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Abstract

The aim of this thesis is to collect workload data based on simulations and predict
run-time parameters based on the machine learning algorithms. Targeting at inves-
tigating the upcoming false-behavior of a chip.

This thesis is composed by five main parts which are:

• the introductory chapter, highlighting background, key terms, why a new
trace-buffer based electrical bug localization method is needed, the goal of
this work, outlining the constraints and issues which are generated mainly by
previous studies;

• the second chapter describes which methodology is used in our proposal and
a brief overview is given in the program structure section in order to better
understand this work;

• in the third chapter, the most important one, benchmark circuit selec-
tion is presented firstly with a comparison of ISCAS’99, ITC’99 and LEON3
processor, then the whole procedures of generating experimental data sets are
illustrated, starting from experimental setup to the final training dataset
generation with the Leon3 microprocessor; we focus on the model selection
which concentrates on false behavior prediction using machine learning in the
last section of this chapter, explaining the machine learning algorithm which
is used in this thesis and its peculiarities that make it different from other ma-
chine learning algorithms and previous works; the unbalanced class problems
are also illustrated;

• in the following, the fourth chapter focuses on the evaluation of the final
results and performance; the experimental results generated by using the
same workload data-set and by using different workloads both for training and
testing the mode are demonstrated and both electrical bugs localization and
the trace signal selection are considered;

• the conclusions of this thesis is presented in the last chapter.
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We could observe from the experimental result that the trace buffer based electrical
debugging using machine learning techniques is efficient than the traditional meth-
ods. After considering both accuracy score for locating the electrical bugs and the
trace signal selection, RFC genrated the best result.
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Chapter 1

Introduction

1.1 Preliminary Introduction and Motivations
In pre-silicon verification, the formal verification and simulation-based verification
are two major methods. Since the complexity of modern electronic systems in-
creased rapidly and this makes the traditional pre-silicon verification, which detects
and fixes bugs before manufacturing, becomes inefficient for detecting the functional
bugs and some electrical bugs. It makes post-silicon debugging become into exis-
tence and become more important nowadays.

The expeditiously increased complexity of modern electronic systems also makes
the effectiveness of the debug strategy to become more important. The previous
studies and works provided an overview of various post-silicon validation activities,
techniques, and the corresponded issues.

Post-silicon validation is critical for integrated circuit designing. Increasing the
abilities of control and observation of the integrated circuits’ internal behavior level
is required in order to be able to find the root-cause design bugs. And this level is
much higher than what the manufacturing test generally needs.

In the modern complex integrated circuits, excessive power dissipation may cause
run-time errors and the device destruction due to overheating, while device lifespan
may shorten by reliability issues. Therefore monitoring the states, which corre-
sponded to the code execution, timing, and data accesses, in order to monitor the
electrical bug become critical. But storing all system states is not feasible.

After satisfying the critical path and avoid redundant information. A subset of
traceable signals are effective and could be used for debugging in run-time, which
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1 – Introduction

introduces the trace-buffer based debugging technologies.

Machine learning shows its excellent performance in many real-world problem
classes in recent years, many machine learning applications were developed success-
fully. Let computer learn from historical experiences then automatically improve its
upcoming choice decision based on learning models or learning algorithms, which
takes my interests to combine it with electrical debugging.

1.2 Goal of the Project
This work aims to collect workload data based on simulations and predict run-time
parameters based on the machine-learning model built on these data, targets at
exploring the electrical bug detection capabilities of a post-silicon debugging frame-
work by marking informed decisions on trace signal selection by analyzing the trace
buffer data to extract voltage droop profile of the power delivery network (PDN)
for bug localization and detection.

1.3 Background, Previous Studies and Key Terms

1.3.1 Post-silicon Validation
Since the traditional pre-validation is nearly impossible to detect and fix all bugs
before manufacture due to sheer design complexity. As stated in section 1.1, it
brings post-silicon debugging into existence and makes it become more important
nowadays.

Post-silicon validation has significant overlap with pre-silicon design verification
and manufacturing (or production) testing, it is the process which the manufactured
design, for example, a chip is tested for all functional correctness at run-time, en-
compassing all the validation efforts that are poured onto a system after the first
several prototypes are manufactured in a lab setup, but before the final product re-
lease. As a result, a number of functional bugs survived into manufactured silicon,
detecting and diagnosing them is the job of post-silicon validation, so that they do
not escape into the released system.

A simplified overview of pre-silicon and post-silicon validation flow is demon-
strated in the Fig.1.1 below.

2



1.3 – Background, Previous Studies and Key Terms

Figure 1.1: Simplified overview of pre-silicon validation
and post-silicon validation flow

In the pre-silicon validation stage, as showing in the Figure 1.1, the debugging
process remains mainly manually and the debugging time grows significantly with
the increasing complexity of the integrated circuits. There are different approaches
for pre-silicon debugging automation, like Binary Decision Diagrams (BDD) [4], and
Boolean Satisfiability (SAT) [5]. The debugging approaches based on SAT showed
their robustness and effectiveness in a variety of design scenarios from diagnosis to
debugging properties. And the design bugs at gate level are divided into three main
classes: logic bugs, algorithmic bugs, and synchronization bugs [6].

The post-silicon validation contains two parts mainly, Design Under Test (DUT)
and Offline Debug Procedure (ODP). Logic synthesis is applied after verifying the
design against the specification and fixing the bugs in the design, it converts the

3



1 – Introduction

design to a gate level circuit, and the new circuit is checked again against the design,
which is called equivalence checking. The resistor-transistor level (RTL) design is
usually created by a place-and-route process for chip manufacturing.

Signals selected through pre-silicon analysis are funneled to trace buffer through
interconnection fabric from which the states are restored offline to assist in debug-
ging. Then the design is fabricated in silicon as a chip.

1.3.2 PDN and Electrical Bug
Power Delivery Network (PDN) includes all the involved devices and wiring which
distributed across the die and packages of the chip and discrete components, it
distributes power and ground voltages from pad locations to all devices in a design
over a network of conductors. The design of PDN has to consider many different
operating modes resulting from clock gating, power gating, multiple power domains,
dynamic voltage, and frequency-scaled operation and also has to be implemented
using fewer routing layers and cheaper packages due to cost consideration [7].

Figure 1.2: PDN example: on-chip model [1]

The power dissipation of designed chips has grown rapidly with the increased
complexity of modern integrated circuits. For reducing the power dissipation, the
operating voltage is scaled down, therefore shrinking the voltage drop which is al-
lowed on the chip power and ground distribution for the correct operation of the
circuits. For high-performance processors, since it needs to deliver a very large
amount of power, the issues and related challenges become obvious.

4



1.3 – Background, Previous Studies and Key Terms

In a digital circuit, most of the power in CMOS circuits is consumed during
charging and discharging of the load capacitance during each clock cycle, it means
gates consume power when making logical transition.

Figure 1.3: Voltage drop contour plot. Z-axis is the percentage change [2]

Most of electric bug due to systematic design problems and it may lead the chip
to generate incorrect outputs. The majority of failures caused due to electrical bugs,
are timing failures. For instance, the PDN is not well designed and generates high
voltage droop in some region, as shown in Figure 1.3, which means the increased
delay across the circuit is caused by the percentage of Vdd reducing. They are hard
to test and they only happen when the chip is running under specific workload sce-
narios.

1.3.3 Trace-buffer

Digital trace usually provides the detailed history of states which represents code
execution, timing, and data accesses. These information could be used for debug-
ging and performance analysis. It captures states in run-time but does not impact
the execution of electronic system.

A simplified view of how the trace buffer works, is shown in Figure 1.4 below.

5



1 – Introduction

Figure 1.4: Example of trace-buffer

Embedded Trace Buffer (ETB) is an on-chip circular memory buffer, as shown
in figure 1.5, whose physical size is usually limited between two thousand and eight
thousand cycles, which means it could trace few hundred signals for few thousand
cycles in a design with millions of signals and continuously stores the traced infor-
mation.

The circular trace buffer, as shown in Figure 1.5, is also applied in our proposal.
It connected to a subset of FFs and always stores the last N cycle contents of these
traced FFs, it keeps overwriting itself as a circular queue.

Figure 1.5: Circular buffer

Usage of the trace buffer for run-time debugging reduces the complexity and dif-
ficulty compared to the traditional debug methods, which usually requires to stop

6



1.3 – Background, Previous Studies and Key Terms

and re-start the electronic system. Obviously, it can also reduce the amount of time
needed to find these failures significantly. The number of signals that can be traced
per cycle is limited to trace buffer width. The trace buffer depth will limit the
maximum number of values recorded per signal [8].

1.3.4 SA, SP and SR
SA : Switching Activity.

It plays a significant roll in the integrated circuits as what is already men-
tioned in section 1.3.2, gates consume power when making logical transition,
so the power dissipation depend on the extent of circuit switching activity
strongly [9], [10]. And in paper [11], the following equation is provided for
calculating dynamic power:

Pd = αfcCV
2

dd

where α stands for switching activity or signal activity of an actual node, fc

is the clock frequency and Vdd is the supply voltage.

The clocked nodes have highest switching activities with α = 1 in general, it
is the number of clock cycles for each cycle. Therefore the clock signals are
very critical for dynamic power consumption. And for data, different activities
depend on different workloads. Random data have an activity of 0.25, and in
the matter of fact, the real data normally change between 0.01 and 0.25 [11].

Figure 1.6: Switch Activities example

In another words, for example a sequence of states showed in the Fig. 1.6,
only the change between adjacent states, like 1 to 0 or 0 to 1, counted as a
switch.

7



1 – Introduction

SP : Signal Probability (Logical Signal Probability).
In paper [12], “ 1 ” was chosen as the “reference value”. The definitions of the
probability of a logic signal and the probability that a signal equal to zero are
given as Eq.1.1 (Definition 1) and Eq.1.2 (Definition 2) in the following.

Definition 1: The probability of a (logic) signal, expressed as
a = P (A = 1) (1.1)

“for signal A, is a real number on the interval [0, 1] which expresses the prob-
ability that signal A equals 1. We use the convention here that upper case
letters correspond to signal names (Boolean variables) and lower case letters
represent the corresponding probabilities. Since Boolean algebra is based on
two-valued variables, we give the following definition."

Definition 2: The probability that signal A = 0 is given as
P (A = 0) = 1− P (A = 1) = 1− a (1.2)

Several lemmas which relate Boolean operations to corresponding operations
on probabilities and their proofs can be found in [12].
Sets of rules for calculating the node signal probabilities in different cases with
different methods were summarized in tables in [13].

Figure 1.7: Sample circuit for state restoration. (a) CUD.
(b) Restored data in sequential elements.
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1.3 – Background, Previous Studies and Key Terms

SR : State Restoration (Ratio).
State restoration ratio was mentioned firstly in [14], and a simple example was
considered as shown in the Figure 1.7.
The easiest way for debugging the circuit which is showed in Fig.1.7(a), all
five flip-flops (FFs) were sampled for five consecutive clock cycles, as shown in
Figure 1.7(b). For storing all the data during silicon debugging in this case,
a size of 5 × 5 trace buffer was used, it means only the sampled flip-flops is
needed to be monitored instead of all the signals, and knowing the trace of one
FF will be able to reconstruct some of the missing data of the circuit. How
the states restoration works is shown in the following.

Figure 1.8: Principal operations for state restoration. (a)Forward.
(b)Backward. (c)Combined. (d)Not defined.

Forward restoration: reconstructing the output when knowing of inputs.
Backward restoration: restoring the unknown inputs when knowing the output.

The main idea of state restoration is to forward propagate and backward justify
the known values from a trace signal to other nodes in a circuit in order to re-
construct the missing data. This is achieved by applying the Boolean relations
between state elements [14], the principal operations for SR is demonstrated in
the Figure 1.8 as showing above, both forward restoration, backward restora-
tion, combined case and not defined case are illustrated.

Singal or state restoration ratio (SRR) is a common used metric for measuring
the signal restoration and the quality of trace signal selection, which was de-
fined in [15] with more detailed explanations, is also presented in the following.

SRR = NTraced_states +NRestored_states

NTraced_states

9



1 – Introduction

1.4 Machine Learning

1.4.1 Introduction and Glossaryon Machine Learning
Machine learning is used firstly by Arthur Samuel who is expert in the field of com-
puter gaming and artificial intelligence in 1959 [16]. It is one of the fastest growing
fields recent years in computer science. Its wide usage covers not only science but
also the daily life with the rapidly growing of the digital technologies.

The amount of data become large thus capturing key features and useful in-
formation from the data or mapping input to output became less trivial. But the
certain patterns do exist in the data. Algorithms are needed in order to solve these
problems on the computer, so-called learning algorithms in machine learning area,
which contains a sequence of instructions that should be implemented to transform
the input to output.

Machine learning is a subject which is devoted to study how to use the experi-
ences to improve the performance of system through calculation methods. The prin-
ciple of machine learning is generating learning models, which could automatically
improve or optimize the performance with given data through learning algorithms,
then it could make accurate predictions. And the given data are usually described
as the experiences, here refers to the historical information or data which are avail-
able to the learner. The learning model could provide the accurate prediction after
learning when new experience or data is given to it.

The process that generating the learning model from data, is called learning or
training. The data-set is used in the learning process is called training data and each
sample inside that is called training sample. And all the gathered training samples
together is called training set. The learned model which corresponded to the poten-
tial patterns or regularities of the data is called hypothesis, and these regularities
are so-called ground-truth. The learning process is to find out or approximate the
ground-truth. The ’result’ information is needed in order to build a model which is
possible to make the prediction.

Error Rate = E(f ;D)

= 1
m

m∑
i=1

I(f(xi) /= yi)

= n

m

(1.3)

The total number of wrong samples over the whole sample set after classification
is called error rate. For example, there are m samples in total and n of them were

10



1.4 – Machine Learning

classified wrongly. Thus, the error rate [17] could be calculated as in eq. 1.3. And
accordingly, the accuracy is:

Accuracy = 1− Error Rate
= 1− E(f ;D)

= 1
m

m∑
i=1

I(f(xi) = yi)

= 1− n

m

(1.4)

where f stands for the leaner performance, loss function I is one when f(xi) and
yi are equal, is zero otherwise, and D is the given sample set withm samples which
could be represented as following.

D = {(x1, y1), (x2, y2), ..., (xm, ym)}

In general, the difference between the predictions and the actual output is called
error, the error made by learner on the training set is training error or empirical
error, and the errors made on the new samples is generalization error. Obviously,
a learner with small generalization error is wanted. However, the new samples are
unknown in advance, so what actually is tried to do is to minimize the empirical
error.

Error rate and accuracy are used the mostly but can not satisfy all the task
requirements, therefore also other performance measurements like precision and re-
call [18] were introduced. According to the real output set and predicted output
set, the samples could be classified as True Positive (TP), False Positive (FP), True
Negative (TN) and False Negative (FN). And they could be represented in a so-called
confusion matrix as showed in the table 1.1.

Actual Prediction Results
Positive Class Negative Class

Positive Class TP FN
Negative Class FP TN

Table 1.1: Confusion matrix

Therefore the precision and recall could be calculated as in eq.1.5 and eq.1.6.

Precison = P = TP

TP + FP
(1.5)

11
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Recall = R = TP

TP + FN
(1.6)

And obviously, TP + FP + TN + FN = Totalsamples.

Using the learning algorithms to build up a good and useful approximation in
order to detect certain patterns or regularities instead of all is the niche of machine
learning. Machine learning plays an important role in transforming the digital data
into useful products and services, and it shows its excellent performance in many
real-world problem classes and many machine learning applications were developed
successfully in recent years.

1.4.2 Problem Catalog
According to the training data-set is labeled or not, the learning tasks could be
separated mainly into two kinds, supervised learning and unsupervised learning. The
learning tasks could be classified as showed in Figure 1.9.

• Supervised Learning / Predictive models
Predictions are made for the future outcome based on the historical data.
Normally, what needs to be learned and how it needs to be learned is given
from the beginning. Some examples of algorithms used are: Nearest neighbour,
Naive Bayes, Decision Trees, Regression etc.

– Semi-supervised learning only an incomplete training signal, which
means a training set with some missing target outputs, is given to the
machine.

– Active learning only the training labels are obtained by the machine
for a limited set of instances, and also has to optimize its choice of objects
to acquire labels for.

– Reinforcement learning training data (in form of rewards and punish-
ments) is given only as feedback to the program’s actions in a dynamic
environment [19], and usually the machine is trained to take specific de-
cisions based on the business requirement to maximize efficiency or per-
formance, it is an example of machine learning. An example of algorithm
used in reinforcement learning is Markov Decision Process.

12



1.4 – Machine Learning

Figure 1.9: Machine Learning problem classification

• Unsupervised learning / Descriptive models
It is used to train descriptive models where no target is set and no single
feature is important than the other. Example of algorithm used here is: K-
means Clustering Algorithm etc.

If the discrete values, like ’yes’ or ’no’ or other labels with a ’name’, are going
to be predicted, this type of learning tasks is called classification. If the continues
values, like 0.95, 0.33, without giving any labels, are going to be predicted, this type
of learning tasks is classified as regression. When the learning task only involves
two different classes, it is binary classification problem, and usually, one class is
called positive class and another one is called negative class; when several classes
are involved, it is usually a multi-class classification problem. There is also cluster-
ingproblem which means separating the training set into different groups and each
group is called a cluster. And these auto-grouped clusters may correspond to some
potential conceptual divisions. Classification and regression problem belongs to the
first kind and clustering belongs to the second kind.

13



1 – Introduction

1.4.3 History and Previous Studies
From 1950s to early 1970s, artificial intelligence (AI) already existed as an academic
discipline, which targeted on letting machines learn from data. Several approaches
were mentioned includes e.g., neural networks. The probabilistic reasoning was also
employed [20]. Machine learning was the inevitable product of the development of
AI to a certain stage. It was reorganized as a separated field later, the goal was
changed from achieving AI to solving practical natured problems.

In the 1980s, one of the mainstreams of "learning from samples" was the study
of logic and symbolic reasoning, whose representatives included decision trees and
logical learning. The typical decision tree learning based on information theory,
with the objective of minimizing the entropy of information, directly simulated the
decision making of concepts by people in tree process. The most famous representa-
tive of logical learning is Inductive Logic Programming (ILP), it could be regarded
as an intersection of machine learning and logic programming. Another mainstream
is connectionism based on neural networks, and unlike the symbolism, it generated
the black-box model.

In the mid-nineties of the twentieth century, statistical learning became the main-
stream of study, the most representative is Support Vector Machine (SVM) and ker-
nel methods. And early twenty-first centuries, the connectionism became popular
again, especially deep learning which could be regarded as neural networks with
many layers in a narrow sense.

Same methods are employed in both machine learning and data mining, the
overlapping is significant. The main difference between them is that they have dif-
ferent goals. Machine learning focuses on prediction and data mining focuses on
the discovery of the unknown properties in the data. Some of the machine learning
problems could be described as optimization problems since they are formatted as
the minimization of some loss function on a training set. The difference between the
prediction problem and optimization problems in machine learning is that they have
the different goal of generalization. Optimization algorithms minimize the loss on
a training set, machine learning is concerntrated on minimizing the loss of unseen
samples [21].

Recent years, there are many successful applications of machine learning in var-
ious fields, for example, statistics, AI, speech and handwriting recognition in com-
mercially available systems and network optimization or signal processing in the
telecommunications area, etc..

14



1.4 – Machine Learning

Machine learning was already used in the post-silicon debugging stage. A learning-
based signal selection approach was presented in [22], to reduce the computation
overhead of the existed simulation-based approaches, a fast signal selection based
on machine learning techniques was demonstrated to improve the restoration ratio.
Our approach aims to build a predictive model by applying machine learning tech-
niques to reduce the trace buffer size and directly locate the upcoming failures.
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Chapter 2

Methodologies and Experiment
Set-up

2.1 Program Structure

A overview of program structure, Figure 2.1, is provided in the following with a
simplified process explanations in order to understand this work better.

Figure 2.1: Simplified View of Program Structure
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As what was already mentioned in chapter 1.2, the goal of this thesis is focusing
on the post-silicon debugging stage, to locate electrical bugs due to timing errors
and reduce number of traced signals due to the physical size limitation by using
machine learning methods.

In the beginning, the initial simulations were implemented in both the ISCAS’89
and ITC’99 benchmark suits. For realistic PDN behavior, the microprocessor bench-
mark LEON3 was explored, it was firstly synthesized by using some modern synthe-
sizing tool and then several applications, which belong to the MiBench programs,
were implemented in post-layout simulation. The behaviors during the simulation
of all the components on the chip were monitored and recorded.

Also, extracting transient spatial voltage droop map for a real simulation data
of LEON3 was set up. Then the net-list information and simulation results for volt-
age droops were re-formatted in order to make them compatible with the machine
learning algorithms. In the final training data set which contains only the flip-flops,
maximum droop of each simulation segment and the grid location where the maxi-
mum droop occurred.

In the end, several machine learning algorithms are compared to solve, e.g., un-
balanced classes problem, in order to reduce the trace buffer size and locate the
electrical bugs in the offline debugging part. The detailed illustrations, issues and
solutions are introduced in the following chapter 3 Implementations and Experi-
ments.

2.2 Benchmark Circuits Selection

2.2.1 ISCAS’89, ITC’99 and LEON3 Processor
The experiments were implemented firstly on parts of sequential benchmark circuits
of ISCAS’89 [23] benchmarks and several benchmarks, for example b15 and b17,
from ITC’99 suit [24].

Although ISCAS’89 benchmarks are already extended in terms of size and com-
plexity comparing to ISCAS’85 [25] benchmarks, but both ISCAS’89 and ITC’99
suit are still too small for testing our proposal. Since a simulation with more realistic
PDN behavior is wanted, so LEON3 Processor, which is presented in the following,
was chosen. There are several versions of LEON processor, details are presented in
the user’s manual [26] and the main differences are listed in the following.
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• LEON2 : dose not support SMP and has a five-stage pipeline.

• LEON3 : includes SMP support and a seven-stage pipeline.
(It is a synthesisable VHDL model which is highly configurable, and particu-
larly suitable for system-on-a-chip (SoC) designs.)

The full source code of LEON3 processor is available under the GNU GPL license
and proprietary license, which allows it to be used in proprietary applications. This
is also one of the reasons it was chosen.

2.2.2 Grouping
According to the size and location of each component that were specified, to group
all of them on the chip to different grids is the principle idea of Grouping. In the
meanwhile, the consumed power of each component was also grouped for the later
transient voltage simulation. The total number of grids was defined by the tester,
and they were introduced in order to locate the electrical bugs to a known location
for debugging. The size and location information of all the logical components were
given by the library files.

The LEON3 microprocessor was synthesized by using some modern synthesizing
tool first and after the placement and routing were done on the synthesized micro-
processor net-list, the total number of components became 33922 in the final layout
with 2366 registers only.

Although the recorded the switching power values of all the components were
parsed as the input of the voltage simulation. Since only the transient voltage sim-
ulation is interested in our proposal, therefore, only the generated voltage values,
include maximum voltage droops and maximum package droop, of all the Flip-Flops
(FFs) were extracted for the later usage.

The total number of grids to be divided is also important since the aim of this
thesis is to locate the electrical bugs. Number of rows, which were divided, was
defined asRows and number of columns was defined as Columns in grouping section.
Then the total number of grids became obvious.
As

Total_Grids = Rows ∗ Columns (2.1)

The original version of grouping was developed to retrieve all the divided grids
in order to locate each component. Which gave the time complexity T as shown in
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the equation 2.2.

T (Rows,Columns) ∼ O(Rows ∗ Columns) (2.2)

In a realistic scenario, since the total number of grids was large, retrieval of
all grids became time consuming. Then an improvement on the grouping program
was made to locate row number first then column. And the time complexity of the
improved algorithm was demonstrated in equation 2.3.

T (Rows,Columns) ∼ O(Rows+ Columns) (2.3)

When the number of rows and columns were the same, e.g., defined as n, then
the equation 2.2 became O(n2), and the improved case with equation 2.3 became
O(n). The improvement is obvious, but in our final simulation, the total number of
used grids is 25 according to the Voltspot limitation, but in a real world problem,
the total of grids needed is much more than this.

A normal microprocessor nowadays has more than billions of components, as-
sume there is a microprocessor which contains one billion of components and they
are uniformly distributed on the chip, total number of grids for grouping is 25 which
means, there are forty million components in each grid.

2.2.3 Extract the spatial voltage droop map
In this stage, VoltSpot [27, 28, 29, 1] was used for transient voltage simulation,
detailed specifications could be found in the papers mentioned before or through
the user manual. And for each workload segment, the spatial voltage droop map for
5 ∗ 5 grid is extracted.

2.2.3.1 Transient Simulation

Constant power (static power) dissipated by the cell in steady state after the vector
is applied and all transitions are stabilized. Usually it is less than 1% to larger than
30% of total power when cell active but the majority of power when cell inactive.
And dynamic power is part of the power that dissipated when an input transition is
being made, for example charging or discharging the internal and external capacitive
loads.

The influence of parasitics should be considered while analyzing the switching
behavior of an integrated circuit. Any realistic calculation of the transient behavior
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has to include the capacitive effects associated with junctions areas and conduction
wires. A summary of the physical fundamentals including theories and equations
used for transient simulation is also given in [30, 31].

In the steady simulation, only the IR drop is considered. But for the extensive
transient simulations on a large scale power delivery structures, analyzing power
delivery fluctuation caused by dynamic IR drop and Ldi/dt drop, as well as package
and on-chip resonance, are required.

In order to check the generated voltage droop information is correct and to
better understand each workload, the IR drop distribution is plotted which could
also make the understanding of power distribution of the microprocessor of one
simulation segment after Grouping easier.

Figure 2.2: Example of power distribution after Grouping
for one segment data

As showed in Figure 2.2, different colors represented different level of IR Dropson
the microprocessor which were measured in percentage of Vdd, brighter color means
larger voltage drop and darker means smaller or no voltage drop. The IR drop
difference for each grid is obvious and it can be easily discovered that considering a
certain simulation segment, the larger IR drops happened in adjacent grids.
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2.2.3.2 Spatial Voltage Droop Extraction

For extracting the spatial voltage droop information, both the workload segments,
which contained the power information and the floorplan, that contained the grid
size and location information of the chip was defined in grouping, should be provided
to the VoltSpot platform.

As mentioned in previous subsection 2.2.3.1, the transient operations should be
implemented in current stage in order to capture the switches and analyze the states
changing in the later process. Thus, several simulation segments’ records, which con-
tains the power information, are needed in one simulation time.

In order to avoid the final data set is too small, the sliding window approach is
introduced during transient simulation.

Figure 2.3: Example of sliding window approach
with window size = 3

The example which is given in Figure 2.3 shows the principle idea of sliding win-
dow approach with the window size equal to three and the total number of workload
segments equals to N .

Each workload segment after grouping named as seg.x and x are integer numbers
for ordering the segments according to the simulation time.
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And for example, in the initial window, first three workload segments should
be simulated, and the end window is generated when the last segment is reached.
Therefore the total number of resulted recordings after transient voltage simulation
grows simply from N/window_size to (N − window_size+ 1).
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Chapter 3

Experiments and Implementations

3.1 Final Data Set Generation
For preparing the training data set, feature vectors and labels, also called X values
and y values, should be parsed into a proper format after chosen, in order to make
it compatible to the machine learning algorithms.

First of all, the maximum was found among the all the voltage droops in each
simulation time slot or in another word, in each simulation segments, after extract-
ing and recording the voltage droop values as explained in section 2.2.3. And here
in our experiment, 500 was chosen due to the physical memory size of the com-
puter and the total simulation time. The corresponded grid location in the chip
was formatted as (a, b) where a and b represented for integer numbers, and totally
5 ∗ 5 = 25 grids were used, therefore, the location was labeled from (0, 0) to (4, 4).

And the workload segments after post-layout simulation contained states chang-
ing information of the traced signals that monitored by the trace-buffer, all the
recorded FFs were used as feature vectors for training, and either SA or SP, that
were illustrated in section 1.3.4, could be used as the feature values. And SA was
chosen to be used as the feature values in this thesis.

Since the states changing information was known for each FF in each simulation
segments, thus the SA could be easily calculated as:

SA = P (State switches) = N1−>0 +N0−>1

NT otal number of traced states

Finally, using SAs of different flip-flops in the design as feature vectors (X variables)
and the coordinates of voltage hot-spots as y variable. Then another y variable max
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droop is added for later checking. Collecting SAs for several workload segments,
each of them equivalents to one simulation segment of 10 clock cycles, i.e., the in-
formation in a single SAIF file, and their corresponding hot-spot. Each one of such
a pair was a sample in the data set, thus the final data set is generated.

For example, there are 100 flip-flops and the grid size is 55, the data set example
is showed in the table below.

FF1SA FF2SA FF3SA ... FF100SA
Hotspot grid
location [y1]

Max Voltage
droop [y2]

0.015 0.0 0.025 0.01 (1,3) 182.838286

Table 3.1: Data Set Example

As showing in the table 3.1, FF1SA represented for the first flip-flop’s switching
activity of the first workload segment (the SAIF file which recorded the first simu-
lation step), and in the real data-set, it appeared as the real name of a flip-flop.

In the end, three workloads, Sha_small, Bitcount and Basicmath, were gener-
ated based on the MiBench programs and were formatted as illustrated in Table 3.1.

3.2 Training Data Set Analysis
After generating the data sets of three different workloads from MiBench, all of
them were analyzed firstly in order to understand them better and then implement
a suitable machine learning algorithm on them.

All the generated data sets of three workloads were formatted as a matrix of size
500 by 2373. And as mentioned previously, 25 grids were used which means that at
most 25 classes could show up. But after grouping the segments in each workload
by different class labels, the results showed that not all of the grid labels could be
observed and there was also an unbalanced classes distribution, which means that
data-sets with a disproportionate ratio of observations in each class.

An example of unbalanced class problem is demonstrated in the table 3.2 below.
Given both the grid location label and the percentage of the samples that could be
observed.
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Class
Distribution 0 1 2 3 4

0 (0, 0) 0.8% (0, 1) 0.8% (0, 2) 0% (0,3) 0% (0, 4) 0%
1 (1, 0) 75.6% (1, 1) 10.4% (1, 2) 0.8% (1, 3) 0.8% (1, 4) 0.8%
2 (2, 0) 2% (2, 1) 1.4% (2, 2) 0.8% (2, 3) 0.8% (2, 4) 0.8%
3 (3, 0) 0% (3, 1) 1.2% (3, 2) 0% (3, 3) 0% (3, 4) 1%
4 (4, 0) 1% (4, 1) 1% (4, 2) 0% (4, 3) 0% (4, 4) 0%

Table 3.2: Unbalanced classes example - Sha_small

It could be easily see from the example scenario that is illustrated in the table,
the number of observed sample belonged to class (1, 0) is significantly higher than
those belonging to the other classes.

This problem is predominant in scenarios where anomaly detection is critical.
The predictive models that were developed using conventional machine learning
algorithms could be biased and inaccurate in this case. And usually, the class distri-
bution, proportion or balance of classes are not taken into account by the machine
learning algorithms because in general they are designed to improve accuracy by
reducing errors.

3.3 Model Selection
Usually, many learning algorithms could be chosen for dealing with the real-world
tasks. Even for the same algorithm, different models could be generated with dif-
ferent parameter settings.

The ideal solution for learning algorithms selection and parameter setting is to
evaluate the generalization error, then choosing the model with the smallest gen-
eralization error. Thus, a testing set is needed for testing the ability of predicting
new samples of a learner. And the testing error on the testing set is regarded as the
approximation of the generalization error.

Therefore in the following subsections, the approaches for dealing with the unbal-
anced classes were discussed firstly; then the most commonly used machine learning
algorithms were tried and tested to see the performance; several machine learn-
ing algorithms were analyzed and detailed illustrations were presented; in the end,
four learning algorithms were determined for the final machine learning experiments.
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3.3.1 Approaches for Handling Unbalanced Classes
For dealing with the unbalanced data-set, either to improve the implemented algo-
rithms or work on the training set through data processing before provided these
data to the machine learning algorithms, the possible techniques that could be used
are summarized below also in the Figure 3.1, the detailed information could be found
in [32] and some key methods were also illustrated in the following.

• Data level approaches

– Random Under-Sampling deleting the samples in the majority class ran-
domly in order to balance all the classes.

– Random Over-Sampling increasing the number of samples in the less dis-
tributed class by randomly duplicating them.

Figure 3.1: Summary of approaches for unbalanced classes

– Cluster-Based Over-Sampling over-sample each cluster in order to make
all clusters have an equal number of samples, in another works, all classes
have the same size.
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– Synthetic Minority Over-Sampling Technique avoids over-fitting problem.
Synthetic instances are created and added to the original data-set and
new data-set is used as a sample to train the learning models.

• Algorithmic Ensemble Techniques

– Bagging Based creating strong learners in order to reduce over-fitting
problem.

– Boosting Based combining weak learners in order to create a strong
learner which can make the accurate predictions.

As summarized before, there are several under-sampling or over-sampling tech-
niques for re-scaling data-set, since the data-set is generated from the real world
scenario, the sample distribution is unknown and unique from workload to work-
load. Re-sampling the data set seems like an improper technique for current task.
Since the useful information that is critical for building rule classifiers could be dis-
carded in the under-sampling techniques and more information could be added in
the over-sampling techniques, so they will not be the accurate representations of the
distribution. Therefore, the algorithmic ensemble techniques are preferred and in
the final implementation, the boosting based algorithms Gradient Boosting Classi-
fier (GBC) and an alternative of it in case of multi-class problems, Random Forest
Classifier (RFC), were chosen and applied.

3.3.2 Gradient Boosting Classifier

The Gradient Boosting Classifier (GBC) or Gradient Tree Boosting is a generaliza-
tion of boosting to arbitrary differentiable loss functions [33]. It could be regarded
as the combination of gradient descent and boosting. GBC was studied in order to
improve the the current performance, a simple example of AdaBoost is presented in
the Figure 3.2, 3.3 firstly and then a simplified view of the structure is showed in
the Figure 3.4.
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Figure 3.2: Structure view AdaBoost
Source [3] Figure 1.1

From the figures 3.2 and 3.3 which demonstrated the behaviors of AdaBoost,
there are three pairs of boxes, the left white box represents the distribution Dt with
the size of each example scaled in portion to its weight under the distribution. And
each box on the right shows the weak hypothesis hi, where darker shading indicates
the region of the prediction to be positive and the remaining region stands for the
prediction to be negative. In addition, the misclassified samples are circled. Finally,
the final classifier or combined classifier is computed as the sign of the weighted sum
of the three weak hypotheses [3].

Figure 3.3: Structure view of AdaBoost
Source [3] Figure 1.2

What could be easily see from Figure 3.4 is that Gradient Boosting fits and ad-
ditive model in a forward stage-wise manner, a weak learner is introduced in each
stage. Thus many learning models are trained sequentially in the Gradient Boosting
instead of one, and each model minimizes the loss function by using, for example
the standard approach: Gradient Descent Method (GDM), which is y = ax+ b+ e.
Gradient Boosting works on weak learners or classifiers and Decision Trees are used
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as base learners. It tries to boost them into a strong learner.

Figure 3.4: Structure view of Gradient Boosting classifier

First of all, the learner is built by Gradient Boosting on the original training
data-set to do the prediction, then the losses are calculated which usually as the
difference between the real value and the predicted value that calculated by the first
learner. Then the losses are used to build a new learner in the second step and
in general it is improved comparing the previous one, the detailed demonstrations
could be found in [3].

At each step, the residual of the loss function is calculated by implementing the
GDM and the new residual of the loss function becomes a target variable for the
next iteration. Thus the learner or classifier is improved in each iteration compared
to the previous one with different residuals.

In order to fit the Gradient Boosting Tree well, all the three parameters, e,g,.
Shrinkage parameter, tree depth and the total amount of trees, should be trained
properly. If the parameters are not tuned correctly, the over-fitting problem may be
generated.
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3.3.3 Random Forest Classifier
In the LEON3 microprocessor scenario, there are more than two thousand feature
values that each with a small quantity of information in each workload. The accu-
racy of a single tree classifier is slightly better than a random choice of class, but the
combined tree classifiers can improve the accuracy. And as mentioned in paper [34],
“because of the Law of Large Numbers they do not overfit, injecting the right kind
of randomness makes them accurate classifier”.

The sklearn.ensemble module [35] includes RandomForest algorithm which based
on randomized decision trees.

Figure 3.5: Simplified view of Random Forest with classes voted by each classifier

Random forest is an ensemble method and a meta estimator that each time it
takes a subset of samples from data-set to build a decision tree. After generating a
large number of trees, for example Tree 1 to Tree m as showed in Figure 3.5, the
corresponded class is generated according to each tree, and the final class is got after
the most popular class is voted in order to get a more accurate and stable prediction
and control overfitting, these procedures are called random forests.

When constructing the trees, the split that is chosen when splitting a node is not
the best split among all features but among a random subset of features, thus even
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with the same training data, the best-found split may vary, this could be controlled
by fixing the random state. Because of the randomness, the bias of the forest
usually slightly increases, but since the averaging is used, the decreased variance
usually could compensate from the increased bias, therefore an overall better model
is generated.

In the implementation of sklearn, the prediction of a group of samples is given
as the averaged prediction of the individual classifiers [36] instead of letting each
classifier vote for a single class as illustrated in Figure 3.5. And the base estimator
is Decision Tree Classifier. In the matter of fact, the final prediction according to
the majority voting of independent judges is better than the best judge.

The size of the trees should be controlled by setting, for example the maximum
depth of the trees, by considering the complexity of the tree and the memory con-
sumption, but since our data-set is small, this could be simply ignored. And the
results of forests are competitive with boosting and adaptive bagging methods.

3.3.4 Cross Validation
Three workloads were generated previously and for each of them the corresponded
data set contains 500 samples and for each sample that contains 2373 features, for
simplicity m and n were used to replace the numbers, then the data set could be
represented as following.

D = {(x1, 1, x1, 2..., x1, n, y1), (x2, 1, x2, 2..., x2, n, y2), ..., (xm, 1, xm, 2..., xm, n, ym)}

where xm, n stands for the n-th feature of the m-th sample and ym stands for the
label of m-th sample.

These data sets were separated properly into training set S and testing set T ,
thus each workload could be used both for training and testing. The most commonly
used techniques are hold-out, cross-validation, bootstrapping and parameter tuning.
Estimating the expected level of fit of a learning model to a data set and the trained
model is independent of the training data set was used is the goal of cross-validation.

The cross-validation techniques could be divided into two kinds, exhaustive and
non-exhaustive.

• Exhaustive cross-validation methods all possibilities are tried in order
to divide the original sample set into a training set and a validation set for
learning and testing.
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• Non-exhaustive cross-validation methods not all the possible splittings
are computed of the original sample set. They are the approximations of
leave-p-out cross-validation (LpO CV) which divided the original data-set into
different partitions with a equal size. P observations as the validation set and
others are used for training.

Figure 3.6: Structure view of k-fold cross-validation

In k-fold cross-validation method, the original sample set is divided randomly
into k subsets D(1) to D(k) as showed in Fig. 3.6, and each of them contains an
equal number of samples. One of the subsets is used as the validation set for testing
the model and the (k - 1) remained subsets are used for training the model, then
the cross-validation process could be repeated k times (the folds) [37].

The number of wrong predicted samples when testing D(i) is ni, and n for the
whole data set, then the error rate of the learning model could be calculated as
equation 3.1.

E =
k∑

i=1
ni / n (3.1)

Obviously, each of the k subdivided sample sets is used exactly once as the valida-
tion data. In the end, averaging the k results from the folds to produce the final
estimation.
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When data set D contains m samples and k = m, then this special case of
cross-validation is called Leave-One-out(LOO). Since there is only one sample in
each subset, thus obviously LOO is not influenced by the ways of the sample par-
titioning. And the training set has only one sample less than the original data set,
therefore in most cases, the model evaluated by LOO is similar to the expected
learning model that trained by data set D.

The computational consumption of training m models increases with the in-
creased size of the data set. In order to improve the accuracy of the learning model,
the k-fold cross-validation could be repeated t times and every time the original
data set is divided randomly into equal subsets.

The error rate for one model could be calculated as showed in equation 3.1, in
the t times testing the error rate of generated t models could be represented as E1,
E2, ..., Et. Therefore the error rate of the final learning model is defined as e and
could be calculated as in Equation 3.2.

e =
t∑

i=1
Ei / t (3.2)

After considering both the model accuracy and the computational consumption,
10-fold cross-validation is chosen and the final model is generated after repeating
each experiment 10 times.

3.3.5 Electrical Bug Localization Based on the Most Com-
monly Used Machine Learning Algorithms

Besides the algorithms that chosen in the section 3.3.1, the most commonly used
algorithms were tested firstly in order to find more suitable algorithms based on
experiments in order to locate the electrical bugs and compare their performance in
the final implementation.

The first machine learning experiment was initialized with all X values to predict
y values by using Logistic Regression (LR), Linear Discriminant Analysis (LDA),
K-Neighbors Classifier (KNN), Classification and Regression Trees (CART), Naive
Bayes classifiers (NB) and Support Vector Machines (SVMs). K-folder validation
was used with k equal to 5 and the testing set is 20% of samples from the training
set. And the results are illustrated in the table 3.3 and 3.4, both represented with
the mean accuracy and the standardization of the accuracy inside the brackets.
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Workloads LR LDA KNN
Sha_small 0.518777 (0.085266) 0.371764 (0.107236) 0.545377 (0.068075)
Bitcount 0.549147 (0.081467) 0.464011 (0.072403) 0.586842 (0.074013)
Basicmath 0.788691 (0.057645) 0.633997 (0.068901) 0.831792 (0.022248)

Table 3.3: Testing resukts on the most commonly used algorithms - part1

Workloads CART NB SVM
Sha_small 0.409104 (0.071136) 0.214011 (0.073290) 0.588051 (0.087534)
Bitcount 0.399787 (0.076108) 0.160171 (0.075059) 0.632077 (0.074303)
Basicmath 0.775960 (0.036514) 0.186629 (0.051801) 0.789331 (0.034154)

Table 3.4: Testing resukts on the most commonly used algorithms - part2

From the comparison above, what could be easily seen is that LDA, CART and
NB should be discarded since they have really low accuracy, even in the debugging
stage, the accuracy should not lower than 80%.

The KNN’s results seemed good. If the training sets were unbalanced, and if
they were uniformly distributed, the probability that any random query point will
be classified to the class with more examples becomes higher. So, the closest neigh-
bor of the query point may still belong to the class with fewer examples, but if rest
(k − 1) points belong to the other class, because of its higher density in the space,
the point will get mis-classified. The weights of classes could be considered when
applying KNN. But since a generalized learning model is wanted that could work
for different workloads and the weights of each class in each workload are different,
and it is not feasible to change the classes’ weights every time in the run-time of a
chip. Therefore, the KNN is discarded either.

3.3.6 Logistic Regression
Since each of our data-sets contains 25 classes, therefore the Logistic Regression for
multi-class is implemented which is named Multinomial Logistic Regression or Mul-
ticlass Logistic Regression (MLR). As mentioned in [38], "in statistics, multinomial
logistic regression is a classification method that generalizes logistic regression to
multiclass problems, i.e. with more than two possible discrete outcomes". It esti-
mates a separate binary LR model for each dummy variable and is used to predict
the probabilities of the different potential outcomes of a categorically distributed
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dependent variable then give a set of independent variables, in order to understand
the relationship between nominal variables without ordering.

Assume there are m features in the data-set, the training algorithm could be
implemented either using one-vs-rest scheme or using cross- entropy loss, then (m-
1) independent binary choices could be got, therefore, the result of MLR is (m-1)
binary logistic regression models. Each model carries the effect of predictors on the
probability of success in that class compared to the reference class. And each model
has its own intercept and regression coefficients, in another word, the predictors can
affect each class differently.

3.3.7 Support Vector Machine (SVM)
Support vector machines (SVMs) are a set of supervised learning methods that could
be used for classification, regression and outliers detection, in the current task, the
classification method is implemented that is called SVC.

In order to deal with the multi-class problem, SVC used a one-vs-one approach.
And the number of classes in each workload is 25, then

NT otal_class ∗
NT otal_class − 1

2 = 25 ∗ 25− 1
2 = 300

classifiers are built totally and each of them trains data from two classes.

A hyper-plane or a set of hyper-planes in a high or infinite dimensional space are
created by SVC, good separation means the large distance between nearest training
data points of any class which is called functional margin and usually the margin
should be enlarged in order to lower the generalization error of a classifier.

Since the classes are not uniformly distributed, and this should be compensated
by giving more importance to some certain classes, therefore in the implementation
of sklearn, the class weight and sample weight can be used. The mathematical ex-
planations are illustrated in paper [39, 40].

3.3.8 Trace Signal Selection
As what is already mentioned in section 1.3.3, the implementation of the trace buffer
for run-time debugging reduces the complexity compared to the traditional debug
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techniques, which usually requires to stop and restart the electronic system.

Since the width and depth of trace buffer is limited by the number of signals
that can be traced per cycle and the maximum number of values recorded per sig-
nal. And the physical size of embedded trace buffer is usually limited between two
thousand and eight thousand cycles, which means only few hundred signals for few
thousand cycles could be traced continuously stored and in a design with millions
of signals.

There are more than two thousand FFs in each generated workloads but only
few hundred signals or less than one hundred signals in the design could be traced
at the same time. Therefore, the feature selection or elimination method should be
implemented necessarily.

The principal concept of Recursive Feature Elimination (RFE) is feature rank-
ing with recursive feature elimination. An external estimator is given to assign the
weights to features and selecting features by considering smaller sets of features each
time recursively is the object of recursive feature elimination [41].

First of all, training the estimator on the original set of features and the im-
portance of each attribute, through the coefficient of the attribute or the feature
importance, is obtained. Then, pruning the less important features from the cur-
rent set of features. This procedure is repeated recursively on the new feature set
after pruning until the desired number of features are selected ultimately. In the
sklearn [35], there is a method called RFECV which performs RFE in a cross-
validation loop to select the optimal number of features.

3.3.9 Short Summary on Model Selection
Summarizing this chapter in short.

First of all, the final data-set generation was illustrated including feature values
calculation and label choosing. All the SA of FFs are used as the feature values,
maximum voltage droop location are the labels and after learning, the upcoming
failure location of the new data-set should be predicted.

Then the data set was analyzed and the classes distribution was presented in
order to better understand the current machine learning task.
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After that, the last and the most important section Model Selection was pre-
sented. Since our machine learning task is a unbalanced multi-class classification
problem. The approaches for handling the unbalanced class problems were discussed
firstly; then, several machine learning techniques which are suitable for current task,
like Gradient Boosting Classifier, Random forest Classifier and Support Vector Ma-
chines for multi-class problem, were analyzed and demonstrated with details; a
simple experiment on the most commonly used machine learning algorithms was
also implemented in order to see the results and choose more possible algorithms for
the final experiments. The importance and necessity of using cross-validation and
trace signal selection were also discussed in the meanwhile.

In the end, only the Gradient Boosting Classifier and, Random Forest Classifier,
LR and SVM were chosen and implemented in the final experiments in chapter 4
after the discussions .
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Chapter 4

Results and Performance
Evaluation

This chapter focuses on the evaluation of final results and performance. First
of all, the chosen machine learning algorithms were trained and tested by using the
same workload, then the improved experiments were implemented by using different
workload at training and testing stage in order to simulate a more realistic scenario.
Detailed results and performances were illustrated in the following sections.

4.1 Training and Testing Using the Same Work-
load

The same workload was implemented for both training and testing in current section.

In the training stage, 10-fold cross-validation was applied, which means breaking
the data-set randomly and equally into ten parts, 9 subsets were used for training
the models and the rest one was used for testing in each fold, and the result is the
average of the 10 folds’ results. Even the whole workload data-set was used, but
because of the randomness when separating the data-set, the result generated by
running the experiment each time was slightly different than other times, thus each
experiment was repeated for ten times. And the final result for the entire experiment
was the average of the ten results. In the final testing procedure, testing set size
was set to 0.2 which means 20% of the total samples in each workload were chosen
for testing the learned model.

Since in the original data-set, all the feature values are signal activities that are
calculated as the probability of states switched, in other word the adjacency states

41



4 – Results and Performance Evaluation

are different, which means all the attribute values are already between zero and one.
Therefore, the implementation of data-set normalization or standardization is not
necessary.

RFE was implemented firstly in order to reduce the number of flip-flops are
selected as trace signals to the trace buffer, then the new training data-set after se-
lection was regarded as the new input data-set to the machine learning algorithms,
which were selected previously, for building the learning models, these were repeated
recursively. All three workloads were tested and the current machine learning results
were demonstrated in the following.

Figure 4.1: Training and testing with same workload, validation size = 0.2

From Fig. 4.1 that was presented above, four different machine learning algo-
rithms were tested on each workload after trace signal selection. In the columns
which were labeled as Average, the final accuracy scores were calculated as the av-
erage of the results that were generated after running the experiment for totally 10
times, the average number of selected features were also presented inside the brack-
ets; the columns with label Best was just the best result among all the previously
generated results considering both the accuracy score and the number of selected
trace signals.

The performances of four algorithms for each workload vary a little bit. Com-
paring the performance of a single machine learning method on three different work-
loads, the accuracy scores generated on workload Basicmath are much lower than
other workloads. Gradient Boosting Classifier, Random Forest Classifier and SVM
have almost the same accuracy score both in the average and the best case when
testing on the workload Sha_small and Bitcount and all of them are higher than
96%; but if comparing only the number of selected FFs as the trace signals, they
performed much better on the workload Bitcount.
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Logistic Regression has almost the same performance, considering both the ac-
curacy score and the number of selected trace signals, not matter in average or best
result scenario; SVM in the Basicmath scenario has the lowest accuracy score 77%
and the second lowest accuracy score 81%, in both the average and best case.

Since the debugging stage is concentrated, thus all the machine learning algo-
rithms with the accuracy score larger than 80% should be acceptable. And it is easy
to find that almost all the machine learning techniques always have the accuracy
scores that are greater than 90%.

Workload
(Trace Signal Reduction) GradientBoosting RandomForest LR SVM

Sha_small Average 67.52% 73.09% 6.37% 19.87%
Best 2.15% 28.30% 6.37% 19.87%

Bitcount Average 80.94% 66.64% 2.15% 1.31%
Best 0.46% 1.31% 2.15% 1.31%

Basicmath Average 11.26% 13.54% 0.04% 1.31%
Best 1.31% 0.46% 0.04% 1.31%

Table 4.1: Trace signal selection result testing on the same workload in percentage of
reduced signals

Taking a closer look on the percentage of selected trace signals on the Table
4.1. All the data are represented in the percentage of total number of flip-flops that
were selected as trace signals to trace buffer. The results vary according to different
workloads.

Among three workloads, GBC and RFC have the selection percentage of trace
signals that are much higher in the best result than in the average result. The
performances of average and best scenario result for each workload are the same
when testing LR and SVM, but the SVM has a slightly better performance on the
Bitcount workload, LR performed better on the other workloads.

Comparing all the best results of the trace signal selection percentage for each
technique, there is no much difference among all the learning techniques on the work-
load Basicmath; GBC always has the best performance in Sha_small and Bitcount
among all the algorithms. Comparing only the average result of all the scenarios,
the performances of LR and SVM are much better than GBC and RFC.
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4.1.1 Short Summary
The performance of each algorithm varies according to different workloads. All the
chosen algorithms could provide pretty good accuracy score on workload Sha_small
and Bitcount, with lowest accuracy score 94%. And LR and SVM could give good
performance no matter in the best result or in the average case in terms of the trace
signal selection percentage.

Figure 4.2: ML Results - Training and Testing by using the same workload

The overall machine learning results are presented in the bar-chart that is showed
above. And what could be easily found is that Gradient Boosting Classifier has
the best performance with the highest accuracy score and the lowest trace signal
selection rate.

4.2 Training and Testing Using Different Work-
loads

Since in a real-world scenario, what kind of workload will show up in the future is
not predictable, and since there are more than two thousand features for each sam-
ple in our original data-set, therefore, the combinations of all the attribute values
which were used for training the model with a really high probability that they will
never show up again in the future. Thus, training and testing the machine learning
algorithms by using different workloads were proposed.

And for example, there are three previously generated workloads, Sha_small,
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Bitcount, and Basicmath. Each time one of them was utilized for training the learn-
ing model firstly and then one of the rest two workloads was chosen and implemented
as the testing set. In another word, each learning model was trained by one work-
load and was tested by other two different workloads. And in the end, there were 6
different scenarios. With the same experimental settings as demonstrated in section
4.1, the experiments were repeated for 10 times and both the average accuracy and
the best accuracy score were calculated for each algorithm and recorded separately
in columns labeled as Average and Best, the average number of FFs which were
selected as trace signals after feature selection and the best result among all the
experimental results were also presented inside the brackets after the accuracy score
in percentage of total number of FFs.

All the results of experiments that used the same training workload were orga-
nized into one table like showed in the Fig. 4.3, which means all the machine learning
techniques were trained by wokload Sha_small. Then the corresponded trace signal
selection information were presented in a table like Table 4.2 in percentage of total
number of flip-flops.

Figure 4.3: ML results with different testing set - Sha_small as training set

Figure 4.4: ML Algorithms Trained by Sha_small

From Figure 4.3, what could be easily found is that the performances of GBC
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and RFC in case of average and best results are really close considering both the
accuracy score and the number of selected FFs; for LR and SVM, the learning model
that tested by Bitcount workload has the better results in the average rather than
the results in the columns that were labeled as best; in the contrary, the model
tested by Basicmath has always the better performances in the best results. The
accuracy scores were presented in the box-plot and the average scores were marked
by orange lines inside each box. As showed in the Figure 4.4 above, algorithms
which trained by Sha_small and tested by Bitcount was compared on the left and
on the right hand side the algorithms were tested by Basicmath.

In the LR case which was tested on workload Bitcount, the best result is pre-
sented with accuracy score 84%, which is 6.3% lower than the average result, it
is abnormal and it happened because the number of reduced trace signal is also
considered since one of our aim is reducing the trace buffer size, better result was
generated with a higher percentage of selected trace signals which was not recorded
as the best result. Similar phenomenon happened also in the SVM and GBC on
workload Bitcount with a smaller difference. Besides this lowest score, all others are
larger than 86%.

Considering the same learning algorithm for different testing workloads in terms
of average accuracy score, SVM varies from 86.1% to 91.2% which has the biggest
accuracy score difference which is 5.1%, LR has 4.8% variety, RFC has the smallest
vary difference which is only 0.7%.

Trace Signal Reduction GradientBoosting RandomForest LR SVM
Total FFs 2371 2371 2371 2371

FFs after reduction 31 11 2 71 171
Selection Percentage 1.31% 0.46% 0.04% 2.99% 7.21%

Table 4.2: Trace signal selection consider best scenario in Sha_small

If considering only the number of trace signals after feature selection that ap-
peared in the best results, GBC, RFC and LR selected less than 2% of the total FFs
as the trace signals, tested both on the workload Bitcount and Basicmath. And for
SVM, depends on the testing data-set, in other word, different workload, consider
both the best and the worst results appeared previously, the number of selected
trace signals varies from about 3% in the best scenario to around 7% in the worst
case. Trace signal selection is 7% means that only 171 FFs were selected after imple-
menting the feature elimination method in current LEON3 microprocessor scenario
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which seems like good; but in a real processor that has more than 8 billion tran-
sistors, monitoring 7% of them means that there are more than 500 million signals
need to be monitored, and it is not feasible. Therefore, GBC, RFC and LR worked
much better than SVM in terms of trace signal selection. The detailed data were
summarized in Table 4.2.

Figure 4.5: ML results with different testing set - Bitcount as training set

Figure 4.6: ML Algorithms Trained by Bitcount

Moving to the scenario that all the machine learning methods were trained by
using workload Bitcount and then tested by other workloads, as showed in Fig. 4.5.
The average accuracy score for GBC varies from 81.6% to 84.4%, RFC and LR very
from around 88% to around 90%, and SVM has always 87.7% for both Sha_small
and Basicmath. If considering only the accuracy score, RFC and LR works better in
this scenario. The learning model that generated by SVM and tested by workload
Basicmath, has the lowest accuracy 80% in the Best column. The best accuracy
score is lower than the average as what happened and explained in the previous
scenarios. It is the lowest accuracy score overall and since we are in the debugging
stage which means the current result is still acceptable.
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Trace Signal Reduction GradientBoosting RandomForest LR SVM
Total FFs 2371 2371 2371 2371

FFs after reduction 11 11 2 171 211
Selection Percentage 0.46% 0.46% 0.04% 7.21% 8.90%

Table 4.3: Trace signal selection consider best scenario in Bitcount

As demonstrated in the Table 4.3, less than 1% of the total FFs were selected
as trace signals after applying RFE considering only the best cases appeared in
the experiment results of GBC, RFC and LR. For SVM, the trace signals selection
changes from around 7% to 9%. And what could be noticed is that in some of the
scenarios, the best result among ten generated results has a better accuracy score
than the average case with small amount of features after selection. Less number
of features can represent the data set better, which seems like violated the general
sense and it was abnormal. It is possibly because of the the current data-set does
not cover all the classes, future experiments should be explored.

Figure 4.7: ML results with different testing set - Basicmath as training set

Figure 4.8: ML Algorithms Trained by Basicmath

From the Fig. 4.7, what could be easily found is that usually the average accu-
racy score is a little bit higher than the best case but with a much larger number
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of selected FFs. Since the aim of this thesis is not only to locate the electrical bugs
but also to reduce the number of trace signals, so the trace signal selection is also
considered and it makes the current results reasonable.

Comparing the performance of four algorithms for the same workload, it is easy
to find that Random Forest Classifier always has the best result and all of them
were greater than 94%; SVM always has the worst results. But all of them do not
vary much. Considering only the average result among all, the best accuracy score
97.1% was generated by using Bitcount as the testing set in Random Forest Clas-
sifier case; the worst result is around 77.5% which was generated by SVM also in
Bitcount scenario, and it is too low even in the debugging stage.

Trace Signal Reduction GradientBoosting RandomForest LR SVM
Total FFs 2371 2371 2371 2371

FFs after reduction 2 11 91 2 31
Selection Percentage 0.04% 0.46% 3.84% 0.04% 1.21%

Table 4.4: Trace signal selection consider best scenario in Basicmath

In the Table 4.4, RFC has the highest selection percentage which is a little bit
lower than 4%. In the SVM scenario, around 1% of the total FFs were selected, and
less than 0.5% of the total number of trace signals were chosen in the GBC and LR
scenario which independent from the testing set.
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4.2.1 Short Summary
As showed in Fig. 4.9, comparing only the average accuracy score for each learning
algorithm among all different scenarios, what could be easily understood is that
GBC, RFC and LR could be used to predict and locate the electrical bugs with a
pretty high accuracy score. And among these three techniques, RFC almost always
has the best accuracy score. The accuracy scores that generated by SVM vary from
77.7% to 91.2% depends on the different testing workloads, even it is in the debug-
ging stage, the score lower than 80% should not be acceptable.

Figure 4.9: ML Results - Training and Testing by using different workloads

For GBC, RFC and LR, the trace signal reduction percentage is always higher
than 96% and in most of the scenarios higher than 99%. But for SVM, depends on
the different testing data-set, in more than half of the cases the reduction percentage
is lower than 93%, GBC, RFC and LR worked much better in terms of trace signal
reduction than SVM.

And the relation between accuracy score and the percentage of total FFs which
were selected as trace signals was represented in bar chart and was showed in the
Figure 4.10. It could be easily found that when the percentage of traced FFs de-
creasing, the accuracy score does not decrease rapidly. Then the final experimental
results that presented in current section of the more realistic scenario were summa-
rized in the Figure 4.11.

50



4.2 – Training and Testing Using Different Workloads

Figure 4.10: Relation between Accuracy Score and Number of Selected Trace Signals

Figure 4.11: ML Results - Training and Testing by using different workloads

Then what could be easily see is that RFC has the highest accuracy 91.58% with
1.59% of total number of flip-flops are selected as trace signals to the trace buffer,
it is the best performance compared to GBC, LR and SVM. And 1.59% of total
number of flip-flops means that only 38 FFs were selected to be trace in the LEON3
microprocessor scenario.
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What we could say is that RFC is the best algorithms with the highest accuracy
score, the low percentage of signals need to trace and small variety.
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Chapter 5

Conclusion

This work aims to collect workload data based on simulations and predict run-time
parameters based on the machine-learning model built on these data, targets at
exploring the electrical bug detection capabilities of a post-silicon debugging frame-
work by marking informed decisions on trace signal selection by analyzing the trace
buffer data to extract voltage droop profile of the PDN for bug localization and
detection.

From the beginning of this work, the processor benchmark LEON3 was explored
in order to simulate a realistic PDN behavior; then three applications which belong
to the MiBench programs, were implemented in post-layout simulation. The behav-
iors during the simulation of all the components on the chip were monitored and
recorded. A preparation to extract transient spatial voltage droop profile for real
simulation data of LEON3 was set up. Then the net-list and simulation results for
voltage droops were formatted in order to make them compatible with the machine
learning algorithms. In the final training data set contains only the FFs, maximum
droop of each simulation segment and the grid location. In the end the machine
learning algorithms are applied.

Three different workloads data based on simulations were collected and through
the data-set analysis results illustrated in the previous chapters, several data-set
re-sampling techniques like Random Under-Sampling and Over-Sampling, Cluster-
Based Over-Sampling etc. and some algorithmic ensemble techniques like GBC,
RFC etc. which could be used for handling unbalanced class problems were illus-
trated with details. After considering the characteristics of our data-set and the
objects of this thesis, Gradient Boosting Classifier (GBC), Random Forest Classi-
fier (RFC), Logistic Regression (LR) and Support Vector Machines (SVMs) were
chosen for the final experiments.
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And since one of the object of this thesis is to reduce the dimension of trace
buffer. In order to reduce the number of features, in other word, the total number
of FFs that are monitored and recorded inside the trace buffer, the cascaded ma-
chine learning algorithms that were explored with the feature elimination technique
Recursive Feature Elimination (RFE).

Conclusion We could observe from the experimental result that the trace buffer
based electrical debugging using machine learning techniques is efficient than the tra-
ditional methods. Through the results that were illustrated previously, what could
be easily understood is that GBC, RFC and LR could be used to predict and lo-
cate the electrical bugs with a pretty high accuracy score. After considering both
accuracy score for locating the electrical bugs and the trace signal selection, GBC,
RFC and LR genrated better results than SVM. Among them the feature reduction
percentage does not very much and RFC almost always works well considering ac-
curacy score. RFC has the highest accuracy 91.58% with 1.59% of total number of
flip-flops are selected as trace signals to the trace buffer, it is the best performance
compared to GBC, LR and SVM. And 1.59% of total number of flip-flops means
that only 38 FFs were selected to be trace in the LEON3 microprocessor scenario.
So, we believe that RFC is the best algorithms with the highest accuracy score, the
low percentage of signals need to trace and small variety with current scenarios.

Future work more workload could explored and combined together for training
in order to simulate a more realistic scenario, the trace signals reduction based on
the machine learning techniques could be investigated deeper in order to reduce the
trace buffer length and width more. And current work could be possibly improved
by other machine learning algorithms or methods, for example neural network.
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