
1

POLITECNICO DI TORINO

Department Of Control And Computer Engineering

Computer Engineering

Master Thesis

Developing embedded automotive software

using the ISO26262 guidelines

Supervisor:

Prof. Massimo Violante Candidate:

 Leonel Ngongang Tchamou

 March 2018

https://didattica.polito.it/portal/pls/portal/sviluppo.corsi.html?cds=18&sdu=37&l=en

2

3

Acknowledgement

First I would like to thank my supervisor and professor Massimo Violante, who

throughout his several lectures and during this thesis work was always available to come with

feedback, suggestions or interesting discussions, which served as inspiration for the direction of

my career and this work.

I would also like to thank Mateo Serva from TXT e-Solution , who was always available to help me

when I got confused .

I would like to thank the people at the TXT e-Solution , especially Concetta Argiri , who was always

present and available to give very appreciated advice , encouragement and to solve any kind of

administrative issue during my work.

Lastly I would like to thank my family, who even remaining far away was able to provide me with

strength, confidence when I was feeling down or stressed. They helped keep my spirits high so

that I could eventually finish with my study.

4

Abstract

This thesis work conducted in TXT e-Solutions spa company aims to design and implement an

embedded configurable firmware Translation library so-called TRL that could be integrated into

On-Board device (OBD) to gather vehicle diagnostic data collected from the CAN bus interface

available on the OBD device port . This so-called TRL is implemented using the ISO 26262 standard

guidelines in particular in order to guarantee the functional safety criticality and security of the

software , a set of coding rules design by the Motor Industry Software Reliability Association

(MISRA) have been adopted mainly the MISRA C guidelines. The design of this translation library

implement the communication protocols needed to request diagnostics variable from the vehicle

CAN bus and then translate these received raw data from vehicle dependent to vehicle

independent information according to received rule from an external API server. Afterward the

TRL design and implementation the testing of the software to validate that requirements

functionality has been met, the testing is introduce based on the safety guideline ISO 26262

workflow that is from unit testing , module testing , to system testing.

Furthermore this thesis work introduce also a static verification analysis runs on the TRL software

and some results metrics obtained in order to prove the absence of critical run-time errors under

all possible control flows and data flows.

Key word : embedded configurable firmware - Translation library - diagnosis - CAN bus - OBD

device -ISO 26262 - safety critical - MISRA C – Testing - static verification - run-time error .

5

Contents

ACKNOWLEDGEMENT .. 3

ABSTRACT.. 4

CHAPTER 1. ... 8

INTRODUCTION .. 8

1.1. CHALLENGES AND PURPOSE ... 8

1.2. THESIS ORGANIZATION .. 9

CHAPTER 2. ..11

BACKGROUND ...11

2.1. COMPANY PRESENTATION .. 11

TXT NEXT .. 11

TXT SENSE ... 11

2.2. EMBEDDED SOFTWARE TRENDS AND ISO26262 .. 12

2.3. ON BOARD DEVICE STANDARD TECHNOLOGY ... 13

2.4. STATIC CODE ANALYSIS OVERVIEW ... 13

2.5. MISRA C RULES SUBSET OVERVIEW ... 14

2.6. POLYSPACE CODE PROVER OVERVIEW .. 15

Value of Polyspace Code Prover Verification ... 16

How does Polyspace code prover works.. 16

What is Polyspace Tool used for ... 16

CHAPTER 3. ..18

TECHNOLOGY AND TOOLS ...18

3.1. SOFTWARE TOOLS .. 18

3.2. HARDWARE PLATE FORM ... 19

CHAPTER 4. ..21

TRANSLATION LIBRARY DESIGN ARCHITECTURE ..21

4.1. SYSTEM ARCHITECTURE DESIGN OVERVIEW .. 21

4.2. TRL FUNCTIONALITY AND ARCHITECTURE .. 22

4.3. DIAGNOSTICS PARAMETERS DESCRIPTION AND READABLE METHODS ... 23

4.4. VDD FILE FORMAT DESCRIPTION ... 24

6

4.4.1. HEADER INFO .. 25

4.4.2. GLOBAL INFO ... 25

4.6. TRL LOGIC BLOCKS ... 26

4.6.1. TRL core management .. 26

4.6.2. TRL HLD DRIVER ... 29

4.7. SEQUENCE DIAGRAM OF INTERACTION BETWEEN DCF AND TRL .. 31

4.7.1. Initialization of the TRL .. 31

4.7.2. VIN reading operations ... 32

CHAPTER 5. ..33

TRANSLATION LIBRARY SOFTWARE INTERFACE AND DATA STRUCTURE ..33

5.1. DATA STRUCTURES DESCRIPTION ... 33

5.1.1. Data structure for LISTEN ON CAN reading mode parameter ... 34

5.1.2. Data structure for REQUEST OBDII/EOBD protocol parameter ... 34

5.1.3. Data structure for REQUEST Do CAN (ISO 15765-4) protocol parameter .. 35

5.1.4. Data structure for REQUEST Volkswagen protocol parameter ... 35

5.1.5. Data structure for REQUEST OPEL protocol parameter .. 35

5.1.6. Data structure for REQUEST MINI protocol parameter ... 36

5.1.7. Data structure for OPERATION reading mode parameter... 36

5.2. SOFTWARE INTERFACES ... 38

5.2.1. DCF-TRL Interface functions .. 40

5.2.2. Callbacks .. 41

5.2.3. VDD DECODER INTERFACE ... 41

5.2.4. VDD PARSER INTERFACE.. 42

5.2.5. Operation Manager interface ... 44

5.2.6. VIN READER interface .. 44

5.2.7. OBDII/EOBD interface ... 45

CHAPTER 6. ..46

EXPERIMENTAL TEST AND RESULTS ...46

6.1. TEST ON PC BASED SIMULATED ENVIRONMENT .. 46

6.1.1. Test plan .. 46

6.1.2. Test Approach ... 46

6.1.3. Test description flow ... 47

6.1.4. Test Results .. 48

6.2. HARDWARE TEST ... 51

6.2.1. Hardware setup ... 51

6.2.2. Test description Approach ... 53

7

6.2.2.2. Setup of Can bus management tool for providing requested diagnostic parameter The Engine 55

CHAPTER 7. ..58

TRANSLATION LIBRARY SOFTWARE VERIFICATION WITH POLYSPACE TOOL ..58

7.1. TRL VERIFICATION WITH POLYSPACE CODE PROVER AND MISRA C CHECK RULES ... 58

7.1.1. Project Setup ... 58

7.1.2. Project configuration : Coding Rule and Metrics... 59

7.2. RESULTS ANALYSIS.. 59

CHAPTER 8. ..62

CONCLUSION AND FUTURE WORK ...62

LIST OF FIGURES ..63

LIST OF TABLES ..64

BIBLIOGRAPHY ..65

8

Chapter 1.

Introduction

This introductive chapter will present in general the issue this thesis aims to address , as well as

the benefits that could be gained from the result of this work.

1.1. Challenges and Purpose

Modern automotive vehicles are highly complex systems, containing a large number of

mechanical, electrical and electronic components. Recent development trends in the automotive

industry integrates as many as 50-70 Electronic Control Units connected through several CAN

communication networks for data monitoring , diagnosis and vehicle control.

The On-board Diagnosis (OBD) standard , defined as an interface with the external world to

support vehicle maintenance with vehicle interior data , integrates devices to connect to engine

and other subsystems through sensors and control actuators providing valuable source of

information as vehicle monitor system. Information commonly available on the OBD port are

retrieved based on OBD II standard and are on vary type either real time parameter such as

Revolution Per Minute (RPM) , speed , pedal position , airflow rate , coolant temperature or

Diagnostic trouble codes (DTC) or Vehicle Identification Number (VIN) or Number of miles driven

with MIL on etc … Concerned the OBD-II interface , five signalling protocols are allows based on

which pins are present on the OBD connector. However most vehicles manufactures implement

only one targeting a specific vehicle model.

This thesis aims to design and implement a new configurable embedded firmware library so-

called Translation Library (TRL) to be integrated into OBD device and installed on the OBD port of

vehicles that will gather vehicle diagnostic data collected from the CAN bus interface available on

the OBD port. This TRL embedded firmware library is self-configuring regardless the vehicle model

by understanding the vehicle model/version by means of the VIN number and implement the

communication protocols needed to request diagnostics variable from the vehicle can bus and

translate these received raw data from vehicle dependent to vehicle independent information

according to received rule from an external API server . A specific format, named VDD (Vehicle

Diagnostics Description file),should be responsible for programming the firmware library in order

to collect relevant vehicle data through the can bus. This VDD file format has the purpose of

describing the methods needed for reading predefined diagnostic parameters in a specific vehicle

model/version.

9

However the development of such related automotive embedded software to be integrated into

the vehicle network compose of several of Electronic control units controlling safety critical

functionality of the vehicle such as the braking system where consequences of failure could result

in the loss of human lives, require to adopt some stringent standards that guarantee the

functional safety criticality and security of the software. Actually the verification and validation of

these software is performed using extensive testing and simulation based which is a process that

is both time-consuming and error-prone.

In order to address this issue, the International Organization for Standardization (ISO) released a

functional safety standard titled Road vehicles Functional safety in November, 2011. This standard

known as ISO 26262 and establishes guideline and requirements on the development process of

automotive software systems in order to guarantee the functional safety of such system. In

particular one of the guideline required by the standard is the software compliant with a set of

rules produced by the Motor Industry Software Reliability Association (MISRA) which aim to

increase the safety, portability and reliability of code artefacts written in the C language.

However recently the development of development of safety-critical electric/electronic

automotive systems is performed by an increasing number of software tools very high

sophisticated , for instance Polyspace tool , in order to meet these coding guideline rules

requirement compliant with ISO 26262 safety standard.

Therefore this thesis also introduce a static verification analysis run on the TRL software and

some results metrics obtained in order to prove with some degree it safeness and the absence of

critical run-time errors under all possible control flows and data flows.

1.2. Thesis organization

This thesis work is organised in mainly two parts . The first part of the work will concert the

design and implementation of the Translation library (TRL) according to the traditional workflow

using in software development process then the software will be tested either in simulation on

development tool or on the physical hardware to verifying the actual behaviour of the system.

While the second part will attempt at verifying the software quality by running the static analysis

verification for “0” defect run time error and for compliance with one of the guideline require by

the ISO 26262 standard namely MISRA C 2012 coding rules guideline.

More in detail following this introduction part , chapter 2 will first give a brief presentation of the

company where my work has been conducted then will follow a brief summary background of

10

trend in embedded software and a summary of the ISO 26262 standard. Afterward a brief

background of OBD technology will be presented . Static analysis tool commonly used for software

verification will be introduced , then MISRA C coding guideline will be briefly summarized and

finally a brief summary on Polyspace code prover for static code analysis will be presented.

Chapter 3 will present technologies and tools used in the development process and testing either

software tool or hardware tool.

Chapter 4 will summarize the complete TRL design architecture . In particular this chapter will

present the vary building block composing the TRL system . However the chapter will more enter

in detailed to describe the internal description of block related to my own implementation.

Chapter 5 will present the software architecture of the TRL , the related interfaces and the logic

that allow the software to run . In particular it will present the description of data structure and

software interface. However this chapter will also give a deep detail just to the part related to my

own implementation.

Chapter 6 will describe the vary test activity performed in other to validate the main requirement

functionality of the TRL. In particular it will describe focus on two kind of test namely the software

test on the development tool and the hardware test on the real hardware setup and the vary

result will be presented.

Chapter 7 will introduce the embedded software verification with static analysis tool namely

Polyspace software tool. And finally will be present some results obtained by verification of the

TRL software.

Chapter 8 will present the final conclusion and will highlight some future work.

11

Chapter 2.

Background

2.1. Company presentation

Founded in 1989 , TXT e-solution is a leading international software products and solution vendor

, leader in “ Strategy Enterprise Solution” with consolidated revenues around € 69.2 millions since

2016 .

TXT is based in Milan and has branches in Italy, Berlin (D), London (UK), Paris (France), Seattle

(USA) and Chiasso (CH). TXT is specialized in the most dynamic and agile markets with the highest

degree of innovation and renewal that require state-of-the art solutions, where process and

business play a fundamental role in growth and competiveness.

To answer to customer's needs TXT has always invested in technology and in business processes

innovation, making this a cornerstone on which to build its success

TXT Group serve key high-technology markets through its business divisions TXT NEXT and TXT

SENSE

TXT NEXT

Provides Advanced software engineering services for companies in the Aerospace , Automotive ,

High-Tech manufacturing and Banking sectors to empower their engineering capabilities.

TXT NEXT support customers throughout their product lifecycle. From software design and

development to verification, integration and final certification, offering engineering services in the

field of :

On-Board Software

Simulation & Modelling

Complex Manufacturing

Business Intelligence & Business Process Management

Mission Critical Systems software development

Independent Verification and Validation

IT Governance & Quality

TXT SENSE

TXT Sense, a new Division of TXT e-solutions, it develop and market innovative applications of

New Augmented Reality to many service and industrial sectors.

https://txtnext.txtgroup.com/
https://txtsense.txtgroup.com/
https://txtsense.txtgroup.com/

12

The application sectors which it’s addressed by TXT Sense include luxury and fashion, advanced

manufacturing, medical, retail, media and advertising .

2.2. Embedded software trends and ISO26262

Embedded software can be seen as a software system designed tailoring specific application

running on a custom hardware. However very often when we speak about software , we mostly

think to IT system , such as general-purpose PCs , online Internet applications services . However

such system embeds just less than 2 percent of the produced microprocessors.

Nowadays most embedded software processors are produced most for system such as mobile

phone, washing machine, pacemaker , aircraft , robots , cameras. This trends toward embedded

software is accelerating and the global market for embedded systems is more than 160 billion

euros, involving approximately 3 billion embedded units delivered per year and a compound

annual growth more than 10 percent. Embedded software is anticipated to attain $18.61 billion

by 2023 driven by the steady growth in production of consumer electronic devices and increase

investments in automation technologies in the manufacturing sector.

Nevertheless embedded software development poses an extraordinary constraints such as real

time; the embedded software system’s timing must provide the expected action within a

maximum specified time under all circumstances, they pose also the problem of Reliability in such

a way that the system have to operate for long time without unexpected behavior. The Safety

related should also be guaranty, the security assurance must be also provided to avoid life

threatening situations , and finally very limited among of resource such as small memory space will

be well manage. Current trends in embedded systems also focus more on how to manage the

increasing software content, with a strong emphasis on standardization of the embedded software

structure. The rapidly increasing complexity of embedded software development is one of the

most important challenges for increasing product quality, reducing time to market, and reducing

development cost. Model Driven Design is then one of the promising approaches that have

emerged over the last decade in which developers instead of directly coding the software, they

model software systems using intuitive, more expressive, graphical notations, which provide a

higher level of abstraction than native programming languages. In this way, generators

automatically create the code implementing the system functionalities . Therefore nowadays

most embedded software development processes are shifting to model-based development

13

concept based on the ISO 26262 safety standard that reflect more the importance of this

approach in automotive software development.

2.3. On Board Device standard technology

The idea of OBD was first proposed in California in 1984 to detect engine operation conditions for

air-pollution monitoring, and then, it became a subsystem into American vehicle in 1988. The first

standard, which is known as OBD I , contains Basic proprietary instrument such as signal light,

storage, and indication of diagnostic trouble code (DTC). However, different manufactures

designed and implemented different interface sockets, codes, and functions that brought up

confusion to the maintenance technicians.

In 1988, OBD II was proposed in California by the Society of Automotive Engineers (SAE) and

International Standardization Organization (ISO) which described the interchange of digital

information between ECUs and a diagnostic scan tool.

A basic OBD system consist of an ECU (Electronic Control Unit), which gets input from sensors (e.g.

carbon sensors) to control actuators (e.g. fuel injectors) to get the desired performance. Modern

vehicle can support hundreds of parameters, which can be accessed via the DLC (Diagnostic Link

Connector) using a device called a scan tool.

Various tools are available on the market that allows plug in OBD connector to access OBD range

functions like hand-held scan tools, pc-based scan tools.

2.4. Static code analysis overview

Static Analysis is a way of examining program code and reason over all possible behavior that may

arise at run-time without carry out the source code . It’s usually performed as part of a Code

Review and could be carried out at the Implementation phase of a safety Security Development

Lifecycle.

Technique behind the static code analysis are well known such as Data Flow Analysis used to

collect run-time information about data in software while it is in a static state.

Tools based on static analysis can be used to find out defects in the source.

Static analysis tools compare to manual reviews , which are performed by human auditors using

methods such as self-review of the written code ; walkthrough focusing on the presentation to an

audience of the

14

code in question by its programmer ; peer review that is when he programmer presents his code

to a colleague to review and finally inspection and audit which is usually done by a third party of

evaluators , static analysis are fasters which means that source code can be evaluate more

frequently and could built-in some knowledge required to perform this type of source code

analysis and have the same level of expertise as a human auditor .

Although more advanced tools for static analysis are nowadays introduced , static analysis cannot

solve all of the safety and security related problems, mainly because these tools look for a fixed

set of patterns, or rules in the code , that means the output of the tool still require human

evaluation. So the tool can sometime produce false negatives (the program contains bugs that the

tool doesn’t report) or false positives (the tool reports bugs that the program doesn’t contain).

One of the most advantage using static code analysis compare to dynamic analysis is that result of

the code analysis produced are generalized for future execution steps. Tools based on static

analysis commonly used for can be classified in the following categories: Microsoft .NET, Java,

C/C++ and Multi-Language. In addition, some tools are either open-source or commercial ones. In

the following there are list of some tools for static code analysis classified by category.

 Microsoft .NET : FxCop , CodeIt.Right

 JAVA : FindBugs , PMD , CheckStyle , Jlint

 C/C++ : PRQA , Polyspace , Visual studio , Sparse etc..

 Multi-Language : Coverity Prevent , RATS , Understand .. .

2.5. MISRA C rules subset overview

MISRA which stand for Motor Industry Research Association is an international consortium of

major car and car component manufacturers originally based in UK . In 1998 this association, due

to the proliferation of consumer embedded control system in particular in safety critical

application where failure can lead to human or environment damage for instance high-tech

medical scanner, produced an official set of guidelines for the use of C language in automotive

electronic systems [8] with a goal of eliminating as many fault modes as possible. The guidelines

describe a restricted subset of C language defined by a number of rules backed by informal

explanatory text and some code fragments. Then these guidelines have become widely used

around the world , not only in the automotive industry but also in industry which there is a safety

and security-critical component , such as aircraft and medical devices.

https://en.wikipedia.org/wiki/QA-C

15

MISRA C standard coding guidelines is made of 93 required rules together with 34 advisory or

recommendations rules.

Although this safer subset of rules has been successfully appreciated worldwide yet it suffer of

some drawbacks such as rule incorrectness or rule redundancy therefore some time they to be

justified and prove the conformance to the subset.

 MISRA C coding guidelines subsets has been produced mainly to promote a common coding style

among c programmers in such a way that they would find it much easier to read their colleague’s

code and that this would contribute to an improvement in response time for changes, either

corrective, (fixing defects), perfective, (cleaning up without changing functionality), or adaptive,

(adding new features) in this way most commonly mode failure can be prevented.

2.6. Polyspace Code Prover overview

Polyspace product is a software tool that allow verification of C ,C++ , Ada source code by

detecting run-time error without the software source code is compiled and executed.

Polyspace Code Prover is a solid static analysis tool that proves the absence of overflow, division-

by-zero, out-of-bounds array access, and certain other run-time errors in C and C++ source code.

In order to verify source , the verification parameter have to be set up , then verification have to

be run and thanks to its integrated graphical user interface results can be efficiently reviewed .

To prove that no run-error occurs during the process of verification , Polyspace Code Prover tool

Applied a semantic analysis and an abstract interpretation of the source based on formal methods

to verify software control and dataflow . It also based on semantic color coding analysis by

assigning color to operations in the source code.

Polyspace Code Prover can speed up the verification phase by displaying range information for

variables and function return values, and can prove which variables exceed specified range limits.

Results can be published to a dashboard to track quality metrics and ensure conformance with

software quality requirement.

The color-coding helps to quickly identify run-time errors and find the exact location of that error

in the source code. After the errors is identity and fixed , the verification can be easily run

again.

The different coding colours used by the tool are specify as following

16

 Green : Indicates that the operation is proven and reliable to not have certain kinds of run

time- error.

 Red : Indicates that the operation is proven to have at least one run-error.

 Grey : Indicate dead code that is unreachable code

 Orange : Indicates that the operation is unproven and can have run time error along some

execution paths depending on the input of an operation phase.

Value of Polyspace Code Prover Verification

By using Polyspace verification software for design verification , it can significantly help to the

reliability of the application software by prove code correctness and identifying run-time errors.

Moreover The development time could also being significantly reduced due to the automated

verification process and efficiency review verification result : color coding , distribution graph .

with Polyspace we can know the parts of the code that do not have errors, and we can only focus

on the code with proven (red , grey code) or unproven (orange code) .

How does Polyspace code prover works

Polyspace code prover software uses static code verification (see …) to prove the absence of run-

time errors. Moreover it uses formal method based on abstract interpretation that is take into

account all possible input value into an function and test or verify it with all possible operation and

combination in the source code . This mean that the data flow of a variable is taken into account

to prove a property and that’s the power of this method compare to other statics analysis tool

What is Polyspace Tool used for

 Early Defect Detection for Software Quality and Productivity

Most software development teams have as main goal to maximize both quality and productivity of

the software. However, when developing software, there are three related variables to consider:

cost, quality, and time. Changing the requirements for one of these variables affects the other

two.Here the issue is that the criticality of the software application determines the balance

between these three variables: quality model . However, with classical testing processes,

development teams generally try to achieve their quality model by testing all modules in an

application until each module meets the required quality level. Unfortunately, this process often

ends before quality requirements are met, because the available time or budget has been

exhausted.

With Polyspace the quality and productivity of the software can be improve at the same time by

integrating verification into the development process, considering time and cost restrictions.

17

 Coding Standards

Polyspace software allows to analyze the source code in order to demonstrate compliance with

established C and C++ coding standards . In particular the tool can guarantee compliance with

coding standards as MISRA C 2004 , MISRA C 2012 and MISRA C++ guidelines.

The advantage of applying coding rule guideline is that it can reduce significantly the number of

defect and so improve the quality of the software. When MISRA C rules are violated, Polyspace

software provide messages with information about the rule violations. Most messages are reported

during the compile phase of an analysis

 Certification

 ISO 26262

 DO-178B

 IEC 61508

18

Chapter 3.

 TECHNOLOGY and Tools

In This chapter we will briefly introduce the different tools and technologies that have helped to

accomplish this thesis work.

The word Technology can means any kind of knowledge of technique or processes , either

standalone or embedded into a machine of a tool , to allow operation without detailed knowledge

of their working. In the following the necessary tools used to achieve the goal of this work are

classified in category of software tools , Hardware plate form and collaborative tools.

3.1. Software tools

 Team Foundation server (TFS) and Visual studio Professional 2017 By Microsoft

Visual studio in particular have been used for the software development phase of

this work and mainly used for PC based simulation of the software application.

The TFS tool acts as collaborative tool to support the team work that have

contributed to accomplish the goal of this work.

 Eclipse for DS-5 By ARM

It’s an Integrated Development Environment (IDE) that combines the Eclipse IDE

from the Eclipse Foundation with the compilation and debug technology of

the ARM tools. It provide project manager , Editor for C/C++ or ARM assembly

language.

This tool have been to compile the C code of the implemented application to be run

on the target hardware.

 Polyspace tool by Mathworks

 Static code analysis tool for large-scale analysis by abstract interpretation to

detect, or prove the absence of, certain run-time errors in source code for the C,

C++, and Ada programming languages. The tool also checks source code for

adherence to appropriate code standards.

This tool have been mainly used to check the implemented application source

compliant with Misra C 2012 rules.

https://en.wikipedia.org/wiki/Abstract_interpretation

19

 Canalyzer software Tool by Vector

It’s an universal software tool for ECU network and distributed systems. It makes

easy to observe and analyse data traffic in Physical layer such as CAN , LIN , MOST

or Flex Ray systems. The tool optimally covers all application areas from a simple

network analysis to a high-performance analysis and emulation system.

CANalyzer can be used in many phases of development and use of diagnostics in

control units.

 Diagnosi of ECUs

 Specification/integration/regression test

 Analysis of the communication of real control units

 Troubleshooting

The following picture a view the software tool

Figure 1: CanAlyzer tool

3.2. Hardware Plate form

 Teseo III GNSS evaluation board

20

Teseo EVB board is a complete standalone evaluation platform for Teseo III GNSS ST

solution.

Teseo III embeds the high performance ARM946 microprocessor with dedicated

SRAM and several serial communication interfaces, including USB, SPI, I²C, UART

and CAN.

Performance and configuration can be analysed using the ST TESEO-SUITE PC Tool.

Figure 2 :T3 EVB

 EVB-T3

 CANcaseXL

The CANcaseXL is a USB interface with two CAN controllers which can send and

receive CAN messages with 11 bit and 29 bit identifiers as well as remote frames

without restrictions.

 Additional, the CANcaseXL is able to detect and generate error frames on the bus.

Various transceivers are available to interface the CANcaseXL to a particular type of

bus, one of CAN and LIN transceivers is Piggybacks transceiver .

21

Figure 3: CanCaseXL

Chapter 4.

 Translation Library Design Architecture

This chapter will briefly summary the system architecture design of the complete application and

its related interfaces, then will more zoom inside our interested design namely the Translation

Library (TRL) and describe it architecture logic block and internal interfaces. Moreover, the

sequence diagram illustrating the interaction between the external Data collection layer and TRL

will be presented and finally the sequence diagram of internal operation of the TRL about VIN

reading algorithm will be describe.

4.1. System Architecture design overview

The top level view of the system architecture design as show in Figure 4, describes the overview

design application containing the TRL. Actually the system is composed by :

1. The Central Server that instruct the On-board Device on how the reading vehicle

parameters will be done on specific vehicles through a configuration file. The interface for

communication between central server and on-board Device is through GPRS o mobile

network API which the description are out of the scope of this work.

2. The On-board Device (OBD) which is responsible of gathering diagnostic parameters from

the CAN bus using the rules received from the central server and it is also responsible of

sending data back to the server for further processing. The OBD device from one side

22

interface the central server through GPRS API and from another side interface the physical

can bus through the CAN driver API from ARM .

3. The Can Bus On OBD port that when connected to the vehicle Can network provides the

requested diagnostic parameters from that specific vehicle.

Figure 4 : OBU Design architecture

4.2. TRL functionality and architecture

The Translation Library firmware that serves as an interface between the can bus and the Data

Collection Firmware embedded into the OBD device has the main functionalities of implementing

the protocol needed for request diagnostics parameters from the vehicle can bus, and then to

translate those vehicle-dependent data into vehicle-independent information and pass such

translated information to the data collection firmware though an Application Programming

Interface (API) . The Data Collection Firmware, which the main role is to communicate with the

central server, is responsible of sending these vehicle-independent information to the central

server relying on GPRS or mobile network API for further processing or presentation.

The system is required to be self-configuring by understanding the vehicle model/version by

means of the VIN number ,described later, that the OBD device will be send by to the Central

server which will provide back the right configuration file namely the Vehicle diagnostic

23

description (VDD) file to the OBD device which will store it to it Non Volatile Memory and use it,

when an actual parameter reading should be done.

The specification considers diagnostic parameter readable over CAN bus through international

standardized or manufacturer-specific protocols. The following Table 1 : Normative Standards are

applies :

Normative Description

ISO 11898-1 DataLink layer of Controller Area Network (CAN)

ISO 11898-2 Physical Layer of high-speed CAN

ISO 15765-2
Diagnostic over Controller Area Network (Do CAN) - Transport protocol and network

layer services

ISO 15765-4
Diagnostic over Controller Area Network (Do CAN) - Requirements for emissions-

related systems

ISO 15031-5 / SAE J1979
OBDII / EOBD - communication between the vehicle's OBD systems and test

equipment within the scope of the legislated emissions-related OBD

ISO 14230-3 Diagnostic systems - Keyword Protocol 2000 - Part 3: Application layer

SAE J2819 Diagnostic communication protocol TP2.0

Table 1 : Normative Standards

4.3. Diagnostics Parameters Description and Readable Methods

Each diagnostic parameter has an ID that identify uniquely the parameter in order associate to it

the proper parsing/decoding rule from CAN bus or which allow the central server to request it

collection to the OBU. This ID of the diagnostic parameter is 16 bits fixed were the first 4 most

significant bits identifies the Reading methods to be used for the reading over the CAN bus of the

parameter and the last 12 remaining bits identify the name of the parameter , see the following

Figure 5: parameter ID

24

Figure 5: parameter ID

In the following there is a List of some possible diagnostic parameters name.

1. Lubricant Temperature level

2. Engine RPM

3. External Temperature

4. Selected Gear

5. Distance travelled with MIL ON

6. Battery level

7. …

Each possible diagnostic parameters is characterized by it reading methods classified as belonging

to one of the following type :

 Listen On Can : Diagnostic Parameter readable, without enquiring, on the CAN network.

 REQUEST ON CAN : Diagnostic Parameter readable through a diagnostic protocol using the

CAN bus as physical and data link layer.

 OPERATION : Parameters generated by a calculation on one or more inputs, that have

reading modes LISTEN or REQUEST or another OPERATION

4.4. VDD File Format description

The vehicle diagnostic description file is a binary file containing information that are strictly

necessary to read and decode a diagnostics parameters. It’s compose of an header section , a

global info section and the list of LISTEN , REQUEST , OPERATION for a parameters .

25

This file description represents the configuration file of the TRL firmware layer.

The following Figure 6 : VDD FORMAT. shows how the format look like

Figure 6 : VDD FORMAT.

4.4.1. HEADER INFO

The header info is represented by the first 11 bytes of the VDD file . It contains information about

the file content and the format version coded through an ASCII string. It’s shape as following :

VDDXXXYY.YY were XXX are three characters that indicate the file content and the possible

value is PAR stating that the file contains the description of LISTEN, REQUEST, OPERATION

parameters reading methods. The YY.YY are five characters that indicate format version for

instance 01.00

4.4.2. GLOBAL INFO

After the header , follows the global info , that state the number of vehicle channel data buses that

an OBU could access and the ID of the channel and finally the channel speed.

4.5. VIN Format description

The VIN Figure 7 is a 17 characters alphanumeric hierarchical code that uniquely identify the

vehicle as specify in the ISO-3779 and ISO-3780 standard. VIN contains 3 sections: WMI, VDS, and

VIS.

The WMI is 3 digits long and uniquely designates the manufacturer's continent, country, and the

unique national identify.

The VDS is 6 characters long and describes the vehicle attributes (weight, model).

The VIS is 8 digits long. Combined with WMI, they uniquely identify a vehicle worldwide.

VIS ranges from the 10th digit to the 17th. Digits (10-13) are alphanumeric and (14-17) numeric.

26

In order to assist in the identification of vehicles and to help prevent vehicle theft, VINs are

typically affixed to different parts of the vehicle.

Figure 7: VIN

4.6. TRL logic blocks

The main intended functionalities of the Translation Library firmware are resumed in it

architecture design diagram in . It’s based on logical blocks diagrams each implemented a specific

function or protocol.

The TRL architecture is decompose into two major blocks part .

 TRL core management

 TRL High Level Driver (HLD)

The TRL core management and the TRL HLD are interfaced by means of the TRL HLD interface

4.6.1. TRL core management

The Translation Library core management from one side by means of the TRL- HLD interface is

responsible of gathering vehicle dependent data coming from the TRL High Level and translate it

to vehicle independent data to be send to the central server through relying on the data

collection interface. And from another side by means of DCF-TRL interface it receive a

configuration file and is responsible of setting the logic how the diagnostic parameter should be

read. The summarize architecture is described as following Figure 8.

27

Figure 8: TRL-Core

The TRL core management is further decomposed in the following parts :

DATA MANAGER

This block is a container for the data to be processed and for the rules used by the

Translation Library to retrieve information from the CAN bus.

VIN READER

This block implements the algorithms needed to read the VIN number Figure 7 by using

hardcoded data or the Vehicle Diagnostic Description file received from the Data Collection

Firmware.

POLICY MANAGER

This is responsible for executing the policy rules that have been configured.

VDD PARSER

This block parses the Vehicle Diagnostic Description raw data file received from the server

and extracts its data into the DATA MANAGER to be used by the other blocks

28

VDD DECODER

This block implement the logic that allow from VDD file first to peek the protocol type to be

used for requesting the diagnostic parameter then based on that protocol type , trigger

the parsing for loading the corresponding data structure and the finally prepare the

parameter ready to be use by the data manager , by configuring the data structure in the

data manager

OPERATION MANAGER

This block is responsible for evaluating diagnostics parameter of type Operation in reverse

polish notation and then responsible of performing logic or mathematical operation as

enumerated in the following list.

1. Operation NOP

2. Operation Calculate MIN

3. Operation Calculate MAX

4. Operation Calculate AVERAGE

5. Operation Calculate RATE

6. Operation Calculate TIME

7. Operation Calculate DISTANCE

8. Operation Compare with a RANGE

9. Operation GREATER THAN A VALUE

10. Operation LOWER THAN A VALUE

11. Operation Bitwise NOT

12. Operation Bitwise AND

13. Operation Bitwise OR

14. Operation SUM

15. Operation DIFFERENCE

16. Operation MULTIPLICATION

17. Operation DIVISION

18. Operation DEBOUNCE

29

CODEC

This block implement the logic needed to convert RAW data into engineering variable. It

job is first extract the relevant portion of the message that is received from High Level

Driver and reorder the message byte according to the endianness. Then Apply a linear

transformation on a value and finally remap these value according to the provided map

REQUEST MANAGER

This block is responsible of handling any request from user and forward the user request

to the High Level Driver through the data manager for retrieving or sending message on

the can bus.

4.6.2. TRL HLD driver

The HLD (High Level Driver) implements the diagnostic protocols needed to communicate

over the CAN Bus and then allow the reading of diagnostics parameters regardless of the

vehicle model or version. The reading of these requested diagnostics parameters is based

on a specific standard and the available are highlighted in the following Table 2.

The architecture design of the HLD is shown in the higher part of the TRL VIEW

Diagnostic Protocol Description

OBDII/EOBD request/response exchange, as stated in OBDII and EOBD standards

DoCAN Diagnostics on CAN standard (ISO 15765-4) and little variations of it

VW Volkswagen specific diagnostic protocol (TP2.0 standard)

OPEL Opel specific diagnostic protocol

MINI Mini specific diagnostic protocol

Table 2: Diagnostic Protocol

30

Figure 9 : TRL VIEW

CAN DRIVER

- listen address
- send message

CAN
DRIVER
ARM

CAN BUS

ISO15765
ISO-TP

SAE J2819
TP 2.0

ISO1031-5/SAE

J1979
OBDII/EOBD

ISO 15765-4
DoCAN

ISO 14230-3
Volkswagen

TRL HLD INTERFACE

Operation
manager

VDD PARSER

DCF-TRL Interface

CAN RAW

VIN Reader POLICY MANAGER

TRL HLD
CONCRETE
INTERFACE

DATA
MANAGER

CODEC

OPEL

MINI

REQUEST MANAGER

VDD DECODER

TRL-HLD

TRL-CORE

31

4.7. Sequence diagram of Interaction between DCF and TRL

4.7.1. Initialization of the TRL

The following sequence diagrams shows the interaction between the DCF layer (on the left) and

the TRL library (on the right) see DCF-TRL sequence diagram.

Figure 10:DCF-TRL sequence diagram

At the start up , after call-back have setup and the TRL has been reset , the DCF can ask to auto-

check the CAN bus rate. After auto-detection of the CAN rate the DCF save in flash the proper

values. If the DCF retrieves the CAN rate value at start up, it passed to the TRL in order to skip the

auto-detection.

In case the DCF has no previously detected VIN information stored in flash, it asks to TRL to detect

the VIN (trlStartVinDetection). In case of positive detection (call-back VIN_READ_COMPLETE) the

resulting VIN is stored in flash by the DCF.

In case of correct VIN detection, the VDDPAR is provided by the DCF to the TRL (trlLoadVdd) (DCF

retrieves this information from previously saved in flash VDD or asking it to the server). The TRL

analyses the VDDPAR and provides the indication of correct read or not (call-back

32

VDD_READ_COMPLETE). The DCF requires the starting/stopping of the acquisition session of the

diagnostics parameters (trlStartReading/trlStopReading).

4.7.2. VIN reading operations

The following diagram details the TRL internal logic about VIN detection algorithm.

After correct detection of the VIN, the DCF save the VIN in the flash memory.

Figure 11:VIN Detection sequence diagram

33

Chapter 5.

Translation Library Software Interface and Data Structure

This chapter will describe more in detail the software implementation of the TRL according to the

architecture specify in the previous chapter.

In particular this chapter will deeply focus on the implementation blocks I have designed and

presented in the architecture of the TRL. Moreover additional interface to other block of the TRL

architecture will be briefly presented.

5.1. Data structures description

This section will describe the data structure defined to exchange information between DCF and

TRL and between TRL and vehicle CAN bus allowing the TRL to read and decode each diagnostic

parameters.

The data structure are defined based on specific diagnostic protocol associated with it proper

reading method which could be

 LISTEN : That is reading method of vehicle diagnostic parameters, based on parsing basic

protocol packets (mainly CAN) that are exchanged on the vehicle data networks between

the ECUs.

 REQUEST : That is reading method of vehicle diagnostic parameters, based on a diagnostic

protocol that is made up of one or more requests by External Test Equipment and one or

more answers by a vehicle ECU.

 OPERATION : That is reading method of vehicle diagnostic parameters, based on a

calculation that uses one or more inputs, that could be other diagnostic parameters.

Moreover all data structure that allow the TRL to read and decode diagnostics parameters have

common fields that are describe as following

34

struct VddDecodeParameterConfig
{
 u16 PAR_ID; Diagnostic Parameter Identification number
 u8 DPRG_SOURCE; Parsing Rule Information source
 u8 CHANNEL_ID; vehicle data bus channel
 u16 STARTBIT; position inside the CAN message payload of the requested
parameter raw value
 u16 LENGTH; length, in number of bits, of the requested parameter raw
value inside the CAN message payload, counted starting from STARTBIT

 enum VddlRawValueType RAW_VALUE_TYPE; type(Boolean, Signed, ASCII string
etc)of the raw value of the parameter as present in the CAN message

 enum VddlFinalValueType FINAL_VALUE_TYPE; type and length of the final
format of the parameter value that the TRL should give back to the DCF

 enum Endianess ENDIANESS; Byte order
 u8 FACTOR_PRESENT; Factor needed to convert raw value
 u8 OFFSET_PRESENT; Offset needed to convert raw value
 u8 SPARE;
 float FACTOR;
 float OFFSET;
 struct ValueEncoding VALUE_ENCODING; Encoding rules for value encoded
parameters

};

5.1.1. Data structure for LISTEN ON CAN reading mode parameter

The information for describing how to read and decode a LISTEN ON CAN parameter type are

listed and comments in the following couple with the above described field

struct ListenOnCanParameters
{
 enum Can_ID_format CAN_ID_FORMAT; format of the ID of the CAN message to
capture(standard or extended)
 u32 CAN_ID; ID of the CAN message to capture
 u8 RECOGN_SEQ_LEN; CAN Message Recognition Sequence Length
 u8 RECOGN_SEQ_STARTBIT; CAN Message Recognition Sequence Position as
start of bit string
 u8 RECOGN_SEQ_DATA[8]; CAN Message Recognition Sequence Data

};

5.1.2. Data structure for REQUEST OBDII/EOBD protocol parameter

35

/* Data structure for OBDII/EOBD REQUEST parameters*/
struct RequestOBD_EOBDParameter
{
 u8 ID_PROTOCOL;
 enum Can_ID_format CAN_ID_FORMAT;
 u8 REQ_DATA_LEN; /* the data lengh should be express in numer of byte*/
 u8 padding;
 u8 REQ_DATA[8]; /* u64 because REQ_DATA_LEN is express in byte not in bit */
 u32 RESP_CAN_ID;
};

5.1.3. Data structure for REQUEST Do CAN (ISO 15765-4) protocol parameter

/* Data structure for DoCAN Request parameters */
struct RequestDoCanParameter
{
 u32 REQ_CAN_ID;
 u8 ID_PROTOCOL;
 enum Can_ID_format CAN_ID_FORMAT;
 u8 REQ_DATA_LEN;
 u8 REQ_DATA[8];
 u32 RESP_CAN_ID;
 u8 TA_LSB_PRESENT;
 u8 REQ_REPLY_LEN;

};

5.1.4. Data structure for REQUEST Volkswagen protocol parameter

struct RequestVWParameter
{
 u8 ID_PROTOCOL; Identifier of the Diagnostic Protocol;
 u8 CAN_ID_LGC; Logical ID of the target;
 u8 REQ_DATA_LEN; length of REQUEST DATA;
 u8 REQ_DATA[8]; Request Data, content of the request message payload

};

5.1.5. Data structure for REQUEST OPEL protocol parameter

36

struct RequestOPELParameters
{

 u8 ID_PROTOCOL;
 u16 REQ_CAN_ID; CAN ID of the requests to be sent;
 u8 REQ1_DATA_LEN; length of 1st REQUEST DATA;
 u8 REQ1_DATA[8]; Request Data, content of the 1st request message payload;
 u16 RESP1_CAN_ID; ID of the CAN message received as response to the 1st request;
 u8 REQ2_DATA_LEN; length of 2st REQUEST DATA;
 u8 REQ2_DATA[8]; Request Data, content of the 2nd request message payload;
 u16 RESP2_CAN_ID; ID of the CAN message received as response to the 2nd
request;

};

5.1.6. Data structure for REQUEST MINI protocol parameter

struct RequestMiniParameters
{
 u8 ID_PROTOCOL;
 u16 REQ_CAN_ID; ID of the request CAN messages;
 u8 PREREQ_DATA_LEN; length of PREREQ_DATA;
 u8 PREREQ_DATA[8]; Pre - Request Data, content of the 1st request message payload;
 u16 RESP_CAN_ID; ID of the CAN messages received in response;
 u8 REQ_DATA_LEN; length of REQUEST DATA;
 u8 REQ_DATA[8]; Request Data, content of the 2nd request message payload;

};

5.1.7. Data structure for OPERATION reading mode parameter

struct OperationDecodeParameter
{
 u16 PAR_ID;
 u8 DPRG_SOURCE;
 u8 NUM_TOT_STEPS; total number of steps to perform the calculation;
 struct OperationStepDecode INPUTS_OP_STEPS_X[TRL_NUM_TOT_STEPS]; number of inputs
of step \#x;
 struct ValueEncoding VALUE_ENCODING;
};

struct OperationStepDecode
{
 u8 NUM_OPS; numbers of operations to be done;
 u8 NUM_INPUT;
 u16 INPUTS_PARS_ID[TRL_OP_NUM_INPUTS];
 u8 OP_ID[TRL_OP_NUM_OPS];
};

Furthermore the data structure related to DCF-TRL interface can be describe as following

37

enum TrlResult
{
TRL_RESULT_SUCCESS = 0,
TRL_RESULT_GENERIC_FAIL
};

Most API calls have a return type of TrlResult to tell if the call succeeded. The caller is required to

always check the result.

enum TrlInternalEvent
{
TRL_EVENT_CAN_BUSCONF_COMPLETE,
TRL_EVENT_CAN_BUSCONF_FAIL,
TRL_EVENT_VIN_READ_COMPLETE,
TRL_EVENT_VIN_READ_FAIL,
TRL_EVENT_VDD_READ_COMPLETE,
TRL_EVENT_VDD_READ_ERROR,
TRL_EVENT_ALARM,
TRL_EVENT_ERROR
};

This is used to signal the completion of an operation to the DCF.

typedef u16 TrlExternalEventType;

Used by the DCF to signal an external event

struct TrlVinLoadResultRow
{
u8 vinValue[MAX_STRING_DATA_SIZE];
};

struct TrlVinLoadResult
{
struct TrlVinLoadResultRow results[MAX_VIN_NUM];
u8 resultsLen;
};

This contains the VIN values that have been read from the bus. The values have to be verified

38

enum TrlState
{
TRL_STATE_RESET,
TRL_STATE_WAITING_BUSCONFIG,
TRL_STATE_AUTOCONFIGURING_BUS,
TRL_STATE_WAITING_VINREAD,
TRL_STATE_READING_VDD,
TRL_STATE_READING_VIN,
TRL_STATE_WAITING_VDD,
TRL_STATE_IDLE,
TRL_STATE_RUNNING,
TRL_STATE_ERROR
};

This data structure describe the current operation in execution by the TRL.

5.2. Software Interfaces

The TRL software is designed to run as a state machine see the following TRL State Machine. This

state machine is made by up to ten states that define at each time the current operation is

running by the TRL software.

The TRL implementation provides a set of interfaces that are called to configure and activate the

requirement functionalities.

In the following the description of functions interface related to my work will be done in order to

assert the functionalities of the TRL software.

These interfaces can be describe either at block level with others block or between the TRL and

others module in the design.

39

Figure 12: TRL State Machine

Power on

TRL_STATE
AUTOCONFIGURING

BUS

TRL_STATE
WAITING_VINREAD

TRL_STATE
READING_VIN

TRL_STATE
WAITING_VDD

TRL_STATE
READING_VDD

TRL_STATE
IDLE

TRL_STATE
RUNNING

TRL_STATE
ERROR

TRL_STATE
RESET

TRL_STATE
WAITING_BUSCONFIG

trlLoadDefaultVDD()
trlLoadVDD()

trlStartCANAutoconfiguration()

trlLoadDefaultVDD()
trlLoadVDD()

trlStartVINDetection()

VDDPAR

trlStartReading()

trlReset()

trlReset()

trlStopReading()

trlSetupCANInterfaces()

VDDPAR or VDDVIN?

VDDVIN

40

5.2.1. DCF-TRL Interface functions

In the following the interface and it relative call-back that describe the state machine of the TRL

above will be presented.

These are followed by a comment that possibly state the role of that interface.

void TrlReset(void);
Used to return the TRL in the default state

enum TrlResult trlSetupCallbacks(TrlCallbackEvent, TrlCallbackParameter, TrlCallbackAlarm);
Setup the callbacks

enum TrlResult trlSetupCanInterfaces(struct TrlCanInterfacesConfig *);
Used to load the can interfaces configuration

enum TrlResult trlStartCanAutoconfiguration();
Starts the automatic configuration of the can interfaces, the result will be returned in a
callback

enum TrlResponse trlLoadVdd(tU8 * vddData, tU32 vddLen);
sends the pointer to the memory containing the vdd file to be processed.The vdd file can be
a PAR or a VIN

enum TrlResult trlStartVinDetection(void);
Starts a VIN read operation.The result will be returned in a callback

enum TrlResult trlStartReading(void);
Enables processing of the data from the CAN bus

enum TrlResult trlStopReading(void);
Temporarily stops the processing of data from the CAN bus

void trlNotifyExternalEvent(TrlExternalEventType);
Used to notify an external event

enum TrlResult trlRequestParameterValue(TrlParamIdType par_ID);
Nonblocking request of one parameter from the can bus.The result will be returned in a
callback.

void trlRequestSavedParameterValue(TrlParamIdType par_ID);
Used to read immediately the value of a parameter.The parameter is retrieved from the
internal database.

enum TrlState trlGetCurrentState();
Gets the current state of the TRL

41

5.2.2. Callbacks

By definition a call-back function is a function passed into another function as an argument, which

is then invoked inside the outer function to complete some kind of routine or action.

This Call-back are function pointer executed asynchronously with respect to each state.

void(*TrlCallbackParameter) (TrlResult result, TrlParamIdType par_id, struct
TrlParameterValue *val);
Called when the TRL wants to notify a new value of a parameter

typedef void(*TrlCallbackEvent) (enum TrlEvent, void *eventData, tU16 len);
An internal event was generated by the TRL

5.2.3. VDD DECODER INTERFACE

This interface is at block level as describe the architecture design of the TRL , and has the main

task of implementing the logic that allow the TRL from the loaded VDD file , first read the past

buffer in order to peek the protocol type that will be used for requesting the diagnostic

parameter then based on that protocol type , trigger the parsing block to load the corresponding

data structure and the finally prepare the parameter ready to be use by the data manager , by

configuring the data structure in the data manager.

The interface of the block interface towards others block is

enum TrlResult vddDecodeBuffer(struct BufferReaderState *state,struct

VddlParameterConf *parameter);

 The relative sub-function this block rely on are specifies with the following interfaces :

enum TrlResult vddlPeekProtocolType (const struct BufferReaderState

*_state, enum VddlProtocolType *protoType)

This interface allow to read the protocol type to use for the request of the diagnostic parameter

in other to select the right data structure to load.

42

enum TrlResult vddlPrepareOperationParameters(struct

OperationDecodeParameter *parameters, struct VddlParameterConf

*ConfParameters)

enum TrlResult vddlPrepareEobdParameters(struct RequestOBD_EOBDParameter

*params, struct VddlParameterConf * parametersConf)

enum TrlResult vddlPrepareOPELParameters(struct RequestOPELParameters

*params, struct VddlParameterConf * parametersConf)

enum TrlResult vddlPrepareMINIParameters(struct RequestMiniParameters

*params, struct VddlParameterConf * parametersConf)

enum TrlResult vddlPrepareVWParameters(struct RequestVWParameter *params,

struct VddlParameterConf * parametersConf)

enum TrlResult vddlPrepareDoCanParameters(struct RequestDoCanParameter

*params, struct VddlParameterConf * parametersConf)

enum TrlResult vddlPrepareListenParameters(struct CanListenParameters

*params, struct VddlParameterConf * parametersConf)

5.2.4. VDD PARSER INTERFACE

This interface is at block level as describe in the architecture design of the TRL , and is able to

parse the VDD file based on a specific protocol and to load the data structures that will be useful

by order block in the design.

In particular it received as input a buffer from the decoder block containing the remaining bytes

from VDD file and then extract the corresponding byte field and load the corresponding protocol

based data structure.

The different interface for decoding a parameter are described as following :

43

enum TrlResult vddlDecodeListenParameters(struct BufferReaderState

*state, struct CanListenParameters *params)

This interface allows to load a listen based diagnostic parameter data

structure.

enum TrlResult vddDecodeOperationParameter(struct BufferReaderState

*state, struct OperationDecodeParameter *params)

This interface allows to load an operation based diagnostic parameter

data structure.

enum TrlResult vddlDecodeMINIParameter(struct BufferReaderState *state,

struct RequestMiniParameters *params)

This interface allows to load a Mini based diagnostic parameter data

structure.

enum TrlResult vddlDecodeOPELParameter(struct BufferReaderState *state,

struct RequestOPELParameters *params)

This interface allows to load Opel based request diagnostic parameter

data structure.

enum TrlResult vddlDecodeVWParameter(struct BufferReaderState *state,

struct RequestVWParameter *params)

This interface allows to load VW based request diagnostic parameter data

structure.

enum TrlResult vddlDecodeOBD_EOBDParameter(struct BufferReaderState

*state, struct RequestOBD_EOBDParameter *params)

This interface allows to load OBD/EOBD based request diagnostic parameter

data structure.

enum TrlResult vddlDecodeDoCanParameter(struct BufferReaderState *state,

struct RequestDoCanParameter *params)

This interface allows to load DoCan based request diagnostic parameter

data structure.

44

5.2.5. Operation Manager interface

This block as describe in the architecture design , is responsible for the evaluation a parameter of

type Operation in reverse polish notation and then responsible of performing a logic or mathematical

operation.

In particular it receive as input the decoded operation parameter then :

1. create the operation by internally transformed the parameter operation into reverse polish

notation using an internal stack memory and insert the transform expression to it internal data

base. For this purpose it implement the following interface.

trlOmCreateOperation(struct OmOperationExpression* opDecodeParameter)

2. Execute the expression transformed in RPN

for this purpose it implement the following interface

trlOmExecuteOperation(TrlHandle opIndex, struct OperationDependencyValues *depValues,

struct OperationResult* outResult);

Moreover it implement other interface as :

void trlOmReset(void)

For reset the internal data base

static void trlOmInitializeOpScratchpad(u32 handle)

To initialize the internal data base

void trlOmClearOperationData(void)

 to clear a data expression previously initialized.

static enum TrlResult trlOmExecuteOperationSingle(struct OperationStack *operationStack,

struct OperationOperatorScratchpad *operatorScratchpad);

This interface of executing the single operation type (e.g. SUM, MAX, MULT , DIV , etc..).

5.2.6. VIN READER interface

This block implements the algorithms needed to read the VIN number Figure 7 by using

hardcoded data or the Vehicle Diagnostic Description file received from the Data Collection

Firmware.

This block implement the following interfaces :

enum TrlResult vlStartReading(u8 _tryDifferentSpeeds);

that is responsible to start the VIN reading operation by trying vary speed bus type and when the

speed is well setup the actual reading occur through the following interface

static void requestVINbyIndex(u16 index); by configuring the HLD with the current speed bus

through the following interface.

 trlHldConfigureBus(0, busSpeeds[speedIndex], 11);

45

Moreover when the reading of VIN succeed , the VIN is saved to the memory through the

following interface

static void saveVinDataByIndex(u16 index);

5.2.7. OBDII/EOBD interface

This as describe in the design architecture is specific to the OBDII/EOBD standard and is

responsible of implementing the OBDII/EOBD protocol for diagnostic parameter request on the

CAN bus.

In order to perform it job it implement the following interfaces :

struct TrlResultExt trlHldEobdConfigureParameter(const struct TrlHldConfigEOBD* config);

that is responsible to configure TRL-HLD with the type of parameter request based on the

corresponding decoded data structure.

After the parameter is configured , the connection is created for communication over the CAN bus

based on the ISO-TP standard through the following interface :

struct TrlResultExt isoTpCreateConnection(struct IsoTpConnectionParameters* config);

Once the connection has been well setup an event is generated for waiting the response from the

request through the following interface :

void trlEobdIsoTpEventCB(TrlHandle isoTpHandle,struct IsoTpConnectionParameters

*connectionParameters, enum TrlHldResult error);

Afterwards when a new message is present on the bus it’s retrieved calling the following interface

call-backs

void trlEobdIsoTpMessageCB(TrlHandle isoTpHandle,struct IsoTpConnectionParameters

*connectionParameters, const u8 * data, u16 dataLen)

In particular this callback is responsible of passing the respond message request to the TRL-CORE

through the TRL-HLD INTERFACE namely

void trlHldNewMessageCallback(enum TrlHldLibId libId, TrlHandle handle,const u8 * data, u16

dataLen

46

Chapter 6.

Experimental test and results

In this chapter will be describes vary test activities performed in order to verify and validate the

main requirement functionality of the TRL based on specific examples.

In particular The testing activity is executed with two different approaches:

 Software tests on PC-based simulation environment to check the main functionalities of

the TRL.

 Testing executed on the hardware plate form evaluation board a couple with CAN bus

protocol management tool (CANalyzer)

6.1. Test on PC based Simulated Environment

The software test simulation has been performed on the PC running window 7 64 bit operating

system with visual studio version 2017 installed.

6.1.1. Test plan

The simulation test is like a functional test where each functionality of the TRL software has been

tested. The environment test is like an automated test and it’s compose of several Item test case

that when launched simulate the whole system at once and produce a global Success/failure

result.

The Test case in our case are describes as Item function that implement the test of a single request

protocol or the test of a single block module made by many functions or test of sets of block

modules including complex functions or finally the test a whole system including all functions and

modules of the TRL.

6.1.2. Test Approach

The steps for testing an item are

 Write the test case for that specific item

 Insert the test case in the test list queue

 Run the automated test environment

47

 Observe results test

6.1.3. Test description flow

The main modules/files that compose the simulated test environment are described as following

 The Main.cpp file , that contains the Main function and the RunTest function (see the following

fig) .

1. The Main function initiate the automated simulation test by triggering the RunTest

function and at the end records the global success of the test.

2. The RunTest function which it role is to get all test case through the getTestList

function (see the following fig) , then execute them and finally records result of each

specific test case in the log file result.

 The TestList.cpp file which contains the GetTestList function , and the definition of each test

case function.

1. The GetTestList function has a role of declaring each test case .

 The testEngine.cpp file which contains interface function for simulating the behaviour of the

engine. It represented following figure by the Engine module

 The source file folder that define the TRL made by Trl_core and Trl_hld modules.

 Test result log file that registers all test results either for a specific test case or for the global

result of the test.

The following figure describe how the function modules composing the simulated software

environment test are interconnected and the steps to perform the automated test simulation .

48

Figure 13: Environment test

6.1.4. Test Results

6.1.4.1. Test definition

Test are defined according to the following scenarios:

- System test: test of the whole TRL functionalities

- Module test: test of single block functionality

- Specific feature test: test of complex operation or specific function

 Communication protocol test: test of single protocol

In the following test result obtained when simulating the TRL software, will be specify for each

category of test for one specific diagnostic parameter.

6.1.4.2. System test

49

Id test case Name \Description test case Input Execution steps Expected Result

TC testListenONCan: check of

listen CAN (Vehicle: Abarth 595

106kW year 2016)

Session

of the

byte

sequence

in VDD

file

1. Decode of vdd input data

parameter

according to the CAN RAW protocol

and prepare the parameter to be

loaded into the HLD

2. Loading vdd decoded parameter

for HLD configuration

3. Listen on the can bus the the

expected response

4. Parse the response for obtaining

the expected value

5. Check for the rightness of the

expected value

Parameter type:

Steering Wheel

Angle

Value: +360°

Table 3: system test

6.1.4.3. Module test

Id test

case

Name \Description

test case

Input Expected Result

TC testSimpleOperation:

check of different

type of operation

Buffer value

contening

operand for

the operation

1. Configure the data structure

for CAN raw

2. Configure HLD and create CAN

raw parameters

3. Configure the operation

manager for operation type max

4. Create the configure operator

parameter

5. Listen on the bus set of data

from engine

6. Read values from bus and

check each time the current

maximum value

The current

maximum value

Table 4: Module Test

50

6.1.4.4. Specific feature test

Id test case Name \Description test

case

Input Execution steps Expected Result

TC testOperationDEBOUNCE:

check of vehicle

diagnostic parameters,

based on a calculation of

DEBOUNCE that uses one

or more inputs

1. PAR_ID of the

parameter in

obsevation

2. Time T1

3. Time T2

1. Definition of a

parameter with

type operation and

operator name

DEBOUNCE

2. Create a

parameter

3. Execute the

operation with

different unsigned

handle value

(par_id, t1,t2)

0 : DEBOUNCE PAR

OUTPUT LOW

-1 : DEBOUNCE PAR

OUTPUT HIGH

Table 5: Feature Test

6.1.4.5. Communication protocols test

Id test

case

Name \Description

test case

Input Expected Result

TC testEobdRequest:

check of EOBD

Parameter for

configuration

1. Configuration of the HLD for

EOBD request protocol

Success (value is

1)

51

Table 6:

Protocol

test

6.2. Hardware Test

6.2.1. Hardware setup

The test performed in hardware have been executed with the following setup embedded system

environment see the following pictures

 CAN bus protocol management software tool (CANalyzer)

 CANcaseXL hardware

 CAN bus wire

 The Teseo III embedded plate form evaluation board microcontroller STA8090FG , having

core ARM946

 free CPU resources: max 10% of the total (total is 200MIPS)

 available RAM space: max 30KB

 available FLASH space (for code): max 450KB

 C-language source code, compiled with ARM DS5

request with a single

parameter

of the channel:

CAN_CH

REQ_ID

RES_ID

REQ_MODE

RDI

2. Update the request with the

ID and create a connection

3. Listen configuration data from

TRL

4. Sending of the response by

the engine

5. Check of the rightness of the

request

Unsuccess (value

is 0)

52

Figure 14 : Hardware testing

53

Figure 15: Environment Tool setup

6.2.2. Test description Approach

The approach used to perform test in hardware is to program a Can bus management tool in

order to behave like an engine for providing requested diagnostics parameters to the Translation

library firmware.

In particular as the Translation library firmware run as a state machine , it’s also configured in

order to perform request for interested diagnostics parameters.

6.2.2.1. Configuration of the TRL

The configuration of TRL is done by an external Data Collection Firmware through the DCF-TRL

interface.

In the following is showed how the TRL is configured for requesting a given diagnostic parameter.

The configuration is done for request on the vehicle MERCERDES VE_PLAT_MRC01 Plate

form.

54

 Create Parameter Vin Reading

configParameter.encoding = DATA_ENCODING_STRING;
configParameter.parameterId = 0x2000;
configParameter.finalSizeBytes = 17;

decodeString.splitParameters.endianness = DATA_ENDIANNESS_LITTLE;
 decodeString.splitParameters.lengthBits = 17*8;
 decodeString.splitParameters.startBit = 8;

 config.CAN_CH = 0;
 config.REQ_ID = 0x7E0;
 config.REQ_MODE = 0x09;
 config.RDI = 0x02;
 config.RES_ID = 0x7E8;
 config.addressMode = TRL_CAN_ADDR_DEFAULT;

trlHldConfigureParameter(TRL_HLD_LIBID_EOBD,configurationHandle,&config,s
izeof(config))

dmCreateParameter(configurationHandle,&configParameter,&decodeString);

 Create Parameter Fuel Level Absolute

55

 configParameter.encoding = DATA_ENCODING_INTEGER_UNSIGNED;
 decodeParameter.rawEncoding = DATA_ENCODING_INTEGER_UNSIGNED;
 configParameter.parameterId = 0x201B;
 configParameter.finalSizeBytes = 2; //in 0.1 litri

struct TrlHldConfigEOBD configEOBD;

 decodeParameter.gain = 10;
 decodeParameter.offset = 0;
 decodeParameter.splitParameters.endianness =
DATA_ENDIANNESS_BIG;
 decodeParameter.splitParameters.startBit = 0;
 decodeParameter.splitParameters.lengthBits = 8;

 configEOBD.CAN_CH = 0;
 configEOBD.REQ_ID = 0x7E0;
 configEOBD.REQ_MODE = 0x22;
 configEOBD.RDI = 0x6038;
 configEOBD.RES_ID = 0x7E8;
 configEOBD.addressMode = TRL_CAN_ADDR_DEFAULT;

trlHldConfigureParameter(TRL_HLD_LIBID_EOBD, configurationHandle,
&configEOBD, sizeof(configEOBD));

dmCreateParameter(configurationHandle, &configParameter,

&decodeParameter);

vddlLoadDCFVDD :

CreateParameterOperationFuelLevelAbsoluteMIN();

Once the parameter has been configured , the TRL is let free to interact with the engine through

the Can Bus.

6.2.2.2. Setup of Can bus management tool for providing requested diagnostic parameter

The Engine

In the following is shown the picture that describe how to CancaseXL hardware which behave as

the engine, is program in to respond in the right way when received a request for a diagnostic

parameter in this case the fuel absolute level parameter.

56

Figure 16: Diagnostic parameter response

The following figure list some set of diagnostics parameters among all, the engine is able to

respond from a request.

Figure 17: Parameter request

57

The following picture is trace over the CAN bus for parameter request and response data.

Figure 18:Can bus trace

58

PART II

Chapter 7.

 Translation Library Software Verification with Polyspace Tool

7.1. TRL verification with Polyspace Code Prover And MISRA C check rules

This section of work will mainly describe the verification result that have been done on the TRL

software and the compliance with MISRA C 2012 rules standard.

7.1.1. Project Setup

Creating a project in polyspace code prover consist first to choose the project name then locate all

source files and includes files to be added to the project in their proper folders name.

The figure bellow summarize how the created project in polyspace code prover look like and list

different folders containing proper source files.

Figure 19 : Polyspace code prover file organization interface

59

7.1.2. Project configuration : Coding Rule and Metrics

The TRL project has been configured in polyspace code prover software to use C language as

target language. Moreover the project have been configured to check MISRA C 2012 rules

compliant with the ISO 26262 standard guideline and have enabled to compute code metrics.

7.2. Results Analysis

This paragraph will mostly presenting results obtains when performing Misra Rules checking for

the safety compliance with ISO 26262.

The TRL software verification has been run with Polyspace code prover in order to check MISRA

C coding rules and quickly identify and fix obvious defects due to run time error. The methodology

adopted during verification has been that of modular verification based on either each component

verification then sets of component and finally on the overall design. The verification process

technique is like a processor-in-the-loop (PIL) where the target processor were a configured ARM

like processor architecture . The verification has been run in the loop and based on generated

results bugs has been progressively fixed .

Figure 20 : Target processor

As the verification has been setup to run in modular form, the following figure shows the

verification running on three files component belong to the TRL core. The summary graph report

result in it higher part shows that these modules are free from run time error (red color). Moreover

in the other hand from the MISRA C check part it shows categories of rule that have been violated

and how many time they have been violated in the verification process.

60

Figure 21: Coding color summary

However by running the verification process on the entire TRL software , the following graph from

result metrics indicate that the verification on the software have been all covered either or in term

of function or in term of operation in the code.

Figure 22:TRL Coverage

Moreover the following distribution assert the level of safeness of the software with 94% of proven

coding rules checked.

61

Figure 23: Distribution Check

Figure 24:Coding Rule violated

62

Chapter 8.

Conclusion and future work

In conclusion this thesis has proposed a design architecture and implementation of an embedded

Translation library firmware which can be integrated into traditional vehicle On-Board device for

requesting diagnostics parameters over the can bus from large number of vehicles manufactures.

Based on the information gathering on fields about the specific CAN message implemented by

different vehicle manufactures of different brand and model , this translation library firmware can

support multiple protocols request for diagnostics parameters namely OBDII/EOBD request

protocol built upon the ISO ISO15765 standard ; Diagnostics on Can request protocol (DoCAN)

relying on ISO 15765-2 standard , Mini request protocol built upon ISO-TP , Volkswagen request

protocol that rely on SAE J2819 TP 2.0 and finally CAN RAW and Opel protocol request that are

custom implementation regardless of the vehicle model. Moreover, this thesis has also described

the main software interface and data structure that allow the software to run. Furthermore,

different approach of testing has been proposed either test based simulation on PC so-called

software in the loop (SIL) or hardware test so called hard in the loop (HIL) have been adopted to

check the correct behavior of the TRL software.

This TRL embedded firmware library is then able to request very large number of diagnostics

parameters by means of a vehicle diagnostic description (VDD) file that is responsible for

configuration of the firmware. These parameters can be from DTC code of system malfunction to

VIN passing through engine rpm, tyre pressure, coolant temperature, lubricant temperature level

and so many one. Afterwards the software implementation and testing, a static analysis

verification with polyspace code prover tool of the TRL software have been performed in order to

first let free the software from most critical run time error namely overflow, division-by-zero, out-

of-bounds array access and secondly to check MISRA C coding rule compliance in order to

guarantee the safety critical and security of the TRL software and the compliance with the ISO

26262 standard.

However the vary result obtained with polyspace code prover when running the static analysis

verification both for “0” defects run time error and MISRA C rules check were not so highly optimal

for instance as show on the graph above Figure 23: Distribution Check, we have obtain 94% code

coverage proven and 5 category of MISRA C rule uncheck due to the limitation of time. This

63

obtained result is mainly because Polyspace tool didn’t integrate earlier at the beginning of the

development process of the TRL software.

Therefore due to the limitation of time as future work, a deeply investigation could be done by

running the static analysis verification on each block component in the TRL design in order to get

very high quality code and total compliance with the MISRA C coding guidelines.

List of figures

Figure 1: CanAlyzer tool 19

Figure 2 :T3 EVB 20

Figure 3: CanCaseXL 21

Figure 4 : OBU Design architecture 22

Figure 5: parameter ID 24

Figure 6 : VDD FORMAT. 25

Figure 7: VIN 26

Figure 8: TRL-Core 27

Figure 9 : TRL VIEW 30

Figure 10:DCF-TRL sequence diagram 31

Figure 11:VIN Detection sequence diagram 32

Figure 12: TRL State Machine 39

Figure 13: Environment test 48

Figure 14 : Hardware testing 52

Figure 15: Environment Tool setup 53

Figure 16: Diagnostic parameter response 56

Figure 17: Parameter request 56

Figure 18:Can bus trace 57

64

Figure 19 : Polyspace code prover file organization interface 58

Figure 20 : Target processor 59

Figure 21: Coding color summary 60

Figure 22:TRL Coverage 60

Figure 23: Distribution Check 61

Figure 24:Coding Rule violated 61

List of tables

Table 1 : Normative Standards 23

Table 2: Diagnostic Protocol 29

Table 3: system test 49

Table 4: Module Test 49

Table 5: Feature Test 50

Table 6: Protocol test 51

65

Bibliography

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4519050

http://web1.see.asso.fr/erts2010/Site/0ANDGY78/Fichier/PAPIERS%20ERTS%202010/ERTS2010_0

009_final.pdf

http://ldra.com/aerospace-defence/standards/misra-cc/

https://rmbconsulting.us/Publications/MisraC.pdf

https://en.wikipedia.org/wiki/On-board_diagnostics

https://www.sciencedirect.com/science/article/pii/S0950584903002076

https://www.ciklum.com/blog/key-embedded-software-trends-in-2017/

http://www.strategyr.com/pressMCP-7778.asp

http://ieeexplore.ieee.org/abstract/document/4814954/

https://www.mathworks.com/products/polyspace-code-prover.html

https://vector.com/vi_canalyzer_en.html

https://www.ciklum.com/blog/key-embedded-software-trends-in-2017/
http://www.strategyr.com/pressMCP-7778.asp
http://ieeexplore.ieee.org/abstract/document/4814954/
https://www.mathworks.com/products/polyspace-code-prover.html
https://vector.com/vi_canalyzer_en.html

		Politecnico di Torino
	2018-04-05T04:32:29+0000
	Politecnico di Torino
	Massimo Violante
	S

