloads
across multiple clouds, multiple data-centers and hybrid infrastructures. All of these give
as result a poorly distributed workloads and degraded application performance.
A possible solution is to manage the workloads at upper lever demanding this work to a
single service called Load Balancer.

In this scenario, the development of new kind of Load Balancer that distributes work-
loads to backend servers in an intelligent way is needed. All of this ensures an optimized
use of the resources and so we have an important increase in the performance.
In the last years, the load balancer world is changed to moving from the traditional
hardware-based load balancer such as Kemp, Citrix to the software-based load balancer
such as HAProxy and NGINX.
The continuous expansion of the software-based load balancer is due to the fact that they
are less expensive than the hardware-based one and furthermore, the cloud load balancer
can be deployed to manage both a private data-center or in the public cloud without any
special configuration and limitation.

1SDN stands for Software-Defined Networking and it is a novel approach to cloud computing that
facilitates network management
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In software-based load balancer scenario, a traditional load balancer has a dedicated server
in which it acts, forwarding all the traffic to the real backends using a multiple NICs (Net-
work Interface Cards). Furthermore, a traditional load balancer is a single point of failure,
in fact, it is deployed in a High Availability Cluster 2, in order to solve this problem.
In addition to these technologies, there is another important news in the networking field:
the development of eBPF 3.
eBPF programs, more generally called IOModules 4, are used for networking, socket filter-
ing, tracing and security and they can be attached to the Linux TC (traffic control) layer
in order to increase the performance, manipulating packets at lowerest level.
Furthermore, in the last year a new technology, called XDP (eXpress DataPath), has been
introduced in the networking world and its purpose is to provide a high performance,
programmable network data-path in the Linux Kernel.
The main idea is, to create a specific load-balancing layer using XDP. In this way, we
can run the load balancer software directly on the “back-end” server, with no dedicated
central server as the traditional ones. Furthermore, we have an enormous increment in
the speed, because thanks to xdp, we manipulate the packets for the load balancing at the
lowerest level, before the OS has spent too many cycles on the packet. All of these means
that the XDP load balancing uses much less CPU than the traditional ones, maintaining
high performance in terms of transactions for second that the load balancer performs.

The thesis’s purpose is to implement a new kind of load balancer using the eBPF’s
technology in order to increase the performance and, at the same time, minimizing the
CPU’s usage. The load balancer will be implemented as a service of the IOVnet’s frame-
work5 that uses all technologies mentioned above.
In order to implement the most possible generic load balancer, this prototype ensures
several features: (1) Session Affinity that means that each client will communicate always
with the same real backend, (2) supports and manages all TCP, UDP, ICMP traffic (the
load balancer is transparent to the all other protocols), (3) supports the Weighted Backend
in order to differentiate the load on the backends and finally, (4) minimizing the number
of backend failovers.
To ensure these features and guarantees a fast way to make the load balancing (in partic-
ular in the selection of the real backends), we have chosen, as load balancing algorithm, a
new technique called Consistent Hashing.
Consistent Hashing is based on mapping each object to a point on the edge of a circle

2HA Cluster is used to harness redundant computers in groups or clusters that provide continued service
when system components fail

3eBPF stands for (extended-Berkeley Packet Filtering) and it is an enhancement over cBPF (which is
for classical BPF)

4IO Modules represents a general purpose input/output object that can be dynamically injected into
the Linux kernel at runtime

5IOVnet is a framework to create and deploy IOvisor-based arbitrary virtual network functions, such
as bridges, routers, NATs and so on using IO Modules
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through a hashing function.
In fact, the idea is the following: when a packet arrives, we apply the hash function on the
5_values (session) 6 of the packet and places it on the circle, then walks around the circle
until the first backend’s point is found. So, we have found a backend for that packet, and
all future’s connection with the same session ID is sent to the same backends (guaranteeing
the Session Affinity), even when others backends go down.
Furthermore, by using this algorithm, we minimize the number of session’s changes when a
real backend goes down and so the connection needs to be moved to another real-backend.
During the setting up of the load balancer, it gives the opportunity to set a specific weight
to each real backend. If all the backends have the same weight, all the backends will have
the same probability to be chosen to serve the request incoming in the load balancer, so
in this scenario, we can have a uniform distribution of the workloads.

Finally, for the validation of this prototype, we have tested it in order to get two impor-
tant values (transaction rate and CPU’s usage) to be compared with the most important
commercial product such as HAProxy, LVS and IPTables, that use a different technology
(for example LVS and IPtables works in the Linux Kernel) and with its direct competitors
such as Cilium Load Balancer that uses the same our technology (XDP).

The first tests showed that the load balancer, proposed in this thesis, has a transaction
rate slightly less than LVS but greater than HAproxy and IPTables.
On the other hand, comparing the CPU’s usage of all the load balancer, during the tests,
we have discovered that our load balancer uses 1/5 of the CPU’s system used from LVS
and about 1/10 of the CPU’s system used from HAProxy.
The second tests showed (comparing with its direct competitors, especially Cilium) that
the load balancer, proposed in this thesis, has a transaction rate about 60% greater than
Cilium’s one and the throughput is 2x Cilium’s one.

The work, in this thesis, show that it is possible to implement a load balancer in XDP,
so having a load balancer with high performance but, at the same time, minimizing the
CPU’s and system’s resources usage.
In the next months, we are going to update the code that performs the load balancer in
order to improve its features and performance, for example the load balancer will support
the High-Availability, so, in this scenario, if the master load balancer will go down, there
will be replaced by a second load balancer that has the same configuration of the master.

65_values (session) are the destination IP, source IP, destination port, source port, protocol
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Chapter 1

Introduction

In order to clarify its purpose and consistency, it is of prominent interest to contextualize
this work and illustrate the goals.

1.1 Context and Motivation

In recent years, the increasingly frequent and daily use of the Internet has made the cloud
sector, one of the fastest growing IT sectors.
In fact, each day the main web companies receive billion of requests for second to access
their web contents, based on what the company offers to their users; for this reason their
main purpose is to give to the users the better product that is translated into the increas-
ing of performance, minimizing the response time for the user.
All of these has brought to the increasing interest in the datacenter technologies (espe-
cially for the management and networking ), in fact, in the last years new technologies
have come in the networking world such as the SDN and NFV:

• Network functions virtualization (NFV) 1 technology started with service providers
trying to achieve IT simplicity, agility, and cost reduction by decoupling network
functions such as routing, firewalling, and load balancing for the enterprise data
center;

• Software-defined networking (SDN) 2 technology is a novel approach to cloud com-
puting that facilitates network management and enables programmatically efficient
network configuration in order to improve network performance and monitoring.
SDN suggests to centralize network intelligence in one network component by disas-
sociating the forwarding process of network packets (Data Plane) from the routing
process (Control plane);

1Network Function Virtualization: State-of-the-art and Research Challenges [1]
2Software-Defined Networking: A Comprehensive Survey,[2]
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1 – Introduction

In addition to these technologies, there is another important news in the networking
field: the development of eBPF(extended-Berkeley Packet Filtering).
eBPF is an enhancement over cBPF (which is for classical BPF3), proposed by Alexei
Starovoitov in 2013 and it has introduced lots of features in order to increase performance
in the packet filtering. eBPF programs are used for networking, socket filtering, tracing
and security.
Furthermore, eBPF programs, more generally called IOModules 4, can be attached to the
Linux TC (traffic control) layer in order to increase the performance, manipulating packets
at lowerest level.

These technologies are the basis for the future of networking, especially for the data-
centers.
In fact, in the last years, a lot of projects were born: from the precursors of the Cloud
Management System world the OpenStack’s project to the new Networking project called
IOVisor.

1.2 Thesis Organization
The report is organized as follows:

• The Chapter 2 State of Art in chapter two we analyze the scenario of the
architecture and the currents problems related to the modern load balancers;

• The Chapter 3 Background in chapter three we present all the technologies and
tools studied and used to implement a powerful load balancer;

• The Chapter 4 IOV-lbrp Architecture in chapter four we discuss the load bal-
ancer reverse proxy’s architecture and our prototype of load balancer;

• The Chapter 5 IOV-lbrp Implementation in chapter five we discuss the details
of the load balancer reverse proxy ’s implementation, analyzing the data structures
of the data-path and control-path;

• The Chapter 6 Testing and Performance in chapter six we analyze the testing
focusing our attentions on the performance. Finally, we compare the results with
the actual existing load balancer in commerce;

3The BSD Packet Filter: A New Architecture for User-level Packet Capture [3]
4IO Visor. Hover Framework: IOModules manager [9]
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Chapter 2

State of Art

In chapter two we analyze the actual scenario for the load balancers in commerce.

2.1 Scenario

Nowadays, the main purpose of a data center is to provide flexibility and performance,
in term of response time, to their users. Both the management and the networking of a
data-center are complex fields, but in the recent years several new frameworks were born
such as OpenStak, Kubernetes.
OpenStack is for the data-center orchestration and one of the most important competi-
tors of OpenStack is Kubernetes, a new platforms sponsored by Google. While IOVisor
project’s main purpose is the replacement of the old networking infrastructure by using
new technologies such as eBPF. This way will give an important increase in the networking
performance especially for the data-center traffic.

Despite the rapid adoption of these cloud technologies, there is still a big important
problem to try to solve and it is the deficit in the ability to reliably distribute workloads
across multiple clouds, multiple data centers and hybrid infrastructures. All of these give
as result a poorly distributed workloads and degraded application performance.
A possible solution is to manage the workloads at upper lever demanding this work to a
single service called Load Balancer .

In this scenario, the development of new kind of Load Balancer that distributes work-
loads to backend servers in an intelligent way, is needed. All of this ensures an optimized
use of the resources and so we have an important increase in the performance.
Recently, the load balancer world moved from the traditional load balancer such as Kemp,
Citrix that are hardware-based load balancer to the new software-based load balancer such
as HAProxy, Nginx and Amazon ELB .
As a software load balancer, not only cloud load balancing are less expensive than hardware-based
solutions with similar capabilities but they have some advantages, for example, they can
be deployed in the public cloud as well as in private data centers without any particular

3



2 – State of Art

configuration.

2.2 Traditional vs Untraditional Load Balancer

Traditional Load Balancer

The traditional load balancer like IPVS 1 has more NICs (Network Interface Cards), and
forwards traffic to the back-end servers.

The current XDP implementation provides several actions such as XDP_TX, from
kernel 4.8, that can only forward packets back out the same NIC they arrived on. This
makes XDP not useful for implementing a traditional multi-NIC load balancer.

A traditional load balancer easily becomes a single point of failure. Thus, multiple
load balancers are usually deployed, in a High Availability (HA) cluster. In order to
make load balancer failover transparent to client applications, the load balancer(s) need
to synchronize their state (E.g. via IPVS sync protocol sending UDP multicast, preferable
send on a separate network/NIC).

Untraditional Load Balancer

The Untraditional Load Balancer ’s purpose is to implement a load balancer without any
dedicated servers for load balancing like the traditional one. Furthermore, we want a load
balancer that is 100% scalable and with no single point of failure.

The main idea is, allow XDP to be the load-balancing layer. Running the XDP load
balancer software directly on the “back-end” server, with no dedicated central server. It
corresponds to running IPVS on the backend (“real servers”), which is possible, but it is
generally not recommended (in high load situations), because it increases the load on the
application server itself, which leaves less CPU time for serving requests.

In this scenario, XDP has an enormous advantage in the speed. The XDP load balance
forwarding decision happens very early, before the OS has spent/invested too many cycles
on the packet. This means the XDP load balancing functionality should not use a lot of
CPU like the traditional load balancer. Thus, it should be okay to run the service and LB
on the same server.

So, in this thesis we will present a prototype of the load balancer working in XDP with
the high performance of the traditional load balancer, but reducing the CPU’s usage in a
significant way.

1IPVS (IP Virtual Server) implements transport-layer load balancing, usually called Layer 4 LAN
switching, as part of the Linux kernel.
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2 – State of Art

2.3 Goals
Thesis’s main purpose is to extend IOVnet framework ’s services by implementing a Cloud
Load Balancer working as an IOModule that will distribute all datacenter workloads to
proper backends in an efficient way.
The Load Balancer is implemented in according to the new eBPF’s technology (that
perform all the operations in the kernel space) in order to increase the performance. Fur-
thermore, this load balancer supports the common L3/L4 protocols such as ICMP,UDP
and TCP .

The main advantages of the new approach are:

• Performance: our goal is to implement a load balancer that gives the best perfor-
mance in term of workload load balancing; this is ensured by using eBPF’s technology
and efficient load balancing algorithm;

• Reliability: the load balancer keeps connections alive when backends go down,
minimizing the number of session’s changes (automatic backend failover);

• Session Affinity to ensure that a client will be served always by the same backends
in order to keep the same session (TCP traffic);

• Scalability our goal is to implement a load balancer that supports all kind of traffic
and ensures an optimal load balance for the workloads of the datacenter;

• CPU usage: our goal is to reduce the cpu usage maintaining the same or greater
performance;

5



Chapter 3

Background

In chapter three we present all the technologies studied and used for the implementation
of the load balancer .
Furthermore, in the last section, we discuss the used tools for the testing and a subsection
about the related works.

3.1 BPF

3.1.1 BPF (o cBPF)

BPF o cBPF (Berkeley Packet Filter) is the first in-kernel packet filter proposed, for
the first time, in 1992, by Steven McCanne and Van Jacobson from Lawrence Berkeley
Laboratory.
The main purpose is to increase the performance of the packet filtering by minimizing
unwanted network packet copies to userspace.
It is based on BSD Unix systems and was introduced in Linux kernel version 2.1.75, in
1997.

The original idea behind BPF is to move the filtering from user space to kernel space,
in this way they can be filtered as early as possible. All of this is possible thanks to a
virtual machine in the kernel that runs the BPF’s programs. BPF programs are written
in their own bytecode and injected into the virtual machine. These programs have sev-
eral limitations, for example in order to guarantee the safety of the programs, loops are
avoided. A BPF program running in the kernel virtual machine can fetch data from the
packet, perform some simple arithmetical computation and comparison. As result, the
BPF program can drop or trim packets and pass them to userspace.

6



3 – Background

Figure 3.1. Classic BPF ’s architecture

There are two registers: an accumulator and an index register. The machine also has
a small scratch memory area, an implicit array containing the packet in question, and
a small set of arithmetic, logical, and jump instructions. The accumulator is used for
arithmetic operations, while the index register provides offsets into the packet or into the
scratch memory areas.
A very simple BPF program (taken from the 1993 USENIX paper [3]) might be:

1 ldh [12]
2 jeq # ETHERTYPE_IP , l1 , l2
3 l1: ret #TRUE
4 l2: ret #0

Figure 3.2. BPF ’s program example

The first instruction loads the Ethernet type field. We compare this to type IP. If the
comparison fails, zero is returned and the packet is rejected. If it is successful, TRUE is
returned and the packet is accepted. (TRUE is some non-zero value that represents the
number of bytes to save.)

BPF is used by several tools such as tcpdump/libpcap2, wireshark3, nmap, dhcp, arpd.
All of these programs use the BPF virtual machine to perform in-kernel efficient packet
filtering.
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In particular LibPcap1 for Linux and WinPcap 2 for Windows are two important libraries
that provide high-level abstraction and helper in order to generate and compile BPF
bytecode for packet filtering. Thanks to this library we can write a program that creates
and loads a packet filter, easily using the C-like language, but maintaining bpf’s limitations.

3.1.2 BPF just-in-time compiler

A just-in-time (JIT) [6] compiler was introduced into the kernel in 2011 to speed up BPF
bytecode execution. This compiler translates BPF bytecode into a host system’s assembly
code. It is disabled by default on the system, and must be enabled by the admin.

3.1.3 eBPF

Extended BPF (eBPF) is an enhancement over cBPF (which is for classical BPF)
proposed by Alexei Starovoitov in 2013 and it was introduced in the Linux Kernel since
version 3.15.
It is like BPF but with more resources, such as 10 registers and 1-8 byte load/store in-
structions. In fact, now, we have not BPF’s limitation about avoiding loops, so there
can be a loop, which, of course, the kernel ensures terminates properly(in fact there is a
limitation on the number of cycles in a loop).
eBPF introduces new elements in the architecture, for example the introduction of global
data store called maps, whose state persists between events. eBPF gives us a lot of func-
tions called helpers that helps us during the implementation of a bpf program.
Therefore eBPF can also be used for aggregating statistics of events. Further, an eBPF
program can be written in C-like functions, which can be compiled using a GNU Compiler
Collection (GCC)/LLVM compiler. eBPF has been designed to be JIT’ed with one-to-one
mapping, so it can generate very optimized code that performs as fast as the natively
compiled code.

1Libpcap is the library for packet capture (pcap) on Linux [4]
2WinPcap is the porting of libcap on Window [5]
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Figure 3.3. eBPF’s overview

BPF is based on two important components:

• CLANG : acts as C,C++,objectC compiler . It is a frontend of LLVM;

• LLVM (Low Level Virtual Machine): supports the compilation of programs written
in C,C++,ObjectC. It supports as frontend CLANG.

BPF program is written in C and it is compiled into an object (ELF) files, which are
passed by User Space kernel thought the BPF system call. The kernel verifies the BPF
instructions and jits them, returning a new file descriptor for the program, which them can
be attached ti a subsystem (e.g.networking). If supported, the system could then offload
the BPF program to the hardware NIC (e.g XDP mode).

Figure 3.4. eBPF’s overall
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BPF Kernel Hook Points

For clarity, these are some types of eBPF programs (it depends how it is attached to the
hook point):

• The TC (Traffic Control) programs can be attached to the traffic control layer
of the Linux networking stack, both in ingress and in egress. These programs can
perform packet manipulation, redirect, clone and in general implement a network
function, see 3.1.4 .

• The XDP (eXpress Data Path) that provides high performance in the network-
ing (new). XDP programs are attached at the earliest networking driver stage and
trigger a run of BPF program upon the packet reception, see 3.1.5 .

• The Socket Filters programs can be attached to a socket and they can perform the
classic packet filtering process: inject the filter program into the kernel and then the
program can return the filtered packet to the userspace, and drop the other packets
[8]; it was the original tcpdump use case.

• The Tracing the idea behind this kind of program is to trigger the eBPF program
every time a kernel or system wide event is intercepted. A program can be loaded,
and then attached to some events:kprobe,tracepoints,uprobes,USDT probes4 [8].

In the next chapters we will analyze the load balancer in both Traffic Control (TC)
and eXpress Data Path’s (XDP) modes.

Three are the main advantages of eBPF :

• Kernel programmable plane without having to cross kernel/user spaces bound-
aries. We don’t move packets to user space and back into the kernel;

• Flexibility of the Programmable Data Path, in fact, the program can change
dynamically depending by the particular USE CASE. If a container does not require
IPv4, then the BPF program can be constructed only deal with IPv6 in order to
save resources in the fast-path.

• No Traffic interruption, in fact, in case of networking (XDP), BPF programs can
be updated atomically without having to restart the kernel or any containers.

BPF Verifier

The BPF verifier is the component that verifies if the bpf program is written in order to
respect all bpf limitations. It disallows back edges, unreachable blocks, illegal code, finite
execution. You cannot have memory accesses from off-stack, or from a unverified source.
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3.1.4 Traffic Control (TC)

Traffic control[7] is the name given to the sets of queuing systems and mechanisms by
which packets are received and transmitted on a router.
It is a layer in the Linux TCP/IP stack composed by two separated chains: egress and
ingress.

In the majority of situations, traffic control consists of a single queue which collects
entering packets and dequeues them as quickly as the hardware (or underlying device) can
accept them. This sort of queue is a FIFO.

3.1.5 eXpress Data Path (XDP)

XDP stands for eXpress Data Path and it provides a high performance, programmable
network datapath in the Linux Kernel.
In particular, XDP provides bare metal packet processing at the lowerest point in the soft-
ware stack.
Much of the huge speed gains come from processing RX packet page directly out of drivers
RX ring queue before any allocations of metadata structures like SKBs occurs.

LIMITATION
XDP cannot be applied for every usecases, for example, it does not provide fairness. In
fact, there is no buffering layer to absorb traffic bursts when TX device is too slow and so
packets will simply be dropped. You must not use XDP when RX device speed is greater
than TX device speed.

We can have three places where we can put an XDP program:

• Hardware Level

• Kernel Level

• User Level

XDP Actions

XDP performs the following several native actions (at lowerest level):

• XDP_PASS means that the XDP program chooses to pass the packet to the
network stack for processing;

• XDP_DROP instructs the driver to drop the packet. In particular, it recycles the
page driver: given this action happens, at earliest RX stage in the driver, dropping
a packet simply implies recycling it back into the RX ring queue it just "arrived" on;
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Figure 3.5. XDP’s Architecture

• XDP_TX results in TX bouncing the received packetpage back out the same NIC
arrived on. This action is usually combined with modifying the packet contents
before returning action XDP_TX;

• XDP_ABORTED is used when an eBPF program terminates with an error. The
result is that the packet is dropped;

• FALL_THROUGHT used when the eBPF program terminates with an unknown
error. The result is that the packet is dropped;

XDP depends on drivers implementing the RX hook and set-up API, in particular
when you put XDP program at the hardware level (XDP_DRV ).
In this mode, it requires a special kind of network card that supports XDP. The following
network card, actually, supports it :

• Intel ixgba

• Broadcom bnxt

Use Case

• vSwitch: implements a switch data plane in eBPF

• vRouter : implements a router/forwarding data plane in eBPF

• Load Balancer

• Security (DDos Mitigator and Firewall)
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3.2 IO Visor Project

The IO Visor Project [12] is an open source project and a community of developers to
accelerate the innovation, development, and sharing of new IO and networking functions.
It is a platform that includes a set of development tools, IOVisor Dev tools and a set
of IO Visor Tools for management and operation of the IO Visor Engine.
Furthermore, IO Visor Project provides a programmable data plane and development tools
to simplify the creation and sharing of dynamic IO Modules build on top of the IO Visor
framework. Its main purpose is to provide High Performance in Networking, Tracing,
Security and others.

With IO Visor, you can write in-kernel programs that implement atomic networking,
security, tracing or any generic IO function. You can also attach these programs to sockets,
so that they’ll be executed as traffic arrives in the kernel. The biggest benefit of IO Visor
is that you can program ANY network logic there (present or future) for ANY new version
of your protocol.

Figure 3.6. IO Visor Project overall
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3.2.1 BPF Compiler Collection (BCC)

BCC 3 is a toolkit to make eBPF programs easier to write, with front-ends in Python
and Lua. BCC requires LLVM and clang (in version 3.7.1 or newer) to be available on
target, because BCC programs do runtime compilation of the restricted-C code into eBPF
instructions.
As limitation , it require a linux kernel version greater than 4.1.
It is described by Ingo Monar as :

One of the more interesting features in this cycle is the ability to attach eBPF
programs (user-defined, sandboxed bytecode executed by the kernel) to kprobes. This
allows user-defined instrumentation on a live kernel image that can never crash, hang
or interfere with the kernel negatively.[11]

3.2.2 IO Modules

An IO Modules is a generic input/output object that can be dynamically injected into
Linux Kernel and in which can run eBPF programs to perform several operations such as
tracing, security, networking, ecc.
An IO Module is implemented using eBPF engine, the powerful inkernel virtual machine,
already described in the previous section.

Figure 3.7. IO Modules

3BCC stands for BPF Compiler Collection [10]
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As we can see from 3.7 an IO module exists both in User and Kernel Space and so
we can divide the IO module jobs depending if it is in kernel or user space. Inside the
kernel, eBPF programs can be run, chained together by a generic logic, and attached to
different kernel hooks (bridge, router as IO modules). Here, you can write the logic of the
IO module, for example if your IO module is a router , you should write the data-path and
so all functions that a router makes to work correctly. In the control plane , considered
as userspace component, a controller manages the iomodule injected. It’s also possible
to communicate between user and kernel space, using maps, and other communication
mechanism useful for two reasons: statistic and information read, and configuration and
status update of the iomodule.

3.3 Kubernetes
K8s (o Kubernetes) [13] is an open source system for managing containerized appli-
cations across multiple hosts, providing basic mechanisms for deployment, maintenance,
and scaling of applications.
Its predecessor was Borg, originally designed by Google. The open source project is hosted
by the Cloud Native Computing Foundation (CNCF).

Kubernetes is useful when you have several applications distributed on more containers
that are hosted on several server hosts. It gives the power to manage and orchestrate your
container in one or more cluster. It helps the management and the load balance on all the
server hosts, in fact you can scale up and scale down a single application. So, Kuberbetes
ensures us scalability and integrity of the application deployed on it.
The basic component is the so-called Node. A node is a worker machine in Kubernetes,
previously known as a minion. A node may be a VM or physical machine, depending
on the cluster. Each node has the services necessary to run pods and is managed by the
master components. The services on a node include Docker, kubelet and kube-proxy.
There are two kind of node: Master and Worker’s node. In a cluster we can have one
Master, in which there are running components useful for kubernetes’s life, and several
Minions in which you can deploy your application.

Kubernetes is composed of several parts. All its component are designed to be loosely
coupled, so its components have no knownledge of the definition of other separated com-
ponents:

• Pod is the basic scheduling unit in K8s. It consists of one or more containers that
are colocated on the host machine and we can share resources. It can be managed
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by API or by Controller;

• Controller is a daemon that embeds the core control loops shipped with Kubernetes.
In Kubernetes, a controller is a control loop that watches the shared state of the
cluster through the apiserver and makes changes attempting to move the current
state towards the desired state;

• KubeScheduler is a component on the master that watches newly created pods
that have no node assigned, and selects a node for them to run on.

• KubeApiServer is a component on the master that exposes the Kubernetes API;

• etcd is a consistent and highly-available key-value store used as Kubernetes’s back-
ing store for all cluster data;

3.3.1 K8s Networking

Kubernetes let us the choice to decide which Network frameworks it will use.
Kubernetes imposes the following fundamental requirements on any networking imple-
mentation (barring any intentional network segmentation policies):

• all containers can communicate with all other containers without NAT;

• all nodes can communicate with all containers (and vice-versa) without NAT;

• the IP that a container sees itself as is the same IP that others see it as;

There are several Network plugins to replace K8s’s Networking.
In this thesis we have created a Load Balancer, that can be supported in Kubernetes, if
it uses as Network CNI: the IOVnet’s CNI [14]. In this scenario, the load balancer will
replace the k8s’s load balancer that was performed by using ipTables. In this way we can
give to K8s an efficient and performant way to load balance the traffic in its network.

3.3.2 Kubernetes’s Service

A Kubernetes Service is an abstraction which defines a logical set of Pods and a policy
by which to access them - sometimes called a microservice. Kubernetes gives us several
types of Service:

• ClusterIP exposes the service on a cluster-internal IP. Choosing this value makes
the service only reachable from within the cluster.

• NodePort exposes the service on each Node’s IP at a static port (the NodePort). A
ClusterIP service, to which the NodePort service will route, is automatically created.
You’ll be able to contact the NodePort service, from outside the cluster, by requesting
NodeIP:NodePort.
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• LoadBalance exposes the service externally using a cloud provider’s load balancer.
NodePort and ClusterIP services, to which the external load balancer will route, are
automatically created.

The load balancer implemented in this thesis will support both NodePort and Clus-
terIP’s deployments.

3.4 IOVnet
Iovnet[14] is a framework to create and deploy IOvisor-based arbitrary virtual network
functions, such as bridges, routers, NATs, firewalls and more.
It uses the IOModule described in the last section and so enables the creation of complex
service chains by connecting together the above modules.
Iovnet includes some existing components such as the eBPF virtual machine and the BCC
compiler collection, including them in a powerful software framework that enables the
creation of lightweight and fast network functions, running in the Linux kernel.
The main features of this framework are :

• support generic network services through the definition of a fast (in the kernel space)
and slow path (in the user space), hence overcoming the limitations of the eBPF in
terms of supporting arbitrary processing;

• integrates a general way to configure network services;

• offers a service-agnostic configuration and control interface that allows interacting
with all running network services through the same interface and tools, namely both
REST (for machine-to-machine communication) and CLI (for humans);

• enables the creation of arbitrary and complex service chains in a very efficient and
simple way;

Iovnet targets either end users, who can leverage its already available elementary ser-
vices to create complex service chains, and service developers who can create the network
service they need through a simple and elegant API, which takes care of handling (and
automatically generating) most of the glue logic needed for the service to operate, allowing
developers to concentrate on the main logic of their service.

3.4.1 Architecture

The IOVnet’s architecture is quite complex but all its components can be grouped into 4
main components:

• iovnetd is a service-agnostic daemon that checks the iovnet service;

• iovnet’s services are the Network services(bridge,router, load balancer ecc.) that
you can deploy and use them;

17



3 – Background

• iovnetctrl a service-agnostic CLI that allows to interact with iovnet daemon and
set uo all the available services

• libiovnet a library that keeps some common code to be reused across multiple
network functions;

Figure 3.8. IOVnet’s architecture

iovnetd

iovnetd is the main component of the iovnet architecture. It is a service-agnostic daemon
that allows controlling the entire iovnet service. In fact, it manages the service life (it can
start,stop,remove a service) .
This module acts mainly as a proxy: it receives a request from its northbound REST
interface, it forwards it to the proper service instance, and it returns back the answer to
the user. Iovnet supports both local services, implemented as shared libraries, which are
installed in the same server of iovnetd and whose interaction is through direct calls, and
remote services, implemented as remote daemons possibly running on a different machine,
which communicates with iovnetd through gRPC.

iovnet’s service

By using Iovnet, we can deploy several network services (a.k.a., network functions such as
bridge, router, NAT, etc.), in a simple way. Iovnet services can be imagined as a single
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program that manages all network’s functions related to its, running in an IOModule and
all of this gives the opportunity to change the code and the behaviour of that service and
reload the service at run time, without interfering with the others services.
Each service implementation includes the data-path, namely the eBPF code to be injected
in the kernel, the control/management plane, which defines the primitives that allow con-
figuring the service behavior, and the slow path, which handles packets that cannot be
fully processed in the kernel. While the former code runs in the Linux kernel (fast-path),
the latter components are executed in user-space (slow-path).

In this thesis, we will implement the Load Balancer Reverse Proxy as a service of
IOVnet’s framework.

3.5 Tools used for testing
In this section, we will present all tools studied and used for testing our load balancer
prototype.

Siege

Siege 4 is a multi-threaded http load testing and bench-marking utility. It was designed
to let web developers measure the performance of their code under duress.
It allows one to hit a web server with a configurable number of concurrent simulated users.
Those users place the webserver "under siege." Performance measures include elapsed time,
total data transferred, server response time, its transaction rate, its throughput, its con-
currency and the number of times it returned OK.
These measures are quantified and reported at the end of each run.

The command used for the test is the following :

siege -b -c concurrent users -t time (virtual IP : port) -v

where the flags :

• b stands for bench-mark; it is used to have maximum performances ; without this
flag the tool performs a request for second;

• c stands for concurrent users and it allows you to set the concurrent number of
simulated users to num;

• t stands for time; it allows you to run the test for a selected period of time in terms
of seconds or minutes;

• vip stands for virtual ip, the destination ip of the requests;

4Siege, linux tool for bench-marking [21]
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• v (option) stands for VERBOSE ; it prints the HTTP return status and the GET
request to the screen;

iPerf3

iPerf35 is a tool for active measurements of the maximum achievable bandwidth on IP
networks. It supports tuning of various parameters related to timing, buffers and protocols
(TCP, UDP, SCTP with IPv4 and IPv6). For each test, it reports the bandwidth, loss,
and other parameters. This is a new implementation that shares no code with the original
iPerf and also is not backward compatible.
iPerf was originally developed by NLANR/DAST. iPerf3 is principally developed by ESnet
/ Lawrence Berkeley National Laboratory. It is released under a three-clause BSD license.

The command used for the test is the following (server side), on each linux network
namespace in the PC3:

iperf3 -s -p port

The command used for the test is the following (client side):

iperf3 -c vip -p port

htop

htop 6 is an interactive system-monitor process-viewer and process-manager. It is de-
signed as an alternative to the Unix program top. It shows a frequently updated list of
the processes running on a computer, normally ordered by the amount of CPU usage.
Unlike top, htop provides a full list of processes running, instead of the top resource-
consuming processes. Htop uses color and gives visual information about processor, swap
and memory status.
htop is written in the C programming language using the ncurses library.
Because system monitoring interfaces are not standardized among Unix-like operating sys-
tems, much of htop’s code must be rewritten for each operating system. Cross-platform
support was added in htop 2.0.

The command used for system monitoring is the following :

htop

5iPerf3, Linux tool for networking traffic measurement [22]
6htop, Linux tool for monitoring CPU and Memory of the system [23]
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3.6 Related Work

3.6.1 Commercial Load Balancer

In order to understand the results previously got, we have compared our load balancer
with the most used and performant load balancer in commerce. In particular, we have
compared our results with other three kinds of load balancers:

• HAProxy7 is an open source software that provides a high availability load balancer
and proxy server for TCP and HTTP-based applications that spreads requests across
multiple servers;

• LVS The Linux Virtual Server [25] is a highly scalable and highly available server
built on a cluster of real servers, with the load balancer running on the Linux oper-
ating system.

• iPtables based on Netfilter kernel module. Netfilter[26] is a flexible packet manip-
ulation framework built into the Linux 2.4 and 2.6 series of kernels.

HAProxy Load Balancer

HAproxy is designed for distributing TCP and HTTP traffic across multiple computing
resources in a network.
Load balancing is intended to help high traffic sites and sites that experience routine spikes
in request traffic. It provides intelligent load distribution for some of the largest websites
on the internet which processes over thousand and thousand requests per second.

HAproxy is designed to do three things and to do them quickly and reliably. These
three things are processing incoming request traffic, distributing the request traffic to the
servers in the back end, and querying those back-end servers’ health.
HAproxy comes with many distributions of Linux and is also available in the apt and yum
package libraries.

IPVS (Linux Virtual Server)

IPVS 8 implements transport-layer load balancing in the Linux Kernel, providing the
load balancing at the lowerest level.
IPVS is incorporated into the Linux Virtual Server (LVS), where it runs on a host and
acts as a load balancer in front of a cluster of real servers.
LVS supports TCP and UDP traffic and, furthermore, it makes services of the real servers
appear as virtual services on a single IP address.

7HAproxy stands for High Availability proxy [24]
8IPVS stands for IP Virtual Server

21



3 – Background

IPVS is merged into versions 2.4.x and newer of the Linux kernel mainline.
There are three versions of LVS load balancer:

• LVS-NAT
In the NAT mode, all the incoming packets are rewritten by changing destination
address from the VIP to the address of one of the real-servers and then forwarded
to the real-server.
On the returning way, all packets from the real-server are sent to the director where
they are rewritten and returned to the client with the source address changed from
the RIP to the VIP.

• LVS-DSR
In the DSR (Direct Server Return) mode, the load balancer manipulates all the
incoming packets in order to load balance them to the several real backends. On
the returning way, the packets do not pass into the load balancer, but they are
forwarded, directly, to the client that has sent the request, relieving the network
load balancer of the need to handle the heavy traffic load.

• LVS-TUN
LVS-Tun is based on LVS-DR but it operates by using an IP-IP tunnel to send the
packets to the real backends.
In fact, the LVS code encapsulates the original packet (CIP->VIP) inside an ipip
packet of DIP->RIP and routed to the real-server.

Most commercial load balancers are not set up anymore using the LVS-
DR mode (at least in the projects I’ve been involved). The load balancer is
becoming more and more a router, using well-understood key technologies
like VRRP9 and content processing.

IPTables

Iptables is based on Netfilter’s module10 in the Linux kernel and it is implemented as a
framework that allows callback functions to be attached to network events. These call-
back functions can be implemented as kernel modules, thus allowing IPTables to inherit
the flexibility of the Linux kernel module system.
IPTables is used to set up, maintain, and inspect the tables of IPv4 packet filter rules in
the Linux kernel. Several different tables may be defined. Each table contains a number of
built-in chains and may also contain user-defined chains. Each chain is a list of rules which
can match a set of packets. Each rule specifies what to do with a packet that matches.

9VRRP, Virtual Router Redundancy Protocol, RFC5798 https://tools.ietf.org/html/rfc5798
10Netfilter, Linux’s kernel module for packets manipulation, https://www.netfilter.org/
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3.6.2 Cilium Load Balancer

Cilium [27] is open source software for transparently securing the network connectivity
between application services deployed using Linux container management platforms like
Docker and Kubernetes.
At the foundation of Cilium is a new Linux kernel technology called BPF, which enables
the dynamic insertion of powerful security visibility and control logic within Linux itself.
Cilium’s framework implements a load balancer as service defined as :

Distributed load balancing for traffic between application containers and to
external services. The loadbalancing is implemented using BPF using efficient
hashtables allowing for almost unlimited scale and supports direct server return
(DSR) if the loadbalancing operation is not performed on the source host 11.

11Cilium Load Balancer, https://github.com/cilium/cilium
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Chapter 4

IOV-lbrp Architecture

In the following chapter, we discuss the Load Balance Reverse Proxy’s features and analyze
our solution of a load balancer reverse proxy in the IOVnet’s framework.

4.1 Load Balancer Reverse Proxy

The Load Balancer Reverse Proxy joins two main key words: Load Balancer and Reverse
Proxy.

• A Load balancer is a service whose task is to load balance the workloads of the
traffic in a system such as in a data-center network to distribute traffic across many
existing paths between any two servers.
Load balancing aims to optimize resource use, maximize throughput, minimize re-
sponse time, and avoid overload of any single resource.
A Load balancer can be hardware or software (as the prototype implemented in this
thesis).
Furthermore, it can work at L4 (Transport Layer) or L7 (Application Layer) of ISO-
OSI stack.1
Our prototype is an L4 load balancer since making load balancing at L4 is faster
than at L7.

• Reverse Proxy means reverse proxy server that can act as a "traffic cop", sitting
in front of your backend servers and distributing client requests across a group of
servers. It intercepts all requests for a specific VIP (Virtual IP) and send to proper
backend servers which are in another subnet.

1ISO-OSI: standard of networking stack, composeb by 7 layers
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Figure 4.1. Load Balancer’s simple schema

4.2 IOV-lbrp
In this thesis, we have implemented a load balancer reverse proxy as service for the
IOVnet’s framework.
According to the algorithm, the load balancer receives all incoming IP packets and it loads
balances only the packets for a specific Virtual IP and it forwards them to the real servers
by replacing their IP destination address with the one of the real server, chosen by the
load balancing logic.
Hence, IP address rewriting is performed in both directions, for traffic coming from the
Internet and the reverse.
This load balancer supports all kind of traffic but it manages only TCP, UDP, and ICMP
traffic; all others packets , called unknown packets (e.g., ARP; IPv6) are simply forwarded
as they are.

4.2.1 Architecture

First of all, the load balancer has two ports 2, by which it can recognize the incoming
traffic and the outcoming traffic.
In fact :

• Frontend port: is the load balancer interface attached to the interface in which all
requests arrive; it connects the LB to the clients that connect to the virtual server,

2This implementation will be explained in next section
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Figure 4.2. Load Balancer’s ports schema

likely running on the public Internet;

• Backend port: is the load balancer interface attached to the interface that connects
the LB to backend servers;

Because its kind of implementation (reverse proxy), the load balancer architecture can
be split into two subarchitecture depending if the traffic flow is in ingress or in egress
from/to load balancer.
In fact, we have :

• Ingress the main purpose is to load balance all packets with destination IP as a
Virtual IP, while all other packets are forwarded as they are;

• Egress the main purpose is to do reverse proxy of all packets previously load bal-
anced and so put the Virtula IP as the source of the packets;

Architecture - INGRESS

As written above, in this scenario we refer to all packets coming from Frontend port.
The load balancer receives and intercepts all packets whose destination IP is a Virtual IP
and makes load balancing, choosing a backend of that specific virtual IP and change the
destination IP and port (if needed).

So, we have :

• if the destination IP is a Virtual IP, the service must do load balancing to one of
VIP backend’s set ;
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Figure 4.3. Load Balancer’s ingress architecture (Load Balancing ’s example)

• otherwise, for all others cases the load balancer forwards the packets in a transparent
way;

As we can see from the picture above 4.3 , the load balancer checks if the destination IP
of the packet is a Virtual IP (in this short example , the Virtual IP is 192.255.10.20:8000),
previously configured in the load balancer, and after choosing the real backend IP to send
the packet, it finally forwards the packet to the real backend, in fact after the load balancer
the destination IP is 10.0.0.1 .

Architecture - EGRESS

This architecture refers to a scenario in which all packets come in the load balancer thought
the backend port and so the load balancer should manage all returning packets, making
reverse proxy only to the packets that previously have been load balanced and all others
packets are simply forwarded.

In this scenario, we apply a hashing function to the session of the packet and checks if
the state was saved previously:

• if it is found in the map , the load balancer makes reverse proxy changing the source
IP from real backend to the VIP;

• otherwise the load balancer forwards the packets in a transparent way;
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Figure 4.4. Load Balancer’s egress architecture (Load Balancing ’s example)

As we can see from the picture above 4.4, the load balancer checks if the packet is
related to an existing session or not; if it exists, the packet is manipulated by changing the
source IP and port (if necessary) from real backend 10.0.0.1 to the Virtual IP 192.225.10.20.

4.2.2 Features

The IOV-lbrp has several features in order to create a load balancer that guarantees the
following features :

• Multiple virtual services support, each mapped on a Virtual IP with its backend
pool;

• ICMP traffic’s support, so you have the possibility to ping any Virtual Service (VIP);

• Session affinity’s support: a TCP session is always terminated to the same backend
server even in case the number of backend servers changes at run-time (e.g., a new
backend is added);

• Each virtual service can be mapped depending on the traffic protocol (you can have
a virtual service that supports only UDP or TCP), in which each Virtual IP can
have a different number of backend servers;

• Weighted Backend: Each backend has its weight that determines the probability to
be chosen during the load balancing mechanism;
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4.2.3 Load Balancing Algorithm

In this subsection, we will explain, in the details, the idea behind the load balancer. We
will show, starting from the first proposal of the algorithm, the weak points and how we
can solve them, giving, at the end, the final version of the load balancer.

We can summarize the load balancer jobs in the following three points:

• Load Balancing
The main operation of the load balancer that will manipulate only the packets whose
destination IP is a Virtual IP; it affects the destination ip of the packet by changing
the destination ip (Virtual IP) to one of the real backends of that service;

• Reverse Proxy
This operation will be applied to all packets returning from the backends that,
previously, have been load balanced; it affects the source IP of returning packets by
changing the source IP from real backend to corresponding Virtual IP;

• Redirect
This operation affects all others packets (whose destination ip is not a Virtual IP and
the packet has not been load balanced); in this case, the load balancer is transparent
to forward all unknown packets to the opposite interface arrived in;

I Proposal

The following flow-graph describes the first idea of the load balancer algorithm:

Figure 4.5. I proposal of load balancer algorithm
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As you can see from the picture above, we should make two look-up into the maps to
choose what the load balancer should operate (load balancing, redirect, reverse proxy).
All packets, coming into the load balancer, follows the following flow :

1. I look-up on destination IP to checks if it is a Virtual IP:

• hit -> the packet is load balanced to one of backends associated to that Virtual
IP;

• miss -> go to point 2;

2. II look-up on destination IP to checks if it is a backend;

• hit -> the packet is redirect to the opposite port of the load balancer (from
Frontend to Backend and vice versa);

• miss -> this is the case when a packet previuosly load balanced, returns in the
load balancer and so we must make reverse proxy to mask the real backend;

This algorithm works as well but it is not much optimized, in fact in the incoming
case (packets coming into the load balancer with destination IP as a virtual IP) we should
make one lookup on a map, while all other cases we should make two look-ups.

II Proposal

In order to optimize the algorithm and so reduce the number of lookups into a map, the
II Proposal introduces two fixed interfaces to avoid the second lookup in the table and so
increase the performance of the algorithm .
As discussed in 4.2, the two interfaces are Frontend Interface and Backend Interface.

Figure 4.6. II proposal of load balancer algorithm
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As you can see from the picture above, now, we should make only one look-up into
the map, in fact, the second look-up of the I proposal is replaced by introducing these two
fixed interfaces by which we can determinate what the load balancer should operate on
the packet.
All packets, coming into the load balancer, follows the following flow :

1. I look-up on destination IP to checks if it is a Virtual IP:

• hit -> the packet is load balanced to one of backends associated to that Virtual
IP (Load Balancer);

• miss -> go to point 2;

2. Which Interface the packet coming in?

• Frontend -> the packet is redirect to the opposite interface of the load balancer
(Redirect);

• Backend -> this is the case when a packet previuosly load balanced, returns
in the load balancer and so we must make reverse proxy to mask the real
backend(Reverse Proxy);

With this new approach, we can avoid a look-up in a map. In fact, now, making only
one look-up in the map, the algorithm should be faster than the previously showed.

Reverse Proxy Problem

All of these algorithms work only if the Virtual IP associated with the backend pool is one
and only one. In fact, if there are two Virtual IP that refers to the same backend pool,
when the load balancer makes the reverse proxy, it does not know which VIPs choose for
this operation .

Real Case - Kubernetes

To understand better what I have written above, in Kubernetes a backend pool can be
associated with multiple Virtual IP, in the most of cases they are :

• NodePort

• ClusterIP

So, suppose that we have an unique backend pool associated to two virtual service
(NodePort and ClusterIP).
How we can distinguish between NodePort and ClusterIP’s virtual IP?
To build a load balancer supported in Kubernetes, we have changed the algorithm in order
to keep trace of destination ip of the packets that are load balanced.
In this way, on the return path we can change the source IP of the packet (that will be a
backend) and write the correct IP (saved previously in the map).
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Final Algorithm

In order to solve the previous problem, we have changed the algorithm adding a new table
whose job is to store the packet session. The packet session is composed by 5 values :

• destination IP

• source IP

• destination port

• source port

• protocol

These five values determine an unique session of that packet.
So, the final flowchart of the load balancer algorithm is described in the following picture
:

Figure 4.7. Final proposal of load balancer algorithm

As you can see from the picture above, we have introduced the session table. All
packets, coming into the load balancer, follows the following flow :

1. Which Interface the packet coming in?

• Frontend: the destination ip is a Virtual IP?
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– hit -> In this case we performe two operations:
(a) the load balancing
(b) update the session table in order to store the packet info for the reverse

proxy’s operation;
– miss -> Redirect the packet to the backend interface.

• Backend: performs the lookup into session table
– hit -> The load balancer performs the reverse proxy operation on the

packet;
– miss -> The packet is redirected to the backend interface; Redirect the

packet to the fronted interface.

Alternative Algorithm (srcIPrewrite)

In order to avoid the session table, we have implemented another algorithm, called sr-
cIPrewrite that is a bit more performed against the previous one (session table).

LIMITATION: This algorithm cannot be applied to every case but in some special
cases such as in Kubernetes 3.
This limitation is due to the necessity to know the source IP of the requests that will be
load balanced.

How does it work?
The structure of the algorithm is similar to the previous ones. In this case, we do not
update the session table, but, we change the source IP of the packet, after load balancing.
This new IP is unique and corresponds only to that source IP.
On the other hand, when the packet returns, the load balancer makes a lookup into the
map to check if the dest ip is the previously set and changes it, restoring the original IP.

The execution of this algorithm should be faster than previous the one because we
avoid all the operations about the session table(lookup into the map, applying hashing
functions and so on).

3Kubernetes, open source framework for the orchestration, discussed in 3.3
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Figure 4.8. Alternative algorithm: srcIPrewrite

4.2.4 Backend selection

In this section, we will discuss the backend’s selection that is one of the most important
parts of the load balancer.
We know that each Virtual IP (Virtual Service) has an own backend pool and so, after
we have checked the destination ip of the packet as a Virtual IP, we should look-up in the
backend array to choose the proper backend.

The idea behind the selection of the backend is very simple and it consists to get
the index of the backend array. This index is the rest of the division between the values
resulted by applying a hash function on the session packet values and the number of the
backend array entries, that is a fixed number.
So, it can be summarized by the following formula :

H( ipS | ipD | pS | pD | proto) % N = index

where:

• H : the hash function;
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• ipS, ipD, pS, pD, proto: are the five values to which we apply the hash function to
get a unique number that identifies uniquely the session;

• N : is the number of entries of the backend array; it is a fixed number (the reason of
this is described later);

• index: the index of the backend’s array where are stored the real backend’s infor-
mation;

As we can see, the backend’s selection depends on the number of divisor N, that
represents the backend array’s size. So, if a backend is added or removed from the pool,
the value N changes and so all previous established connections changes (no more session
affinity). This is a problem because we want that, if the backend’s pool changes, all the
old connections must maintain their old session to its real backend.

Session’s affinity problem

In order to understand better this problem, the following example is shown.

Suppose that there is a Virtual Service with its Virtual IP with a backend’s size of 4.
So there are four backends related to that Virtual IP.

• BACKEND = 4

Figure 4.9. Example of backend’s selection (backend = 4)

As we can see from the example above, the hashing on the 5-values of the packets
gives as result a number that will be divided by 4. We have the index 1 as result,
so all requests with this session ID are load balanced to the backend 1.

Now, let’s suppose that the backed 0 goes down, so the number of backend’s pool is 3.
For the same packet used before, we have the following:

• BACKEND = 3

As we can see from the example above, now, the hashing value corresponding to the
session in the previous example, is divided by 3 and so we have 2 as index, so all
requests for this session ID are load balanced to the backend 2 while before removing
the backend 0, it was backend 1.
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Figure 4.10. Example of backend’s selection (backend = 3)

So, what we want is that, after the backend 0 goes down, all connections with the same
Session ID will go always to the same backend.

Session’s affinity solution

A very tricky solution to this problem is the so-called Consistent Hashing[15].
This technique was introduced in 1997 by Karger and others members, at MIT for use in
distributed caching.

Consistent Hashing

Consistent Hashing is based on mapping each object to a point on the edge of a circle, for
example the system maps each backend to one point on the edge of the same circle (let
call it backend point).
The idea is the following, when a packet arrives, we apply the hash function on the
5_values (session) 4 of the packet and places it on the circle, then walks around the circle
until the first backend’s point is found. So, we have found a backend for that packet, and
all future’s connection with the same session ID is sent to the same backends, even when
others backends go down.
Suppose to have two sessions S1 and S2 and four backends, the following picture shows
how this algorithm works.

45_values (session) are the destination ip, source ip, destination port, source port, protocol
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Figure 4.11. Consistent Hashing ’s example

On the other hand, if that backend goes down, the point it maps to will be removed.
In this scenario, the packet will choose the next backend’s point (that will place after the
ex-backend’s point).
For example, if backend 3 goes down, all packets referring to the session 2 will have as
backend’s destination, not more backend 3, but the next backend in the circle: Backend
0.
So, we use the Consistent Hashing for our load balancer in the backend’s selection .
The main important thing is to use a fixed array’s size for the backend, so the value N
must be fixed.
Furthermore, suppose N the backend array’s size and M is the number of backends.

• BACKEND = 4

Figure 4.12. Example of backend’s selection (backend = 4)
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• BACKEND = 4

Figure 4.13. Example of backend’s selection (when a backend goes down)

As we can see, now, the backend 0 ’s fail does not influence the backend’s selection.So
the packet still goes to the backend 1.

This solution ensures:

• Connection Tracking the load balancer saves the state of all sessions;

• Backend’s failover resilience the load balancer ensures that, when a backend goes
down, all its connection are moved on others backends;

• when a backend goes down, we need to remap only N/M entries plus one, in order
to minimize the number of entry’s changes;

So, now, we have a fixed array filled with the backend’s information. Each entry of the
array refers to a backend. But, how this array is populated? And, when a backend goes
down, how this array changes?

How to populate the backend’s array

We need an algorithm with the following features:

• Fast Convergence the algorithm should converge in a short time even if the number
of backend’s and its array’s size are huge;

• Minimize the number of changes when a backend fails;

This algorithm is based on two main structures:

• Permutation Matrix a huge matrix with N rows and M column where each column
is filled by a range of numbers from 0 to N-1; each value is set randomly; for this
operation, we use a random number generator’s algorithm called Fisher-Yates Shuffle
algoritm[16];
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Fisher-Yates Shuffle algorithm

The Fisher-Yates shuffle is an algorithm for generating a random permutation of a
finite sequence of values. The algorithm produces an unbiased permutation: every
permutation is equally likely.
The modern version of the algorithm is efficient: it takes time proportional to the
number of items being shuffled and shuffles them into place.

• Final Backend’s array (lookup table) the final array containing a backend’s
information in each entry;

Once filled the Permutation Matrix, it is the starting point to create or update(when
a backend is added or removed) to create the Final Backend’s Array with the following
algorithm:

1. Start from the cell [0,0] , get the value X stored in that cell and looks if the entry of
the backend’s array corresponding to the X’s position is empty;

1.1. if it is empty, stores the corresponding backend (that is represented by the
column) at X’s position, and go to the point 2;

1.2. if it exists, go to point 3;

2. once stored the value in the array, we increment the column, so re-start from point
1, but analyzing the next cell [0,1] (next backend);

3. we increment the row, so re-start from point 1, but analyzing the next cell [1,0](next
row of the previous backend);

Example

To understand better how the entire algorithm works, we can see the following example.
Suppose to have 3 backends and that the array’s size is 7, so we have M=3 and N=7. By
using the Fisher-Yates Shuffle algorithm5, the permutation table is filled randomly like
the following example. As you can see, each column(backend) is filled by a range number
from 0 to N-1.

5We use this algorithm for simplicity, but you can fill the Permutation Matrix using any algorithm that
generates random numbers into a fixed range
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Figure 4.14. Backend’s selection algorithm (Step 0)

The first iteration acts as in the picture below:

Figure 4.15. Backend’s selection algorithm (Step 1)

As you can see from the picture above, we start from the cell [0,0] inside that there is
stored the number 3. So, in the Look-up Table, we check if the third position is empty or
not; if empty, we store the backend B0 (column 0) and go on to the next column (B1).
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Figure 4.16. Backend’s selection algorithm (Step 2)

As the previous step, now, we analyze the cell [0,1] (first item of backend B1) that
stores the value 0. So, in the Look-up Table, at zero position (that is free), we store the
backend B1(column 1) and go on to the next column (B2).

Figure 4.17. Backend’s selection algorithm (Step 3)

In the third step, we analyze the cell [0,2] (first item of backend B2) that stores the
value 3. But, in this case, the third’s position of the Look-up Table is not free, so we need
to find the next row of B2 column.
The cell [1,2] stores the value 4; the fourth position of the array is free and so we store
here the backend B2(column 2) and go on to the next column (B0).
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Figure 4.18. Backend’s selection algorithm (Step 4)

So, the algorithm restarts from the first column (B0). The next B0 free’s value in
the Look-up Table is at first position (element in the cell [3,0]). So, we store the backend
B0(column 0), and go on to the next column (B1).

Figure 4.19. Backend’s selection algorithm (Final Step)

After some cycles, the algorithm ends giving us the Look-up Table completely filled.
As we can see how the distribution of backends is homogeneous less than one.

Suppose, now, that the backend B1 goes down, how the Look-up Table changes? When
a backend is removed, the Look-up Table must be updated; this operation consists into
recalculating the Look-up Table using the same previously Permutation Table but ignoring
the column corresponding to the removed backend, in this case, B1.
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Figure 4.20. Backend’s selection algorithm (Step after B1 down)

As we can see from the picture above, this algorithm minimizes the number of backend’s
changes. In fact, the number of Look-up Table ’s entries changed is 7/3 plus 1.

Weighted Backends

In this example, the backend’s distribution in the Look-up Table is homogeneous. In fact,
each backend has the same probability be chosen.
In our load balancer, we have implemented the feature by which you can set the proba-
bility for each backend to be chosen.

For example, suppose that the Look-up Table’s size is 25 and suppose to set the fol-
lowing weights :

• B0 : weight 10

• B1 : weight 100

• B2 : weight 5

The distribution will be the following:

• B0 will have 22 entries

• B1 will have 2 entries

• B2 will have 1 entry
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Chapter 5

IOV-lbrp Implementation

The starting point of the Load Balancer ’s implementation is its YANG data model. From
the YANG, we have generated the classes, some of them, have been updated in order to
implement the load balancer’s logic.
All files are stored in the following folders:

• iov-loadbalancer-rp/example this folder contains several examples for the load bal-
ancer’s usage;

• iov-loadbalancer-rp/resources this folder contains the yang datamodel lbrp.yang;

• iov-loadbalancer-rp/src this folder contains all sources codes of the load balancer’s
implementation; it is diveded in several folders containing from the cli’s code to the
controlpath ’s implementation;

• iov-loadbalancer-rp/test this folder contains several tests that can u perform on the
load balancer;

5.1 YANG Model

YANG (Yet Another Next Generation) 1 is a data modeling language for the defi-
nition of data sent over the NETCONF network configuration protocol.
YANG is a modular language representing data structures in an XML tree format. The
data modeling language comes with a number of built-in data types. Additional applica-
tion specific data types can be derived from the built-in data types.

5.1.1 Lbrp YANG Model

In this section, we will show some extract of load balancer’s YANG data model.

1Yang data model, Data Modeling Language for the NetworkConfiguration Protocol (NETCONF) [17]
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• Ports Data Type two kinds of ports (frontend and backend), this value is manda-
tory during the load balancer configuration;

uses " basemodel :base -yang - module " {
augment ports {

leaf type {
type enumeration {

enum FRONTEND { description "Port
connected to the clients "; }

enum BACKEND { description "Port
connected to the backend
servers "; }

}
mandatory true;
description "Type of the LB port (e.g.

FRONTEND or BACKEND )";
}

}
}

Listing 5.1. Port Data Type (YANG Data Model)

• Service Data Type represents the Service object that is identify uniquely by the
key:

– key is grouped into 3 values: vip (virtual ip) - port - proto that identify uniquely
the service object;

– value is the pool of backends related to the service with that key;

list service {
key "vip vport proto";
description " Services (i.e. , virtual

ip: protocol :port) exported to the client ";
leaf name {

type string ;
description " Service name related to the

backend server of the pool is connected
to";

lbrp:cli - example "Service -nigx";
}
leaf vip {

type inet:ipv4 - address ;
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description " Virtual IP (vip) of the service
where clients connect to";

lbrp:cli - example " 130.192.100.12 ";
}
leaf vport {

type inet:port - number ;
description "Port of the virtual server

where clients connect to (this value is
ignored in case of ICMP)";

lbrp:cli - example "80";
}

leaf proto {
type enumeration {

enum ICMP;
enum TCP;
enum UDP;
enum ALL;

}
mandatory true;
description "Upper -layer protocol associated

with a loadbalancing service instance.
’ALL ’ creates an entry for all the
supported protocols ";

}

list backend {
key "ip";
description "Pool of backend servers that

actually serve requests ";
leaf name {

type string ;
description "name";

lbrp:cli - example " backend1 ";
}

Listing 5.2. Service Data Type (YANG Data Model)

• Backend Data Type represents the Backend object that is identify uniquely by
the key:

– key is the ip of the backend that identifies uniquely the service object, according
to the network topology;
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– value is a structure based on tree values of the backend: ip, port, weight where
ip and port are the backend’s information and the weight is a feature to set the
probability to be chosen;

list backend {
key "ip";
description "Pool of backend servers that

actually serve requests ";
leaf name {

type string ;
description "name";

lbrp:cli - example " backend1 ";
}

leaf ip {
type inet:ipv4 - address ;
description "IP address of the backend

server of the pool";
lbrp:cli - example " 10.244.1.23 ";
}

leaf port {
type inet:port - number ;
description "Port where the actual

server listen to (this value is
ignored in case of ICMP)";

mandatory true;
lbrp:cli - example "80";
}

leaf weight {
type decimal64 {

fraction - digits 2;
}
description " Weight of the backend in

the pool";
lbrp:cli - example "0.1";
}

}
}

Listing 5.3. Backend Data Type (YANG Data Model)
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5.2 Code’s Structure

The load balancer’s code can be split into parts due its nature (Figure 3.8), in order to
have, at the same time, a powerful cli to manage all the structures that are stored in the
kernel or in the driver of the NIC, and the ebpf’s program that acts as a load balancer:

• Data-path code
This part of code runs in the kernel space (TC_MODE) or in the driver of the NIC
(XDP_MODE). This code performs the load balancer’s algorithm.

• Control-path code
This part of code runs in the User Space and it is useful for the management and
the setup of the load balancer;

5.2.1 Data-path

The Data-Path Code is the core of all the implementation of the load balancer’s service.
This code is the eBPF’s program that runs in the Traffic Control chain or inside the driver
of the NIC (XDP) in an IO-Module.
In fact, this part of the implementation is dedicated to make load balancing of all packets
coming into the service, so here the algorithm showed in the last chapter is implemented.

Data Structures

In the Data-Path Code, we use several structures in order to keep information for the load
balancer’s work:

• Services map

BPF_TABLE ("hash", struct vip , struct backend , services ,
MAX_SERVICES );

Listing 5.4. Services Map in the data-path

where:

– type hash the key is an hashed-value;
– struct vip is the key. It is composed by four values (ip, port, protocol, index)

that identifies uniquely an entry in the map;
– struct backend is the value. It is composed by three values (ip, ip_rewrite,

port) that represents one of the backend’s pool;

The Service Map contains multiple entries for each virtual service (i.e., virtual IP,
protocol, port).
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When index = 0, the value in the hash map is actually not a couple IP address/port
but the number of backends (also called pool size) associated to that virtual service.
Then, for following entries (i.e., when index > 0 ), the struct backend keeps the actual
data (IP/port) for that backend.

Example :
VIP 1, index 0 -> Number of backends : 4
VIP 1, index 1 -> Backend 2
VIP 1, index 2 -> Backend 1
VIP 1, index 3 -> Backend 2
VIP 1, index 4 -> Backend 1

VIP 2, index 0 -> Number of backends : 2
VIP 2, index 1 -> Backend 1
VIP 2, index 2 -> Backend 1

where VIP 1 has 4 backends and VIP2 has 2 backend .

Listing 5.5. Services Map’s example

The number of the backend in this table may be different from the number of actual
servers in order to keep session affinity when a server is added/removed, without
having to move the traffic from a backend1 to a backend 2 (which will break the
TCP session).
The load balancing algorithm will select the proper backend based on an hash on
the most significant fields (i.e., session id) of the packet:

__u32 backend_id = session_hash % pool_size + 1;

Listing 5.6. Services Map’s hashing algorithm

• hash session map
Keeps the sessions handled by the load balancer in this table.

BPF_TABLE (" lru_hash ", __u32 , struct vip , hash_session ,
MAX_SESSIONS );

Listing 5.7. hash-session map

where:

– type lru that stands for least recent used in order to mantain only the recent
connections;
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– u32 is the key. It is the hash key (hash the translated session: Hash(ipS |
ipD=BCK | pS | pD | pro) );

– struct vip is the value. This structure contains the virtual service ID, to be
used to translate the return traffic;

This is needed to translate the session ID back for return traffic. If there’s a match,
the (return) source IP address/port is translated with the VIP; if there is no match,
the traffic is left untouched. Note that the hash is calculated, in both directions,
using the IP.dst of the backend, not the original one (virtual IP address of the
service).

• srcIPrewrite map
This map contains the mapping between backen_ip_srcIPRewrite with the pair (
backend_ip and VIP ).

BPF_TABLE ("hash", __u32 , struct bck_vip , srcIpRewrite ,
MAX_SERVICES );

Listing 5.8. srcIPrewrite map

where:

– type hash the key is an hashed-value;
– u32 is the key and it refers to the srcIPrewrite ;
– struct bck_vip is the value. This structure is composed by three values ( backend

ip, virtual ip, port);

When packets come from Backend Port, we make a lookup on this map.
If match, we change source and destination ip of the packets by makin the reverse
proxy for VIP(srcIP) and srcIpRewrite to set the old ip as destination.
If NOT, we use the session_table.

• bckold_bcknew map

BPF_TABLE ("hash", __u32 , __u32 , bckold_bcknew ,
MAX_SERVICES );

Listing 5.9. hash-session map

where:

– type hash the key is an hashed-value;
– u32 is the key and it refers to the ip of the backend;
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– u32 is the value and it refers to the srcIPrewrite corresponding uniquely to that
backend;

This map contains the mapping between old backend ip and new backend ip (sr-
cIPrewrite IP).
This map is filled only if srcIPrewrite is enabled.

Workflow

According to the load balancer’s algorithms (Figure 4.7, 4.8), each packet coming in the
load balancer can follow two special work-flows, in order if the srcIPrewrite’s flag is enabled
for that Virtual IP.
In the data-path, all packets coming in the load balancer, go thought the rx_handler() in
which the load balancer’s algorithm are implemented.
This function manages only the ICMP,TCP,UDP packets, in fact it is transparent for all
others protocols (i.e. Arp, GRE, ecc.) that will be simply forwarded from an interface to
the other one.

Checksum

Due to packet’s manipulation after applying the load balancer (changing ports and ip’s
values), we need to recalculate the IP’s checksum on the packet.
When we use the ebpf’s program in Traffic Control, the newest versions of the linux kernel
2, give to the developer several Helper’s functions that "helps" the developer in several
functions, for example to recalculate the checksum there are several helper’s function as
bpf_[l3,l4]_csum_diff() and bpf_[l3,l4]_csum_replace().
On the other hand, if the eBPF’s program runs in XDP, these functions are not valid and
so we need to recalculate the checksum of the packet by own function.

According to the RFC 1624 3, we have implemented our custom checksum’s functions
using the following formula :

HC - old checksum in header
C - one’s complement sum of old header
HC’ - new checksum in header
C’ - one’s complement sum of new header
m - old value of a 16-bit field
m’ - new value of a 16-bit field

HC’ = ~(C + (-m) + m’) = ~(~HC + ~m + m’)

2 Starting from version 4.11 of the Linux Kerne, currently the version 4.16 is released
3RFC 1624 is the third official RFC about the checksum’s update (RFC 1141, RFC 1071),[18] [19] [20]
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The formula above is used to recalculate the checksum, after packet’s manipulation, via
incremental update. This means that we do not recalculate the checksum on the entire
packet but only on the changed values and so it does not influence the load balancer’s
algorithm performance.

5.2.2 Control-Path

The Control Path is the portion of code that runs in the User Space and it is useful for
the management and the setup of the load balancer.
Here, we can find all codes and data structures that are used to update the ebpf’s maps
in the data-path, in particular :

• cli
Cli stands for Command Line Interface and it is useful for the set up of the load
balancer (adding/remove/update the load balancer, add/remove/update the services
and their backend’s pool and so on).
All of cli’s code is autogenerated by the YANG data model.

• load balancer’s management
It refers to all classes written for the load balancer’s management such as Service
Class, Backend Class, Lbrp Class and so on (derived from the YANG Data Model).
In these classes, we have implemented the algorithm for the backend’s selection and
all functions to update the maps in the data-path.
In particular, the main important data-structure is the so-called backend_matrix
that acts as the Permutation Table.
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Chapter 6

Testing and Performance

In this chapter, we discuss the use’s case used for testing and validation of the load bal-
ancer’s prototype.
Then we will analyze the data given by the testing phase to derive the relative perfor-
mances. Finally, we will compare our performances with performances of others load
balancer, actually in commerce.

6.1 Topology
The network topology studied and used is the same for all tests and it is the simplest
possible topology in order to minimize the latency about other components during the
measuring of the performances.
The standard Client/Server’s system is the topology used for the tests in which there is
the Load Balancer, that receives all traffic from the client and makes load balance between
all backends in which there is a server running.
In particular, we have divided the entire topology into three parts in order to minimize
the job of the machine that hosts the load balancer.

6.1.1 Hardware Configuration

The entire topology is distributed on three desktop pc with the same hardware configura-
tion:

• PC1 (client)

– Intel(R) Core(TM) i5-4258U CPU @ 2.40GHz
∗ core : 2
∗ cache size: 3072

– Ram size 8 GB (2x4 DDR3)
– Scheda di rete Intel 10Gbit ????
– SO Ubuntu Linux 16.04 LTS, kernel version 4.14
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• PC2 (load balancer)

– Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz
∗ core : 4(+4)
∗ cache size: 8192 kb

– Ram size 16 GB (2x8 DDR3)
– Scheda di rete Intel 10Gbit ????
– SO Ubuntu Linux 16.04 LTS, kernel version 4.14

• PC3 (backends)

– Intel(R) Core(TM) i7-4770 CPU @ 3.40GHz
∗ core : 4(+4)
∗ cache size: 8192 kb

– Ram size 32 GB (4x8 DDR3)
– Scheda di rete Intel 10Gbit ????
– SO Ubuntu Linux 16.04 LTS, kernel version 4.14

6.1.2 Schema

As we have written in the last section, the network topology is distributed on three desk-
top pc that acts as tester machine in order to isolate the load balancer’s process during
the execution of the tests in order to get information about the CPU’s usage.
The picture below represents the network topology chosen for the tests with all network
addresses. This topology can change on the number of the backend’s (number of names-
paces in the PC3) for some tests.

Figure 6.1. Network Topology for the test

• PC1 acts as client.
In fact,this machine hosts the tool used for testing the load balancer. This tool sends
requests with destinaion IP, the Virtual IP.
This machine has one physical network interface that joins to the PC2 by a physical
Ethernet cable.
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– enp0s0f0 ip 192.168.0.10/24

• PC2 acts as load balancer.
In fact, this machine hosts the load balancer that gets in ingress the traffic and
makes load balancing thought several backends.
This machine has two physical network interfaces that join the PC3 and PC1 by a
physical Ethernet cable.
Furthermore, there is a Linux-bridge that joins both two interfaces. This bridge has
two IP addresses, the first acts as the default gateway for backend’s network while
the second one is the Virtual IP address.

– enp0s0f0 physical interface
– enp0s0f1 physical interface
– bridge with 2 ip:

∗ interface b 10.0.0.254/24 default gateway
∗ interface b 192.168.0.110/24 vip

• PC3 in this machine there are the backends (servers) that will receive and process
the requests from PC1. Th number of backends depends on the particular test.
Each server (backend) is in its own Linux Network Namespace , in which a server is
running and listening on the unique interface in that network namespace .
Each network namespace joins to the root network namespace by a veth (virtual
ethernet) pair ; one end is set into root namepace joined to the linux-bridge while
the other end is set in the network namespace created. The last interface has an ip
assigned.
This machine has one physical network interface that joins to the PC2 by a physical
Ethernet cable. Also this physical interface is joined to the bridge.

– enp0s0f0 physical interface
– bridge that joins N interfaces

∗ interface vethX
– network namespace nsX in which

∗ interface vethX_ ip 10.0.0.x/24
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6.2 Tests
For the validation of the Load Balancer’s prototype we have studied several use’s cases to
analyze the following parameters:

• Transaction rate represents the number of server hits for second that the load
balancer can support during the test;

• Response Time represents the average time the load balancer took to respond to
each simulated user’s requests;

• Longest Response Time the maximum time waited for a single request;

• Concurrency allows you to set the concurrent number of simulated users that send
requests to the load balancer;

• Failed Transaction is the number of failed transactions during the test;

• Throughput is the average number of bytes transferred every second from the
server to all the simulated users;

• CPU monitoring the CPU usage during the test;

For the execution of all test , we have used three tools :

• Siege1 to get specific results for testing the load balancer;

• iPerf32 to measure the throughput;

• htop3 to monitor the resources on the PC2 that hosts the load balancer;

6.2.1 Test use’s cases

We have divided the tests into two sections, in order to test our load balancer with the
most important commercial product and with its direct competitor.
The first section is about testing our solution with the commercial products such as
HAProxy, LVS and IPTables.
In particular, the first group of tests is under the siege’s tool in order to get information
in terms of response time, transaction rate ecc.
In this scenario, we have studied four test cases differing for two particular parameters:
concurrency of simulated connections and the duration of the test.
The second group of tests is about testing and comparing our prototype with its direct
competiors that use its same tecnology (eBPF ecc). These tests are done in Kubernetes’s

1Siege, linux tool discussed in the detail in the section 3.5
2iPerf3, linux tool to test networking, discussed in the detail in the section 3.5
3htop, linux tool for monitoring system’s resources, discussed in the detail in the section 3.5
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framework.
The test’s cases are the following :

• TEST 1.1: using siege with concurrency=10 and time=10s;

• TEST 1.2: using siege with concurrency=200 and time=10s;

The second section of the tests is different from the previous one, in particular, here,
we test our prototype with its direct competitors: Cilium4 and Calico’s the load balancer.
Furthermore, these two tests are executed in a different topology showed previously, in fact,
they are run in Kubernetes’s framework that will be one of the most useful frameworks
where the load balancer will be used.

• TEST 2.1: using siege with concurrency=200 and time=10s;

• TEST 2.2: using iperf3 to measure the throughput;

6.3 Results
In this section, we present several bar-charts that will explain better the performance of
the load balancer discussed in this thesis.

6.3.1 Results Test 1

4Cilium framework, discussed in section 3.6.2

57



6 – Testing and Performance

Results Test 1.1

In this test we focused our attention to analyze the transactions rate (max, min, medium),
monitoring the CPU’s usage, at the same time.
Test 1.1 Concurrent = 10 and time for test is 10 seconds.

Figure 6.2. Results of Test 1.1

Analyzing the Transaction rate chart, our load balancer has high performance. In fact,
it has a transaction rate slightly less than LVS but greater than HAproxy, in the medium
case.
However, these performances remain relevant for our prototype. The worst load balancer
is IPTables.
Analyzing the CPU’s usage chart, our load balancer uses only 1% of the CPU’s system
such as IPTables, while LVS uses about the 5% and HAProxy bit less than 14% (about
13% more than our load balancer).
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Results Test 1.2

In this test we focused our attention on analyzing the transactions rate (max, min,
medium), monitoring the CPU’s usage, at the same time.
Test 1.2 Concurrent = 200 and time for test is 10 seconds.

Figure 6.3. Results of Test 1.2

Analyzing the Transaction rate chart, our load balancer has a transaction rate slightly
more than HAProxy, but less than LVS, that remains the most performing. The worst
remains IPTables.
Analyzing the CPU’s usage chart, our load balancer uses only 4% of the CPU’s system,
while LVS uses about the 18% (about the 14% more than our prototype) and HAProxy
bit less than 35% (about 31% more than our load balancer).

So, analyzing these bar-charts, we can deduce that the prototype of the load balancer,
proposed in this thesis, has the same top performances in terms of transaction’s rate and
throughput, such as its competitors HAPROXY and LVS.
But, the most relevant data is that our load balancer uses a very small amount of CPU for
processing the requests, against its competitors that use more and more CPU, especially
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HAPROXY.

6.3.2 Results Test Kubernetes

In order to understand the results previously got, we have compared our load balancer
with its direct competitor in a real scenario in the Kubernetes framework. We compare
three different Network CNI working on Kubernetes:

• Iovnet descibed in the section 3.4 ;

• Cilium described in the section 3.6.2;

• Calico 5 provides secure network connectivity for containers and virtual machine
workloads;

Result Test 2.1

In this test we focused our attention on analyzing the medium transactions rate, for each
load balancer, in two test’s cases: client to client and client to service.
Test 2.1 Concurrent = 200 and time for test is 10 seconds.

Figure 6.4. Results of Test 2.1 Transactions rate

As we can see from the bar-chart above, the Iovnet Load Balancer has the highest
transaction rate between these three competitors, in both use’s cases: client to client and
client to service).
Our prototype is about 65% faster than the Cilium’s one in the Client to Client scenario
and 58% in the Client to Service’s one.

5Calico CNI is one of the most used networking plugin for Kubernetes [28]
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Result Test 2.2

In this test we focused our attention on analyzing the throughput in two test’s cases: client
to client and client to service.
Test 2.2 Throughput

Figure 6.5. Results of Test 2.2 Throughput

As we can see from the bar-chart above, the Iovnet Load Balancer has the highest
throughput between these three competitors, in both use’s cases: client to client and
client to service). Our prototype has a 2x throughput against the Cilium’s one.
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Chapter 7

Conclusions and Future work

7.1 Conclusions

The first conclusion we can reach is that it can be possible to provide an high-performance
load balancer using the new eBPF’s technologies.
As showed from the last chapter, the load balancer proposed in this thesis respects the goals
proposed in the second chapther in order to have a load balancer with high performance
but, at the same time, minimizes the CPU’s usage.
The final features of this load balancer are:

• Generic Load Balancer it can be configured in order to work in every situations,
starting from load balancing the traffic between the network namespaces to the traffic
of a real data-center;

• High Performance it ensures the high performance in the process of load balancing;

• CPU’s usage is guaranteed to be minimized;

• Session Affinity ensuring that a client is always served by the same backend, in
order to keep the same session (especially for the TCP traffic);

• CLI (Command Line Interface) that is very useful to set up the configuration of the
load balancer;

So, we have implemented a load balancer that can compete with the actual load bal-
ancer in commerce, by minimizing the CPU’s usage using the new eBPF’s technology.

7.2 Future Work

From the first prototype of the load balancer, we have obtained very interesting results in
terms of high performance and CPU’s usage against its direct competitors.
In the next months, we are going to update the code that performs the load balancer in
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order to improve its features and performance.

We want extend this prototype with the following features:

• High Availability’s support in order to increase the availability of the load bal-
ancer. So, in this scenario, if the master load balancer will go down, there will be
a second load balancer that will replace it maintaining the same configuration and
the same states of the previous connections;

• Code’s optimitation
We want optimize the load balancer’s code, especially in the data-path in order to
minimize the number of instructions that the load balancer performs each time the
packets coming in;

Finally, for Kubernetes scenario, we want to implement a load balancer that will be
put, no more inside the node, but outside it in order to load balance all requests arriving
into the cluster to several nodes.
All of this, would give an optimization in the paths that the packets follows in the cluster.
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