
POLITECNICO DI TORINO

Collegio di Ingegneria Informatica,
del Cinema e Meccatronica

Master of Science in Computer Engineering

Master Degree Thesis

Heuristics and Evolutionary Algorithms
for Android Malware Signature

Optimization

Supervisors:
Prof. Giovanni Squillero
Dott. Andrea Marcelli

Candidate:
Luca Mannella
Student ID: 222325

April 2018

This work is subject to the Creative Commons Licence

To those who have always
believed in me.

Summary

The Android ecosystem offers an open market model, where millions of applications are
downloaded by users every day. While applications from the official Google Play store
undergo a review process to confirm that they comply with Google policies, other third-
party markets do not. Hence, a typical pattern among malware developers is to repack
popular applications from Google Play by adding malicious features and distribute them
to third-party app-stores, leveraging apps popularity to accelerate malware propagation.

As a consequence antivirus software struggle to keep their signature database up-to-
date, and AV scanners suffer from a considerable quantity of false negatives. Indeed
creating a high quality signature able to generalize to match new malware variants, while
avoiding false positives detection, is a challenging task, and requires a substantial portion
of human experts time. Given the industrial interest in automatically generating new An-
droid malware signatures, recently a new tool, named YaYaGen (Yet Another YARA Rule
Generator), was proposed: it exploits a greedy-like optimization algorithm to generate
YARA rules, the standard pattern matching language used to write malware signatures.

This work focuses on the research of computational intelligence techniques for the au-
tomatic malware signature generation, introducing a score system that maximize the rule
efficacy, finding the best agreement between signature generality and specificity. Moreover
we improve the greedy-like algorithm previously proposed, with an ensemble techniques
which combines heuristics and evolutionary algorithms. In particular, we adopted the
Selfish Gene algorithm, an evolutionary strategy loosely inspired by the Darwinian theory
of Richard Dawkins. Experimental results show that the new version of YaYaGen gains
the ability to generate more accurate rules, lowering both false positives and negatives.

Finally, the proposed approach has been tested and will be soon integrated in Koodous
Brain, an artificial intelligence platform developed to assist Android malware detection in
the Koodous project, an open community antivirus from Hispasec Sistemas.

ii

Acknowledgements

Le radici stanno sepolte sotto terra e a malapena si vedono, ma senza le radici un albero non
potrebbe sopravvivere. Un albero forte ha radici forti, pertanto vorrei ringraziare la mia famiglia
per essermi sempre stata accanto in questi anni, per avermi supportato moralmente ed economi-
camente e per non avermelo mai fatto pesare.
Ringrazio mio padre per avermi insegnato a vivere come una persona onesta e per essere orgoglioso
di me anche se spesso non condivide le mie scelte. Ringrazio mia madre per aver sempre assec-
ondato la mia curiositá e avermi spinto a chiedermi di piú ogni giorno facendomi diventare l’uomo
che sono oggi. Infine, ringrazio mia nonna per aver sempre creduto in me e per avermi insegnato
che le vittorie nella vita vanno sudate.

Un doveroso ringraziamento va ad Andrea Marcelli e al Professor Giovanni Squillero per avermi
dato l’opportunitá di lavorare con loro. In particolare ringrazio Andrea per tutti i consigli fornitimi
in questi mesi e per essere sempre stato pronto a rispondere alle mie mail e ai miei messaggi, anche
alle ore piú improbabili della notte.

Credo inoltre, che la forza di un uomo si misuri in base alle sfide che é in grado di affrontare,
pertanto vorrei ringraziare i ragazzi di IEEE-HKN per avermi accolto — un gruppo di persone
straordinarie destinate a fare grandi cose — e la famiglia che non pensavo di trovare, JEToP, la
Junior Enterprise del Politecnico di Torino. Un ringraziamento particolare va al mio "successore"
Lorenzo e al mio ex-responsabile, Simone Lanzafame, per avermi fatto sperimentare sulla mia pelle
che nessuna sfida é troppo grande per essere affrontata. Proseguo ringraziando Nicole, per essere
stata la spalla su cui potevo sempre contare durante la mia esperienza da responsabile, e tutti i
miei area manager, per il lavoro impeccabile svolto durante il mio mandato.

Proseguo ringraziando le persone che hanno condiviso con me l’interminabile primo anno di
Politecnico, quelli che la suddivisione per ordine alfabetico mi ha fatto incontrare e che sono
passati da colleghi ad amici: Alessio, Daniele, Luca e Silvia. Ringrazio inoltre le persone che hanno
condiviso con me questa laurea magistrale, un percorso affrontato sempre uniti e supportandoci l’un
l’altro in cui abbiamo superato laboratori, progetti, presentazioni ed esami alternando momenti di
gioia a momenti di profonda disperazione. Grazie a Flavia, Francesco, Nicoló e Stefano. Ringrazio
inoltre tutti gli amici di sempre, tra cui Riccardo, per le sue innumerevoli ore di psicoterapia a
titolo gratuito e per i suoi consigli mai banali, e sua sorella Veronica, per avermi spinto a tenere
duro quando, al secondo anno, ho seriamente pensato di mollare tutto.

Un ringraziamento va a tutte le persone che hanno vissuto sotto il mio stesso tetto in questi
anni. Tra tutti, ringrazio particolarmente quelli con cui ho cominciato questa avventura, quelli
che mi hanno sopportato e supportato in tutti i modi durante il mio percorso di laurea triennale:
Mattia e Stefano.

Ultima, ma non per importanza, ringrazio la mia ragazza per essermi stata di supporto in ogni
modo durante questi ultimi mesi, la tua curiositá verso il mio mondo mi fa sentire meno strano.

Infine, grazie a tutte quelle persone che ho dimenticato di menzionare che ho incontrato durante
il mio percorso di studi. Non sarei dove sono ora senza il contributo di ognuno di voi.

iii

Contents

Summary ii

Acknowledgements iii

1 Introduction 1

2 Background 4
2.1 Android Operating System . 4

2.1.1 Android Environment . 5
2.1.2 Android Framework API . 7
2.1.3 Android Permissions . 8

2.1.3.1 Classification of protection levels 9
2.1.3.2 Other classes of permissions 10

2.1.4 Android Stores . 11
2.1.5 App Repackaging . 12

2.2 Android Malware . 14
2.2.1 History of malicious applications . 14
2.2.2 Potentially Harmful Applications . 14

2.2.2.1 PHA classification . 15
2.2.3 Mobile Unwanted Software . 18

3 Evolutionary Algorithms 19
3.1 Introduction to Metaheuristics . 19
3.2 History of Evolutionary Computation . 20
3.3 Introduction to Evolutionary Algorithm . 20
3.4 Estimation of Distribution Algorithms . 23
3.5 The Selfish Gene . 23

3.5.1 The theory of Richard Dawkins . 23
3.5.2 History of the Algorithm . 24
3.5.3 The Algorithm . 25

3.5.3.1 Virtual Population . 25
3.5.3.2 The Generator process . 25
3.5.3.3 The Updater process . 26
3.5.3.4 The Evolution Mechanism 26

iv

3.5.3.5 Polarization . 27
3.5.4 The Selfish Gene Extended library 27

3.5.4.1 The fitness class . 28

4 Automatic YARA Rule Generation 30
4.1 YARA Rules . 30

4.1.1 YARA syntax . 31
4.1.1.1 Metadata . 31
4.1.1.2 Strings . 31
4.1.1.3 Special Variables . 32
4.1.1.4 Condition . 32

4.1.2 Modules . 33
4.1.3 Running YARA . 34

4.2 The Koodous Platform . 34
4.2.1 Write a YARA ruleset on Koodous 35
4.2.2 Koodous as anti-virus . 36
4.2.3 Clustering Android APKs . 37

4.3 Signature generation . 39
4.3.1 Introduction to Static and Dynamic analyses 39

4.3.1.1 Strengths and Weaknesses 39
4.3.2 Malware detection methods . 40

4.3.2.1 Signature-Based Malware detection techniques 40
4.3.3 YARA rules-based signature generation 41

4.4 YaYaGen . 42
4.4.1 Introduction . 42
4.4.2 How to use it . 42
4.4.3 Evaluate method . 43
4.4.4 Rule Generation Algorithms . 44
4.4.5 Data representation . 44

4.4.5.1 Report class . 44
4.4.5.2 YaraRule class . 45

4.5 Other tools . 46
4.5.1 YarGen . 46
4.5.2 Yara Generator . 48
4.5.3 Yabin . 49

5 Proposed Approach 50
5.1 Disjunctive Normal Form representation . 50

5.1.1 YARA Rule representation . 50
5.1.1.1 Disjunctive Normal Form 50
5.1.1.2 YARA Rules DNF representation 51

5.2 Heuristics Strategies . 52
5.2.1 Weighting the literals . 53
5.2.2 Double Thresholds & Signature Optimization 54

v

5.2.3 Basic Optimizer . 56
5.3 YaYaGen-SGX . 57

5.3.1 SGX Rule Generator . 57
5.3.1.1 Representing a YARA rule in SGX-compatible mode . . . 57
5.3.1.2 Fitness Function . 58
5.3.1.3 YARA rule generation . 62
5.3.1.4 Other implementation details 69

5.3.2 SGX Rule Optimizer . 72
5.3.2.1 Representing a YARA rule in SGX-compatible mode . . . 72
5.3.2.2 Fitness function . 72
5.3.2.3 Biscardi Optimizer . 77
5.3.2.4 Implementation details . 79

5.4 Further improvements . 83
5.4.1 Configuration files . 83
5.4.2 IP and URL filtering . 83

6 Experimental Results 84
6.1 Basic Optimizer . 84
6.2 SGX Rule Generator . 86
6.3 SGX Rule Optimizer . 86

6.3.1 Biscardi Optimizer . 86
6.4 Optimizers comparison . 88

7 Conclusions 90
7.1 Future Developments . 90

References 91

vi

List of Figures

1.1 Distribution of mobile operating systems during the last years. 2
1.2 Workflow of the signature generation. 3

2.1 Android Logo. 4
2.2 App available on Google Play during the last years. 5
2.3 Flowchart of installation and run methods: Dalvik and ART architectures

compared. 6
2.4 Historical Android’s architecture diagram with DVM runtime environment. 8
2.5 Devices with malicious app installed in 2016 and 2017. 11
2.6 Conceptual workflow of a repackaging attack. 13
2.7 PHA categories in Google Play, 2017 . 18

3.1 Flowchart of a general Evolutionary Algorithm 22

4.1 YARA Logo . 30
4.2 Koodous Logo . 34
4.3 The settings shown when a ruleset is going to be created 36
4.4 Screenshots taken from Android application of Koodous. 37
4.5 Eulero-Venn diagram of the possible clusters. 38
4.6 YaYaGen Logo . 42
4.7 YaYaGen Usage . 43
4.8 Conceptual schema of the rule generation algorithms 44
4.9 yarGen disclaimer, v.0.19.0 . 46

5.1 Signature generated in DNF form . 52
5.2 YaYaGen-SGX . 57

vii

List of Tables

5.1 First assigned scores . 54
5.2 Final assigned scores . 55

6.1 Result obtained through Basic Optimizer 85
6.2 Result obtained through SGX-RO (Biscardi) 87
6.3 Results samples taken from both optimizers execution. 89

viii

Listings

3.1 General scheme of an evolutionary algorithm. 21
3.2 New individual generation process. 25
3.3 The population updater process. 26
3.4 The fitness class of SGX. 28
3.5 The lexicographic fitness class of SGX. 29
4.1 A simple example of a YARA rule.

This rule is telling that any file containing one of the three strings must be
reported as silent_banker. 31

4.2 Example of YARA rule reference. 33
4.3 General scheme of YaYaGen execution. 42
5.1 The Basic Optimizer contained inside class YaraRule. 56
5.2 Simple fitness function . 58
5.3 A multi-objective fitness function . 60
5.4 Introduction of fitness lexicographic . 61
5.5 Rules generated with a random approach 62
5.6 Rules generated with a random approach starting from their intersection . . 63
5.7 Pseudo-greedy rule generation approach . 64
5.8 Power set rule generation . 65
5.9 Power set rule generation through generator function. 66
5.10 First Best Matching generation . 67
5.11 Best matching using several intersection rule. 68
5.12 This function reduce the size of the final signature generated. 69
5.13 The main function of the evolutionary algorithm. 70
5.14 Fitness function of SGX Rule Optimizer that uses a FitnessLexicographic. 73
5.15 Fitness class developed specifically for the SGX-RO. 75
5.16 Computation of the pareto front. 77
5.17 Biscardi Optimizer and computation of the archive 78
5.18 Code to implement a steady-state mechanism. 79
5.19 Automatic Initial Probability Computation. 80
5.20 Pseudo Code of SGX Rule Optimizer. 81

1

We are survival machines — robot vehicles
blindly programmed to preserve the selfish
molecules known as genes. This is a truth
which still fills me with astonishment.
[Richard Dawkins, The Selfish Gene]

Chapter 1

Introduction

Malware analysis is like a cat-and-mouse game. As new anti-virus techniques are devel-
oped, malware authors respond with new ones to thwart analysis. Since the first days of
malware, the security industry developed antivirus programs and, nowadays, having an
antivirus software installed in our computers is a well-known good habit. Malicious soft-
ware plays a part in most computer intrusion and security incidents. Any software that
does something that causes harm to a user, computer, or network can be considered mal-
ware. Since the first known computer virus, Elk Cloner [35], malware grows in complexity
and nowadays they are able to communicate with each other, exchange information about
compromised systems (exchange password and user information, IP addresses to remotely
execute code via a backdoor, etc), or to evolve each other by exporting and importing
code modules.

Because of the huge widespread of smart devices of the last years (smartphone, tablet,
IoT devices, etc.), even more malicious users started to develop Potentially Harmful Ap-
plications (PHA) and Mobile Unwanted Software (MUwS) — apps that are not strictly
considered PHA, but are generally harmful to the software ecosystem — for these devices.
Due to the fact that these devices have often limitations like the power consumption or a
limited amount of memory and CPU, it is not so rare that there is no antivirus software
installed on these devices giving to malicious users the possibility to infect them.

In the Android ecosystem, a typical pattern among malware developers is to repack
popular applications from Google Play by adding malicious features and distribute them
to third-party app-stores, leveraging apps popularity to accelerate malware propagation.
As a consequence antivirus software struggle to keep their signature database up-to-date,
and AV scanners suffer from a considerable quantity of false negatives. Indeed creating
a high quality signature able to generalize enough to match new malware variants, while
avoiding false positives detection, is a challenging task, and requires a substantial portion
of human experts time.

Recently, to try to counter this phenomenon and to help malware analysts to create
better signatures a new Python 3 tool was proposed. YaYaGen, acronym of Yet Another
YARA Rule Generator, exploits a greedy-like optimization algorithm to generate YARA

1

1 – Introduction

Figure 1.1: Distribution of mobile operating systems during the last years.

rules, a pattern matching language used to write malware signatures which is becoming
a de facto standard. YaYaGen starts from a set of application analysis reports, possibly
belonging to the same malware family, and identifies a set of clauses capable to match all
the targets, then it produces a signature that can be seamlessly used by any tools that
supports YARA rules.

The workflow in which YaYaGen operates is illustrated in Figure 1.2 and it is composed
by the following phases:

1. Data Analysis: in this phase several Android application are chosen and analyzed
to extract common characteristics useful for the clustering process;

2. Clustering: the apps are divided into malware families to facilitate the rule genera-
tion;

3. Validation: an analysts have to check if the malware was correctly classified. It is
not yet possible to automatize this phase;

4. YaYaGen: the reports are converted in a working YARA rule using a greedy-like
optimization algorithm. Initially this step was composed only by the rule generation
phase; during the development of this thesis project was integrated also the rule
optimization phase;

5. Final Signature memorization: the final generated signature is written on one or
more files, ready to be used.

2

1 – Introduction

Figure 1.2: Workflow of the signature generation.

This work focuses on the research of computational intelligence techniques for the auto-
matic malware signature generation, introducing a score system that maximize the rule
efficacy, finding the best agreement between signature generality and specificity. To achieve
that we improved the greedy-like algorithm previously proposed, with an ensemble tech-
niques which combines heuristics and evolutionary algorithms. In particular, during this
thesis project, we concentrated our efforts in two main research areas:

• we implemented a new signature-generation algorithm based on an Evolutionary
Algorithm;

• we added a new rule optimization step next to the rule generation phase.

In particular, talking about the optimization phase, we developed two kinds of optimizer:
an heuristic optimizer (called Basic Optimizer) and a second one based on an Evolutionary
Algorithm developed in house (called SGX Rule Optimizer). For developing the second
optimizer, we adopted the Selfish Gene Extended algorithm (SGX), an evolutionary li-
brary — exponent of the so-called Estimation of Distribution Algorithm (EDA) — loosely
inspired by the neo-Darwinian theory of Richard Dawkins.

3

Chapter 2

Background

2.1 Android Operating System

Figure 2.1: Android Logo.

Android is a mobile operating system initially developed by Android Inc., based on a
modified version of the Linux kernel and other open source software and designed initially
for mobile devices such as smartphones and tablets. Later on, after the acquisition by
Google in 2005, will be developed also Android Wear for wrist watches, Android TV for
televisions, Android Auto for cars and Android Things for IoT devices, each of them with
a specialized user interface. Variants of Android are also used on game consoles, digital
cameras, PCs and other electronics.

Android was unveiled in 2007, with the first commercial Android device launched in
September 2008. The operating system has since gone through multiple major releases,
with the current version being 8.1 "Oreo", released in December 2017.

Android dominates in the battle to be the top smartphone system in the world since
2013 when it was ranked as the top smartphone platform[55]. Nowadays, in the end of
2017, Android OS has over two billion monthly active users, the largest installed base of
any operating system, and the Google Play store features over 3.5 million apps[44].

Figure 1.1 illustrates the distribution of the different mobile operating systems during
the last years1 meanwhile in figure 2.2 it is shown the number of Android application
present on Google Play during the years2.

1Real time update: https://goo.gl/ZmH5N5
2Real time update: https://goo.gl/RxQgNv

4

https://goo.gl/ZmH5N5
https://goo.gl/RxQgNv

2 – Background

Figure 2.2: App available on Google Play during the last years.

2.1.1 Android Environment

Android is based on the Linux kernel, supplemented with middleware and libraries written
in C/C++ meanwhile the official programming language of Android applications is Java,
with the support of the Android Software Development Kit (SDK). Thanks to this particu-
lar architecture, Android can enjoys the full benefit of Java such as platform independence,
added security and ease of app development.

On May 17, 2017, at Google I/O, the developer conference hold by Google Inc. every
year, was officially announced that Kotlin will be fully supported for developing Android
application3[6].

Process Virtual Machine

Both Java and Android, to create their own platform independence, take advantage of
a Process Virtual Machine (PVM). A PVM, sometimes also called application virtual
machine or Managed Runtime Environment (MRE), runs as a normal application inside
a host OS and supports a single process.

It is created when a process is started and destroyed at the end of the execution time.
It is an high-level abstraction with the purpose of providing a programming environment

3Google I/O 2017 — Getting Started with Kotlin: https://youtu.be/czKo-jPVweg

5

https://youtu.be/czKo-jPVweg

2 – Background

Figure 2.3: Flowchart of installation and run methods: Dalvik and ART architectures
compared.

that abstracts away details of the underlying hardware or operating system, and allows a
program to execute in the same way on any platform.

Dalvik Virtual Machine

Unlike a pure Java application, Android employs its own virtual machine to perform code
execution called Dalvik Virtual Machine (DVM)[34]. Dalvik is a Process Virtual Machine
that uses just-in-time compilation (JITC), a technique to increase execution speed of
applications by compiling parts of an application to machine code at runtime. Since
mobile phones did not have a lot RAM when Android was developed, Dalvik tried to
make sure that the RAM management was as effective as possible.

6

2 – Background

The application source code is first compiled into Java classes and further compiled into
a Dalvik Executable (DEX file) via dx tool. Then, the DEX program and other resource
files (e.g. XML layout files, images) are assembled into the same package, called Android
application package (APK) file.

Android RunTime

Since Android 5.0 (Lollipop), Dalvik Virtual Machine was replaced by Android RunTime
(ART), which uses the same bytecode and .dex files, with the succession aiming at perfor-
mance improvements transparent to the end users. The environment was already included
as "technology preview" in Android 4.4 (KitKat), but Lollipop is the first Android version
to fully support them.

While Dalvik compiles the code on the fly, ART compiles the code when the application
is installed. The main reasons for this architectural change were to increase the speed of
the code even more than Dalvik, improve garbage collection, better support for multi-core
processors and implement 64 bit support. Unfortunately, due to the fact that applications
are no more executed just-in-time, these improvements have two main disadvantages: the
same application compiled for ART uses more storage memory and the installation time
is slightly extended[26].

As it is possible to see in figure 2.3, the is quite similar even after the introduction of
the new virtual machine[33]. The main difference is that in the case of Dalvik, the DEX
file in the distributed APK was optimized using the dexopt tool and the Optimized Dalvik
Executable (ODEX) file is generated, while for ART, the DEX file is compiled using the
dex2oat tool and the OAT file is generated. The ODEX file is the executable file with
Dalvik and, while almost identical to the original DEX file, is partially optimized so that
operation code is partly changed. On the other hand, the OAT file in ART is a file in ELF
format, completely different from the original DEX file, and includes the machine code
generated through the compilation process.

2.1.2 Android Framework API

While an APK file is running inside the virtual machine, the Android framework code is
also loaded and executed in the same domain. As a matter of fact, a DEX file acts as a
plugin to the framework code and a large portion of program execution happens within
the Android framework.

A DEX file interacts with the Android framework via Application Programming In-
terface (API) provided through the Android SDK. From the developers’ point of view,
Android API is the only channel for them to communicate with the underlying system
and enable critical functionalities. Due to the nature of mobile operating system, Android
offers a broad spectrum of APIs that are specific to smartphone capabilities. For instance,
an Android app can programmatically send SMS messages via sendTextMessage() API
or retrieve user’s geographic location through getLastKnownLocation().

7

2 – Background

Figure 2.4: Historical Android’s architecture diagram with DVM runtime environment.

2.1.3 Android Permissions

Sensitive APIs are protected by Android permissions. To enable the critical functionalities
in an app or to access sensitive user data (such as contacts and SMS), a developer has to
specify the needs for corresponding permissions in a manifest file AndroidManifest.xml.
At runtime, permission checks are enforced at both framework and system levels to ensure
that an app has adequate privileges to make critical API calls. Depending on how sensitive
the area is, the system may grant the permission automatically, or it may ask the user to
approve the request.

Right now, there are two different ways to request access to permissions:

1. Runtime request — Android 6.0 (API level 23) and higher
the user will not be notified of any app permissions at install time. The app must
ask the user to grant the dangerous permissions at runtime. When the permission is
requested, the user will see a system dialog telling the user which permission group
your app is trying to access and it has to choose if click "Deny" or "Allow". An
user can also choose to select "never ask again" to grant or to revoke "definitively" a
permission to the app.

2. Install-time request — Android 5.1.1 (API level 22) and below
the system automatically asks the user to grant all dangerous permissions for the app

8

2 – Background

at install-time. If the user clicks Accept, all permissions the app requests are granted.
If the user denies the permissions request, the system cancels the installation of the
app. If an app update includes the need for additional permissions the user will be
prompted to accept those new permissions before updating the app.

2.1.3.1 Classification of protection levels

Permissions are divided into several protection levels. The protection level affects whether
runtime permission requests are required[22]. Since API level 27, ordered from the least
to most dangerous, a permission can belongs to one of the following protection levels:

1. Normal

2. Dangerous

3. Signature

4. Signature or System

Normal permissions

Normal permissions cover areas where an application needs to access data or resources
outside the app’s sandbox, but where there’s very little risk to the user’s privacy or the
operation of other apps; for example the permission to to connect to paired Bluetooth
devices (BLUETOOTH) is a normal permission.

If an app declares in its manifest that it needs a normal permission, the system auto-
matically grants the app that permission at install time. The system does not prompt the
user to grant normal permissions, and users cannot revoke these permissions.

Dangerous permissions

Dangerous permissions cover areas where the app wants data or resources that involve the
user’s private information, or could potentially affect the user’s stored data or the operation
of other apps (e.g. the ability to read the user’s contacts is a dangerous permission). If
an app declares that it needs a dangerous permission, the user has to explicitly grant the
permission to the app when the permission request is prompted.

Signature permission

A permission that the system grants only if the requesting application is signed with the
same certificate as the application that declared the permission. If the certificates match,
the system automatically grants the permission without notifying the user or asking for
the user’s explicit approval.

Signature or System permission

A permission that the system grants only to applications that are in a dedicated folder on
the Android system image or that are signed with the same certificate as the application

9

2 – Background

that declared the permission. Avoid using this option, as the signature protection level
should be sufficient for most needs and works regardless of exactly where apps are installed.
The signatureOrSystem permissions are used for certain special situations where multiple
vendors have applications built into a system image and need to share specific features
explicitly because they are being built together.

2.1.3.2 Other classes of permissions

Besides the classification based on the dangerous levels, it is possible to classify a permis-
sion on Android OS also in one of the other categories.

Special permissions

This class of permission is considered particularly sensitive and should not be used by
most Android applications[22]. Right now, considering API level 27, belong to this class
the SYSTEM_ALERT_WINDOW permission — that allows to an application to draw
an alert window on the top of every running application — and the WRITE_SETTINGS
permission — that allows an application to read or write the system settings. When an
app needs one of these permissions, it must declare the permission in the manifest, and
send an intent requesting the user’s authorization. The system responds to the intent by
showing a detailed management screen to the user.

Not third party app permissions

With third party app it is referred every other applications than the ones belongings
natively to the Android Operating System or developed by a manufacturer. Usually this
can be read as: everything that did not come pre-installed.

So, as it is easy to inferred by the name, this class of permissions can not be used
by application developed by third party but they are reserved for Android team and
manufacturers approved by Google.

Considering the classification of the protection level, these permissions could belong
to any of them.

Custom Permissions

Applications can expose their functionality to other apps by defining permissions which
those other apps can request. This kind of permission are the so-called custom permission.
When a custom permission is declared the developer has also to specify the protection level
of the declared permission.

An Android application can also define permissions which are automatically made
available to any other apps which are signed with the same certificate. This is easy to
check because all the APKs must be signed with a certificate whose private key is held by
their developer.

10

2 – Background

2.1.4 Android Stores

An Android application, assembled in an APK package, can be shared as any other files to
be installed on any Android device. One of the most common way to spread applications
is to be submit them to the Google Play store (the official Android Market) or to one of the
many Android app markets on the web. An app market serves as the hub to distribute the
application products, while consumers can browse the market and purchase (or download
for free) the APK files.

In recent years there has been a large increase in the number of unofficial third-party
marketplaces, both in number and variety, due to the large demand placed by users.
Launching an app into an unofficial store may contribute to reach a niche audience. They
could be used to reach a particular user segment (e.g. games, utilities, business) or a par-
ticular nationality, for example, the Chinese market — where Google Play is not officially
available — should be target through one of the Top 10 Android app stores in China.

Another reason that could drive a developer to use an unofficial store could be the
revenue; alternative app stores may offer a revenue share model that is more favourable
to developers than the standard 70/30 split offered by Apple and Google Play or can offer
other incentives (e.g. to pay for a certain amount of downloads, to increase application’s
popularity, to buy "featured" placement). This ability to access additional promotional
tools is one of the key advantages of using different app stores for independent developers
who may find the tight editorial control of the major stores difficult to penetrate.

Figure 2.5: Devices with malicious app installed in 2016 and 2017.

Unfortunately such degree of freedom comes with a price, along with all these stores the
number of fake and malicious apps was also increased. According to the Android Security

11

2 – Background

report of 2017[21], when Android Security Team started to measure devices hygiene in
late 2014, less than 1% of devices have malicious applications installed on average, in 2016
the number of devices affected by this kind of application was reduced to 0.77%. In 2017,
0.56% of all Android devices scanned by Google Play Protect — a security package for
Android devices consisting of app scanning, browser protection, and anti-theft measures
— had installed a potentially malicious application. In particular, on average, as it is
shown in figure 2.5, only 0.09% of devices that exclusively used Google Play had one or
more potentially harmful applications installed.
As a relevant study revealed in 2012[56], between 5% and 13% of a sample number of apps
downloaded through third party marketplaces were modified from the original version
available on Google Play and these percentages do not seem to decrease. For this reason
scholars are continuing to work on tool able to detect this phenomenon[53].

2.1.5 App Repackaging

The phenomenon of modifying the original version of a well-known application integrating
inside them malicious functionality is commonly known as App Repackaging attack.

This kind of attack, thanks to all the available unofficial Android marketplace, is more
common on Android OS than on other operating systems. In such an attack, attackers
modify a popular app downloaded from app markets, reverse engineer the application,
add some malicious payloads, and then upload the modified app to app markets. Users
can be easily fooled, because it is hard to notice the difference between the modified app
and the original app. Once the modified apps are installed, the malicious code inside can
conduct attacks (usually in the background) that can have destructive consequences for
unsuspecting smart phone users, such as sending premium rate SMS, gathering personal
information or even stealing money[20].

12

2 – Background

Figure 2.6: Conceptual workflow of a repackaging attack.

13

2 – Background

2.2 Android Malware

2.2.1 History of malicious applications

Malware stands for malicious software. Any software that does something that causes
harm to a user, a computer, or a network can be considered malware[31].

Malware exists in different variants: worm, rootkit, trojan, and virus. The term
computer virus was coined by Fred Cohen in 1983[7]. Viruses are programs able to replicate
themselves and infect various system files. As many other in computer science, the idea of
self-replicating software can be traced back to John von Neumann in the late 50s[50], yet
the first working computer viruses are much more recent. Creeper, developed in 1971 by
Bob Thomas, is generally accepted as the first working self-replicating computer program,
but it was not designed with the intent to create damage. On the other hand, the virus
Brain, written by two Pakistani brothers and released in January 1986, is widely considered
the first real malware[4].

It is interesting to note that, in computer viruses history, the focus has gradually
changed from writing for "fun" to writing for "profit" in the 2000s 4. In the early days of
malware, viruses were written by hobbyists mainly for joke or for challenge. They usually
played with the user or print funny messages or graphics on the screen. Today when
someone is infected by malware, does not even know to be infected. The malware runs
silently in the background, without crashing the system. If it is possible, viruses are well
tested and debugged in order to not slowing down the system.

During the years, malware writers developed hiding technique to escape from antivirus
detection. From a simple encryption, towards the most advanced metamorphic engines,
for this reason fighting against the malware is a challenging task that involve developers
and researchers all around the world.

2.2.2 Potentially Harmful Applications

On Android OS, another common term used to describe malicious applications is Poten-
tially Harmful Applications (PHA). Even if this term could be considered as synonym of
malware, the Android Security Team prefers to talk about PHA due to the fact that the
word malware lacks a well-defined and universally accepted taxonomy and it considered
to much confusing[23].

According to the Android Security Report 2017 [21], a Potentially Harmful Application
is an app that could put users, user data, or devices at risk. Common PHA categories
include trojans, spyware, or phishing apps.

Apps that weaken or disable Android’s built-in security features are potentially harmful
but can also provide functionality that users find useful and desirable. To make sure that
users are aware of the risks, Google Play Protect — a security package for Android devices
consisting of app scanning, browser protection, and anti-theft measures — still displays
a warning when they try to install these kinds of apps. For example some users choose

4Defcon: The History and Evolution of Malware — https://youtu.be/L8lA1pNvcz4

14

https://youtu.be/L8lA1pNvcz4

2 – Background

to root their phones to access functionality that is not available in the standard Android
configuration; these users are warned when they try to root the device. Power users can
proceed with installation while users who were not aware of the dangers can make more
informed decisions about altering their device.

2.2.2.1 PHA classification

In these years several terms were used to describe specific malware denoting their purpose,
replication strategy or specific behaviors. These terms are clearly not mutually exclusive
and the same 2 program may be described by several of them[31]. The PHA classifications
have changed over the years along with the ecosystem, and it is expected that will continue
to change and evolve. According to the Android Security Team[21], it is possible to
categorize them in the following types:

• Backdoor :
an app that allows the execution of unwanted, potentially harmful remote-controlled
operations on a device that would place the app into one of the other PHA categories
if executed automatically.
In general, the backdoor is more a description of how a potentially harmful operation
can happen on a device and is therefore not completely aligned with PHA categories
like billing fraud or commercial spyware apps.

• Commercial Spyware:
any application that transmits sensitive information off the device without user con-
sent and does not display a persistent notification that this is happening. Commer-
cial Spyware apps transmit data to a party other than the PHA provider. Legitimate
forms of these apps can be used by parents to track their children. However, these
apps can be used to track a person without their knowledge or permission if a per-
sistent notification is not displayed while the data is being transmitted.

• Denial of service:
an app that, without the knowledge of the user, executes a denial-of-service attack or
is a part of a distributed denial-of-service attack against other systems and resources.
This can happen by sending a high volume of HTTP requests to produce excessive
load on remote servers.

• Hostile downloader :
an application that is not potentially harmful by itself, but downloads other poten-
tially harmful applications. Major browsers and file sharing apps are not considered
hostile downloaders as long as they do not drive downloads without user interaction
and all PHA downloads are initiated by consenting users. An app may be a hostile
downloader if:

– there is reasonable cause to assume that the app was created to spread PHAs
and the app has downloaded PHAs or contains code that could download and
install apps;

15

2 – Background

– at least 5% of apps downloaded by the app are PHAs with a minimum threshold
of 500 observed app downloads (25 observed PHA downloads).

• Mobile billing fraud:
an app that charges the user in an intentionally misleading way. Mobile billing frauds
are divided according to the type of fraud being committed into:

– Call fraud:
it charges users by making calls to premium numbers without user consent.

– SMS fraud:
an application that charges users to send premium SMS without consent, or
tries to disguise its SMS activities by hiding disclosure agreements or SMS
messages from the mobile operator notifying the user of charges or confirming
subscription.
SMS fraud Some apps, even though they technically disclose SMS sending be-
havior introduce additional tricky behavior that accommodates SMS fraud. Ex-
amples of this include hiding any parts of disclosure agreement from the user,
making them unreadable, conditionally suppressing SMS messages the mobile
operator sends to inform user of charges or confirm subscription.

– Troll fraud:
it tricks users to subscribe or purchase content via their mobile phone bill
(e.g. Direct Carrier Billing, Wireless Access Point, or Mobile Airtime Transfer).
Wireless Access Point fraud can include tricking users to click a button on a
silently loaded transparent WebView. Upon performing the action, a recurring
subscription is initiated, and the confirmation SMS or email is often hijacked
to prevent users from noticing the financial transaction.

• Non-Android threat:
an application that contains non-Android threats. These apps are unable to cause
harm to the user or Android device, but contain components that are potentially
harmful to other platforms.

• Phishing:
an app that pretends to come from a trustworthy source, requests a user’s authen-
tication credentials and/or billing information, and sends the data to a third party.
This category also applies to apps that intercept the transmission of user creden-
tials in transit. Common targets of phishing include banking credentials, credit card
numbers, or online account credentials for social networks and games.

• Privilege Escalation:
an application that compromises the integrity of the system by breaking the appli-
cation sandbox, or changing or disabling access to core security-related functions.
Examples include:

– an app that violates the Android permissions model, or steals credentials from
other apps;

16

2 – Background

– an app that prevents its own removal by abusing device admin APIs;
– an app that disables Security-Enhanced Linux (SELinux) — a Linux kernel

security module.

Privilege escalation apps that root devices without user permission do not belong to
this category but they are classified as rooting apps, a particular subclass of Privilege
Escalation PHA.

• Ransomware:
an app that takes partial or extensive control of a device or data on a device and
demands payment to release control. Some ransomware apps encrypt data on the de-
vice and demand payment to decrypt data and/or leverage the device admin features
so that the app can not be removed by the typical user.

• Rooting:
a particular type of privilege escalation app that roots the device. There is a dif-
ference between malicious rooting apps and non-malicious rooting apps. The first
ones do not inform the user that they will root the device, or they inform the user
about the rooting in advance but also execute other actions that apply to other PHA
categories. The second ones let the user know in advance that they are going to root
the device and they do not execute other potentially harmful actions that apply to
other PHA categories.

• Spam:
this class of application sends unsolicited commercial messages to the user’s contact
list or uses the device as an email spam relay.

• Spyware:
an application that transmits sensitive information off the device. Any behaviours
that can be considered as spying on the user can classify an application as spyware;
in particular transmission of any of the following without disclosures or in a manner
that is unexpected to the user are sufficient to be considered spyware:

– contact list;
– photos or other files not owned by the application;
– content from user email;
– call log;
– SMS log;
– web history or browser bookmarks of the default browser;
– information from the /data/ directories of other apps.

• Trojan:
this class of application appears to be benign and performs undesirable actions
against the user. This classification is usually used in combination with other cate-
gories of harmfulness. A trojan will have an innocuous app component and a hidden

17

2 – Background

harmful component (e.g. a tic-tac-toe game that, in the background and without
the knowledge of the user, sends premium SMS messages).

Figure 2.7: PHA categories in Google Play, 2017

Due to the fact that the Google team performs checks to avoid the presence of malicious
applications on its Google Play store, this classification is also used during the evaluation
process of the apps that developers submit for publication in their store.

In figure 2.7, it is possible to see the distribution of the PHA categories on Google
Play in 2017.

2.2.3 Mobile Unwanted Software

Google uses the concept of "unwanted software" (UwS) as a way to deal with apps that are
not strictly considered PHA, but are generally harmful to the software ecosystem. In 2016,
Android took a similar approach with mobile, introducing the concept of Mobile Unwanted
Software (MUwS). MUwS are prohibited by Google Play’s policies, but even outside of
Google Play they are harmful to the Android ecosystem and unwanted by most users. An
example of common MUwS behavior is overly aggressive collecting of device identifiers
or other metadata. Before 2016, some MUwS were categorized as PHAs, especially apps
formerly described as Data Collection. Since 2016, MUwS are defined as apps that collect
at least one of the following without user consent:

• device phone number;

• primary e-mail address;

• information about installed apps;

• information about third-party accounts;

• names of files on the device.

To address this problem, Google works with developers to remove this behavior from their
apps or disclose their data collection practices to users.

18

Chapter 3

Evolutionary Algorithms

This chapter introduces the main concepts of Metaheuristic and Evolutionary computa-
tion, focusing on the evolutionary algorithms. In conclusion will be investigated the Selfish
Gene algorithm, a particular exponent of the so-called Estimation of Distribution Algo-
rithms (EDA), and its last Python implementation used inside this thesis project: the
Selfish Gene Extended (SGX) library.

3.1 Introduction to Metaheuristics

Stochastic optimization is the general class of algorithms and techniques which employ
some degree of randomness to find optimal (or as optimal as possible) solutions to hard
problems[27].

In particular, Metaheuristics are applied to "I know it when I see it" problems. They
are algorithms used to find answers to problems when there is very little to help: it is
not known before-hand what the optimal solution looks like, nor it is know how to go
about finding it in a principled way, there is very little heuristic information to go on, and
brute-force search is out of the question because the space is too large. However, if it is
given a candidate solution to the problem, it is possible to test it and assess how good it
is.

Hill-climbing is a simple metaheuristic algorithm; it tests new candidate solutions in
the region of the current candidate and adopt the new ones if they are better. This enables
to climb up the hill until a local optimum is reached.

Population-based methods keeps around a sample of candidate solutions rather than a
single candidate solution. Each solution is involved in tweaking and quality assessment,
but what prevents this from being just a parallel hill-climber is that candidate solutions
affect how other candidates will hill-climb in the quality function. This could happen either
by good solutions causing poor solutions to be rejected and new ones created, or by causing
them to be Tweaked in the direction of the better solutions. It may not be surprising that
most population-based methods steal concepts from biology. One particularly popular set
of techniques, collectively known as Evolutionary Computation (EC), borrows liberally

19

3 – Evolutionary Algorithms

from population biology, genetics, and evolution. An algorithm chosen from this collection
is known as an Evolutionary Algorithm (EA). Most EAs may be divided into generational
algorithms, which update the entire sample once per iteration, and steady-state algorithms,
which update the sample a few candidate solutions at a time. Common EAs include the
Genetic Algorithm (GA) and Evolution Strategies (ES). Because they are inspired by
biology, Evolutionary Computation methods tend to use (and abuse) terms from genetics
and evolution[27].

3.2 History of Evolutionary Computation

Natural evolution is based on random variations: some are rejected while others preserved
according to objective evaluations, and only changes that are beneficial to the individuals
are likely to spread into subsequent generations. Darwin called this principle natural
selection, a quite simple process where random variations "afford materials"[11].

From a practitioner’s point of view, evolution is an optimization process that only
requires to assess the effect of random changes even if the final outcome may strikingly
resemble the result of an intelligent design. The field of Evolutionary Computation (EC)
originates when several researchers, independently, tried to replicate evolution’s dynamics
to efficiently solve difficult problems. Some scholars pinpoint a paper in 1950 when Alan
Turing drew attention to the similarities between learning and evolution[46] but the lack
of computational power impaired their diffusion in the broader scientific community.

More commonly, the birth of EC is set in the 1960s with the appearance of three inde-
pendent research lines: John Holland’s Genetic Algorithms, Lawrence Fogel’s Evolutionary
Programming, and Ingo Rechenberg’s & Hans-Paul Schwefel’s Evolution Strategies. These
three paradigms monopolized the field until the 1990s, when John Koza entered the arena
with Genetic Programming. Moreover, Particle Swarm Optimization and other swarm-
based approaches are also usually listed among EC techniques, even though they mimic the
principles of social interaction rather than the struggling for survival. A comprehensive
overview of the field of EC can be found in Eiben and Smith’s textbook[17].

3.3 Introduction to Evolutionary Algorithm

The common idea behind all the different variants of Evolutionary Algorithms is the same:
given a population of individuals within some environment that has limited resources,
competition for those resources causes natural selection (the survival of the fittest). This
in turn causes a rise in the fitness of the population.

Given a set of candidate solutions (that could be also pseudo-randomly generated) and
a quality function to be maximized, it is possible to apply this abstract fitness measure
to the different solutions applying the simple principle: the higher is the better. On the
basis of these fitness values some of the better candidates are chosen to seed the next
generation.

20

3 – Evolutionary Algorithms

There are two main forces that form the basis of evolutionary systems: variation op-
erators that create the necessary diversity within the population and selection that acts
as a force increasing the mean quality of solutions in the population. The combined appli-
cation of variation and selection generally leads to improving fitness values in consecutive
populations; the evolution proceeds through discrete steps called generations.
To create new solutions, generally, one (or both) of these variation operators are applied:
recombination and mutation.

• the first one, recombination, is an operator that is applied to two or more selected
candidates (the so-called parents), producing one or more new candidates (the chil-
dren);

• the second one, mutation, is applied to one candidate and results in one new can-
didate. It is analogous to biological mutation: it alters one or more elements inside
the solution from its initial state to a new one.

Therefore executing the operations of recombination and mutation on the parents leads to
the creation of a set of new candidates (the offspring); these have their fitness evaluated
and then compete — based on their fitness (and possibly age) — with the old ones for a
place in the next generation. This process can be iterated until a candidate with sufficient
quality (a solution) is found or a previously set computational limit is reached[17].

BEGIN
INITIALIZE populat ion with random candidate s o l u t i o n s ;
EVALUATE each candidate ;
DO

1 . SELECT parents ;
2 . RECOMBINE pa i r s o f parents ;
3 . MUTATE the r e s u l t i n g o f f s p r i n g ;
4 . EVALUATE new cand idate s ;
5 . SELECT ind i v i d u a l s f o r the next gene ra t i on ;

REPEAT UNTIL (TERMINATION CONDITION i s s a t i s f i e d)
END

Listing 3.1: General scheme of an evolutionary algorithm.

It is easy to view this process as if evolution is optimizing the fitness function, by approach-
ing the optimal values closer and closer over time. An alternative view is that evolution
may be seen as a process of adaptation. From this perspective, the fitness is not seen as an
objective function to be optimized, but as an expression of environmental requirements.

It should be noted that many components of such an evolutionary process are stochas-
tic. During selection, for example, the best individuals are not chosen deterministically,
and typically even the weak individuals have some chance of becoming a parent or of
surviving. During the recombination process, the choice of which pieces from the parents

21

3 – Evolutionary Algorithms

will be recombined is made at random. Similarly for mutation, the choice of which pieces
will be changed within a candidate solution, and of the new pieces to replace them, is
made randomly.

The general scheme of an evolutionary algorithm is given in pseudocode in the previous
listing (3.1), and it is shown as a flowchart in the following Figure (3.1).

Figure 3.1: Flowchart of a general Evolutionary Algorithm

The vast majority of EC paradigms simulates a set of individuals in a population striving
for survival and for reproduction. When used as optimization tools, the fitness is directly
related with the ability to solve the given problem and the ultimate goal is to find an
individual that maximize such a fitness value. Using a language closer to biology, each of
the component previously named is called in the following way:

• A candidate solution is a Chromosome;

• An element of the solution is a Gene;

• A particular position inside a chromosome that could contain (or not) an element is
a Locus;

• A variant form of a given Gene inside a Locus is an Allele.

Using this terminology it is possible to say that the fitness function evaluate the goodness
of a chromosome.

To summarize it is possible to state that traditional evolutionary algorithm rely on the
concept of population: a set of individuals where each of them has associated a fitness value
which measures the goodness of the individual. Time is divided into discrete steps, called
generations. At each generation some new individuals are generated through crossover
operators and some are discarded. The choice of which individuals are used for performing
reproduction usually depends on their fitness. Commonly, a mechanism called elitism is

22

3 – Evolutionary Algorithms

used to preserve best individuals through generations, giving them a sort of unnatural
longevity, or even immortality.

As it will be explained in the following sections, almost all such elements are not
present in the Selfish Gene algorithm.

3.4 Estimation of Distribution Algorithms

As it was already said in the previous section, in canonical Evolutionary Algorithms a
single candidate solution is an individual and the set of all candidate solutions that exist
in a particular moment represents the population. Individuals in the population strives
for survival and for reproduction following Spencer’s "survival of the fittest".

In each generation, the population is first expanded and then collapsed, mimicking the
processes of breeding and struggling for survival. Maintaining a set of solutions, EAs are
more resilient than other optimization techniques to the attraction of local optima.

The so-called Estimation of Distribution Algorithms (EDAs) take a quite different
approach: they do not store the population as a set of distinct individual, but rather do
model its relevant parameters. The main characteristics of this class of algorithms are:

• the model represents the current state of the search in terms of the relationships and
distributions of the variables;

• the actual candidate solutions are created when needed by sampling the distribution;

• the genetic operators alter the model;

Different algorithms vary in the type of model, and in how it is tweaked but the main
concepts are always there. While the compact Genetic Algorithm (cGA) is probably the
most widely known among such population-less evolutionary algorithm[19], the idea of
replacing an explicit set of individuals with a probabilistic representation of a virtual
population was explored much earlier. The remarkable Equilibrium Genetic Algorithm
(EGA) dates back to 1994[25], followed one year later by the Population Based Incremental
Learning[2] (PBIL). Such approaches use a univariate model and assume that all variables
behave independently. They represent the population storing the marginal probabilities
for a gene to appear in a locus, a given location in the chromosome.

3.5 The Selfish Gene

3.5.1 The theory of Richard Dawkins

In 1976, the English biologist Richard Dawkins published: The Selfish Gene[13], a neo-
Darwinian theory suggesting that genes strive for immortality, while individuals and
species are ephemeral vehicles in that quest; a gene-centric view able to explain the behav-
ior of social insects as well as other oddities of life on Earth. While peculiarly appealing

23

3 – Evolutionary Algorithms

to the general public, the work was also praised by scholars, and after more than forty
years is still playing a central role in evolutionary biology and population genetics1.

The theory was further elaborated six years later in The Extended Phenotype[12].
Dawkins, who is sometimes accused of ultra-Darwinism but defines himself as a mere neo-
Darwinist, claims that his theory «is Darwin’s theory, but expressed in a way that Darwin
did not choose»2.

Darwin’s theory is based on the concept of the survival of the fittest, although Darwin
himself never used this specific wording, and later scholars quarreled about the exact
meaning of "fitness". The usual point of view has always been to consider the individual
as the entity that can be more or less fit to survive. Indeed, individuals do not actually
survive at all, but their genome does. Individuals are mortal, and their good qualities are
lost with their death. On the other hand, genes are immortal: fragments of chromosome
can be replicated in the offspring, and therefore survive the individual’s death. All this
considered, the selection mechanism can be better modeled considering "the survival of
the fittest" a battle fought by genes — only genes can be more or less suited to survive,
because only genes can survive.

In Dawkins’ view, individuals are simply vehicles made up from the cooperation of
different genes, and this cooperation is blind. A gene is not conscious, nor it has any idea
about the genome it is part of and it can be a good or a bad one, depending on other
genes of the individual. For instance, the gene causing the longer neck can be useful for a
giraffe and potentially deadly for other animals, but it does not care about the animal it
is in. The role of natural selection is to combine genes into genomes, without the need of
any global information about individuals.

3.5.2 History of the Algorithm

Dawkins theory has been reflected from biology to computer science. The underlying idea
that individuals could be neglected since the mechanism of selection inherently takes care of
relationship and linkages between genes is counter intuitive, but it has been experimentally
demonstrated. The resulting algorithms can be classified as Estimation of Distribution
Algorithms (EDAs); they are univariate algorithms as PBIL[2], but, rather than assuming
that variables behaved independently, they rely on the selection mechanism to compensate
the lack of information.

The first Selfish Gene algorithm (SG), published in 1998[8], is a straightforward im-
plementation of a thought experiments proposed by Dawkins in his book. Such an EDA,
similarly to EGA, PBIL, and cGA, only records the first-order probabilities for genes to
appear in the chromosome at specific locations. According to the gene-centric interpre-
tation, evolution is view as a set of battles fought by alleles, that is, genes competing
to occupy the very same locus. As the SG was very simple to implement, quite efficient
yet more robust than pure hill climbing, it was swiftly exploited by practitioners in some

1It is possible to search on Google Scholar for having access to an updated set of articles and books.
2Preface of The Selfish Gene, 2nd edition, 1989

24

3 – Evolutionary Algorithms

real-world applications, such as Computer-Aided Design (CAD) problems, by scholars for
various test benches, and few new approaches derived from it [54, 48, 52, 51]. The SG was
eventually enhanced in 1999 to better tackle deceptive functions[9].

3.5.3 The Algorithm

3.5.3.1 Virtual Population

The SG does not consider any explicit population. Instead, its Virtual Population (VP)
models the gene pool concept defined by Dawkins. Since individuals are not explicitly
listed, but implicitly represented in a pool of genes, the SG models reproduction through
variations of the statistical parameters of the VP. Individuals are represented by their
genome, a sequence of genes. The locus is defined as the location of the gene in the
genome, while the allele is the binary value of the locus. Let g the number of genes in the
genome: each Locus Li(i = 1, . . . , g) is occupied by an allele ai which has value 0 or 1.

In the VP, due to the number of possible combinations, genomes tend to be unique, but
some alleles can be more frequent than others, hence the success of an allele is measured
by the frequency with which it appears in the VP. Let pi the marginal probability for ai,
which conceptually represents the statistical frequency of the allele ai in locus Li within the
whole VP, regardless of the alleles found in other loci. The VP can therefore be statistically
characterized by marginal probabilities of alleles ai in the vector p = (p1, p2, . . . , pg).

3.5.3.2 The Generator process

The generator process simply generates individual according to VP statistics. Individual
generation is further detailed inside listing 3.2, where an individual is built by choosing
which allele ai to put in each locus L, using the probability reported in p. In order to
introduce further variability, a mutation can occur with the mutation rate probability: in
that case the mutated allele is chosen in a completely random way. This function was also
addressed as the process of extraction of a new individual.

def ex t ra c t_ ind iv idua l () :
i n d i v i dua l = empty genome
for l o cu s in i n d i v i dua l :

i f random . uniform (0 , 1) < mutation_rate :
i n d i v i dua l [l o cu s] = random . i n t e g e r (0 , 1)

else :
i f random . uniform (0 , 1) < p [l o cu s] :

i n d i v i dua l [l o cu s] = 0
else :

i n d i v i dua l [l o cu s] = 1
return i n d i v i dua l

Listing 3.2: New individual generation process.

25

3 – Evolutionary Algorithms

3.5.3.3 The Updater process

The task of the updater is to choose what from the two individual is the best one and
to update the probability distribution according to that comparison. Note that it is not
necessary to have an absolute ordering between all the possible values of the candidate
solutions, it is enough to being able to distinguish which individual is better between
two of them. In other words, it is not necessary that he transitive property is valid to
successfully perform the evaluation.

The Updater process modifies the VP according to the SG algorithm: the two indi-
viduals are compared, then a small constant θ is added in each locus Li to the marginal
probabilities of the allele of the winner, and removed from the marginal probabilities of
the allele of the loser. The net effect is to make the extraction of individuals similar to
the winner slightly more probable. The function that updates the population is shown in
listing 3.3 without showing mathematical details.

def Updater () :
i 1 = populat ion . ex t r a c t_ ind iv idua l ()
i 2 = populat ion . ex t r a c t_ ind iv idua l ()

i f i 1 . f i t n e s s == i2 . f i t n e s s :
a t i e , proceed to next comparison
return

i f f i t n e s s (i 1) > f i t n e s s (i 2) :
winner = i1
l o s e r = i 2

else :
winner = i2
l o s e r = i 1

a l l e l e_d i s t r i b u t i o n . update (winner , l o s e r)
. . .

return

Listing 3.3: The population updater process.

3.5.3.4 The Evolution Mechanism

At the beginning of the evolution process, all alleles are equally probable, then the SG
makes the VP randomly drift, until an allele slightly increases its marginal probability.
When the given allele increases its frequency, suddenly some other allele becomes more
or less desired and the positive feedback becomes effective. Ideally, the SG during the

26

3 – Evolutionary Algorithms

random drift selects a local optimum, and the Virtual Population quickly evolves toward
such a target.

Positive feedback would quickly drive the VP towards a local optimum. The conver-
gence speed can be tuned using the initial probability pi: high value will make the VP
moving quickly towards the first founded good solution, while a very small value will make
the VP to float for a longer time before choosing which local optimum to select as a target.
The algorithm is iterated until one stopping condition is reached, that is:

• an individual with maximum fitness has been evaluated;

• a maximum number of individuals have been evaluated;

• the time available has expired;

• the population cannot evolve any more because all individuals are too similar, that
is, in each locus, the probability of one allele is almost 1;

Note that even if these are the default stopping conditions it is still possible to modify
and expand the library according to the needs of the researcher.

3.5.3.5 Polarization

The term polarization is used to indicate the genetic variability inside a population. A
population where in each locus Li the frequency of a given gene is pi = 1 while all its
alleles have a frequency of zero is said to be completely polarized. On the contrary, when
all frequencies are set to pi = 1/n, the population is completely non-polarized. It should
be noted that a completely polarized population is not composed of identical individuals,
because the SG mechanism of mutation always provides a certain amount of variability.
Different loci may exhibit different levels of polarization. At the end of the evolution
process, the population would certainly be highly polarized. The final frequency of a gene
measures, in some sense, its success in its battle for occupying the locus. However, at the
beginning of the evolution process, the frequency assumes a different meaning.

A completely non-polarized initial population lets the SG start from an unspecified
state. On the other hand, starting from a completely polarized population makes the SG
initially behave like a Random Mutation Hill Climber (RMHC). However, after the first
generations, the population will likely to become less polarized, and the SG will gradually
differentiate from a pure RMHC. At the end of the evolution process, the population will
be probably polarized around a different, and hopefully better, point in the solution space
and therefore the SG will progressively became again more and more RMHC-fashioned.

3.5.4 The Selfish Gene Extended library

To celebrate the 20th anniversary of the original idea, the SG algorithm was rewritten
from scratch in Python 3, with improved usability and several new features. The Selfish
Gene Extended (SGX) library is the version of the SG algorithm that was used inside this
thesis project.

27

3 – Evolutionary Algorithms

In the following sections will be explained some characteristics of the library that have
been used inside the development of this reasearch activity.

3.5.4.1 The fitness class

One of the most important classes of SGX library that will be extensively cited in the
proposed approach is the fitness class. This class extends the class tuple and it was
thought as a base class for handling and comparing different kinds of fitness values. Its
constructor method (__new__) was developed in a very generic way giving to this class
the capability of handling smoothly lists, tuples, and single numbers.

To the developer is required only to implement two methods: __eq__ and __lt__,
meanwhile the other methods are inferred by the library itself. Even if, for the __eq__
method it is already provided a standard implementation, it could be useful for the devel-
oper to create its own comparison mechanism. On the other hand, if the __lt__ method is
not implemented by the developer, a NotImplementedError exception is raised by the li-
brary. For that reason, this class should not be used or modified directly but it is suggested
to extended them according to developer’s necessity.

To help the developers, the library already provides some implementation of the fit-
ness class, in most updated version, was already developed: the FitnessChromatic, the
FitnessLexicase and the FitnessLexicographic. In particular, the last one was the
one that was used in the proposed approach, for that reason it will be discussed in the
following section.

class Fi tne s s (tuple) :
def __new__(c l s , f i t) :

i f hasattr (f i t , ’__iter__ ’) :
return tuple .__new__(c l s , f i t)

return tuple .__new__(c l s , (f i t ,))

Standard methods
def __bool__(s e l f) :

" " " True i f f a l l o b j e c t i v e s are not None " " "
return a l l (v i s not None for v in s e l f)

def __str__(s e l f) :
return str (tuple (s e l f))

def dominate (s e l f , o ther) :
" " " True i f f s e l f > other " " "
i f not s e l f :

return False
return s e l f > other

Required

28

3 – Evolutionary Algorithms

def __lt__(s e l f , o ther) :
" " " Override to implement d i f f e r e n t s e l e c t i o n schemes " " "
raise NotImplementedError

Defau l t
def __eq__(s e l f , o ther) :

return tuple (s e l f) == tuple (other)
or (not s e l f and not other)

Methods t ha t can be i n f e r r e d
def __ne__(s e l f , o ther) :

return not s e l f == other

def __gt__(s e l f , o ther) :
return (not s e l f < other) and (s e l f != other)

def __le__(s e l f , o ther) :
return s e l f < other or s e l f == other

def __ge__(s e l f , o ther) :
return s e l f > other or s e l f == other

Listing 3.4: The fitness class of SGX.

The lexicographic fitness

This class is a subclass of the fitness class and, as it was stated in the previous section,
it implements the __lt__ method. When it is used in comparison operations (i.e. >,
<, ==, !=), this class performs simply a comparison in a lexicographic way, starting
from the first elements of the two tuples to the last ones. To work properly the two
FitnessLexicographic that have to be compared, are "upcasted" to tuple objects.

class Fi tne s sLex i cog raph i c (F i tne s s) :
def __lt__(s e l f , o ther) :

i f not other :
return False

e l i f not s e l f :
return True

return tuple (s e l f) < tuple (other)

Listing 3.5: The lexicographic fitness class of SGX.

29

Chapter 4

Automatic YARA Rule
Generation

This chapter analyzes well known approaches of Automatic signature generation with
a particular emphasis on the YARA rule generation techniques. It introduces also the
Koodous platform, YaYaGen — the tool that was improved for this thesis project — and
other rule generation tools.

4.1 YARA Rules

Figure 4.1: YARA Logo

YARA is multi-platform tool primarily used in malware research and detection. It works
on Windows, Linux and Mac OS X and it provides a rule-based approach to create de-
scriptions of malware families based on textual or binary patterns.[45]. YARA rules are
easy to write and understand, they work in a similar way to regular expression and they
have a syntax that resembles the C language.

Each rule in YARA starts with the keyword rule followed by a rule identifier, com-
monly called just rule name. Identifiers must follow the same lexical conventions of the C
programming language, they can contain any alphanumeric character and the underscore
character, but the first character can not be a digit. Rule identifiers are case sensitive and
cannot exceed 128 characters. Obviously YARA keywords can not be used as identifier[1].

30

4 – Automatic YARA Rule Generation

4.1.1 YARA syntax

All the content of this section refers to YARA Rule version 3.3.0 that is currently the
version that Koodous documentation suggests to consult [43]. As it is possible to see
in listing 4.1, a YARA rule can be composed by three main parts: meta, strings and
condition. Only the last section (conditions) is always required, meta and strings sections
can also be left empty or not be written at all.

A YARA rule can also contain C-style comments in both forms: single-line (//) and
multi-line (/* · · · */).

r u l e s i l ent_banker : banker
{

meta :
d e s c r i p t i o n = " This ␣ i s ␣ j u s t ␣an␣example "
thread_leve l = 3
in_the_wild = true

s t r i n g s :
$a = {6A 40 68 00 30 00 00 6A 14 8D 91}
$b = {8D 4D B0 2B C1 83 C0 27 99 6A 4E 59 F7 F9}
$c = "UVODFRYSIHLNWPEJXQZAKCBGMT"

cond i t i on :
$a or $b or $c

}

Listing 4.1: A simple example of a YARA rule.
This rule is telling that any file containing one of the three strings must be reported as
silent_banker.

4.1.1.1 Metadata

The metadata section is defined with the keyword meta and contains identifier/value pairs.
As can be seen in in listing 4.1, metadata identifiers are always followed by an equal sign
and the value assigned to them. The assigned values can be strings, integers or a Boolean
values in textual form (true or false). Note that identifier/value pairs defined in the
metadata section can not be used in the condition section, their only purpose is to store
additional information about the rule.

4.1.1.2 Strings

The strings definition section is where the strings that will be part of the rule are
defined. Each string has an identifier consisting in a $ character followed by a sequence of
alphanumeric characters and underscores in C-like style, these identifiers can be used in
the condition section to refer to the corresponding string.

Strings can be defined in text or hexadecimal form, if they are defined in text form
they must be enclosed on double quotes, if they are defined in hexadecimal form they can

31

4 – Automatic YARA Rule Generation

appear contiguously or separated by spaced and must be enclosed in curly brackets. A
text string is case-sensitive, to work with a case-insensitive string is necessary to apply
the modifier nocase.

4.1.1.3 Special Variables

There are some special variables, automatically defined by the language, that could be
used inside the condition section without being explicitly defined. One of the special
variables that we initially used inside our rule generation is the variable filesize. As the
name suggests, the filesize variable at execution time will contain the size of the evaluated
file, expressed in bytes. Obviously the use of filesize only makes sense when the rule is
applied to a file, if the rule is applied to a running process, it can never match because
filesize does not make sense in this context.

Note: it is also possible to use KB and MB postfixes to create Boolean expressions
with the filesize operator (e.g. filesize > 200KB); in this way the associated number will
be multiplied respectively by 210 or by 220.

Regular Expressions

A string variable can also contain a regular expression in a Perl compatible form. They
are defined in the same way as text strings, but enclosed in backslashes instead of double-
quotes. Regular expressions are one of the most powerful features of YARA and they can
be followed by all the modifiers available for the strings.

In previous versions of YARA externals libraries like PCRE and RE2 were used to
perform regular expression matching, but starting with version 2.0 YARA uses its own
regular expression engine. This new engine implements most features found in PCRE,
except a few of them like capture groups, POSIX character classes and backreferences.

(Approfondimento su reg-exp?)

4.1.1.4 Condition

The condition section is where the logic of the rule resides. This section must contain
one Boolean expression telling under which circumstances a file or process satisfies the rule
or not. The condition can contain the typical Boolean operators (AND, OR and NOT),
the relational operators (>=, <=, <, >, == and !=) and, in numberical expressions, it
is also possible to use arithmetic operators (+, -, *, /, %) and bitwise operators (&, |, «,
», ,̃ ,̂).

Very often (but not in the case of this thesis project), the condition will refer to
previously defined strings by using their identifiers; in this context the string identifier
acts as a Boolean variable which evaluate to true of the string was found in the file or
process memory, or false if otherwise.

The condition part allows also to use several extremely powerful constructs that will
be not shown in depth in this thesis because currently they are not exploited by YaYaGen.
More details can be found in YARA documentation: http://yara.readthedocs.io/en/
v3.3.0/writingrules.html.

32

http://yara.readthedocs.io/en/v3.3.0/writingrules.html
http://yara.readthedocs.io/en/v3.3.0/writingrules.html

4 – Automatic YARA Rule Generation

Undefined variable logic

Note that YARA has a simple logic to manage undefined variable behaves: any arithmetic,
comparison, or Boolean operation will result in an undefined value if one of its operands
is undefined, this will bring the rule to fail and to does not match the given file. Except
for OR operations, where an undefined operand is interpreted as False giving to the
computation the opportunity to continue and even to match the given file.

Referencing other rules

When writing the condition for a rule you can also make reference to a previously de-
fined rule in a manner that resembles a function invocation of traditional programming
languages. In this way you can create rules that depends on others. Note that is strictly
necessary to define the rule being invoked before the one that will make the invocation.

Usually, when it is desired to reference other rule, it is suggested to reference a private
rule. A private rule is a very simple concept, it is just a rule that is not reported by
YARA when it match on a given file. Private rules can serve as building blocks for other
rules, and at the same time prevent cluttering YARA’s output with irrelevant information.
For declaring a rule as private it is necessary to add private qualifier before the rule
declaration.
In listing 4.2 it is possible to see a YARA rule that references a private rule.

p r i va t e r u l e Rule1
{

s t r i n g s :
$a = "dummy1"

cond i t i on :
$a

}

ru l e Rule2
{

s t r i n g s :
$a = "dummy2"

cond i t i on :
$a and Rule1

}

Listing 4.2: Example of YARA rule reference.

4.1.2 Modules

Modules are extensions to YARA’s core functionality. Some modules are officially dis-
tributed with YARA and some of them can be created by third-parties. Everybody can
create its own module, it is not necessary to understand how YARA works in details, it is

33

4 – Automatic YARA Rule Generation

enough to be familiar with the C programming language — YARA exposes a simple API
for modules written in C — and how to configure and build YARA from source code.

The first step to use a module is importing it with the import statement. These
statements must be placed outside any rule definition and followed by the module name
enclosed in double-quotes. After importing the module, it is possible to use its features,
always using <module name> as a prefix to any variable, or function exported by the
module. An example of a YARA rule that uses a module is available in the chapter
related to the proposed approach, in figure 5.1.

Koodous platform take advantage mainly of three YARAmodules: Androguard, Cuckoo
and Droidbox. In particular, the Androguard YARA module was developed by the the
Koodous team itself and it can be used directly writing a rule on the website without any
installation.

4.1.3 Running YARA

YARA can be used in C or Python programs or it can be run directly on the command
line. In order to invoke YARA on the command line are required just two things: a file
with the rules to use and the target to be scanned. The target can be a file, a folder, or a
process.

Rule files can be passed directly in source code form, or can be previously compiled
with the yarac tool. Rules in compiled form could be useful to save time if YARA is invoked
multiple times with the same rules. Obviously, for YARA is faster to load compiled rules
than compiling the same rules over and over again.

4.2 The Koodous Platform

Koodous is a collaborative platform for Android malware research that combines the power
of online analysis tools with social interactions between the analysts over a vast APK
repository[42].

Figure 4.2: Koodous Logo

Koodous gives to the analyst the possibility to use a powerful YARA rule engine, and in
particular it gives to the scholar two main opportunities:

• the opportunity to test if an APK is matched by one or more public YARA rules
written on the platform;

34

4 – Automatic YARA Rule Generation

• the opportunity to test if a YARA rule written by the developer is able to match
one or more APK uploaded on the platform.

The APK upload operations have no restriction meanwhile to write YARA rules on
Koodous is necessary to create an account. Right now, having an account on Koodous is
free and it is allowed to everyone. After the creation of the account each developer can
write its own rulesets1 and he can use them in two different ways:

• searching for a particular APK and requesting the analysis of that APK:
if the developed ruleset is able to match it, the developer will know it;

• waiting for future APK detection:
each APK uploaded on Koodous is tested against all the active rules on the system,
if an APK will be matched by the developed ruleset, the analyst will receive a
notification.

Thanks to the integration of social functionalities, Koodous offers also the possibility to
follow an analyst or a ruleset. If a user follows another one, he has the opportunity to be
warned when an APK gives a positive match due to his rulesets.

Koodous provides millions of APKs to download and analyze. The repository is constantly
being updated with new packages from several sources, both official and unofficial. Fur-
thermore, Koodous adds the possibility to rate and comment each available APK on its
platform; so, every analyst can up-score or down-score an application if he considers it
relatively a goodware or a malware.
An APK is considered malware when one of these two conditions are true:

• the APK is matched by at least one social rule

• the APK has a score lower or equal to -2

4.2.1 Write a YARA ruleset on Koodous

YARA is directly integrated inside Koodous platform and does not require any installation.
When an analyst starts to create a ruleset on Koodous will find on the right part of the
browser screen, a menu like the one shown in figure 4.3.

• If a ruleset is set to private, it is visible only to its creator otherwise, if it is set to
public, it is visible to everyone;

• if a ruleset is disabled, it will be ignored by Koodous platform for its analysis other-
wise, if it is set to active, the ruleset will be considered during APK analysis;

• if notify me is enabled, the analyst will receive a notification when his ruleset will
match new APK otherwise, if the setting is configured to do not notify, he will not
receive any notice;

1A ruleset is simply a set of YARA rules stored together

35

4 – Automatic YARA Rule Generation

Figure 4.3: The settings shown when a ruleset is going to be created

• if the button delete is pressed, the ruleset will be removed by the website.

A button with a very important role in Koodous ecosystem is the promote social button.
When this button is pressed the ruleset will be analyzed by someone of Koodous staff
and, if it will be considered acceptable, the ruleset become a Social Ruleset. When a
promote social request is delivered, the ruleset is no more modifiable until it was accepted
or discarded by the team of Koodous.

A social ruleset participates in the system, warning all the analyst followers of all the
positives of the rules included. If the analyst is among the most valued members of the
koodous community, his ruleset will be used also to warn of the positives to all of them.

4.2.2 Koodous as anti-virus

Koodous has its own Android application to provide anti-virus functionalities to Android
users[32].

Once installed the application will check if one of the installed APK is present inside
Koodous database; if the application is not present, it will be automatically uploaded
inside Koodous database. Otherwise if the application is present, Koodous app checks if
this application has already a detection, if so the user receive the suggestion to uninstall
the application.

Koodous application also provide at almost-real-time protection to the Android device
on which is installed, the same check on Koodous database is also performed when a user

36

4 – Automatic YARA Rule Generation

try to install a new application on its device. If the APK is detected on Koodous backend
as malware, the user will receive a notification and he can decide if he wants to complete
the installation process or not.

Note, in case the user is also an analyst and he prefers to be not affected by social
rulesets, he can link its own device with its account and disabling the social rulesets. Since
that moment the APKs in that device will only be analysed using the rulesets developed
by the analyst. In figure 4.4, it is possible to some windows displayed by the Koodous
application when it is run.

Figure 4.4: Screenshots taken from Android application of Koodous.

4.2.3 Clustering Android APKs

Thanks to the possibility introduced by the Koodous platform, we decided to take ad-
vantage of the already detected applications to find other APKs belonging to the same
malware family. To do that we divided the applications in seven different categories that
are shown in figure 4.5. These categories are:

• Type 1 : all the APKs belonging to a family that is already correctly detected by at
least a YARA rule;

• Type 2 : all the applications belonging to a family that is already correctly detected
by at least a YARA rule and with a score lower or equal to -2 ;

• Type 3 : all the APKs belonging to a family that has already detected through a
score lower or equal to -2 ;

37

4 – Automatic YARA Rule Generation

Figure 4.5: Eulero-Venn diagram of the possible clusters.

• Type 4 : the applications contained inside this cluster belong to a family that is
partially detected by at least one YARA rule, and partially to be still detected.

• Type 5 : the APKs contained inside this cluster belong to a family that is already
partially detected by at least one YARA rule and with a score lower or equal to -2,
but this family has still malware that have to be detected;

• Type 6 : the applications contained inside this cluster have a score lower or equal to
-2, but the analysts did not detect yet all the possible sample of this family;

• Type 7 : the APKs that are not yet detected, they could be malware or not.

This division could be useful to perform clustering operation and to have a preliminary
idea of what kind of Koodous report an analyst is going to face off.

38

4 – Automatic YARA Rule Generation

4.3 Signature generation

4.3.1 Introduction to Static and Dynamic analyses

Static and dynamic analyses are two of the most popular types of code security tests[28].
Before implementing one of these approach is necessary to examine precisely how both
types of test can help to secure the software development life cycle. In few words they can
be described in this way:

• Static analysis is performed in a non-runtime environment and involves no dynamic
execution of the software under testing. Typically a static analysis tool will inspect
program code for all possible run-time behaviors and seek out coding flaws, back
doors, and potentially malicious code.

• Dynamic analysis adopts the opposite approach and is executed while a program
is in operation. A dynamic test will monitor system memory, functional behavior,
response time, and overall performance of the system. This approach is not wholly
dissimilar to the manner in which a malicious third party may interact with an
application.

Having originated and evolved separately, static and dynamic analysis have been mistak-
enly viewed in opposition. It is necessary to consider that there area number of strengths
and weaknesses associated with both approaches to consider.

Static Application Security Testing (SAST) can be thought of as testing the application
from the inside out — by examining its source code, byte code or application binaries
for conditions indicative of a security vulnerability — meanwhile Dynamic Application
Security Testing (DAST) can be thought of as testing the application from the outside in
— by examining the application in its running state and trying to poke it and prod it in
unexpected ways in order to discover security vulnerabilities.

Nowadays, testing an application both statically and dynamically will become increas-
ingly important. This because some vulnerabilities can be found only with SAST testing,
others with DAST; so testing in both ways yields the most comprehensive testing. Fur-
thermore, for example, thinking about web applications development, there are many
applications that would be traditionally scanned with DAST tools also use a significant
amount of client-side code in the form of Javascript, Flash, Flex and Silverlight.

4.3.1.1 Strengths and Weaknesses

Having in mind the development phase, static analysis is certainly the more thorough
approach and may also prove more cost-efficient with the ability to detect bugs at an early
phase of the software development life cycle. For example, if an error is spotted at a review
meeting or a desk-check — that are both types of static analysis — it can be relatively
cheap to remedy. Had the error become lodged in the system, costs would multiply. Static
analysis can also unearth future errors that would not emerge in a dynamic test.

On the other hand, dynamic analysis is capable of exposing a subtle flaw or vulnerabil-
ity too complicated for static analysis alone to reveal and can also be the more expedient

39

4 – Automatic YARA Rule Generation

method of testing. However, a dynamic test will only find defects in the part of the code
that is actually executed. Application type, time, and tester resources are some of the
primary concerns.

While both static and dynamic tests have their shortcomings, static analysis is often
considered a superior method of testing by enterprises[16]. Of course that does not neces-
sary means that it should automatically be chosen over dynamic analysis in every situation
where the choice emerges.

4.3.2 Malware detection methods

Some malware are very easy to detect and remove through antivirus software. These
antivirus software maintains a repository of virus signatures (i.e. binary pattern charac-
teristic of malicious code). Files suspected to be infected are checked for presence of any
virus signatures.

This method of detection worked well until the malware writer started writing poly-
morphic and metamorphic malware. These variant of malware avoid detection through
use of encryption techniques to thwart signature based detection.

Security products such as virus scanners look for characteristics byte sequence (sig-
nature) to identify malicious code. The quality of the detector is determined by the
techniques employed for detection. A good malware detection technique must be able to
identify malicious code that is hidden or embedded in the original program and should
have some capability for detection of yet unknown malware. Commercial virus scanners
have very low resilience to new attacks because malware writers continuously make use of
new obfuscation methods so that the malware could evade detections.

Techniques used for malware detection can be broadly classified into two categories:
anomaly-based detection and signature-based detection. An anomaly based detection tech-
niques uses the knowledge of what is considered as normal to find out what actually is
malicious. A special type of anomaly based detection is specification-based detection. Spec-
ification based detection makes use of certain rule set of what is considered as normal in
order to decide the maliciousness of the program violating the predefined rule set. Thus
programs violating the rule set are considered as malicious program[49].

Signature based detection uses the knowledge of what is considered as malicious to fins
out the maliciousness of the program under inspection; in particular is to this class that
YARA rules belong.

4.3.2.1 Signature-Based Malware detection techniques

Commercial antivirus scanners look for signatures which are typically a sequence of bytes
within the malware code to declare that the program scanned is malicious in nature.
Basically there are three kinds of malwares: basic, polymorphic and metamorphic[49]:

• Basic malwares: in the first category the program entry point is changed such that
the control is transferred to malicious payload. Detection is relatively easy if the
signature can be found for the viral code.

40

4 – Automatic YARA Rule Generation

• Polymorphic malwares: this class is able to mutate while keeping the original code
intact. A polymorphic malware consists of encrypted malicious code along with
the decryption module. To enable the polymorphic virus, the application has got a
polymorphic engine somewhere in the virus body. The polymorphic engine generates
new mutants each time it is executed. Signature based detection for such a virus
is difficult because each variant new signature is generated which makes signatures
based detection difficult. Strong static analysis based on API sequencing is used for
polymorphic virus detection.

• Metamorphic malwares: this third category can reprogram itself using certain ob-
fuscation techniques so that the children never look like the parent. Such malwares
evade the detections from the malware detector since each new variant generated
will have different signature, hence it is impossible to store the signatures of multi-
ple variants of same malware sample. In order to thwart detection a metamorphic
engine has to be implemented with some sort of disassembler in order to parse the
input code. After disassembly, the engine will transform the program code and will
produce new code that will retain its functionality and would still look different from
the original code.

After having specified the different kinds of malware, it is quite easy to infer that the main
problems with the signature based detection method are the following:

• signature extraction and distribution is a complex task;

• the signature generation involves often manual intervention and requires strict code
analysis;

• the signature can be easily bypassed as and when new signatures are created;

• the size of signature repository keeps on growing at an alarming rate.

4.3.3 YARA rules-based signature generation

According to Florian Roth — the developer of yarGen (4.5.1) and the creator of THOR
scanner2, a tool able to evaluate the full extend of security incidents within a computer
network — a way to write «simple but sound YARA rules»[38] is to use strings quite
uncommon that are not also present inside goodware applications. He suggests also to
prefer UNICODE strings instead of ASCII strings because are less checked by security
scanners and, for this reason, less checked by malware developers too.

In these last years, a lot of effort was put by several researcher to build YARA rules
base on strings and opcode matching having in mind malwares for traditional computer
and operating systems.

On the web there are also platform like the already-cited Koodous (4.2), thanks to this
platform even if it is true that a YARA rule is a static analysis tool, it is possible of taking

2More details about THOR available at https://www.nextron-systems.com/thor/

41

https://www.nextron-systems.com/thor/

4 – Automatic YARA Rule Generation

advantage of some tools belonging to both static and dynamic analysis like Androguard,
Cuckoo and Droidbox.

Thanks to these functionalities, it is possible to write YARA rules able to check also
constraints that are usually analyzable only through a dynamic analysis tool. It is right
having this idea in mind that YaYaGen (Yet another YARA rule Generator) was developed:
creating a tool able to build powerful YARA rule more resilient to the malware obfuscation
techniques.

4.4 YaYaGen

.

Figure 4.6: YaYaGen Logo

4.4.1 Introduction

YaYaGen is an automatic procedure, that starts from a cluster of Koodous reports, either
identified as a malware family, or by any other mean, and eventually produces a signature
in the form of a YARA rule that can be seamlessly used in Koodous. YaYaGen analyzes
the reports of the target applications and identifies a set of clauses that are able to match
all the targets[29].

BEGIN
PARSING command l i n e parameters ;
PARSING repo r t s from f i l e s or from l o c a l db ;
GENERATE YARA ru l e s i n t e r s e c t i n g parsed r epo r t s ;
WRITE r e s u l t i n g r u l e s on f i l e s ;

END

Listing 4.3: General scheme of YaYaGen execution.

4.4.2 How to use it

YaYaGen accepts Koodous JSON reports both as positional arguments or by specifying a
directory through the -dir option. Alternatively, it is possible to directly download them

42

4 – Automatic YARA Rule Generation

using the Koodous apk search URL (e.g., -u https://koodous.com/apks?search="SHA1_
A"%20OR%20"SHA1_B"%20OR%20"SHA1_C"). Internally reports are stored in an intermedi-
ate representation and cached in a SQLite database created locally.

In figure 4.7, it is possible to see the original usage of the Python script. Even if they
are not yet visible in this usage, it is also possible to specify to YaYaGen to avoid the
database creation using option -ndb, and the possibility to store the generated rules on
different files using option -o.

Figure 4.7: YaYaGen Usage

4.4.3 Evaluate method

A key functionality that will be exploited in the proposed approach is the evaluate()
method. This method, contained inside class YaraRule, is able to give an heuristic measure
of the goodness of a YARA rule.

Initially, this method returns a score that was based on the number of the attributes
contained inside a rule. A rule with more attributes was considered more specific than a
rule with few of them.

To summarize, it is possible to represent the score of a YARA rule in this way:

YR.score =
n∑

i=0
1

where:

YR.score = the score of a YARA rule
n = number of attributes inside YR

This approach, extremely simple, does not consider that a rule with a lot of attributes
could become too much specific incurring in the phenomenon of overfitting. In the proposed
approach (5), we will discuss how we decided to improve this method with the introduction
of some heuristic strategies.

43

https://koodous.com/apks?search="SHA1_A"%20OR%20"SHA1_B"%20OR%20"SHA1_C"
https://koodous.com/apks?search="SHA1_A"%20OR%20"SHA1_B"%20OR%20"SHA1_C"

4 – Automatic YARA Rule Generation

4.4.4 Rule Generation Algorithms

YaYaGen builds each YARA rule by selecting a suitable set of clauses, then picks a subset
of them of variable size to build an optimal family signature. The current implementation
provides two possible algorithms:

• greedy: select the clauses using a greedy algorithm;

• clot: select the clauses using a heuristic algorithm [best choice];

Both algorithms have the same concept implemented in two different ways: starting
from a set of reports belonging to the same family, the main idea is to create a YARA rule
from the intersection of all those reports. The algorithms start taking two reports and
creating an intersection rule, then the created rule was intersected with another report
creating a new rule; this process is iterated until all reports were used.

In figure 4.8 it is possible to see the conceptual schema of the rule generation.

Figure 4.8: Conceptual schema of the rule generation algorithms

4.4.5 Data representation

In this section will be shown the most important data structure represented inside YaYa-
Gen.

4.4.5.1 Report class

The class Report represent a Koodous report, a JSON file extracted by koodous.com con-
taining all the relevant information about the malware analysis conducted on a particular
APK. When it is created, a Report object is created with a corresponding YARA rule:
that rule is represented by the class YaraRule. The so-created YARA rule will contains
all the attributes that belongs to the Koodous report. Between the methods of the Report
class, the most significant are:

44

koodous.com

4 – Automatic YARA Rule Generation

• _parse_jreport(), to parse a Koodous report and convert it inside a Report object;

• __init__(jreport, filename, sha256), that works with three different parame-
ters:

– if jreport is set, the report is creating parsing a JSON object (and eventually
stored in a local database);

– if filename is set, the method checks if the report was already store in the
local database, otherwise it parses the file;

– if sha256 is set, the method checks if it is stored inside the local database a
report with that SHA256.

• some matching methods useful to perform checks on a YARA rule or no a set of
YARA rules given as parameters, in particular:

– match() checks if a YARA rule, given as parameter, is able to match the current
report (i.e. the YARA rule must has all the attributes that has also the YARA
rule created from the current report);

– match_any() checks if one of YARA rules contained inside the set given as
command line parameter is able to match the current report (i.e. one of the
rule given as parameter must has all the attributes that has also the YARA
rule created from the current report);

– match_all() checks if all the YARA rules given as command line parameter
are able to match the current report (i.e. all the rules given as parameter must
have all the attributes that has also the YARA rule created from the current
report).

• the methods necessary to manipulate the local database:

– _db(), for retrieving the database (the first time will be also created);
– _store(), for storing reports;
– _fetch(), to retrive reports previously store.

4.4.5.2 YaraRule class

The class YaraRule is an object that represent a possible YARA rule. The class YaraRule
extends the class set, in this way this object is able to manage directly several type of
object and it has access to all the potentiality of its superclass.

All the operation performed to generate the final signature — the final output of
YaYaGen — are usually executed directly on YaraRule objects. Between the methods of
the Report class, the most significant are:

• coverage(): this method, given a set of reports, is able to knowing how many
reports are matched by the current YARA rule;

45

4 – Automatic YARA Rule Generation

• evaluate(): this method performs a rule evaluation based on the number of at-
tributes contained inside the rule; it will be highly modified in the proposed ap-
proach;

• filter(): this method is able to reduce the dimension of the current rule according to
the name of several activity;

• to_yar_format() converts the object in a textual form to be stored inside a file or
inside the local database.

4.5 Other tools

YaYaGen takes advantage of several information about the applications used to generate
the final YARA rules. Usually, other tools for generating YARA rules follows two ways:
they are based on semantic meaningful string analysis or they are looking for particular
binary values representing the signature of some well-know malicious code[39]. For this
reason, YaYaGen is more robust and able to create rules able to better generalize the
malware family.

4.5.1 YarGen

Figure 4.9: yarGen disclaimer, v.0.19.0

The Yara Rule Generator (yarGen) developed by Florian Roth [40], is a Python 3 based
tool that generates YARA rules keeping a subset of strings found in malware that do not
appear in goodware files. Therefore yarGen includes a big goodware strings and opcode
database as ZIP archives that have to be extracted before the first use. The program uses
the top 20 strings based on their score to generate the YARA rule; to help analysts it is
also possible to display how a certain string is scored inside the rule or to use only strings
with a certain minimum score.

The rule generation process also tries to identify similarities between the files that get
analyzed and then combines the strings to so called super rules. The super rule generation
does not remove the simple rule for the files that have been combined in a single super

46

4 – Automatic YARA Rule Generation

rule. This means that there is some redundancy when super rules are created. it is also
possible to suppress a simple rule for a file that was already covered by super rule.

Even if it is not explicitly stated, this software was developed having in mind mal-
wares for desktop computer (indeed it support natively the Portable Executable (PE) file
format3).

This software is currently under development and during these years it received several
updates and new functionality, in particular it can:

• partially include the goodware strings from the analysis process but they will be
included with a very low score depending on the number of occurrences in goodware
samples. The rules so-obtained will be included if no better strings can be found and
marked with a comment: Goodware rule. It is possible to force yarGen to completely
remove all goodware strings with a particular command (–excludegood);

• take advantage of the XML files generated by PEstudio — a software used for pre-
liminary malware analysis;

• use a naive-bayes-classifier in order to classify the string and detect and distinguish
useful words instead of meaningless strings;

• supports opcode elements extracted from the .text sections of PE files. During
database creation it splits the .text sections with the regex [\x00]3, and takes the
first 16 bytes of each part to build an opcode database from goodware PE files.
During rule creation on sample files it compares the goodware opcodes with the
opcodes extracted from the malware samples and removes all opcodes that also
appear in the goodware database;

• allow the creation of multiple databases for opcodes and strings;

• support extra conditions that make use of the YARA pe module;

• support a "dropzone" mode in which it initializes all strings/opcodes/imphashes/exports
only once and queries a given folder for new samples. If it finds new samples dropped
to the folder, it creates rules for these samples, writes the YARA rules to the defined
output file and removes the dropped samples. For example drop two files named
’identifier.txt’ and ’reference.txt’ together with the samples to the folder and use the
parameters -b ./dropzone/identifier.txt and -r ./dropzone/reference.txt to read the
respective strings from the files each time an analysis starts.

Additional tools
Since version 0.18.0, inside yarGen it was also included a tool name db-lookup.py that
allows to query the local databases in a simple command line interface. The interface
takes an input value, which can be string, export or imphash value, detects the query

3A file format for executables, object code, DLLs, FON Font files and others used in Windows.

47

4 – Automatic YARA Rule Generation

type and then performs a lookup in the loaded databases. This allows to query the yarGen
databases with string, export and imphash values in order to check if this value appears
in goodware that has been processed to generate the databases. In the current version,
this tool does not support the opcode lookup.

This tool could be useful for knowing if one of the previous feature appears in goodware
samples or inside user database.

Installation requirements
In order to be used yarGen requires at least 4GB of RAM (8GB if opcodes are included
in rule generation). According to his declaration[40], the developer tried to migrate the
database to an SQLite one but the numerous string comparisons and lookups made the
analysis really slow.

After the installation of the last version is required to install all dependencies from pip
and then to tun the command python yarGen.py –update to automatically download
the built-in databases (Download: 913 MB).

4.5.2 Yara Generator

Yara Generator (YG) is a work-in-progress project to build a tool for quick, simple, and
effective YARA rule creation to isolate malware families and other malicious objects of
interest[5]. Even if the project is defined as "work-in-progress" and it has nowadays more
than 40 forks, it could be considered as a project put on stand-by: the last commit on the
original repository goes back to August 29, 2013, and it has a pending pull request since
February 2, 2016. Furthermore, its official website — http://yaragenerator.com — is
currently unreachable4.

Also in this case, even if it is not explicitly stated, this software was developed having
in mind malwares for desktop computer (indeed it was integrated the support for Portable
Executable (PE) files).

YaraGenerator starts from a few files from a malware family, or if it is desired to
profile not executables files, it is necessary that the files contain the attribute of interest.
Experiments prove that three or four samples seems to be effective for malware, however
to isolate exploits in carrier documents often it is required to use many more files.

Among its latest updates, YG has included:

• support for YARA rule Tags and Unicode Wide Strings

• a Python module to work directly with PE file format;

• the possibility of selecting a particular file format to improve the generated signa-
tures;

• the direct integration of regular expressions;

4Website accessed on March 2018

48

http://yaragenerator.com

4 – Automatic YARA Rule Generation

• a quite big database of blacklisted strings (almost 30.000 strings) divided by file
format;

4.5.3 Yabin

Yabin creates YARA signatures from executable code within malware. Given one sample of
malware, you can then find other samples that share code, it is considered by its developer,
Chris Doman, as a prototype for testing out an approach - rather than a tool intended for
production use.

It does this by looking for rare functions in a given malware sample. It identifies
functions by looking for common function "prologs" which define the start of functions
(e.g. 55 8B EC will often indicate the start of a function in software compiled by Microsoft
Visual Studio). A whitelist taken from 100 Gb of non-malicious software is used to ignore
common library functions.

Yabin could be used to help malware analysts to find malware samples that share piece
of code. This could be useful mainly in two situations:

• when the scholar that is working on a malware family wants to find more sample of
the same family;

• when the scholar finds a suspicious binaries and want to look if that file shares code
with a malware family.

Accordin to its developer, Yabin could also be a good tool for clustering malware
samples according to the re-use of their code.

Limitations
Even if Yabin is a good prototype tools, it is relatively young and it still have several
limitations, for example:

• is designed to work on unpacked executables; if it is run against packed samples, it
is not able to signature the sample, but it may signature the packer.

• the function prologs built in (stored in regex.txt) are designed to cover VC++,
Borland and MingW compilers;

• it is not yet designed to work on .NET executables, Java software, Word documents
etc.

49

Chapter 5

Proposed Approach

When we started working on this project, YaYaGen was still a concept and there were
several challenges to face to bring it in a full prototype phase. In our research activity we
worked on several fronts, in particular:

• we introduced an heuristic measure of the generated rules;

• we introduced some heuristics strategies to improve the generated rules;

• we tried to integrate the Selfish Gene Extend library (SGX) in the rule generation
process;

• we take advantage of SGX library to develop an optimizer able to improve the
previously generated rules: the SGX Rule Optimizer (SGX-RO);

• we introduced other heuristic strategies to improve the result of the SGX-RO.

This chapter specifies how we chose to represent the final signature and analyzes all of the
previous-cited parts in detail.

5.1 Disjunctive Normal Form representation

We decided to represent the final generated signature in a way very similar to the Dis-
junctive Normal Form (DNF).

5.1.1 YARA Rule representation

5.1.1.1 Disjunctive Normal Form

The DNF is a standardization of a logical formula which is a disjunction of conjunctive
clauses. Each clause is composed by one or more literals; each literal is commonly a
Boolean variable. The only propositional operators in DNF are AND, OR, and NOT ; the
NOT operator can only be used as part of a literal.

50

5 – Proposed Approach

The DNF can also be described as an "OR of ANDs", a sum of products, or (in philo-
sophical logic) a cluster concept.

The DNF can be represented by the following equation:

DNF =
n∨

i=1
(
m(i)∧
k=1

Li,k)

where:

n = number of clauses
m(i) = number of literals in clause i
Li,k = literal k of clause i

A DNF formula is in full disjunctive normal form if each of its variables appears exactly
once in every conjunction.

A DNF important variation in the study of computational complexity is the k-DNF.
A formula is in k-DNF if it is in DNF and each clause contains at most k literals.

5.1.1.2 YARA Rules DNF representation

In our case a literal is not a Boolean expression but it is one of the attributes extracted
from the Koodous report (e.g., the permission of access to a resource, a target SDK, the
name of an activity), for this reason, from this moment "literal" an "attribute" will be
used as synonyms. Since a clause is a conjunction of literals we can assume that a clause
it could be already a working YARA rule. The disjunction of several clauses help us to
improve the discriminating power of the generated signatures.

To summarize, to better adapt the DNF formula to our purpose, we can rewrite them
in this way:

S =
n∨

i=1
YRi

YRi =
m(i)∧
k=1

Ai,k

where:

S = final signature generated, a disjunction of several YARA rules
YRi = clause i, a potential working YARA rule
Ai,k = attribute k extracted from the Koodous report i, belonging to YARA rule i
n = number of generated YARA rules
m(i) = number of attributes inside YARA rule i

51

5 – Proposed Approach

Figure 5.1 illustrates the final DNF signature generated: in the beginning, the three clauses
that compose the final signature (YRi) are declared in YARA rule form; in the end, it is
possible to see a YARA rule called Final_Signature that invokes all the previous defined
clauses.

Figure 5.1: Signature generated in DNF form

5.2 Heuristics Strategies
According to the representation in DNF form, we assign a score to each attribute of the
report, the greater is the discriminating power of the attribute, the greater was the score
assigned to him. Secondly we establish that rules should have a score contained between
two threshold, the lowest one (Tmin) to avoid the creation of rules too much susceptible
to match fake positives, the highest one (Tmax) to avoid the phenomenon of overfitting.
Thanks to this score, the generated signatures have a limited risk of detecting false positive
in the future, yet it is general enough to catch future threats.

We established some other heuristic criteria to improve the effectiveness of the gener-
ated rules and in the end we developed a Basic Optimizer to reduce the score of the rules

52

5 – Proposed Approach

that could be considered to much specific.

5.2.1 Weighting the literals

It is clear that different literals should have been weighted in different ways. One of the
firsts challenge of this project was to weight properly the different attributes that could
be contained inside a rule.

To do that, we proceed using an empirical approach: we retrieve all the YARA rules
present inside the YARA Rules Project GitHub repository1 and we established that these
rules should reach an hypothetical score of 100.

There are attributes that can potentially discriminate more than other, for that reason
to each literal will be assigned a score according to its estimated discriminating power.
For example, if an Android application asks to use a normal permission like having access
to the internet, it is not very helpful to understand if this application is malware or not,
this is due to the fact that accessing the web is a common behaviour for a smartphone
application. On the other hand, the certificate of the developer, a particular activity name
or performing requests to a particular URL are very discriminating attributes; if someone
develops a malware it is highly probable that he will do it again; if inside a malware there
is a particular activity, or it accesses a particular URL, it is highly probable that other
malware belonging to the same family will include them again.

For these reasons, attributes judged extremely discriminating as URL, activity and
service will be graded with a value able to reach the discriminating score without been
aggregate with other attributes, meanwhile attributes considered not so dangerous like the
normal permissions or the size of the APK will received a low score.

Table 5.12 shows the first scores assigned after this phase. All these scores were inte-
grated inside the evaluate() method, already cited in section 4.4.3.

Thanks to this introduction, it is possible to represent the evaluate() method with
the following formula:

YR.score =
n∑

i=0
score(Ai)

where:

YR.score = the score of a YARA rule
n = number of attributes inside YR
Ai = the attribute i, belonging to the YARA rule
score(Ai) = the score associated to Ai

1Repository accessed on July 2017 — https://goo.gl/3kvx43
2In all the tables of this chapter, n stands for the number of the related attributes.

53

https://goo.gl/3kvx43

5 – Proposed Approach

Literal Assigned Score

Activity Name 100
Certificate (DN, Issuer, SHA1) 100
Number of Activities dn/2e
Number of Filters dn/2e
Number of Receivers dn/2e
Number of Services dn/2e
Filesize 10
Functionality 35
Package Name 100
Permission — Custom 20
Permission — Dangerous 11
Permission — Normal 7
Permission — Not Third Party 13
Permission — System 13
Receiver 35
Service 100
URL 100

Table 5.1: First assigned scores

After having established the scores of the attributes using this empirical approach, we
decided to recalculate these score using the Simplex Algorithm; the results of this algorithm
was later slightly modified to better fit the experimental results. The final scores can be
seen in table 5.2; in the end these scores are used inside the evaluate() method of the
class YaraRule.

5.2.2 Double Thresholds & Signature Optimization

The score of a rule is inversely related to its generality and it is defined as sum of the weight
of its literals. The higher the score, the more a rule will be specific and less susceptible
to generate false positives. The lower the score, the more a rule will be able to generalize,
while more prone to unwanted detections.

In order to build effective rules and to find a balance between these two cases we
introduce two thresholds: Tmin and Tmax; where the lowest threshold is the minimum
score that a rule needs to have to be valid, meanwhile the highest threshold is used in the
optimization process to avoid producing overly-specific rules.

After a conversation with the Koodous team, we decide to upscale Tmin from 100 to
400 and to set Tmax = 650.

54

5 – Proposed Approach

Literal Assigned Score

Activity Name 150
API Key 50
Certificate (SHA1) 150
Certificate (DN or Issuer) 100
Number of Activities dn/2e
Number of Filters dn/2e
Number of Receivers dn/2e
Number of Services dn/2e
Filter 150
Filter — Standard 10
Functionality 15
Main Activity Name 50
Package Name 100
Permission — Dangerous 80
Permission — Normal 7
Permission — Not Standard Value 50
Permission — Not Third Party 50
Permission — System 80
Permission — Wrong Value 150
Provider 80
Receiver 100
SDK Version (Min, Max, Target) 10
Service 150
URL 100

Table 5.2: Final assigned scores

We also have made some changes to our heuristic the more relevant changes are:

• it is not possible to have a rule with only "number of" conditions;

• it is not possible to create a rule with just one attribute even if the attribute is very
discriminating as, for example, a URL;

• we introduced new parameters initially not considered like the API key;

• we remove attributes not so much relevant like the Filesize;

55

5 – Proposed Approach

• we decide to distinguish more sub-attributes of attributes already considered assign-
ing to them different scores.

The thresholds and these constraint are all used inside the evaluate() method of the
class YaraRule.

5.2.3 Basic Optimizer

The goal of the Basic Optimizer is to keep the score of the rules below the upper threshold
(Tmax) still remaining over the lower threshold (Tmin). To execute this task, it simply
removes pseudo-randomly an attribute from the rule to optimize until the score is lower
than Tmax. Due to the fact that there are no attributes grater than the difference between
the threshold (Tmax − Tmin = 250) we can safely remove an attribute without checking if
we are still beyond the lower threshold.

def opt imize (s e l f)
new_rule = YaraRule (s e l f)
while new_rule . eva luate () > YaraRule .UPPER_THRESHOLD:

candidate = random . sample (new_rule , 1) [0]
new_rule . remove (candidate)

return new_rule

Listing 5.1: The Basic Optimizer contained inside class YaraRule.

The optimizing phase started after the execution of the rule generation algorithm. In that
moment it was checked if each of the generated rules are under Tmax or not; if the rule is
beyond this upper threshold it will be optimized. The code of the Basic Optimizer can be
seen in listing 5.1.

56

5 – Proposed Approach

5.3 YaYaGen-SGX

The so-called YaYaGen-SGX consists in the integration of the new Selfish Gene Extended
library inside YaYaGen. The main idea behind this implementation was to develop two
different functionalities:

1. a new signature-generation approach alongside the already available algorithms (i.e.
Greedy and Clot);

2. a new signature-optimizer based on the results of the already available signature-
generation algorithms. This new optimizer could be used instead of the Basic Opti-
mizer to have a smarter optimization.

Figure 5.2: YaYaGen-SGX

5.3.1 SGX Rule Generator

In this chapter will be explained in details the SGX Rule Generator (SGX-RG), the new
developed signature-generation approach that take advantage of the Selfish Gene Extended
library (SGX).

It will be explained how to represent a signature in a way that is easy to process for
the evolutionary algorithm and it will be introduced a parallelism between the candidate
solution (the individual) and the final signature. Furthermore, it will be explained how we
decided to generate a set of rules to be associated with the genome and how the algorithm
computes the fitness function to compare the candidate solutions.

5.3.1.1 Representing a YARA rule in SGX-compatible mode

To represent the data to be optimized by the genetic algorithm we establish to keep the
classic genome representation in which each locus can contain an allele with a binary value
(0/1). To the genome will be associated a set of YARA rules according to the previously
defined DNF (5.1): the whole genome represents the signature, the so-called OR of ANDs,
meanwhile each bit of the genome represent a working YARA rule, the so-called clause.
If a clause will be present in the final signature the value of its allele will be 1, otherwise,
if it will be ignored, its value will be 0. Each clause, as we already said when we spoke in

57

5 – Proposed Approach

detail about DNF (section 5.1), is composed by a set of literal, each literal is simply an
attribute of the YARA rule.

So, even if SGX algorithm is an Estimation of Distribution Algorithm (EDA) and
does not require to have already generated a population of individuals before starting its
executions — as we stated in section 3.5.2 — it was still necessary to generate a set of
rules to be associated to the genome. This is useful to have the possibility to calculate
the score of each allele through the already cited evaluate() method (4.4.3); in this way,
each bit of the genome will have a weighted value.

To create a starting set of YARA rule we developed several rule generation approaches
but, before entering into the details of rule generation, we will discuss the different way
in which we choose to evaluate the genome through a fitness function.

5.3.1.2 Fitness Function

One of the most important part necessary to make the evolutionary algorithm works was
the fitness function. The fitness function is the way in which is assigned an heuristic
measure to the goodness of a possible solution (an individual) [chapter 3]. Even if, it is
quite easy for an analyst to know if a rule is better than another one, it is not so easy to
represent this information in a way easy to process for a machine.

Simple Fitness

In our first developed fitness function, due to the fact that the final signature was repre-
sented in DNF, we established that the overall score of the generated signature was the
highest score between all the contained clauses.

S.score = nmax
i=1

(YRi.evaluate())

where:

S.score = the score of the final signature generated
n = length of the genome, number of generated YARA rules
YRi.evaluate() = the score of the clause i

Initially we decided to keep the problem simple so, in the first implementation, the best
individual is the one that contains the lowest possible clause. To work properly, the
fitness function requires that the clauses are already beyond the minimum threshold Tmin.
With this function is considered as dominant the individual with the lowest score. So, to
summarize, the main goal of the evolutionary algorithm was to minimize the score of the
generated signatures.

def f i t n e s s (genome , yara_ru l e_ l i s t) :
f i t n e s s_va lu e = sys . maxsize
for i in range (len (ya ra_ru l e_ l i s t)) :

58

5 – Proposed Approach

i f genome [i] != 0 :
i f value < f i t n e s s_va lu e :

f i t n e s s_va lu e = value
return f i t n e s s_va lu e

def Updater () :
i 1 = populat ion . ex t r a c t_ ind iv idua l ()
i 2 = populat ion . ex t r a c t_ ind iv idua l ()
. . .

i f f i t n e s s (i 1) < f i t n e s s (i 2) :
winner = i1
l o s e r = i 2

else :
winner = i2
l o s e r = i 1

. . .

Listing 5.2: Simple fitness function

Multi-objective Fitness

To have a more robust fitness function, we decided later on to consider how many reports
the clause is able to correctly detect. So, we changed the score of the final signature
according to the following formula:

S.score = nmax
i=1

(#detectedi ∗
1

YRi.evaluate()
)

where:

S.score = the score of the final signature generated
n = length of the genome, number of generated YARA rules
#detectedi = reports detected by the clause i
YRi.evaluate() = the score of the clause i

To do that the fitness function needs to have also the number of detection for each clause;
this parameter is provided through a list associated to the first one. In this fitness we go
back to consider as dominating the individual with the highest score value, we want to
maximize the detections and to minimize the score of the rule. So, to summarize, the main
goal of the evolutionary algorithm was to maximize the score of the generated signatures.

59

5 – Proposed Approach

def f i t n e s s (genome , yara_ru le_l i s t , yara_rule_detect ion) :
f i t n e s s_va lu e = 0

for i in range (len (ya ra_ru l e_ l i s t)) :
i f genome [i] != 0 :

ru le_value = yara_ru l e_ l i s t [i] . eva luate ()
va lue = yara_rule_detect ion [i] / ru le_value

i f value > f i t n e s s_va lu e :
f i t n e s s_va lu e = value

return f i t n e s s_va lu e

Listing 5.3: A multi-objective fitness function

Lexicographic Fitness

Ater the introduction of the multi-objective function we considered that having a multi-
objective function could be not only more complicated, but also not very useful for our
application. We decided to take advantage of one of the functionalities of the SGX library,
the FitnessLexicographic. As it was already said in section 3.5.4.1, this class is a
subclass of the class tuple and it was specifically designed to be managed by the SGX
library. When it is used in comparison operation (i.e. >, <, ==, !=), it performs a
comparison in a lexicographic way, starting from the first elements of the tuples to the
last ones. The introduction of this object does not only simplify our problem but it
contributes also to keep the solution more deterministic.

With the introduction of this kind of fitness we decided also what could be the most
important parameter for our problem, if we want to maximize or minimize them and in
which order they should be memorized. In the end, from the most to the least important,
we decide to have:

1. the number of matches (to be maximized);

2. the number of clauses (to be minimized);

3. the lowest score of rules contained inside the whole signature (to be minimized —
but still greater than Tmin).

To represent the elements that have to be minimized, we decided simply to store the reverse
value of these parameters inside the FitnessLexicographic (i.e. number of clauses and
score of the genome). Furthermore, to reduce the execution time we decide to pre-calculate
all the score of the genome and to introduce a third list as parameter.

To prevent the situation in which the genome will be generated with all the bits set to
0, we introduced an additional check on this value. If a genome with this characteristic will

60

5 – Proposed Approach

be generated, this configuration will be penalized configuring the first 2 fitness parameters
with the worst possible values.

def f i t n e s s_ fun c t i on (genome , yara_ru le_l i s t , yara_rule_detect ion ,
yara_rule_scores) :

best_score = sys . maxsize
matched = set ()

for i in range (len (ya ra_ru l e_ l i s t)) :
i f genome [i] != 0 :

matched . update (yara_rule_detect ion [i])

i f yara_rule_scores [i] < best_score :
best_score = yara_rule_scores [i]

m = len (matched)
n = sum(genome)
i f n i s 0 :

n = len (genome)
m = 0

return sgx . F i tne s sLex i cog raph i c ((m, 1/n , 1/ best_score))

Listing 5.4: Introduction of fitness lexicographic

So, mathematically we can represent that the score of the final signature in this way:

S.score = (#detected; 1
#allele(1) ; nmax

i=1

1
YRi.evaluate()

)

where:

S.score = the score of the final signature generated
#detected = reports detected by the whole signature
#allele(1) = number of allele with value set to 1
n = length of the genome, number of generated YARA rules
YRi.evaluate() = the score of the clause i

After the introduction of this fitness, we noticed that sometimes the rule-generation phase
was able to create clauses very close to maximize our fitness function. Due to the fact that
maximizing the number of matching was the most important argument of our fitness, we
decided to call all the clauses able to match the whole cluster from which they were gen-
erated perfect rules. If at least one perfect rule is present after the rule-generation phase,

61

5 – Proposed Approach

instead of starting the evolutionary algorithm — that usually is quite time consuming and
it does not improve particularly the final signature in this case — YaYaGen simply returns
as solution the perfect rule with the lowest score available.

Note that the clauses given to this fitness function will always must have a score greater
than Tmin to make work the algorithm properly.

5.3.1.3 YARA rule generation

In the following paragraphs will be explained the most significant steps in our rule gen-
eration approach. We started from a random generation, we introduced the concepts of
intersection rule and power set and we concluded with some heuristic improvements of
these approaches.

Random generation

Following the same approach used in the firsts heuristics strategies, we decided to start
with a random approach. The first algorithm developed to generate rules to be associated
to the genome of the final signature was quite-completely random.

The function shown in listing 5.5 receives as parameters the reports of the APKs given
as input parameter and the desired genome_length and it returns as output a list of
YARA rules with length equal to genome_length. All generated rules must have a score
equal to or greater than Tmin — that is written inside constant YaraRule.THRESHOLD —
and they can not contain duplicate attributes; the absence of duplicate attributes is coded
inside function _get_random_attribute(), this is the reason why new_rule is given as
parameter to that function.

As it was already said when it was discussed the double-threshold approach (5.2.2),
it is not necessary to check if the score of a rule go behiond Tmax because an attribute
with a score equal or greater than the difference of the two thresholds does not exists
(attribute_score < Tmax − Tmin).

def random_generation (repor t s , genome_length) :
new_rule_l ist = l i s t ()

for i in range (genome_length) :
new_rule = YaraRule ()
while new_rule . eva luate (i) < YaraRule .THRESHOLD:

ex t r a c t e d from repo r t s not pre sen t in new_rule
a t t r i b u t e = _get_random_attribute (repor t s , new_rule)
new_rule . add (a t t r i b u t e)

new_rule_l ist . append (new_rule)

return new_rule_l ist

Listing 5.5: Rules generated with a random approach

62

5 – Proposed Approach

Random generation from a common part

The main problem of the first random approach was that very often the generated rules
are unable to match even a report. To try to improve the generated rules keeping the
generation process quite random we decided to generate the rules starting from a common
part; this common part was represented by the intersection of all the reports given as
input parameter. After the generation of the so-called base_rule, for each rule that will
be associated with the final genome, from the base_rule will be pseudo-random extracted
attributes until Tmin is reached, or until all the common attributes are extracted. After
that pseudo-random attributes are added to the new YaraRule until the threshold score
is reached.

Even if the constraint of the absence of duplicate attributes remains valid, in respect
to the previous rule generation, in this case it could happen that the found intersection
between the reports is null and the resulting base_rule is empty. However this is not
a real practical problem, indeed if there is no intersection the rules are simply randomly
generated as in the previous case.

With this implementation the generated rules are able to match at least one report
more often.

def generate_from_common_part (repor t s , genome_length) :
crea t i n g the i n t e r s e c t i o n−r u l e from the g iven r epo r t s
base_rule = get_rule_with_all_common_attributes (r epo r t s)
new_rule_l ist = l i s t ()

for i in range (genome_length−1):
base_rule_len = len (base_rule)

while new_rule . eva luate () < YaraRule .THRESHOLD
and base_rule_len > 0 :

ex t r a c t e d from base_rule not pre sen t in new_rule
a t t r i b u t e = _get_random_attribute (base_rule , new_rule)
base_rule_len −= 1
new_rule . add (a t t r i bu t e)

while new_rule . eva luate () < YaraRule .THRESHOLD:
ex t r a c t e d from repo r t s not pre sen t in new_rule
a t t r i b u t e = _get_random_attribute (repor t s , new_rule)
new_rule . add (a t t r i bu t e)
i s_base_rule = False

new_rule_l ist . append (new_rule)

return new_rule_l ist

Listing 5.6: Rules generated with a random approach starting from their intersection

63

5 – Proposed Approach

Pseudo-greedy generation

Even if the rules are generated from a common part the random-added attributes bring
the rule to become often unable to match a single report.

To try to fix this problem we decide to check if the random generated rules are able
to match at least something. Furthermore we decided to does not consider anymore the
scores of the generated rules, we decided only to generate some small rules able to match
something; the best combination of this small rules will be selected by the evolutionary
algorithm. We decided also to explicitly check if a generated rule is equal to a previous-
generated one, if so, the generated rule is discarded and it does not be added to the set of
rules used by the genome.

def generate_pseudo_greedy (repor t s , genome_length) :
new_rule_l ist = l i s t ()
new_rule = YaraRule ()
i = 0
while i < genome_length :

a t t r i b u t e = _get_random_attribute (repor t s , new_rule)
new_rule . add (a t t r i bu t e)
how many r epo r t s are d e t e c t e d by the new ru l e ?
detec ted = {c for c in r epo r t s i f c . match (new_rule)}
i f len (detec ted) == 0 : # try again

new_rule . remove (a t t r i b u t e)
continue

append = True
for r in new_rule_l ist :

i f new_rule == r :
append = False
break

new_rule added only i f not a dup l i c a t e
i f append :

new_rule_l ist . append (new_rule)
new_rule = YaraRule ()
i += 1

return new_rule_l ist

Listing 5.7: Pseudo-greedy rule generation approach

Power set rule generation

To increase even more the space of the possible solutions we decided to do not use heuristics
strategies in the rule generations but to leave all the rule-optimization to the SGX library.

64

5 – Proposed Approach

To have a rule set the most generic as possible we decide to generate a Power Set from
each Koodous report given as input parameter and merge together all the obtained clauses.
On the other hand, to do not have too many clauses to be managed by the evolutionary
algorithm, we decided to keep only the clauses with a score contained between the two
thresholds: Tmin < score < Tmax

We defined the power set of the clause C as the set of all subsets of C, excluding the
empty set and including C itself. The main difference between the classical mathematical
power set operation was the absence of the empty set.
So, for example if C contains three attributes (x, y, z), its power set will be:

P(C) = {{x}, {y}, {z}, {x, y}, {x, z}, {y, z}, {x, y, z}}

In listing 5.8, it is possible to see the method developed for the generation of the power set
and the function that uses that method to generate the list of YARA rules. To introduce
more flexibility to the rule generation phase, the get_powerset() method has also two
parameters that could be used to specify the minimum and maximum cardinality of the
generated power set. For example, if C contains four attributes (x, y, z, w) and we call the
method rule.get_powerset(2,3) the result will be:

P(C2,3) = {{x, y}, {x, z}, {x,w}, {y, z}, {y, w}, {z, w}, {x, y, z}, {x, y, w}, {x, z, w}, {y, z, w}}

def get_powerset (YaraRule , min_size=1, max_size=None) :
xs = l i s t (YaraRule)
i f not max_size max_size > len (xs) :

max_size = len (xs)
pow_set = chain . f rom_iterab le (combinat ions (xs , n)

for n in range (min_size , max_size+1))
return pow_set

def powerset_rule_generat ion (r epo r t s) :
c l ause_set = set ()
i = 0
for r epor t in r epo r t s :

i += 1
powerset = repor t . yara_rule . get_powerset ()
for c l au s e in powerset :

conver t ing the t u p l e " c l au s e " in a YaraRule o b j e c t
new_rule = YaraRule (c l au s e)
s co r e = new_rule . eva luate ()
only " v a l i d " s core s
i f s co r e >= YaraRule .THRESHOLD

and s co r e <= YaraRule .UPPER_THRESHOLD:
normal s e t can ’ t be added to another s e t

65

5 – Proposed Approach

immutable_rule = frozenset (c l au s e)
dup l i c a t e s au t oma t i c a l l y removed
c lause_set . add (immutable_rule)

conver t ing the s e t i n t o a l i s t
return l i s t (c l ause_set)

Listing 5.8: Power set rule generation

Unfortunately, very often the size of the power set became quite big freezing the execution.
To solve this problem we changed the get_powerset() method to another one that uses
Python Generator functions. A generator it is simply a function that build a Python
Iterator object automatically. Thanks to the iterator, it is not necessary to generate the
whole power set in one shot, but it is possible to retrieve from the object one element at
time without saturating the memory.

After few attempts, it became clear that even with the possibility to reduce the cardi-
nality of the power set, too many elements will be generated; due to this fact, we decide
also the introduce the possibility of reducing the interval of score considered acceptable
with the idea of taking a sub-part of the previous considered interval [Tmin, Tmax].

As it is possible to see in listing 5.9, this change requires also to slightly change the
logic of the calling function.

def powerset_generator (s e l f , min_size=1, max_size=None) :
n = 0
xs = l i s t (s e l f)
i f not max_size max_size > len (xs) :

max_size = len (xs)

for subset in chain . f rom_ite rab le (combinat ions (xs , n)
for n in range (min_size , max_size+1)) :

y i e l d YaraRule (subset)

def powerset_rule_generat ion (repor t s , min_len , max_len ,
min_score=YaraRule .THRESHOLD,
max_score=YaraRule .UPPER_THRESHOLD) :

c lause_set = set ()
i = 0
for r epor t in r epo r t s :

i += 1
r = repor t . yara_rule
for c l au s e in r . powerset_generator (min_len , max_len) :

s c o r e = c l au s e . eva luate ()
i f min_score <= sco r e <= max_score :

66

5 – Proposed Approach

immutable_rule = frozenset (c l au s e)
c lause_set . add (immutable_rule)

return l i s t (c l ause_set)

Listing 5.9: Power set rule generation through generator function.

First Best Matching generation

Even if we want to have a quite big initial set of YARA rules, it was quite impossible to
find good values to assign to the generator function to achieve a good trade-off between
results and computational time. To try to solve this problem we decided to create the
desired initial pool selecting the clauses with the highest matching rate as possible.

def new_generation_function (r epo r t s) :
c l ause_set = set ()
want_to_match_number = len (r epo r t s)

while want_to_match_number > 0 :
for r epor t in r epo r t s :

r = repor t . yara_rule
for c l au s e in r . powerset_generator (min_size =3):

detec ted = {c for c in r epo r t s i f c . match (c l au s e)}
keep only b e s t l i t e r a l s
i f len (detec ted) == want_to_match_number :

eval = c lau s e . eva luate ()
i f YaraRule .THRESHOLD <= eval

ane eval <= YaraRule .UPPER_THRESHOLD:
immutable_rule = frozenset (c l au s e)
c lause_set . add (immutable_rule)

i f len (c l ause_set) == 0 :
want_to_match_number −= 1

return l i s t (c l ause_set)

Listing 5.10: First Best Matching generation

Note that the method powerset_generator() has min_size = 3 because, with the cur-
rent available literals score, the maximum possible value for a literal is 150. Considering
that the value of Tmin is fixed on 400, we can assume that is impossible to generate a
clause with less than 3 literals. We introduce this small characteristic to reduce a little
bit the possible generated clauses.

67

5 – Proposed Approach

Best Matching from intersections of the rules

The main problem of the previous approach was that a lot of rules are generated and
discarded because they do not have the desired amount of matching (i.e. the
want_to_match_number variable shown in listing 5.10). So, to generate less rules and to
improve the execution speed of this part of the algorithm, we decided to slightly change
the generation logic.

As it is possible to see in the following listing (5.11), we reintroduced the concept of
intersection rule; the function starts intersecting all the report together, then a power
set was expanded from the so-generated common_rule. This process is reiterated for all
the possible combination of reports removing initially just one report and later on two of
them, three of them, and so on until all the reports minus one are removed or until the
counter i reach the specified parameter (to_remove).

Generating the intersection rule from all the reports we will have the warranty that
the generated rule will match all the reports, using n-1 reports will know that the rule will
match all the reports minus one, and so on. In this way we are able to describe the same
approach represented in the previous section improving considerably the rule-generation
performance.

def i t e r a t i v e_ in t e r s e c t i o n_gen e r a t i o n (repor t s , to_remove=None) :
c l ause_set = set ()
i = 0
i f to_remove i s None :

to_remove = len (r epo r t s)

while i <= to_remove :
for r e p o r t_ l i s t in

i t e r t o o l s . combinat ions (repor t s , len (r epo r t s)− i)
common_rule = ge t_ in t e r s e c t i on_ru l e (r e p o r t_ l i s t)
for c in common_rule . powerset_generator (min_size =3):

s co r e = c . eva luate ()
i f YaraRule .THRESHOLD <= sco r e

and s co r e <= YaraRule .UPPER_THRESHOLD:
immutable_rule = frozenset (c)
c l ause_set . add (immutable_rule)

i += 1

return l i s t (c l ause_set)

Listing 5.11: Best matching using several intersection rule.

To improve performance, the previous function was later on improved with few updates:

• in the beginning of the function was added an additional check: if at least a perfect

68

5 – Proposed Approach

rule was found, the while loop is not executed and the perfect rules are immediatly
returned;

• if an intersection rule is bigger than a specified value its power set is not generated;

• it was introduced a number of required clauses that, if reached, break the loop;

• it was introduced a sorting algorithm to return only the best clauses if they are too
many;

• several reports were intersected before generating the power set; the intersection was
break when the common_rule reach length specified as parameter.

5.3.1.4 Other implementation details

In this section will be introduced some concept worthy of note even if they are not the
main concept of the SGX rule generator.

Reducing resulting ruleset

In some experiments we noticed that it is possible to reduce heuristically the number of
generated rules. For example, if it is generated a ruleset starting from a cluster of five
application, it is expected that, in the worst case, five rules are generated: each one of
these five rules able to match one of the five reports. Unfortunately sometimes, using
the SGX-RG algorithm, more than five rules are generated. To solve this problem it was
developed a mechanism able to reduce the number of generated rules without reducing
the effectiveness of the final signature. This mechanism should be placed between rule
generation phase and rule optimization phase.

def r educe_ru l e se t (r epor t s , r u l e s) :
i f len (r u l e s) > len (r epo r t s) :

g loba l_detected = set ()
for r u l e in r u l e s :

l o ca l_detec t ed = {c for c in r epo r t s i f c . match (ru l e)}
g loba l_detected . update (l o ca l_detec t ed)

whole_rules_matches = len (g loba l_detected)

g loba l_detected = set ()
tmp_global_detected = set ()
r educed_ru l e_l i s t = l i s t ()
for r u l e in r u l e s :

tmp_global_detected . update (
{c for c in r epo r t s i f c . match (ru l e)})

i f len (tmp_global_detected) > len (g loba l_detected) :
g loba l_detected . update (tmp_global_detected)
reduced_ru l e_l i s t . append (ru l e)

69

5 – Proposed Approach

i f len (g loba l_detected) == whole_rules_matches :
r u l e s = reduced_ru l e_l i s t
break

return r u l e s

Listing 5.12: This function reduce the size of the final signature generated.

Evolutionary main function

The main steps necessary to generate a signature through the SGX library are the follow-
ing:

1. creation of a pool of YARA rules according to one of the methodologies explained
in 5.3.1.3;

2. the array of loci is instantiated;

3. for each locus, the score and the number of detections of its related rule was pre-
computed;

4. creation of the list of perfect rules;

5. if a perfect rule was found, the evolutionary algorithm is not triggered;

6. the genome object is generated through the class AlleleDistribution;

7. the optimizer was instantiated with all the necessary arguments;

8. the evolutionary process is started;

9. the resulting genome is converted in a list of YARA rules that is returned to the
caller.

In the following listing (5.13) it possible to see the simplified code of the main function
that generates the rules and evolves them using the SGX library.

def yyg_sgx (repor t s , a rgs) :
global YARA_RULE_LIST
global YARA_RULE_SCORES
global YARA_RULE_DETECTED

l o c i = l i s t ()
p e r f e c t_ ru l e_ l i s t = l i s t ()
YARA_RULE_LIST = ru le_generat ion (r epo r t s)

for r u l e in YARA_RULE_LIST:
. . .

70

5 – Proposed Approach

l o c i . append (sgx . LocusEnum ([0 , 1])

Scores pre−computation
s co r e = ru l e . eva luate ()
YARA_RULE_SCORES. append (s co r e)

Detec t ion ra t e s pre−computation
detec ted = {c for c in r epo r t s i f c . match (ru l e)}
YARA_RULE_DETECTED. append (detec ted)

i f len (detec ted) == len (r epo r t s) :
p e r f e c t_ ru l e_ l i s t . append (ru l e)

i f len (p e r f e c t_ ru l e_ l i s t) > 0 :
return get_best_rule (p e r f e c t_ ru l e_ l i s t)

i n i t i a l i z e and s t a r t SGX
genome = sgx . A l l e l eD i s t r i b u t i o n (l o c i)

opt = sgx . Vani l l aOpt imizer (genome , f i t n e s s_ func t i on ,
max_generations=args .max_gen ,
mutat ion_probabi l i ty=args . mut_prob)

opt . evo lve ()

f inal_genome = opt . a r ch ive . pop () . genome
to_re turn_l i s t = l i s t ()
for i in range (len (YARA_RULE_LIST)) :

i f f inal_genome [i] :
t o_re turn_l i s t . append (YARA_RULE_LIST[i])

return to_re turn_l i s t

Listing 5.13: The main function of the evolutionary algorithm.

71

5 – Proposed Approach

5.3.2 SGX Rule Optimizer

Given the promising results of the Basic Optimizer and due to the high computational
overhead to generate a signature from scratch, we decide to take advantage of the SGX
library to introduce a new class of rule optimizer: the SGX Rule Optimizer (SGX-RO).

In this section will be introduced how we decided to represent the final product of
the evolutionary process and how to compute the new fitness function. In particular,
compared to the SGX-RG, the main differences in using the library are:

• it was not necessary to generate a set of rules to associate to the genome. The SGX
algorithm has already a starting point to evolve;

• in this case the final product of the evolutionary computation will be only the opti-
mized rule, not the whole signature.

5.3.2.1 Representing a YARA rule in SGX-compatible mode

Each locus contains an allele with a binary value (0/1). As we already said in section
5.3.1.1, even if the Selfish Gene is an EDA, in our case it was necessary to associate a
pre-computed data structure to the genome to perform an appropriate evaluation. Due to
the fact that this time we want to optimize a YARA rule, it was quite natural to associate
to the genome the whole YARA rule. This means that each locus of the genome will
contain an attribute of the rule itself; if the value of the allele will be 1, the attribute will
be used in the optimized rule, if it will be 0 the value will be ignored.

Unlike the previous case, we do not need a new mechanism to evaluate the single
attribute or the whole genome because it was already defined a specific value for each
possible attribute and furthermore, we had already defined the evaluate() method of the
class YaraRule to perform an evaluation of the single individual.

5.3.2.2 Fitness function

Lexicographic Fitness

The first developed fitness for the SGX-RO was a lexicographic fitness. As we already did
for the lexicographic fitness of the SGX-RG algorithm, it was necessary to establish what
are the most important parameter of our problem and if we want to maximize or minimize
them. This time, from the most to the last important, these parameters are:

1. the number of reports matched by the optimized YARA rule (to be maximized);

2. the score of the optimized YARA rule (to be minimized — but still greater than
Tmin);

3. the number of attributes contained inside the optimized YARA rule (to be mini-
mized).

This kind of fitness, as we already said in section 5.3.1.2, was implemented using an
extension of the class tuple offered by the SGX library: the class FitnessLexicographic.

72

5 – Proposed Approach

In this case, we did not have a generation phase, so it is not possible to assume
that, during the computation of the fitness value, the evaluated individual was properly
configured. For this reason, if compared with the lexicographic fitness presented inside
section 5.3.1.2, we had to add a penalty if the individual had a score not contained between
the two thresholds (Tmin and Tmax). We decided to introduce a huge penalty if the rule
becomes to much general going under Tmin (the algorithm assigns the worst values to the
first two attributes of the fitness), and a slightly less huge penalty if the rule could became
to much specific going beyond Tmax (worst value to the first attribute, half worst value to
the second one).

Furthermore, due to the fact that we wanted to minimize the number of attributes
but we did not want to fall in wrong configurations, if the genome contains only zeros the
parameter attribute is set to the worst possible value: the length of the whole genome.

def opt im i z e r_ f i tne s s_ l ex (genome , ru le , r epo r t s) :
count ing l i t e r a l s
a t t r i b u t e s = sum(genome)
i f a t t r i b u t e s == 0 :

a t t r i b u t e s = len (genome)

ru l e c r ea t i on from the i n d i v i d u a l
r u l e = YaraRule ()
for i in range (len (genome)) :

i f genome [i] != 0 :
r u l e . add (ru l e [i])

count matches
matched = {c for c in r epo r t s i f c . match (ru l e)}
m = len (matched)

score e va l ua t i on
s co r e = ru l e . eva luate ()
i f s co r e < YaraRule .THRESHOLD:

s co r e = sys . maxsize
m = 0

e l i f s co r e > YaraRule .UPPER_THRESHOLD:
s co r e = sys . maxsize / 2
m = 0

return sgx . F i tne s sLex i cog raph i c ((m, 1 ./ score , 1/ a t t r i b u t e s))

Listing 5.14: Fitness function of SGX Rule Optimizer that uses a FitnessLexicographic.

73

5 – Proposed Approach

Heuristic Fitness Function

The rules generated by the previous approach, even if their score was always in the prefixed
interval, were often considered unacceptable for a human expert. In particular, after
several tests we observed that very often the rules generated by this optimizer contains
few literals with a high score; for example, when it is possible, SGX-RO gives as result
rules with three attributes of score 150 (like the name of a service) or with four attribute
of score 100 (like a URL). Generally, human experts prefers having rules that includes a
widespread range of different attribute to reduce the probability that their rules match
fake positive samples.

For this reason, we decided to introduce some heuristic strategies in the selection
process of our optimizer. To implement this approach it was not possible to use anymore
the FitnessLexicographic, so we developed a new fitness class called FitnessYaYaGen
and we introduced inside its comparison methods (__eq__ and __lt__) some heuristic
rules. So, when two YARA rules are compared:

• if one of them contains only URL is worst than the other one;

• if one of them has the functionality SSL is worst than the other;

• if one of them has less categories than the other is worst;

• if one of them has less functionality than the other is worst.

These measure are established in an empirical way, what we wanted to achieve was a
system able to simulate the decision that will be taken by a YARA rule expert. For this
reason, as is shown in listing 5.15, when it is possible the comparison are not performed
in an hard way but they state that a rule is better than another one only if the difference
between that particular attribute is beyond a certain threshold. So, for example, it is
necessary that one rule has 10% more attributes than the other one to be considered
better and, furthermore, it is necessary that a rule has at least 3 categories more than the
second one to be considered better.

Note that this approach does not want to create a new absolute lexicographic order, it
should be able just to establish which rule is better between two different rules, nothing
more. This is possible because SGX library does not need to have an absolute ordering
to perform successfully, it has to know just what is the better individual when two candi-
date solutions are compared. This new comparison mechanism makes lose the transitive
property to the rule evaluated through this new fitness function.

Before using these heuristic rules, the algorithm will check if the number of matches are
equal or not; this check is executed for two difference reasons:

• the first one is an implementation trick: considering how it is instantiated the
FitnessYaYaGen object, if a rule has an invalid score, it receive a particular score
— sys.maxsize if the score is under Tmin; sys.maxsize/2 if the score is beyond
Tmax. Thanks to this value it is very easy to establish which rule is better if one of
them is not inside the range of valid scores;

74

5 – Proposed Approach

• the second one is the possibility to create a more powerful rule; if a rule matches
more reports than the other one it should be considered as more powerful rule.

class FitnessYaYaGen (F i tne s s) :
_TOLERANCE = 10 # percentage

def __eq__(s e l f , o ther) :
. . .

def __lt__(s e l f , o ther) :
0 −> repor t matching
i f s e l f [0] != other [0] :

return s e l f [0] < other [0]

d i f f e r e n c e s = l i s t ()
1 −> URL
i f s e l f [3] . only_url () and not other [3] . only_url () :

s e l f YaraRule i s worst
d i f f e r e n c e s . append (1)

e l i f not s e l f [3] . only_url () and other [3] . only_url () :
other YaraRule i s worst
d i f f e r e n c e s . append(−1)

2 −> ca t e g o r i e s
ca t_d i f f = other [3] . c a t e g o r i e s () − s e l f [3] . c a t e g o r i e s ()
d i f f = ca t_d i f f ∗ 100 / YaraRule .ATTRIBUTES
i f abs (d i f f) > FitnessYaYaGen ._TOLERANCE:

i f d i f f > 0 :
d i f f e r e n c e s . append (1)

else :
d i f f e r e n c e s . append(−1)

3 −> f u n c t i o n a l i t i e s
func1 = s e l f [3] . f u n c t i o n a l i t i e s ()
func2 = other [3] . f u n c t i o n a l i t i e s ()
d i f f = func2 − func1
i f d i f f > 3 :

d i f f e r e n c e s . append (1)
e l i f d i f f < −3:

d i f f e r e n c e s . append(−1)

4 −> fun c i o n a l i t y = SSL
to_append = 0

75

5 – Proposed Approach

for att , va l in s e l f [3] :
i f at t . s t a r t sw i t h (’ androguard . f u n c t i o n a l i t y . s s l ’) :

to_append += 1
break

for att , va l in other [3] :
i f at t . s t a r t sw i t h (’ androguard . f u n c t i o n a l i t y . s s l ’) :

to_append += −1
break

d i f f e r e n c e s . append (to_append)

r e s u l t
i f sum(d i f f e r e n c e s) > 0 :

return True # s e l f r u l e i s worst than o ther ru l e
e l i f sum(d i f f e r e n c e s) < 0 :

return False # s e l f r u l e i s b e t t e r than o ther ru l e

impos s i b l e use h e u r i s t i c s
i f s e l f [1] == other [1] :

i f s e l f [2] == other [2] :
return False # The ru l e s are e q u a l l y good

else :
return s e l f [2] > other [2] # to minimize

else :
return s e l f [1] > other [1] # to minimize

Listing 5.15: Fitness class developed specifically for the SGX-RO.

Note: in the previous listing the sum of the values contained inside the list differences is
to be considered as a "negative score": when a rule has a characteristic that is worst than
the characteristic of the other one a +1 is assigned. In the end if the sum is a positive
value, it means that the self rule is worst than the other one, on the other hand, if the
sum is a negative value, the self rule is worst than the other one. If the sum is equal
to zero it is not possible to determinate which rule is better according to these heuristic
strategies, so the algorithm uses firstly the scores of the candidate YARA rules and then
the number of literals to discriminate which rule is better. Due to the fact that we want
to minimize the score of the best solution, it is possible to state that a rule is lower than
another if its score is greater than the score of the other rule. The same concept is applied
also for the number of literals.

The fitness function itself is quite identical to the one shown in the listing 5.14, the only
difference is in the last row that was changed in this way return FitnessYaYaGen((m,
score, attributes, rule)).

As we already said, the new tuple FitnessYaYaGen introduces also new comparison
methods, for this reason it is not necessary anymore to use the reciprocal of the score

76

5 – Proposed Approach

and the reciprocal of the number of attributes that are now simply inserted inside the
constructor of the object FitnessYaYaGen. Furthermore, the new comparisons requires
to have access to more information about the representation of the YARA rule, for this
reason the related object YaraRule was a required parameter for the constructor of this
new object.

Additions to YaraRule class
To develop this new class, was also necessary to add new functionalities to the class
YaraRule, in particular in the previous listing are shown the methods:

• only_url(), it returns a Boolean value to state if the YARA rule contains only URL
or not;

• categories() returns the number of different categories of attributes contained
inside the YARA rule (e.g. activity_name, presence of a certificate, requesting a
permission, using a functionality, and so on);

• functionalities() returns the number of functionalities invoked inside the APK
from which is extracted the YARA rule.

5.3.2.3 Biscardi Optimizer

Inside the VanillaOptimizer — the default optimizer provided by the SGX library — the
candidate solution are evaluated using a Pareto front. When two candidate solutions are
generated and compared, these new solutions are put in competition with a set of solution
that are considered equally good. This pool of individuals is called archive an it contains
all the individuals that are candidate to be returned as final solution. To become part of
the archive, the fitness value of a candidate solution have to be greater or equal to all the
other solutions contained in the archive in the moment of its generation.

def pareto (i n d i v i d u a l s) :
pareto_set = set ()
for i in set (i n d i v i d u a l s) :

i f a l l ([not j . f i t n e s s . dominate (i . f i t n e s s)
for j in i n d i v i d u a l s]) :

pareto_set . add (i)

return pareto_set

Listing 5.16: Computation of the pareto front.

To make work this mechanism, it is necessary to have an absolute ordering between all
the solutions; this concept is no more feasible after the introduction of the heuristic fitness
class FitnessYaYaGen. For this reason, we decided to implement a new optimizer that
chose what individuals kept in the archive using a tournament-based approach.

77

5 – Proposed Approach

After the comparison of the two candidate solutions, they will be still inserted inside
the archive but the comparison is no more strictly based only on the fitness function. Each
individual inside the pool is compared with all the other ones according to comparison
methods of the class FitnessYaYaGen and according to the result of the comparison it
receives:

• 3 points, if it is better than the other one;

• 0 points, if it is worst than the other one;

• 1 point, if it is not possible to establish which individual is better.

This mechanism is executed in a round-trip way, so all the couple of individuals are
compared two times. In the end, the individual that is kept inside the archive is the one
that has the highest score; if there are more than one individual with the same score, they
are all kept inside the archive 3.

In the following listing (5.17), it is possible to see the function that computes the
archive and the pseudo-code of the new optimizer. The code of the optimizer is almost
the same of the already provided VanillaOptimizer, the only significant change is the
biscardi function, the function used to compute the archive.

WIN_SCORE = 3
TIE_SCORE = 1

def b i s c a r d i (i n d i v i d u a l s) :
s c o r e s = dict ()
for i in i n d i v i d u a l s :

s c o r e s [i] = 0
for i 1 in set (i n d i v i d u a l s) :

for i 2 in set (i n d i v i d u a l s) :
i f i 1 != i 2 :

i f i 1 . f i t n e s s > i2 . f i t n e s s :
s c o r e s [i 1] = s c o r e s [i 1] + WIN_SCORE

e l i f i 1 . f i t n e s s < i2 . f i t n e s s :
s c o r e s [i 2] = s c o r e s [i 2] + WIN_SCORE

else :
s c o r e s [i 1] = s c o r e s [i 1] + TIE_SCORE
sco r e s [i 2] = s c o r e s [i 2] + TIE_SCORE

max_value = max(s c o r e s . va lue s ())

3We decided to named this optimizer Biscardi Optimizer due to the fact that this mechanism is very
similar to the group stage of the soccer tournaments and to pay tribute to a very famous Italian soccer
journalist: Aldo Biscardi.

78

5 – Proposed Approach

b i s c a rd i_s e t = set ()
for i in i n d i v i d u a l s :

s c o r e = s c o r e s . get (i)
i f s co r e == max_value :

b i s c a rd i_s e t . add (i)

i f len (b i s c a rd i_s e t) i s 0 :
l ogg ing . e r r o r ("The␣ b i s c a r d i ␣ s e t ␣ i s ␣empty ! ")

return b i s c a rd i_s e t

class Biscard iOpt imizer (Vani l l aOpt imizer) :
def evo lve (s e l f) :

. . .

new_archive = b i s c a r d i (s e l f . _archive | { i1 , i 2 })
. . .

Listing 5.17: Biscardi Optimizer and computation of the archive

5.3.2.4 Implementation details

This section illustrates some interesting implementation details related to the SGX-RO.

Steady State mechanism

The steady state mechanism is useful whenever the SGX algorithm is able to reach a good
solution before the fixed maximum number of generations (max_generations). If after
a certain number of generation, arbitrarily configurable by the user, the algorithm is not
able to find a better solution than the ones that are already present inside the archive the
evolutionary process was interrupted and the best individual found until that moment is
returned as solution.

def _steady_state_function (opt imizer , gen_without_improve) :
to_stop = False
for i in opt imize r . a r ch ive :

i f opt imize r . g ene ra t i on − i . b i r th > gen_without_improve :
to_stop = True
l ogg e r . warning (" Steady␣ s t a t e ␣ reached ! ")
break

return to_stop

Listing 5.18: Code to implement a steady-state mechanism.

79

5 – Proposed Approach

The function shown in the previous listing (5.18) is evaluated after every generation during
the execution of the evolve() method, contained inside the optimizer object.

After several experiments we observed that this mechanism is able to improve sub-
stantially the execution speed unless the initial configuration was to much distant from
an optimal solution.

Automatic Initial Probability Computation

During the testing phase, we observed that the length of the genome influences the good-
ness of the solution and the execution time of the evolutionary computation. After some
tests we noticed that this execution time could be influenced by the initial probability of
having bits set to 0. In particular we saw that:

• if a genome is quite short, if the probability of having alleles set to 0 was lower, the
execution time will be reduced;

• if a genome is quite long, if the probability of having alleles set to 0 was higher, the
execution time will be reduced.

Furthermore, we noticed that the execution time will be particularly reduced if this trick
was used together with the implementation of the Steady State.

For this reason, even if we decided to leave to the user the possibility to configure his
own initial probability of having bits of the genome set to 0, we implemented a simple
mechanism to automatic compute this value. Due to the fact that under no circumstances
we want to have this probability configured to the absolute denial (0%) or to the absolute
certainty (100%), we set also two limits values: the minimum possible probability of zero
is 0.03, meanwhile the maximum possible probability of zero is 0.97. To summarize it is
possible to say that:

• if the length of the genome is lower or equal to 10 alleles, IP(0) = 0.03

• if the length of the genome is greater or equal to 160 alleles, IP(0) = 0.97

• for all the other length of the genome, the initial probability of 0 is set according to
the following formula:

IP(0) = (length(genome)− 10)0.97− 0.03
160− 10 + 0.03

Thanks to this simple mechanism, especially if used in combination with the already
cited Steady State mechanism, the algorithm is able to converge to a better solution in a
lower amount of time. In the following listing is it possible to see how it was coded this
mechanism.

MIN_PROB = 0.03
MAX_PROB = 0.97
MIN_LEN = 10

80

5 – Proposed Approach

MAX_LEN = 160

def ca l cu la te_in i t_prob (l ength)
i f l ength <= MIN_LEN:

return MIN_PROB
e l i f l ength >= MAX_LEN:

return MAX_PROB
else :

d i f f_prob = MAX_PROB − MIN_PROB
d i f f_ l e n = MAX_LEN − MIN_LEN
return (l ength − 10) ∗ di f f_prob / d i f f_ l en + MIN_PROB

Listing 5.19: Automatic Initial Probability Computation.

SGX-RO main function

The main steps necessary to optimize a YARA rule are the following:

1. if not specified by the user, the initial probability of having bit set to 0 is automati-
cally computed as it was explained in section 5.3.2.4;

2. the array of loci is instantiated;

3. the genome object is generated through the class AlleleDistribution;

4. the optimizer was instantiated with all the necessary arguments;

5. the stay state stopping condition is added to the optimizer;

6. the evolutionary process is started;

7. the resulting genome is converted in a YaraRule object that is returned to the caller.

In the following listing (5.20) it possible to see the simplified code of the main function of
the SGX Rule Optimizer.

def sgx_rule_optimizer (ru le , r epor t s , a rgs) :
i f args . in i t_prob i s None :

args . in i t_prob = ca l cu la t e_in i t_prob (len (r u l e))

l o c i = l i s t ()
l i s t e d _ l i t e r a l s = l i s t ()
for l i t e r a l in r u l e :

l o c i . append (sgx . LocusEnum ([0 , 1]) , a rgs . in i t_prob)
l i s t e d _ l i t e r a l s . append (l i t e r a l)

81

5 – Proposed Approach

genome = sgx . A l l e l eD i s t r i b u t i o n (l o c i)
Vani l l aOpt imizer or Biscard iOpt imizer
opt = sgx . Optimizer (genome , op t im i z e r_ f i tne s s ,

max_generations=args .max_gen ,
mutat ion_probabi l i ty=args . mut_prob)

opt . _stopping_condit ions . append (lambda :
_steady_state_function (opt , args . s teady_state))

opt . evo lve ()

new_rule = YaraRule ()
f inal_genome = opt . a r ch ive . pop () . genome
for i in range (len (l i s t e d _ l i t e r a l s)) :

i f f inal_genome [i] :
new_rule . add (l i s t e d _ l i t e r a l s [i])

return new_rule

Listing 5.20: Pseudo Code of SGX Rule Optimizer.

82

5 – Proposed Approach

5.4 Further improvements
YaYaGen has generated a great interest within the malware research team of Koodous,
for that reason it is a project in under continuous development inside our research team.
There are several proposals of improvements, mostly dictated by the need of increasing
the practical usability of the tool. Some of them includes:

• to change the way in which the tool is configured with the introduction of several
configuration files;

• introduce a tool to check maliciousness of the URLs and of the IPs before introduce
them in rule generation.

5.4.1 Configuration files

The goal of the configuration file is to help Koodous system administrator to manipulate
YaYaGen after the introduction in Koodous Brain without knowing how the code works
in details. This will introduce the possibility to customize YaYaGen according to future
requirements without the risk of introducing new bugs.
The configuration files that will be introduced are:

• a file named configuration.json that will allows to enable Cuckoo support, specify
Permission and Intent filters list, keywords and values files;

• a file named keywords.json that will be used at the pre-processing of the Koodous
JSON reports to select which literal consider during the rule generation process;

• a file named values.json is used to specify the weight of each literal.

5.4.2 IP and URL filtering

The second improvement is due to the fact that URLs and IP addresses are very effective
in detecting malicious samples, so it was established to augment their score from 100 to
200 adding a mechanism that will filter and check for maliciousness before including them
in the set of literals used for the rule generation. The module incharged of pre-processing
them will be url_checker.py, which firstly will filter common URLs using the Alexa Top
1 million list (alexa), and then will use the API of Virus Total — a free virus, malware
and URL online scanning service — to check the domain for malicious traffic. In order to
increase the query performances, results can be cached in a local database.

83

Chapter 6

Experimental Results

Given the research nature of the thesis, experiments focused on showing the feasibility
of the approach, rather than implementing a production ready tool, for this reason the
results of our experiments refers only the data-set of applications that we had to our
disposal during the development phase. However we successfully performed experiments
on a very large data-set of 1.3 million of Android applications collected during the period
between November 2016 and November 2017.

Note, all the tests performed during this research activity were executed on a server
equipped with a 4-core Intel i5 processor (i5-2500 CPU @3.30 GHz), 8GB of RAM, and
running Ubuntu 16.04.3 LTS.

6.1 Basic Optimizer
The Basic Optimizer produces always good results converting each YARA rule in a more
specific one, without affecting the capability of each clause to correctly detect malware.

An example of the generated rules on few testing clusters is shown in table 6.1. Note,
the proposed results of the Basic Optimizer are an average of 10 tests executed on the
same "non-optimized" YARA rule. This is due to the fact that this optimizer does not
follow a deterministic process and the obtained result is different every time.

In the Table 6.1 are shown the results of the optimizer process starting from both the
already existent rule generation algorithms (the greedy and the clot). The clusters belong
to the different types already explained in section 4.2.3 and they are labelled according
to that convention. So for example, the cluster labeled with the name t2c1, is the first
analyzed cluster (c1) of type 2 (t2). The clusters chosen for this table belongs to all the
most significant categories — we did not work with clusters of type 1 because they are
already covered by other YARA rules and we did not work with clusters of type 7 because
we do not have too much information about them — and they have very different scores.
They were chosen to show how the Basic Optimizer is able to optimize both clauses very
close to the threshold and clauses with a huge score.

If the resulting signature contains more than one clause, they are reported with a
progressive number (clause 1, clause 2, ..., clause n). Next to the clause label, it is also

84

6 – Experimental Results

Cluster Algorithm Clause Match Literals Score Opt. Literals Opt. Score

t2c1 Greedy Clause 1 2/3 64 4263 10.30 608.70
Clause 2 1/3 165 7526 13.80 592.60

Clot Clause 1 2/3 64 4263 9.40 603.10
Clause 2 2/3 18 440 - -

t2c2 Greedy 3/3 15 1145 8.00 651.50
Clot 3/3 15 1145 8.70 630.00

t3c1 Greedy 4/4 260 17614 9.00 625.00
Clot 4/4 260 17614 9.20 597.00

t3c2 Greedy 3/3 163 12015 8.80 597.30
Clot 3/3 163 12015 9.10 616.10

t4c1 Greedy Clause 1 3/4 64 2073 20.20 612.30
Clause 2 1/4 59 1907 19.80 620.40

Clot Clause 1 1/4 59 1907 20.80 615.40
Clause 2 3/4 64 2073 18.20 620.50

t4c2 Greedy 4/4 30 904 21.50 610.10
Clot 4/4 30 904 20.90 611.20

t5c1 Greedy 4/4 157 12215 8.70 615.00
Clot 4/4 157 12215 7.90 620.00

t5c2 Greedy Clause 1 14/15 13 620 - -
Clause 2 1/15 91 2512 19.80 603.90

Clot Clause 1 3/15 21 400 - -
Clause 2 14/15 12 435 - -

t6c2 Greedy 8/8 128 10725 7.70 608.50
Clot 8/8 128 10725 7.20 619.50

t6c3 Greedy Clause 1 7/20 20 421 - -
Clause 2 16/20 24 438 - -
Clause 3 1/20 37 750 30.50 617.50

Clot Clause 1 1/20 37 750 30.00 596.50
Clause 2 18/20 22 408 - -
Clause 3 17/20 19 406 - -

Table 6.1: Result obtained through Basic Optimizer

85

6 – Experimental Results

reported the capability of the clause to match the reports from which it was generated.
As it is possible to see, the sets of clauses are always able to match all the reports from
which they were generated.

Close to these values are also reported the number of literals and the score of each
clause, together with the average number of literals and scores of the related optimized
clauses.

6.2 SGX Rule Generator
Unfortunately, we do not have accurate results to shown for this rule generation approach.
Due to the huge memory required to generate and manage the starting pool of YARA
rules and due to a very long execution time that was considered not appropriate for an
almost-real-time application, no one of the rule generation attempts explained in section
5.3.1.3 was able to reach a satisfactory result.

For this reason its developing process has been put on stand-by and we decided to
concentrate our research activity on the improvement of an already generated rule through
the optimizing phase that was giving good results. The knowledge acquired during the
development of this rule generation algorithm was re-used for developing the SGX Rule
Optimizer.

6.3 SGX Rule Optimizer
Until its firsts implementations, this optimization strategy was able to achieves good
results and it was able to perform better than the Basic Optimizer. The YARA rules
obtained through the SGX-RO have always a lower score than the ones optimized with
the Basic Optimizer and, furthermore, the rule obtained with this evolutionary optimizer
are usually more appreciated by human experts.

In the next section will be discussed the results of the last version of the SGX Rule
Optimizer, the so-called Biscardi Optimizer.

6.3.1 Biscardi Optimizer

In Table 6.2 are shown the results provided by Biscardi Optimizer. Like in the Basic
Optimizer case, the results shown in the following table are an average of 10 executions
on the same "non-optimized" YARA rule. This is due to the fact that also the SGX Rule
Optimizer does not provide deterministic results.

The table is composed by the same clusters proposed in the previous table (6.1), the
only difference is that the columns Optimized Literals and Optimized Score show the results
obtained through this new optimizer.

86

6 – Experimental Results

Cluster Algorithm Clause Match Literals Score Opt. Literals Opt. Score

t2c1 Greedy Clause 1 2/3 64 4263 21.00 400.00
Clause 2 1/3 165 7526 17.40 440.00

Clot Clause 1 2/3 64 4263 21.70 409.30
Clause 2 2/3 18 440 - -

t2c2 Greedy 3/3 15 1145 5.00 405.00
Clot 3/3 15 1145 5.00 406.00

t3c1 Greedy 4/4 260 17614 11.50 401.70
Clot 4/4 260 17614 12.60 401.80

t3c2 Greedy 3/3 163 12015 10.30 408.30
Clot 3/3 163 12015 10.10 406.50

t4c1 Greedy Clause 1 3/4 64 2073 39.20 555.00
Clause 2 1/4 59 1907 39.30 550.50

Clot Clause 1 1/4 59 1907 38.30 536.20
Clause 2 3/4 64 2073 40.90 583.90

t4c2 Greedy 4/4 30 904 20.30 411.70
Clot 4/4 30 904 19.60 400.60

t5c1 Greedy 4/4 157 12215 10.00 405.00
Clot 4/4 157 12215 10.00 405.00

t5c2 Greedy Clause 1 14/15 13 620 - -
Clause 2 1/15 91 2512 41.40 611.30

Clot Clause 1 3/15 21 400 - -
Clause 2 14/15 12 435 - -

t6c2 Greedy 8/8 128 10725 21.80 412.00
Clot 8/8 128 10725 22.70 425.50

t6c3 Greedy Clause 1 7/20 20 421 - -
Clause 2 16/20 24 438 - -
Clause 3 1/20 37 750 29.20 405.20

Clot Clause 1 1/20 37 750 29.10 405.10
Clause 2 18/20 22 408 - -
Clause 3 17/20 19 406 - -

Table 6.2: Result obtained through SGX-RO (Biscardi)

87

6 – Experimental Results

6.4 Optimizers comparison
In the last table (6.3) the results of the two developed optimizers are compared. As it is
possible to see, both the optimizers are able to generate a YARA rule that has less literals
and a lower score than the relative non-optimized rule.

In particular, it is possible to observe that the rules generated by the Basic Optimizers
have almost always a score greater than the rules obtained through the SGX Rule Opti-
mizer. This is due to the fact that the first optimizer removes attributes until the score of
the YARA rule is lower of the upper threshold. Considering that, in this implementation,
the value of Tmax is 650, and the attributes with the higher weight have a score equal to
150, it is clear that this optimizer can not produce a YARA rule with a score lower than
500. On the other hands, due to the fact that the evolutionary optimizer takes advantage
of some heuristic constraints and, when it is not possible to use these constraints, try
to minimize the score of the YARA rule more than it can remaining beyond the lower
threshold, it is quite evident that will be produced some rules with a score closer to the
configured value of Tmin (which is 400 in this implementation).

Another noteworthy fact is that the rules optimized with the Basic Optimizer usually
present a lower number of literals than the ones optimized using the SGX-RO. This, at a
first glance, could be appear counter-intuitive, however this is not so strange because the
heuristic constraints imposed by the SGX Rule Optimizer tend, on one hand, to penalize
the rules composed by only URL — that are one of the most heavy attributes, with a
score of 100 — and, on the other hand, to reward the rules with a wide range of different
categories and with several functionalities — that in the current implementation have a
score of 15. So, in the end, considering the behaviour of the evolutionary optimizer, it
is not so strange that, on average, the rules generated through the SGX-RO have more
literals than the ones produced by the Basic Optimizer.

88

6 – Experimental Results

Cluster Alg. Clause Match Not Opt. Basic Optimizer SGX Optimizer

Lit. Score Lit. Score Lit. Score

t2c1 Greedy Clause 1 2/3 64 4263 10.30 608.70 21.00 400.00
Clause 2 1/3 165 7526 13.80 592.60 17.40 440.00

Clot Clause 1 2/3 64 4263 9.40 603.10 21.70 409.30
Clause 2 2/3 18 440 - - - -

t2c2 Greedy 3/3 15 1145 8.00 651.50 5.00 405.00
Clot 3/3 15 1145 8.70 630.00 5.00 406.00

t3c1 Greedy 4/4 260 17614 9.00 625.00 11.50 401.70
Clot 4/4 260 17614 9.20 597.00 12.60 401.80

t3c2 Greedy 3/3 163 12015 8.80 597.30 10.30 408.30
Clot 3/3 163 12015 9.10 616.10 10.10 406.50

t4c1 Greedy Clause 1 3/4 64 2073 20.20 612.30 39.20 555.00
Clause 2 1/4 59 1907 19.80 620.40 39.30 550.50

Clot Clause 1 1/4 59 1907 20.80 615.40 38.30 536.20
Clause 2 3/4 64 2073 18.20 620.50 40.90 583.90

t4c2 Greedy 4/4 30 904 21.50 610.10 20.30 411.70
Clot 4/4 30 904 20.90 611.20 19.60 400.60

t5c1 Greedy 4/4 157 12215 8.70 615.00 10.00 405.00
Clot 4/4 157 12215 7.90 620.00 10.00 405.00

t5c2 Greedy Clause 1 14/15 13 620 - - - -
Clause 2 1/15 91 2512 19.80 603.90 41.40 611.30

Clot Clause 1 3/15 21 400 - - - -
Clause 2 14/15 12 435 - - - -

t6c2 Greedy 8/8 128 10725 7.70 608.50 21.80 412.00
Clot 8/8 128 10725 7.20 619.50 22.70 425.50

t6c3 Greedy Clause 1 7/20 20 421 - - - -
Clause 2 16/20 24 438 - - - -
Clause 3 1/20 37 750 30.50 617.50 29.20 405.20

Clot Clause 1 1/20 37 750 30.00 596.50 29.10 405.10
Clause 2 18/20 22 408 - - - -
Clause 3 17/20 19 406 - - - -

Table 6.3: Results samples taken from both optimizers execution.

89

Chapter 7

Conclusions

The main idea behind the development of this thesis project was to improve the capabilities
of YaYaGen using heuristic and evolutionary techniques.

We introduced some heuristic mechanisms to establish the goodness of a generated
YARA rule: we assigned to each possible literal a value, and thanks to them we are able
to estimate the goodness of each generated rule. We introduced also two thresholds (Tmin

and Tmax) to establish respectively if a rule could be considered to much generic or to
much specific.

To improve the rules already generated by YaYaGen we introduced a new phase, the
optimization phase, in which the rules generated by the original version of YaYaGen are
improved using both heuristic and evolutionary strategies.

Experimental results show that the rule optimization phase gives to YaYaGen the
ability to generate more accurate rules, lowering both false positives and negatives.

Our proposed approach has generated a great interest within the malware research
team of Koodous, for this reason, after a deeper testing phase, it will be soon integrated
inside Koodous Brain, an artificial intelligence platform developed to assist Android mal-
ware detection directly in the Koodous project.

7.1 Future Developments

Even if this research activity has reached several satisfactory results, it is far from being
considered concluded. YaYaGen has already gained new instruments and potentialities
but they have to be expanded and empowered in the following months to give to the
malware analysts a powerful tool to assist their research activities. Possible improvements
on this research include:

• Execute a deeper test on a large and updated data-set and try to improve the false
positive/negative rates of the clustering process.
As YaYaGen may be powerful, each classification technique has always a rate of false
positive/negative. After a deep test it will be necessary to understand and model
how will be possible to reduce these rates.

90

7 – Conclusions

• An IP address is more discriminating than a URL.
During our tests we noticed that, sometimes, several different URLs are matched on
the same IP address. Implementing a mechanism to take advantage of this particu-
larity could be helpful and very useful.

• Develope an heuristic optimizer.
Heuristic strategies are the ones that allows to create rules more similar to the ones
that a human expert will write. Developing a third optimizer, entirely based on
heuristic strategies, could gives to YaYaGen a new powerful tool to optimize its
signatures.

• Improving the SGX Rule Generation algorithm with heuristic strategies.
Instead of exploring a huge set of possibilities during the creation of the initial pool
of rules used by the SGX algorithm for its optimization process, it could be a good
idea generate a set of rule according to some heuristic strategies. In this way, time
and resources used by the algorithm could be reduced and becoming acceptable.

• Improve the function to establish the initial probability of 0 in the SGX-RO.
We noticed that the initial probability of 0 was a key element for the execution
time and for the quality of the experimental results. Finding a precise mathemat-
ical function able to take advantage of this characteristic could improve even more
computational time and results achieved.

91

Bibliography

[1] Victor M. Alvarez. YARA Documentation. 2014. url: http://yara.readthedocs.
io/en/v3.3.0/ (visited on 03/08/2018).

[2] Shumeet Baluja. Population-based incremental learning. a method for integrating ge-
netic search based function optimization and competitive learning. Tech. rep. Carnegie-
Mellon Univ Pittsburgh Pa Dept Of Computer Science, 1994.

[3] William J. Buchanan, Simone Chiale, and Richard Macfarlane. “A methodology
for the security evaluation within third-party Android Marketplaces”. In: Digital
Investigation 23 (2017), pp. 88 –98. issn: 1742-2876. doi: https://doi.org/10.
1016/j.diin.2017.10.002. url: http://www.sciencedirect.com/science/
article/pii/S1742287617300245.

[4] Thomas M Chen and Jean-Marc Robert. “The evolution of viruses and worms”. In:
Statistical methods in computer security 1 (2004).

[5] Chris Clark. Automatic Yara Rule Generation on GitHub - Version 0.6.1. Aug 2013.
url: https://github.com/Xen0ph0n/YaraGenerator (visited on 03/07/2018).

[6] Mike Cleron. Android Announces Support for Kotlin. 2017. url: https://android-
developers.googleblog.com/2017/05/android- announces- support- for-
kotlin.html (visited on 02/27/2018).

[7] Fred Cohen. “Computer viruses: theory and experiments”. In: Computers & security
6.1 (1987), pp. 22–35.

[8] F. Corno, M. Sonza Reorda, and G. Squillero. “The Selfish Gene Algorithm: a New
Evolutionary Optimization Strategy”. In: SAC: ACM Symposium on Applied Com-
puting. 1998, pp. 349–355. url: http://www.cad.polito.it/pap/db/sac98.pdf.

[9] Fulvio Corno, Matteo Sonza Reorda, and Giovanni Squillero. “An improved cellular
automata-based BIST architecture for sequential circuits”. In: vol. 1. IEEE, 2000,
pp. 76–79.

[10] Microsoft Corporation. Market Share and Usage Analysis of File Sharing and An-
tivirus Report: June 2015. December 2017. url: https://support.microsoft.
com/en-us/help/4013263/windows-10-protect-my-device-with-windows-
defender-antivirus (visited on 04/01/2018).

[11] C. Darwin. The Origin of Species. P. F. Collier & Son, 1909. url: https://books.
google.it/books?id=YY4EAAAAYAAJ.

92

http://yara.readthedocs.io/en/v3.3.0/
http://yara.readthedocs.io/en/v3.3.0/
https://doi.org/https://doi.org/10.1016/j.diin.2017.10.002
https://doi.org/https://doi.org/10.1016/j.diin.2017.10.002
http://www.sciencedirect.com/science/article/pii/S1742287617300245
http://www.sciencedirect.com/science/article/pii/S1742287617300245
https://github.com/Xen0ph0n/YaraGenerator
https://android-developers.googleblog.com/2017/05/android-announces-support-for-kotlin.html
https://android-developers.googleblog.com/2017/05/android-announces-support-for-kotlin.html
https://android-developers.googleblog.com/2017/05/android-announces-support-for-kotlin.html
http://www.cad.polito.it/pap/db/sac98.pdf
https://support.microsoft.com/en-us/help/4013263/windows-10-protect-my-device-with-windows-defender-antivirus
https://support.microsoft.com/en-us/help/4013263/windows-10-protect-my-device-with-windows-defender-antivirus
https://support.microsoft.com/en-us/help/4013263/windows-10-protect-my-device-with-windows-defender-antivirus
https://books.google.it/books?id=YY4EAAAAYAAJ
https://books.google.it/books?id=YY4EAAAAYAAJ

BIBLIOGRAPHY

[12] R. Dawkins. The Extended Phenotype: The Gene as the Unit of Selection. Free-
man, 1982. isbn: 9780192860880. url: https://books.google.it/books?id=
uJCUAQAACAAJ.

[13] R. Dawkins. The Selfish Gene. Oxford paperbacks. Oxford University Press, 1989.
isbn: 9780192860927. url: https://books.google.it/books?id=WkHO9HI7koEC.

[14] Artyom Dogtiev.Mobile App Stores Guide 2017. 2018. url: http://www.mobyaffiliates.
com/guides/mobile-app-stores-list/ (visited on 03/05/2018).

[15] Chris Doman. Yabin repository on GitHub. Jan 28, 2018. url: https://github.
com/AlienVault-OTX/yabin (visited on 03/31/2018).

[16] Neil DuPaul. Static Testing vs. Dynamic Testing. url: https://www.veracode.
com/blog/2013/12/static-testing-vs-dynamic-testing (visited on 04/01/2018).

[17] Agoston E Eiben, James E Smith, et al. Introduction to evolutionary computing.
Vol. 53. Springer, 2003. isbn: 978-3-662-05094-1.

[18] Paul Gerrard. Lean Python: Learn Just Enough Python to Build Useful Tools. Apress,
2016, p. xvi.

[19] Georges R Harik, Fernando G Lobo, and David E Goldberg. “The compact genetic
algorithm”. In: IEEE transactions on evolutionary computation 3.4 (1999), pp. 287–
297.

[20] Rowena Harrison and Keith Mayes. “Combating Android app repackaging attacks”.
In: Royal Holloway Information Security Thesis Series (2015). url: http://www.
computerweekly.com/ehandbook/Combating-Android-app-repackaging-attacks.

[21] Google Inc. Android Security 2017 Year In Review. March 2018. url: https://
source.android.com/security/reports/Google_Android_Security_2017_
Report_Final.pdf (visited on 03/30/2018).

[22] Google Inc. Permissions Overview. 2017. url: https://developer.android.com/
guide/topics/permissions/overview.html (visited on 02/28/2018).

[23] Google Inc. The Google Android Security Team’s Classifications for Potentially
Harmful Applications. February 2017. url: https://source.android.com/security/
reports / Google _ Android _ Security _ PHA _ classifications . pdf (visited on
03/30/2018).

[24] OPSWAT Inc. Protect my device with Windows Defender Security Center. June
2015. url: https : / / www . opswat . com / resources / reports / market - share -
usage-analysis-file-sharing-antivirus-june-2015 (visited on 04/01/2018).

[25] Ari Juels, Shumeet Baluja, and Alistair Sinclair. “The equilibrium genetic algorithm
and the role of crossover”. In: Unpublished manuscript (1993).

[26] Tobias Konradsson. ART and Dalvik performance compared. 2015.
[27] Michael Lones. “Sean Luke: essentials of metaheuristics”. In: Genetic Programming

and Evolvable Machines 12.3 (2011), pp. 333–334. url: http://www.springer.
com/10710.

93

https://books.google.it/books?id=uJCUAQAACAAJ
https://books.google.it/books?id=uJCUAQAACAAJ
https://books.google.it/books?id=WkHO9HI7koEC
http://www.mobyaffiliates.com/guides/mobile-app-stores-list/
http://www.mobyaffiliates.com/guides/mobile-app-stores-list/
https://github.com/AlienVault-OTX/yabin
https://github.com/AlienVault-OTX/yabin
https://www.veracode.com/blog/2013/12/static-testing-vs-dynamic-testing
https://www.veracode.com/blog/2013/12/static-testing-vs-dynamic-testing
http://www.computerweekly.com/ehandbook/Combating-Android-app-repackaging-attacks
http://www.computerweekly.com/ehandbook/Combating-Android-app-repackaging-attacks
https://source.android.com/security/reports/Google_Android_Security_2017_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2017_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2017_Report_Final.pdf
https://developer.android.com/guide/topics/permissions/overview.html
https://developer.android.com/guide/topics/permissions/overview.html
https://source.android.com/security/reports/Google_Android_Security_PHA_classifications.pdf
https://source.android.com/security/reports/Google_Android_Security_PHA_classifications.pdf
https://www.opswat.com/resources/reports/market-share-usage-analysis-file-sharing-antivirus-june-2015
https://www.opswat.com/resources/reports/market-share-usage-analysis-file-sharing-antivirus-june-2015
http://www.springer.com/10710
http://www.springer.com/10710

BIBLIOGRAPHY

[28] Neil MacDonald. Static or Dynamic Application Security Testing? Both! url: https:
//blogs.gartner.com/neil_macdonald/2011/01/19/static- or- dynamic-
application-security-testing-both/ (visited on 04/01/2018).

[29] Andrea Marcelli. YaYaGen Documentation. 2018. url: https : / / github . com /
jimmy-sonny/YaYaGen (visited on 02/28/2018).

[30] Steve McConnell. Code complete. Pearson Education, 2004, p. 100.
[31] Sikorski Michael and Honig Andrew. Practical Malware Analysis - The HandsOn

Guide to Dissecting Malicious Software. No Starch Press, 2012.
[32] Koodous Mobile. Koodous Android application on Play Store. url: https://play.

google.com/store/apps/details?id=com.koodous.android (visited on 03/09/2018).
[33] Geonbae Na et al. “Comparative Analysis of Mobile App Reverse Engineering Meth-

ods on Dalvik and ART.” In: J. Internet Serv. Inf. Secur. 6.3 (2016), pp. 27–39.
[34] Hyeong-Seok Oh et al. “Evaluation of Android Dalvik virtual machine”. In: Pro-

ceedings of the 10th International Workshop on Java Technologies for Real-time and
Embedded Systems. ACM. 2012, pp. 115–124.

[35] Jeremy Paquette. A History of Viruses. July 2000. url: https://www.symantec.
com/connect/articles/history-viruses (visited on 03/31/2018).

[36] Tim Peters. “PEP 20 - The Zen of Python”. In: Aug. 2004. url: https://www.
python.org/dev/peps/pep-0020/.

[37] Guido van Rossum. “Origin of BDFL”. In: All Things Pythonic Weblog (2008). url:
http://www.artima.com/weblogs/viewpost.jsp.

[38] Florian Roth. How to Write Simple but Sound Yara Rules. url: https://www.bsk-
consulting.de/2015/02/16/write- simple- sound- yara- rules/ (visited on
03/15/2018).

[39] Florian Roth. How to Write Simple but Sound Yara Rules. Feb 16, 2015. url: https:
//www.bsk-consulting.de/2015/02/16/write-simple-sound-yara-rules/
(visited on 03/08/2018).

[40] Florian Roth. yarGen (Yara Rule Generator) on GitHub - Version 0.19.0. Feb 2018.
url: https://github.com/Neo23x0/yarGen (visited on 03/07/2018).

[41] A. Russo and A. Sabelfeld. “Dynamic vs. Static Flow-Sensitive Security Analysis”.
In: 2010 23rd IEEE Computer Security Foundations Symposium. July 2010, pp. 186–
199. doi: 10.1109/CSF.2010.20.

[42] Hispasec Sistemas. Koodous Documentation. url: https://docs.koodous.com/
(visited on 03/08/2018).

[43] Hispasec Sistemas. Koodous Documentation - Getting Started - Basic steps. url:
https://docs.koodous.com/yara/getting-started/ (visited on 03/08/2018).

[44] statista.com. “Android - Statistics & Facts”. In: 2017. url: https://www.statista.
com/topics/876/android/.

94

https://blogs.gartner.com/neil_macdonald/2011/01/19/static-or-dynamic-application-security-testing-both/
https://blogs.gartner.com/neil_macdonald/2011/01/19/static-or-dynamic-application-security-testing-both/
https://blogs.gartner.com/neil_macdonald/2011/01/19/static-or-dynamic-application-security-testing-both/
https://github.com/jimmy-sonny/YaYaGen
https://github.com/jimmy-sonny/YaYaGen
https://play.google.com/store/apps/details?id=com.koodous.android
https://play.google.com/store/apps/details?id=com.koodous.android
https://www.symantec.com/connect/articles/history-viruses
https://www.symantec.com/connect/articles/history-viruses
https://www.python.org/dev/peps/pep-0020/
https://www.python.org/dev/peps/pep-0020/
http://www.artima.com/weblogs/viewpost.jsp
https://www.bsk-consulting.de/2015/02/16/write-simple-sound-yara-rules/
https://www.bsk-consulting.de/2015/02/16/write-simple-sound-yara-rules/
https://www.bsk-consulting.de/2015/02/16/write-simple-sound-yara-rules/
https://www.bsk-consulting.de/2015/02/16/write-simple-sound-yara-rules/
https://github.com/Neo23x0/yarGen
https://doi.org/10.1109/CSF.2010.20
https://docs.koodous.com/
https://docs.koodous.com/yara/getting-started/
https://www.statista.com/topics/876/android/
https://www.statista.com/topics/876/android/

BIBLIOGRAPHY

[45] Virus Total. YARA Documentation. 2018. url: https://virustotal.github.io/
yara/ (visited on 02/28/2018).

[46] Alan M Turing. “Computing machinery and intelligence”. In: Mind (1950), pp. 433–
460.

[47] Bill Venners. “The making of Python”. In: Artima.com Interviews (Jan. 2003). url:
http://www.artima.com/intv/pythonP.html.

[48] Andrea Villagra et al. “Multirecombined evolutionary algorithm inspired in the self-
ish gene theory to face the weighted tardiness scheduling problem”. In: Advances in
Artificial Intelligence–IBERAMIA 2004. Springer, 2004, pp. 809–819.

[49] P Vinod et al. “Survey on malware detection methods”. In: Proceedings of the
3rd HackersâĂŹ Workshop on computer and internet security (IITKHACKâĂŹ09).
2009, pp. 74–79.

[50] John Von Neumann, Arthur W Burks, et al. “Theory of self-reproducing automata”.
In: IEEE Transactions on Neural Networks 5.1 (1966), pp. 3–14.

[51] Feng Wang et al. “SGMIT: using selfish gene theory to construct mutualinforma-
tion trees for optimization”. In: Proceedings of the first ACM/SIGEVO Summit on
Genetic and Evolutionary Computation. ACM. 2009, pp. 521–528.

[52] Feng Wang et al. “Using selfish gene theory to construct mutual information and
entropy based clusters for bivariate optimizations”. In: Soft Computing 15.5 (2011),
pp. 907–915.

[53] Haoyu Wang et al. “Wukong: A scalable and accurate two-phase approach to an-
droid app clone detection”. In: Proceedings of the 2015 International Symposium on
Software Testing and Analysis. ACM. 2015, pp. 71–82.

[54] Junwu Zhang, Michael L Bushnell, and Vishwani D Agrawal. “On random pattern
generation with the selfish gene algorithm for testing digital sequential circuits”. In:
Test Conference, 2004. Proceedings. ITC 2004. International. IEEE. 2004, pp. 617–
626.

[55] Mu Zhang and Heng Yin. Android Application Security: A Semantics and Context-
Aware Approach. Springer, 2016.

[56] Wu Zhou et al. “Detecting repackaged smartphone applications in third-party an-
droid marketplaces”. In: Proceedings of the second ACM conference on Data and
Application Security and Privacy. ACM. 2012, pp. 317–326.

95

https://virustotal.github.io/yara/
https://virustotal.github.io/yara/
http://www.artima.com/intv/pythonP.html

	Summary
	Acknowledgements
	Introduction
	Background
	Android Operating System
	Android Environment
	Android Framework API
	Android Permissions
	Classification of protection levels
	Other classes of permissions

	Android Stores
	App Repackaging

	Android Malware
	History of malicious applications
	Potentially Harmful Applications
	PHA classification

	Mobile Unwanted Software

	Evolutionary Algorithms
	Introduction to Metaheuristics
	History of Evolutionary Computation
	Introduction to Evolutionary Algorithm
	Estimation of Distribution Algorithms
	The Selfish Gene
	The theory of Richard Dawkins
	History of the Algorithm
	The Algorithm
	Virtual Population
	The Generator process
	The Updater process
	The Evolution Mechanism
	Polarization

	The Selfish Gene Extended library
	The fitness class

	Automatic YARA Rule Generation
	YARA Rules
	YARA syntax
	Metadata
	Strings
	Special Variables
	Condition

	Modules
	Running YARA

	The Koodous Platform
	Write a YARA ruleset on Koodous
	Koodous as anti-virus
	Clustering Android APKs

	Signature generation
	Introduction to Static and Dynamic analyses
	Strengths and Weaknesses

	Malware detection methods
	Signature-Based Malware detection techniques

	YARA rules-based signature generation

	YaYaGen
	Introduction
	How to use it
	Evaluate method
	Rule Generation Algorithms
	Data representation
	Report class
	YaraRule class

	Other tools
	YarGen
	Yara Generator
	Yabin

	Proposed Approach
	Disjunctive Normal Form representation
	YARA Rule representation
	Disjunctive Normal Form
	YARA Rules DNF representation

	Heuristics Strategies
	Weighting the literals
	Double Thresholds & Signature Optimization
	Basic Optimizer

	YaYaGen-SGX
	SGX Rule Generator
	Representing a YARA rule in SGX-compatible mode
	Fitness Function
	YARA rule generation
	Other implementation details

	SGX Rule Optimizer
	Representing a YARA rule in SGX-compatible mode
	Fitness function
	Biscardi Optimizer
	Implementation details

	Further improvements
	Configuration files
	IP and URL filtering

	Experimental Results
	Basic Optimizer
	SGX Rule Generator
	SGX Rule Optimizer
	Biscardi Optimizer

	Optimizers comparison

	Conclusions
	Future Developments

	References

		Politecnico di Torino
	2018-04-06T08:15:22+0000
	Politecnico di Torino
	Giovanni Squillero
	S

