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Summary

The Internet of Things (IoT) is radically changing the nature of the objects based
on this technology, empowering them with the capabilities offered by the Internet,
but also exposing them to a high number of security threats that could impact
their security, safety, and the users’ privacy. As every connected computer, also IoT
devices need to be protected from software vulnerabilities by receiving software up-
dates. This thesis focuses on the software update process for constrained IoT devices
and explicitly targets Class 1 IoT devices, which are typically characterized by ap-
proximately 100 kB of ROM and 10 kB of RAM. The thesis contributes to mitigate
the problem of software updates by designing and implementing libpull, a library
exposing all the necessary functions to create an update systems for constrained
IoT devices. The solution targets three main requirements: security, portability, and
platform constraints. The architecture of the designed update system is based on
two servers in order to protect the private key used for the main digital signature
process, and also targets the problem of update freshness. The update is transmit-
ted to the device using the CoAP protocol and an end-to-end encryption to grant
confidentiality and authentication for both server and client. The digital signature
is verified on the client using a Hardware Security Module (HSM), to safely store
the keys and protect them from software attacks. The library architecture relies
on many interfaces to increase its portability to different hardware platforms and
operating systems. Moreover, libpull is protocol-agnostic, which enables the user to
implement the network interface with the protocol that better fits the application
requirements. The implemented solution does not explicitly target the activation
phase, which can be performed by the user in many ways, such as static, dynamic
or seamless software update, according to the constraints of the chosen hardware
platform. The evaluation has been performed with two operating systems: Linux on
the developing computer, and Contiki on a Class 1 IoT device (the TI CC2650 Sen-
sorTag). An experimental evaluation analyzed the memory footprint, the execution
time and the energy consumption required to perform an update, by comparing dif-
ferent combinations of cryptographic libraries to perform the signature verification
and network configurations to receive the update.
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Chapter 1

Introduction

The Internet of Things (IoT) introduces a new paradigm in human life. As
suggested by the name, it poses its foundations on the Internet, the technology
that changed the way we communicate and connect with people, empowering the
process of exchanging information and ideas in the last three decades. The IoT will
go beyond information and ideas only: including things from the physical world in
the loop opens new ways to interact with the surrounding environment and the
objects we use in our everyday life.

The IoT potentialities have been already seen in many application fields, such
as smart buildings (by integrating smart objects into constructions to increase effi-
ciency); home automation (by relying on smart objects to efficiently manage house
parameters); smart cities (by collecting data from sensors to decrease pollution);
smart manufacturing (by using smart sensors to reduce production costs and waste
of raw material); smart healthcare (by tracking human body parameter and giving
real-time assistance); As suggested by these examples, IoT is a fast-growing tech-
nology that finds application in quite every aspect of human life, and that will have
a large impact in our society.

The number of connected IoT devices is expected to hit 26 billions by 2020 [1].
Since 2008, there are more objects connected to the Internet than people in the
world. The reduction of the production costs will support this growth, allowing to
include wireless radio modules even on cheap processors to offer remote control,
monitoring, and sensing to practically every object.

Dissecting the IoT, we can find as smart object its core component. The term
“smart” refers to the possibility of objects to become more interactive and aware.
The advance of technology and the improved miniaturization process increases every
day the number of objects that could become smart. These empowered devices
enable new kind of interactions with humans and machines, using the Internet as
the communication interface.

With the IoT transformation, a refrigerator could become smart by including
food recognition capabilities and a lamp could become smart by changing its color
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1 – Introduction

according to the preferences of the user present in the room. The smartness inte-
grated into these devices is usually accomplished incorporating a special purpose
computer into them. If we consider the previous objects at the same level of com-
puters, we could assert that a smart refrigerator is a computer able to keeps things
cold and a smart lamp is a computer able to illuminate the room. This change of
perspective helps us understanding this new technology deeply, focusing not only
on what IoT could add to the objects, rather to what it could remove from the
surrounding, which in many cases is privacy, security, and safety.

As every computer, smart objects are also affected by security vulnerabilities
and need to be secured to protect their resources, such as collected data in case of
sensors or physical interfaces in case of actuators. Not surprisingly, these devices
were the target of many attacks in the last few years: some of them with the goal
of collecting data, injecting malicious code, or access more worthy devices on the
same network. Being IoT a relatively new technology, IoT devices are often not as
secure as other systems based on more mature technologies, such as smartphones
or computers, thus representing a good entry point to a local area network.

The reachability of smart objects from the public network makes them vulnerable
to remote attackers, and their deployment in critical and private environments
makes them a target for attackers aiming to exfiltrate information, hence affecting
user privacy. The high number of poorly secured devices has been shown by Web
services like Shodan [2], a search engine able to map the devices present on the
Internet, enabling to search for them using particular keys or device classes, such
as IP cameras or network printers. Moreover, many IoT devices must be deployed
for many years, making them a good target for attackers looking for persistence.

Watching the problem from a more extensive angle, we can see the threats
opened by billions of vulnerable IoT devices. In the second half of 2016, millions
of poorly secured smart objects were part of an enormous Botnet called Mirai [3].
This network of compromised devices was mainly composed of smart cameras from
a Chinese company shipped with default authentication credentials. This allowed
the attacker to connect to them using the Telnet protocol and run arbitrary code,
performing huge DDoS attacks able to take down critical services and infrastruc-
tures. After the release of the Mirai source code, many forks spread out targeting
other vulnerabilities and involving other devices in the loop.

Considering the wide impact and benefits of IoT, security plays a critical role
in the future of this technology. It can be seen as the basis to transform IoT into
a reliable technology on which users, companies, and organizations can rely. Being
IoT engaged in so many aspects of our society, its security will determine whether
it will empower or harm our lives.
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1.1 – Problem Statement

1.1 Problem Statement

The high number of attacks on IoT devices and their high success rate can be
explained by the unpatched nature of smart objects. In fact, the actual perception
of these devices does not make immediately evident their need of being secured.
Users buying a smart lamp do not consider the need of keeping it protected from the
last security vulnerabilities, as they would normally do with a standard computer.
At the same time, lamp producers will face new challenges in protecting their
products from threats they were not exposed before, requiring a high collaboration
with security experts during the whole development phase. This makes even more
clear the need to rethink the IoT paradigm, focusing on the needs of these devices
when considering them to be at the same level of regular computers.

Last attacks on IoT devices were mainly abusing common vulnerabilities, known
from decades on standard systems, such as hardcoded authentication credentials
or buffer overflows. This indicates that the security problem of IoT is not merely
technological, but instead economic. IoT devices are usually cheap, and the price
imposed by the market does not give vendors the resources to integrate security
features. Moreover, the technology evolution and the presence of many open source
software and open hardware resources open the hardware market also to small
companies, such as startups, often lacking the necessary resources and competencies
to integrate security into their products. Furthermore, the low time to market of
startups makes security one of the first aspects to be cut during the developing
process.

The previous factors indicate the need for IoT to have reusable solutions able to
decrease the costs and effort to integrate security in these devices. In particular, this
thesis focuses on the security problem of software updates for IoT, a critical process
still not included in many commercial systems. As shown by a survey analyzing the
state of software updates in the embedded industry [4], 45,5 % of respondents
said that they never integrated an update system into their solution. The other
54,5 % said that they developed their own update system in-house, confirming
the identified need of having reusable solutions. The lack of an update system has
been identified as one of the major threats in IoT security [5] and, considering
the complexity integrated on some IoT software and that new vulnerability are
discovered daily on OS and libraries, the need for a vendor of sending a software
update to a device is just a matter of time.

The software update problem is not new in computer security and has been
already analyzed in many other fields such as mobile, automotive, embedded sys-
tems. Even the security of a certain class of more powerful IoT devices has been
investigated. This thesis focuses, instead, on a specific class of IoT devices: Class 1
constrained devices. Those are very limited in available memory and energy, and no
generic solution is available today. Therefore, this thesis aims to solve this problem
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1 – Introduction

analyzing, designing and implementing an update system for constrained IoT de-
vices, targeting security, portability, and the constraints imposed by these devices.

1.2 Requirements
Building an update system for constrained IoT devices is challenging, especially

if the solution should to be reusable on many platforms to decrease the costs for
the final IoT producers. Towards this goal, we identified three main requirements
that should guide the design of the final solution: security, portability, and platform
constraints.

• Security. Devices receive updates for two main reasons: integrate new features
and fix security vulnerabilities. Especially for the second one, being able to ship
updates becomes necessary for critical systems that could affect the safety of
humans involved with them, such as applications in the home automation and
healthcare fields. Moreover, the update process is a complicated process that
requires high privileges, being generally in charge of replacing some modules or
even the complete firmware of a device, and can hence quickly move from being
a security feature to a security vulnerability. For this reason, it is essential to
perform software updates ensuring integrity and authenticity of the received
update, ensuring that an attacker is not able to inject code into a device
exploiting the update system. Moreover, in many applications, the software
running on the device represents a huge competitive value that needs to be
preserved protecting the software confidentiality. For this reason, the update
needs to be sent through an encrypted channel, granting confidentiality during
the whole update process.

• Portability. IoT products rely on a multitude of devices and technologies,
with different characteristics and requirements. This device diversity increases
the challenges of building a single update system usable on many constrained
IoT devices, since such an update system typically needs to deal with very
device-specific details. Moreover, operating systems for constrained devices
provide very few abstractions, making the process of building a standardized
solution even more challenging.

• Platform constraints. Constrained devices are very limited in terms of CPU,
memory, available energy and network bandwidth. Especially when considering
Class 1 devices (the focus of this thesis), the small available memory requires
the use of specific network protocols, libraries, and approaches to reduce the
code size. This becomes even more challenging when trying to integrate se-
curity and cryptographic libraries. Moreover, these devices are often battery
powered and deployed in hostile environments, so that the energy consumption
of each component of the architecture needs to be optimized to increase the
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lifetime of the deployed solution. The update process must be designed with all
these factors in mind, having a small memory footprint, reducing the energy
consumption, and being able to deal with unreliable networks, i.e., managing
temporary network failures and recovering from the previously reached point.

1.3 Contributions
Facing the identified requirements of security, portability, and platform con-

straints, this thesis contributes to mitigate the problem of software updates for IoT
devices providing the architecture and the implementation of libpull, a library suit-
able to create update systems for constrained devices. It targets Class 1 constrained
devices, characterized by approximately 100 kB of ROM and 10 kB of RAM, as
defined in RFC 7228 [6]. The solution has been developed in form of a modular
library that exposes all the functions required to securely perform the update pro-
cess, with enough abstraction layers enabling an easy porting to other devices. The
design and implementation have been guided by the security, portability, and plat-
form requirements described in detail in an introductory analysis of the update
process. The solution contributes to the problem in the following way:

• Security. The architecture of the update systems is based on two servers with
different goals and functions. The first is the vendor server, in charge of build-
ing the update and assert its integrity with a first ECDSA digital signature
inserted in a manifest, a set of data used to describe the update. The second is
the provisioning server, in charge of effectively distributing the update to the
devices and performing a second digital signature to make each update unique
to the target device. The transmission of the update is encrypted using DTLS
to grant confidentiality and authentication using a server and client certificate.
The encryption is performed end-to-end to increase the security, avoiding the
use of more powerful gateways to manage security features as often done in
architecture containing constrained devices. The signature is verified on the
device using a Hardware Security Module (HSM) to safely store the keys and
protect them from software attacks.

• Portability. The solution has been designed to be agnostic to the OS, to the
network protocol, to the cryptographic library, and to the manifest encoding.
This has been performed defining the library on top of a set of interfaces, some
of them implemented directly into the library (such as the one used to interact
with the cryptographic libraries), some of them requiring an implementation
by the developer using the library (such as for the network interface).

• Platform constraints. The solution has been designed to have a small mem-
ory footprint and to be suitable for Class 1 devices even when including the
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1 – Introduction

dependencies, such as the network application layer (CoAP) and the cryp-
tographic library. The solution is able to work with different memory types
indistinctly, using an abstraction layer that allows interacting with internal
and external Flash memory using the same API. Moreover, the library archi-
tecture does not limit the possible updates type supported, defined by the
characteristics of the OS and of the hardware platform, such as static and
dynamic software update loading.

1.4 Limitations
The work in this thesis considers the following set of assumptions:

• The vendor private-key, used to sign the firmware, is not compromised since
the server is an offline and protected machine. However, the system uses a two
server architecture and a double signature, one performed by the vendor and
always trusted, and another performed by the provisioning server, an online
and connected machine used to transmit the update to the device. In case the
key on the provisioning server is compromised, this will not affect the integrity
of the system;

• No physical attacks on the device are assumed. In fact, an attacker able to
physically access the memory could modify the code or the encryption keys
used to validate the update and thus make the proposed solution invalid. Even
when using a Hardware Security Module, a motivated attacker could tamper
the device and alter the signature validation process.

With respect to the portability requirement, the implementation of the update
system has be only evaluated on two software platforms: Contiki and Linux, and
on a single board, the Texas Instruments SensorTag CC2650.

The thesis focuses only on the client part, relying on other solutions for a reliable
server implementation. To evaluate the solution, a simple server has been built, but
its design and implementation is not considered in the scope of this research.

1.5 Thesis Structure
This thesis is organized organized as follows. Chapter 2 describes the background

technologies used in this thesis, useful to understand the following sections. Chap-
ter 3 reviews the related work. Chapter 4 analyzes the update system lifecycle,
indicating the role of security in the different phases. Chapter 5 explains the design
choices guiding the implementation of libpull. Chapter 6 evaluates the proposed
solution in terms of memory footprint, execution time and energy consumption.
Chapter 7 concludes this thesis with a summary of its contributions and an outlook
on the future work.
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Chapter 2

Background

The next subsections describe the technologies used in this thesis to design, im-
plement and evaluate the final solution. Considering the heterogeneity of IoT, we
start defining the class of devices focus on this study (Subsection 2.1.1). We explain
then the most significant characteristics of IoT and the operating systems used for
constrained devices, introducing Contiki, the OS chosen for this implementation
(Subsection 2.1.2). We analyze the network protocol stack used in this implemen-
tation (Subsection 2.1.3) and, finally, we introduce some cryptographic principles
necessary to understand the design choices (Section 2.2).

2.1 The IoT Domain
The IoT is a complex ecosystem of devices and technologies interacting together.

As described by H.Suo [7], we can identify four architectural layers:

• Application layer : provides the service for the user through API or interfaces;

• Support layer : composed of cloud computing and in charge of managing the
data needed or collected by the device;

• Network layer : responsible for reliable and secure transmission;

• Perceptual layer : composed of the device acting as sensor or actuator.

Each layer plays an essential role in the functionality of the final solution. Main-
tenance and support should be provided at each layer of the architecture and during
the whole lifetime of the IoT application. Consequently, security considerations are
critical at each layer of the architecture, as a failure in one layer could compromise
the other layers and the security of the whole system [5].

This thesis will focus on the security of the perceptual layer, providing a solution
to update the software running on the device. However, the update process needs
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2 – Background

to interact with the other layers as well, and thus requires considerations on the
security and reliability of all of them.

2.1.1 Device Classes
The perceptual layer, composed of the device acting as sensor or actuator, is

populated by a large set of devices. These can go from small sensors with few kB
of memory to complex devices, such as smartphones, composed of many compo-
nents. The heterogeneity of these devices requires a further classification to better
understand the focus of this research.

Covington and Carskadden did a precise classification of IoT devices focusing
on security [8]: they classified them in three tiers according to their attack surface,
where each tier inherits the characteristics and security issues of the lower tiers.
The classification is so composed:

• Tier 1: Entity that contains data and can be uniquely identified, e.g., bar-code
and RFID systems;

• Tier 2: Entity that can interact with other objects and the environment, e.g.,
sensors and actuators;

• Tier 3: Entity that can interact with users, e.g., desktop, laptop, smartphone.

The system complexity and the attack surface grows towards the higher tiers,
while the number of devices increases towards the lower ones. Consequently, an
attack vector on systems of Tier 2 and Tier 1 is higher compared to an attack
vector of Tier 3 [8].

Tier 2 devices are the focus of this research. This Tier is composed mainly of
sensors, actuators, and devices with lower resources, lower power capabilities, and
reduced cost. The decision of focusing on Tier 2 devices is supported by the fact that
these devices reach the best tradeoff between attack surface and number of devices,
making them an appealing target for attackers. This choice affects security as well,
in both the employed encryption methods and the software updates availability.

Even on Tier 2 devices, we could identify a large set of devices with different
characteristics. We can further narrow down the classification, as defined by RFC
7228 [6]:

• Class 0 devices are very constrained devices that typically rely on a gateway
for basic communication;

• Class 1 devices are quite limited in code space and processing capabilities, but
are able to communicate with other devices using specific IoT protocols and
without the need of a gateway;
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2.1 – The IoT Domain

• Class 2 devices are less constrained in both data size and code size and are
able to communicate with other devices using regular IPv4 and IPv6 protocols,
similar to the standard network devices.

Table 2.1 indicates the approximative data and code size for each device class.

Class Data Size Code Size
Class 0 < 10 KiB < 100 KiB
Class 1 ~10 KiB ~100 KiB
Class 2 ~50 KiB ~250 KiB

Table 2.1: Memory size of constrained devices.

This thesis focuses on Class 1 devices, with ~ 10 KiB of RAM and ~ 100 KiB
of ROM. Devices that are part of this class are frequently used to build Wireless
Sensors Network (WSN), but can also be used to create standalone solutions that
need small computational capabilities and low costs, such as wearable devices.

An example of Class 1 device is the one used to test the final solution: the TI
SimpleLink SensorTag (CC2650 SensorTag) [9] manufactured by Texas Instruments
(TI). This device is characterized by ~20 kB of RAM and ~128 kB of ROM. It has
capabilities to use BLE or ZigBee/6LoWPAN protocols and is powered by an ARM
Cortex M3 processor. The board has two I2C buses, from which it is possible to
interact with the ten sensors included, such as humidity, pressure, accelerometer,
gyroscope, and magnetometer. The board has also an extension port to support
the connection of other modules called DevPacks, that has been used to connect
the Hardware Security Modules (HSM) using the I2C bus.

The device will communicate using the IEEE 802.15.4 standard. To communi-
cate with the provisioning server in charge of sending the updates, it will need
to communicate with the IP network. This is accomplished using a border router
device connected to the host PC through a Serial Line Interface Protocol (SLIP).

The board must be programmed using the SimpleLink Sensortag Debugger De-
vPack, a small board that can be connected on top of the SensorTag using JTAG
and that enables flashing and debugging via USB.

From a software point of view, Class 1 devices run small and constrained oper-
ating systems, as described in the next section.

2.1.2 Operating Systems for the IoT
There are many operating systems (OS) suitable for Class 1 devices, such as

TinyOS, Contiki, RIOT, and FreeRTOS. To target Class 1 devices, an OS should
consider constraints in memory, processing power, energy efficiency, and communi-
cation bandwidth. One of the most common OS used to build IoT solutions is Linux,
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2 – Background

however, its requirements are too high for constrained devices since the required
Flash and RAM is in the order of MB.

A good comparison of operating systems for constrained devices has been done
by Milinkovi et al. [10], who analyzed the memory requirements and the architec-
ture of different OS. One of the first distinctions between the various OS is the
kernel architecture, which can be monolithic (as in Tiny OS), layered (as in Con-
tiki) or microkernel (as in RTOS). Another aspect is the programming model and
programming language support since some OS do not support standard C, thus
limiting the number of dependencies that can be used. Moreover, another aspect
is the scheduling strategy, which affects the possibility of operating in real time
and have processes with different priorities. The operating system chosen for the
evaluation of libpull is Contiki, since it natively supports the chosen board and
since applications can be written using the C language.

Contiki is an open source operating system. It has been developed by Adam
Dunkels at the Swedish Institute of Computer Science and includes contributions
from a large community of developers. It is designed to be lightweight, highly
portable, and multitasking. It runs on a multitude of devices and has a low memory
usage; a typical Contiki application requires memory in the order of tens of kB of
RAM and ROM.

As already mentioned, the Contiki OS is developed in C, and also the appli-
cations running on it must be written in plain C. It supports memory allocation
using the standard malloc/free, but considering that the code should run on a
microcontroller, the usage of static memory is preferred.

The kernel supports multitasking using protothreads, a memory-efficient mul-
tithreading programming abstraction. Each time the kernel receives a new event
(such as a sensor event), it invokes a protothread to manage it. The protothread
is just an abstraction of multithreading since the various threads are not executed
in real time. In fact, each protothread yields its execution to return the control to
the event loop running in the kernel, which will then send the event to another
protothread.

One of the consequences of this execution model is that protothreads are stack-
less, so they save their state in the private memory of the process. This implies
that every variable created inside a protothread will not maintain its content when
the control is returned to the main event loop. This approach is completely differ-
ent from the standard programming approach, where all the variables created in a
function remain on the stack until they go out of scope and the function returns.

Contiki allows networking on very constrained devices and supports many net-
work protocols. It supports the uIP TCP/IP stack, which provides IPv4 networking
and also uIPv6, which provides IPv6 networking. It supports IEEE 802.15.4 wire-
less communication with Time-Slotted Channel Hopping (TSCH) and contains an
implementation of the Routing Protocol for Low Power and Lossy Networks (RPL).
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Many versions of Contiki have been released during the years. Our implemen-
tation is based not directly on Contiki-OS, but on Contiki-NG, a recent fork of
Contiki with some cleanup and improvements. Contiki-NG has been used to build
the update agent and also to build the bootloader. The goal of building the boot-
loader on top of Contiki-NG is to allow a smooth integration with all the other
platforms supported by Contiki-NG itself.

2.1.3 Protocol Stack
Creating a technology that facilitates the interconnection of IoT constrained de-

vices has been challenging. The platform constraints required the effort of many
working groups to define protocols and standards that enable the reliable intercon-
nection of millions of objects. The need for a new set of protocols was clear, as are
needed to deal with the following requirements:

• Low energy consumption. IoT devices are typically battery powered and
thus require a low-power communication stack. In fact, the extensive number
and the inaccessibility of IoT objects make charging or replacing batteries an
expensive and not always feasible operation;

• Critical deployments. Critical deployment environments require a high re-
liability of the communication. A communication failure in a healthcare appli-
cation could potentially harm the life of people relying on this technology;

• Interoperability. IoT devices will need to interact and communicate with
millions of already deployed devices and networks. Having an interoperable
stack could reduce the needs of protocol translations and increase the adoption
of this new technology.

Many standards such Zigbee or BLE satisfy the previous requirements. Another
common protocol stack for IoT is composed by IEEE 802.15.4 for the Physical
(PHY) and Medium Access Control (MAC) layers, 6LoWPAN as IPv6 adapta-
tion layer, RPL as routing protocol, DTLS to integrate security and CoAP as the
application layer.

In the next sections, we will briefly discuss this set of protocols, as they are the
base for many constrained devices and will also be used to test the final solution.

• IEEE 802.15.4: is a technical standard which defines the operation of low-
rate wireless personal area networks. The power-consumption of IoT device is
massively affected by the radio components, as they usually are the more power
hungry. The radio consumes a considerable amount of energy when enabled. It
does not consume energy when it is disabled. The challenge of a good commu-
nication stack is to reduce the time in which the radio is enabled. The radio
duty cycle is the percentage of time the radio is on, and it is a good indicator of
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the power consumption of the device. An energy-efficient communication stack
has a duty cycle lower than 1% [11]. The IEEE 802.15.4 standard defines 16
frequency channels, and the radio can arbitrarily send and receive on any of
those channels. The first standard defined the communication as fixed on a
single channel. It became soon visible how this caused reliability problems due
to RF interferences. A better approach was time synchronization and channel
hopping, allowing a low duty cycle and high reliability. In 2010 a new extension
of the standard (IEEE 802.15.4e), introduced the Time Synchronized Channel
Hopping (TSCH), that uses a frequency diversity that mitigates the effect of
the interference with other RF networks. The use of TSCH also increases the
network capacity, because nodes can transmit at the same time using different
channels.

• 6LoWPAN: IPv6 over Low-Power Wireless Personal Area Networks is a stan-
dard designed by the IETF 6LoWPAN working group in RFC 4944 [12]. The
idea behind this protocol is to apply the Internet protocols used on conven-
tional devices also on small and constrained devices. This approach grants
scalability, global reachability, and the use of a well-tested technology such as
the IP network as a background. To reach this goal, the IPv6 protocol was
compressed to fit the required size. IPv6 was the more indicated protocol, al-
lowing interconnection of millions of devices. Thus, the 6LoWPAN WG defined
encapsulation and header compression mechanism to allow the transmission
of IPv6 packets over IEEE 802.15.4 frames. The general approach used is to
reduce the size suppressing redundant information in the IPv6 packet header
that can be derived from other layers of the communication stack.

• RPL: The Routing Protocol for Low power and Lossy Networks is the routing
protocol used on top of 6LoWPAN networks, and is standardized in RFC 6550
[13]. It can quickly build network routes, distribute routing information and
efficiently adapt the topology. When forming the topology, each node sends
a DAG Information Object (DIO) to all its children. When a child decided
to join the DAG, it should pass the DIO further to its children. The DIO
contains a rank that is increased when the child joins the DAG, preventing
routing loops and helping the nodes to distinguish between parent and siblings
[11].

• DTLS: Datagram Transport Layer Security is a communication protocol used
to provide security to datagram based applications with a lightweight ap-
proach and considering the requirements of constrained devices. Based on the
TLS standard, DTLS is also designed to allow confidentiality, integrity, and au-
thentication to the communication. Differently, from TLS, DTLS was designed
for datagram protocols and cannot rely on the functions of the underlying pro-
tocols to deal with packet reordering and packet loss. The handshake protocol
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represents the first phase of setting a DTLS connection, and is also the most
expensive phase in terms of computation and memory resources. It starts with
a Hello message and continues with the negotiation of the employed algorithm
using the concept of the cipher suite, a string indicating the various algorithms
used to preserve integrity, authenticity, and encryption. When client and server
agreed on a cipher suite, they can proceed to exchange a shared secret. The
algorithm used is also indicated by the cipher suite. One of the most used ones
is the Diffie-Hellman algorithm. The handshake protocol is implemented very
similarly to TLS, but it also integrates a cookie exchange to prevent denial of
services attacks, a timer to handle message loss, and some modification to the
header to avoid IP fragmentation (since it is already performed at the DTLS
level). The use of the cookie is necessary as datagram protocols are very sus-
ceptible to Denial of Service attacks. In fact, considering that no TCP-like
connection is required, an attacker could initiate a series of handshakes with
a low effort, forcing the server to allocate state for the each request.

• CoAP: the Constrained Application Protocol is a specialized protocol for
constrained devices standardized by IETF RFC 7959 [14]. It is designed to
enable constrained devices to communicate using the same REST approach
used on the Internet, thus inspired from the HTTP protocol. It has been
designed to enable communication between nodes of the same Personal Area
Network (PAN), but also with devices on the standard Internet. In fact, the
CoAP protocol can be easily translated to HTTP using a specific proxy, to
allow integration of constrained devices with the Web. CoAP implements a
subset of the functions of HTTP and uses the same REST approach based
on the GET, POST, PUT, DELETE verbs. Moreover, CoAP also defines the
possibility to subscribe to a topic, useful for IoT devices to reduce polling and
unnecessary communication. To reduce the size, CoAP uses binary encoding
and is based on two message types: request and response. The CoAP standard
defines either UDP or DTLS as the underlying protocols. The protocol has
been designed in a way that a message should fit in a single packet minimizing
fragmentation. In case the transfer of a higher number of bytes is necessary,
the Block-Wise option can be used. This allows transferring a higher number
of bytes by dividing them into blocks.

2.2 Security Background
In this section, we introduce some cryptographic fundamentals necessary to un-

derstand the design choices of the final solution. We also introduce the reader to
the security properties that will be required by libpull and give an introduction
to the Hardware Security Modules in general and the specific device used in our
implementation.
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2.2.1 Cryptographic Fundamentals
The method to securing data and make sure that only those who are allowed can

access them is called cryptography. It poses its foundations on advanced mathe-
matical principles and, according to the security property we want to ensure, it can
be implemented with different methodologies. For example, to grant confidentiality,
encryption can be used. To grant authentication, digital signature or Message Au-
thentication Code (MAC) can be used. The use of cryptography helps mitigating
many security threats and plays a critical role in the security of an update system.

Encryption

The first important cryptographic primitive is encryption. The goal of encryption
is to protect data from unintended parties. It is a process composed of two steps:
encryption, and decryption. The encryption phase converts some data, called plain
text, to another form, called encrypted text, using an encryption algorithm. In
this way, the encrypted text can be sent through an untrusted channel and its
content protected from an eavesdropper. The other end receiving the data needs to
decrypt it to obtain the original plain text. The conversion between a format and
another is based on a secret, called the secret key. There are two main approaches:
symmetric key encryption and asymmetric key encryption. These two methods are
very different in both theory and implementation.

Symmetric encryption is the most straightforward kind of encryption. It is an
old technique and bases its security on the secrecy of a shared secret between the
parties. Many symmetric algorithms have been developed, such as RC4, DES, and
AES but the most widely used today are AES-128, AES-192, and AES-256. In sym-
metric encryption, both parties share the same secret, called key. The storing and
distribution of this key is typically the biggest problem of symmetric encryption;
thus it is used in combination with asymmetric encryption.

Asymmetric encryption, also known as public key cryptography, is a relatively
new method compared to symmetric encryption. It is not based on a shared secret
between the parties but uses instead two keys, a private and a public one, basing
its security on the secrecy of the first one. The private key is used by the sender
to encrypt the data, while the receiver uses the public key to decrypt the data.
The key concept is that the only key that must be kept secret is the private one,
allowing to share the public key also using untrusted channels. Many algorithms
have been developed, such as:

• RSA (stands for Rivest, Shamir, and Adleman) is one of the first asymmetric
cryptography algorithms. It is widely used today for secure Web communi-
cations and to integrate security into many other protocols, including IMAP,
and FTP. RSA poses its security on the robustness of the integer factorization
problem, which states that is very difficult to factorize large numbers [15].
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• ECC (Elliptic Curve Cryptography) is an asymmetric cryptography algorithm
based on the algebraic structure of elliptic curves over finite fields. It is consid-
ered secure on the assumption that it is infeasible to find the discrete logarithm
of a random elliptic curve element with the knowledge of base point represented
by the public key. ECC requires a smaller size compared to RSA which results
in faster computation, lower power, memory, and bandwidth usage, making it
a suitable protocol for constrained devices.

Asymmetric encryption requires more computational power and more time com-
pared to symmetric encryption. To take benefit of both algorithms, a hybrid ap-
proach is typically used, based on asymmetric cryptography to exchange a secret
and on symmetric cryptography to continue encrypting the data using that secret.

Key Exchange

The goal of a key exchange algorithm is to allow two users, each holding a
public-private key pair, to agree on a shared secret over an untrusted channel. The
most used key exchange algorithm is Diffie–Hellman (DH). In case elliptic curve
cryptography is used to perform the key exchange, we talk about Elliptic Curve
Diffie–Hellman (ECDH). The shared agreement between the nodes can be then
used directly as a key or to derive another key.

Cryptographic Hash Functions

Another important primitive used in cryptography are hash functions. These
functions take as input an arbitrary size of bytes and produce as output a small
and fixed number of bytes denominated the hash. The operation is irreversible,
meaning that, starting from a hash, is not possible to get any information on the
original data. Moreover, hash functions are designed to give a completely different
hash starting from different data. This property is called collision resistance, and
in the past, many algorithms were deprecated due to the possibility of creating
collisions, such as md5 or SHA-1. The most widely used family of hash functions
are the Secure Hash Algorithm 2 (SHA-2). They can work with a hash size of 224,
256, 384 and 512 bits.

Hash functions are essential for many other cryptographic primitives, such as
digital signature. In fact, some algorithms are able to work only on a finite set of
bytes and requires to preprocess the data with a hash function to accomplish their
goal.

Digital Signature

The digital signature is a process that provides integrity and authentication of
the signed data. Like a real signature, digital signatures are unique to the signer
and can be used to verify the integrity and the authenticity of the data.
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The digital signature process can be divided into two phases. In the first phase,
the message is signed using a signing algorithm and a key. In the second phase, the
message is verified, using a process called signature verification. If the verification
is successful, one can assert that the data has not been modified and can even state
the authenticity of the signer.

Using an asymmetric algorithm to perform digital signature is beneficial, as
it does not require protecting a shared key on the client, allowing in the case of
the software updates an easy storing of the public key on the device memory.
The asymmetric algorithms that can be used are RSA, DSA (digital signature
algorithm) or ECDSA (Elliptic Curve DSA). The last one is the one chosen for our
implementation, due to some smaller size of the keys and signature.

Different algorithms require a different key size to provide the same level of
security. This is presented in Table 2.2:

Symmetric ECC DSA/RSA
80 163 1024
112 233 2048
128 283 3072
192 409 7680
256 571 15360

Table 2.2: Same level security of encryption keys.

True Number Generator

Another essential concept in cryptography are random numbers. The unpre-
dictability of the numbers enforces the strength of algorithms that need a nonce
in input, an arbitrary number that must be used only once. Generating random
number is not easy, since it requires each number not to be related to the number
generated before or any other property available to the attacker. For this reason,
standard computers generates random number collecting randomness from multi-
ple sources, such as timely of key presses or network traffic, and gives them as
input of a Pseudo-Random Number Generators (PRNG). However, this is not al-
ways possible on embedded devices where the entropy sources are lower. For this
reason, a specific hardware modules in often included in the device, which is called
True-Random Number Generator (TRNG).
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2.2.2 Security Properties
With a basic knowledge of the cryptographic primitives it is possible to un-

derstand the security pillars of information security. The understanding of these
concepts is essential, as they will be widely used in the next chapters of this thesis.

Confidentiality

Confidentiality ensures that, except for the authorized entities involved, the data
exchanged during communication is kept confidential. This is crucial for IoT appli-
cations, as any failure would seriously threaten user’s privacy. To grant confiden-
tiality, cryptographic algorithms are generally used to cipher data. Doing so, even
if the exchanged data eavesdrops, the attacker will not be able to access its content.

In contrast to the security by obscurity principle, Kerckhoffs principle states
that a cryptosystem should rely on the secrecy of the keys. In fact, this principle
assumes that an attacker is able to access and master the cryptographic protocol.
In the IoT world, the confidentiality property is often not granted, as many vendors
use to deploy devices with the same shared key that, once discovered on a device,
makes all the encryption made by devices with the same key useless.

Integrity

Integrity ensures that information is not modified, accidentally or purposefully,
without being detected. This is valid for the data sent through the network but
also for the firmware and the programs loaded by the device. Data should not be
modified in an unauthorized and undetected way. There are various ways to verify
the data integrity. Often a hash function is used, to create a digest for a particular
block of data. The hash value is calculated by the sender and the receiver. If both
results match, then the integrity property is granted. Considering that the data
and the hash functions are usually sent through the same untrusted channel, it is
necessary to grant that the digest has not been altered using techniques such as
asymmetric encryption. A simpler method to verify the integrity of data is using a
cyclic redundancy check (CRC), that could be used to detect if the data accidental
changed. However, this is not suitable in case we want to protect the data from
malicious changes, where also well-known hash functions such MD5 or SHA1 are
now considered deprecated. The hash functions that should be used are the ones
from the SHA-2 family, such as SHA-256, or SHA-512.

Authentication

The authentication property ensures that the source of data has a known identity
or endpoint. The process of authentication is normally performed showing to the
device requesting authentication a proof of identity, such as a shared and secret key,
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a user-id and password, or some biometric data. This property is normally imple-
mented with a digital signature or with authenticated encryption. In a client-server
communication, the server is normally the only end begin authenticated. However,
in some specific applications, such as software updates, it becomes important to
authenticate also the client. Authentication is also used to prevent Man In The
Middle (MITM) attacks, where a malicious user eavesdrops the connection and
acts as one of the involved parts. If a device is not able to correctly authenticate
the other, for example by recognizing an invalid certificate, it will believe that the
connection is secure, even in presence of a MITM attack.

Availability

The availability property ensures that data is available when needed by autho-
rized entities. This implies that the communication system has to remain functional
despite security attacks (i.e., DoS attacks) and hardware failures. A way to increase
the availability and also the reliability of IoT systems is to provide redundancy for
critical devices and services.

Non repudiation

The non repudiation property ensures that an individual or system cannot later
deny having performed an action. This property is important in many IoT ap-
plications, because it supports the transfer of responsibility, liability, and culpa-
bility needed to allows some devices to perform the autonomous operation and
independent decision making. The decisions of smart objectscan, in unfortunate
circumstances, cause harm to humans or things. In this case, the non-repudiation
property ensures that we are able to attribute responsibility for certain events to
non-human agents and it also needs the identification of the device to attribute
the non-repudiable action to the right entity. In our particular application, this
property is not necessary.

2.2.3 Hardware Security Modules
A Hardware Security Module (HSM) is a dedicated cryptoprocessor able to per-

form cryptographic operations and securely store keys and other critical security
parameters (CSPs). HSMs are typically used on servers to reduce the computation
power required by the main CPU, especially when using long asymmetric keys.
These modules are sold in the form of smart cards or external device that can
be attached to a server [16]. In our case, we consider solutions explicitly designed
for IoT products, available on the market as small integrated circuits that can be
integrated into the final solution.

The Kerckhoffs’s principle states that the security of a cryptographic algorithm
must be based only on the secrecy of the key. HSM increases the security of a generic
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software cryptographic solutions being able to safely store the keys, protecting them
from software attacks and, in some cases, also from hardware ones. Keys can be
generated inside the HSM, reducing the possibility of being compromised, or can
be generated on a host machine and successfully loaded into the HSM during the
personalization phase. When the key is stored inside the device, it is never exposed
to the main MCU and can be used internally to perform cryptographic operations.
The security of the encryption key is very important. Indeed, poor key management
leads to the disclosure and compromise of cryptographic keys, making all the effort
of integrating security countermeasures ineffective.

Hardware Security Modules also provides other features, such as True Random
Number Generator (TRNG), solving a critical problem in the embedded device
with few entropy sources. Some HSM facilitates also the process of authentication
by calculating a Message Authentication Code (MAC) using a received challenge
and a secret key stored in an internal memory slot of the HSM.

There are many HSM available on the market. For this thesis, we use the Atmel
CryptoAuthentication devices [17]. These devices implement cryptographic func-
tions such as AES, SHA256, HMAC, and ECC. After testing the possibilities offered
by the devices, we found in the ATECC508A the more useful for our architecture.

The ATECC508A offers ECDSA and ECDH based on the NIST-P256 elliptic
curve. It also includes a TRNG and secure key storage for up to 16 keys. It is
connected to the main MCU via I2C and supports connection up to 1MHz. The
usage of the I2C bus is limited to just a small amount of data to perform ECDSA
operations. The connection between the MCU and the ATECC508A is a weak link,
as the data exchanged in plain text through this channel could be easily faked
with a physical attack. To solve this problem, the ATECC508A allows receiving
encrypted commands and includes an HMAC for the response, which can be used
by the main MCU to validate the returned value.
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Chapter 3

Related Work

The need for software updates is not something new to the IoT world. It has been
already encountered in complex systems like servers, computer, cars, or small but
sophisticated devices like smartphones. The most similar device type to our target
Class 1 devices are Wireless Sensor Networks (WSN), however, all the software
updates research and project for these devices rarely targeted security explicitly,
focusing mainly on energy efficiency and network bandwidth. Each of the previous
device classes has different goals and requirements from the update system and
each solution has its advantages and disadvantages. This chapter investigates the
software update process with a top-down approach, moving from the more powerful
platforms to the more constrained ones, to finally reach the Class 1 devices target
of this thesis. For each class, we will briefly explain how the update is performed
to understand the best approaches that can be ported to constrained devices.

Computer Software Updates
Considering servers and computers, software updates are typically performed at

a package level, updating the necessary program, their dependencies or the kernel
[18]. Many package managers are present today, and each OS and Linux distribution
tends to have a different one with slightly different characteristics. Sometimes, the
updates are also managed by the application itself that, running a parallel program
that periodically checks the presence of an update and updates itself. This approach
is normally used by browsers [18]. The update managers for computers do not
have to deal with hardware constraints and work normally at a high level using
the abstractions provided by the OS. Moreover, all the modern package managers
download the update from a trusted endpoint using an encrypted connection and
verify the digital signature. This kind of updates and platforms are very different
from the devices targeted by this study, where the update system does not download
a package, but a whole firmware and does not have any abstraction to access the
memory, but needs to store the update using raw memory access.
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Smartphone Software Updates
Another device class that, at least in physical size, is more similar to the devices

target of our study are smartphones. From the early stages of their development,
smartphones included an App Store, a program allowing the user to browse and
install new applications, but also managing the update process. The functional
and security features added to the App Store and to the operating system update
agent increased over time, often being target of attacks used to perform privilege
escalation and execute untrusted code on the device. On mobile devices, the update
agent is able to work autonomously to update the applications but needs the user
authorization to update the whole system [19]. This increases the reliability of the
process since the user is aware of the update and can try to recover in case of failures.
However, it requires a user interface to interact with the user and this is often not
possible on constrained devices, that must work in a completely autonomous way
and are often deployed in hostile environments. A lot of research work has been
done on update system for mobiles devices but we believe the most advanced and
tested solutions are deployed in the two most used operating systems, Android and
iOS. One of the challenges that have been solved by the iOS update system is to
grant the update freshness, avoiding a downgrade or the possibility to update a
device not to the oldest firmware. This is performed using an SHSH blob [20], a
small piece of data that contains the device identity and makes the update unique
for each device request. This approach has been also included in our solution and
is explained in Chapter 4.

Embedded Systems Software Updates
Another class of devices more similar to our target are embedded systems. The

solutions available target security, small memory footprint and power efficiency,
but at a higher level than the one required. Typically embedded devices running a
Linux based OS (such as the Yocto project [21]) have an internal memory in the
order of tens of MB, where constrained devices are in the order of 1̃00 kB. There
are several open source solutions developed for embedded systems, such as Mender
[22] and SWUpdate [23].

A lot of research has been done to update the embedded devices used in the
automotive field. In this particular application, in fact, security is always put at
first since it could affect the safety of drivers. Moreover, considering that the size
of software included in today’s car is always increasing, the need of sending soft-
ware updates is much higher and without, an Over The Air (OTA) update system,
requires the auto to be recalled to the workshop, with high costs for the device man-
ufacturer [24]. As an example, Fiat-Chrysler in 2015 had to recall 1.4 million Jeep
Cherokee to fix a security vulnerability allowing an attacker to remotely manage
the car [25]. In 2008, Nilsson et al. introduced a protocol for FOTA in vehicles which
ensured data integrity, authentication, and confidentiality. However, their analysis
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did not address how to safely store the verification keys. Jurkovi et al. [26], discuss
the update process for constrained devices without an operating system, focusing
on the transmission phase and the memory footprint. However, the solution did not
target the security of the update process.

Wireless Sensor Network Software Updates
As already indicated, update systems for WSNs represent the most similar ar-

chitecture to Class 1 devices, and could be hence potentially suitable. In fact, Class
1 devices are often used to build WSN networks. However, the research on WSN
update systems focuses mainly on transmission protocols, traffic reduction, and soft-
ware optimization, without often considering security as a primary requirement. In
this class of applications, the update process is often called reprogramming, since it
is used to add new functions and reprogram the device behavior rather than fixing
security vulnerabilities. A good overview of WSN updates is done in [27], where the
author analyzed the generation, propagation, and activation phase of four systems,
such as MOAP [28], Maté [29], Impala [30], and Deluge [31]. These systems are
suitable for Class 1 devices, but are not designed with security in mind. In fact,
MOAP focuses on the performance of the propagation protocol; Maté concentrates
on the propagation and mobile-code activation aspects; Impala concentrates pri-
marily on the propagation of the update and provides some sanity check of the
newly loaded code (only valid memory accesses); whereas Deluge concentrates on
the efficient propagation via incremental updates. All these solutions tried to opti-
mize the propagation protocol minimizing the traffic. A possible approach is to use
delta updates, and can be performed in many ways, such as dividing the firmware
into sections and update just some of them [32] or shipping patches containing only
the differences between the old and the new firmware version.

A research on WSN updates focusing on security has been performed by Cheng
et al.[33]: to avoid the spread of malware inside the WSN the author propose
an architecture where the intermediate and more powerful nodes are in charge of
detecting malicious code. Once a malware is detected, the patching phase starts
by updating first the intermediate nodes to avoid spreading the malware to all the
device in the network. This solution is not directly related to the update process,
but it is interesting, since it tries to move part of the security solution to the more
powerful nodes of the network. This path has been explored, but discarded since,
in our architecture, Class 1 devices could work as standalone devices and are not
necessarily integrated into a WSN.

Constrained Devices Software Updates
Our target device class requires an update system that includes many of the

features discussed previously and inherits many approaches from some of them,
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such as security from the computer and smartphones software updates, portability
from the embedded systems software updates, small memory footprint, and low
energy consumption from the software update systems for WSN.

Currently, no generic update system for IoT Class 1 devices has all the previous
characteristics, and there is no open source solution that is suitable for Class 1
constrained devices and that can be integrated by vendors when producing devices
for the Internet of Things.
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Software Updates Analysis

Software updates for constrained IoT devices are very different from the updates
of ordinary computers, and many different implementations are possible according
to the platform and application needs. There is more that one correct approach on
how to structure the memory and how to transmit the firmware, as the implementa-
tion needs to deal with the hardware and software capabilities. A device may have
just the internal flash or could also include an external memory. From the software
point of view, the operating system could allow dynamic loading or not. For this
reason, it was evident that the approach of creating an application was limiting
the possibilities of the solution and that a more modular approach was needed. We
implemented the solution as a library, libpull, which provides enough abstraction
to be extended and migrated to other software and hardware platforms.

The process of software updates has been identified as one of the most critical
threats by many software security research work specific on IoT [5]. Considering that
the update system can install or override the code running on the device, an attack
able to compromise this process would affect the integrity of the running application
and allow to inject malicious code, completely changing the behaviour of the device.
We saw in the literature many attacks exploiting the software update process that
are also able to create a worm and infect all the devices in the neighborhood [34].

In this chapter, we start introducing the problem of software updates defining
the terminology and the general components. These are required to understand the
next sections, where threads and requirements to secure the update process are an-
alyzed. We analyze then the requirements of the update system for Class 1 devices,
and also the portability requirements that our solution should satisfy. Finally, we
summarize the designed architecture discussing the life cycle of an update, moving
from the vendor server to a correct and secure installation on the device. Consid-
ering that not every system will require the same level of security, we provide four
security configurations that include in an incremental way the identified security
requirements.
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4.1 Software Updates Essentials
Providing software updates is not a new challenge and affects every connected

system previously developed. Software updates are needed for two main reasons:

• Fix bug or vulnerabilities;

• Integrate, update or remove features.

Depending on the reason for performing the update, we could have different
update types. Fixing bugs and vulnerabilities is usually performed with minor up-
dates, based on little changes of the codebase. The integration of new features
instead, usually requires substantial changes to the codebase and is done in a ma-
jor update. Both types of updates could introduce new bugs and vulnerabilities,
consequently providing updates is not a single operation but rather a process that
must be reiterated over time to increase the quality and security of the solution.

Each update is identified by a version, and by a number that identifies a specific
point in the history of that software. In case the version of the downloaded update
is higher than the one that must be updated, the process of updating is also called
upgrade. Otherwise, in case the new version is lower, then the process is called
downgrade.

Updates are performed in different ways according to the platform where they
are implemented and can be categorized in terms of granularity. This property
indicates the dimension of the software that needs to be updated and its relation
to the overall system. Smartphones software updates show a clear evidence of this
property. In fact, it is possible to have a fine granularity update, upgrading just a
single application, or a coarse granularity update, upgrading the whole operating
system. When considering IoT devices, we identified three possible granularities:

• Package-based updates: Used to update just some parts of the application.
This concept is well known on Linux based embedded systems to update ap-
plications and dependencies in a modular way. Package managers are used to
regularly check the dependency version, download and apply new updates.

• Modular updates: Based on the concept of a modular operating system, where
the kernel, the libraries, and the applications are physically stored in different
memory segments. In this case, it is possible to update just the changed section,
leaving the others unchanged. This approach typically needs to relink the
various modules before their execution.

• Image-based updates: Used to update the whole image. Embedded systems
usually rely on this method since updating the full image provides atomicity
to the process, avoiding compatibility issues and ensuring that an update is
entirely installed or not at all. The atomicity property also ensures that the
application behaves the same way in the test and production environment [4].
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Each update granularity has its advantage and disadvantages. However, when
considering Class 1 devices, we identified only the modular and image-based update
as suitable, and only these two models will be considered during the analysis.

The update can be transferred to the device using different methods. It can
be transferred via a physical device, such as removable USB stick, or using Over
The Air (OTA), using a wireless network to receive the update. Considering the
connected nature of IoT and the requirement to perform the process autonomously,
we consider only the OTA updates as a goal for our solution and exclude the physical
transfer from the supported possibilities. The OTA update can be transferred using
different approaches, which we can classify according to the network topology used:

• Client-Server approach: The update is transferred from the server to the client
without middle devices involved in the process. The middle devices can be
involved in the transfer of the data acting as network nodes, but do not perform
any action on the update, having a passive role in the update process;

• Mesh approach: The update is transferred from the server to the client or from
a middle device to the client. The middle devices can receive the update and
resend it to the neighbor nodes, taking an active role in the update process.

We excluded the mesh approach from our analysis, since the possibilities offered
by the Client-Server approach to integrate security features are higher and allow the
server to manage the process entirely. Moreover, having each node transferring the
update to the nearest node makes the process of shipping updates more complicated
in case the server wants to send it to a subset of devices for testing or other purposes.
We can still break down the Client-Server approach in two classifications, according
to the propagation direction of the update from the server to the client.

• Pull mode. The client starts the process of updates, periodically contacting
the server to check the availability of an update. The polling frequency affects
the vulnerability window and the energy consumption;

• Push mode. The server starts the process notifying to the device the presence
of a new firmware. This mode is intrinsically faster than the pull one, since it
removes the polling delay and consequently decreases the vulnerability window.
However, it needs to find the device in a receiving state and also implies
its reachability from the public network, increasing the possibility of being
compromised.

We designed our solution focusing on the pull mode, where the client periodically
checks the presence of an update contacting the server. This allows to decrease the
complexity of the server and makes each client responsible for its own update.
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4.1.1 Update Terminology
To understand the following sections is necessary to agree on some terminology

and concepts, used to analyze and describe the update process.

(a) Update image. (b) Device Memory.

Figure 4.1: Update terminology and relations.

We first define the terminology to describe an update:

• image: the software that will be executed on the device. It can be a firmware,
in case it must be loaded by the device MCU, or could be a software module
that can be loaded at runtime by the OS;

• manifest: the set of data related to the image, describing its size, its version
and including all the data used for cryptographic verification;

• update image: the union of image and manifest representing the update. This
is the data that must be generated and transmitted by the server to the client.

The previous concepts are defined in Figure 4.1a. We also define the terminology
to describe how an update is stored in memory as:

• memory object: the section of memory used to store the update. This can be a
file, a segment of the internal or external flash, a device or any other memory
abstraction defined by the user of the library;

• running object: the currently running image;

• device memory: a generic memory of the device that contains one running
image and one or more memory objects.

The previous concepts are illustrated in Figure 4.1b.
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4.1.2 Software Updates Components
To solve the identified problem of many vendors not having the resources to

manage the update process, we considered two servers, possibly managed by differ-
ent entities. Considering that the update process should be performed completely
automatic to increase the security reducing the vulnerability window, we do not
consider the user as an active component of the process.

Figure 4.2: Update process components.

We identified three distinct components:

• The vendor server is the server owned by the device vendor. This server
is the first point where the update is built and thus, it is used to assert its
integrity and authenticity. This server perform the following actions:

– Builds the image;
– Generates a manifest file;
– Generates the update image;
– Sends the update image to the provisioning server.

• The provisioning server is the server in charge of communicating with the
device. It may be managed by the device vendor or not. It performs the fol-
lowing actions:

– Notifies updates availability;
– Updates the manifest;
– Sends the update image to the device;
– Logs the device status.

• The update agent is the code running on the device with the goal of getting
the newest firmware available. It performs the following actions:

– Checks the presence of updates;
– Receives the updates;
– Validates the update;
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– Activates the update.

The update image moves from the vendor server to the provisioning server and
finally to the device, where – if the validation passes – it becomes the new running
object.

4.2 Software Updates Security
In the previous sections, we decomposed the update application identifying the

involved entities and interactions between them. They can be considered as the
entry point of our system and guide us to identify the associated threats. In this
section, we will perform a threat analysis and then sort the identified threats ac-
cording to their risk. Based on this, we will define the requirements of the software
update process and four possible configurations, explaining the risks associated with
each of them that may be acceptable in some applications.

4.2.1 Threat Model
The STRIDE model is a threat classification model that helps to identify and

classify the threats of a systems in six categories [35]. Each category can be mapped
with a security property identified in Section 2.2. I will briefly describe the six
categories, and indicate the associated property in Table 4.1:

• Spoofing. Attack aiming to illegally impersonate another entity with the goal
to gain access to resources it should not have access;

• Tampering. Attack aiming to maliciously modify data, such as authentication
keys, or even running code;

• Repudiation. Attack aiming to perform illegal operations without the possibil-
ity of being tracked;

• Information Disclosure. Attack aiming to exfiltrate information;

• Denial of Service. Attack aiming to deny access to valid users or make the
resource unusable;

• Elevation of Privilege. Attack aiming to gain privileged access to a resource;

We will analyze now the identified threats. They will be classified according to the
previous categories, and for each of them, a mitigation technique is provided.
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Threat 1: Device key access. Classification: Elevation of Privilege.
The attacker can obtain the key stored into the device. With it, the attack can

generate a valid signature and install malicious code on the device. This attack
does not affect the other components.

Mitigation: use public key cryptography and store the key in read only memory
or use symmetric key cryptography storing the key using specific hardware modules.

Threat 2: Device key modification Classification: Tampering.
The attacker can exploit a software attack on the device application or the

update agent to modify the device key. This allows the attacker to generate a valid
signature matching the malicious inserted key.

Mitigation: store the key in a read-only region of the memory or protect it using
specific hardware solutions.

Threat 3: Vendor server compromise. Classification: Elevation of Privilege.
The attacker can remotely access the vendor server. The attacker can inject

malicious code into the image or obtain the signing key, allowing to generate an
update image containing malicious code. This attack affects the vendor server and
the device as well.

Mitigation: The vendor server should be a protected and off-line machine, used
only to generate the manifest and the update image. The transmission of the update
image to the provisioning server should happen using an out-of-band channel.

Threat 4: Provisioning server compromise. Classification: DoS.
The attacker can remotely access the provisioning server, from which he can send

invalid images or notify the update agent of a new update. This attack involves the
provisioning server and the device as well.

Mitigation: The update agent should be able to detect a failure during the update
and include a timer able to delay continuous invalid updates.

Threat Category Security Property
Spoofing Authentication
Tampering Integrity
Repudiation Non repudiation
Information Disclosure Confidentiality
Denial of Service Availability
Elevation of Privilege Authorization

Table 4.1: Relation between threat category and security property.
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Threat 5: Old vulnerable Image. Classification: Elevation of Privilege
An attacker has access to a valid but vulnerable update image. In case a device

has a running image version lower than the vulnerable update image, the attacker
can successfully install it on the device since it will pass the validation process. The
impact of this attack depends on the vulnerability exploitable in the old image.

Mitigation: the provisioning server must sign the image including a nonce gen-
erated by the device and its device ID.

Threat 6: Invalid platform or application. Classification: DoS.
The attacker sends an update image with a valid signature but for another

platform or application type. This will lead to the device installing the invalid
update image, making the device unavailable after the loading phase.

Mitigation: include information on the platform and the application type in the
manifest. The device must validate their data by comparing it with information
stored in read-only memory.

Threat 7: Deletion of running image. Classification: DoS.
The attacker can force the download of the update in the memory object con-

taining the running image. At some point of the update image transmission, this
will lead to the brick of the device.

Mitigation: The update agent must not receive any instructions on the storage
location from the network, but it must decide autonomously the final location of
the update by analyzing the content of the memory objects.

Threat 8: Device cloning. Classification: Information Disclosure.
The attacker can create a copy of the device software and receive the updates

from the server.
Mitigation: Authenticate the client using a certificate. Store the private key in

a hardware security module.

Threat 9: Invalid size. Classification: DoS.
The attacker can send a wrong size of the update image. In case the size is bigger

than the correct one, the update agent will overwrite another memory object and
potentially invalidate the running image. In case of smaller size, the update image
will be corrupted.

Mitigation: implement protection algorithms to avoid overwriting another mem-
ory object.

Threat 10: Higher version. Classification: DoS.
The attacker, spoofing the network, can send a version that is higher than the
running image version. This forces the device to download the running image, but
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the invalid signature will prevent it from loading it. This attack performed multiple
times could lead to a Denial of Sleep attack.

Mitigation: authenticate and encrypt the connection between the provisioning
server and the device using a strong encryption algorithm.

Threat 11: Provisioning Server redirection. Classification: DoS.
The attacker can redirect the request to an invalid server, blocking the subscrip-

tion request performed by the device.
Mitigation: Authenticate the connection between the provisioning server and the

client to recognize a MITM attack.

Summary

The previously described threats are summarized in Table 4.2. Threats have been
sorted from the highest to the lowest risk with the goal to prioritize the mitigation
effort.

Code Description Classification
T1 Device key access Elevation of Privilege
T2 Device key modification Tampering
T3 Vendor server compromise Elevation of Privilege
T4 Provisioning server compromise Denial of Service
T5 Old vulnerable Image Elevation of Privilege
T6 Invalid platform or application Denial of Service
T7 Device cloning Information Disclosure
T8 Deletion of running image Denial of Service
T9 Invalid size Denial of Service
T10 Higher version Denial of Service
T11 Provisioning Server redirection Denial of Service

Table 4.2: Identified security threats.

The risk of each threat has been calculated using the formula:

Risk = Likelihood x Impact

where the Likelihood is the probability of this type of attack to happen and the
Impact is the potential damage that it can produce. To make the analysis less sub-
jective, qualitative values have been used, such as “High”, “Medium”, and “Low”.

4.2.2 Security Requirements
The threat model analysis illustrates the identified threats of this process. A

mitigation technique was presented for every threat and we will now formalize the
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various mitigation techniques into security requirements that will represent the
basis for the design and the implementation of the final solution.

Security Requirement 1: Double server architecture.

Two physical servers must be used for the application. The vendor server must be
protected and we assume it is an off-line server used just to generate the manifest
and sign the image. This strong assumption makes sure that the vendor is not
compromised. The provisioning server, instead, must be an online server in charge
of communicating the update agent in a secure way.

Security Requirement 2: Public-Key based digital signature.

Unless good protection measures are used, symmetric key cryptography represent
a high threat for IoT security, considering that it requires a shared secret between
the client and the server and that the client can be possibly physically accessed
by an attacker. A public-key based digital signature does not require any shared
secret and the private key can be safely stored in the vendor server. Moreover, this
reduces also the costs of key distribution, since every device can use the same key
and does not need key diversification like with symmetric cryptography.

Security Requirement 3: Double server signature.

The signature must be performed in both the vendor and provisioning server.
This allows to make sure that an attacker able to compromise the provisioning
server will not be able to run code on the device, since the verification requires also
the check of the vendor signature. Moreover, it allows the provisioning server to

Code Description Likelihood Impact
T1 Device key access High High
T2 Device key modification High High
T3 Vendor server compromise Medium High
T4 Provisioning server compromise High Medium
T5 Old vulnerable Image Medium High
T6 Invalid platform or application Medium High
T7 Deletion of running image Medium High
T8 Device cloning Medium Medium
T9 Invalid size Medium Medium
T10 Higher version Medium Medium
T11 Provisioning Server redirection Medium Low

Table 4.3: Risk model
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include other information to the update image, such as actions to be performed on
the update.

Security Requirement 4: Updates failure delay.

The compromise of the provisioning server cannot be detected by the device.
The only way to prevent a DoS attack is by delaying the update image reception
in case of failure in the verification phase.

Security Requirement 5: Memory object protection.

The protection of memory objects is needed since an attacker could modify,
rewrite or invalidate one of them. This can be accomplished by using specific hard-
ware facilities able to protect the content of a Flash memory. In this way, only a
specific module in charge of applying the update can modify them, reducing the
attack exposure.

Security Requirement 6: Device specific update.

Making each update specific for the device and the request makes sure that is
not possible to send old valid updates to a device with a lower version installed.
The device should generate a nonce and send it to the server with its unique device
id. In this way, each update will contain a specific signature and invalidate all the
old update not generated for that device. The robustness of this approach strictly
depends on the robustness of the random number generator, on the size of the
nonce, and on the effort spent by the attacker to enumerate all the possible nonce
for a specific device and version.

Security Requirement 7: Encrypted Request.

Sending the request encrypted prevents eavesdropping attacks from sending in-
valid data and forcing the device to perform an update. The encryption should
be performed using strong and standardized algorithms. The client must always
validate the server certificate.

Security Requirement 8: Client Authentication.

To prevent device cloning, each device can be shipped with a unique certificate
that is used to authenticate with the server. In case HSM or TPM is used to safely
store a secret key, the HMAC algorithm can be used to authenticate the client,
considering that is not possible to obtain the key once stored on an HSM.
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Security Requirement 9: Safe-Key storage.

When using public key cryptography, the storage of the key can be a problem,
since an attacker may be able to modify it, exploiting a software vulnerability and
changing the key to invalidate the signature verification. In case an high level of
security is required, the public key can be stored on a hardware module such as a
HSM and prevent any malicious or random modification.

Security Requirement 10: Use end-to-end encryption

End-to-end encryption between the provisioning server and the update agent
makes sure that no other entry points are available on our solution. In fact, it
would be possible to use a more powerful edge node to implement security features,
but this would increase the attack surface of the final solution.

Security Requirement 11: Device manifest validation

Before the validation of the new update, the values contained in the manifest,
including the version, the platform, the size, should be validated. For example,
when considering the version the validation means that it must be always higher
than the one currently installed. When considering the platform, it must be always
compatible with the one already running.

Summary

The previously described requirements must be implemented to solve the identi-
fied threats. A correlation between requirement and threats is shown in Table 4.4,
indicating which threats are mitigated by each requirement. Moreover, in the last
line, the mitigation level is summarized, indicating with N the non mitigated
threats, with P the partially mitigated threats, and with F the fully mitigated
ones.

The second threat has not been fully mitigated, since we did not explicitly target
physical attacks in our architecture. This would require to use a TPM and provide
remote attestation to the server. With our solution, even when using an HSM to
store the keys, an attacker sufficiently motivated would be able to modify the output
of the validation of the HSM using a physical attack, and thus load code on the
device that has an invalid signature.
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Code Requirement T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11
SR1 Double server architecture X X
SR2 Public-Key based DSA X X
SR3 Double server signature X X
SR4 Updates failure delay
SR5 Memory object protection X X X X
SR6 Device specific update X
SR7 Encrypted request X X X
SR8 Client authentication
SR9 Safe-Key storage X X X X X

SR10 End-to-end encryption X X
SR11 Device manifest validation X X X

Mitigation level F P F F F F F F F F F

Table 4.4: Relation between requirements and threats.

4.2.3 Security Configurations
Some of the defined threats do not represent a risk for every possible applica-

tion. In fact, implementing security is always a compromise between the costs of
implementing the security features and the possible future costs involved by not
implementing them and, for this reason, some of the previously defined threats may
be necessary for some applications.

To reach the needs of each application, we identified four packages with the aim
to cover the different security needs when performing an update. The packages are
represented in Table 4.5, indicating exactly the security property added by each
package and requirements that must be implemented to grant it.

• Package 1. This represents the minimum set of features that must be im-
plemented to note that all the configurations include the digital signature
verification as a minimum requirement for each update system.

• Package 2. The configuration 2 adds the encrypted transmission to protect
the traffic from an eavesdropper.

• Package 3. The configuration 3 includes mutual authentication, forcing the
server to authenticate the client before sending the updates. In this way, unless
the device is compromised, no one can access the device firmware.

• Package 4. Configuration 4 includes the use of a Hardware Security Module
to protect from software attacks that could change the keys stored in the
memory of the device and used for validation.
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Integrity and
Authenticity Confidentiality Client

Authentication
Software Attacks
Key Protection

Package 1 yes no no no
Package 2 yes yes no no
Pacakge 3 yes yes yes no
Package 4 yes yes yes yes

Table 4.5: Security configurations of the update system.

4.3 Software Updates for Constrained Devices
In the previous sections we analyzed the security threats and derived from them

a set of security requirements. However, the identified threads could be generic to
every update system and have been already mitigated in many solutions discussed
in Chapter 3. In fact, the problem of the available solutions is that they are not
suitable for Class 1 devices, suggesting the need of a new solution that merges the
security requirements of the update process with the constraints of these devices.

In this section we discuss the requirements for Class 1 devices dividing them
into two groups, the constrained devices requirements, used to solve hardware and
software challenges related to Class 1 devices, and the portability requirements,
necessary to make the final solution suitable for many application and do not restrict
its applicability in case different network protocols or operating system.

4.3.1 Portability Requirements
Portability can be considered as the possibility to reuse the same software in

many environments. This requires designing the solution with the appropriate ab-
straction layer that allows to configure it according to the device capabilities and
required logic. We identified four portability requirements:

PR1 Operating System agnostic: Class 1 device can run many operating sys-
tem, such as the RTOS described in Subsection 2.1.2. However, the described
operating systems do not have a standardized API, such an in the POSIX
environment. It is required to build a solution that does not explicitly use any
OS-specific API but instead relies on abstraction layers that can be imple-
mented for many OS, including RTOS and Linux.

PR2 Netowrk protocol agnostic: The solution must be designed to support
many network protocols. For example, in case of constrained devices, it could
support CoAP or XMPP and, with more powerful devices, the standard HTTP.

PR3 Cryptographic library agnostic. Many of the security requirements pre-
viously described needs to include a cryptographic library into the solution.
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This should be done considering that Class 1 devices are very constrained in
term of memory and that the application and the update agent should rely on
the same cryptographic implementation to reduce the codebase. The solution
must be designed with the possibility to use different cryptographic libraries,
thus possibly supporting the one included by the user.

PR4 Manifest encoding agnostic. The manifest describing the update can be
encoded using different formats, such as simple binary format, JSON, CBOR,
and many others, according to the platform needs.

4.3.2 Constrained Devices Requirements
Constrained devices are composed of many hardware types and Class 1 devices

correspond to a distinguishable cluster of commercially available chips and design
cores [6]. Designing a security solution for these devices needs to take care of many
constraints, that will be formalized as requirements in the next subsections.

CR1 Low energy consumption

Class 1 devices are very limited in term of available energy quantity and power
sources. The RFC-7228 [6] classification in terms of energy limitation and power
source is presented in Table 4.6.

Name Type of energy limitation Example Power Source
E0 Event energy-limited Event-based harvesting
E1 Period energy-limited Rechargeable battery
E2 Lifetime energy-limited Non-replaceable primary battery
E9 No direct energy limitations Mains powered

Table 4.6: Constrained devices energy classification.

Our solution focuses on E1 devices, represented by devices with a rechargeable
battery and a limited amount of available energy. This characteristic requires creat-
ing an update process that limits the energy usage to avoid depleting the batteries.

CR2 Small memory footprint

The memory of Class 1 devices is around 10 KiB for the data size and around
100 KiB code size. The small size, especially in terms of data size, implies that
every choice in the design must be made to reduce the codebase, such as protocol
implementation, cryptographic libraries, structure of the abstraction layer, encoding
of the manifest, capabilities of the bootloader, and so on.
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CR3 Support various memory types

According to the board capabilities, the device can have one or more accessible
memories. We identify as internal memory the one used by the device to run the
first application (that can be the bootloader or directly an image). We also consider
the possibility of having one or more external memories that in the scope of the
update process can store one or more memory objects. The solution must be able
to work with memory object located in every type of memory interact with them
indiscriminately, allowing to download, manage or remove data from each memory
object, for example moving an image from an external memory to the internal
memory.

CR4 Support Static, Dynamic, or Seamless Software Updates

According to the capabilities of the operating system, we can have a dynamic,
static, or seamless software updates. The solution must be designed to support all
of them.

(a) Dynamic. (b) Static. (c) Seamless.

Figure 4.3: Static, dynamic, and seamless software updates.

• Dynamic Software Updates. In this configuration, the update image is repre-
sented by a module that can be loaded at runtime by the running image [24].
The advantage of this configuration is that no-reboot is needed, making it suit-
able also for real-time application with high availability needs. To allow the
use of this configuration, the OS must be capable of loading, and if necessary
linking, the modules at runtime. We will not explicitly manage the activation
and relinking of the code, in charge of the OS.

• Static Software Updates. In this configuration, the update image is represented
by the whole OS. The loading of the update image is not performed by the
running image, but the presence of a bootloader is required. The advantage of
this configuration is the possibility to perform atomical updates, loading a new
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image, and avoiding the problems of dynamic linking. Moreover, this requires
the reboot of the device that in many applications is not always possible.

• Seamless Software Updates. Also known as A/B updates, seamless updates use
one memory object to store the running object and another to store the update.
All the logic to perform the update is placed in the image and the bootloader
needs just to load the newer version, thus each boot will be performed at
the same time. This configuration requires that the two memory objects are
bootable and thus stored in the internal memory [36]. Considering the size of
Class 1 devices memory, this solution is not always usable since the internal
memory does not have enough storage for two images. However, considering
that the library may be used on less constrained platforms, this approach must
be considered during the design phase.

4.4 Software Updates Lifecycle
In this section we analyze the update lifecycle, describing how an update moves

during the four phases of the update process and placing together all the compo-
nents and concepts previously described. We can decompose the update process
in four phases: the generation phase, the propagation phase, the verification phase
and the activation phase. Figure 4.4 presents an overview of the actions performed
by libpull in each phase. The figure represent the Package 4, that as discussed in
Subsection 4.2.3, includes all the security features of the solution.

The previous image does not describe all the components of libpull, which will
be explained in detail in Section 5.2. Moreover, it represents in a single diagram
all the entities involved in the update process, such as the vendor server in the
generation phase, the provisioning server in the propagation phase, the HSM in the
verification, and a loading module in the activation phase. In this specific case, the
latter is the bootloader, but can also be the application or any other module chosen
by the library user according to the type of software updates he or she wants to
support.

4.4.1 Generation Phase
The generation phase is the first stage in the creation of an update. It does not

involve the update agent directly, but mainly the vendor server. It can be considered
as the final phase of the developing process when the code is shaped to become an
update image. The output of the developing toolchain is an image, a bunch of bytes
composed of compiled code that can run on the device and all the required assets
needed by the code itself.

The image is not sufficient to perform an update. In fact, it needs to include
the manifest, a parsable data describing the content of the image. According to the
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Figure 4.4: Phases of the update process.

requirements, the manifest must contain the following fields:

• The version, since it represents the standard way to compare two images and
decide whether the update should be performed or not;

• The size, useful to dynamically handle images of different sizes;

• The application type, useful to differentiates one application from another. In
fact, the vendor may use the same device with different application type or
configurations;

• The supported platform, useful to differentiate the code of the same application
for different platforms. In fact, the vendor may use the same application on
different devices.

The manifest must also contain all the required data to grant the integrity and
the authenticity of the image and of the manifest itself, such as the signature
performed by the two entities, the vendor and the provisioning server, and the hash
of the image. The hash of the image must be calculated by the vendor and included
in its signature. The provisioning server instead, must add the information on the
identity of the device and sign the whole manifest, including also the data generated
by the vendor.
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The manifest should be designed also to include other data to increase the flex-
ibility of the solution. In fact, the application itself or the loader, a component in
charge of loading the update image, may need additional information to handle the
process.

During the generation phase is crucial to avoid errors when building the firmware,
such as building for a different architecture or not including all resources, since it
could make the device inoperable. In August 2017 this happened with hundreds
of smart locks produced by a LockState, a Colorado-based company. The company
shipped faulty software updates that caused a fatal system error [37].

The generated update image must be then sent to the provisioning server, using
an out-of-band channel, considering that the vendor server must be always discon-
nected from the Internet and protected to ensure the secrecy of the vendor private
key.

The solution, libpull, is not directly used in this phase. However, since the gener-
ated manifest should be compatible with the solution, an utility program has been
made able to calculate the digital signature and generate manifest files compatible
with the libpull library.

4.4.2 Propagation Phase
The propagation phase consists in the transmission of the update image to the

device. The actors involved are the provisioning server and the device itself, com-
municating with the server using the libpull library. The role of the provisioning
server is to ensure the freshness of the update, as identified in SR6. We can decom-
pose the propagation phase in two main sub-phases, the subscription phase and the
transmission phase.

• Subscription Phase
During the subscription phase, the device interact with the provisioning server
to check the presence of an update. The device can be informed of the presence
of a new update in two ways: using a polling approach, periodically requesting
the latest version available to the server, or using a publish/subscribe approach,
in which the device subscribes to a notification channel and gets information
when a new update is published.
When the subscriber module of libpull receives the version, it compares it with
the latest one available in memory to checks if it needs to start the update.
In this way, the server do not store any data on the device status and can be
implemented with a stateless approach, reducing its complexity.
The data transmitted during this phase can become the target of an attack.
In fact, an attacker able to eavesdrop the network can send a new version at
each request and force the device to start the transmission phase. This will
not lead to the compromise of the device since before applying the update the
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device always validates the signature. However, the continuous transmission
of the firmware could be used to perform a DoS attack and deplete the device
batteries. To avoid this problem the connection between the provisioning server
and the client should be encrypted and authenticated.
In case a newest version is present, the device can start the transmission phase.

• Transmission Phase.
During the transmission phase, the device receives from the server the update
image and stores it in a memory object. It can reuse the connection or start a
new one, according to the implementation of the update agent.
To start the transmission phase, the personalizing of the manifest should be
performed, as identified in SR6. The client sends a request to the provisioning
server attaching its device id and a random nonce, that will be inserted by the
provisioning server into the manifest and signed with the provisioning server
key.
The transmission should be performed in chunks, allowing a fast recovering
in case of network failures and thus reducing the energy consumption of the
solution when deployed on unreliable networks.
For the transmission phase, confidentiality is needed for all the applications,
where the intellectual property of the image must be preserved. In fact, the
technologies included into an image represent for many companies a huge com-
petitive value to be preserved over time. This implies that an eavesdropper able
to intercept the communication should not be able to obtain the image. This
property can be satisfied using an encrypted transmission and will be satisfied
in the final implementation including DTLS.
Authentication ensures that the device is receiving the data from the correct
provisioning server. This implies the need for the update client to authenticate
the server. Moreover, in case the protection of the intellectual property of the
firmware is required, the authentication of the client is also needed. A common
practice for authentication is the use of a username and password, sent from
the client to the server. A better practice is the use of a client certificate during
the handshake of the secure network protocol.

4.4.3 Verification Phase
The verification phase is in charge of verifying the integrity and authenticity of

the update image. This is performed using the two digital signatures contained in
the manifest.

The first verification must be performed on the vendor signature. To perform the
verification, the same digest operation should be made taking as input the image
and comparing the hash with the one contained in the manifest. Then, using the
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vendor public key, the device can verify the vendor signature validating the hash
of the vendor manifest. The public key can be stored in a read-only sector of the
memory or in the hardware security module, as shown in Figure 4.4.

In case the first verification succeeded, the verification of the provisioning signa-
ture can be done. The public key of the provisioning server can be stored in device
memory, on the hardware security module. It can also be stored in the manifest
by the vendor server. This allows the vendor to change the public key in case the
provisioning server private key has been compromised, implementing a simple key
revocation.

4.4.4 Activation Phase
The activation phase is performed on the client and does not involve the servers.

It can be performed in different ways and libpull does not force any specific ap-
proach.

We describe the static loading since is the one that we used during the evaluation
of the library. When the signature has been verified, the device should be rebooted.
This may not happen immediately and could allow a malicious attacker to modify
the content of the update image during this time window. This implies that, after
the reboot, the bootloader should perform again the verification process. In the
architecture described in Figure 4.4, the device has many memory objects. This
allows to store more than one update image and rollback in case one image is
compromised. The bootloader should check the version of each memory object to
find the most recent one. It should then compare it with the running image to check
if it is higher. In that case, it should validate the signatures and, if both are valid,
move the update image on the running object.

The boot process should be as fast as possible, as in this phase the device is not
available. The time a device could stay unavailable depends on the field of applica-
tion. It could be a medical device that should stay on 24/7, or a smart sensor for
home automation that could stay unavailable during the night. To decrease the time
the device remains unavailable, the bootloader should not perform heavy operations
that should be done by the update agent itself. The memory positions in which the
new firmware is stored should be structured to avoid unnecessary operations. With
device having enough memory, the seamless software update should be preferred,
since it reduces the time the device is unavailable requiring the bootloader to only
validate and boot the image, without copying the update image to the bootable
memory object [4].
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Chapter 5

Design And Implementation

Starting from the requirements identified in Chapter 4, it is possible to design
and implement the solution, libpull. As already introduced, we decided to make a
library that exposes all the functions needed to perform securely a software update
and that can be used to create an update agent and a bootloader that better
fits the platform requirements. To perform the evaluation, an update agent and a
bootloader have been made, but they are not included in the library to keep it as
portable as possible, without including any platform-specific code.

The library has been designed as OS-agnostic, able to be used with any OS or
even when an OS is not available. During the implementation, it has been tested
on Linux and Contiki-NG to evaluate the result, but without including platform-
specific code in the library to reduce its complexity and the efforts to maintain it
in the future. Every function that required some platform specific functions was
defined as an interface, that was implemented in the scope of this thesis for Linux
and Contiki-NG, but can be implemented by the library users to support different
platforms. This approach of testing the library for Contiki-NG and Linux at the
same time was beneficial for the final solution, since they have a completely different
approach and execution path. In fact, the execution path of Contiki, based on pro-
tothreads, required to structure every module in a way that it does not define any
variable internally but everything must be passed in the function signature. More-
over, the goal of the library to support small constrained devices required to avoid
dynamic memory, using only static memory for the library and the dependencies.
For this reason, the functions that need to work with unknown objects and would
require to allocate memory, take as input parameter a pointer to a preallocated
object of that type.

In this chapter, we will analyze the library architecture in detail, describing its
modules and the interfaces that must be implemented for each platform. We de-
scribe also the logic of some application using the library, such as the update agent,
the bootloader, and an utility program. Finally, we analyze the testing approach
and the testing server developed to evaluate the solution.
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5.1 Requirements Summary
We report all the previously identified requirements in a single page, to have a

complete overview of the all the abstractions and features the library needs to have.
The following requirements will be recalled in the next sections using the defined
label.

Security Requirements

SR1: Double server architecture.

SR2: Public-Key based digital signature.

SR3: Double server signature.

SR4: Updates failure delay.

SR5: Memory object protection.

SR6: Device specific update.

SR7: Encrypted request.

SR8: Client authentication.

SR9: Safe key storage.

SR10: End-to-end encryption.

SR11: Device manifest validation.

Portability Requirements

PR1: Operating system agnostic.

PR2: Network protocol agnostic.

PR3: Cryptographic library agnostic.

PR4: Manifest encoding agnostic.

Constrained Devices Requirements

CR1: Low energy consumption.

CR2: Small memory footprint.

CR3: Support various memory types.

CR4: Support static, dynamic or seamless software updates.
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5.2 Library Architecture
The libpull library has been designed in different modules and interfaces. The

interface are platform dependent and must be implemented according to the plat-
form needs. The modules are based on top of the interfaces and never use platform
dependent code. This approach was needed to allow a good portability between
different IoT devices. Figure 5.1 visually shows the software architecture modules
and their hierarchy.

Figure 5.1: Library architecture.

The basic interfaces are:
• Network Interface. Used to connect, send, or receive data to an endpoint;

• Memory Interface. Used to open, read, write the memory;

• Manifest Interface. Implements the manifest using different encoding.

• Security Interface. Wrapper for cryptographic libraries.
The modules are based on top of the previously defined interfaces are:

• Subscriber Module. Checks the presence of an update;

• Receiver Module. Receives and stores an update;

• Memory Module. Moves update images from slots and retrieves manifest;

• Manifest Module. Perform common operations to the manifest;

• ECC, Digest, and Verifier Modules. Calculates digest and verifies digital
signature of a memory object.

• Common Modules. Used for error reporting, logging, and more.

All these modules can be used by the library users, that we identify as the update
agent and the bootloader. We will now analyze each module and interface in detail.
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5.2.1 Network Modules
The network modules are in charge of managing the communication between

the update agent and the provisioning server. The library requirement PR2 implies
that it should be compatible with any protocol. In fact, libpull does not include any
network interface implementation itself, that must be implemented and included
for each the specific architecture. However, to evaluate the solution, two testing
implementations have been implemented, one for Contiki-NG and the other for
Linux.

Network Interface

The network interface must be implemented by the user according to the network
protocol he/she wants to use. It is designed as an asynchronous protocol, where is
possible to set a callback, perform a request, and wait for the callback to be called.
However, the callback cannot be set for each specific request, but only once for the
application. It is, however, possible to reset the callback, but all the response will
be passed to the single callback. This makes this module not thread safe. However,
this limitation is not important, considering that the library is not designed to be
used in a concurrent way.

The state of the network is maintained by a network context. This must be
implemented according to the protocol, making it an obscure object for the whole
library. This object cannot be instantiated by the other modules and must be
allocated in the update agent, where the internal structure of the object is known.

A network interface context must be initialized with the network_init function,
passing the address of the provisioning server, the port on which the service is
available, the type of connection and another raw pointer that can contain specific
data used by the network implementation. The connection type is an enumeration
and is not defined by the library, but it is required since the same network protocol
could be used with different configurations. For example, the HTTP protocol could
be used on top of TCP or TLS and the CoAP protocol could be used on top of
UDP or DTLS. In some specific cases, such as secure TLS of DTLS connections,
more data is needed to initialize the network object and can be passed with the raw
pointer of the network_init function, for example by passing a structure containing
the device certificate or a pre-shared key.

The other modules use this interface to perform requests to the end-point defined
by the network_init function. The request needs to specify a request method, the
resource, and send the data and its length. When a response is available, the net-
work interface implementation should call the defined callback with the appropriate
values, such as an error in case of error or the data and its size in case of success.
Considering that the callback will be invoked on a different time from when it has
been set, the ownership of the callback memory must be managed to make sure it
is always available.
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When the connection to the end-point is no longer necessary, it should be released
all the resources and close the connection with the server.

The network interface implementation should be able to open a secure channel to
the server, to satisfy SR7 and SR10. This can be done according to the protocols
supported by the network interface implementation. In the next subsection, we will
analyze how the secure network interface has been implemented for Contiki-NG
and Linux.

Contiki-NG Secure Network Implementation

The network interface implementation for Contiki-NG is based on the CoAP
implementation included in Contiki-NG itself. This implementation allows to com-
municate with a CoAP server and is fully integrated with the protothread concept of
Contiki, being able to yield the current process until a network response is received
or the timeout is exceeded.

The Contiki-NG CoAP implementation is able to manage the Block-Wise con-
nection itself without the need for the programmer to get any block. This feature
could become easily a threat if the server is not responding in the correct way. For
this reason, the Contiki-NG CoAP implementation was slightly modified to allow
the interruption of the Block-Wise reception in case of errors.

The CoAP implementation included in Contiki-NG is implemented on top of
UDP and does include natively the possibility to instantiate a secure communica-
tion with the server. We modified the CoAP implementation to include the DTLS
support based on the TinyDTLS library. The integration required some effort, but
it allowed to instantiate a secure connection using the Pre Shared Key (PSK) or
the ECC based Diffie-Hellman key exchange (ECDH). Accordingly, the supported
cipher suites are:

• TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8;

• TLS_PSK_WITH_AES_128_CCM_8.

Linux Secure Network Implementation

To implement the network interface on Linux we used the libcoap library [38].
This library is a C implementation of the CoAP protocol specifically designed for
devices with constrained resources. It is compatible with POSIX compliant systems
and can be used directly on the device or to perform testing on a standard computer.

The libcoap library supports the Block-Wise transfer. However, differently, from
the Contiki-NG implementation, the reception must be handled by the programmer.
We found this approach more reliable, as it allows more control over the Block-Wise
transfer and the possibility to block the transfer in case of errors.
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Our network interface implementation is able to resolve the address using the
POSIX standard function, getaddrinfo. This allows to pass the domain name of
the provisioning server, or to pass directly the IPv6 address.

The library natively supports transport layer security using OpenSSL or Tiny-
DTLS. We configured the library to use the latter, for having a similar configuration
with the Contiki-NG implementation.

The available cipher suites are TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 or the
TLS_PSK_WITH_AES_128_CCM_8, since the cryptographic library used is the same
for both implementations.

Subscriber

The subscriber module is used to check the presence of an update. The state of
the subscriber is stored in the subscriber context, a structure defined by the library
itself. This structure is initialized by the initialization function subscribe, that
receives an already initialized network interface context, the resource on which we
want to subscribe, and a temporary memory object used internally by the subscriber
to read the version of the defined memory objects. The latest version can be then
compared with the version received from the provisioning server.

The subscriber has a default subscriber callback that is implemented by the
library. However, if the user wants to interact with a different provisioning server,
the subscriber supports the definition of an external callback that matches the
server protocol. When the process is finished, the subscriber should be closed using
the unsubscribe functions. This function cleans the subscriber context, but does
not close the network interface context, which can in this way be reused by the
receiver.

Receiver

The receiver module is in charge of receiving the update image from the provi-
sioning server. The receiver module has its own context, used to store information
on the received image and on the status of the download. The receiver context
must be initialized with an already connected network interface context, the re-
source from which we want to receive the firmware, and an already open memory
object used to store the update image.

The receiver works in an iterative way, exposing the receiver_chunk function
that receives and stores a chunk of the update image at each iteration. This allows to
save internally the reached state and recover from them in case of network failures.

When the image has been received, the receiver_chunk sets a flag in the receiver
context that must be read by the update agent to stop the execution and start
with the update image validation. When the receiver is closed, it does not closes
the network context, since if the received object is invalid the network context may
be reused again by the subscriber.
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5.2.2 Memory Modules
This module is in charge of managing the memory in a more portable way, sat-

isfying requirements SR5, CR3, and CR4. It contains an interface and two modules
based on it.

Memory Interface

The goal of the memory interface is to abstract different types of memory that
is possible to find on IoT devices, such as raw Flash access or Linux files. Moreover,
another goal was to support many memory objects and to be agnostic on their
real implementation, hence enabling, for example, to have an object in the internal
Flash and another object in the external Flash, and to interact with them using
just a single interface. To accomplish this goal, each memory object is represented
by a number defined by the library user. The library does not know what is asso-
ciated with each number and passes it to the memory implementation that maps
it internally to the specific type of object. The user must define in its program a
global vector of integers called memory_objects and declare for each element of the
array a number between 0 and 127, that represent the obj_id. The array must be
terminated with the OBJ_END value, defined as -1. This vector is used by the library
to iterate on the memory objects, until the OBJ_END value is reached.

The interface exposes five functions, used to open, read, write, flush and close a
memory object. The flush function has been introduced since the implementation
can be done using a buffered I/O. This is especially useful during the write oper-
ation, where the flash memory requires to write a full page to perform a correct
write, or when the sector must be first erased to be written correctly. In this case,
the memory implementation can store the received bytes in the buffer and flush it
just when it is full.

Next, we will analyze how the memory interface has been implemented for
Contiki-NG and Linux:

Linux: in this implementation, each obj_id is represented by a file and the previ-
ously described functions are mapped to the standard C I/O functions. Since
the read and the write functions allow to receive a relative offset, the function
lseek has been used to move the file index. Considering that in the Linux
implementation the I/O is not buffered, the flush function is not implemented.

Contiki-NG: this implementation is not usable on every Contiki-NG platform
since the used functions are specific for the TI cc26xx platform. The implemen-
tation maps each obj_id with two structures. The first, memory_object_mapper,
is used to map the ID with the type of flash, in this case, internal or external.
The other structure is used to map the obj_id to a particular offset of the
defined Flash. In this way is possible to define the size of each slot and satisfy
SR5, checking for invalid access to other objects. Considering that, at this
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level of the architecture, each slot does not necessarily need to have a mani-
fest associated, we also included a raw object, used by the bootloader interact
with the bootloader_ctx. The open function takes an obj_id and returns a
mem_object structure, which in this implementation contains the previously
described values, such as the type of Flash and the initial offset. This function
is also in charge of initializing each Flash the first time it is opened. The read
operation uses the ext_flash_read function to read from the external Flash
or copies directly the bytes in case of internal Flash with direct access. The
write function, instead, performs a buffered write, erasing and writing a page
just when it is full or when an explicit flush is required. However, due to the
RAM constraints, only one write at a time can be performed, since the RAM
of Class 1 devices has not enough space to allocate one buffer for each object.

Memory Object

The Memory Object module uses the previously defined interface to provide
more high-level functions to the library. Instead of exposing functions such as read
or write the memory, it allows analyzing the various memory objects to get the
oldest or newest firmware, copy the data from one memory object to another, read
or write the manifest stored in a memory object. These actions are necessary for
the other modules, but also to the final user, for example, to get the memory object
containing the oldest version to start a new update download on that object.

Some of the functions of this module take in input a temporary memory object,
used to open internally the various defined objects. Considering that the memory
object structure can be defined by the library user, the library is not aware of the
content of a memory object and cannot allocate it internally. For example, the
get_oldest_firmware function, needs to open each slot and to read its metadata
in order to to compare the various versions. Thus, it needs a pointer to a memory
object structure where the object can be opened.

Manifest

The manifest can be seen as a set of data regarding the image. It can contain
arbitrary data used by the final application, but its primary goal is to provide the
necessary information to allow the correct version comparison, platform matching,
signature verification and to successfully load the update image. Each image that
must be transmitted for an update must contain a manifest. Its content is mainly
based on the security requirements identified in Subsection 4.2.2.

Considering our architecture based on two servers, we have a general manifest
containing two manifests, one filled by the vendor (called vendor_manifest) and
the other filled by the provisioning server (called server_manifest). Those two
manifest are contained in a general manifests structure that also includes a signature
for the vendor_manifest and a signature for the server_manifest.
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The vendor manifest contains the following fields:
• size: the size of the image;

• offset: the offset from which the image should be loaded;

• version: the version of the image;

• platform: the platform for which it has been built;

• digest: the digest of the image;

• server key: the public key of the provisioning server.
The last field is not mandatory since the public key can be also stored in the

internal memory of the client. However, storing the public key of the provisioning
server in the manifest allows some kind of revocation in case the provisioning server
public key has been compromised.

The server manifest, instead, contains:
• identity: a structure containing the identity of the client for which the update

image has been built;

• self checking flags: a set of flags to be used in the future to support commit-
ted boot, a feature that allows testing an update and rollback in case it does
not pass all the required tests.

Now that we defined the fields required by the manifest, we need to specify its
encoding. Many encodings are possible, such as XML or JSON. However, each of
them requires a parser and, considering the constraints of our platform and require-
ment CR2, such a choice would increase the size of the final solution. Hence, for
our solution, we decided to encode the manifest in binary format, using a standard
C struct. The advantages are obviously the small representation and the possibil-
ity to read it without any explicit parser, just using a binary read in C. However,
the solution has been designed and implemented to support future encodings and
satisfy PR4, being agnostic to the manifest format. During the whole development
of the library, much effort has been spent to ensure no direct access to the manifest
struct and that every field is accessed using a specific getter method. This makes
easier to support in the future other manifest encodings and to change the data
organization without changing the code that works with it.

A suitable encoding format for embedded devices is the Concise Binary Object
Representation (CBOR), a standard defined by the IETF in RFC 7049 [39]. It is a
data serialization format based on JSON and allows to transmit data objects that
contain name-value pairs in a binary form. Similar to JSON, it does not require
the use of any schema and is widely extensible to integrate other data types. It has
been designed to allow extremely small code size, and the smallest implementation
of a parser is just 880 bytes. It is the serialization protocol to be used in conjunction
with CoAP, thus it would be a good match with our architecture.
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5.2.3 Security Modules
The implementation of the security modules consists of high-level interfaces im-

plemented using different cryptographic libraries. This allows to perform the veri-
fication of a memory object using the same code, but using different cryptographic
libraries, enabling the library users to include the one that better fits their require-
ments. This design satisfies the PR3 requirement.

Supported Libraries

Libpull currently supports three cryptographic libraries:

• TinyDTLS [40]. It is a library that provides all the functions to create a
DTLS connection. It supports many cryptographic algorithms, such as Ri-
jndael (AES), SHA256, HMAC-SHA256, ECC (with secp256r1 key). It can
perform the DTLS handshake using PSK or the ECDH algorithm. It is dis-
tributed under the MIT license and maintained by the Eclipse for IoT project.

• TinyCrypt [41]. It is a small-footprint cryptography library that targets
explicitly constrained devices. It supports many cryptographic algorithms,
such as SHA-256 hash functions, HMAC-SHA256, AES-128 (with AES-CBC,
AES-CTR, and AES-CMAC encryption modes), ECC-DH key changes, and
ECDSA. It is built in a modular way, allowing to include only the required
modules. The library is maintained by Intel.

• Atmel CryptoAuthLib [42]. This library is provided by Atmel to interact
with their CryptoAuthentication modules. It is a very modular library and
bases its function on a HAL layer in charge of communicating with the device
using I2C or SPI. The library exposes a simple API and an advanced API
and allows to build custom commands to be sent to the HSM. The library
needed some patchs to work correctly with Contiki-NG and our board. We
used this library to interact with with the ATECC508a and ATSHA204a chip,
connected to the board using the DevPack interface and the I2C bus. The
DevPack is shown in Figure 5.2, and has been made by Markus Schuß, a PhD
student at Graz University of Technology supervising this thesis.

Figure 5.2: DevPackSecure.

These libraries are included to perform SHA-256 digest and ECDSA verification.
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Cryptographic Libraries Memory Footprint

The choice of the cryptographic library to include was sustained by an analysis of
the memory footprint of several cryptographic libraries, to identify the smallest in
terms of Data and Text size. On the final implementation for Class 1 devices, based
on Contiki-NG, the loading of the update image must be done by the bootloader,
that must also validate the update image before loading it, including a crypto-
graphic libraries. This implies that the cryptographic library will be included two
times in memory, and thus its memory footprint must be as smaller as possible.

The comparison has been performed building a simple application able to per-
form the verification for each library and comparing the size of the hashing function
and the ECC functions. The output of the comparison is presented in Table 5.1,
and shows that TinyDTLS is the smaller library for performing verification. How-
ever, the memory footprint difference with tinycrypt of 11535 bytes makes them
both a good candidate for our implementation. The libraries has been build for the
Linux architecture, and evaluated adding the following compiler flags to the build:
-Os -ffunction-sections -fdata-sections -Wl,--gc-sections.

Library SHA2 ECC ECDSA
TinyDTLS 3800 7531 9888
tinycrypt 3656 8968 11241
PolarSSL 6056 23046 27735
MatrixSSL 3864 29103 34022
WolfSSL 4592 31443 34777
LibTomCrypt 4354 35959 38256

Table 5.1: ECDSA memory footprint.

Digest Module

The digest module is used to enable the security functions to use different digest
algorithm and implementation library without changing the code. For example, the
function used to verify the signature may perform the hashing of the update image
using the SHA-256 or the SHA-512 algorithm. Moreover, the previous algorithm
could be implemented using different cryptographic libraries, for example tinycrypt
or TinyDTLS.

This modularity is reached using a structure, digest_func, that contains func-
tion pointers for the specific digest functions, the size of the produced digest and
a buffer of that size used to store the result. This implementation is supported
by the fact that all the analyzed libraries use the same approach to calculate the
digest. The first step is to initialize the hash context, then update the hash with
data chunks, finally get the hash with the finalize function. For each algorithm and
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library, we implemented a function wrapping the real one, such that all of them
have the same function signature. Moreover, to simplify the functions and reduce
the memory footprint, for each combination of algorithm and library, a new func-
tion has been created. This means that the CryptoAuthlib hardware and software
digest is implemented with two different functions, but that exposes the same API.

ECC Module

The ECC module is used to expose the Elliptic Curve Cryptography functions
in a portable way between the different used implementations. Its implementation
is very similar to the already discussed digest implementation, using a struct of
function pointers to instruct the functions on the specific algorithm and library to
use.

For each library and algorithm, two functions have been created, implementing
the high-level ECC interface. The first is the ecc_verify function, that takes as
input the X and Y parameter of the signer public key, the R and S parameter
of the signature, the data to be validated and its length. The type of curve to
be used is indicated by the name of the function. For example, in case we want
to perform the verification using TinyDTLS and the secp256r1 curve, we will use
the tinydtls_secp256r1_ecc_verify function. If, instead we want to use the
tinycrypt implementation, the tinycrypt_secp256r1_ecc_verify function must
be called. The second interface that has been implemented is the ecc_sign function,
that allows generating a digital signature using the defined algorithm. It follows the
logic previously described for ecc_verify.

Verifier Module

The verifier module uses the digest interface and the ECC interface to verify
the update image signature, working directly with a memory object. It takes as
input the already open memory object, the public key X, and Y parameter, and
the digest and ECC function struct previously defined.

The function initially performs the digest of the memory object and compares it
with the digest stored into the manifest. To calculate the digest it reads the image
in chunks into a buffer passed by the caller, that can define the size of the buffer
accordingly to the platform constraints. If the digest is not correct the function
returns, otherwise, it moves forward verifying the vendor and the server signatures.
If both are valid the verification is successful.

This verification function could be improved by splitting the verification func-
tion in two distinct functions, one to verify the digest and the other to verify the
manifest signature. This would empower the receiver to verify the signature as soon
as possible, not receiving the whole update image in case the validation does not
passes.
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5.2.4 Common Modules
The previously identified components are necessary to perform the update pro-

cess. However, each component needs to deal with error reporting and logging, to
make easier testing and integrating the library. The common modules are included
by all the other modules. Some of them are:

• Error. Defines an enum containing the errors for each module. It also generates
a string for each error, used to log an error in a readable but memory efficient
way. This reduces the size of the error logging functions, since it allows to
log errors printing only their name without adding specific strings. It could
be useful to debug the library with high constraints in term of memory, that
prevents to include all the the debugging strings;

• Logger. Provides logging function and macros with different logging level,
used to debug the library and reduce the logging output if not necessary. Four
incremental verbosity levels are supported: error, warning, information, debug.
When a verbosity level is selected also all the previous level are enabled. This
means that in case the information level is selected, also errors and warnings
are printed. The verbosity level can be selected at compile time, defining a
preprocessor macro, or at runtime, defining a global symbol. The definition at
compile time allows the compiler to remove all the logging instructions with
a verbosity level lower than the previously defined one, reducing the memory
footprint. When defined at runtime instead, all the logging instructions will
be included also if a low verbosity level is used;

• External. This module is very important since it defines the global symbols
that must be implemented by the user. These global symbols are needed to pass
some configuration to the library function, without having a specific argument
on each function. Considering that external unresolved symbols can generate
linker errors difficult to understand, the only external symbol that is required
by the library is a vector of memory object id, that will be used to compare
the memory objects to find the oldest or the newest one;

• Types. Defines custom C types that are used in the whole library. This module
is important to grant consistency, for example defining in one single point the
size of the version or the size of the pointer used to reference internal memory;

• Identity. Defines a structure that is used to declare the device identity, such
as a Unique Device Identification (UDID), and pass it to the various functions,
such as the receiver that needs to verify the identity contained in the received
manifest;

• Callback. Defines in one single point the format of the callback used in the
library. It is mainly used from the network modules, such as the network
interface, the receiver, and the subscriber.
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5.3 Library Users
To evaluate the library we created two update agents, one for Contiki-NG and

one for Linux, and a bootloader, used on the board running Contiki-NG to apply
the updates. We consider all these implementations as users of the library and, in
fact, they are not included in the library itself, that aims to be used to build any
generic update agent, bootloader or application the user needs. However, they can
be used as a guide for implementing other update agents, and for this reason, the
design and implementation choices will be discussed in the next sections. Moreover,
we will introduce a utility that has been built to support the generation process
and that is needed to generate manifest compatible with the libpull library.

5.3.1 Update Agent
The update agent is the application using the libpull library to effectively per-

form the update. It is in charge of communicating with the network and coordinate
the operations to successfully download, verify and apply the update image. It
should be normally executed in parallel to the standard application. In this way,
when an update is available, the device will require the minimum time to obtain it.
However, the update agent could be started only at specific time intervals, according
to the device and application requirements.

We developed two update agent. One for Contiki-NG and one for Linux. They
have the same logic, but a slightly different implementation was required due to
the Contiki-NG execution model, based on protothread, that requires each process
yielding its execution to return the control to the main loop. This can be done only
from a process itself and thus the Contiki-NG update agent has been implemented
as a Contiki-NG PROCESS. The Linux version instead has been used as integration
test to validate the whole architecture. It downloads the update to a file instead of
using the flash and uses the network interface implementation based on libcoap.

The Linux implementation can be compiled as a standalone program and used
to update a specific file. If more logic is added to the update agent, it could be used
to check the update for different files. However, this is not the generic approach for
which the library has been developed.

The update agent defines all the configurations of the library, such as the end-
point used, the resources that must be contacted by the subscriber and the receiver,
the type of connection that must be used, the polling timeout. Moreover, it must be
able to recover the various errors, and fail if they are not recoverable or try to re-
cover them if it is possible. For this reason, the update agent has been implemented
as a while loop that exits only if an unrecoverable error has been encountered or
the update process is successful.

Figure 5.3 shows the main operations performed by the update agent, and each
operation is represented by the effective function exposed in the libpull library.
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Figure 5.3: Update agent execution flow.
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5.3.2 Bootloader

The Contiki-NG implementation was based on static loading, described in Sec-
tion 4.3. This requires storing the running image in the internal Flash memory and
the supplementary memory objects in the external Flash memory. The images are
moved from one slot to the other by the bootloader, that must be located at the
address where the CPU starts its execution. We see the bootloader as a user of the
libpull library and, in fact, has been implemented using the libpull APIs to access
the memory and perform validation.

Some parts of the logic and the implementation of the bootloader were inspired
by an already developed project for the TI CC2650, developed by Mark Solters [43].

We developed the bootloader on top of a stripped version of Contiki-NG. This
approach, compared to the one of building the bootloader as a standalone appli-
cation, increases the final size of the bootloader but also reduces the complexity
to port it to another architecture supported by Contiki-NG. To reduce the size of
Contiki-NG it was required to modify some internal functions in charge of loading
some board peripherals. This approach also facilitates the interaction with the ex-
ternal memory and the I2C bus, that are initialized during the Contiki-NG startup
process for each supported platform.

The execution of the bootloader differs from the first execution, called bootstrap,
to the successive executions. During the bootstrap the external memory objects lo-
cated in the external flash are erased, and if the recovery image is enabled, the
running object is stored into a specific memory object located in the external mem-
ory, allowing a fast recovery in case of failures. To recognize the first run from the
other runs, the bootloader needs to store its state in a persistent memory. This
is done defining a new memory object, called bootloader_ctx, that is stored in
the last page of the internal memory and contains a bit, used to indicate if the
bootloader is running for the first time. The bootloader_ctx is generated during
the building phase and flashed to the board at the correct offset. The first_run
bit is initially set to one and can be only set to 0 once by the bootloader, since to
reset it an erase of the last sector is required, but in the board used for testing is
not possible since it contains the CCFG, a structure containing booting parameters
read by the CPU at boot time.

If the bootloader finds a newest version in one object of the external memory,
it verifies the signature of that object and, if valid, copies it to the running object,
ready to boot. We performed the verification of the newest firmware before the
copy, directly on the external Flash. This requires more time, since the external
flash memory is slower, however if the object signature is invalid it does not make
sense to copy the object to the internal Flash memory, that later needs to be
restored. Moreover, the internal Flash memory is accessed through a cache and if
its content changes the cache must be invalidated and reloaded.

An important operation performed by the bootloader is to write protect all the
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sectors of the internal Flash before loading the image, blocking in this way the
update agent and all the software running after the bootloader from modifying all
the content of the internal memory and prevents an attacker to store persistent
data in the internal Flash. The execution flow is summarized in Figure 5.4.

Figure 5.4: Bootloader execution flow.
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5.3.3 Firmware Tool
To generate the update image an utility program has been implemented, called

firmware_tool, able to accomplish many operations related to the creation of the
update image. As already introduced an update image includes the image, that
is the output of the build toolchain, and the manifest, that contains information
able to describe the image itself. The manifest must be created according to the
encoding used, that in our case is a simple C struct. The firmware_tool utility is
able to generate the manifest when invoked with the correct command. The first
implementation of this utility program has been done in C, however, it has been
moved later to C++ 11, since it enables a higher level programming and includes
in the standard library many useful features used to build the tool. The tool can
be invoked with three different commands:

• keys: allows to generate or validate a set of public keys;

• manifest: allows to generate, validate or print the content of a manifest;

• configs: allows to validate, print or store the configurations.

The goal of the first and the second command are obvious in the context of the
update process. We included the third command following the approach used by
many modern tools nowadays, such as using a configuration file in the folder where
the program is executed to import a specific configuration, removing the need of
passing the arguments in the command line. This means that the firmware_tool
program is able to take the commands as a standard command line parameter
(i.e., -f for the output file, -k for the signing key) but also importing them from a
configuration file. This has several advantages, such as:

• have a configuration file for each folder containing a different project, without
the need of building complex scripts to invoke the program with the correct
arguments;

• allow the versioning of the configuration file with the project itself, knowing
exactly the configuration used to build the update image for each specific
version;

• allow validating and modifying the configuration before applying them, for
example checking the existence of all the required signing keys before invoking
the program;

• validating the manifest using the same parameter used to build it, reducing
errors and the need of storing them explicitly.

To store the configuration the JSON format was used first. However, after a re-
view of the possible encodings, we decided that TOML[44] was the more appropriate
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to storing configurations since, in comparison to JSON, has a more understandable
encoding, the possibility to include comments into the configuration (i.e., explicitly
document a configuration), and an easier syntax compared to JSON and YAML.

When invoked the firmware_tool checks the presence of a default libpull.toml
file in the current directory and, if present, loads from there the parameter. In this
way, invoking firmware_tool manifest generate is sufficient to generate a valid
manifest with all the required fields for that specific update image.

5.4 Testing
Much effort has been spent on testing the implementation. Having a high code

coverage level with Unit Testing was a requirement to ensure the correct behavior
of the single functions that are composed to create the update agent. Moreover,
testing them on the developing machine reduces the developing and debugging
time compared to a direct testing on the developing board.

To reach a high coverage level, a deep analysis of the behavior of each function
needs to be done, going through all the possible execution path and ensuring that
a function is able to fail correctly in case the called functions return an error. This
implies the need of managing the return values of the functions used internally by
the component we want to test. This is normally performed using function mocking,
a technique not easy to implement in C, at least without complex algorithm or
additional code generation. There are three main approaches to perform function
mocking in C:

• Using weak symbols. This technique consists in defining the mocking func-
tions as hard symbols during the testing phase and override the weak symbols
of the implementation. This approach has been avoided since it can introduce
many bugs and result in linker error when building the library with different
compilers;

• Use specific compiler directives. This technique requires to pass a specific
command line argument to the compiler during the test build, indicating the
symbol that needs to be replaced. This approach has been discarded since it is
not portable to all compilers. For example, the command to replace a symbol
is not equal in gcc and clang.

• Mocking code generation. This technique requires to generate, automati-
cally or manually, additional mocking code that must be linked instead of the
real implementation to change the behavior of the functions.

The last approach has been used since, even if it requires some more effort, it
is the more portable solution and allows to run tests directly on the development
board, cross-compiling them with the correct compiler. To generate the mocking
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code, the CMock framework has been used initially. This is a ruby script that
parses a C header and automatically generates another C header able to mock the
defined functions. This tool was integrated with the Ceedling build system, that
was initially used as a test runner. This choice was supported by the low effort
required to maintain this build system and allowed to reduce the development time
during the first phases since it automatically tracks each newly added module.
During the last phase of the development, the Ceedling build system has been
replaced with the standard GNU build system, that using Autoconf and Automake
generates a Makefile able to build the library and the tests itself. This allowed
removing Ceedling and the ruby dependencies in favor of a more standard way of
building C libraries. The CMock framework used to autogenerate the mocking files
was removed with Ceedling, and considering that the number of files that needs to
be mocked is currently limited, the mocking files have been generated manually,
using a struct of function pointer to redirect the function execution.

To perform the tests the Unity testing framework has been used. After a review
of the possible frameworks, we found on Unity the most readable, dynamic but also
a simple testing framework, fully compatible with embedded devices. This choice
was motivated by the idea that while porting the library to a new platform, the
interfaces can be validated running the tests directly on the device.

Testing Server
To test the implementation a testing server has been implemented. The language

used for the implementation is C, that allows to include directly the structures
used in the library without the need of translation to other languages. The server
listens for CoAP and CoAPS request, and uses libcoap[38] as a network library.
The server exposes various resources, usable to check the version and receive the
update. Moreover, it exposes also resources useful for the testing itself, such as
an invalid_version to test the subscription module, a next_version resource
that increments the current version and generates a new signature, useful when
a sequential download is required, and a invalid_size resource used to send an
update with an invalid size and test the receiver implementation.

Continuous Integration
The unit and integration tests have been executed using Travis CI [45], an online

service to perform continuous integration and execute the tests for each new commit
performed on a linked repository. This service has been integrated with GitHub,
used as a versioning service, and was very useful to detect regression during the
developing phase, ensuring that every newly added feature does not compromise
the already implemented one. This tool has been integrated with Coveralls[46], an
online service that allows to monitor the coverage percentage over time.
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Chapter 6

Evaluation

The solution has been evaluated in terms of memory footprint, execution time,
and energy consumption. Only the Contiki-NG version has been evaluated since is
the only one that we were able to test on a real board. The Linux version has been
tested only on the developing machine.

To perform the evaluation we used two TI SimpleLink Sensortag CC2650, de-
scribed in Subsection 2.1.1. One acting as the device that needs to be updated,
and running the bootloader and the update agent, and the other acting as a bor-
der router, to interface the 6LoWPAN network with the interface of the computer
running the server. We used the ping command to measure the round-trip-time
between the computer running the server and the device that needs to be updated,
that was of 17.842 ms with a standard deviation of 2.420. To perform the test in a
repeatable way a fake update image was created with a size of 91kB. In fact, dur-
ing the first evaluation, the update agent was recursively downloading itself with a
newer version, however, this approach was faulty since the size of the update image
is different when using different configurations for network and cryptographic li-
braries. For this reason, the update agent was slightly modified to download a fake
firmware (with a valid manifest) and invalidate it before the activation phase.

To increase the quality of the data, removing outliers and judging the repeteabil-
ity, we performed each evaluation ten times, to have an average value and remove
possible outliers. This process was supported by a set of preprocessor macros cre-
ated to obtain time and energy consumption in a specific code section, based on
the Contiki-NG Rtimer and Energest. For each measurement, the module logged a
comma-separated value (CSV) to the serial interface, that was stored in a file for a
successive post-processing. All the possible combinations of cryptographic libraries
(TinyDTLS, tinycrypt, CryptoAuthlib) and connection (simple UDP, DTLS PSK,
DTLS ECDSA) have been considered, but not the combination of DTLS and tiny-
crypt since the verification primitives are already provided by TinyDTLS used to
perform the DTLS connection. The energy consumption has not been measured
when using DTLS ECDSA due to an incompatibility with the Energest module.
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6.1 Memory Footprint
Considering requirement CR2, “small memory footprint”, we need to ensure

that the library has the smaller memory footprint as possible and that it fits on a
real Class 1 device. The ROM and RAM size of the device used for the implemen-
tation are respectively of 128 kB and 20 kB.

The library has been built for each configuration of update agent and bootloader
and its size has been evaluated using the size command line utility, passing in input
the Executable and Linkable Format (ELF) file generated by the build system. Since
each configuration includes different logging strings, we removed all the logging
output of the library before calculating the memory footprint.

Table 6.1 shows the memory footprint of the update agent for each configura-
tion of connection type and verification library. The size includes the Contiki-NG
operating system, the CoAP library and the cryptographic library.

Connection Verification Lib. Text Data Bss Tot. RAM Tot. ROM
UDP Tinycrypt 74812 1909 12560 14469 76721
UDP TinyDTLS 72860 1905 12560 14465 74765
UDP CryptoAuthLib 72532 1908 13064 14972 74440
DTLS_PSK TinyDTLS 92097 2029 15172 17201 94126
DTLS_ECDSA TinyDTLS 92147 2129 15188 17317 94276
DTLS_PSK CryptoAuthLib 96097 2113 15676 17789 98210
DTLS_ECDSA CryptoAuthLib 96147 2213 15692 17905 98360

Table 6.1: Contiki-NG update agent memory footprint.
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Figure 6.1: Contiki-NG update agent memory footprint.
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To optimize the library it was necessary to analyze several times the symbols
exported, using the objdump command line utility, to optimize the ones with the
highest impact in text, data or bss.

As it is possible to see from Table 6.1, the size of the update agent fits perfectly
in the available ROM and RAM of the tested device. However, the ROM must also
be shared with the bootloader that is placed at offset 0x0 of the internal flash.
The size of the bootloader is shown in Table 6.2 and in Figure 6.2. The bootloader
was able to fit inside 4 pages of size 0x1000 bytes, for a total size of 16kB. As
already explained, the bootloader is based on top of a Contiki-NG image to make
it easily compatible with every platform supported by this OS. A bootloader made
as a standalone program would have a smaller memory footprint but a higher
complexity to integrate it with other platforms.

Bootloader Configuration Text Data Bss Tot. RAM Tot. ROM
TinyDTLS 14420 313 5948 6261 14733
Cryptoauthlib 14669 361 6416 6777 15030
TinyCrypt 15765 280 5908 6188 16045

Table 6.2: Contiki-NG bootloader memory footprint.
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Figure 6.2: Contiki-NG bootloader memory footprint.

The total RAM required has been calculated as the sum of Data and Bss. The
first contains all the initialized variables that must be loaded from the binary dur-
ing its execution, the second contains instead the uninitialized variables for which
is only necessary to allocate memory without loading its value from the binary.
Consequently, the total ROM usage has been calculated as the sum of Text and
Data, since the initialized variables must be stored in the ROM. The Text section
contains all the executable code.
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6.2 Execution Time
To evaluate the time of each phase, the Contiki-NG RTIMER has been used, that

provides scheduling and execution of real-time tasks, with predictable execution
times. The execution time has been measured for each phase, from the subscription
to the verification one.

Since the subscription phase requires to communicate with the network, we
modified the update agent to wait for a valid network setup, ensuring that the
RPL network has been set up and that a route has been found, able to route 10
ICMPv6 Echo Request packet to the server.

To make the evaluation more reliable and similar to a real environment we used a
feature of the testing server to simulate a packet loss. We used three different values
of packet loss: 0%, 5% and 15% to simulate the different possible environment.

Network and Subscription (s) Reception (s)
packet loss Min Max Avg Min Max Avg

UDP (0%) 0,0196 0,0200 0,0198 40,1780 44,8667 40,7912
UDP (5%) 0,0197 3,2722 0,3454 290,5921 371,9002 326,2205
UDP (15%) 0,0210 4,2962 0,4502 1.088,0753 1.277,3947 1.160,1717
DTLS PSK (0%) 3,0382 4,4221 3,8186 55,7232 56,2592 55,8622
DTLS PSK (5%) 3,3447 12,4348 4,6692 280,3839 423,6849 368,5568
DTLS PSK (15%) 3,6335 23,2770 6,7628 1.075,7546 1.296,8305 1.170,5456
DTLS ECDSA (0%) 23,9700 26,8803 25,5986 55,7668 59,3859 56,5797
DTLS ECDSA (5%) 24,5148 33,2222 27,2220 325,6834 448,2559 370,4337
DTLS ECDSA (15%) 24,5753 349,7438 73,9708 1.084,1773 1.344,2163 1.191,0994

Table 6.3: Propagation phase execution time.
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Figure 6.3: Propagation phase execution time.
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The packets are discarded in a random way by the server and for its total du-
ration and not the duration of each phase. This means that when the server is
configured with 15% of packet loss, there could be a subscription phase with 0%
of packet loss and a subscription phase with 50% of packet loss, thus performing
multiple measurements was even more important to find an average value similar
to a real environment.

As we can see in Figure 6.3b, the reception time is very similar during the
reception for each network configuration. This can be explained by the fact that
the DTLS handshake is performed only during the subscription phase and the
connection is reused also for the reception phase. For this reason, the subscription
phase time is much increases from UDP to DTLS PSK and increases significantly
from DTLS PSK to DTLS ECDSA, as shown in Figure 6.3a.

As is possible to see in Table 6.3, the packet loss impact is higher in the con-
figuration with DTLS ECDSA, since it requires several packets sent in the correct
order to perform a valid handshake. Is possible to notice that instead of that in the
reception phase the packet loss percentage has the same impact in all the configu-
rations, moving from a value in the order of 50 seconds with no packet loss, to a
value in the order of 20 minutes with 15% of packet loss.

Verification Phase TinyCrypt TinyDTLS CryptoAuthLib

Digest (ms)
Min 455,29 422,58 403,20
Max 455,35 422,64 403,29
Avg 455,32 422,60 403,25

Vendor Signature
Verification (ms)

Min 567,99 6449,80 86,91
Max 568,02 6449,83 86,98
Avg 568,01 6449,82 86,94

Server Signature
Verification (ms)

Min 567,47 6245,79 86,79
Max 567,50 6245,88 91,86
Avg 567,50 6245,81 87,34

Table 6.4: Verification phase execution time.

Table 6.4 shows, as expected, that the verification time is always constant be-
tween the iterations. In fact, it only slightly differs of few milliseconds in the server
verification when using CryptoAuthLib and ATECC508a, due to a little response
delay of the device when it is switched to sleep mode after the first verification.

In the case of CryptoAuthLib, the digest is calculated using the software imple-
mentation provided by the library. Although the ATECC508a is able to calculate
the SHA-256 digest, sending 90 kB in chunks of 64 bytes to the device is much slower
than using the software implementation. The hardware implementation could in-
crease the security of the solution because it is able to verify a signature performing
the digest algorithm internally and using the output as directly for the verification.
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However, this path has not been explored considering the higher time required to
send all the chunks to the device.

Table 6.4 also shows the higher time required by TinyDTLS to perform an
ECDSA verification. This operation must be also performed during DTLS hand-
shake when using the ECDSA configuration and can explain the higher value com-
pared to the DTLS PSK handshake. This makes the configuration with TinyDTLS
the only one where the verification has an impact on the time of the update process,
as shown in Figure 6.4.

Configuration Subscribe (s) Receive (s) Digest (s) Vendor
Signature (s)

Server
Signature (s)

Total
Time (s)

UDP
CryptoAuthLib 0,0198 40,7912 0,4033 0,0869 0,0873 41,3885

UDP
Tinycrypt 0,0198 40,7912 0,4553 0,5680 0,5675 42,4018

UDP
TinyDTLS 0,0198 40,7912 0,4226 6,4498 6,2458 53,9292

DTLS PSK
CryptoAuthLib 3,8186 55,8622 0,4033 0,0869 0,0873 60,2583

DTLS PSK
TinyDTLS 3,8186 55,8622 0,4226 6,4498 6,2458 72,7990

DTLS ECDSA
CryptoAuthLib 25,5986 56,5797 0,4033 0,0869 0,0873 82,7558

DTLS ECDSA
TinyDTLS 25,5986 56,5797 0,4226 6,4498 6,2458 95,2965

Table 6.5: Average execution time for phases and configurations.
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Figure 6.4: Average execution time for phases and configurations.
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6.3 Energy Consumption
The evaluation of the energy consumption has been done since the solution,

libpull, aims to be used on Class 1 devices battery powered, where the energy
consumption is important to determine the lifetime of the device, since this kind of
devices are tipically battery powered. We will evaluate the energy consumption in
mAh, and to have a criterion for comparison, the capacity of the CR2032 (a typical
cell coin used in many IoT applications) is of 240 mAh.

The measurement are performed using the Contiki-NG Energest [47] module,
that provides a lightweight, software-based energy estimation, based on the number
of clock cicles spend by the CPU and the Radio in each phase. It supports five
different measurement types, three for the CPU (active, low power mode or deep
low power mode) and two for the radio (transmit or receive). Dividing the value by
the number of ticks elapsed during the whole measurement it is possible to obtain
the percentage of time spent by the CPU or the Radio in each phase and estimate
the power consumption based on the current required by the component.

Network and
packet loss

Subscription (mAh) Reception (mAh)
Min Max Avg Min Max Avg

UDP (0%) 3,99E-05 4,05E-05 4,01E-05 7,86E-02 8,70E-02 7,97E-02
UDP (5%) 4,01E-05 4,63E-05 4,09E-05 5,28E-01 6,74E-01 5,90E-01
UDP (15%) 4,25E-05 7,71E-03 8,12E-04 1,96E+00 2,30E+00 2,09E+00
DTLS PSK (0%) 5,49E-03 7,97E-03 6,89E-03 1,09E-01 1,10E-01 1,09E-01
DTLS PSK (5%) 6,05E-03 2,23E-02 8,42E-03 5,12E-01 7,69E-01 6,70E-01
DTLS PSK (15%) 6,56E-03 4,18E-02 1,22E-02 1,94E+00 2,34E+00 2,11E+00

Table 6.6: Propagation phase energy consumption.
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Figure 6.5: Propagation phase average energy consumption.
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6 – Evaluation

Verification Phase TinyCrypt TinyDTLS CryptoAuthLib

Digest (mAh)
Min 1,12E-03 1,04E-03 9,90E-04
Max 1,12E-03 1,04E-03 9,90E-04
Avg 1,12E-03 1,04E-03 9,90E-04

Vendor Signature
Verification (mAh)

Min 1,39E-03 1,58E-02 3,74E-04
Max 1,39E-03 1,58E-02 3,75E-04
Avg 1,39E-03 1,58E-02 3,74E-04

Server Signature
Verification (mAh)

Min 1,39E-03 1,53E-02 3,74E-04
Max 1,39E-03 1,53E-02 3,95E-04
Avg 1,39E-03 1,53E-02 3,76E-04

Table 6.7: Verification phase energy consumption.

Similarly to the time evaluation, also the energy consumption evaluation of the
propagation phase has been performed with three levels of packet loss to simulate
a real environment. As shown in Table 6.7 and Figure 6.5, the energy consumption
is highly affected with an high packet loss. In fact, with a packet loss of 15% the
energy consumption is quite doubled during the reception phase (+96,18% in case
of UDP and +94,84% in case of DTLS PSK). This, however, cannot be ascribed
to libpull, since when encountered a network error, such as exceeded timeout, the
receiver starts the reception requesting the image from the offset where the error
occurred.

As already discussed in the time evaluation, also for the energy consumption
the verification phase values are constant during all the evaluations, as shown in
Table 6.7. When performing the verification with CryptoAuthLib the energy re-
quired by the ATECC508a has been added to the CPU and radio consumption.
The component has also a small impact during the whole process due to its idle
power supply current. When considering the energy of the verification compared to
the total energy, Table 6.8 shows that the verification with TinyDTLS requires 25%
more energy in case of no packet loss compared to tinycrypt and CryptoAuthLib.
However, this value decreases to a negligible value of 1,33% in case of 15 % of packet
loss.

Network and packet loss TinyCrypt TinyDTLS CryptoAuthLib
UDP (0%) 8,37E-02 1,12E-01 8,15E-02
UDP (5%) 5,94E-01 6,22E-01 5,91E-01
UDP (15%) 2,09E+00 2,12E+00 2,09E+00
DTLS PSK (0%) 1,48E-01 1,17E-01
DTLS PSK (5%) 7,11E-01 6,80E-01
DTLS PSK (15%) 2,15E+00 2,12E+00

Table 6.8: Average energy consumption per configuration and packet loss.
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6.3 – Energy Consumption

Table 6.9 shows the energy consumption for each phase, summarizing it in the
last column. This is also visually shown in Figure 6.6. Comparing the total energy
required by the update process in optimal conditions with the capacity of a CR2032,
the impact of 10 updates (value assumed as a possible number of updates during a
device lifecycle) is very low and does not reach the 1% even when using the secure
DTLS connection. However, the impact is much higher in case we consider the
15% of packet loss, requiring the 8,72% of the total energy when using UDP and
tinycrypt and the 8,97% when using DTLS PSK and TinyCrypt. This shows the
high impact of the network in the update process and a possible optimization would
be to support delta updates and thus reduce the number of bytes to be transferred.

Network and
cryptographic library

Subscribe
(mAh)

Receive
(mAh)

Digest
(mAh)

Vendor Sig
(mAh)

Server Sig.
(mAh)

Tot. Energy
(mAh)

Impact of
10 Updates

UDP
CryptoAuthLib 4,01E-05 7,97E-02 9,90E-04 3,74E-04 3,95E-04 8,15E-02 0,34%

UDP
Tinycrypt 4,01E-05 7,97E-02 1,12E-03 1,39E-03 1,39E-03 8,37E-02 0,35%

UDP
TinyDTLS 4,01E-05 7,97E-02 1,04E-03 1,58E-02 1,53E-02 1,12E-01 0,47%

DTLS PSK
CryptoAuthLib 6,89E-03 1,09E-01 9,90E-04 3,74E-04 3,95E-04 1,17E-01 0,49%

DTLS PSK
TinyDTLS 6,89E-03 1,09E-01 1,04E-03 1,58E-02 1,53E-02 1,48E-01 0,62%

Table 6.9: Average energy consumption for all phases and configurations.
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Figure 6.6: Average energy consumption for all phases and configurations.
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Chapter 7

Conclusions

The IoT is a fast-growing technology that will change the way we interact with
the objects of our lives in the next decades. The foundation principle is to make
every object smart, interconnecting it with the Internet network to allow new kind
of interactions with users and other machines. This is performed including a small
computer inside of the object, able to empower it using sensors or actuators, but
at the same time reducing the security, safety, and privacy of the involved users.
Security represent a critical factor for this technology and must be included from the
early stages of the development phase and also during the support phase, providing
software updates.

In this thesis, we targeted the problem of software updates for constrained IoT
devices. Starting from an analysis of the available update systems for IoT, we rec-
ognized the lack of an update system suitable for constrained devices, with a focus
on a small memory footprint and low energy consumption. Moreover, we analyzed
the update process identifying its components and security threats, and deriving
the security requirements necessary to grant authenticity, integrity, and authen-
tication during the update process. Considering the high number of devices and
application requirements, we decided to build a library, highly modular and exten-
sible, usable to create an update agent that better fits the needs of the platform
and of the application. We reviewed all the requirements discussing the life cycle
of a software update, moving through the designed architecture and all its com-
ponents. We analyzed the design and implementation choices when building the
library targeting two operating systems, Linux and Contiki. Finally, we evaluated
the implementation in terms of memory footprint, execution time and energy con-
sumption, analyzing all the possible combinations of network and cryptographic
libraries supported.

As a conclusion, we think that libpull and its architecture is fully suitable for
Class 1 devices, finding a tradeoff between security and portability that fits the
device constraints, maintaining a high level of modularity that enables future ex-
tensions of the library to support other architectures and application needs.
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7 – Conclusions

Future Works
This study leaves some open research directions on how to optimize the size

of the library and its energy efficiency. A possible approach to reduce the energy
consumption is to support the delta updates, managing the reception of a patch
that can be applied from one memory object to another. This feature is present in
many update systems since it reduces significantly the size of the update, and also
the load on the server. Other possible improvements consist in supporting different
network protocols, such as MQTT for constrained IoT devices or HTTP for devices
with more powerful resources.

Another improvement of the subscriber module, would be to integrate OMA
LWM2M, that provides a standardized way to perform device management and
already includes some features to manage the device updates. This would make the
library suitable also in the context of a high number of devices, where the use of a
management server is mandatory.
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