
Politecnico di Torino
Master of Science in Mechatronic Engineering

Design and Implementation of a Touchless Machine
Interface using Embedded Linux

SUPERVISOR

Prof. Massimo Violante
CANDIDATE

Fabio Garcea

Academic year 2017-2018

http://www.polito.it

I dedicate this thesis to

my family, my girlfriend Vittoria and my friends.
Your love is the real author of this document.

Abstract

The following document will pass through the several steps that brought to the produc-
tion of an embedded system able to interpret hand movements, a human gesture interface.
This project has born as a thesis matter of study and eventually evolved into the real imple-
mentation of a complex electronic device; the following chapters represents a walk through
the choices and methodologies that brought a scratched design to an object, from the cus-
tomization of the Operating System to the development of an application.

Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisor Prof. Massimo Violante
for having constantly provided me with material and support. A second thank goes to the
colleagues from Hodierna S.R.L. and EMA S.R.L. for having shared their skills with me. At
last a special thank goes to Vittoria, Chiara, Pise, Rudy, Dave, Guarna and all my friends
for their feedbacks and suggestions.

LIST OF FIGURES LIST OF FIGURES

List of Figures

1 Packaging produced for the GestIC interface . 3
2 Acceleglove data gloves by MIT . 4
3 Kinect controller by Microsoft . 5
4 Overhaul system structure . 6
5 Real-Time operating systems basic structure . 7
6 Example of Multi-Stage Bootloader power-up process 8
7 Linux Kernel structure . 9
8 Comparison between Monolithic Kernel and MicroKernel structures 10
9 Poky-Pyro distribution package contents . 12
10 poky-pyro-17.0.1/build/conf folder contents . 14
11 udoo-community-bsp folder contents . 18
12 Build folder contents after bitbake completion . 26
13 Back view of the UDOO Neo board . 28
14 USB to TTL adapter . 30
15 UDOO Neo Development board frontal view . 33
16 Components locations on the board . 34
17 Pinout of the internal banks . 34
18 Pinout of the external banks . 35
19 MGC3130 Hillstar Development Kit by Microchip 35
20 MGC3130 Controller Layout . 36
21 I2C write cycle . 37
22 I2C read cycle . 38
23 GestIC I2C protocol . 39
24 Reference Electrode layout . 39
25 E-Field Distortion caused by human hand . 40
26 PCB layers disposition . 41
27 PCB different versions . 41
28 Hillstar reference electrode geometry . 42
29 USB to I2C bridge . 42
30 Device Tree work-flow . 45
31 VFS layer logical position . 46
32 mysources folder after creation . 48
33 mysources tree after layer setup . 50
34 gestic write() function scheme . 56
35 MGC3130 message layout . 58
36 gestic read() function scheme . 59
37 Angry IP Scanner results . 63
38 Executable file production . 66
39 Cross-compiling toolchain . 67
40 Eclipse plug-ins installation . 69
41 Eclipse Yocto SDK installation . 69
42 Eclipse Yocto SDK configuration . 70
43 GestIC API folder contents . 70
44 Application basic structure . 75
45 Debug Configurations . 79
46 Connection Configurations . 80

1

CONTENTS CONTENTS

Contents

1 Introduction 3

2 Linux Embedded 7
2.1 Linux Embedded for Embedded Systems . 7
2.2 Linux Generalities . 8
2.3 Open Embedded, Pyro and Bitbake . 10
2.4 Building a custom OS for UDOO Neo . 16
2.5 Booting the system . 27

3 Hardware References 33
3.1 UDOO Neo Full Development Board . 33
3.2 MGC3130 Hillstar Development Kit . 35

3.2.1 MGC3130 Controller . 36
3.2.2 Reference Electrode . 39
3.2.3 USB to I2C Bridge . 42
3.2.4 Other components . 43

4 Driver Development 44
4.1 Linux Drivers Generalities . 44

4.1.1 Kernel Drivers . 44
4.1.2 User Space Drivers . 45
4.1.3 Virtual File System . 46

4.2 Preparing the Yocto environment . 46
4.3 Module Device Driver Implementation . 51

4.3.1 Initializzation and Disposition functions 51
4.3.2 File Operations . 54

4.4 Deploying and Debugging the Module . 61

5 GestIC Control Application 66
5.1 Compilers and Cross-Compiler . 66
5.2 Configuring Eclipse and the Yocto SDK . 68
5.3 GestIC API Customization . 70
5.4 Application Design . 75
5.5 Application Deployment and Debug . 79

6 Conclusions 83

2

1. INTRODUCTION CONTENTS

1 Introduction

The main purpose of this thesis is to show each of the design and development phases that
brought to the production of an embedded system for human gesture recognition.

The human gesture controller developed by Microchip, the MGC3130, is able to estimate the
position of a moving point in a 3D space and to understand some of most common gestures that
can be made with the hand in order to control an action during an application. This is possible
thanks to the presence of both a controller and a panel hosting five electrodes positioned as the
cardinal points plus the center of the panel.

This technology can offer a new way to send a control within an application; the possible
fields of interest for such an interface could be for example the home automation which could
exploit the capability of this interface to understand the gestures in order to make easier the
remote control of our electronic devices, or the video gaming industry that could use it as a new
kind of controller or embeds it as an extension of the classical joysticks. Moreover it could be
used to control a moving rover or to swap the menus of our car infotainment while driving.
With a noise reduction study and the design of a different electrode-panel shape able to improve
the precision of the position tracking, this controller could be used to control robotics arms
during a precision application which could require a direct human control.

Figure 1: Packaging produced for the GestIC interface

The gesture recognition is a field in computer science whose goal is to study the human
gestures and represent them using mathematical function; the gesture recognition feature may
in fact become the natural successor of the touch-based technology. A well suited gesture
interface may one day make redundant the presence of any hardware that nowadays is used for
controlling an electronic system; this was basically the main reason that brought to the birth of
this project.

3

1. INTRODUCTION CONTENTS

Moreover a lot of companies are interested in the production and research of new gesture
recognition sensors like:

• Intel;

• Microchip;

• Qualcomm;

Since gesture recognition is a really actual topic new technologies are constantly produced in
order to find always a better solution for this purpose; the different projects that implement this
feature may thus be divided according to deployment application and the tools used to realize
the interface.

Historically the first technology able to actuate gesture recognition has been the wired gloves
technology; these devices also known as ”data gloves” basically are electronic gesture interfaces
that can be worn as common gloves. They are structured as a complex system of sensors whose
output can be studied to recognize a certain movement made with the hand; made of tactile
sensors for the fingers and bend sensors to catch finger bending movements, the gloves offer a
full gesture based control.

The first emerged prototype of data gloves is the Sayre Glove produced by MIT researchers
and was based on the use of LEDs and flexible tubes; the idea was to sense, by using photodiods,
any light variations on the tubes and estimating the bending moment received by the hand.

These kind of gloves can be defined as active since they can send direct informations through
the installed sensors. Passive gloves were, on the other hand, made as a complex system of
colored regions whose movements could be sense by a camera and eventually interpreted as
gesture. The first prototypes evolution brought to the emission non the market of the first
models of data gloves used for virtual reality as the Acceleglove, again from MIT researchers
and developers.

Figure 2: Acceleglove data gloves by MIT

4

1. INTRODUCTION CONTENTS

As pointed out there are several strategies that could be adopted to recognize a gesture; one
of them is the stereo camera vision. By using two camera whose relationship in terms of distance
is well known it is possible to model a 3D space in which the gesture can be performed. By
comparing the object position with a reference position (that could be for instance implemented
as a source of light) the motion and consequently the gesture can be estimated. One of the
probably most known implementation of this strategy can be found in the video gaming industry,
the Kinect controller produced by Microsoft for Xbox 360 and Xbox One video gaming consoles.
This device exploit both an RGB camera and a depth sensor to provide full-body 3D motion
capture; this interface is also capable to sense movements of several players at the same time.

Figure 3: Kinect controller by Microsoft

The third possibility, that is the adopted one, is to sense and recognize gestures through ges-
ture controllers and to process them through firmware or software. This is the strategy adopted
by companies specialized on gesture recognition as Gestigon and uSens companies.

During the project each of the development phases of this embedded system was touched.
Made an exception for the panel shaping problem and the design of the controller, that has been
bought as it is from Microchip, the human interface controller modeled during the project has
been created starting from the scratch; from the customized OS stack creation to the graphical
interface, from the hardware choice to the packaging the steps occurred during the project were
the following:

1. the choice of the hardware;

2. the development of a custom OS stack to run the application;

3. the design of a driver for the device;

4. the customization of an existing API to interact with the embedded system and the de-
velopment of an application running on the device;

5. the design of the structure allowing the data exchange with an host PC;

6. the design of a packaging for the controller.

5

1. INTRODUCTION CONTENTS

The system in his complex can be modeled as follows:

Figure 4: Overhaul system structure

The three main objects within the overhaul system of this projects are, as can be seen by
the graphical model, the GestIC controller, a UDOO Neo board and a Host PC.

The GestIC controller represents the sensor interfacing to the external world and thus the
entry point for the hand position raw data. It is made by two parts, the electrode-panel and the
MGC3130 controller.

The UDOO Neo board is the brain of the system as it hosts both the driver for the GestIC
controller and the application exchanging the data with the Host PC as far as the API through
which the signal coming from the sensor are interpreted.

As last the Host PC acts in this project as the Master of the chain; in fact it was used during
the first phases to create the OS running on the UDOO Neo board as well as the application
used to retrieve and send the data and, in the last phases, it represents the client within the
system since it is in charge to starts the application remotely and visualize the received data in
a graphical manner.

6

2. LINUX EMBEDDED CONTENTS

2 Linux Embedded

2.1 Linux Embedded for Embedded Systems

Even if Linux was historically born as a ”general purpose operating system” (aka GPOS)
and thus intended to animate PC hardware with Intel x86 architecture, the introduction in the
market of low cost reliable flash memory devices (as SD cards) and some of the useful features
offered by this operating system allowed him to grow in popularity also in the Embedded field
of production.
Some of those features can be summarized:

1. his File system structure, labeling it as a file oriented operating system, fits very well
those embedded application where the device hosting Linux has some mass storage com-
ponents;

2. his capability of support multi-tasking applications;

3. his high modularity makes possible to import and export source code easily thus making
it a very highly reconfigurable OS, which is a very useful feature in both the general
purpose and in the embedded fields;

4. it is an Open Source project and thanks to his nature it brings a huge documentation and
a active community support;

5. as it is a Real-Time operating system it can provide a deterministic behavior during such
applications.

Figure 5: Real-Time operating systems basic structure

In order to exploit this last feature i.e. the possibility to handle inter-processes commu-
nication easily and to manage data exchange during a real-time activity, Linux fits well those
applications where the device hosting the operating system is provided with a MMU (Memory
Management Unit) to ensure data locking features through memory mapping for task running
concurrently.

7

2. LINUX EMBEDDED CONTENTS

2.2 Linux Generalities

From the earliest phases of the project the development of a custom Linux Embedded distri-
bution was necessary, since it is useful to introduce the three main components that are at the
core of such an application.

The Bootloader is the first part of software running on the system and it is in charge of
initialize the hardware and load the Operating System from a non-volatile memory to the RAM
memory during the so called Bootstrap phase.

There are several structures in which a Bootloader can be designed: the easiest one is the
single-stage Bootloader, a single file which can initialize the hardware needed by the system and
at the same time run the Kernel. This kind of implementation is the easiest possible but it has
a great limitation in the Bootloader size; in fact this measure has to be limited, typically to
512 bytes (as for instance for the x86 architecture). It is thus not always possible to store all
the information needed during the bootstrap of a complex system within such a small portion
of memory; in those cases the most suitable design for the Bootloader is the multi-stage structure.

Figure 6: Example of Multi-Stage Bootloader power-up process

The multi-stage Bootloader is based on the concept of the single-stage Bootloader and repre-
sents it’s natural extension in terms of capabilities and complexity. In this case the Bootloader is
basically composed by several stages of Bootloading. During the bootstrap phase the first-stage
Bootloader is in charge of loading in the memory the second-stage Bootloader that is signifi-
cantly more complex than the first and is able to load in memory the Kernel of the Operating
System (or even to choose between several Kernels). The famous Linux GRUB is an example of
second-stage Bootloader.

The second necessary component of a Linux Embedded operating system is the Kernel.
The Kernel represents the core of the functionalities of an operating system and is the part of
the OS able to access and control each component of the overhaul system. The Kernel is the
first software running in RAM memory after the Bootstrap phase which in fact ends by loading
this core software in memory; the Kernel is then in charge of terminating the Bootstarp phase
and to start running the most basic functions of the system.

The primary function of the Kernel is to manage the usage of the available hardware resources
of the system. Those resources are for example the CPU, any I/O devices, the memory; moreover

8

2. LINUX EMBEDDED CONTENTS

it allows the abstraction of the mass memory as a file system for all the application running on
the device. It is thus possible to identify within a Linux system several layers or spaces that
model how the operating system allows any access to the physical resources.

In this structure any User Level application that needs to access some of the hardware re-
sources of the system, as the CPU or the memory, will always do it passing through the Kernel
space; this is done by using the so called ”System Calls”. The Kernel in fact provides to the
user space level a set of calls to functionalities as device input/output, inter-process communica-
tion, thread management, networking operations and much more; the user space is then able to
access the required functionalities only through the system calls. Moreover since those calls are
wrapped by the C library, the user space rarely calls them directly but through those wrappers
instead.
After a System Call the Kernel executes the required operations on the required resources and
brings back the results to the user level passing through the same interface as well.

Figure 7: Linux Kernel structure

The structure described so far is the so called Monolithic Kernel structure and it is only one
of the possible structures used to implement the Kernel.
An operating system can basically be based on three types of Kernel:

• the Monolithic Kernel; this kind of Kernel executes all the operations of the operating
system in the same address space (the Kernel Space). This choice guarantees an high
reliability of the system for any error occurring in the user space level, which in this case
would not propagate into the Kernel address space. This choice allows to maintain a
single very efficient Kernel but, as a drawback, any operation which needs to pass from
the Kernel has to do it through the System Call Interface thus bringing a loss in efficiency
due to non-direct access to the resources; moreover a crash of the Kernel would mean the
crash of the whole system;

• the MicroKernel; this structure moves most of the features that in the previous one were
attempted by the Kernel Space to the User Address space. This choice makes the system
more flexible and allows a greater customization capability; for instance drivers can be
loaded and unloaded at user space and any service causing errors at the user space can
simply be restarted thus not causing the crash of the whole system.

9

2. LINUX EMBEDDED CONTENTS

• the Hybryd Kernel; this kind of Kernel integrates the robustness of monolithic Kernel for
most critical processes and resources with the easy maintainability and the customization
capability of the Microkernel structure.

In the Embedded field of production the Linux Kernel is often the choice for several reasons:

1. each version of the Kernel is stable and reliable;

2. it can run on each kind of system since it doesn’t require any high computational capability;

3. it easy to customize thanks to the wide community support and the extensive documen-
tation;

4. it’s modularity features allow to decide weather a component should be or not included,
even at run time;

Figure 8: Comparison between Monolithic Kernel and MicroKernel structures

The last essential part of the Linux OS is the Device Driver; since this piece of software
has been one the first part of this project being developed, but not actually the first one, it will
be explained more extensively in the further sections.

A device driver is basically a program which allows the operating system to communicate
with a certain device (a peripheral for instance) by setting up and defining the basic functions
to access it.

2.3 Open Embedded, Pyro and Bitbake

During the first part of the project the main need was to find a suitable operating system
to be run on the selected board; the choice has eventually been the UDOO Neo which is sold
in several packages. In our case it has been used a UDOO Neo Full Board; it is important to
point out the board model since this information has been used from the very first steps of the
developing process.
The operating system running on this board is a custom version of Linux Embedded well tai-
lored on the hardware of the UDOO Neo Full board and it has been developed using the tools
provided by the the Yocto Project.

10

2. LINUX EMBEDDED CONTENTS

The Yocto Project is an open source project whose aim is to provide a set of tools to build
a custom Linux-based system regardless of the actual hardware architecture.

The latest version of the Yocto Project tools can always be found on the official page of
the project and, at the beginning of the thesis wor,k the latest release of the Yocto refer-
ence distribution was the poky-pyro-17.0.1-tar.bz2 version that can be found at https:

//www.yoctoproject.org/software-overview/downloads/. Poky is the Yocto Project refer-
ence distribution and the download package contains everything necessary to build a sample
Linux Embedded distribution, i.e, the Linux OS metadata and the Open Embedded tools.
To understand better the contents of the package downloaded it’s necessary to explain the most
important groups and projects whose synergy is able to give life to the Yocto Project tools for
Linux Embedded customization.

The previously mentioned OpenEmbedded is a project, older than the Yocto Project itself,
whose main purpose was to develop and maintain the build system necessary to create an
Operating system starting from information about ”how to build the data” and ending with the
production of an assembled package. This Project was born in 2003 but later, in 2005 it was
splitted up into another project, whose importance during this work has been crucial: it is the
Bitbake Project.

Bitbake is the build engine at the core of both the OpenEmbedded build processes and the
Yocto Project as well. However since it is a standalone project it can be downloaded and used
for different purposes. Bitbake basically is an automation engine that can be used to automatize
software building processes, as in this case. In this sense it could be compared to other well
known automation engines like Ant, but the way it works is quite different.
In order to work properly it is in fact necessary to setup a build environment for the engine
before executing the automation process.
While a part of the original project redirected the effort into the new one, the OpenEmbedded
Project continued working on metadata maintenance; the metadata in the Open Embedded
terminology represents the data structure used to manage the software building phases of an
operating system creation.

Before moving on the custom Linux distribution some experiments were done on the pre-
viously downloaded package. As pointed out the package downloaded from the Yocto Project
official website contains almost every source needed to compile a Poky Linux Embedded version,
i.e. the Bitbake build engine and the metadata needed to instruct it.
The following software packages were installed, as they are required to proceed through the
following steps, on the host PC used during this project which was running the Linux Ubuntu
16.04 version of the Ubuntu OS,at this time an LTS (Long Time Service) version:

• gawk needed to use the GNU Awk programming language for an easier handling of data
reformatting;

• wget used to retrieve files through the most commons Internet protocols as HTTP, HTTPS,
FTP;

• git-core used to retrieve file from GIT;

• diffstat used to apply patches to files;

• unzip used to decompress .zip archives;

• texinfo which is the official documentation format for the GNU project;

• gcc multilib the collection of compilers for C/C++ of the GNU project;

11

https://www.yoctoproject.org/software-overview/downloads/
https://www.yoctoproject.org/software-overview/downloads/

2. LINUX EMBEDDED CONTENTS

• build essential needed by the build system to create .debian packages;

• chrpath which allows to change the dynamic library load path;

• socat used to establish two bidirectional data streams for data transfer;

• libsdll1.2-dev useful to compile programs interacting with media features;

• xterm a standard terminal program;

• minicom a text based terminal emulation program;

• curl to transfer data through the URL syntax.

The required packages can be installed by typing this command on the terminal:

$ sudo apt-get install gawk wget git-core diffstat unzip texinfo gcc-multilib

build-essential chrpath socat libsdl1.2-dev xterm minicom curl

As previously pointed out before moving to the Yocto Project tools some experiment was done
on the Open Embedded and the Bitbake tools in order to check if everything was working fine
with the Poky Linux reference distribution, the one that in the following chapters is going to be
at the base of the definitive Linux OS built for the project.
The archive file can be extracted with

$ tar xvfj poky-pyro-17.0.1-tar.bz2

The contents of the folder that will be created represent the core of the Open Embedded
tools.

Figure 9: Poky-Pyro distribution package contents

The folder contains, as pointed out before, the Bitbake Engine tool in the form of a self
contained folder as far as some documentation folder and the LICENSE which is a mix of MIT
and GPLv2 licenses; moreover the remaining folders contain the scripts used during the building
process and the metadata; the metadata folders, whose most right name in this context is layers,
can be easily recognized as their name start with the keyword meta-.

Every layer is organized following a well defined structure and is basically composed by two
types of information: the configuration files and the recipe files. Those two type of files
represent the very necessary information to create a custom layer and will be later useful.

While the configuration files set up the properties of each layer in the form of environment
variables use by Bitbake, the recipe files are in charge of instruct it during the software building

12

2. LINUX EMBEDDED CONTENTS

process. There are several configuration file types but they can all be spotted by their extension
which is .conf ; one of the most important and easy to understand is the layer.conf file that
can be found in the conf folder of each layer.
By looking at the one of the poky layer by typing

$ cat poky-pyro-17.0.1/meta-poky/conf/layer.conf

it is possible to see how this layer.conf files is instructing the Bitbake tool on the contents of
the folder itself by adding the recipe files (.bb extension) and the ”append” files (other files
required during the building process, .bbappend extension) to an environment variable named
BBFILES.

We have a conf and classes directory, add to BBPATH

BBPATH =. "${LAYERDIR}:"

We have recipes-* directories, add to BBFILES

BBFILES += "${LAYERDIR}/recipes-*/*/*.bb \

${LAYERDIR}/recipes-*/*/*.bbappend"

BBFILE_COLLECTIONS += "yocto"

BBFILE_PATTERN_yocto = "^${LAYERDIR}/"

BBFILE_PRIORITY_yocto = "5"

This should only be incremented on significant changes that will

cause compatibility issues with other layers

LAYERVERSION_yocto = "3"

LAYERDEPENDS_yocto = "core"

REQUIRED_POKY_BBLAYERS_CONF_VERSION = "2"

This is the basic concept behind the configuration files; a better look at the recipes will be given
later while explaining the driver creation process adopted during the project.

From the main folder of the Poky-Pyro package is now possible to run the script which takes
care of initializing the previously mentioned building environment for the Bitbake engine.
It is thus possible to run the script from inside the Poky-Pyro folder with

/poky-pyro-17.0.1$./oe-init-build-env

You had no conf/local.conf file. This configuration file has therefore been

created for you with some default values. You may wish to edit it to, for

example, select a different MACHINE (target hardware). See conf/local.conf

for more information as common configuration options are commented.

You had no conf/bblayers.conf file. This configuration file has therefore been

created for you with some default values. To add additional metadata layers

into your configuration please add entries to conf/bblayers.conf.

The Yocto Project has extensive documentation about OE including a reference

manual which can be found at:

13

2. LINUX EMBEDDED CONTENTS

http://yoctoproject.org/documentation

For more information about OpenEmbedded see their website:

http://www.openembedded.org/

Shell environment set up for builds.

You can now run ’bitbake <target>’

Common targets are:

core-image-minimal

core-image-sato

meta-toolchain

meta-ide-support

You can also run generated qemu images with a command like ’runqemu qemux86’

As can be spotted by the output of the command the script ”sets up shell environment for
builds”; this means that each time a build is going to be modified the script has to be launched
at first in order to prepare the environment expected by Bitbake.
The script results in the creation of a folder called ”build”, unless it is specified differently,
within the main folder of the Poky-Pyro package; from now on that folder will contain any of
the building output of the Bitbake building process.

Since the newly created build directory represents well the format of any of the building
environment created in the several tries done during this project it is important to point out its
basic topology and the configuration files that it stores before moving into the actual project
build. After the first script execution the build folder will contain only the configuration file
folder conf.

Figure 10: poky-pyro-17.0.1/build/conf folder contents

The two files bblayers.conf and local.conf inside the conf/ folder have a crucial importance
when customizing the Linux Embedded build; the first one is the configuration file which sets
for Bitbake the paths where it will find the source code tu be built up and some run time
environment variables. Having a look at the file:

$ cat poky-pyro-17.0.1/build/conf/bblayers.conf

POKY_BBLAYERS_CONF_VERSION is increased each time build/conf/bblayers.conf

changes incompatibly

POKY_BBLAYERS_CONF_VERSION = "2"

BBPATH = "${TOPDIR}"

BBFILES ?= ""

BBLAYERS ?= " \

14

2. LINUX EMBEDDED CONTENTS

/home/user/poky-pyro-17.0.1/meta \

/home/user/poky-pyro-17.0.1/meta-poky \

/home/user/poky-pyro-17.0.1/meta-yocto-bsp \

"

can be noticed out that the variable BBLAYERS is the one storing the list of the layers
included within the build as a concatenation of string paths; this variable will be parsed by
Bitbake at run-time. At the moment the build is set up to build the three layers necessary to
produce the the plain Poky version of the Linux Embedded OS for machines included within
the meta-yocto-bsp layer.

One of the informations contained in the second file local.conf is in fact the MACHINE
architecture selected for the build; by taking a first look at the local.conf file stored in the
build/conf/ directory is possible to describe some of the most useful environment variables that
are going to be used while building the actual OS distribution:

$ cat poky-pyro-17.0.1/build/conf/local.conf

#

This file is your local configuration file and is where all local user

settings are placed. The comments in this file give some guide to the options

a new user to the system might want to change but pretty much any

configuration option can be set in this file. More adventurous users can look

at local.conf.extended which contains other examples of configuration which

can be placed in this file but new users likely won’t need any of them

initially.

#

Lines starting with the ’#’ character are commented out and in some cases the

default values are provided as comments to show people example syntax.

Enabling the option is a question of removing the # character and making any

change to the variable as required.

#

#

Machine Selection

#

You need to select a specific machine to target the build with. There are a

selection of emulated machines available which can boot and run in the QEMU

emulator:

#

#MACHINE ?= "qemuarm"

#MACHINE ?= "qemuarm64"

#MACHINE ?= "qemumips"

#MACHINE ?= "qemumips64"

#MACHINE ?= "qemuppc"

#MACHINE ?= "qemux86"

#MACHINE ?= "qemux86-64"

#

There are also the following hardware board target machines included for

demonstration purposes:

#

#MACHINE ?= "beaglebone"

#MACHINE ?= "genericx86"

#MACHINE ?= "genericx86-64"

15

2. LINUX EMBEDDED CONTENTS

#MACHINE ?= "mpc8315e-rdb"

#MACHINE ?= "edgerouter"

#

This sets the default machine to be qemux86 if no other machine is selected:

MACHINE ??= "qemux86"

The very first environment variable to be set up by this file is the MACHINE variable; the
reported output shows the possible architecture supported by the meta-yocto-bsp layer at the
moment and points out how by default it is set up as qemux86 architecture by default. QEMU
is another of the powerful tools supported by the Open Embedded Project and the Yocto Project
whose main functionality is to run a certain OS binary into a virtualized environment; this kind
of tool can be useful when a certain OS could need to be tested while the destination hardware
is not available.
Since this configuration file is intended as one of the customization entry point for the production
of the OS we could also have needed to modify directly from this file the MACHINE architecture;
This could have been the case if we had decided to use, for instance, a Beaglebone board instead
of the UDOO Neo. To have a look at the recipes of the possible machine architectures simply
list the available target architecture recipes included within the meta-layer-bsp by running:

/poky-pyro-17.0.1$ ls meta-yocto-bsp/conf/machine/

beaglebone.conf genericx86-64.conf include

edgerouter.conf genericx86.conf mpc8315e-rdb.conf

that as can be pointed out are the same machine architectures reported as an example within
the local.conf file.

It is at this point already possible to run the build of the of the Pyro distribution and to
test it using the QEMU environment simply by running the commands:

/poky-pyro-17.0.1/build$ ls bitbake <target_image>

and, after the process completion,

/poky-pyro-17.0.1/build$ runqemu qemux86

The QEMU virtualizer will take care of create a test bench for the OS built within the current
Bitbake environment.

2.4 Building a custom OS for UDOO Neo

In order to create a working operating system for a custom board the Yocto Project was useful
during these earliest phases of the thesis work. As pointed out in the previous chapter the three
mentioned projects (Yocto Project, Open Embedded an Bitbake) are strictly related one with
each other even if they coexists as different projects. To understand better the origin of this
relationship may be interesting to spend some words about the Yocto Project birth.
As explained in the previous chapter the Poky version of Linux Embedded is the reference distri-
bution maintained by Open Embedded and included within the Yocto Project reference package;
in fact the origin of the project is related to this version of the OS. Thanks to his Open Source
nature the Poky Linux OS became very popular within the embedded field at the point that in
2010 the Intel Company and the Linux Foundation started a collaboration gave origin to the
Yocto Project.

16

2. LINUX EMBEDDED CONTENTS

The two projects share:

• Bitbake metadata layer

• Open Embedded Core metadata layers

• an aligned development

The great strength of the project is it’s capability to create an OS from the scratch by simply
adding to the Yocto basic structure the BSP for the architecture of the destination device.
The BSP or Board Support Package is an hardware-specific layer of software providing those
functionalities that are strictly related to the hardware implementation like drivers and other
routines that can grant full access to hardware. Since the structure of an hardware or a SoC
like a development board (as in this case) is well clear to the hardware vendor it is typi-
cally in the interests of the vendor itself to develop and maintain its own hardware-related
BSP metadata layer. Some of the most famous development boards have a huge commu-
nity support and is thus quite easy to retrieve the BSP metadata layer for them. For in-
stance if the choice for this project would have been a Raspberry Pi as development board we
could have found the related BSP directly within the Yocto Project Source Repository index
(http://git.yoctoproject.org/cgit/cgit.cgi/?q=) by quering it.

Since in this case the board used is a UDOO Neo full (the hardware specifications will be
described in the next chapter) the first step was to retrieve the BSP related to this board. Order
tog get the required packages i used the repo tool; repo is an utility intended to make easier
the use of Git since it takes care of fetching the data form Git repositories as well as perform
actions like revision control an versioning through data upload in a automatic fashion. Run the
following commands to install repo within the home directory:

$ mkdir ./bin

$ curl http://commondatastorage.googleapis.com/git-repo-downloads/repo > ./bin

/repo

$ chmod a+x ./bin/repo

$ export PATH=$PATH: ./bin

Then let’s set up a folder to contain the downloaded source

$ mkdir udoo-community-bsp

$ cd udoo-community-bsp

/udoo-community-bsp$ repo init -u https://github.com/graugans/udoo-community-b

sp-platform -b pyro

$ repo sync

As can be noticed the ”repo init -u” command is setting up the folder directly connecting it with
a specified git repository; this repository is a a forked one from a most general fsl-community-
bsp-platform repository intended to collection the BSP for Freescale products. Eventually the
”sync” command will start the download of the data, thus for those steps will be necessary both
an Internet connection and some free space on the mass storage of the host PC.

17

http://git.yoctoproject.org/cgit/cgit.cgi/?q=

2. LINUX EMBEDDED CONTENTS

During the synchronization process the required data to start a build is downloaded from
the git repository; after the sync command the contents of the udoo-community-bsp folder is
changed:

Figure 11: udoo-community-bsp folder contents

The folder now contains another folder named sources and a python script named setup-
environment; the script basically takes care of setting up the environment to run the Bitbake
command and starting a new OS build. This reminds the oe-init-build-env used to set up the
environment for the Poky OS distribution. In fact not only the script itself it’s called as wrapped
within this new script, but also the metadata of the Poky distribution is present within the BSP
(and can be found by reaching the directory /udoo-community-bsp/sources/poky). This can be
easily spotted out by by running:

$ cat udoo-community-bsp/sources/poky/oe-init-build-env | grep oe-init-build-en

v

Normally this is called as ’../oe-init-build-env <builddir>’

THIS_SCRIPT="$(pwd)/oe-init-build-env"

To set up the environment it’s now necessary to run the previously mentioned script; as can
be noticed by having a look at the example reported inside the script

.

.

.

Examples:

- To create a new Yocto build directory:

$ MACHINE=imx6qsabresd DISTRO=fslc-framebuffer source $PROGNAME build

- To use an existing Yocto build directory:

$ source $PROGNAME build

.

.

.

in order to successfully run the script it’s necessary to specify both the MACHINE architecture
(as discussed for the previous Poky build) and the DISTRO version; moreover it’s advisable to
give a name to the build directory which by default will be again ”build”.
To star the build let’s run the command:

/udoo-community-bsp$ MACHINE=udooneo DISTRO=poky source ./setup-environment udo

oneo_poky_udoo-image-full-cmdline

.

.

.

EULA has been accepted.

Welcome to Freescale Community BSP

18

2. LINUX EMBEDDED CONTENTS

The Yocto Project has extensive documentation about OE including a

reference manual which can be found at:

http://yoctoproject.org/documentation

For more information about OpenEmbedded see their website:

http://www.openembedded.org/

You can now run ’bitbake <target>’

Common targets are:

core-image-minimal

meta-toolchain

meta-toolchain-sdk

adt-installer

meta-ide-support

Your build environment has been configured with:

MACHINE=udooneo

SDKMACHINE=i686

DISTRO=poky

EULA=

Under the acceptance of the EULA (End-User License Agreements) an output like the
one listed above will be produced; as can be noticed the variables MACHINE and DISTRO
have been configured correctly, however this choice is only one of the possible choices. To
check all the machines supported by the BSP just downloaded simply create a shell called list-
available machines.sh script in the sources folder running:

$ touch udoo.community-bsp/sources/list_available_machines.sh

then edit it with a text editor as vi or gedit and fill it with the following content

#!/bin/bash

for D in ‘find . -name ’machine’‘

do

for F in ‘find "$D"‘; do

if [[$F == *.conf]]; then

S=$(echo "${F%.*}" | sed "s/.*\///")

if ["$S" != "machine"] || ["$S" != "xorg"]; then

echo $S

fi

fi

done

done

At this point run the script from inside the sources directory with

$ cd udoo-community-bsp/sources/

/udoo-community-bsp/sources$ source ./list-available-machines.sh

udooneo

secosbca62

19

2. LINUX EMBEDDED CONTENTS

udooqdl

udoox86

qemux86copy

qemux86

qemuarm64

qemux86-64

qemuppc

qemumips

qemumips64

qemuarm

edgerouter

genericx86

beaglebone

genericx86-64

mpc8315e-rdb

cubox-i

pcm052

m28evk

tx6s-8035

cm-fx6

cfa10036

wandboard

ventana

colibri-imx6

.

.

.

The result is going to be a quite long list of possible MACHINE architecture choices included
within the fetched BSP version.

The same has been done for the available target images; the image represents the configura-
tion for the produced OS; creating a script named list available images within the sources
directory with the following content:

$ touch udoo-community-bsp/sources/list_available_machines.sh

containing the following bash script:

#!/bin/bash

for D in ‘find . -name ’images’‘

do

for F in ‘find "$D"‘; do

if [[$F == *.bb]]; then

S=$(echo "${F%.*}" | sed "s/.*\///")

echo $S

fi

done

done

it becomes possible to list all the default target images included within the package:

$ cd udoo-community-bsp/sources/

20

2. LINUX EMBEDDED CONTENTS

/udoo-community-bsp/sources$ source ./list_available_images

udoo-image-qt5

udoo-image-full-cmdline

initramfs-debug-image

initramfs-kexecboot-image

initramfs-kexecboot-klibc-image

core-image-minimal-xfce

wic-image-minimal

error-image

oe-selftest-image

test-empty-image

core-image-minimal

.

.

.

For our purposes the image that has been at the first step used is the udoo-image-full-
cmdline.bb; this image in particular offers a full functional console Linux system image well
suited for the UDOO Neo boards; it’s possible to check the main features that will be included
by this image recipe by taking a look at it running:

/udoo-community-bsp$ cat sources/meta-udoo/recipes-udoo/images/udoo-image-ful

l-cmdline.bb

DESCRIPTION = "A console-only image with more full-featured Linux system \

functionality installed. Tailored for the UDOO boards"

IMAGE_FEATURES += "splash ssh-server-openssh package-management"

UDOO_EXTRA_INSTALL_arm = " \

imx-gpu-viv \

imx-gpu-viv-demos \

packagegroup-fsl-tools-gpu \

i2c-tools \

dtc \

${@base_conditional("ENABLE_CAN_BUS", "1", "canutils", "", d)} \

"

UDOO_EXTRA_INSTALL_x86-64 = " \

"

IMAGE_INSTALL = "\

packagegroup-core-boot \

packagegroup-core-full-cmdline \

packagegroup-base \

${CORE_IMAGE_EXTRA_INSTALL} \

${UDOO_EXTRA_INSTALL} \

resize-rootfs \

tmux \

binutils \

minicom \

mmc-utils \

"

21

2. LINUX EMBEDDED CONTENTS

inherit core-image

Needed by resize-rootfs

IMAGE_DEPENDS_ext4 = "e2fsprogs-native"

IMAGE_CMD_ext4_arm_append () {

Label the disk rootfs

e2label ${DEPLOY_DIR_IMAGE}/${IMAGE_NAME}.rootfs.ext4 rootfs

}

As can be seen some useful features are included within this image recipe, like the ssh-server-
openssh service that will allow to the board remotely through the Secure Shell protocol or the
minicom tool that will be used in earliest steps to start a serial communication between the
board an the host PC used to develop the OS. The statement inherit core image instruct the
Bitbake process on the inheritance relationship between this image and the core-image class;
in particular this image inherits all the metadata which has already been included within the
inherited image. Moreover there are not particular problems if adding the same package multi-
ple times since the Bitbake process will take care o parse the list of the included features smartly.

One of the problems of the build process of an image is however the huge amount of time
needed to complete the process; in fact, depending on both the number of processors of the PC
allocated on this process and the download speed of the Internet connection, the process may
last for hours. On the PC used for this thesis project for instance the the first build process
lasted approximatively 6 - 8 hours, considering that no other huge processes were running at the
same time (thus providing 4 threads to the Bitbake process) and having a quite slow Internet
connection reaching peaks of 1.7 - 2 Mbits/s. This limitation makes of course obvious the
necessity of a much powerful machine and a better Internet connection in order to allow the
completion of a new build in a minor time.

As underlined this limitation is managed perfectly by the Bitbake process; after the build
process completion will in fact a significant amount of output will be produced within the build
directory; a part of it will of course be the destination image but another output becomes useful
when forecasting several build images. This output is called State Cache and basically rep-
resent an updating ”checkpoint” within the build process; thanks to this particular output the
Bitbake engine is able to decide weather a task needs to be done or if it is already been managed
by a previous build process. In this way is possible to stop a build execution and re-starting it
from the same point exploiting everything that was already been made.

In order to exploit this feature a more structured folder was set up, in order to save time
and additional space consumption derived from future builds. Since the builds used within this
project are based on the same image udoo-image-full-cmdline.bb the newly created build
within the ”udooneo poky udoo-image-full-cmdline” folder shall acts perfectly as the basic skele-
ton for future builds extending it with additional features but based on the same structure of
metadata.

Since at this point the folder just mentioned were all moved into a containing folder named
thesis the path are going to be different from now on.

22

2. LINUX EMBEDDED CONTENTS

To configure properly the build process the .conf files inside the conf directory of the build
were modified. The bblayers.conf file was modified to look as follows:

$ cat thesis/udoo-community-bsp/udooneo_poky_udoo-image-full-cmdline/conf/bb

layers.conf

POKY_BBLAYERS_CONF_VERSION = "2"

BBPATH = "${TOPDIR}"

BSPDIR := "${@os.path.abspath(os.path.dirname(d.getVar(’FILE’, True)) + ’/../

..’)}"

BBFILES ?= ""

BBLAYERS = " \

${BSPDIR}/sources/poky/meta \

${BSPDIR}/sources/poky/meta-poky \

${BSPDIR}/sources/poky/meta-yocto \

${BSPDIR}/sources/poky/meta-yocto-bsp \

\

${BSPDIR}/sources/meta-openembedded/meta-oe \

${BSPDIR}/sources/meta-openembedded/meta-multimedia \

${BSPDIR}/sources/meta-openembedded/meta-python \

${BSPDIR}/sources/meta-openembedded/meta-networking \

\

${BSPDIR}/sources/meta-qt5 \

\

${BSPDIR}/sources/meta-freescale \

${BSPDIR}/sources/meta-freescale-3rdparty \

${BSPDIR}/sources/meta-freescale-distro \

${BSPDIR}/sources/meta-udoo \

"

Those settings inside the bblayers.conf configuration file will instruct Bitbake with the paths
list of the layer that are going to be used during this build; as can be seen the current con-
figuration is including the layers of the Poky reference distribution, the Open Embedded Core
metadata layers, the Qt5 layer which include the Qt5 developer tools for user interface applica-
tion design and the metadata layers from Freescale Company, including the specific one for the
UDOO boards as well. It is important to comment the BSPDIR environment variable which is
set up each time the setup-environment command is called; this variable represents the path
of the folder containing the BSP downloaded from Github during the previous steps and thus it
points to the udoo-community-bsp folder.

This variable is reported and used also in the other configuration file that has to be modified;
the local.conf file storing the user build options for the current build are was modified to look
as:

MACHINE ??= ’udooneo’

DISTRO ?= ’poky’

PACKAGE_CLASSES ?= "package_rpm"

USER_CLASSS ?= "buildstats image-mklibs image-prelink"

IMAGE_FEATURES = "debug-tweaks tools-debug eclipse-debug"

IMAGE_INSTALL_append = " tcf-agent openssh-sftp-server "

PATCHRESOLVE = "noop"

23

2. LINUX EMBEDDED CONTENTS

BB_DISKMON_DIRS = "\

STOPTASKS,${TMPDIR},1G,100K \

STOPTASKS,${DL_DIR},1G,100K \

STOPTASKS,${SSTATE_DIR},1G,100K \

STOPTASKS,/tmp,100M,100K \

ABORT,${TMPDIR},100M,1K \

ABORT,${DL_DIR},100M,1K \

ABORT,${SSTATE_DIR},100M,1K \

ABORT,/tmp,10M,1K"

PACKAGECONFIG_append_pn-qemu-native = " sdl"

PACKAGECONFIG_append_pn-nativesdk-qemu = " sdl"

CONF_VERSION = "1"

DL_DIR ?= "${BSPDIR}/downloads/"

ACCEPT_FSL_EULA = "1"

To have a look at all the differences between the original contents of the local.conf file and
the contents listed above it is possible to write this version into a temporary file named tmp.conf
and run the command:

$ diff thesis/udoo-community-bsp/udooneo_poky_udoo-image-full-cmdline/conf/lo

cal.conf ./tmp.conf

4,5c4,6

< EXTRA_IMAGE_FEATURES ?= "debug-tweaks"

> IMAGE_FEATURES = "debug-tweaks tools-debug eclipse-debug"

> IMAGE_INSTALL_append = " tcf-agent openssh-sftp-server "

as shown by the command output several changes were made with respect to the original con-
tents. In particular the debug-tweaks package has been moved from the original environment
variable as well as some additional packages that are:

1. tools-debug, a package containing tools needed to perform a remote PC-board debug;

2. tcf-agent, a service that during the next steps will allow to establish a remote connection
with the on-board file system directly from the Eclipse IDE;

3. openssh-sftp-server, a package containing the tools needed to perform file transfer be-
tween the host PC and the board through SFTP protocol

Now that the configuration files have been edited according to the project requirements the
environment is eventually ready to start the build of the reference build for this thesis.
To start the build it is enough to run the command bitbake target image, where the target
can be any possible recipe within the sources used for this project.

/thesis/udoo-community-bsp/udooneo_poky_udoo-

image-full-cmdline$ bitbake udoo-image-full-cmdline

The Bitbake engine will start executing all the task needed to build the OS image in a well
defined order; it is in fact important to point out that the Bitbake process is strictly related to
a well defined structure of inter task dependencies. In other words in order to execute a certain
task A it may happen that other two task B and C may be executed first. The dependencies
between the task are defined within the recipes of the each software component. The command
will produce the following output:

24

2. LINUX EMBEDDED CONTENTS

/thesis/udoo-community-bsp/build$ bitbake udoo-image-full-cmdline

Loading cache: 100% |###| Time: 0:00:00

Loaded 450 entries from dependency cache.

Parsing recipes: 100% |###| Time: 0:02:11

Parsing of 2178 .bb files complete (296 cached, 1882 parsed). 2961 targets, 288

skipped, 0 masked, 0 errors.

NOTE: Resolving any missing task queue dependencies

Build Configuration:

BB_VERSION = "1.34.0"

BUILD_SYS = "x86_64-linux"

NATIVELSBSTRING = "ubuntu-16.04"

TARGET_SYS = "arm-poky-linux-gnueabi"

MACHINE = "udooneo"

DISTRO = "poky"

DISTRO_VERSION = "2.3.2"

TUNE_FEATURES = "arm armv7a vfp thumb neon callconvention-hard cortexa9"

TARGET_FPU = "hard"

meta

meta-poky = "HEAD:a75a2f4272226e924d8c9deb699a19ca9e606a5b"

meta-oe

meta-multimedia

meta-python

meta-networking = "HEAD:dfbdd28d206a74bf264c2f7ee0f7b3e5af587796"

meta-qt5 = "HEAD:c6aa602d0640040b470ee81de39726276ddc0ea3"

meta-freescale = "HEAD:06178400afbd641a6709473fd21d893dcd3cfbfa"

meta-freescale-3rdparty = "HEAD:9613dbc02ca970122a01c935bc9e5789ced73a9d"

meta-freescale-distro = "HEAD:cd5c7a2539f40004f74126e9fdf08254fd9a6390"

meta-udoo = "HEAD:79350fc9baf5b75e929fd2dbd59d3e3dbd8cc402"

From the previous output it is possible to spot how the Bitbake process try to load the
”current status of the build” from the cache folder; since this is the first build within the current
environment Bitbake starts from an empty status.
After this step the process parses each recipe included within the build in order to manage
correctly the task queue according to the inter task dependencies. If the recipes are parsed
without any error the command will display the main building configurations that have been
adopted:

• BB VERSION is the Bitbake program version;

• BUILD SYS is the variable storing the architecture of the PC used to start the build
(this information becomes useful when cross-developing application from the host PC to
the board);

• NATIVELSBSTRING represents the Linux version running o the PC;

• TARGET SYS represents the target system specifications (ARM CPU architecture,
Poky Linux OS, GNU Linux C Libraries).

What follows are some other variable and a recap of some already discussed information like
MACHINE architecture, DISTRO version and the metadata layers included in the build.
Moreover the bitbake command will print on the terminal the completion status of the whole
process in term of tasks still needed to be run and a percentage estimation of the work already

25

2. LINUX EMBEDDED CONTENTS

completed; however it is not advisable to make an estimation of the completion process only
relying on these two informations. The main reason is that the times needed to execute two
different tasks may result quite different according to the nature of the task. Before moving
to see the output generated by the process it is advisable to give an hint on the possible kind
of task that the bitbake command will eventually execute while parsing the recipe for a given
package.

According to the structure of the Open Embedded build system the Bitbake build engine
will eventually execute different kind of tasks; those types can be summarized as follows:

1. FETCH: obtains the source code; this kind of tasks retrieves the source code that can be
a local resource or downloaded from the web through the different file transfer protocols
supported by Bitbake (for instance HTTP, FTP and SFTP).

2. EXTRACT: unpacks the source code; during this task the system automatically detects
the format of the fetched source code and extract it into the working directory.

3. PATCH: applies patches for bug fixes or added functionalities; this tasks basically updates
files that have been modified form some reason as bug fixing or added functionalities.

4. CONFIGURE: prepares the build system according to the settings imposed by the local
environment; this task also takes care of generating a makefile script for the target system
through the Autotools build system.

5. BUILD: compiles and links the source code; this task run the script files generated at the
previous step to compile the source code.

6. INSTALL: copies binaries and other files into the target directory; this task basically
copies the produced output files into the right location of the file system.

7. PACKAGE: packs the produced binaries and needed preparing them to be installed on
other systems; this task prepares the developed output for being distributed.

When the build process will be eventually finished the build folder will look different since
the Bitbake process should have populated it as shown in the following image.

Figure 12: Build folder contents after bitbake completion

Two of the folder created at this point will be useful during next steps and it’s thus useful
to explain their contents. The sstate-cache folder contains the states of the build produced
during the software process completion; sharing this folder between multiple builds can signifi-
cantly decrease the completion time for future builds.

26

2. LINUX EMBEDDED CONTENTS

On the other side the cache folder represents a ”local” cache folder that is specific for the
build run from the current environment; it is thus not possible to share this folder.
The third folder is named tmp and contains the output generated by the bitbake build process;
this folder is likely to explode in dimensions after several builds since it contains extracted source
code, the compilation outputs and the images of the Kernel and of the file system.
The build session can be resumed for any change by running the command:

/thesis/udoo-community-bsp$ source ./setup-environment udooneo_poky_udoo-image

-full-cmdline/

Welcome to Freescale Community BSP

The Yocto Project has extensive documentation about OE including a

reference manual which can be found at:

http://yoctoproject.org/documentation

For more information about OpenEmbedded see their website:

http://www.openembedded.org/

You can now run ’bitbake <target>’

Common targets are:

core-image-minimal

meta-toolchain

meta-toolchain-sdk

adt-installer

meta-ide-support

Your configuration files at udooneo_poky_udoo-image-full-cmdline/ have not been

touched.

At this point the image of the OS to be deployed on the development board is eventually ready.
It can be found within the tmp director at the path tmp/deploy/images/udooneo/ : between
all the output files contained within the folder the target file to be deployed on-board is the file
named udoo-image-full-cmdline-udooneo.wic.bz2.

2.5 Booting the system

During the next step a peripheral device will be flashed with the OS binaries it is important to
be careful during the choice of the right device because otherwise some disk contents may be
lost; under Linux Ubuntu is possible to find the list of the connected devices under /dev folder.
To check the name of the SD card that is going to be connected the easiest way is to prepare
two files storing the dmesg command output before and after the SD card insertion and then
check the two files for differences.
Run:

$ touch tmp_before.txt

$ dmesg >> tmp_before.txt

Now the micro SD card that is going be inserted within the board can be plugged into the PC
SD card reader slot through a micro-SD to SD adapter. To check the name of the SD card run
the commands:

27

2. LINUX EMBEDDED CONTENTS

$ touch tmp_after.txt

$ dmesg >> tmp_after.txt

$ diff tmp_before.txt tmp_after.txt

1090a1091,1095

> [7799.662352] mmc0: new high speed SDHC card at address 59b4

> [7799.690604] mmcblk0: mmc0:59b4 USD 7.51 GiB

> [7799.691592] mmcblk0: p1

> [7800.225224] EXT4-fs (mmcblk0p1): recovery complete

> [7800.229344] EXT4-fs (mmcblk0p1): mounted filesystem with ordered data mode

. Opts: (null)

From the output above it is now possible to get the correct name that di file system is using
to identify the device that can in fact be found under the /dev directory named (in this case) as
/dev/mmcblk0. To flash the image on the micro-SD card it is sufficient to run the commands:

$ sudo bzcat thesis/udoo-community-bsp/udooneo_poky_udoo-image-full-cmdline/tm

p/deploy/images/udooneo/udoo-image-full-cmdline-udooneo.wic.bz2 |

sudo dd of=/dev/mmcblk0 bs=32M

The previous command will decompress the file containing the image and will redirect the
output towards the second command, that will eventually copy the received input into the SD
card as memory blocks with a maximum block size of 32 MBytes each.

To boot the system now it’s enough to insert the micro-ds card into the proper slot site on the
back side of the board and connect the board to the host PC through a micro-USB to USB cable.

Figure 13: Back view of the UDOO Neo board

The board will start the bootstrap phase from the SD card and the bootloader embedded
within the same memory will start loading the Kernel of Linux Embedded as explained in the
previous sections of this chapter; eventually the bootloading phase will finish and this can be
spotted by a change into the lightening behavior of the service led near the micro-USB input of
the board.

28

2. LINUX EMBEDDED CONTENTS

After a successful bootstrap will be possible to connect directly with the board through di
micro USB cable use to provide power to the system; to check weather the device has been
correctly found by the OS running on the PC it will be enough to repeat the procedure adopted
to find out the name of the name of the micro SD card within the /dev folder.
In this particular case the device name assigned to the board is ttyACM0; it is possible to
connect with the board by using the terminal serial program Minicom.
In order to setup the Minicom configuration properly it has been modified the default configu-
ration for the whole duration of the project; to setup the Minicom configuration it is necessary
to run:

$ sudo minicom -s

+-----[configuration]------+

| Filenames and paths |

| File transfer protocols |

| Serial port setup |

| Modem and dialing |

| Screen and keyboard |

| Save setup as dfl |

| Save setup as.. |

| Exit |

| Exit from Minicom |

+--------------------------+

and then to set the default configuration from the Serial port setup button of the menu, as:

+---+

| A - Serial Device : /dev/ttyACM0 |

| B - Lockfile Location : /var/lock |

| C - Callin Program : |

| D - Callout Program : |

| E - Bps/Par/Bits : 115200 8N1 |

| F - Hardware Flow Control : No |

| G - Software Flow Control : No |

| |

| Change which setting? |

+---+

From now on it is possible to connect with the board and to enter as root by simply running:

Welcome to minicom 2.7

OPTIONS: I18n

Compiled on Feb 7 2016, 13:37:27.

Port /dev/ttyUSB0, 01:25:16

Press CTRL-A Z for help on special keys

Poky (Yocto Project Reference Distro) 2.3.2 udooneo /dev/ttyACM0

udooneo login: root

root@udooneo:#

29

2. LINUX EMBEDDED CONTENTS

From this terminal we can interact with the system with the bash commands just as a common
Linux PC
As a prove of the correct behavior of the OS preliminary operations attended by the Linux
Kernel during the Bootstrap it is possible to stream debug informations that are flushed out to
the UART1 port of the device.
To perform this operation will be however necessary to use a TTL to USB adapter plugged into
the board and into the PC; the board pinout and the used hardware will be however explained
within the next chapter before moving onto the driver design.

Figure 14: USB to TTL adapter

The proper connections are:

1. TXD pin of the adapter with GPIO 46 of the J7 header;

2. RXD pin of the adapter with GPIO 47 of the J7 header;

3. GND pin of the adapter with anyone of the pin labeled as GND of the internal banks;

If the proper connections have been established, a new device will be displayed within the
/dev folder of the host PC (inside the same folder of the board Linux Embedded OS as well); the
procedure to follow in order to retrieve easily the device names of the inserted modules remains
the same: in this particular case the host PC sees a new /dev/ttyUSB0 device while the board
sees the PC as:

1. /dev/ttyGS0 on the serial micro USB line;

2. /dev/ttymxc0 on the debug connection;

To check out the boot process it is enough to access to the device /dev/ttyUSB0 with
Minicom and launch from the first terminal the command reboot; on the debug terminal
will be displayed the following output showing the power-off and reboot phases and thus the
bootloading process:

Broadcast message from root@udooneo (pts/0) (Sun Dec 17 16:50:20 2017):

The system is going down for reboot NOW!

30

2. LINUX EMBEDDED CONTENTS

UIM SYSFS Node Found at /sys/./devices/soc0/kim/install

Stopping uim-sysfs daemon.

Stopping OpenBSD Secure Shell server: sshdstopped /usr/sbin/sshd (pid 345)

.

[ok]pping Avahi mDNS/DNS-SD Daemon: avahi-daemon

Stopping atd: OK

Stopping bluetooth

/usr/libexec/bluetooth/bluetoothd

Stopping system message bus: dbus.

[2017-12-17 16:50:20 UTC] (sys) Stopping

stopping mountd: done

stopping nfsd: [73.654776] nfsd: last server has exited, flushing export cache

done

Error opening /dev/fb0: No such file or directory

Stopping system log daemon...0

Stopping kernel log daemon...0

Stopping tcf-agent: OK

stopping statd: done

ALSA: Storing mixer settings...

/usr/sbin/alsactl: save_state:1595: No soundcards found...

Stopping crond: OK

Stopping rpcbind daemon...

done.

Deconfiguring network interfaces... ifdown: interface eth0 not configured

done.

Sending all processes the TERM signal...

logout

Sending all processes the KILL signal...

Unmounting remote filesystems...

Deactivating swap...

Unmounting local filesystems...

[79.154004] EXT4-fs (mmcblk0p1): re-mounted. Opts: (null)

Rebooting... [81.409852] reboot: Restarting system

U-Boot SPL 2017.03+fslc+gac3b20c (Dec 12 2017 - 22:55:32)

Trying to boot from MMC1

U-Boot 2017.03+fslc+gac3b20c (Dec 12 2017 - 22:55:32 +0100)

CPU: Freescale i.MX6SX rev1.2 996 MHz (running at 792 MHz)

CPU: Extended Commercial temperature grade (-20C to 105C) at 39C

Reset cause: WDOG

Board: UDOO Neo FULL

I2C: ready

DRAM: 1 GiB

PMIC: PFUZE3000 DEV_ID=0x30 REV_ID=0x11

MMC: FSL_SDHC: 0

*** Warning - bad CRC, using default environment

31

2. LINUX EMBEDDED CONTENTS

In: serial

Out: serial

Err: serial

Net: FEC0 [PRIME]

Hit any key to stop autoboot: 0

switch to partitions #0, OK

mmc0 is current device

Scanning mmc 0:1...

Found U-Boot script /boot/boot.scr

517 bytes read in 339 ms (1000 Bytes/s)

Executing script at 82000000

45832 bytes read in 261 ms (170.9 KiB/s)

4538720 bytes read in 622 ms (7 MiB/s)

Flattened Device Tree blob at 83000000

Booting using the fdt blob at 0x83000000

Using Device Tree in place at 83000000, end 8300e307

Starting kernel ...

[0.000000] Booting Linux on physical CPU 0x0

[0.000000] Linux version 4.1.15-2.0.x-udoo+g7773e46 (oe-user@oe-host) (gcc ver

sion 6.3.0 (GCC)) #1 7

.

.

.

To briefly comment the output above it is possible to recognize most of the function that
were expected as correct by the Bootloader; in the very first part it is possible to see how the
reboot command causes the stop of the active services on the board. When these services are
stopped the system auto-resets via software thus causing a new Bootstrap.

Since the first stage bootloader running on the board is configured to search for a bootable
image within some specific memory addresses, the board is able to find the bootable image
of Linux Embedded on the micro SD card slot inserted on the back side. At this point the
U-Boot (Universal Bootloader) bootloader flashed into the SD card is loaded into the RAM
memory by the first stage bootloader. Since U-boot is again a multi stage bootloader, after
the preliminary initialization it loads the U-boot SPL found into the same micro-SD card. The
Secondary Program Loader then takes care of loading within the RAM memory the largest part
ot the software needed to ends up the bootstrap. After the Kernel software has been loaded the
output of the command still continues reporting hardware configurations of network resources
and other devices.

32

3. HARDWARE REFERENCES CONTENTS

3 Hardware References

This section is intended to describe the most important properties of the components used dur-
ing this project; since the full list of the characteristics can be found on the hardware vendors
websites the next pages are giving a brief description of the most significant of them. Moreover
a part will be dedicated at giving some hints on the communication protocols that have been
adopted to achieve the final result.

3.1 UDOO Neo Full Development Board

Figure 15: UDOO Neo Development board frontal view

The choice for the development board has been a UDOO Neo board; every reference about
UDOO boards of the Neo line can be found at https://www.udoo.org/udoo-neo/.
The UDOO Neo family comes out with three different models of the same board; the choice for
this project was the Full version which embeds the most hardware devices between the three
models.
Summarizing the main hardware characteristics, the board embeds:

• i.MX 6SoloX processor by NXP R©, embedding two different processors: the most per-
forming is the ARM R© Cortex-A9 core by Freescale, the second is an Arduino compatible
Cortex-M4 core;

• 1GB RAM memory;

• Micro HDMI output to external displays;

• MicroSD card slot on the back;

• a USB 2.0 type A port;

• Wi-Fi module and Bluetooth module for wireless connectivity;

• 3 UART ports for serial connection;

33

https://www.udoo.org/udoo-neo/

3. HARDWARE REFERENCES CONTENTS

• 5V DC Micro USB input to power the board and establish serial connections;

• Fast Ethernet connection;

• up to three I2C interfaces;

Moreover the boards embeds several sensors that have not been used during the project; in
the next steps of development have been used some of the hardware interfaces listed above as
the UART1 connection, the serial Micro USB connection, the Ethernet port and PINs from the
pinout banks fo the board. Those connections will be specified step by step during the next
chapters.
Here is for convenience the components locations of the UDOO Neo board (that can also be
found on the website of the vendor)

Figure 16: Components locations on the board

and the pinout map for the internal and external banks

Figure 17: Pinout of the internal banks

34

3. HARDWARE REFERENCES CONTENTS

Figure 18: Pinout of the external banks

3.2 MGC3130 Hillstar Development Kit

Figure 19: MGC3130 Hillstar Development Kit by Microchip

The whole project finds its bases onto the components that can be found within this Kit; any
additional detail on this Kit can be found at https://www.microchip.com/DevelopmentTools/
ProductDetails.aspx?PartNO=DM160218.
The package sold by Hillstar contains three fundamental components:

• the MGC3130 sensor for data tracking position and gesture recognition;

• a reference electrode PCB for signal sensing;

• an USB to I2C bridge to connect the sensor to a PC.

Moreover the package contains four foam hand bricks that will be used when configuring the
controller through the Microchip Aurea evaluation software for GestIC sensors.
The same software has also been used to flash the firmware on any new MGC3130 Controller
used during the project.

35

https://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=DM160218
https://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=DM160218

3. HARDWARE REFERENCES CONTENTS

3.2.1 MGC3130 Controller

The MGC3130 Unit for position tracking and gesture recognition is the key element of the
MGC3130 Controller, which is structured as follows:

Figure 20: MGC3130 Controller Layout

As can be seen from the layout the unit is positioned at the center of the PCB and it can
be connected with the external world through three interfaces:

1. The electrode interface on the right; this interface is a 7-pin 2mm connection to the
electrode PCB and it carries the 6 signals coming from the electrode (one pin goes for the
ground GND while the other five pins go on for each of the electrodes embedded into the
panel) and one signal coming from the MGC3130 controller itself that is the TX signal.
This signal is basically the power source that the controller gives to the electrode to make
it work properly.

2. The I2C interface on the left; this interface is a connection to the external world through
a 6-pins 2mm I2C connector: the pins intended as input are the 3.3V and the GND pins
that must provide power to both the controller and the electrode PCB; the other 4 pins
will be used by both the MGC3130 (acting as a slave) and the Host PC (acting as the
Master) during the data exchange process made through I2C protocol with two available
slave addresses 0x42 and 0x43.

3. The last interface is the one on the upper side of the controller and is intended to send
gesture results directly to the external world but int this case this last interface was not
used.

As can be easily spotted out by the number o the pins on the left interface, the I2C interface
implemented for this sensor it’s not a classical I2C one cause it adds the TS line as a synchro-
nization signal. To better understand the difference between the two versions it’s advisable to
make a brief explanation of the standard I2C protocol and then to make a comparison with the
two implementations.

The standard I2C protocol is intended for bidirectional communications between two devices;
one the the two devices will act as the Master of the connection while the other one will act
as the Slave. The behavior of the master is to rule the message flow on the connection; in fact
the slave device cannot send any I2C message unless it has been asked by the master, while
the master is free to send any message when needed. Since on the same bus may be connected
multiple I2C devices, each of them must be identified by an identifier named address. The
MGC3130 can be for example found on the same bus at two different addresses.

36

3. HARDWARE REFERENCES CONTENTS

The standard signal used by this protocol are:

1. SDA which is the line used to transmit the data;

2. SCL, the line used to transmit the clock pulse;

3. GND, the pin going to ground;

4. VCC, bringing voltage (usually 3.3V) and connected to SDA and SCL line through pull-up
resistors.

Since the master device is the one ruling the data flow on the connection it may need to do
perform a write or a read operation. In order to begin each one of them the bus status must be
in the IDLE condition i.e. both the SDA and the SCL must be in high status.
The write cycle operations are:

1. master sends a START condition to the slave;

2. master sends data to the slave;

3. master sends the STOP condition to the slave;

Once defined the START condition as a high-to-low transition of SDA with SCL high and the
STOP condition as a low-to-high transition while the the SCL signal is high, it is possible to
represent graphically the write cycle:

Figure 21: I2C write cycle

The read cycle instead is structured as follows:

1. master sends a START condition to the slave;

2. master sends to the slave the address of the register that it needs to read;

3. master receives data from the slave;

4. master sends the STOP condition to the slave.

37

3. HARDWARE REFERENCES CONTENTS

Figure 22: I2C read cycle

As can be noticed from the image each byte must be followed by a single bit sent by the receiver
device; this bit named ACK is used to communicate to the sender that the byte has been re-
ceived properly, thus after each byte sent the master has to release the bus in order to receive
the ACK/NACK bit.

The MGC3130 I2C interface essentially extends the standard connection by adding the TS
signal. In particular this line is used to synchronize the data transfer between the master and
the slave controller in some particular cases; since the controller is provided with power saving
mode it is necessary to use the TS line in order to communicate the master when new data is
available. This allows:

• to inform the host when new data is available from the controller;

• to let the updates of the controller buffer finish before starting the communication.

This extension allows a very low percentage of lost or corrupted messages.
Since the TS line must be used to communicate a status it has to be shared between the master
and the slave; the table defining the possible conditions on TS it’s the following:

MGC3130 Host PC TS Condition

released H released H H
Host has finished reading and the MGC3130 has sent all the
available data; the MGC3130 can update it’s buffer.

asserted L released H L
New data available from the MGC3130 but he Host has not
started reading; after a timeout of 5ms in this condition the
controller releases the line high while updating the buffer.

asserted L asserted L L
Host started reading; the MGC3130 won’t update the buffer
until the host has finished

released H asserted L L
MGC3130 needs to update the data but the Host is still
reading.

Table 1: MGC3130 possible TS line conditions

According to the conditions defined by the MGC3130 I2C protocol the cycles will be a little
bit different; the read cycle will be structured as:

1. master waits until TS line is L;

2. when TS line is 0 the master asserts L the TS line as well;

3. master sends a START condition to the slave;

4. master sends to the slave the address of the register that it needs to read;

38

3. HARDWARE REFERENCES CONTENTS

5. master receives data from the slave;

6. master sends the STOP condition to the slave;

7. master releases the TS line.

The write cycle instead remains the same because during a write operation there’s no need to
manage the TS line.

Figure 23: GestIC I2C protocol

The last pin is the MCLR; this signal basically acts like a negated reset thus the a High level
will have no effects on the controller while a Low value on this line will reset the MGC3130 Unit.

3.2.2 Reference Electrode

The Kit is also provided with a reference electrode panel actually represents the sensor within
the system; this component is responsible to sense moving object position variation and accord-
ingly send those informations to the MGC3130 controller in the form of electrical signals. This
is achieved exploiting the Electrical Near-Field Distortion phenomenon.
Basically the GestIC controller, intended as the union of the MGC3130 and a reference electrode
designed correctly, exploits the E-Field (electric field) variation due to the presence of an object
to compute the estimated position of that object in a 3D space around the reference electrode
itself.

Figure 24: Reference Electrode layout

39

3. HARDWARE REFERENCES CONTENTS

When powering the electrode with a DC voltage the E-Field generated by the panel will be
static; on the other hand if and AC voltage is applied the the charges onto the reference panel
will not be constant but will vary in time instead. The variation of the electrical charge will
generate electromagnetic waves that, in vacuum, will propagate with a velocity equal to the
speed light:

λ = f ∗ c
being λ the wavelength of the generated wave, f the frequency and c the speed of light.
However when the wavelength of the electromagnetic wave generated is much larger than the
geometry of the generating electrode the magnetic component will be so small to not being
considered. the MGC3130 can be configured to use one between five different transmission fre-
quencies corresponding to 115KHz, 103KHz, 88KHz, 67KHz and 44KHz from the highest to
the lowest. When in the worst case the controller uses a TX signals varying with the highest
frequency of 115KHz the resulting wavelength will be a value greater than 2.5Km; it is thus
possible to assert that the electromagnetic component of this device will be almost null by the
fact that the reference electrode , measures in the order of centimeters. As a result the E-Field
near the panel is almost static and can be monitored to sense the presence of a conductive
objective.

Figure 25: E-Field Distortion caused by human hand

In particular the human body represents a conductive object; thus when a hand will pass

40

3. HARDWARE REFERENCES CONTENTS

through the near E-field of the electrode the filed itself will be variated since a part of the electric
field will be drawn by the hand. In the position of the space where the object is located the
E-field will be locally smaller then everywhere else within the electrode space.
The different variations of the E-field for the four electrodes disposed as the cardinal points on
the board will allow the controller to compute the position of the object as three coordinates x,
y, z.
In order to achieve the proposed result the reference electrode has to be design compliant in
the shape and component position; the panel shall in fact be characterized by a multi layer
structure alternating conductive and not conductive material and should embed at least for
electrodes positioned as the cardinal points (the central electrode is optional and can be included
to perform a more precise estimation of the position). The reference electrode should be based
on the following structure:

Figure 26: PCB layers disposition

The five receiving electrodes Rx are positioned on the upper face of the PCB while the
Tx signal passes beneath the surface isolated by the first layer and designed as cross-hatched
to reduce capacitive effect between separate layers; the layer at the bottom can optionally be
connected to ground to isolate the upper layers and thus the sensing area from the components
that may lay under the GestIC.

Figure 27: PCB different versions

The panel provided with the Kit has a rectangular shape, however other shapes can be
chosen during the electrode design phase; on of them could for instance be a circular shape. The
measures of the the PCB are provided by the vendor and will be useful while setting up the
controller configuration during the calibration phase.

41

3. HARDWARE REFERENCES CONTENTS

The measures are summarized within the following figure:

Figure 28: Hillstar reference electrode geometry

where the receiving electrodes Rx are indicated in red while the center electrode is repre-
sented by the cross-hatched area.

3.2.3 USB to I2C Bridge

The last component that can be found within the package is the Micro USB type B to I2C
adapter; this bridge embed a micro controller that is intended to retrieve data from the MGC3130
and send the data to the Host PC. Moreover it regulates the 5V voltage incoming from the PC
USB port changing its value to a 3.3V MGC3130 compliant input voltage.

Figure 29: USB to I2C bridge

This device has been useful during the preliminary phases of the project when a parametrized
firmware and calibrated parameters had to be flashed into the stock MGC3130 controller. To ful-
fill this purpose the Kit comes out with an evaluation software named Aurea that can be found
at http://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=dm160218

42

http://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=dm160218

3. HARDWARE REFERENCES CONTENTS

within the Documentation and Software section; the guided initialization of the controller can
be made quite easily through this application thus no particular words will be expended on
the parametrization field. Once the initialization of the controller will be finished a test bench
will be offered by the same application in order to test the correct functionalities of the controller.

3.2.4 Other components

Other devices used to develop the project are

• a USB to TTL adapter; this device can be used to convert a USB ports into a TX-RX
serial line that can be used to be connected directly with the board UART serial ports on
the pinout banks;

• a Ethernet cable;

• a micro-USB cable;

• a micro SD card with a storage capacity of at least 8GB;

• wires and connectors.

43

4. DRIVER DEVELOPMENT CONTENTS

4 Driver Development

This section shows the process that brought to design a Linux Embedded driver for the GestIC
controller in the form of a loadable Kernel module. Thus in this chapter will be explained the
theory behind Linux Kernel modules and devices abstraction, the source code snippets of the
driver itself, the methods used to debug the software and the integration tools offered again by
the Yocto Project.

4.1 Linux Drivers Generalities

In general it is possible to define a driver as the piece of software allowing to make use of a
certain device; devices can be in general of different natures, the most common during everyday
life are devices connected through bluetooth modules or USB devices. Under each of the devices
connected to a PC there’s a certain driver that make possible the communication between the
OS and the device itself.
Linux OS offers two different ways of developing and maintaining a driver; the driver code can
be in fact embedded within the kernel itself or developed as a user space module. The two
approaches have of course their own advantages and drawbacks.

4.1.1 Kernel Drivers

The Kernel drivers, are directly embedded within the Kernel; those drivers can also be referred
as in-tree drivers since they are embedded within the Device Tree of the system. The Device
Trees are essentially data structures that describe the hardware configuration for a certain ma-
chine so that the Kernel can manage a correct usage of those components; the tree contains
information about each piece of hardware composing the board spanning from the CPU to the
memory, from the I/O devices to the network components. This data structure presents the
most typical tree layout in computer science being composed by nodes having properties, rep-
resenting the system components and their characteristics.
The device tree composition must be stored somewhere within the system since at any time it
must be a resource reachable by the Linux OS Kernel; there are essentially two possibilities to
store the Device Tree. The first one is to statically hard code the hardware composition tree
into the (or PC) firmware being flashed on the board; this approach is however intended for a
system whose hardware won’t be modified often since every change within the hardware com-
position will cause the necessity for an new firmware with an updated Device Tree binary. The
second more flexible approach, that is the one adopted by Linux Embedded OS, is to compile an
updated version of the Device Tree called Device Tree Blob (DTB), a binary file representing
the hardware components of the system that is passed by the bootloader to the Kernel during
the booting phase. The generation of the starts from the compilation of Device Tree Sources
(DTS); upon any changes of the hardware will be thus possible to recompile just a new DTS
files instead of the full Kernel software allowing to save a lot of time.
The Device Tree stores some useful informations; from any system running Linux those infor-
mations can be accessed from the contents of the /proc/device-tree folder. For example it is
possible to obtain the model of the board by running:

root@udooneo:# echo $(cat /proc/device-tree/model)

UDOO Neo Full

44

4. DRIVER DEVELOPMENT CONTENTS

or

root@udooneo:# find /proc/device-tree/

to print out the full list of the components within the device tree.
The following figure summarizes the basic concepts on the creation od a device tree:

Figure 30: Device Tree work-flow

The overhaul advantages of choosing a Kernel device drivers will be related to the great
support that the community gives to improve and maintain the Linux Kernel; moreover the
distribution will obviously be easier by choosing the community channel.

4.1.2 User Space Drivers

The other possibility offered by the Linux Embedded OS is to develop a device driver at user
space level and to plug or unplug it when needed; this kind of device drivers is defined as out-
of-tree device drivers since this software is not directly embedded within the Kernel and thus
the device for which the driver is intended is not listed into the device tree.
Since this has been the strategy adopted to develop the MGC3130 driver it is interesting to
point out all the advantages and the drawbacks related to this particular choice. The main
advantages w are:

• the driver can be written in any language (in this case the choice has been C language);

• the driver won’t become part of the community and thus it could sold;

• no risks of Kernel crash if something is wrong with the driver since it runs within the user
space;

• if the driver crashes it can be simply removed and re-installed;

On the other hand the main drawbacks are related to performance.

• lower performance in terms of speeds with respect to the Kernel drivers due to the necessity
of more system calls;

• greater interrupt latency.

45

4. DRIVER DEVELOPMENT CONTENTS

4.1.3 Virtual File System

One of the most useful properties of Linux and in general of Unix-based OSs is that they allow
an easy access to the devices through a device abstraction known as Virtual File System or
VFS; thanks to this feature it is possible for any application running at the user space level to
access different type of devices with the same file-access API functions (like open, read, write,
close...) thus not considering the real nature of the device in case. This feature is achievable
because the VFS takes also in charge to establish an interface between the user space call to a
file-accessing function and the actual implementation of that function within the driver, weather
it is a Kernel Driver or a Device Module Driver.
Within the next image is shown a representation of the VFS layer embedded into the multi-layer
structure of the Linux Embedded OS:

Figure 31: VFS layer logical position

4.2 Preparing the Yocto environment

Before moving on to the real driver implementation it is necessary to setup a new build envi-
ronment for the Yocto Project in order to leave the original base-build produced in the previous
chapter untouched; thus a new build project has to be created; inside this build it will be pos-
sible to find the device modules that will be installed on the UDOO Neo Development Board.
Even if it’s not necessary to use the Yocto Project tools in order to produce a device module,
the process necessary to achieve the same result may not be as much straightforward as the one
offered by the Yocto Project tools and Bitbake environment. To prepare a new build run the
following commands:

$ cd thesis/udoo-community-bsp

/thesis/udoo-community-bsp$ MACHINE=udooneo DISTRO=poky source ./setup-environm

ent build-thesis

These command will create a new build folder named build-thesis alongside the folders cre-
ated during the previous chapters; as done for the first build folder it is necessary to edit the

46

4. DRIVER DEVELOPMENT CONTENTS

configuration files inseide the main build directory. In order to configure the build environment
correctly the local.conf file inside the conf folder should look as follows:

/thesis/udoo-community-bsp$ cat build_thesis/conf/local.conf

MACHINE ??= ’udooneo’

DISTRO ?= ’poky’

PACKAGE_CLASSES ?= "package_rpm"

USER_CLASSES ?= "buildstats image-mklibs image-prelink"

IMAGE_FEATURES = "debug-tweaks tools-debug eclipse-debug"

IMAGE_INSTALL_append = " tcf-agent openssh-sftp-server "

PATCHRESOLVE = "noop"

BB_DISKMON_DIRS = "\

STOPTASKS,${TMPDIR},1G,100K \

STOPTASKS,${DL_DIR},1G,100K \

STOPTASKS,${SSTATE_DIR},1G,100K \

STOPTASKS,/tmp,100M,100K \

ABORT,${TMPDIR},100M,1K \

ABORT,${DL_DIR},100M,1K \

ABORT,${SSTATE_DIR},100M,1K \

ABORT,/tmp,10M,1K"

PACKAGECONFIG_append_pn-qemu-native = " sdl"

PACKAGECONFIG_append_pn-nativesdk-qemu = " sdl"

CONF_VERSION = "1"

DL_DIR ?= "${BSPDIR}/downloads/"

SSTATE_DIR ?= "${BSPDIR}/udooneo_poky_udoo-image-full-cmdline/sstate-cache/"

ACCEPT_FSL_EULA = "1"

As can be spotted out by running the command

/thesis/udoo-community-bsp$ diff udooneo_poky_udoo-image-full-cmdline/conf/loc

al.conf build_thesis/conf/local.conf

21a22

> SSTATE_DIR ?= "${BSPDIR}/udooneo_poky_udoo-image-full-cmdline/sstate-cache/"

the output of the diff command shows how the only change that has been made between the
previous version of the file local.conf and the ne one is simply the presence of a new line. Since
the SSTATE DIR was not explicitly declared in the first build version the default path for the
sstate-cache directory is within the build directory itself; in this case the path ha been set to
point a the previous version of the sstate-cache folder and thus the sstate-cache within the the
”udooneo poky udoo-image-full-cmdline” folder. This choice has been made to speed-up any
future build based on the previous one; in fact thanks to the files found within the sstate-cache
folder the process will skip all those processes that don’t need to be re-executed.
The following step has been the creation of a custom metadata layer intended to contain the
driver source code; keeping things separated within different recipes and layers allows te build
being very modular and easy to customize. Moreover including the recipe for the driver within
a Yocto compatible layer has allowed to use the Bitbake program to compile the driver source
code when needed. Even if it is possible to create a new layer by manually copying the standard
Yocto layer structure from another layer, it is possible to create a new one using one of the
commands that the Yocto environment has predisposed. To create new layer resume, if needed,
the new build and create the folder containing the custom resources:

/thesis/udoo-community-bsp$ mkdir mysources

47

4. DRIVER DEVELOPMENT CONTENTS

Now from inside the mysources folder create a new layer by typing:

/thesis/udoo-community-bsp/mysources/$ yocto-layer create thesis

Please enter the layer priority you’d like to use for the layer: [default: 6]

Would you like to have an example recipe created? (y/n) [default: n] y

Please enter the name you’d like to use for your example recipe: [default: exam

ple]

Would you like to have an example bbappend file created? (y/n) [default: n] n

New layer created in meta-thesis.

Don’t forget to add it to your BBLAYERS (for details see meta-thesis/README).

The output shows how during the command has been created a new layer with a default priority
of 6, with an example recipe default named example and with no example bbappend files.
As can be seen in the following figure

Figure 32: mysources folder after creation

the folder mysources has now been set up as a metadata layer with its own configuration
folder and an example recipe. After renaming the recipes-example directory in recipes-kernel,
it is possible to configure the layer.conf configuration file that can be found into the conf folder
to look as follows.

We have a conf and classes directory, add to BBPATH

BBPATH .= ":${LAYERDIR}"

We have recipes-* directories, add to BBFILES

BBFILES += "${LAYERDIR}/recipes-*/*/*.bb \

${LAYERDIR}/recipes-*/*/*.bbappend"

BBFILE_COLLECTIONS += "meta-thesis"

BBFILE_PATTERN_meta-thesis = "^${LAYERDIR}/"

BBFILE_PRIORITY_meta-thesis = "6"

#Added the kernel modules for the out-of-tree extra devices

MACHINE_EXTRA_RRECOMMENDS += " gestic-mod"

Adding a run-time recommendation for the out-of-tree modules (the absence sho

uld not be blocking)

MACHINE_ESSENTIAL_EXTRA_RRECOMMENDS += " kernel-module-gestic-mod"

The layer.conf file has essentially been modified by adding the between the machine source file
the gestic-mod module device that it’going to be illustrated within the following sections of this
paper.
The next step is tho change the name of the example folder inside the recipes-kernel directory as
gestic-mod, being compatible with the name assigned within the layer.conf file. After renaming

48

4. DRIVER DEVELOPMENT CONTENTS

the folder get inside it and run the following commands to rename the folder and the recipe
found within the gestic-mod folder:

mv example-0.1/ files

to rename the folder, and

mv example_0.1.bb gestic-mod.bb

to rename the recipe for the device module. This recipe is the one that it’s going to be run as
a Bitbake target when compiling the driver source code.
The gestic-mod.bb has been edited to look as follows:

DESCRIPTION = "Linux kernel module for the gestic module"

LICENSE = "GPLv2"

LIC_FILES_CHKSUM = "file://COPYING;md5=12f884d2ae1ff87c09e5b7ccc2c4ca7e"

inherit module

COMPATIBLE_MACHINE = "udooneo"

SRC_URI = "file://Makefile \

file://gestic.c \

file://COPYING \

"

S = "${WORKDIR}"

As can be noticed the recipe inherits the module class and thus will be executed accordingly
by Bitbake; moreover the SRC URI variable contains the file names of the files that will be
contained inside the renamed files folder. To complete this step create a Makefile looking as
follows:

obj-m := gestic.o

SRC := $(shell pwd)

all:

$(MAKE) -C $(KERNEL_SRC) M=$(SRC)

modules_install:

$(MAKE) -C $(KERNEL_SRC) M=$(SRC) modules_install

clean:

rm -f *.o * core .depend .*.cmd *.ko *.mod.c

rm -f Module.markers Module.symvers modules.order

rm -rf .tmp_versions Modules.symvers

This Makefile will instruct the process on how to compile the driver source code and about the
target location for the module installation.
Now a license should be added to this module; for this project has been used a GPLv2 license
(General Public License) for free software sharing. The license file to be included can be copied
from the sources and renamed by running the following command from the files folder:

cp /home/user/thesis/udoo-community-bsp/sources/poky/meta/COPYING.GPLv2 ./

mv COPYING.GPLv2 COPYING

49

4. DRIVER DEVELOPMENT CONTENTS

To terminate the setup of the folder files it’s eventually necessary to add the file that will contain
the source code to compile the driver; since the chosen language to write the driver has been
C language create a file named gestic.c. The file just created will contain the source code for
the driver and the VFS interface functions and will be the file to be edited during the following
section.

Before moving onto the driver design the directory tree of mysources folder looks as follows:

Figure 33: mysources tree after layer setup

To conclude the setup it’s necessary to add the newly created layer between the build layers of
the build; thus the build thesis/conf/bblayers.conf file was modified to look as follows:

POKY_BBLAYERS_CONF_VERSION = "2"

BBPATH = "${TOPDIR}"

BSPDIR := "${@os.path.abspath(os.path.dirname(d.getVar(’FILE’, True)) + ’/../..

’)}"

EXTDIR := "/home/fabio/thesis/udoo-community-bsp"

BBFILES ?= ""

BBLAYERS = " \

${BSPDIR}/sources/poky/meta \

${BSPDIR}/sources/poky/meta-poky \

${BSPDIR}/sources/poky/meta-yocto \

${BSPDIR}/sources/poky/meta-yocto-bsp \

\

${BSPDIR}/sources/meta-openembedded/meta-oe \

${BSPDIR}/sources/meta-openembedded/meta-multimedia \

${BSPDIR}/sources/meta-openembedded/meta-python \

${BSPDIR}/sources/meta-openembedded/meta-networking \

\

${BSPDIR}/sources/meta-qt5 \

\

${BSPDIR}/sources/meta-freescale \

${BSPDIR}/sources/meta-freescale-3rdparty \

50

4. DRIVER DEVELOPMENT CONTENTS

${BSPDIR}/sources/meta-freescale-distro \

${BSPDIR}/sources/meta-udoo \

\

${EXTDIR}/mysources/meta-thesis \

As can be noticed a new variable named EXTDIR has been created; even if in this case
the BSPDIR and the EXTDIR variables bring to the same path, the variable has been added in
order to maintain a modular approach a forecasting that, in case of a folder reposition only one
path should have been changed inside the whole configuration file. As the name may suggest the
EXTDIR variable has been intended as the folder containing custom source code to be added
to the build process.

4.3 Module Device Driver Implementation

Once the Yocto environment has been configured correctly to include within the build process
the metadata layer created to host the module device driver for GestIC controller it is possible
to comment the driver implementation contained in the source file gestic.c created during the
previous section. The driver has been, as suggested by the extension of the file, been written in
C; the choice of this language has been motivated essentially by the huge existent documentation
regarding driver development in C.
The driver will be explained with code snippets of the different parts of the file, that can be in
fact divided in three parts:

1. definitions and inclusions;

2. initialization and disposition of the resources;

3. file operations implementation;

It also needed to point out the all the libraries that have been included within the driver can be
found under the tmp folder containing Bitbake output files since those libraries are the result of
source code fetching of the Bitbake process itself; in particular the most of them can be found and
consulted within the path udoo-community-bsp/build thesis/tmp/work-shared/udooneo/kernel-
source/include/linux/ that will be referred as linux/ folder from now on. The following code
snippets will show the most important parts of the code.

4.3.1 Initializzation and Disposition functions

The driver development started with the implementation of the initialization and disposition
functions; those two functions named gestic init and gestic exit respectively, are the function
executed by the Kernel when each time the module is installed or removed from system. They
essentially must take care of initializing all the required hardware resources, as for instance
the I2C port needed to communicate with the controller or an interrupt, and the structures
(whose implementation can be found within the included libraries) that are used by the module
functions.
The initialization function is the following:

/∗The function which allocates all the needed resources for the device driver∗/
static int init gestic init(void)
{
if (DEBUG) printk(KERN INFO ”\n\nGestIC: the module is in DEBUG mode\n”);
...

51

4. DRIVER DEVELOPMENT CONTENTS

As can be noticed by the looking at the function definition, the gestic init function (and the
gestic exit function as well) are marked through the init and exit macros as an initialization
and a disposition function so that the Kernel will know which function to execute during each
one of the two operations. In this particular case the gestic init function has been marked as
the entry point for the Kernel execution of the module. Moreover the snippets shows the use
of the DEBUG parameter that was used to debug the module; since the module execution
is taken in charge by the Kernel itself the most immediate way, that was adopted to test the
gestic module, is to print some important information during the code execution in order to
understand if the driver is working properly or not. Linux offers through the module parameters
feature, a way to extend the the device module installation with options; the module parameter
has been initialized as:

...
//The macro used to check the boolean parameter of this module; this parameter allows to enable or not
//a very verbose debug mode that prints on the kernel standard output a walkthrough log of the
//module functions
#define DEBUG (gestic debug)
...
/∗
∗ MODULE PARAMETERS
∗/

//The parameter used to enable a debug mode
static bool gestic debug = 0;
module param(gestic debug, bool, 0);
MODULE PARM DESC(gestic debug, ”Enables the debug mode on kernel output”);
...

It is important to underline that the DEBUG parameter, that is basically a boolean value, is ini-
tialized as false by default; thus installing the module without specifying the DEBUG option will
result in a non-debug code execution; this choice has been made in order to let the code as clean
as possible in case of non-debug execution since, even if in a small percentage, even the most
basic print operation may vary the module behavior in cases of fast real-time application as this
one. In case of DEBUG mode the output will be printed on the Kernel log with a low priority
(KERN INFO); it is advisable in fact to leave to system errors greater priorities as KERN ERR.

The gestic init function has been structured as a single sequence of nested conditional state-
ments; in this way is possible to stop the initialization of the module whenever one the operations
required to complete this phase does not succeed and to immediately clean up the resources al-
located until the failure happened. The structure looks as follows:

...
//Initializing the queue for reading processes
init waitqueue head(&read queue);

//Registering the new character device numbers
//Parameters: device, first minor number for the moudule, count of needed
//minor numbers, name of the associated device
//Returns a negative value in case of error
if (alloc chrdev region(&gestic dev, 0, 1, ”gestic”) >= 0)
{
if (DEBUG) printk(KERN INFO ”GestIC: character device numbers registration succeded\n”);
//Creating the class structure for the device; needed to register the device in
//sysfs
//parameters: module owner of the class, name of the class
if ((cls = class create(THIS MODULE, ”chardrv”)) != NULL)
{
...

52

4. DRIVER DEVELOPMENT CONTENTS

}
else if (DEBUG) printk(KERN INFO ”GestIC: class initialization failed\n”);
unregister chrdev region(gestic dev, 1);
}
else if (DEBUG) printk(KERN INFO ”GestIC: character device numbers registration failed\n”);
return KERNEL ERROR;
}

The previous snippet points out the design just described; for instance if the class create function
returns an error code the function won’t nest within the successive if-statements but will stop
instead unregistering the allocated character device (since the alloc chrdev region was the only
function executed correctly until the failure time). If everything goes well and all the resources
are initialized correctly the inner if-statement is reached:

...
if (DEBUG) printk(KERN INFO ”GestIC: initialization completed\n”);
printk(KERN INFO ”GestIC device: driver installed\n”);

return NO ERROR;
...

The main resources allocated and initialized by the gestic init function are:

• a waitqueue used to manage the read requests from the user space according to the avail-
ability of new data from the sensor;

• a class structure for the device; the device can be configured as a character device oa
block device. The class choice will modify way the file is accessed: if the file is character-
based the access to the corresponding memory will be a sequential iterative access to the
characters composing the file; on the other hand if the file is block-based the access will
be granted for portions of the file memory that are multiple of the block size (usually
512Kbyte). In this particular case the module has been classified as character-based;

• a device structure containing some information about the device: a structure containing
information on this module will be added inside the sysfs, a pseudo-file system containing
user space information about kernel subsystems that is mounted under /sys folder;

• the file operation structure (fops) is connected to the device;

• a I2C data structure that will be used to establish a communication with the controller
on the I2C bus of the board;

• two GPIOs used to manage the TS and the MCLR line. The TS line has been initialized
as an input GPIO while the reset line has been initialized as output as it will always be a
line ruled by the master;

• an interrupt used to manage the TS line changes;

On the other hand the gestic exit function takes in charge of freeing the allocated resources
when the module device is removed:

/∗The function which releases all the resources used by the device driver∗/
static int exit gestic exit(void)
{
free irq(ts irq num, NULL);
gpio free(GESTIC GPIO MCLR);
gpio free(GESTIC GPIO TS);
i2c unregister device(gestic client);
cdev del(&cdev);

53

4. DRIVER DEVELOPMENT CONTENTS

device destroy(cls, gestic dev);
class destroy(cls);
unregister chrdev region(gestic dev, 1);

printk(KERN INFO ”GestIC device: driver removed\n”);

return 0;
}

In order to define the two described functions as respectively an entry and an exit point for the
module it necessary to add the following directives within the module:

...
module init(gestic init);
module exit(gestic exit);
MODULE LICENSE(”GPL”);
MODULE AUTHOR(”Fabio Garcea <fabio.garcea@gmail.com>”);
MODULE DESCRIPTION(”GESTIC Driver for UDOO−Neo”);

As can be noticed the module.h library that can be found under the linux
folder offers the possibility to add some other module informations as a DESCRIPTION or the
AUTHOR contacts.

4.3.2 File Operations

After the initialization and disposition phases management the successive part to be developed
was the one containing the file operations; as explained these operations act as translation for the
VFS that makes an association between the high level file-access abstraction and the low-level
driver implementation. The structure containing the file-operations looks as follows:

/∗The struct definining the correspondance between low−level and high−level functions used
to interac twith the device∗/
struct file operations gestic fops =
{
.owner = THIS MODULE,
.open = gestic open,
.release = gestic close,
.read = gestic read,
.write = gestic write,
};

The driver provides a particular implementation for each of the most basic operations that can
be made on a file. The operations that have been implemented are:

• the open function, used to open the device;

• the close function, used to close the device;

• the read function, used to read from the device;

• the open function, used to write to the device;

These function are sufficient in this driver implementation to give full access to the device. The
following figure tries to represent in a graphical way the behavior of the driver during both a read
or a write operation. If a write is needed from the user space the operation will be executed
immediately since there’s no need to wait for the TS line edge; if a read shall be performed
however the operation shall be tried only upon a falling edge of the TS line (the GestIC module
assert Low the line to signal a data buffer update).
The first file operations that have been developed are the open() and close() functions.

54

4. DRIVER DEVELOPMENT CONTENTS

...
/∗Opens the GestIC device: this function is usually called once by the application level; this function
is basically used to configure the module in a known status and make it ready to be written or read∗/
static int gestic open(struct inode ∗i, struct file ∗f)
{
//Resetting the module and initializing the parameters each time the module is opened
gestic reset();

if (DEBUG) printk(KERN INFO ”GestIC: module opened correctly\n”);

return NO ERROR;
}
...

The gestic open() function basically takes only care of resetting the controller by calling
another function named gestic reset():

...
/∗Resets the MGC3130 controller∗/
static void gestic reset(void)
{
//Resetting initial values
write length = 0;
read length = 0;
//Releasing the MCLR line resets the controller; from the datasheet a 5ms period has to be waited
ASSERT MCLR;
msleep(reset asserted delay);

//Asserting the MCLR line resets the controller; from the datasheet a 20ms period has to be waited
RELEASE MCLR;
msleep(reset released delay);
...

The gestic reset() simply manages the MCLR line through the two implemented macros AS-
SERT MCLR and RELEASE MCLR; the assert macro will pull the GPIO connected to reset
signal low thus giving a reset command while the release will set the pin high to let the controller
exit from the reset phase. Moreover after each of the two cases a delay time has been waited
to be sure that any possible controller transient could be escaped. Since the resets represents
a blank status of the device within the same function some variable re-initialization have also
been performed.

The gestic close() function on the other hand has nothing to do since no resources have to
be closed neither cleaning operations have to be performed upon the device file closure.

Before moving on and start talking about the implementation of the write and read function
it is necessary to point out the decision made in terms of hardware pinout: the UDOO Neo pins
that have to be chosen are six just as the number of the pins of the MGC3130 controller. The
choice for the GPIOs can be summarized with the following table:

PIN TS 3.3V GND SDA SCL MCLR
GPIO 105 / / / / 148

PIN NAME / / / I2C2 SDA I2C2 SCL /
HEADER J6, 8 J7, 3V3 J7, GND J6, SDA J6, SCL J6, 9

Table 2: Summary of the pinout-controller connections

55

4. DRIVER DEVELOPMENT CONTENTS

Thus some in-code definitions have been made accordingly:

...
//The two pins used for the the TS and MCLR signals
#define GESTIC GPIO TS 105
#define GESTIC GPIO MCLR 148

//The exadecimal number used to identify one of the two possibile addresses to establish a I2C connection
//with the board. The other one is 0x43 from the MGC3130 controller datasheet
#define GESTIC I2C ADDRESS 0x42

//From the board datasheet the bus number for the selected line is ”2” but since the enumeration starts
//with ”0” the corresponding line number is ”1”
#define GESTIC I2C BUS NUM 1
...

As can be noticed a constant storing the GESTIC I2C BUS NUM has been declared; in fact
the UDOO Neo board has, as pointed out within the Hardware Reference section, multiple I2C
connections and thus multiple buses. The chosen I2C bus has been the bus number 2 but since
the enumeration of the buses starts from ”0” the I2C bus that the driver uses can be identified
with the bus number ”1”.
At his point it is possible to explain the design adopted for the write and read file operations.
The following figure gives a graphical representation to the gestic write() function:

Figure 34: gestic write() function scheme

An example of the module installation and disposition phases has been included; in fact all
the operation on the device driver can only be executed by the Kernel if the module has been
previously installed and opened.
The gestic write() function has thus been developed taking into account the required design:

...
/∗This function includes all the common operations to be done before sending the message
The message can be actually send through I2C
Future implementation: serial∗/
ssize t gestic write(struct file ∗f, char user ∗buf, size t len, loff t ∗off)
{
//The number of bytes succesfully written to the device
size t bytes written = 0;

//Setting the global variables
write length = len;
if (write length > MAX MSG LENGTH)
//Cropping the message to maximum allowed length
write length = MAX MSG LENGTH;

56

4. DRIVER DEVELOPMENT CONTENTS

//Resetting the whole write buffer before starting the transmission
memset(write buffer, 0, MAX MSG LENGTH);
memcpy(write buffer, buf, write length);

bytes written = gestic I2C write();

return bytes written;
}
...

The function takes care to perform all the preliminary operations needed to prepare the vari-
ables before sending a new I2C message; the message coming from the user level is cropped
to fit the maximum message length expected by the controller, it is copied inside a globally
declare write buffer (not risking to compromise the user buffer contents) and finally it calls the
gestic I2C write() to send an I2C message to the controller working on the contents of the pre-
viously described buffer.
This subdivision of the jobs has been made forecasting a future extension of driver on other
protocols different by the I2C protocol and selectable with more module parameters allowing
a customization at installation time. The function is intended to interpret the contents of the
buffer copied from the user space and understand weather it contains a command to be executed
on the module or a message compatible with the GestIC controller message structure.
The driver allows in fact to execute two basic commands of reset and sleep on the device module
by simply writing on it two predefined pattern (respectively 0x11 and 0x22):

...
//Checking if the message received is a command; actually two commands are implemented:
//RESET, 0x11
//SLEEP, 0x22
if (CMD RECEIVED)
{
if (DEBUG) printk(KERN INFO ”GestIC: command received\n”);
//A command has been received; no message has to be sent, a command shall actually be applied
switch (CMD ID)
{
case RESET ID:
if (DEBUG) printk(KERN INFO ”GestIC: resetting...\n”);
//Resetting the device
gestic reset();
break;
case SLEEP ID:
if (DEBUG) printk(KERN INFO ”GestIC: sleeping...\n”);
//Making the module sleep
msleep(∗sleep time);
break;
default:
if (DEBUG) printk(KERN INFO ”GestIC: invalid command\n”);
break;
}
bytes written = write length;
}
...

If the buffer doesn’t contain any command the function sends, if the contents represent a valid
message, the data inside the buffer to the controller returning the number of bytes successfully
sent.
In order to understand how the driver implements the message validity check the GestIC con-
troller message structure has to be briefly described first. Each message exchanged with the
MGC3130 controller shall respect the following structure:

57

4. DRIVER DEVELOPMENT CONTENTS

Figure 35: MGC3130 message layout

The first part of the message carries information about the message itself:

• a size byte, the size of the full message (header and payload);

• a reserved flags byte;

• a sequence byte that can be used to perform a check on the message loss;

• a ID byte that identifies the type of message; some of them will be explained during the
next section when exploring the GestIC API.

The structure of the message header has been hard-coded within the driver and it is used to check
the message validity during write operations through a macro named VALID MESSAGE
before eventually send the buffer contents to the controller:

...

//The macro used to check weather the message to be sent respects the format
//expected by the device
#define VALID MSG ((write header−>size >= MSG HEADER LENGTH) && (write header−>size ==

write length))

...

/∗The struct representing the message header
−−−
SIZE: Complete size of the message in bytes including the header
FLAGS: Reserved for future use
SEQ: Sequence number increased for each message sent out by the controller
ID: ID of the message
−−−

Using the attribute ’packed’ forces the compiler not to pad the structure
thus avoiding to add meaningless bytes in order to allign data. This choice is
made to maintain a space saving policy against a fast access one∗/
struct gestic message header{
uint8 t size;
uint8 t flags;
uint8 t seq;
uint8 t id;
} attribute ((packed));

...

On the other hand, as discussed in the section 3 ”Hardware References”, in case of a read
operation on the device a proper management of the TS line is required.
The following figure gives a graphical representation of the of read process implemented by the
driver:

58

4. DRIVER DEVELOPMENT CONTENTS

Figure 36: gestic read() function scheme

A call to the read() function from the user space level will result in a call of the gestic read()
driver function; this function has been designed according to TS line signal management required
to read correctly from the MGC3130 controller.

...

/∗This function includes all the common operations to be done before reading a message
The message can be actually read through I2C
Future implementation: serial∗/
static ssize t gestic read(struct file ∗f, char user ∗buf, size t len, loff t ∗off)
{
int error = NO ERROR;
//The number of bytes succesfully read from the device
size t bytes read = 0;

//Setting the global variables
read length = MAX MSG LENGTH;

//Resetting the whole read buffer before starting the transmission
memset(read buffer, 0, read length);

//Blocking the read process until the TS line is aserted
if (TS CURRENT VALUE != 0)
{
if (DEBUG) printk(KERN INFO ”GestIC: waiting for data...\n”);

//The TS line is not asserted yet; the process will sleep until a signal won’t wake it up.
//Right after the specified condition will be evaluated
error = wait event interruptible timeout(read queue,
(TS CURRENT VALUE == 0),
msecs to jiffies(READ TIMEOUT));

...

Upon a gestic read() call the process pushes itself within waitqueue that was previously initialized
by the gestic init() function; the read process will eventually be awaken by the waitqueue when
one the following conditions will be verified:

• an external thread wakes him up by the waitqueue;

59

4. DRIVER DEVELOPMENT CONTENTS

• a timeout elapses;

The thread in charge of waking up the read processes that are sleeping inside the queue a is
the interrupt service routine associated with a falling edge on the TS line; if a TS falling edge
happens this will mean that new data is available within the MGC3130 data buffer. thus a
thread will raise and will wake up all the processes still waiting on the the waitqueue. Has been
in fact verified that this approach is the most stable in terms of process management.

...

/∗This function includes all the common operations to be done before reading a message
The message can be actually read through I2C
Future implementation: serial∗/
static ssize t gestic read(struct file ∗f, char user ∗buf, size t len, loff t ∗off)
{
int error = NO ERROR;
//The number of bytes succesfully read from the device
size t bytes read = 0;

//Setting the global variables
read length = MAX MSG LENGTH;

//Resetting the whole read buffer before starting the transmission
memset(read buffer, 0, read length);

//Blocking the read process until the TS line is aserted
if (TS CURRENT VALUE != 0)
{
if (DEBUG) printk(KERN INFO ”GestIC: waiting for data...\n”);

//The TS line is not asserted yet; the process will sleep until a signal won’t wake it up.
//Right after the specified condition will be evaluated
error = wait event interruptible timeout(read queue,
(TS CURRENT VALUE == 0),
msecs to jiffies(READ TIMEOUT));

if (error == 0)
//Timeout expired
error = −ETIMELAPSED;
else
error = NO ERROR;

}

...

The variable storing the timeout value is named READ TIMEOUT and has been defined as
constant value of 20 milliseconds; in order to use the wait event interruptible timeout function
declared inside the linux/wait.h library it’s however necessary to convert the millisecond value
in the corresponding number of jiffies. The jiffy conversion coefficient depends of the system
and it represents the time interval that lasts between two ticks of the system timer interrupt;
it can be however computed through the conversion function msecs to jiffies() that is declared
within linux/jiffies.h. When the process awakes it sets the error local variable according to the
event that caused him to wake up from the sleep; if no error has occurred the read process ends
up with the gestic I2C read() function that implements the actual I2C data caption.

...

60

4. DRIVER DEVELOPMENT CONTENTS

ASSERT TS;
if (DEBUG) printk(KERN INFO ”GestIC: re−asserting TS\n”);
//Reading the message through I2C
bytes read = gestic I2C read();
if (bytes read >= 0)
memcpy(buf, read buffer, bytes read);

//Releasing the TS line
RELEASE TS;
msleep(i2c delay read);

...

Following the MGC3130 protocol for message receive the master asserts the TS line low to ensure
the data buffer won’t update while reading and then it releases TS line GPIO high after the I2C
read function has been executed; the interrupt service routine that starts after a falling edge
caption of the TS line is initialized within the init function and looks as follows:

...

/∗The interrupt which handles the TS line value changes∗/
static irqreturn t ts changed(int irq, void ∗dev id)
{
static int ts last value = 1;
int ts new value = !!TS CURRENT VALUE;

if (DEBUG) printk(KERN INFO ”GestIC: value TS is : %d\n”, ts new value);

//Checking if the irq of the interrupt is the one associated with the TS line
if (irq != ts irq num)
{
if (DEBUG) printk(KERN INFO ”GestIC: no need to handle this interrupt\n”);
return IRQ NONE;
}

//If the TS line was asserted by the controller some new data is available; thus the read process has
//to be woke−up
if (ts new value != ts last value)
{
if (!!ts new value == 0)
{
wake up all(&read queue);
}
}

ts last value = ts new value;
if (DEBUG) printk(KERN INFO ”GestIC: interrupt handled\n”);

return IRQ HANDLED;
}

...

As explained the read processes waiting on the read queue are awaken by the wake up all()
function call whenever the TS value stored within the ts new value variable is equal to 0.

4.4 Deploying and Debugging the Module

Once the driver has been completed the Yocto environment has everything that is needed and is
thus ready to produce the new image for the UDOO Neo board; the produced image will store

61

4. DRIVER DEVELOPMENT CONTENTS

the device module just created inside the OS file system under the path /lib/modules/4.1.15-
2.0.x-udoo+g7773e46/extra/ of the board with the name gestic.ko. To compile the image it is
necessary to resume the build and then run the bitbake command as:

bitbake udoo_image_full_cmdline

The process will take care of compiling the driver source code as the rest of the image. Moreover
since a recipe was created for the developed driver it is possible to recompile just the its source
code upon any patch application on the source code with the commands:

/thesis/udoo-community-bsp/build_thesis$ bitbake -c clean gestic-mod

The command will execute the clean target of the Makefile created during the last section thus
removing each output of the driver compilation of any previous build. In order to recompile the
module won0t be necessary the re-compilation of all the image source code but only the one
related to the driver recipe. To re-compile the driver the following command shall be executed
after the clean command:

/thesis/udoo-community-bsp/build_thesis$ bitbake gestic-mod

The command will recompile only the device module with the updated version of the source
code.
Since a recompilation of the driver has been made the version previously deployed on the board
inside the file system is no more up to date; it will be thus necessary to upload the new version
of the module from the PC directly into the board. The last version of the gestic.ko mod will
be always found within the tmp/sysroots-components/udooneo/gestic-mod/lib/modules/4.1.15-
2.0.x-udoo+g7773e46/extra/ folder of the current build.
There are several ways to send the file to the board and the process may as simple as loading it
from a portable USB device used to transfer file between the PC and the host. However during
the driver development and test phase the choice has been for a SFTP connection to deploy
file and an SSH connection to open a terminal on the board.
To use the board in such a method it is necessary to connect it to the Host PC network; the
network interface on the board is initially configured to acquire an IP address when assigned
externally from a DHCP device. This can be spotted out by running on a minicom terminal
connected with the board the following command:

root@udooneo:# cat /etc/network/interfaces

/etc/network/interfaces -- configuration file for ifup(8),

...

Wired or wireless interfaces

auto eth0

iface eth0 inet dhcp

...

While the interfaces file is configured in such a way the OS will try to acquire an IP address
assigned by the DHCP; this would be the right choice when working with a board remotely
connected to the Host PC network through a DHCP device as for instance a router.
However during this project the board has almost always been kept directly connected with the
host PC; thus has been necessary the reconfiguration of the interfaces file on the UDOO Neo
board and the creation of a new wired connection on the Host PC.
To setup a static IP address for the UDOO Neo board the interfaces file under /etc/network/
directory has been modified as follows:

62

4. DRIVER DEVELOPMENT CONTENTS

root@udooneo:# cat /etc/network/interfaces

/etc/network/interfaces -- configuration file for ifup(8),

...

Wired or wireless interfaces

auto eth0

iface eth0 inet static

address 192.168.1.2

netmask 255.255.255.0

gateway 192.168.1.255

...

With this configuration basically the UDOO Neo board will always have the same IP address
192.168.1.2; moreover it has been necessary to configure a new cabled LAN connection for the
Host PC. The new PC connection has been created through the ”Network” application offered
by the Linux Ubuntu OSM; the properties to set for a proper connection are:

• IPv4 IP protocol;

• the Netmask is 24;

• the Gateway address is 192.168.1.1;

• the IP address for the the PC is 192.168.1.1;

While on the host PC the changes to the IP address are fulfilled at run, to make true the changes
on the board is however necessary to synchronize the file system and optionally perform a rebooot
o the OS; this can be done through the following commands:

root@udooneo:# sync

root@udooneo:# reboot

After the reboot the board will be connected to th PC network; the result can be monitored
through any IP management tool. To attend this job the ”Angry IP Scanner” application has
been used several times; moreover the board can now be found under the name of udooneo.local
on the PC network.

even if it is just an example any IP scanner tool should produce a result looking more or less
as follows:

Figure 37: Angry IP Scanner results

63

4. DRIVER DEVELOPMENT CONTENTS

Since now the system is available within the system it is possible to transfer a file on the
Linux file system through the Ethernet connection. In order to transfer any new version of
the device module it is possible to run (for a visual convenience from the folder containing the
gestic.ko module) the following commands :

$ cd thesis/udoo-community-bsp/build_thesis/tmp/sysroots-components/udooneo/ge

stic-mod/lib/modules/4.1.15-2.0.x-udoo+g7773e46/extra/

$ sftp root@udooneo.local

Connected to udooneo.local.

sftp> put gestic.ko

Uploading gestic.ko to /home/root/gestic.ko

gestic.ko 100% 17KB 17.1KB/s 00:00

sftp> exit

Now the device module has been sent to the UDOO Neo through the LAN connection and can
be found, as the output states, within /home/root/ directory.
as now the board can be found inside the PC network is possible to connect with the remote
system by opening an SSH connection with it; this can be done by running the following com-
mand:

$ ssh root@udooneo.local

Last login: Sun Dec 17 16:54:29 2017 from 192.168.1.1

root@udooneo:#

From the terminal opened it is now possible to install and debug the module device deployed
before; to install the module in debug mode it is sufficient to run:

root@udooneo:# insmod gestic.ko gestic_debug

The install command in fact is implicitly setting the gestic debug boolean value, referred inside
the driver with the macro DEBUG, as true. To check the log printed on kernel output by the
device driver will be enough to run the dmesg command:

root@udooneo:# dmesg

...

[3206.847244]

GestIC: the module is in DEBUG mode

[3206.856741] GestIC: character device numbers registration succeded

[3206.864598] GestIC: class initialization succeded

[3206.870765] GestIC: associated device initialization succeded

[3206.877056] GestIC: Initializing the character device data structure

[3206.883529] GestIC: character device data structure initialization succeded

[3206.890494] GestIC: I2C adapter structure initialization succeded

[3206.899225] GestIC: I2C client initialization succeded

[3206.904457] GestIC: TS line initialization succeded

[3206.909342] GestIC: TS line direction configuration succeded

[3206.915614] GestIC: MCLR line initialization succeded

[3206.920681] GestIC: MCLR line direction configuration succeded

[3206.926982] GestIC: interrupt number detection succeded

[3206.932266] GestIC: TS associated interrupt initialization succeded

[3206.939001] GestIC: initialization completed

[3206.943345] GestIC device: driver installed

64

4. DRIVER DEVELOPMENT CONTENTS

In order to monitor in a more ”real-time” mode the kernel log it is instead possible to run:

root@udooneo:# watch -n 0.1 "dmesg | tail -50"

This command will basically refresh the dmesg command output each 100ms giving the idea
of time elapsing while debugging the kernel log.
When the driver is installed a new character device will appear in the file system; in fact a new
device will be registered under the /dev folder,

root@udooneo:# ls -al /dev/gestic

crw------- 1 root root 247, 0 Dec 17 17:43 /dev/gestic

The module device driver can be installed and removed at any time; the OS won’t however allow
to remove the module if any process using the /dev/gestic file is active. To remove the module
it will be sufficient to run:

root@udooneo:# rmmod gestic

The module will be removed by the Linux Embedded OS; to check the correct disposition of the
module it is possible to check again the kernel log,

root@udooneo:# dmesg

...

[6772.776550] GestIC device: driver removed

or check for the character device within the /dev folder as done before.

root@udooneo:~# ls -la /dev/gestic

ls: cannot access ’/dev/gestic’: No such file or directory

65

5. GESTIC CONTROL APPLICATION CONTENTS

5 GestIC Control Application

Within this section will be discussed the design and the development phases that brought to
the realization of the gestic control application exploiting the driver created during the section
4 ”Driver Development” and running on the UDOO Neo board.
The main steps that occurred into the realization of the application were:

• the setup of the Eclipse IDE to cross-compile an application running on Linux Embedded;

• the customization of the Microchip GestIC API for making it compatible with the driver
implementation;

• the design of a multi-thread slave application able to receive data from the controller,
forward the data to the host PC and interpreting commands on serial.

Before moving on the actual developing phase a brief comparison between compilation and
cross-compilation will be made.

5.1 Compilers and Cross-Compiler

The compiler is a the software whose purpose is to translate a source-code written with some
high-level programming language into object code or, in general a lower-level code. The object
code is thus the product of the compile process; it basically represents a sequence of instructions
written in a computer-understandable language (machine code). In order to produce a executable
file the object codes that may be the result of multiple compilations will be combined by the
linker software to produce an executable file i.e. a file that can be executed by the machine.

Figure 38: Executable file production

As can be seen by the figure the compilation process may also invoke a preprocessor, even if
this phase may occur in different moments according to te specific compiler design. The prepro-
cessor is basically designed to manipulate the source code during the compilation process and
to perform actions as for instance macros expansions.

66

5. GESTIC CONTROL APPLICATION CONTENTS

On the other hand the cross-compiler is a software intended to compile source that will run on a
target platform that will be different by the host platform; this is typically the case of embedded
programming where the target system has not an OS or enough computing resources to handle
the compilation. The free GCC compilers collection (GNU Compilers Collection) can be used
to cross-compile source-code for a target system; this will however require that the C libraries
of the target system are available on the host system.
In order to produce an application from an host pc for a target machine other useful tool are
the cross-linker, that will act as a standard linker but will produce an executable for a target
system, and a cross-debugger used to analyze and control the application execution from the
build pc.
The collection of the tools that are needed to handle a complex software development as ap-
plication cross-development, can be referred as toolchain; in order to setup the development
environment is thus needed to get a toolchain feasible with the target system properties and the
host machine as well. In order to achieve this goal the Yocto Project tools have been used once
more.

Figure 39: Cross-compiling toolchain

The Yocto Project allows in fact the user to build a custom toolchain installer that depends
on the build environment and the used image recipe; so after the build environment has been
resumed it is possible to produce an installer for the correct toolchain:

/thesis/udoo-community-bsp$ source ./setup-environment build_thesis/

/thesis/udoo-community-bsp/build_thesis$ bitbake -c populate_sdk udoo-image-ful

l-cmdline

The populate sdk will produce the toolchain installer that will be useful when setting up the
IDE for cross-development; the executable file will be put inside the folder tmp/deploy/sdk of
the build folder itself.
Moreover the toolchain produced by the Yocto Project tools will be a self-contained folder, in
fact everything that will be required during the cross-development phase will be found inside
that folder.
The executable file produced by Yocto can be run to install the toolchain inside any folder; in
this case the folder has been left the default on /opt/poky/2.3.2/ :

/thesis/udoo-community-bsp/build_thesis$ cd tmp/deploy/sdk/

/thesis/udoo-community-bsp/build_thesis/tmp/deploy/sdk/ $./poky-glibc-x86_64-u

doo-image-full-cmdline-cortexa9hf-neon-toolchain-2.3.2

67

5. GESTIC CONTROL APPLICATION CONTENTS

Poky (Yocto Project Reference Distro) SDK installer version 2.3.2

===

Enter target directory for SDK (default: /opt/poky/2.3.2):

You are about to install the SDK to "/opt/poky/2.3.2". Proceed[Y/n]? y

Extracting SDK...done

Setting it up...done

SDK has been successfully set up and is ready to be used.

Each time you wish to use the SDK in a new shell session, you need to source th

e environment setup script e.g.

$. /home/fabio/toolchain/environment-setup-cortexa9hf-neon-poky-linux-gnueabi

As can be spotted by the output of the executable the toolchain for cross-development has been
installed within the requested folder; since we are integrating that folder inside the IDE for
application development it won’t be necessary to source the setup script manually.
As can be seen by listing the contents of the /opt/poky/2.3.2/sysroots/ folder that will be
installed on the file system by the script

$ ls /opt/poky/2.3.2/sysroots/

cortexa9hf-neon-poky-linux-gnueabi x86_64-pokysdk-linux

two folder containing system roots for both the system architecture have been included.

5.2 Configuring Eclipse and the Yocto SDK

Once the toolchain has been installed is possible to configure the IDE to perform cross-development;
The choice for the IDE has been the Eclipse for three essential reasons:

• it is free and thus widely used, thus many tutorials and instructions can be found on the
web to make a fast setup of the environment;

• it allows an highly customization and supports a waste number of programming languages;
in fact, even if it’s origins can be historically found in Java development, it now support
most of the commonly used languages as C/C++ or Python. Moreover to add some
capability to the IDE it’s sufficient to install a specific plug-in to extend the Eclipse IDE
functionalities;

• an Eclipse plug in named Yocto SDK (Yocto Software Development Kit) for cross-
development is directly maintained by the Yocto Project, allowing an easy way to design
applications for a target embedded system.

The version of the Eclipse IDE used during the thesis project is Eclipse Neon; even if an older
version of the IDE may work well the following instructions have been tested on the Neon version
only.
The IDE can be downloaded from the official Eclipse Project web site at http://www.eclipse.
org/downloads/download.php?file=/technology/epp/downloads/release/neon/3/eclipse-

cpp-neon-3-linux-gtk-x86_64.tar.gz; once the archive has been downloaded its contents
can be extracted inside any folder. After this step no other actions are needed to install the IDE
since it can be run directly from the extraction folder.

To configure the Eclipse IDE some extensions have to be downloaded; before downloading
those packages is however suggested to launch a check for update: this operation will in fact
update some of the packages used during the development. To launch update it is possible to
run Help - Check for Updates. To add the remaining plug-ins to the IDE it is sufficient to search

68

http://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/neon/3/eclipse-cpp-neon-3-linux-gtk-x86_64.tar.gz
http://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/neon/3/eclipse-cpp-neon-3-linux-gtk-x86_64.tar.gz
http://www.eclipse.org/downloads/download.php?file=/technology/epp/downloads/release/neon/3/eclipse-cpp-neon-3-linux-gtk-x86_64.tar.gz

5. GESTIC CONTROL APPLICATION CONTENTS

for Help - Install New Software; a summary of the needed extensions can be seen in the following
figure:

Figure 40: Eclipse plug-ins installation

The installed extensions basically provide Eclipse some useful tool to remotely manipulate
the target system root file system and some C/C++ writing tools since the language chosen for
the application is C.
At Eclipse restart the last element, the Yocto ADT plug-in has to be installed in the IDE.
To do this is necessary to reach again the Help - Install New Software option; a new source
website not listed between the several choices has to be added, by pressing the Add button, with
name Yocto and location http://downloads.yoctoproject.org/releases/eclipse-plugin/

2.3.2/neon/. From this source shall be fetched two packages, one for documentation and one
for the Yocto SDK.

Figure 41: Eclipse Yocto SDK installation

After the IDE has restarted the plug-in can be configured; in order to do this correctly the
location of the toolchain root and the location of the sysroots folder has to be set under the
Window - Preferences - Yocto ADT option as can be seen in Figure 38. The current settings
has been saved under the UDOO-NEO name and set as default.

69

http://downloads.yoctoproject.org/releases/eclipse-plugin/2.3.2/neon/
http://downloads.yoctoproject.org/releases/eclipse-plugin/2.3.2/neon/

5. GESTIC CONTROL APPLICATION CONTENTS

Figure 42: Eclipse Yocto SDK configuration

5.3 GestIC API Customization

Since the setup is now finished it is eventually possible to create a new application; to do this
it is sufficient to search for File - New - C Project to start the project creation wizard. The
application designed to show the driver behavior has been created as a ”Hello World ANSI C
Autotools Project”, a simple ”Hello World!” application, and modified during the different steps
of the design. While the current subsection will underline the most important part of the API
and the major customizations to the existing code, the following subsection will see more in
detail the structure of the application.
The first step to integrate the GestIC API written by Microchip is to fetch the source code from
the Hillstar KIT web page under the download panel; the archive which contains the GestIC
API is the one named Aurea Software Package - Aurea GUI and GestIC Library. After the
SDK inside the archive has been installed the folder containing the GestIC API will be available
under the api folder of the extraction path while the documentation on the API features can be
found under the doc folder.
The API contents are shown in Figure 39 :

Figure 43: GestIC API folder contents

70

5. GESTIC CONTROL APPLICATION CONTENTS

The API is divided into four folders:

1. the include folder contains the library that shall be ever included inside an application in
order to exploit the API capabilities; there are three main headers to be included, the ges-
tic api.h is the most important between them since it represents the major customization
point and the interface with the rest of the libraries;

2. the lib folder contains the all API source code in the form of a .dll file (dynamic library
version of the API);

3. the lib-static folder contains the the API source code in the form of a .lib static library;

4. the src contains the source code written in C in the form of source files and headers;

During the project the two folder whose contents have been included inside the application are
the include and the src folders. However before including the API files inside the Eclipse newly
created project it is advisable to launch at least once the build process in order to

1. make sure that everything is working fine for the most basic project possible, the one with
just the hello world source file;

2. allow the autotools to create the project configuration files for the basic version of the
project;

The application in this state may be seen as in his ”0” state, an initial working condition.

In order to exploit the API it is necessary to include the source files and the header files
needed inside the Eclipse project before starting any modification to them; first build will
produce several configuration files generated by autotools. One of them is the makefile.am file
that (even if this can be handled by the autotools) has been manually updated each time a new
source file or header file has been included within the project.
To include a copy of the API sources inside the build it is necessary to double-click on the src
folder of the project (in the project explorer view) and search for import option; when the wizard
opens it’s necessary to browse for the two folders previously discussed and include from them
the necessary libraries and source files. Moreover it would be necessary in order to specify the
needed files within the project to add them in the makefile.am file.
The makefile.am file, that can be found within the src folder of the Eclipse Project, looks like:

bin_PROGRAMS = gestic_control

gestic_control_SOURCES = gui.h gui.c serial.h serial.c gestic_control.c gestic_

api.h arch.h core.c gestic_custom.h gestic_custom.c gestic_static.h impl.h rtc.

c stream.c x86_linux.h fw_version.c flash.c

AM_CFLAGS = @gestic_control_CFLAGS@

AM_LDFLAGS = @gestic_control_LIBS@ -lpthread

CLEANFILES = *~

As can be noticed all the sources are listed inside the gestic control SOURCES as a concatenation
of names; keeping this string updated will prevent the IDE to raise an ”Undefined Reference”
error when launching the build process. As can be noticed most of the included files belong
to reference API, make an exception the files from gui.h to serial.c that don’t come form the
API folder and the gestic control.c that is the main file of the project. Eventually a reference
to the pthread.h library has been made in order to include the thread functionalities into the

71

5. GESTIC CONTROL APPLICATION CONTENTS

application.
As already said the gestic api.h file is the entry point for the GestIC API; it is organized as
a sequence of conditional inclusions and declaration based on defined values. In other words
whenever a value with a certain name is defined within one of the files of the project, the api will
include some libraries and declare some function instead of others; the code snippet reported
below represents an example of this particular design of the API:

...

#define GESTIC CUSTOM
#ifdef GESTIC CUSTOM
#include ”gestic custom.h”
#endif

...

This snipper̀ıt shows how in this particular case has been decided to define the GESTIC CUSTOM
value; this allows, even if the value is defined without value, to interact with the API that, ac-
cording to this portion of code, will include the gestic custom.h file and at the same time not
include other possible implementations in order to avoid conflicts. In order to avoid mutual
exclusion violations it is recommended to modify only the API file.
Since this API has been intended to work on a system that receives data through a serial con-
nection by the I2C to USB cable, the inclusion of a gestic custom library has been the first
modification that has been done to the gestic api.h file. Through this file, it is possible to set
different properties with respect to the default one:

...

//#define GESTIC NO FW VERSION
//#define GESTIC NO FLASH
//#define GESTIC NO DATA RETRIEVAL
//#define GESTIC NO RTC
#define GESTIC NO LOGGING

/∗ Notify GestIC−API that we provide a custom IO−implementation ∗/

#ifdef GESTIC IO
#undef GESTIC IO
#endif
#define GESTIC IO GESTIC IO CUSTOM

...

The file it’s used, for instance, to exclude the logging functionalities of the API (no log is
maintained using the API functions), and to set the I/O type of the application as custom; by
default it would have been a serial I/O type since this software has been intended to make a
host PC communicate with the host by serial. Defining GESTIC IO as GESTIC IO CUSTOM
the API interface won’t integrate the serial implementation of the Input/Output routines that
int this case will interface the file operation developed into the driver.
The consequence on the gestic api.h file:

...

#if GESTIC IO == GESTIC IO CUSTOM
/∗ Nothing to define here ∗/
#elif GESTIC IO == GESTIC IO CDC SERIAL
define GESTIC HAS SERIAL IO
define GESTIC USE IO CDC SERIAL

72

5. GESTIC CONTROL APPLICATION CONTENTS

define GESTIC USE MSG EXTRACT
#else
error ”Unknown IO implementation selected”
#endif

...

As said the functionalities implemented for the serial I/O version of the interface have not been
included.
Since a customized version has been declared inside the gestic api.h file it has been necessary
to provide the custom implementation source file gestic custom.c; within this file have been
implemented all the basics interaction between the user level application and the character device
that, as explained in section 3 ”Driver Development”, is going to model the GestIC controller
when the device module will be installed on the UDOO Neo root file system. The most useful
functions implemented in this source file are those functions used to open or close the device and
the two functions used to exchange messages with the module. Here follows a brief summary
on the most important part of these functions; the function used to open the device is the
gestic open() reported in the following snippet:

...

//Opening the device
if((fd = open(GESTIC DEV NAME, O RDWR))<0)
{
puts(”Error while opening the device.\n”);
error = GESTIC IO OPEN ERROR;
}

if (error == GESTIC NO ERROR)
{
gestic−>io.fd = fd;
gestic−>io.connected = 1;

/∗ Sleeping 300 ms to be sure the device is ready to be polled
∗ after reset.
∗/
usleep(POST OPEN USLEEP);

//Emptying the buffer from any initial and possibly corrupted message
for(i=0; i<5; i++)
{
read(gestic−>io.fd, buf, sizeof(buf));
}
}

...

As can be pointed out it is quite simple to open the driver module from the user space; in fact
a simple call to the open() function has to be performed as for a simple text file. Moreover a
time transient of 300 ms will be awaited on startup in order to avoid undesired messages from
the device, like for instance the firmware version message sent on startup by the controller;
since after the startup some unexpected messages (whose structure was not reported on the
documentation version provided with the kit) are sent by the controller a sort of initial flush has
been implemented by trying to rawly read up to 5 messages from the MGC3130 output buffer.
The close function instead won’t do nothing more then closing a file with a call to the close()
function:

...

73

5. GESTIC CONTROL APPLICATION CONTENTS

close(gestic−>io.fd);
gestic−>io.connected = 0;

...

It is important to underline that both the file descriptor fd and the connected boolean value
are part of a structure that stores the main information on the GestIC device such as firmware
informations and the results of the received messages interpretation.
The function that can be used to receive messages from the device is the gestic message receive
and has been implemented as follows:

...

for(i=0; i<3; i++) {
msg size = read(gestic−>io.fd, buf, sizeof(buf));
if(buf) {
gestic message handle(gestic, buf, msg size);
break;
}

if(!timeout || (∗timeout <= 0)) {
result = GESTIC NO DATA;
break;
}

...

This function will try to read a message up to three times from the device before performing a
check on the timeout expiration; in this case the response will be a GESTIC NO DATA error to
the calling function, otherwise the message will be handled through the gestic message handle
function to determine the nature of the received data frame. As can be noticed also in this case
the bufer has been filled by calling the read() function as can be done for a simple file.
The last basic function is the gestic message write():

...

bytes = write(gestic−>io.fd, (char ∗)msg, size);

if (bytes != size)
error = GESTIC IO ERROR;

...

In this case no retries are performed in case of unsuccessful write at this level since this control is
done by the functions that calls this one; this allowed to keep the message write function simple
as possible.
The last function that should be described at this level is the gestic reset() function:

...

// Setting up the message as a RESET COMMAND
SET U8(msg, 0);
SET U16(msg + 1, 0);
SET U8(msg + 3, 17);
SET U32(msg + 4, 0);

gestic message write(gestic, msg, sizeof(msg));

return GESTIC NO ERROR;

...

74

5. GESTIC CONTROL APPLICATION CONTENTS

This is achieved by simply sending a predefined message exploiting the previously discussed func-
tion; the driver has been in fact implemented, as explained in subsection 4.3.2 ”File Operations”,
to identify this particular command and send a reset signal to the controller by manipulating
the physical pin. The same idea has been applied for the gestic sleep() function that allows the
user space to set a sleep time for the device module.

5.4 Application Design

Once the basic bricks has been implemented the application design phase can start; the appli-
cation includes all the sources previously discussed.
The gestic control() application has been designed to run on UDOO Neo board after the ges-
tic device module has been installed; it fulfills several jobs at the same time since it has been
designed as a multi-thread application. These jobs are basically three:

1. sending data to the host PC through serial connection;

2. receiving commands from the host PC that within the applications acts as master;

3. receiving new data from the device module and keeping updated the infrastructure used
to store informations from the MGC3130;

In order to develop this application it is needed to include in the project the lpthread library
as explained in the previous subsection when showing the makefile.am file. The following figure
gives a representation of the application basic structure:

Figure 44: Application basic structure

75

5. GESTIC CONTROL APPLICATION CONTENTS

As can be seen in Figure 40 the main process launches the three threads and wait until they
finish; on the other hand the threads are structured as loop functions that will end only when
the receiving thread is getting a close command. When this is happening the main process will
wake up and terminate. This has been done to make sure that all the threads expire correctly
by checking the status of the main process.

...

pthread create(&pth gesticUpdater, NULL, (void∗)gestic stream update, &gestic);
pthread create(&pth serialWriter, NULL, (void∗)serial writer thread, &arguments);
pthread create(&pth serialReader, NULL, (void∗)serial reader thread, &serial);

pthread join(pth serialReader, NULL);
pthread join(pth serialWriter, NULL);
pthread join(pth gesticUpdater, NULL);

free gestic device(&gestic);

exit(EXIT SUCCESS);
}

...

It is possible to recognized the described structure; the call are made by the main process after:

1. having initialized the GestIC data structure;

2. having declared three mutex used to synchronize the threads;

3. having opened the serial connection to the the ttyGS0 port;

It is moreover important to notice that will be, in some cases, problems related to mutual
exclusion on variables. In fact the reading and the writing threads have to share the serial
line while the writing and the updating threads have to share the data structure used to store
informations sent by MGC3130. This is the basic reason which explains the use of mutexes to
synchronize the three threads.
The first of the three threads being analyzed is the serial reader thread :

...

while(!exitFlag)
{
if (serial poll(serial, SERIAL POLL TIMEOUT) > 0)
{
pthread mutex lock(&serialLock);
memset(cmd, 0, sizeof(cmd));
/∗ Read up to buffer size or timeout ∗/
if (serial read(serial, cmd, sizeof(cmd), 0) < 0)
{
fprintf(stderr, ”serial reader thread: %s\n”,
serial errmsg(serial));
pthread mutex unlock(&serialLock);
return;
}
pthread mutex unlock(&serialLock);

cmd id = command handle(cmd);
valid cmd = command is valid(cmd id);

if (valid cmd)
{

76

5. GESTIC CONTROL APPLICATION CONTENTS

if (cmd id == EXIT)
exitFlag = true;
else
{
pthread mutex lock(&gesticLock);
...
pthread mutex unlock(&gesticLock);
}
}

cmd id = NO COMMAND;
valid cmd = false;
}

...

As can be seen the serial reader thread has the following structure:

1. it polls the serial line for received messages for 5ms;

2. if the thread finds that new data is available on the serial line it locks the connection
through the serialLock mutex to preempt the resource from other processes;

3. if the data received represents a valid command it locks the gestic resource and execute
the corresponding task;

4. when the EXIT command is received the loop terminates and the thread expires.

The serial writer thread shall be synchronized with the other two in order to let the reading
thread preempt the serial line and the updating thread store new values within the GestIC
structure.

...

while (!exitFlag)
{
pthread mutex lock(&serialLock);
pthread mutex lock(&gesticLock);
if (dataUpdated)
{
//Writing the data to the host
set data frame(gestic, &data frame);
serial flush(serial);
if((bytes = serial write(serial, (uint8 t∗)&data frame, sizeof(data frame))) < 0)
{
fprintf(stderr, ”serial write(): %s\n”, serial errmsg(serial));
pthread mutex unlock(&gesticLock);
pthread mutex unlock(&serialLock);
exit(GESTIC IO ERROR);
}

dataUpdated = false;
}
pthread mutex unlock(&gesticLock);
pthread mutex unlock(&serialLock);
}

...

77

5. GESTIC CONTROL APPLICATION CONTENTS

This second thread has been designed as follows:

1. when both the serial line and the data structure resources are available it preempts them
and check weather new data has to be sent through the dataUpdated flag;

2. it prepares the data frame to be sent on the serial connection;

3. upon a successful write it frees the resources preempted and wait for new data to be
available;

4. when the EXIT command is received by the serial reader thread the loop terminates and
the thread expires.

The data frame for the current version of the application packages the most important data only
even if it could be easily extended to carry more informations about the status of the controller.
The data frame brings the following informations:

• the object position in (x, y, z) coordinates (the center of mass in case of extended surfaces);

• a recognized gesture if a valid movement has been caught by the controller or a GES-
TURE NONE otherwise;

• a mask of bits bringing the information of the electrodes that have been touched (multi-
touch is allowed);

• a counter incremented if a clockwise air wheel gesture is in progress and decremented in
case of a counter-clockwise progression;

To make data interpretation easy for any client application willing to retrieve those informations
from the UDOO Neo board it has been decided to implement the frame interpreting functions
in different libraries that can act as stand-alone and thus don’t need the full API for being used;
this allows an easy porting of the operations that have to be done on the data frame and to hide
any information about the API implementation to the client application.
The last thread that has been implemented is the gestic stream update thread:

...

while(!exitFlag)
{
pthread mutex lock(&gesticLock);
if (i > decimation factor)
i = 0;
//Updating the data
if (gestic data stream update(gestic, NULL) == 0)
{
if(i == 0)
dataUpdated = true;
i++;
}
pthread mutex unlock(&gesticLock);
}

...

78

5. GESTIC CONTROL APPLICATION CONTENTS

The updating thread is basically intended to attend the following tasks:

1. it tries to get updated values from the GestIC device;

2. it applies a decimation of the values: in case of a fast serial line this is not necessary, in
fact in the current version the decimation factor has been set to 0;

3. when the EXIT command is received by the serial reader thread the loop terminates and
the thread expires.

5.5 Application Deployment and Debug

When te application is ready the last steps will be to deploy it exploiting the Eclipse IDE exten-
sions downloaded during the previous subsection ”Configuring Eclipse and the Yocto SDK”; in
order to deploy the application on the board it will be necessary to setup the debug configura-
tion for the gestic control project. This can be done by right clicking on the project name and
choose the Debug As - Debug configurations...; this will open the debug configuration wizard:

Figure 45: Debug Configurations

Within the main configurations tab it is necessary to specify the C/C++ source application
file, in this case it can be found at the path src/gestic control of the Eclipse project; the ”Remote

79

5. GESTIC CONTROL APPLICATION CONTENTS

Absolute File Path for C/C++ Application” represents the path of application deployment. The
choice for the launcher has gone for the Legacy Remote Create Process Luncher embedded within
the Eclipse IDE. The last step will be to connect the board to the PC through the Ethernet
cable and setup a connection with the UDOO Neo board. This can be done by clicking on the
new... button near the Connection... label and configure the new connection as follows:

Figure 46: Connection Configurations

By pressing the Debug... button of the wizard a new cross-debug session will be remotely
started on the UDOO Neo Board. Moreover the application executable will be found at the
specified path f the UDOO Neo board file system.
Once the application has been deployed on the target system it will be also possible to debug
the remaining parts of the device driver. To do this it will be necessary to setup any proper
connection between the sensor and the board; then from the host PC the following commands
are to be run:

root@udooneo:# insmod gestic.ko gestic_debug

root@udooneo:# ./gestic_control & disown

By running the application with the disown option it will be possible to run it in background
and thus the kernel log can be scoped by running the dmesg command.

root@udooneo:# dmesg

GestIC: the module is in DEBUG mode

[439.782224] GestIC: character device numbers registration succeded

[439.790126] GestIC: class initialization succeded

80

5. GESTIC CONTROL APPLICATION CONTENTS

[439.796454] GestIC: associated device initialization succeded

[439.802213] GestIC: Initializing the character device data structure

[439.809254] GestIC: character device data structure initialization succeded

[439.816336] GestIC: I2C adapter structure initialization succeded

[439.824961] GestIC: I2C client initialization succeded

[439.830117] GestIC: TS line initialization succeded

[439.835502] GestIC: TS line direction configuration succeded

[439.841174] GestIC: MCLR line initialization succeded

[439.846668] GestIC: MCLR line direction configuration succeded

[439.852513] GestIC: interrupt number detection succeded

[439.858234] GestIC: TS associated interrupt initialization succeded

[439.864542] GestIC: initialization completed

[439.868857] GestIC device: driver installed

[448.047230] GestIC: value TS is : 0

[448.050791] GestIC: interrupt handled

[448.153151] GestIC: reset completed

[448.156818] GestIC: module opened correctly

[448.461541] GestIC: TS in state 0

[448.465047] GestIC: re-asserting TS

[448.507577] GestIC: read succeded

[448.511092] bytes read: 132 message length: 255

[448.517457] GestIC: read msg[size=132, flags=0, seq=0, id=131]

[448.523474] i2c_master_recv <<< 00000000: 84 00 00 83 aa 63 80 e6 13 64 15 2

0 32 2e 31 2ec...d. 2.1.

[448.534654] i2c_master_recv <<< 00000010: 30 3b 70 3a 48 69 6c 6c 73 74 61 7

2 56 30 31 3b 0;p:HillstarV01;

[448.544448] i2c_master_recv <<< 00000020: 78 3a 48 69 6c 6c 73 74 61 72 3b 4

4 53 50 3a 49 x:Hillstar;DSP:I

[448.554606] i2c_master_recv <<< 00000030: 44 39 30 30 31 72 33 36 38 36 3b 6

9 3a 42 3b 66 D9001r3686;i:B;f

[448.564430] i2c_master_recv <<< 00000040: 3a 32 32 35 30 30 3b 6e 4d 73 67 3

b 73 3a 74 72 :22500;nMsg;s:tr

[448.574626] i2c_master_recv <<< 00000050: 75 6e 6b 72 32 31 36 33 3a 4d 4f 3

b 00 00 00 00 unkr2163:MO;....

[448.584413] i2c_master_recv <<< 00000060: 00 00 00 00 00 00 00 00 00 00 00 0

0 00 00 00 00

[448.594563] i2c_master_recv <<< 00000070: 00 0e 00 00 55 aa 90 65 20 20 80 0

f 00 00 00 00U..e

[448.604348] i2c_master_recv <<< 00000080: 00 00 00 00

[448.633025] GestIC: TS in state 0

[448.636351] GestIC: re-asserting TS

[448.666755] GestIC: read succeded

[448.670080] bytes read: 26 message length: 255

[448.675118] GestIC: read msg[size=26, flags=0, seq=0, id=145]

[448.680878] i2c_master_recv <<< 00000000: 1a 00 00 91 1f 01 01 81 00 73 00 0

0 00 00 00 00s......

[448.691026] i2c_master_recv <<< 00000010: 00 00 00 00 00 00 00 00 00 00

[448.713025] GestIC: TS in state 0

[448.716393] GestIC: re-asserting TS

[448.746756] GestIC: read succeded

81

5. GESTIC CONTROL APPLICATION CONTENTS

[448.750080] bytes read: 26 message length: 255

[448.755189] GestIC: read msg[size=26, flags=0, seq=1, id=145]

[448.760950] i2c_master_recv <<< 00000000: 1a 00 01 91 1f 01 1d 81 00 73 00 0

0 00 00 00 00s......

[448.771168] i2c_master_recv <<< 00000010: 00 00 00 00 00 00 00 00 00 00

[448.793031] GestIC: TS in state 0

[448.796357] GestIC: re-asserting TS

[448.826656] GestIC: read succeded

[448.829981] bytes read: 26 message length: 255

[448.835008] GestIC: read msg[size=26, flags=0, seq=2, id=145]

[448.840767] i2c_master_recv <<< 00000000: 1a 00 02 91 1f 01 2c 81 00 73 00 0

0 00 00 00 00,..s......

[448.850912] i2c_master_recv <<< 00000010: 00 00 00 00 00 00 00 00 00 00

[448.873022] GestIC: TS in state 0

[448.876349] GestIC: re-asserting TS

[448.906756] GestIC: read succeded

[448.910082] bytes read: 26 message length: 255

[448.915108] GestIC: read msg[size=26, flags=0, seq=3, id=145]

[448.920951] i2c_master_recv <<< 00000000: 1a 00 03 91 1f 01 3c 81 00 73 00 0

0 00 00 00 00<..s......

[448.931891] i2c_master_recv <<< 00000010: 00 00 00 00 00 00 00 00 00 00

[448.953049] GestIC: sending a message through I2C

[448.959569] GestIC: write succeded

[448.963405] bytes written: 16 message length: 16

[448.968208] messaeg header[size=16, flags=0, seq=0, id=162]

[448.974375] i2c_master_send <<< 00000000: 10 00 00 a2 a1 00 00 00 1e 00 00 0

0 00 00 00 00

As can be seen by the Kernel log of the first messages exchanged by the board and the controller
the communication works properly; moreover the really first message received by the UDOO
Neo after the controller reset is always the firmware version flashed on the MGC3130 controller:
this message was useful in the very first tests of the communication since it was used to check
weather te messages exchange protocol was respected by the device driver.

82

6. CONCLUSIONS CONTENTS

6 Conclusions

This document has gone through the steps that brought to the production of a primitive gesture
recognition interface based on gesture controller sold by Microchip company. The most of the
focus has gone on the software development phase for such an application, spanning from the
OS production until the application level design.

An extensive study has been made on the Yocto Project since it represents one of the most
useful set of tools in the Embedded field. Thanks to this study has been possible to understand
the most basic parts of a complex Operating System as Linux Embedded and to tailor a custom
version of this OS for the used hardware. This achievement could obviously be useful when,
in future, it could be necessary to setup a unanimated device with a fully functional operating
system.

After the study of hardware specifications imposed by the choice for the controller this doc-
ument showed the implementation of a driver for the MGC3130 controller; thanks to the nature
of the environment inside which the driver has born this software is highly configurable and easy
to be embedded into another project with a minimum part of re-design mostly related to choice
of the GPIO connection with a different development board.

At last the project evolved into the development of an application used to show the func-
tionalities offered by the driver; this application could be re-used in future as a starting point
for a complex client application exploiting data received by the controller.

The overhaul result is a set of software sources that can be easily re-used in any Linux based
environment willing to offer a gesture recognition like te one here presented; it should be however
taken into account improvements on the precision of the position tracking and in the design of
the electrode before passing onto a project that may need high level performances or willing to
respect safety requirements.

83

REFERENCES REFERENCES

References

[1] Embedded Linux Course, Massimo Violante, DAUIN, Politecnico di Torino.

[2] Embedded Linux Systems with the Yocto Project, Rudolf J. Streif, December 22, 2015,
Prentice Hall.

[3] Embedded Linux Development with Yocto Project, Otavio Salvador, Daiane Angolini,
Packt Publishing, July 9, 2014

[4] Linux Device Drivers, by Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman,
Third Edition, O’Reilly, February 18, 2005.

[5] Linux Kernel In A Nutshell, by Greg Kroah-Hartman, O’Reilly, December 1, 2006.

[6] Acceleglove: A Programmable $500 Hand Sensor, July 10, 2009. Available at http://

www.coolthings.com/acceleglove-a-programmable-500-hand-sensor/

[7] Gesture Recognition, Wikipedia contributors, Wikipedia, The Free Encyclopedia. Avail-
able at https://en.wikipedia.org/wiki/Gesture_recognition

[8] Kinect, Wikipedia contributors, Wikipedia, The Free Encyclopedia. Available at https:

//en.wikipedia.org/wiki/Kinect

[9] Real-time operating system, Wikipedia contributors, Wikipedia, The Free Encyclopedia.
Available at https://en.wikipedia.org/wiki/Real-time_operating_system

[10] What is An RTOS? Available at https://www.freertos.org/about-RTOS.html

[11] Linux Boot Process - Step by Step, by P. Kumar, October 19, 2010. Available at http:

//blog.adminnote.com/2010/10/linux-boot-process-step-by-step.html

[12] Das U-Boot, Wikipedia contributors, Wikipedia, The Free Encyclopedia. Available at
https://en.wikipedia.org/wiki/Das_U-Boot

[13] Booting, Wikipedia contributors, Wikipedia, The Free Encyclopedia. Available at https:
//en.wikipedia.org/wiki/Booting#BOOT-LOADER

[14] The Linux kernel driver - kernel first, Christian, March 26, 2014. Available at http:

//www.programering.com/a/MjNzcTMwATA.html

[15] Microkernel, Wikipedia contributors, Wikipedia, The Free Encyclopedia. Available at
https://en.wikipedia.org/wiki/Microkernel

[16] USB to TTL adapter. Available at https://www.techtonics.in/products/usb-to-

serial-ttl-converter

[17] Linux Kernel and Driver Development Training. Availble at https://bootlin.com/doc/
training/linux-kernel/linux-kernel-slides.pdf

[18] Yocto Project and OpenEmbedded Training. Availble at https://bootlin.com/doc/

training/yocto/yocto-slides.pdf

84

http://www.coolthings.com/acceleglove-a-programmable-500-hand-sensor/
http://www.coolthings.com/acceleglove-a-programmable-500-hand-sensor/
https://en.wikipedia.org/wiki/Gesture_recognition
https://en.wikipedia.org/wiki/Kinect
https://en.wikipedia.org/wiki/Kinect
https://en.wikipedia.org/wiki/Real-time_operating_system
https://www.freertos.org/about-RTOS.html
http://blog.adminnote.com/2010/10/linux-boot-process-step-by-step.html
http://blog.adminnote.com/2010/10/linux-boot-process-step-by-step.html
https://en.wikipedia.org/wiki/Das_U-Boot
https://en.wikipedia.org/wiki/Booting#BOOT-LOADER
https://en.wikipedia.org/wiki/Booting#BOOT-LOADER
http://www.programering.com/a/MjNzcTMwATA.html
http://www.programering.com/a/MjNzcTMwATA.html
https://en.wikipedia.org/wiki/Microkernel
https://www.techtonics.in/products/usb-to-serial-ttl-converter
https://www.techtonics.in/products/usb-to-serial-ttl-converter
https://bootlin.com/doc/training/linux-kernel/linux-kernel-slides.pdf
https://bootlin.com/doc/training/linux-kernel/linux-kernel-slides.pdf
https://bootlin.com/doc/training/yocto/yocto-slides.pdf
https://bootlin.com/doc/training/yocto/yocto-slides.pdf

REFERENCES REFERENCES

[19] Embedded Linux system development. Availble at https://bootlin.com/doc/training/
embedded-linux/embedded-linux-slides.pdf

[20] UDOO Neo Full documentation. Available at https://www.udoo.org/docs-neo/

Introduction/Introduction.html

[21] Hillstar Kit Reference Documentation. Available at http://www.microchip.com/

DevelopmentTools/ProductDetails.aspx?PartNO=dm160218

[22] GestIC R© Design Guide, GestIC Design Manual by Microchip. Available at http://ww1.
microchip.com/downloads/en/DeviceDoc/40001716C.pdf

[23] MGC3130 Hillstar Development Kit Users Guide, Hillstar Kit Reference Manual
by Microchip. Available at http://ww1.microchip.com/downloads/en/DeviceDoc/

40001721B.pdf

[24] MGC3030/3130 GestIC R© Library Interface Description Users Guide, MGC3130 Refer-
ence Manual by Microchip. Available at http://ww1.microchip.com/downloads/en/

DeviceDoc/40001718E.pdf

[25] Understanding the I2C Bus, Jonathan Valdez, Jared Becker, Texas Instruments Applica-
tion Report n. SLVA704, June, 2015. Available at http://www.ti.com/lit/an/slva704/
slva704.pdf

[26] I2C Bus Specification. Available at http://i2c.info/i2c-bus-specification

[27] I2C, Wikipedia contributors, Wikipedia, The Free Encyclopedia. Available at https://

en.wikipedia.org/wiki/I2C

[28] Linux Device Tree, GitHub contributors. Available at https://github.com/robbie-cao/
kb-openwrt/blob/master/Linux-DT.md

[29] Anatomy of the Linux virtual file system switch, M. Tim Jones, August 31, 2009. Available
at https://www.ibm.com/developerworks/library/l-virtual-filesystem-switch/

[30] Virtual file system, Wikipedia contributors, Wikipedia, The Free Encyclopedia. Available
at https://en.wikipedia.org/wiki/Virtual_file_system

[31] Device Tree for Dummies, Thomas Petazzoni for Free-Electrons, 2013. Available at
https://events.static.linuxfound.org/sites/events/files/slides/petazzoni-

device-tree-dummies.pdf

[32] C++ Compiler Operation. Available at http://icarus.cs.weber.edu/~dab/cs1410/

textbook/1.Basics/compiler_op.html

[33] Cross-compiling Toolchain, Abhishek Mourya, February 6, 2014. Available at http://

abhishekmourya.blogspot.it/2014/02/cross-compiling-toolchain.html

[34] Yocto Project Mega-Manual, Scott Rifenbark, 2017-2018 Revision. Available at https:

//www.yoctoproject.org/docs/2.4.2/mega-manual/mega-manual.html

85

https://bootlin.com/doc/training/embedded-linux/embedded-linux-slides.pdf
https://bootlin.com/doc/training/embedded-linux/embedded-linux-slides.pdf
https://www.udoo.org/docs-neo/Introduction/Introduction.html
https://www.udoo.org/docs-neo/Introduction/Introduction.html
http://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=dm160218
http://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=dm160218
http://ww1.microchip.com/downloads/en/DeviceDoc/40001716C.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/40001716C.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/40001721B.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/40001721B.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/40001718E.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/40001718E.pdf
http://www.ti.com/lit/an/slva704/slva704.pdf
http://www.ti.com/lit/an/slva704/slva704.pdf
http://i2c.info/i2c-bus-specification
https://en.wikipedia.org/wiki/I2C
https://en.wikipedia.org/wiki/I2C
https://github.com/robbie-cao/kb-openwrt/blob/master/Linux-DT.md
https://github.com/robbie-cao/kb-openwrt/blob/master/Linux-DT.md
https://www.ibm.com/developerworks/library/l-virtual-filesystem-switch/
https://en.wikipedia.org/wiki/Virtual_file_system
https://events.static.linuxfound.org/sites/events/files/slides/petazzoni-device-tree-dummies.pdf
https://events.static.linuxfound.org/sites/events/files/slides/petazzoni-device-tree-dummies.pdf
http://icarus.cs.weber.edu/~dab/cs1410/textbook/1.Basics/compiler_op.html
http://icarus.cs.weber.edu/~dab/cs1410/textbook/1.Basics/compiler_op.html
http://abhishekmourya.blogspot.it/2014/02/cross-compiling-toolchain.html
http://abhishekmourya.blogspot.it/2014/02/cross-compiling-toolchain.html
https://www.yoctoproject.org/docs/2.4.2/mega-manual/mega-manual.html
https://www.yoctoproject.org/docs/2.4.2/mega-manual/mega-manual.html

	Introduction
	Linux Embedded
	Linux Embedded for Embedded Systems
	Linux Generalities
	Open Embedded, Pyro and Bitbake
	Building a custom OS for UDOO Neo
	Booting the system

	Hardware References
	UDOO Neo Full Development Board
	MGC3130 Hillstar Development Kit
	MGC3130 Controller
	Reference Electrode
	USB to I2C Bridge
	Other components

	Driver Development
	Linux Drivers Generalities
	Kernel Drivers
	User Space Drivers
	Virtual File System

	Preparing the Yocto environment
	Module Device Driver Implementation
	Initializzation and Disposition functions
	File Operations

	Deploying and Debugging the Module

	GestIC Control Application
	Compilers and Cross-Compiler
	Configuring Eclipse and the Yocto SDK
	GestIC API Customization
	Application Design
	Application Deployment and Debug

	Conclusions

		Politecnico di Torino
	2018-04-05T04:30:38+0000
	Politecnico di Torino
	Massimo Violante
	S

