
Politecnico di Torino - Universitat Politecnica de Catalunya

DET - FIB

Master in Computer Engineering

Master Thesis

Analysis of the use
of

Obfuscated Web Tracking

Author:

Federico Fallace
Supervisor:

Marco Mellia
Pere Barlet-Ros

March 2018

Contents

1 Introduction 8

1.1 Web Tracking . 8

1.2 Fingerprinting . 11

1.3 Canvas Fingerprinting . 12

1.4 Obfuscated Programming . 16

1.5 Report Structure . 18

2 State of the art 20

2.1 Measurement . 20

2.2 Countermeasures . 22

2.2.1 GHOSTERY and DoNotTrackMe 23

2.2.2 Tor . 23

2.2.3 Firegloves . 24

2.2.4 Do Not Track . 24

3 Scope of the project 25

3.1 Objectives . 25

3.2 Scope . 25

2

CONTENTS 3

3.3 Useful courses . 26

3.4 Competences . 27

3.5 Stakeholders . 27

4 Methodology 28

4.1 Scraper . 30

4.1.1 Main library used . 31

4.2 Mozilla Firefox Plugin . 32

4.3 Server . 34

4.4 Database . 35

5 Results and conclusions 39

6 Future works 48

Appendices 50

A Project Planning 51

A.1 Task Description . 51

A.1.1 Possible deviations and alternatives 55

A.1.2 Action plan . 55

A.1.3 Gantt chart . 56

A.2 Tools and resources . 57

A.2.1 Hardware . 57

A.2.2 Software . 57

A.3 Budget Analysis . 57

A.3.1 Human Resources . 57

4 CONTENTS

A.3.2 Hardware costs . 58

A.3.3 Software costs . 58

A.3.4 Total expected cost . 58

A.4 Sustainability analysis . 59

A.4.1 Environmental impact 59

A.4.2 Social impact . 60

A.4.3 Economic impact . 60

A.4.4 Sustainability matrix 60

Indice

Abstract

In the last years, web tracking has became a fast-growing phenomenon. Pro-

filing users to provide targeted advertisement is a business that counts hun-

dreds of companies and billions of dollars. On the other hand, communities,

researchers and other companies are building countermeasures to prevent

tracking practices, so the techniques are becoming more sophisticated and

hidden. This work has the goal of uncovering the obfuscation that is becom-

ing common in web tracking methods and, in particular, a popular tracking

method called canvas fingerprinting. The proposed approach could also be

used in the future for other tracking techniques. Our tests seek also to un-

cover web tracking methods not situated in the home pages, but in the sub

links, in order to discover if there is a substantial difference. We crawled

more than 830K links presents in the home pages of the first 5K most visited

web sites according to Alexa’s ranking. Our tool uncovered the real calls of

the canvas fingerprinting method toDataURL(), making it impossible to hide

by web trackers.

Canvas fingerprinting is the most common fingerprinting method and it is

based on the HTML5 canvas element, that provides a drawable area. Shapes

and text are rendered with small differences, due to different installed soft-

5

6 CONTENTS

ware and hardware. It was proved that combining this information it is

possible to uniquely identify more than 94% of the devices [1].

Our system starts visiting home pages and for each of them gather all the

links present there in a list. Then it parses this list, changing links from

relative to absolute and filtering out all the fake and void links to improve

efficiency. Finally it visits all the links. This first tasks are implemented in a

part of the system called Scraper. During the visit of the links, Mozilla Fire-

fox Plugin that we have implemented detects calls to the JavaScript tracking

method toDataURL() and injects a modified version of it. This new method

calls the original function to keep compatibility and raises an exception that

sends to our server some useful data about the canvas area, the document

and the stacktrace. Finally the server processes and stores the data in a

database. More in details, the server creates a hash value of the received

tracking files using a locality sensitive hashing algorithm, so it is possible

to detect the same tracking files with just small differences like timestamp.

Then the server looks for "toDataRL()" string in the lines where this func-

tion was actually called. If there is not this string in the original document,

this tracking call is saved as obfuscated. In the database we store all the

data useful for the next data analysis. The most important are the domain

of the URL that called the tracking method, the dimension of the canvas

area, the URL of the page where there was the call, the stacktrace raised by

the exception of the injected version of toDataURL(), the whole HTML page

and its hash value and finally a boolean value that represents if there was or

not obfuscation.

The results showed that 12% of the analyzed domains have plain-text

CONTENTS 7

canvas fingerprinting methods in the home page, while 1,2% uses obfuscation

and 86,8% is canvas free. On the other hand, when we analyzed the sub links,

the percentage increased to 30,5% for plain-text canvas fingerprinting and to

10,5% for the obfuscated one, while only 59% of the domains were canvas free.

In addition, we uncovered 2695 different trackers but just the 3 most popular

covered more than 20% of the visited domains. Finally we analyzed the files

from where the tracking method was called, and we found out that the same

tracking code is used in many different domains; the most widespread was

tanxssp.js, present in 71 different domains.

Chapter 1

Introduction

1.1 Web Tracking

Nowadays Internet has become an essential part of our lives and our daily

actions. Shopping, staying in contact with friends, working, searching infor-

mation about our hobbies and our travels are only some examples of how we

are more and more connected in each single aspect of our life.

On the other hand, web advertisement is constantly growing and, according

to [2], its revenues have surpassed TV broadcast revenues since 2005, be-

cause they are cheaper and more targeted. Since every day billions of users

put sensitive information in the web, it is not difficult to understand that

the business about users’ tracking is very lucrative and fast-growing. Most

web services are collecting information about users, and more specifically

about their searches, visited web sites, contacted people, bought products

and more. Although this information is gathered for commercial purposes,

the ways of usage are far different from the simple targeted advertising. Some

8

1.1. WEB TRACKING 9

recent studies [3], have shown that purposes include also price discrimina-

tion, health and mental condition [4, 5] and financial reliability assessment

[6, 7, 8].

In the last years web privacy measurements detected, described and quan-

tified services with privacy-impacting behaviours, forcing companies to im-

prove privacy practices, to answer to public pressure, regulatory actions and

press coverage [9, 10].

One of the most concerning aspects about web tracking is the way in which

information is collected. Users can give information willingly, for example,

filling a web form or accepting the transfer of specific information. On the

contrary, most of the time data collection is done without users’ knowledge.

In particular users do not know the methodologies web trackers use to take

information, neither which specific information is taken.

The information that is usually collected can be sensitive and technical. Sen-

sitive information are geographical location, the preferences or even the his-

tory of visited web pages, etc, while technical information contains data about

the used browser, the operating system, the IP address, the used hardware

and so on.

The methodologies used by web trackers are several, for instance analysis

of the IP address, HTTP Requests or also programs and scripts in Flash and

JavaScript. In the last category there is canvas fingerprinting, the method-

ology analyzed in this thesis. In the very few last years, some studies have

described the mechanisms used to track users [11] and have done huge tests

on the most visited websites [12]. The used methodologies are always fast-

10 CHAPTER 1. INTRODUCTION

growing and for this reason online tracking has been described as an "arms

race". Indeed mechanisms are becoming really difficult to detect, to control

and also to delete. Nowadays it is almost impossible to cancel all informa-

tion about you and start with a new and clean profile. With some tools it is

possible to block part of the tracking, but often they cause losses in content

or functionalities.

In 1994 cookies were introduced in the context of web browser by Lou

Montulli [13]. It was a big innovation for web developers and browser vendors

because it transformed in state-full the HTTP protocol, that is state-less on

its own. The basic concept of cookies is that the server can save a few data

in the browser and then send them back with subsequent requests. Not so

much time after their introduction, some abuses were observed. Indeed one

web page can have different files which can be located in different servers

(obviously the one hosting the main page, but also third-party ones) and all

of them are able to create their own cookies. So if the same server can create

cookies on a lot of website, it can track the user through the websites and

create his browsing history. This phenomenon is called third-party cookies.

Soon the community answered with countermeasures:

• a discrete part of users started to delete both first and third-party

cookies once a month;

• tools to detect the tracking were created (for instance Ghostery);

• browsers developed already built-in options to avoid third-party cook-

ies;

1.2. FINGERPRINTING 11

• browsers created private mode, that avoid to leave traces of the visits

on the devices.

Advertisers and trackers had to develop some other ways to track users and

in 2010 with Eckersley’s work [14], it was clear how to identify devices and

users without using cookies.

1.2 Fingerprinting

In the last years, the browser has become the main tool for choices in In-

ternet; it chooses the websites and the users to trust, and it gives a correct

visualization of the online services. To perform these operations it has to give

some information about installed software and used hardware to web services

that will be able to correctly render contents or to serve device-compatible

media. In order to execute efficiently the set tasks, the browser is always

more tied to Operating System functionalities and the system’s hardware,

and consequently websites’ programmers have more access to the resources.

The problem is that the APIs, usually used to ask resources’ information for

the correct visualization, are flexible enough to be used to define a finger-

print, unique (or almost) for each device. This practice is called web-based

device fingerprinting and it has worrying privacy and security implications.

We can define the Eckersley experiment in 2010 [14] as the official discov-

ery of the fingerprint. He supposed that information like screen dimensions,

installed fonts and so on, could be combined to create a device-specific finger-

print. Different attributes were used with different priorities depending on

how much they are common between users and how much they are stable in

12 CHAPTER 1. INTRODUCTION

a device. The results of the experiment showed that 94,2% of the devices had

an unique fingerprint. These results are limited to devices using JavaScript

and Flash, but they are still worrying if we think that users can be identified

and tracked without stateful client-side technologies (like cookies). In this

way, they are able to track users also if they avoid the use of browser’s or

Flash cookies, circumventing users’ preferences about tracking and limita-

tions imposed by Europe and United States regulations.

Figure 1.1 shows the properties which the browser is able to detect, together

with an example of the fingerprint of the used computer. The picture is just

a snapshot of an experiment you can repeat on the website [15].

Fingerprint can be used to unify users’ data collected from different devices

in a unique profile. The information collection works with databases, where

a device is added if it is unknown, or matches with a profile if it’s previously

known. The purposes can be positive for the users, for instance anti-fraud

systems, but also against their interests and wills, as in the case of tracking

and advertisement.

1.3 Canvas Fingerprinting

Canvas fingerprinting is the most common fingerprinting method ever studied

and it was presented for the first time in the paper [16]. With HTML5 the

new <canvas >element was introduced, which provides an area of the screen

where it is possible to draw. It is compatible with most recent versions of

Chrome, Firefox, Safari, Internet Explorer, Opera and also mobile Safari and

Android Browser. Using HTML tag <canvas>and its APIs, it is possible to

1.3. CANVAS FINGERPRINTING 13

Figure 1.1: Information extractable from the browser

14 CHAPTER 1. INTRODUCTION

Figure 1.2: Basic functioning to fingerprint canvas

detect small differences in the rendering of a text or a WebGL scene. In this

way it is possible to obtain a fingerprint in very few time and without users’

knowledge.

The canvas element is just an area, but with the context 2d and its function

getContext() we obtain an object that provides methods and properties for

drawing on the canvas. In Table 1.1 we have a list of methods for this purpose

from [17].

In particular we focus our work on the call toDataURL(). This method

returns a data URL consisting in the Base64 encoding of the PNG image

containing the entire contents of the canvas area.

In the Figure 1.2 from [12] we can see the basic functioning to fingerprint

canvas. On the website visit, the script draws text with particular font, size

and background with a script similar to the one in Figure 1.3. Then to-

DataURL() is called to get the image of the canvas element in the Base64

encoding. Finally the script hashes it and the fingerprint is obtained. This

method can also be combined with other browser properties as list of plug-

ins, fonts or the user agent string. Different operating system, font library,

1.3. CANVAS FINGERPRINTING 15

Table 1.1: CANVAS FUNCTIONS

Colors, styles and shadows properties
fillStyle, strokeStyle, shadowColor, shadowBlur, shadowOffsetX, shadowOffsetY
Colors, styles and shadows methods
createLinearGradient(), createPattern(), createRadialGradient(), addColorStop()
Lyne styles properties
lineCap, lineJoin, lineWidth, miterLimit
Rectangles methods
rect(), fillRect(), strokeRect(), clearRect()
Paths methods
fill(), stroke(), beginPath(), moveTo(), closePath(), lineTo(), clip(),
quadraticCurveTo(), bezierCurveTo(), arc(), arcTo(), isPointInPath()
Transformations
scale(), rotate(), translate(), transform(), setTransform()
Text properties
font, textAlign, textBaseline
Text methods
fillText(), strokeText(), measureText()
Image Drawing
drawImage()
Pixel Manipulation properties
width, height, data
Pixel Manipulation methods
createImageData(), getImageData(), putImageData()
Compositing Methods
globalAlpha, globalCompositeOperation
Other methods
save(), restore(), createEvent(), getContext(), toDataURL()

16 CHAPTER 1. INTRODUCTION

Figure 1.3: Example of a script drawing a text with particular font, size and
background

graphics card, graphics driver and the browser differentiate the rendering of

the canvas element. On the website [15] it is possible to see an example of

your device fingerprint.

1.4 Obfuscated Programming

In this case, Obfuscated Programming implies a transformations of the code

that makes the code more difficult to read, to understand and to change.

More difficult in terms of needed human resources, computational power and

money required to fully understand it.

The purposes are several, for instance avoiding code theft and reuse by com-

petitors or in general programmers, protecting intellectual property, adding

a security layer. On the other hand obfuscation can be also used to hide

malicious code, like in the analyzed web tracking case. This methodology is

used because in some cases delivering the source code is mandatory or just

the best design choice. Some examples: a server is not available or is too

1.4. OBFUSCATED PROGRAMMING 17

expensive, mobile applications or offline games. In these and several other

cases, there is the strong need to protect your code.

A common misunderstanding is confusing obfuscation with encryption,

although these two concepts are undoubtedly different. The former is still

executable, and it does not need a function to be deobfsucated; the encrypted

code is not ready to be executed, it needs a decryption before.

An other misunderstanding is confusingminification with obfuscation. These

two concepts often share the same techniques, but the goals are different. The

former is used to compress the code in order to make it smaller and faster,

especially if we are talking about web services.

Figure 1.4: Example of function without obfuscation

The techniques used to obfuscate the code are several. Figure 1.4 shows

the original version of a sample function, while Figure 1.5 shows the same

code after the Renaming of variables and functions and the Comment re-

18 CHAPTER 1. INTRODUCTION

Figure 1.5: Example of variable renaming and comment removal

Figure 1.6: Example of whitespace removal

moval were applied. In Figure 1.6 Whitespace removal was applied, while in

Figure 1.7 the String splitting was applied. Other common techniques are

the Dead code injection and Non alphanumeric Obfuscation.

1.5 Report Structure

This paper describes the project and the analyzed problem in the following

sections: In Chapter 3, State of the art, there is description of the fundamen-

1.5. REPORT STRUCTURE 19

Figure 1.7: Example of string splitting

tal contribution in this field. In Chapter 4, the Scope of the project and the

needed competencies to develop it are described. In Chapter 5, the Sustain-

ability of the project is analyzed, in terms of cost, human resources and time.

In Chapter 6, a detailed description of the Methodology used to develop the

tool of this work is displayed. In Chapter 7, Results and the conclusions are

extracted. Finally, in Chapter 8 there are hints for Future researches.

Chapter 2

State of the art

There are multiple tools to measure and counteract web tracking in the wild.

In the next two subsections measurement works are described, together with

studies describing web tracking, more specifically fingerprinting, and finally

some of the countermeasures present in the wild.

2.1 Measurement

The project continues the work of a Master Thesis from Alvaro Espuna Buxo’

and the same supervisor Pere Barlet-Ros [18]. This work uncovered the ob-

fuscated web tracking but limited the analysis to the first 10K most vis-

ited websites according to Alexa’s ranking. In the Survey [11] by Bujlow

and Barlet-Ros, supervisor of this thesis, a comprehensive description of the

complete literature in the field of web tracking methods, their purposes, im-

plications and possible users’ defenses is shown. According to them, tracking

mechanism is divided into 5 categories: Session-only, Storage-based, Cache-

20

2.1. MEASUREMENT 21

based, Fingerprinting and Other ones. In our work we focused on the 4th

category.

The 2010’s work [14] by Eckersley is the first published study on finger-

printing, and it deeply describes several fingerprinting techniques and which

device properties are better to have unique fingerprints.

In the paper [13] by Nikiforakis, we can find an other good analysis on how

web-based device fingerprinting works, with also the explanation of how and

why this tracking mechanism was born. Finally, the research paper [16] de-

scribes the canvas-based tracking techniques more in details.

In the last years, several works have measured the presence and invasive-

ness of web tracking in the modern Internet.

For sure the largest of them is [19] by Englehardt and Narayanan, that has

measured different kinds of tracking methods in the top 1-million websites.

They used the famous tool OpenWPM to implement an extensive analysis

on 15 methodologies, including stateful and stateless tracking, the effects of

browser’s privacy tools, and the exchange of tracking data between different

web sites. It is notable also their previous work [12] with Acar, that focuses

on canvas fingerprinting, evercookies and its conjucted use of cookie syncing.

By the last author, the work [20] presents a new tool, FPDetective, to detect

the fingerprinting itself, without the use of balcklists of known web trackers.

We can conclude the list of main papers about web tracking measurements

with the notable work by Metwalley, Traverso and Mellia [21], that focuses

on the detection of users’ identifiers and that uncovered 34 new third-party

trackers not present in previous blacklists. Their other paper [22] is also

notable and, in our opinion, differentiate a lot from previous works because

22 CHAPTER 2. STATE OF THE ART

of the analyzed datasets, made up of real users’ navigations data, obtained

from 2 ISPs.

The main points that differentiate our work from previously mentioned

ones are the following: firstly, our tool executes a dynamic analysis of the

code on the actual JavaScript calls, so without static pattern-matching; in

this way, we are able to detect obfuscated web tracking, that, in our hypoth-

esis, is spreading in modern websites to not be uncovered by existing tools.

The second difference is in our web crawler. While previous works focused

on the home pages of visited web sites, we went deeper, on the second layer

domain links. Indeed we supposed that canvas tracking methods and ob-

fuscation could be more present in pages different from landing ones. The

reasons are several: useful information about our interests, our searched ob-

jects and so on, is more likely to be exposed in sub pages than on the landing

pages. In addition, the presence of web tracking on 2nd or 3rd level domain

links is still unknown and could also have been moved there as a consequence

of the results from previous works.

2.2 Countermeasures

Preventing device fingerprinting is difficult, but there are already some method-

ologies, more or less efficient, that are trying to avoid it. In the next lines

the main ones are presented.

2.2. COUNTERMEASURES 23

2.2.1 GHOSTERY and DoNotTrackMe

These two tools are commercial anti-tracking extensions for browsers. Con-

cerns about these tools are following:

• low usage percentages; from [21] is know that around 12% of users

actually installed them;

• they block only partially the information sent to trackers;

• they rely on blacklists built online and periodically updated (once per

day or each bootstrap of the browser), but it is not know how these list

are built.

Most of the people do not know or do not care about tracking and these

tools. They are more interested in deleting advertisement from their online

life.

2.2.2 Tor

The Tor browser is the basic tool to access the Tor anonymity network, a

service that daily allows 800k people to browse completely anonymously. In

their privacy requirements, there is the cross-origin fingerprinting unlinka-

bility. From this premise, it is obvious that it incorporates strong defenses

to fingerprinting. From the test made by [20], although most of fingerprint

attributes (especially the browser-related ones) were uniformed so impossible

to be used, there were some leaks on the fonts list. They were fixed with the

next update, but the community has to be always aware of the new updates

to continuously prevent leak of information.

24 CHAPTER 2. STATE OF THE ART

2.2.3 Firegloves

Firegloves is a Mozilla Firefox extension, born for research purposes. Once

installed, the browser answers to requests about screen resolution, running

platform, browser version and so on, with randomized information. From the

tests [20] in 2014, there were some ways to avoid this protection. Using dif-

ferent APIs or Flash, it was still possible to know information like dimension

of the text (used in font-based fingerprinting), the used Operative System

and so on. Additionally, it was possible to understand if this extension was

in use and, since less than 2000 people were using the tool, it was a high

priority attribute to build their fingerprints, becoming counter-productive.

2.2.4 Do Not Track

Do Not Track (DNT) is a HTTP header field currently standardized by the

W3C and used in the most famous web browsers. It basically allows users to

express preferences on being tracked or not. The problem is that it is only

a request that can be heard or not. From the test of [20] can conclude that

none, or at least a minimum part of trackers, considers the users’ preference.

Chapter 3

Scope of the project

3.1 Objectives

The main objectives of this project are the following. We want to uncover:

• how much canvas fingerprinting is used in the modern websites;

• if and how much obfuscated programming is used by web trackers;

• if there is a substantial difference between tracking in the landing pages

and in the links present in the home pages.

3.2 Scope

The scope of this work is research-driven: we just want to answer to the

questions presented in the previous paragraph. We executed the tests with

our tool, to give answers to our questions. If the answers are different from

25

26 CHAPTER 3. SCOPE OF THE PROJECT

our hypotheses, the work will still be useful, because it will add previously

unknown information to literature.

3.3 Useful courses

APA,Ambient Intelligence and Software Engineering

With these courses, I have learned advanced programming, Python language

and how to manage a project.

Distributed Programming

This course was useful for the basic knowledge about HTML, JavaScript and

the web services’ functioning.

"Database" and "Database management system"

The basic knowledge about database was essential. I have combined it with

the Python programming to create and manage the database. In addition,

this knowledge was used to extract information from the tests’ results.

TMIRI

Thanks to this course, I was able to discover efficient tools to find good

references and, more important, proper methods to write in the scientific

field.

3.4. COMPETENCES 27

3.4 Competences

Main programming languages: Python, SQLite, JavaScript.

3.5 Stakeholders

In this project we have 4 main stakeholders:

Developer and author

The person who implemented the system and the chosen methodology, and

wrote this thesis, describing the project and its results.

Project supervisor

The project supervisor is Pere Barlet-Ros. His function is to guide and help

the developer on critical points and analysis of the results.

Scientific and Open Source communities

They provide research studies, libraries and useful tools that were essential

for this project.

Target audience

It is both the research community and the average Internet user. The objec-

tive of this research is to uncover part of web tracking, and consequently to

raise awareness about its ubiquity.

Chapter 4

Methodology

In this chapter general design of the project is described, and it is followed

by analysis of the components in more technical detail. Starting point was

the tool built in the project [18], which we latter modified and improved.

System starts visiting the home pages and the links of first layer domain,

namely the links present in the landing pages. In order to not make the

tests’ execution too long and being able to crawl the first 10k websites by

Alexa’s ranking, we did not crawl deeper.

For each page, we detect if there are actual calls of the canvas method to-

DataURL(), then we filter out the "legit calls" and finally we check if there

was obfuscation of the code.

As legit calls, we mean the toDataURL() calls that are used to render bet-

ter the canvas area, so with legit and not tracking purposes. To recognize

them, we followed the constrain presented in [23], namely we did not consider

canvas elements with properties height or width that are at least 16 pixels,

because they are unlikely to have tracking purpose. We remember that the

28

29

Figure 4.1: Design of the system

default canvas size is 300x150px.

To check if the code is obfuscated, we look for the call (the string containing

the function) in the original code, in particular in the line where toDataURL()

was called, and also in the previous and the next line.

Now let’s see more technical details.

The project is made up by four main components:

• Scraper

• Mozilla plug-in

• Server

• Database

Generally, we pass the .csv list of the most visited websites by Alexa’s

ranking to the scraper, then it visit all web pages and, for each of them,

it takes dynamically the links present in the HTML file and visit them. In

the browser, in our case Mozilla Firefox, there is a plugin that replace the

30 CHAPTER 4. METHODOLOGY

JavaScript function toDataURL() with a personalized one. This injected

version does the same of the original fnction but sends also a json request to

the server, with some data like the canvas size, a snapshot of the document

in the moment of the execution and other that we will describe in the Mozilla

Firefox Plugin section. Finally the server processes the data and stores them

in a database. We can see the general design in the Figure 5.1, while in the

next sections all the components more in detail.

4.1 Scraper

The scraper is basically a web crawler. We pass to it as input a .csv file

with the list of the most visited websites from Alexa’s ranking and it opens

a Mozilla Firefox instance to visit them. Additionally, on every website it

visits, it downloads the HTML page and look for links, through the tag <a

href >. When it finds them it filters out links that for sure will cause a

TimeOutException (the browser is not able to load the page in the limit

time), for instance "#", "/", "None" and calls like "javascript:void(0);".

Then it add "http://", if not present, and change links from relative to

absolute. Finally it stores them in a list. All links present in each list are also

visited and the rest of the work is left to the plug in and the server. A counter

is incremented each time Firefox is not able to load the page, and finally this

value is substracted from the length of the list, so we have the exact number

of correctly loaded sub pages. The errors that can occur are the following:

LcoationValueError, SSLError, TimeoutException, WebDriverException and

MaxRetryError. For each of them an exception is called, so the process is

4.1. SCRAPER 31

Figure 4.2: Main steps of the scraper for each website

not blocked, but continues its execution. When all the sublinks of a website

are visited, we store their number in a text file. Dynamically during the

visits, if one of the exceptions listed above is called, the information about

the error are also saved in a text file. In Figure 5.2 we can see the 5 main

actions executed by the scraper, for each website present in the passed .csv

file, in our case Alexa’s ranking.

4.1.1 Main library used

• Selenium

• Bs4

• Urllib3

• Requests

32 CHAPTER 4. METHODOLOGY

4.2 Mozilla Firefox Plugin

In this subsection we describe the Firefox plugin used in the system. The

plugin basically injects a modified version of the JavaScrpit method to-

DataURL() in each visited webpage where this function is present. After

the injection, it removes traces from the DOM, to try to reduce its footprint.

In this way, we will clearly take all the toDataURL() calls, comprehending

also the legit ones, not used for tracking, but for correct visualization of the

canvas content. We will see how we solved this problem.

The injected version is implemented as follows:

1. it calls the original function toDataURL(), to have a similar execution

and maintain compatibility.

2. it raises an exception, so we are able to get a stacktrace;

3. it saves in the variable param:

• the canvas visible size with the properties scrollHeight and scroll-

Width

• a snapshot of the whole document in the moment of execution

• the document.referrer, so the URL that loaded the document

• the window.location.href, the URL of the current page

• the stacktrace

• the serialized subtree of the document

4. it creates a json request and send the variable to the server with POST

HTTP request method

4.2. MOZILLA FIREFOX PLUGIN 33

5. it removes the tree leaf of the script from the DOM.

From point 1 it is clear that the plugin has only a measurement scope, it

does not block canvas fingerprinting.

Below the source code of the plugin:

var scr iptNode = document . createElement (’ s c r i p t ’) ;

f unc t i on instrument () {

var o ld = HTMLCanvasElement . prototype . toDataURL ;

HTMLCanvasElement . prototype . toDataURL = func t i on (c) {

var t r a c e = (new Error) . s tack ;

var xhr = new XMLHttpRequest () ;

xhr . open ("POST" , our_server_address , true) ;

xhr . setRequestHeader ("Content−Type" , " app l i c a t i o n / j son ") ;

var params = {

w: this . scro l lWidth ,

h : this . s c r o l lHe i gh t ,

r e f e r r e r : document . r e f e r r e r ,

s r c : window . l o c a t i o n . hre f ,

s tack : t race ,

doc : new XMLSeria l izer () . s e r i a l i z eToS t r i n g (document) ,

}

xhr . send (JSON. s t r i n g i f y (params)) ;

return old . apply (this , arguments) ;

}

34 CHAPTER 4. METHODOLOGY

var s e l f = document . cu r r en tS c r i p t ;

s e l f . parentNode . removeChild (s e l f) ;

}

scr iptNode . innerHTML = ’ (’+instrument . t oS t r i ng ()+ ’) () ; ’ ;

where = document . head | | document . body ;

i f (where) {

where . i n s e r tB e f o r e (scr iptNode , where . f i r s t C h i l d) ;

}

4.3 Server

This component is the core, where the gathered data are processed. It is

written in Python language because it is simple but powerful, and it has a

lot of useful libraries.

The server binds to an address and a port (to decide statically in the code)

where the plug-in will send the requests and it writes in a SQL database.

Since we run everything on a single machine, the default address was the

local host and we choose a random free port.

Since most of the tracking calls we are dealing with are by third parties we

would like to know if the used files are the same. Also if we are dealing with

the same file, there will be some small differences, for instance the time stamp

or user agent information, that are included dynamically in the response (we

can see an example in Figure 5.3). We would hash these files and compare

them more easily, without storing them completely, but a normal hashing

function wouldn’t work. Indeed a function like one in SHA family would

4.4. DATABASE 35

Figure 4.3: Timestamp difference

change the returned value also for a small difference, because actually this is

the purpose of this kind of functions. So we used a locality sensitive hashing

algorithm (in particular the library tlsh), to detect files’ equality, or better

similarity.

An other important aspect is that the json request is not sent through

the same domain, but from the visited page to our server. So we had to

implement a valid response with the method OPTIONS, so it can be CORS

compliant.

4.4 Database

The database schema below is quite simple, but it makes possible multiple

queries at the end of the tests.

CREATE TABLE domain (

id INTEGER NOT NULL,

domain VARCHARNOT NULL,

alexa_rank INTEGER NOT NULL,

36 CHAPTER 4. METHODOLOGY

PRIMARYKEY (id) ,

UNIQUE (domain)

) ;

CREATE INDEX ix_domain_alexa_rank ON domain (alexa_rank) ;

CREATE TABLE l og (

id INTEGER NOT NULL,

domain_id INTEGER NOT NULL,

measured_at DATETIME,

canvas_width INTEGER,

canvas_height INTEGER,

r e f e r r e r VARCHAR,

source_ur l VARCHAR,

source_html VARCHAR,

source_t l sh VARCHAR,

s t a ck t r a c e VARCHAR,

s t_ c a l l e r_ f i l e VARCHAR,

s t_ca l l e r_ l i n e INTEGER,

s t_ca l l e r_char INTEGER,

s t_ca l l e r_t l sh VARCHAR,

s t_ i n i t_ f i l e VARCHAR,

s t_ in i t_ l i n e INTEGER,

s t_init_char INTEGER,

s t_ in i t_t l sh VARCHAR,

i s_obfuscated BOOLEAN,

4.4. DATABASE 37

PRIMARYKEY (id) ,

FOREIGN KEY(domain_id) REFERENCES domain (id) ,

CHECK (i s_obfuscated IN (0 , 1))

) ;

Here we explain the main fields:

id/measured_at

These two fields are an incremental id and the timestamp of the INSERT.

domain_id

This is the ranking of the domain of the URL that called the toDataURL()

method.

canvas_width/height

Here we have the dimension of the canvas area.

referrer/source_url

This is the URL of the page where there was the call.

source_html/source_tlsh

This is the html page (transformed in a string) and its tlsh hash value.

stacktrace

This is the stacktrace that the exception of the injected version of the method

called.

st_caller file/line/char/tlsh, st_init file/line/char/tlsh

Here we have the file and its tlsh hash value where toDataURL() was called.

Additionally we have also the line and char of the call. The difference be-

tween the values st_init and st_caller is before and after the removing of

the injected function.

38 CHAPTER 4. METHODOLOGY

is_obfuscated

This is a boolean value that represents if there was or not obfuscation.

Chapter 5

Results and conclusions

We analyzed the obtained results in order to discover if the following hypoth-

esis were right:

• web tracking is becoming obfuscated

• the presence of web tracking on sub pages is bigger than in home pages.

Although these hypotheses are valid for web tracking, we analyzed only the

particular case of canvas fingerprinting. We crawled our tool on the first 5K

websites of the most visited websites by Alexa’s ranking. We were able to

reach 4209 of them, while on 3727 we found more than 0 links. The total

number of links actually reached is 836653, while a vaster number of them

were visited but not correctly loaded. In the following statistics we considered

only the real numbers.

In the next part, analysis of the results is presented, followed by discussion

and conclusion. The analysis is divided into three parts: results related to

links, domains and trackers.

39

40 CHAPTER 5. RESULTS AND CONCLUSIONS

Links analysis

The total number of distinct URLs where we found plain-text canvas fin-

gerprinting is 68836, while on 5974 we found obfuscated one. In the rest of

the links, 761843, we did not find canvas fingerprinting tracking. Graphic

pie chart in Figure 5.1 shows the visited URLs, with previously mentioned

numbers as percentages. Since the number of links present in each web site

Figure 5.1: Percentages of links without, with plain-text and obfuscated
canvas fingerprinting

Figure 5.2: Percentages of plain text and obfuscated canvas fingerprinting

is really different (from 0 to 9983) this analysis does not give a real percep-

tion of the diffusion of this kind of tracking, but it is useful to understand

the percentage of the obfuscation. From previous numbers, 8% of the to-

41

tal uncovered canvas fingerprinting is obfuscated, while 92% is in plain-text

(Figure 5.2).

Domains’ analysis

Our first test on domains where canvas fingerprinting is present, was done on

the first 10K home pages, to observe potential differences between 2016 (last

time the previous version of the tool was used) and 2017. The results (Figure

5.3) show that there was a decreasing of canvas fingerprinting in general, but

there was a substantial increase of the obfuscation.

In our second and extensive test, we limited our analysis of the sub pages

to the first 5K domains for time reasons, so we will compare their related

results only to the first 5K home pages, although we have data until 10000th

home page.

The domains that use canvas fingerprinting in their home pages are 13,2%,

12% in plain-text, while 1,2% with obfuscation. We found a notable difference

crawling the sub pages; we found out that 41% of the domains are using

canvas fingerprinting, 30,5% in plain text, 10,5% with obfuscation (Figure

5.4 and Figure 5.5).

Trackers’ analysis

As last step, we focused our analysis on the trackers. From the database we

had the links of the files where toDataURL() was called, so we had to build

some small data analysis applications to extract interesting data.

Since most of the trackers we uncovered are third-parties, it is interesting to

42 CHAPTER 5. RESULTS AND CONCLUSIONS

Figure 5.3: Numbers of distinct domains with canvas fingerprinting in home
pages in 2016 and 2017

know more about the tracking service itself, and not only which domains are

using that service.

We firstly focused on detecting the trackers’ domains that are the most

widespread in the visited websites; we went through this analysis to uncover

the main third-party trackers. We calculated on how many different websites

domains each tracker domain was called. For instance, the tracker domain

doubleverify was present on sina.com.cn, imgur.com and so on. In Figure

5.6 we can see the first 22 third-party trackers, the ones that were present

in more than 10 websites. In Figure 5.7 and 5.8 we divided the results for

plain-text and obfuscated canvas fingerprinting.

Then, we focused on the specific files used by the trackers, to see if the

43

Figure 5.4: Percentages of canvas fingerprinting in home pages

Figure 5.5: Percentages of canvas fingerprinting in home pages and sub pages

same script is widely adopted in more websites. This analysis was made not

taking in count the tracker domain where the file was from. Indeed the same

tracker can have different domains but using the same script of more trackers

can share it to have a vaster amount of data.We can see the results in Figure

5.9; the tanxssp.js was found on 71 domains, score.min.js on 45, check.js on

21 and then other ones in fast decreasing.

Conclusions

The first hypothesis we want to confirm is that obfuscated programming is

actually present in the web tracking, so all tools and measurements with

static pattern matching analysis are not able to discover this part of the

44 CHAPTER 5. RESULTS AND CONCLUSIONS

Figure 5.6: Most widespread trackers

phenomenon. The results can be withdrawn from Figure 5.2, which clearly

shows that obfuscation is present and actually is a considerable part of canvas

fingerprinting (8% of it) and since 10,5% of the visited domains use it, we

can conclude it is also widely spread. In future studies, it could be easily

possible to extend this analysis to more tracking techniques using JavaScript,

with just few modifications of our tool.

The second hypothesis we want to verify is that web tracking, in our

study case only canvas fingerprinting, is more present in sub links than land-

ing pages. We supposed that for two reasons. The first one is that useful

information about users’ interests, searched objects and so on, are more likely

to be exposed in sub pages than on the landing pages. Clear examples are

travel or e-commerce websites; when a user land to the homepage, the tracker

45

knows that he is interested to buy a travel or a good, but not yet the destina-

tion of this travel or the category of the desired object. The second reason is

that most of the previous works that analyzed the presence of web tracking,

focused only in the home pages, so the presence of web tracking on 2nd or

3rd level domain links is still unknown and could also have been moved as a

consequence of the results from previous works.

From the data in Figure 5.4 and 5.5, we can see a clear difference. The pres-

ence of canvas on sub links is more than three times compared to the home

pages (45,9% against 13,2%); if we analyze also these percentages divided

in plain-text and obfuscated, we observe that the former is 2,5 times bigger,

while the obfuscated canvas fingerprinting is almost 9 times bigger. So we

can conclude also that obfuscation is way more present in sub pages than

landing pages.

From the analysis of trackers we can also extract some other interesting

data. In Figure 5.10 we noticed that the most widespread tracker, doublever-

ify covers more than 25% of the websites using canvas fingerprinting, while

the second, google, around 12%, and the other ones in fast decreasing (at-

lassbx 6.18%, alicdn 4.18%, yimg 2.64% and so on). We can conclude that a

big part of canvas fingerprinting is controlled by few trackers.

46 CHAPTER 5. RESULTS AND CONCLUSIONS

Figure 5.7:

Figure 5.8:

47

Figure 5.9: Most widespread tracking files

Figure 5.10: Percentages of domains that use canvas fingerprinting for each
tracker

Chapter 6

Future works

In the future developing of our tool, we can consider technical and contents

improvements.

For the former improvements it can be useful to decentralize the system,

running the server on Internet or in a local network, and no more locally in

the device. In this way it will be possible to run the scraper in parallel on

many devices. It can be useful also to make the program lighter, for example

using a multi-thread system architecture, and more efficient, creating some

custom-made libraries.

These technical improvements can be implemented in order to have more ex-

tensive analysis, going deeper in the links and reaching the first 10K websites

by Alexa’s ranking.

Additionally, with just some modifications of the Firefox plug-in, it is possi-

ble to extend the analysis also to other JavaScript tracking techniques. The

tool has only research purposes and it does not block the canvas fingerprint-

ing techniques, although it is really easy to implement this behavior. One

48

49

side effect can be the bad functioning of some proper uses of this technique,

as fraud-detection. A solution widely used in other anti-tracking systems

is to discover tracking services, then analyze them, and built blacklist and

whitelist to block or allow canvas fingerprinting from different domains. An-

other interesting development of the research is to move the analysis from

the browser to a sniffer, to have data also on real navigation cases. Since

the calls to the tracker are made from the browser, it would be necessary to

understand the output of the calls sent to the trackers, in order to recognize

it in HTTP packets. It is interesting to understand if obfuscation is also

traceable in the traffic and not only on the browser.

Appendices

50

Appendix A

Project Planning

A.1 Task Description

After an initial and general planning, all the smaller parts of the project

were planned, developed, tested and then planned again and so on, to insert

missing parts not considered in the beginning. So the tasks 1,3,4,5 were not

done in an unique block, but in small cycles, using a technique similar to

Scrum. If the tests had been done in the end of the project, modifications in

order to obtain a lot of missing information that we needed, or just to make

it more efficient, would have required more time, or they could have been

useless.

The main tasks of the project were:

1. Reading scientific articles and study about the topic

2. Initial planning

3. Planning of the small tasks

51

52 APPENDIX A. PROJECT PLANNING

4. Code

5. Test code

6. Running and supervise tests

7. Results’ evaluation

8. Report writing

9. Report revision

10. Oral defense preparation

Reading scientific articles

The topic of web tracking is not so common in the average career of Computer

Engineering, so a deep study about it, and about all the other fields used in

the projects was mandatory. Additionally, a good knowledge about previous

works was useful to direct this project to make right choices.

Table A.1: Reading scientific articles
Expected duration 150 hours
Human Resources Thesis Author
Material Resources Computer
Task dependencies None

Initial planning

After reading up on the topic, we focused and identified the goals of the

project and how to reach them.

A.1. TASK DESCRIPTION 53

Table A.2: Initial planning
Expected duration 30 hours
Human Resources Thesis Author and Project Supervisor
Material Resources Office computer
Task dependencies None

Planning of the tasks

After a general planning, each task was isolated and a developing solution

was thought, using the algorithm design paradigm "Divide et impera".

Table A.3: Planning of the tasks
Expected duration 70 hours
Human Resources Thesis Author
Material Resources Office computer
Task dependencies Initial planning

Code

This task refers to the real implementation of the code.

Table A.4: Code
Expected duration 120 hours
Human Resources Thesis Author
Material Resources Office computer
Task dependencies Planning of the tasks

Test code

In this part we tested the correct working of the written code.

54 APPENDIX A. PROJECT PLANNING

Table A.5: Test code
Expected duration 50 hours
Human Resources Thesis Author
Material Resources Office computer
Task dependencies Code

Running and supervise tests

This task consisted in running the code to obtain data we needed. Since the

tests are large, a strong supervision was required.

Table A.6: Running and supervise tests
Expected duration 70 hours
Human Resources Thesis Author
Material Resources Office computer
Task dependencies Test Code

Results’ evaluation

Once we had the results, we were able to evaluate them and confirm our

hypothesis.

Table A.7: Results’ evaluation
Expected duration 100 hours
Human Resources Thesis Author and Project Supervisor
Material Resources Office computer
Task dependencies Running and supervise tests

Report writing and revision

In parallel with the execution of the tests, it was required to write this report

to explain our hypothesis, our methodology and our results.

A.1. TASK DESCRIPTION 55

Table A.8: Report writing and revision
Expected duration 180 hours
Human Resources Thesis Author and Project Supervisor
Material Resources Office computer
Task dependencies Planning

Oral defense preparation

In the end the project has to be presented to a commission, so in this part

consisted of the preparation of the presentation and the oral defense.

Table A.9: Oral defense preparation
Expected duration 40 hours
Human Resources Thesis Author and Project Supervisor
Material Resources Office computer
Task dependencies Report writing and revision

A.1.1 Possible deviations and alternatives

This project is fundamentally a research project and some deviations can

occur as a consequence of the nature of the project. This should not create

an alarming situation as long as the deviations are controlled and can fit in

the project schedule. Therefore, it is very important to identify deviations

and monitor them closely. For this reason, weekly meetings will be crucial.

A.1.2 Action plan

As the project is done by one developer there is not a need for coordinating

different people/teams. This means it is possible to revise and adapt dynam-

ically the initial planning. If one of the phases is longer than expected the

56 APPENDIX A. PROJECT PLANNING

inevitable consequence will be that the remaining phases will be shortened

in time. As stated before, some deviations can occur and it will be crucial

to address them as part of the weekly progress assessment. As a last resort,

if one of the phases were to take too long to accommodate in the timeline,

initial requirements will need to be simplified.

A.1.3 Gantt chart

Figure A.1: Gantt chart part I

Figure A.2: Gantt chart part II

A.2. TOOLS AND RESOURCES 57

A.2 Tools and resources

A.2.1 Hardware

For the project it was used a computer in the office, with the following

characteristics:

• OptiPlex 7010 by Dell Inc. 64 bits

• Intel(R) Core(TM) i5-3470 CPU @ 3.20 GHz

• RAM 8GB

A.2.2 Software

The used operative system was Ubuntu 16.04.2 LTS.

The used programming languages were Python, Javascript and SQLite.

The main libraries were Selenium, bottle, html, sqlalchemy, urlparse3

and tlsh.

Other used tools were Overleaf, Google Drive and TeamViewer.

A.3 Budget Analysis

A.3.1 Human Resources

The Human Resources needed for this project are:

• Project Director

• Software designer

58 APPENDIX A. PROJECT PLANNING

• Software programmer

• Software tester

Required hours and the costs are summed up in the table below.

Table A.10: Human Resources costs
Role Estimated hours Price per hour Total cost

Supervisor 40 60 3600
Software designer 350 30 10500

Software programmer 190 30 5700
Software tester 50 30 1500

Total 650 - 21300

A.3.2 Hardware costs

Table A.11: Hardware costs
Product Price Units Useful life Price/month Amortization

Office computer 1400 1 4 years 29,17e 145,85e

A.3.3 Software costs

The used software’ are described in Section 5.2.2. All of them are open

sources, thus, there is no additional costs.

A.3.4 Total expected cost

The costs were explained and calculated in the paragraphs above, while the

consumption is calculated in the Section 5.4.1.

A.4. SUSTAINABILITY ANALYSIS 59

Expense Cost (e)
Human Resources 21300

Hardware 145,85
Software 0

Consumption 20,4
Total cost 21466,25

A.4 Sustainability analysis

A.4.1 Environmental impact

In order to evaluate the environmental impact of the project, we calculated

how many KWh were used, and consequently how much CO2 was emitted.

The consumption of a middle-range computer (as the one used for the project)

is about 150W per hour. The total computer working hours were around

1200. We calculated separately the screen consumption because, during most

of the tests’ execution, the screen was not used. The screen has a consump-

tion of 50W per hour, and the hours were around 480.

We applied the following expression to these numbers, to obtain the total

consumed energy cost.

Pn
i=1(Device0s consumption[W] x number of hours)

1000
= 204KWh

In Spain the average cost of a KWh is 0,10 e, so the total cost for the energy

is around 20,4e.

Finally, in according to [24], the average consumption in Spain for each KWh

is 270g of CO2. So the total CO2 emitted for this project is 55,08 Kg.

There is no manufacturing needed, and no waste is generated as a result

of the project, nor as a result of its deployment or utilization. So the envi-

60 APPENDIX A. PROJECT PLANNING

ronmental impact of the project is very low. Therefore, a high score on the

environmental dimension is appropriate.

A.4.2 Social impact

Every day a huge amount of users is tracked while visiting websites. This

work could be useful to be aware about it and take the possible countermea-

sures. It can have a positive social impact.

A.4.3 Economic impact

The total cost of the project was calculated in Section 5.3 (Budget Analysis),

but since most of human resources were not payed because the project is a

Master Thesis and the computer was unused property of the University, these

costs are really low.

A.4.4 Sustainability matrix

Table A.12: Sustainability matrix
Category Score

Environmental 9/10
Social 8/10

Economic 9/10
Average 8,67/10

Bibliography

[1] P. Eckersley, “How unique is your web browser?,” in Proceedings of

the 10th International Conference on Privacy Enhancing Technologies,

PETS’10, (Berlin, Heidelberg), pp. 1–18, Springer-Verlag, 2010.

[2] “IAB internet advertising revenue report,” 2014.

[3] J. Mikians, L. Gyarmati, V. Erramilli, and N. Laoutaris, “Detecting

price and search discrimination on the internet,” in Proceedings of the

11th ACM Workshop on Hot Topics in Networks - HotNets-XI, (New

York, New York, USA), pp. 79–84, ACM Press, 2012.

[4] T. Economist, “Insurance data: Very personal finance,” The Economist,

http://www.economist.com, 2012.

[5] L. Scism and M. Maremont, “Insurers test data profiles to identify risky

clients,” WSJ, http://www.wsj.com, 2010.

[6] C. Cuomo et al, “Gma gets answers: Some credit card companies finan-

cially profiling customers,” ABCNews, http://abcnews.go.com, 2009.

[7] K. Lobosco, “Facebook friends could change your credit score,” CNN,

http://money.cnn.com, 2013.

61

62 BIBLIOGRAPHY

[8] D. Mayer, “Outrage as credit agency plans to mine facebook data,” Gi-

gaom, https://gigaom.com, 2012.

[9] “Google Will Pay $22.5 Million to Settle FTC Charges it Misrepresented

Privacy Assurances to Users of Apple’s Safari Internet Browser | Federal

Trade Commission.”

[10] “What They Know - Wsj.com.”

[11] T. Bujlow, V. Carela-Espanol, J. Sole-Pareta, and P. Barlet-Ros, “A

Survey on Web Tracking: Mechanisms, Implications, and Defenses,”

Proceedings of the IEEE, pp. 1–35, 2017.

[12] G. Acar, C. Eubank, S. Englehardt, M. Juarez, A. Narayanan, and

C. Diaz, “The Web Never Forgets: Persistent Tracking Mechanisms in

the Wild,”

[13] N. Nikiforakis, A. Kapravelos, W. Joosen, C. Kruegel, F. Piessens, and

G. Vigna, “Cookieless Monster: Exploring the Ecosystem of Web-based

Device Fingerprinting,”

[14] P. Eckersley, “How Unique Is Your Web Browser?,”

[15] “Canvas Fingerprinting - BrowserLeaks.com.”

[16] K. Mowery and H. Shacham, “Pixel Perfect: Fingerprinting Canvas in

HTML5,”

[17] W3schools.com, “HTML Canvas Reference.”

BIBLIOGRAPHY 63

[18] A. E. Buxo’ and P. Barlet-Ros, Uncovering obfuscated web tracking.

UPC, 2016.

[19] S. Englehardt and A. Narayanan, “Online Tracking: A 1-million-site

Measurement and Analysis,”

[20] G. Acar, M. Juarez, N. Nikiforakis, C. Diaz, S. Gürses, F. Piessens, and

B. Preneel, “FPDetective: Dusting the Web for Fingerprinters,”

[21] H. Metwalley, S. Traverso, and M. Mellia, “Unsupervised Detection of

Web Trackers,”

[22] H. Metwalley, S. Traverso, M. Mellia, S. Miskovic, and M. Baldi, “The

Online Tracking Horde: A View from Passive Measurements,” pp. 111–

125, Springer, Cham, 2015.

[23] S. Englehardt and A. Narayanan, “Online tracking: A 1-million-site

measurement and analysis,” in Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security, CCS ’16, (New

York, NY, USA), pp. 1388–1401, ACM, 2016.

[24] ABB, “Energy efficiency report - Spain,” tech. rep., 2011.

	Introduction
	Web Tracking
	Fingerprinting
	Canvas Fingerprinting
	Obfuscated Programming
	Report Structure

	State of the art
	Measurement
	Countermeasures
	GHOSTERY and DoNotTrackMe
	Tor
	Firegloves
	Do Not Track

	Scope of the project
	Objectives
	Scope
	Useful courses
	Competences
	Stakeholders

	Methodology
	Scraper
	Main library used

	Mozilla Firefox Plugin
	Server
	Database

	Results and conclusions
	Future works
	Appendices
	Project Planning
	Task Description
	Possible deviations and alternatives
	Action plan
	Gantt chart

	Tools and resources
	Hardware
	Software

	Budget Analysis
	Human Resources
	Hardware costs
	Software costs
	Total expected cost

	Sustainability analysis
	Environmental impact
	Social impact
	Economic impact
	Sustainability matrix

		Politecnico di Torino
	2018-04-04T20:41:54+0000
	Politecnico di Torino
	Marco Mellia
	S

