
POLITECNICO DI TORINO

Master of Science in Computer Engineering

Master Thesis

A Policy-Based Architecture for
Container Migration in Software

Defined Infrastructures

Supervisors
Prof. Guido Marchetto Prof. Flavio Esposito

Candidate
Xu Tao

March 2018

To my family.

2

Contents

List of Figures 5

List of Tables 7

1 Introduction 8

2 State of the art 10
2.1 Existing Work on Network Migration Technologies 10

2.1.1 Virtual Machine Migration 10
2.2 Moving Target Defense Strategies 13
2.3 Existing Work on Container Migration 14

3 Background 18
3.1 Software Defined Network and OpenFlow 18

3.1.1 Software Defined Network 18
3.1.2 OpenFlow . 19

3.2 Floodlight controller . 22
3.3 Container Technologies and Docker 26
3.4 Moving Target Defense . 28

4 System Architecture Design 30
4.1 System Architecture Overview . 30

4.1.1 Software Defined Measurement 31
4.1.2 Migration Manager . 32
4.1.3 Migration Daemon . 33

4.2 Migration Process . 34
4.3 Database Design for Software Defined Measurement 37

5 System Implementation 40
5.1 Prototype Components . 40

5.1.1 SDN Floodlight controller 40
5.1.2 Open VSwitch . 41
5.1.3 Criu . 42

3

5.1.4 Database . 43
5.2 Software Defined Measurement . 43
5.3 Key Threads and Classes . 44
5.4 Decision Made Process . 46
5.5 System Implementation prototype 47

6 Migration Policy Tradeoff and Use Cases 49
6.1 Use Case 1: Load Balancing . 49

6.1.1 Policies for Load Balancing 49
6.1.2 Compared 3 policies for Load Balancing 51

6.2 Use Case 2: Moving Target Defense 52
6.2.1 Possible Attack . 53
6.2.2 How to share a secret? . 53
6.2.3 New Items and System Initialization for Moving Target De-

fense . 54
6.2.4 Compared 3 policies for Moving Target Defense 55
6.2.5 Moving Target Defense Process 56

7 Experimental Validation 58
7.1 Test Environment . 58

7.1.1 Hardware and OS . 58
7.1.2 Network topology deployment 59

7.2 Use Case1: 3 policies evaluation for Load Balancing 59
7.2.1 Scenario 1: link capacity is heterogeneous 59
7.2.2 Scenario 2: Link capacity bottleneck presence 63
7.2.3 Scenario 3: Link capacity is heterogeneous 68

7.3 Use Case2: 3 policies evaluation for Moving Target Defense 71
7.3.1 Experiment in GENI . 73

8 Conclusion and Future Plan 77

9 Appendix: Migration System Install Guide 79
9.1 Statistics Controller Side installation 79
9.2 Deploy network topology . 80
9.3 Migration Server Side Installation 81
9.4 Configurations . 82
9.5 Instructions to run system . 84

4

List of Figures

2.1 Virtual machine migraton . 12
2.2 P.Haul container migration model 16
2.3 Hua Wei container migration model 17

3.1 General architecture of SDN . 20
3.2 OpenFlow switch structure . 21
3.3 Floodlight Controller Structure . 23
3.4 floodlight Controller Module Description 24
3.5 container and virtual machine structure comparison 27

4.1 System Architecture and Components 31
4.2 migration model: negotiation between migration manager and mi-

gration souce host, migration source host and migration destination
host . 34

4.3 migration: message exchange between migraton manager and migra-
tion source host, migration source host and migration destination host 36

5.1 Open VSwitch: management interface and protocols that are com-
patible with Open VSwitch . 42

5.2 System Implementation: the process of software defined measure-
ment system . 44

5.3 System Implementation: the detailed sequence of software defined
measurement system . 46

5.4 System Implementation: System Integration 48

6.1 Load Balancing policy process: a detailed process for load balancing 50
6.2 Random Policy: one moving target defense strategy 52
6.3 Moving target defense model . 54
6.4 Sequence Diagram for Moving Target Defense 57

7.1 Network topology for evaluation link capacity heterogeneous 59
7.2 bandwidth-based policy left:Migration Source Host Bandwidth Con-

sumption Change right:throughput accumulation 61

5

7.3 Traffic throughput accumulation in Migration Source host 62
7.4 Network topology for evaluation link bandwidth bottleneck presence 64
7.5 Traffic throughput accumulation in Migration Source host 65
7.6 Network topology for evaluation link capacity is homogeneous . . . 68
7.7 Traffic throughput accumulation in Migration Source host for sce-

nario 3 . 70
7.8 accumulation throughput comparison for 3 policies 72
7.9 Bandwidth accumulation throughput for Scenario 1: link capacity

heterogeneous(GENI) . 74
7.10 Bandwidth accumulation throughput for Scenario 3:link capacity ho-

mogeneous(GENI) . 75
7.11 Bandwidth accumulation throughput for Moving Target Defense(GENI) 76

6

List of Tables

4.1 migration manager configuration file 33

7.1 migration time of 3 policies for Scenario 1 63
7.2 migration time of 3 policies for Scenario 2 66
7.3 random policy migration time . 67
7.4 migration time of 3 policies for Scenario 3 70
7.5 migration time of 3 policies for Moving Target Defense 72
7.6 migration time of 3 policies for Scenario 1:link capacity is heteroge-

neous(GENI) . 73
7.7 migration time of 3 policies for Scenario 3:link capacity homoge-

neous(GENI) . 74
7.8 migration time of 3 policies for Moving Target Defense(GENI) . . . 76

7

Chapter 1

Introduction

The recent surge in popularity of Cloud Computing, Internet of Things(IoT) has
resulted in a number of wide deployment of IoT network. As new technologies
showing up, today’s network is much harder and more complex to manage and
monitor. Thus, new network solutions come up. For instance, Software Defined
Network(SDN) is the latest network theory to solve the complexity of networking.
Providing the benefits by detaching networking controller layer and data layer, pro-
viding the possibility to use powerful central commands to meet the requirements
of underlying demand data planes. Network Functions Virtualization(NFV) is a
new method to design, deploy, and manage networking services. Virtual Machine is
widely used to implement NFV. Despite VM, Lightwave VM(LVM), such as Docker,
is a more interesting solution. Docker allows the true independence between appli-
cation and infrastructure and developers and IT Ops. It enables creating a model
for better collaboration and innovation.

Based on these new network solutions, migration is a new solution widely used
in cloud network structure and data center. Migration is the movement of a virtual
machine from one physical host to another, it happens without the awareness of end
users. It can achieve networking maintain, load balancing, network failure repair
for providing an always available system. Apart from these, it also can be used as
a security moving target defense strategy.

Nowadays migration solutions mostly focus on VMs [1], and Virtual Routers(VR) [2].
Besides, they are usually in ad-hoc, concerning a specific policy of the migration
mechanisms. For instance, loading balancing[3] , optimize energy [4]. There is less
concern on container migration. The container is known as the lightweight virtual
machine. It not only virtualizes the hardware, but also the operating system. Com-
paring with the virtual machine, it is much lighter. If there is a high requirement
with respecting to the speed for migration, container migration could be a good
solution.

Virtualization enables network programmability, software defined network is a
good example. Above control plane, it is flexible to develop applications such as

8

1 – Introduction

routing, access control, etc. But it is only good for forwarding mechanism. In
addition, network protocols are usually designed in the ad-hoc fashion, Different
versions of TCP or Routing exist, some of them are suitable for bandwidth sensitive
applications, some are for delay sensitive applications, some aim to achieve security,
some aim to provide better performance. There is no one-size-fits-all, a policy-based
programmable migration mechanism is needed.

We design a policy-programmable container migration architecture based on
Docker. The policy-based architecture allows us to change policies with a simple
configuration file, so programming the migration mechanism is easy. Second, we
test security and load balancing policies within our SDN-based prototype over
MININET and GENI. Third, we design & evaluate novel Moving Target Defense
solutions inspired by network coding.

The policy-based migration system can do software defined measurement based
on the network traffic statistics obtained though SDN controller. We create our
algorithms to make migration decision and apply two use cases, one is for load
balancing, there are 3 policies: bandwidth-based, shortest path, random. Another
is for moving target defense, by creating the novel moving target defense solutions
inspired by network coding. There are three policies for moving target defense,
Shamir, Digital Fountain, and Pseudo Random function.

This thesis is structured as follows:

• Chapter 2: explains the problem that this work intends to solve, along
with the existing work related to network migration architecture, container
migration solutions, and moving target defense strategies.

• Chapter 3: proposes an overview of the architectures on which this thesis is
based and the technologies used in the system.

• Chapter 4: describes the architecture of the Policy-based Docker Migration
System and each component in the architecture.

• Chapter 5: details the system implementation including tools, techniques,
process, some algorithms designed.

• Chapter 6: applies Load Balancing and Moving Target Defense as two use
cases, describes the policies used for each use cases.

• Chapter 7: provides an overview of the results obtained by measuring the
performance between different policies provided by the implementation in
SDN environment.

• Chapter 8: exposes the conclusions and provides future work that will follow
this thesis work.

9

Chapter 2

State of the art

In this chapter we present the current architectures for network migration, moving
target defense strategies, also the existing work on container migration.

2.1 Existing Work on Network Migration Tech-
nologies

As the development of virtualization, clouding computing technology, the network
becomes more and more dynamic and complex to manage. Also, hardware resource
is a considerable cost when deploying software and applications. Virtualization al-
lows sharing the physical resource and runs the application more flexible. Under
the virtualization umbrella, migration becomes an essential mechanism for net-
work management. There are several network migration solutions, such as virtual
machine migration.

2.1.1 Virtual Machine Migration
System migration refers to moving the operating system and applications on the
source host to the destination host, and it can run normally on the destination
host. Before when there is no virtualization technology, migration between physical
machines relied on system backup and recovery technologies. The status of the
operating system and applications are backed up in real time on the source host,
then the storage medium is connected to the target host. Finally, the system is
restored to the target host.

The Server migration can save the management cost, maintenance costs, and
upgrade costs. Previous x86 servers were relatively bulky. Today’s servers are
much smaller than before, and migration technology allows users to use one server
instead of many servers. This saves users a lot of physical space. In addition, vir-
tual machines have a unified "virtual hardware resource". Unlike previous servers,

10

2 – State of the art

there are many different hardware resources (such as different motherboard chip
sets, different network cards, hard disks, RAID cards, and different graphics cards).
The migrated servers can be managed in a unified interface, but also through cer-
tain virtual machine software, such as high-availability tools provided by VMware.
When these servers are shut down due to various faults, they can automatically
switch to another virtual machine in the same network without shut down the ser-
vice. In a word, the advantages of migration are simplifying system maintenance
management, improving system load balancing, enhancing system fault tolerance,
and optimizing system power management.

Virtual Machine Migration Classification:

• Physical-to-Virtual migration
The Server migration can save the management cost, maintenance costs, and
upgrade costs. Previous x86 servers were relatively bulky; today’s servers are
much smaller than before, and migration technology allows users to use one
server instead of many servers. This saves users a lot of physical space. In
addition, virtual machines have a unified "virtual hardware resource". Unlike
previous servers, there are many different hardware resources (such as differ-
ent motherboard chipsets, different network cards, hard disks, RAID cards,
and different graphics cards). The migrated servers can not only be managed
in a unified interface, but also through certain virtual machine software, such
as high-availability tools provided by VMware. When these servers are shut
down due to various faults, they can automatically switch to another virtual
machine in the same network without shut down the service. In a word, the
advantages of migration are to simplify system maintenance management,
improve system load balancing, enhance system fault tolerance, and optimize
system power management.

• Virtual-to-Virtual migration
V2V migration is the movement of operating systems and data between vir-
tual machines as shown in Figure 2.1. It does not require to take care of
host-level differences and dealing with different virtual hardware. The virtual
machine is migrated from the VMM on one physical machine to the VMM
on another physical machine. The two VMMs can be of the same type or
different types. For example, VMware migrates to KVM, KVM migrates to
KVM. There are several ways to move a virtual machine from one VM Host
system to another.
There are some popular migration tools, such as VMware’s VMotion and
XEN’s xenMotion, both of them require physical machines to use SANs (stor-
age area network), NAS (network-attached storage) and other centralized
shared external storage devices, in this case, during the migration process, it

11

2 – State of the art

only needs to consider the operating system memory state, in order to obtain
better migration performance.

Figure 2.1. Virtual machine migraton

In addition, in some cases where shared storage is not used, live migration of
V2V virtual machines can be implemented using storage blocks. Compared
to live migration based on shared storage, the live migration of data blocks
requires the simultaneous migration of virtual machine disk images, system
memory status. And the migration performance is compromised. However, it
is possible to use migration technology to transfer computer environments in
a distributed local storage environment to ensure the availability of operating
system services during the migration process. It also allows to expand the
scope of application of virtual machine live migration. V2V live migration
technology eliminates hardware and software dependencies, it is a powerful
tool for software and hardware system upgrades and maintenance operations.
KVM [6] is a tool which is able to do offline or live migration.

There are a lot of work has been done in Live Virtual Machine migration. Some
people try to modify current migration solution and improve the exist methods
for achieving better migration performance. [7] concentrates on writable working
set, they build a high performance migration service with liveness constraints and
try to find a way to balance the cost between migration downtime and resource

12

2 – State of the art

utilization time. The research is done on how to transfer dirty memory pages for
lower the total migration time.

Some research are done for searching the solutions to improve the efficiency for
migration. They concentrate on how to minimize the migration time by how to
manage dirty memory transfer. But virtualization technique also promotes con-
tainer(light weight virtual machine) showing up. In these thesis work, we concen-
trate on container migration. Because in container technique, it not only virtualize
the hardware infrastructure, but only the operating system. So comparing with
virtual machine, it is lighter. When talking about migration speed, migrate a con-
tainer could be faster then migrating a virtual machine.

There are a set of papers in which they do comparison and analysis the possible
factors that could affect the migration performance. In paper [8] [9], they analysis
the major issues of virtual machine live migration with some metrics, e.g downtime,
total migration time and transferred data. On the other hand, they classified
the techniques and compared the different solutions. [10] analysis the cost of live
migration. And the migration overhand in different virtual machine migration
solutions.

All these work aims to compare the migration performance of different migra-
tion solutions. but no one of them build a architecture to enable programmable
migration mechanism. Apart from that, they focus on reducing migration time,
not concern about the network traffic situation. Our system performs migration
adapting different application needs, it is policy-based programmable system. In
another word, we can use different policy just changing the policy name in the con-
figuration file, then programming different algorithms to decide when and where to
do migration.

2.2 Moving Target Defense Strategies
Moving target Defense is a new security paradigm. Instead of defending unchang-
ing infrastructure by detecting, preventing, monitoring , tracking and remediating
threats, moving target defense makes the attack surface dynamic. The idea of
moving target defense(MTD) is applying the same asymmetric disadvantage on at-
tackers by making system dynamic. Therefore, it will make it harder for attackers
to explore and predict. The final goal of MTD is to increase the attackers’ workload
so as to level the cybersecurity playing field for both defenders and attackers.

This strategy can be used in different filed to achieve security, there are plenty
of research achievements related to MTD. [11]U-TRI adopts a randomly changing
identifier to replace the original static data link layer address. By obfuscating
the identifiers in network and transport layer to defend traffic analysis. In our
migration system, we try to moving the container from one host to another one, so
the hosted machine IP address is keep changing. We create a dynamic container

13

2 – State of the art

running surface to confuse the attacker.
WebMTD [12] randomizes certain attributes of Web elements to differentiate

the application code from injected code and disallow its execution. This is done
without requiring Web developer involvement and browser code modification. It
employs the attribute random strategy. In our moving target defense method, we
adopt the polynomial function concept to reconstruct the original key by any K
hosts presents for decryption process.

Mutated Policies [13] is an attribute-based defense strategy aims for access
control. It collects the attributes from the entities involved in the access request
process, then carefully select the attributes that uniquely identify the entities, and
randomly mutate the original access policies over time by adding additional policy
rules constructed from the newly-identified attributes.

[14] proposes a secure mechanism that deploys a limited number of defensive
mechanisms, honeypots and network-based detectors optimally and dynamically in
a large network. It aims to shorten the lifetime of stealthy botnets by maximizing
the number of bots identified and taken down through a sequential decision-making
process.

It can be seen that moving target defense technique already has been widely used
in different areas. Most mechanisms adopt mutating the attributes or IP address to
confuse attacker with the mutated information. However, there is no work related
to moving target defense in migration field. Firstly, our moving target defense
mechanism is based on randomly moving the container. Secondly, to protect the
container destination host IP address, we provide a policy-based mechanism. This
model employs multiple methods to perform moving target defense strategy, so it
is flexible to choose the speed and security level. Third, the main difference is that
we create the novel algorithms inspired by network coding, integrating polynomial
concept and digital fountain mechanism in our moving target defense policies.

2.3 Existing Work on Container Migration
Container migration is still a new topic nowadays. There are some study on con-
tainer migration. Main trends for container migration is migration tools. There is
not a complete system for container migration according to network traffic situation
or some other policies.

The concept for migration is that moving a virtual machine or application from
one host to another one. It requires that storage, dependences, networking and
others which are needed to run the new virtual machine or application keeping
the same. There are a lot works have been done on virtual machine migration,
but the techniques on container migration are not as many as on virtual machine.
Container technique virtualizes both hardware and operating system. So migrating
a container is similar with migrating a process.

14

2 – State of the art

CRIU is a tool for process and container migration, it provide two useful func-
tionalities:

• Checkpoint store the current process status as files in userspace.

• Restore resume the process using the stored files in userspace.

The way to use criu as follwing:

1. criu dump|pre-dump –t $PID –images-dir=xx

2. criu restore –images-dir=xx

3. cuiu page-server

The detailed commands and usage can be found in the website [15].
when using CRIU for container migration, there are some disadvantages:

• The user process storage

• various status stored in the kernel by process

– virtual memory mappings
– open files
– credentials
– timers
– process ID
– ...

Also, there are some functionalities CRIU does not support:

• properties used as following:

– Tasks with debugger attached
– Tasks running in compat mode
– UNIX sockets with relative path
– Sockets other than TCP, UCP, UNIX, packet and netlink
– Cork-ed UDP sockets
– SysVIPC memory segment without IPC namespace
– ...

• graphic application

Docker container can be migrated by using two command:

15

2 – State of the art

• docker checkpoint $CONTAINER

• docker restore $CONTAINER

But in this way, it can only realize that local container restore and resume, migra-
tion can not be done in different hosts.

Another technique for container migration is P.Haul [16]. P.Haul is an extension
of CRIU, it enables migration between different hosts. Basically, it is the library
of a pair of Go classes, one launched on the source code, and another one on the
destination. The working model is shown in Figure 2.2.

Figure 2.2. P.Haul container migration model

But the disadvantage is that there is no CLI provided. So the user is not able
to control the migration process.

Based on this model, HuaWei proposed another model for container migration.
In this model, it involves the docker api/cli as user/orchestration as show in Figure
2.3. This model allows that user can take part in the migration activity, and control
the migration process. On the other side, the cli can be extended by user. So it is
more flexible to monitor the migration process.

In the second model, the migration process has 4 steps:

1. pre-checking
Validate checkpoint availability, store the basic status files.

2. pre-restore
Validate restore availability, create container according to configuration file.

16

2 – State of the art

Figure 2.3. Hua Wei container migration model

3. checkpoint
Store container process running status, back up root file system.

4. restore
Restore container root file system, resume networking environment using Lib-
network, recover data using volume Driver, restore container process using
criu restore.

In this model, it allows that container migration between two different host, but
it is still manually migration.

As we can see that the current works on container migration restrict to manu-
ally migration by the tools. There is not a migration system that is policy-based,
SDN-based to perform the migration according to some criterion. Criu is a tool for
container migration. Hua Wei container migration solution is a mechanism that
extends the functionalities of Criu, migration can be done between two different
hosts. However, this model is not programmable, we can not use any policy to
decide where to migrate. In our migration system, we designed the policy-based
programmable migration architecture, users can change the policy through a con-
figuration file. In this way, we can have multiple criteria to do container migration.
In another word, migration can be done adapting different application needs.

17

Chapter 3

Background

In this chapter we present the current network solutions, Software Defined Network,
OpenFlow, Container solutions, Docker container and software modules which have
been integrated and configured to implement the migration system.

3.1 Software Defined Network and OpenFlow
Our programmable policy-based migration architecture is build in software defined
infrastructures. Software defined network allows us easily acquiring the network
information through controller northbound REST API, getting the under layer
device provision through OpenFlow protocol. OpenFlow is the standard protocol,
and it can integrated with the software switches which speak OpenFlow protocol
with the software defined network controller.

3.1.1 Software Defined Network
In the traditional network architecture diagram, the most important point is the
separation of the control layer and the data layer. Each layer has different tasks.
Different layers work together to provide the entire data forwarding and routing
functions. Here, the control layer is responsible for device configuration and data
flow programmability. When we manage a switch, we are actually dealing with the
switch’s control layer. Routing tables, spanning tree protocols are all calculated by
the control layer. These tables are constructed from the transmission of messages
packages. Based on these messages, the switch determines the available forwarding
paths. Once the forwarding path of these packets is determined, the path informa-
tion will be sent down to the data layer, usually stored on hardware. This model is
very efficient, the decision process is very fast, the overall delay is controllable and
the control plane can handle the heavy configuration requirements.

Software Defined Network is the latest solution to solve complexity problem of

18

3 – Background

Computer Networking. The general architecture is shown in Figure 3.1. The Inter-
net has led to the creation of a digital society, where everything is connected and is
accessible from anywhere. It is difficult to configure the network according to prede-
fined policies, and to reconfigure it to respond to faults, load and changes. Software
Defined Networking(SDN) is an emerging paradigm that promises to change this
state of affairs by breaking vertical integration, separating the network’s control
logic from underlying routers and switches, promoting centralization of network
control,and introducing the ability to program the network. Current networks are
also vertically integrated, the control plane(that decides how to handle network
traffic) and the data plane(that forwards traffic according to the decisions made by
control plane).
Define a SDN with 4 factors:

1. The control and data planes are decoupled. Control functionality is removed
from network devices that will become simple(packet forwarding) elements.

2. Forwarding decisions are flow-based, instead of destination-based. Flow pro-
gramming enables unprecedented flexibility, limited only to the capabilities
of the implemented flow tables.

3. Control logic is moved on an external entity, the so-called SDN controller or
Networking Operating System(NOS).

4. The network is programmable through software applications running on the
top of the NOS that interacts with the underlying data plane device. This is
the fundamental characteristic of SDN, considered as its main value proposi-
tion.

Firstly, SDN breaks the vertical integration by separating the network’s control
logic(the control plane) from the underlying routers and switches that forward the
traffic(data plane). Secondly,with the separation of the control and data planes, net-
work switches become simple forwarding devices, the control logic is implemented
in a logically centralized controller(or network operating system), it simplifies the
policy enforcement and network (re)configuration and evolution.

Basically, computer network can be divided in three planes of functionality:
the data, control and management plane. The manage plane includes the software
service, such as SNMP-based tools, used to remotely monitor the configuration
and control functionality. Network policy is defined in the management plane, the
control plane enforces the policy, and the date plane executes it by forwarding data
accordingly.

3.1.2 OpenFlow
OpenFlow was first proposed as a prototype of SDN, it was mainly composed of
OpenFlow switches and controllers.

19

3 – Background

Figure 3.1. General architecture of SDN

OpenFlow switches forward the data packet according to the flow table, it rep-
resents the data forwarding plane. The controller implements the control function
over the entire network view, and the control logic represents the control plane.

The architecture is explained in detail as flowing:

1. OpenFlow Switch
The OpenFlow switch is responsible for the data forwarding. The main tech-
nique consists of 3 parts: flow table, secure channel and OpenFlow protocol,
as shown in Figure 3.2:
The processing unit of each OpenFlow switch consists of a flow table. Each
flow table consists of a number of entries. The flow entry represents forward-
ing rules.
The switch obtains the corresponding operation for each data packet by query-
ing the flow table. To improve the query efficiency of the flow, the current

20

3 – Background

Figure 3.2. OpenFlow switch structure

flow table query passes the multi-level flow table and using pipeline mode to
get the corresponding operation. The flow table entry consists of three parts:
matching field, counter, and instruction. The structure of the match field con-
tains many match fields, covering most of the link, network, and transport
layer identities.

As the OpenFlow specification continues updating, VLANs, MPLS, and IPv6
protocols have also been gradually extended to the OpenFlow standard. Be-
cause of the flow filed match mode, in the OpenFlow network, there is no
longer difference between routers and switches, but both are known as Open-
Flow switches. In addition, the counter is used for flow counting, and the
operation indicates the next operation that the data packet matching the
flow table entry.

The secure channel is the interface between the OpenFlow switch and the con-
troller. The controller configures and manages OpenFlow switches though this
interface and follow the format defined by the OpenFlow protocol. Currently,
there are two main versions of OpenFlow software-based switches deployed
on Linux systems. User-space-based software OpenFlow switches are easy to
operate, modify, but poor performance; core-space-based software OpenFlow
Switches are faster and provides virtualization capabilities that allow each

21

3 – Background

virtual machine to transmit traffic through multiple virtual network cards,
but the actual modification and manipulation process is complicated.

2. Controller
In the controller, the network operating system (NOS) implements the control
logic function. This was first introduced by NOX [17]. The concept is
the central execution unit for programmable control of the network in an
OpenFlow network. In fact, the NOS here refers to the control in the SDN
concept.
The system can achieve different logic control functions by running different
applications on the NOS.
In NOX-based OpenFlow networks, NOX is the control core and OpenFlow
switches are operational entities. NOX maintains a network view to main-
tain basic information about the entire network, such as topology, network
elements, and services provided. The application running on top of NOX
manages and controls the entire network by calling the global data in the
network view to operate the OpenFlow switch.
From the perspective of the functions performed by the controller, NOX im-
plements the basic network control functions and provides a basic control
platform for the OpenFlow network. However, there is not much advantage
in performance. It fails to provide sufficient reliability and flexibility to meet
the scalable requirements. However, NOX is in the design of controllers.
The earliest implementation has been as the foundation and template for the
OpenFlow network controller platform.

3.2 Floodlight controller
Floodlight controller is a open SDN controller. It is build in Java. First, it can
speak OpenFlow which enables working with both virtual and physical switches
that using OpenFlow protocol. Second, it is Apache-licensed. So, users can use it
to do almost whatever they want for the network. Third, It is easy to set up with
minimal dependencies.

The general architecture is showing in Figure 3.3.

22

3 – Background

Figure 3.3. Floodlight Controller Structure

In floodlight controller, there are a number of module blocks, they are indepen-
dent from each other. Modules are exporting "service". Basically, a service is an
interface while a module is an implementation. The same service can have several
different implementations. All modules are in java. The main module is Flood-
lightProvider, it manages I/O to switches, translates OF messages to Floodlight
event. Besides, it contains multi-threaded via Netty library. Moreover, it provides
rich and extensible REST API.

The module description is shown in Figure 3.4.

23

3 – Background

Figure 3.4. floodlight Controller Module Description

In our system, we use the Floodlight Controller northbound API, to retrieve
the network traffic statistics in the database. The REST API used in our system
as following:
http ://127.0.0.1:8081/ wm/core/ switch /all/ aggregate /json
{
"00:00:00:00:00:00:00:02":{
" aggregate ":{
" version ":" OF_13",
" flow_count ":"1" ,
" packet_count ":"3740" ,
" byte_count ":"636136" ,
"flags ":[

]
}
},
"00:00:00:00:00:00:00:03":{
" aggregate ":{
" version ":" OF_13",
" flow_count ":"1" ,

24

3 – Background

" packet_count ":"3360" ,
" byte_count ":"610786" ,
"flags ":[

]
}
},
"00:00:00:00:00:00:00:01":{
" aggregate ":{
" version ":" OF_13",
" flow_count ":"1" ,
" packet_count ":"3361" ,
" byte_count ":"607897" ,
"flags ":[

]
}
}
}

http ://127.0.0.1:8081/ wm/ statistics / bandwidth
/00:00:00:00:00:00:00:01/1/ json

[
{
"dpid ":"00:00:00:00:00:00:00:01" ,
"port ":"1" ,
" updated ":" Mon Sep 11 21:39:33 CEST 2017" ,
"link -speed -bits -per - second ":"10000000" ,
"bits -per -second -rx ":"0" ,
"bits -per -second -tx ":"235"
}
]

http ://127.0.0.1:8081/ wm/ routing /paths
/00:00:00:00:00:00:00:01/00:00:00:00:00:00:00:03/2/ json

{
" results ":[
{
" src_dpid ":"00:00:00:00:00:00:00:01" ,
" dst_dpid ":"00:00:00:00:00:00:00:03" ,
" hop_count ":"2" ,
" latency ":"24" ,

25

3 – Background

" path_index ":"0" ,
"path ":[
{
"dpid ":"00:00:00:00:00:00:00:01" ,
"port ":"2"
},
{
"dpid ":"00:00:00:00:00:00:00:02" ,
"port ":"2"
},
{
"dpid ":"00:00:00:00:00:00:00:02" ,
"port ":"3"
},
{
"dpid ":"00:00:00:00:00:00:00:03" ,
"port ":"2"
}
]
}
]
}

3.3 Container Technologies and Docker
The container is a lightweight, portable, self-contained software. OS-level virtual-
ization allows packaging technology that allows applications to run in the same way
almost anywhere. Developers create and test containers on their own laptops and
can run on production systems and virtual machines, physical servers, or public
cloud hosts without any modification.

Many years ago, applications were monolithic, they usually contain a large block
of a binary library, they were usually built on a single stack such as .NET or java. It
is long lived, usually takes a long time to develop new patches and functionalities.
they are usually developed in a single server, integrated all the functionalities in the
same place, and data are stored in the backend. Today’s applications are constantly
developed, new versions are being deployed often, and entire applications are built
from loosely coupled components, deployed to a multitude of servers, a piece of the
application talk to each other.

Applications are built with a lot of small parts which are called micro ser-
vices.Container makes your application portable, it looks the same everywhere, no
matter where you run it. Another benefit of the container is that it doesn’t need

26

3 – Background

you to install all the application dependencies on your host. All the necessary com-
ponents that are required to run an application are packaged as a single image and
can be re-used. While an image is executed, it runs in an isolated environment
and does not share memory, CPU, or the disk of the host OS. This guarantees that
processes inside the container cannot watch any processes outside the container.
Difference between virtual machine and docker
Our traditional virtual machine needs to emulate the entire machine including the
hardware. Each virtual machine needs its own operating system. Once the virtual
machine is started, the pre-allocated resources will all be occupied. Each virtual
machine includes applications, necessary binary and libraries, and a complete user
operating system.

The container contains the application and all its dependencies but shares the
kernel with other containers. The container runs on the host operating system and
in the user space as a separate process.

Figure 3.5. container and virtual machine structure comparison

As shown in Figure 3.5, both virtual machines and containers are on the top
of hardware and operating system. The virtual machine has a hypervisor layer,
and the hypervisor is the core of the entire virtual machine. it provides a virtual
operating platform for virtual machines and manages the operating system of vir-
tual machines. Each virtual machine has its own system and system libraries and
applications.

Containers does not have a hypervisor layer, and each container shares hardware
resources and operating systems with the host. The cost of hypervisor does not
exist on the linux container.

27

3 – Background

However, virtual machine technology also has its advantages. It can provide a
more isolated environment for applications without causing any threat to the host
due to application vulnerability. It also supports virtualization across operating
systems. For example, you can run windows virtual machines as a host system over
the Linux operating system.

From the perspective of virtualization, the traditional virtualization technology
is the virtualization of hardware resources, and the container technology is the
virtualization of processes, which can provide more lightweight virtualization and
isolation of processes and resources.

From the architectural point of view, Docker is two layers less than virtualiza-
tion. It eliminates the hypervisor layer and GuestOS layer. It uses Docker Engine
for scheduling and isolation. All applications share the host operating system.
Therefore, Docker is lighter than virtual machines in terms of weight. It provides
better virtualization performance. From the application point of view, Docker and
virtualization have their own areas of expertise and have their own advantages
and disadvantages in software development, test environment, and production and
maintenance.

Because of the light weight, when the migration has the high requirement of
speed. Migrating a container will be faster than migrating a virtual machine.

3.4 Moving Target Defense
As a dynamic and active defense technology, moving target defense can frustrate
the attacker by constantly changing the attack surface. Moving target defense has
a significant meaning for the network security.

With the wide development of computer network information systems in vari-
ous industries, network information resources have been shared and fully utilized,
network security became a serious problem to be solved.

Although traditional network defense technologies, such as authentication, ac-
cess control, information encryption, intrusion detection, vulnerability scanning,
and virus prevention technologies, can provide a certain level of security. they have
evolved along with the automation of attacks, the acceleration of speed, and the
diversification of methods of attack. Traditional network defense methods are inef-
fective. At the same time, the continuous increase in the complexity of the network
environment makes the network administrator’s work more and more onerous, and
one-time negligence may leave serious security risks.

Moving Target Defense is completely different from previous network security
research idea. It doesn’t eatablish a complete system to defense attacks. Instead,
the idea of moving target defenses is that the mechanisms, strategies, evaluating,
and deploying are dynamic and constantly changing. This changing can increase the
attacker’s attack difficulty and cost, effectively limit the exposure of vulnerability

28

3 – Background

and the opportunity to be attacked, and improve the flexibility of the system. Due
to the dynamic change characteristics of the moving target defense technology,
it can overcome the shortcomings of traditional network defense technologies and
make the defense party from passive to active.

Moving target defense technology focuses on the following aspects:
The attack surface transfer method. The attack surface of the system refers to

the system resources that can be exploited and attacked by the attacker. Attack
surface transfer is the essential concept of the moving target defense technology, and
it is also a hot issue of moving target defense research. Many scholars proposed
a method to transfer the attack surface. According to the method used for the
transfer, the moving target defense technology can be divided into three categories:

1. Disturbance
Disturbance is adjusting the configuration of the system dynamically to dis-
turb the attacker’s attack behavior, such as IP address and port transition.

2. Diversification
Diversification is a kind of moving target defense technology that provides
an input, an interpreter, and a software stack component that have the same
functions and different implementations. In this way, it can confuse and
defense the attacker.

3. Redundancy
Redundancy is a moving target defense technology that protects the system
by providing multiple copies of data, services, or nodes to determine whether
the system has been compromised.

In our system, migration can be used as a kind of moving target defense method.
Because here we try to move the container which is running a server or inside a
data center. By moving the container from one host to another one, the host IP
address will be changed. In this way, the network is more dynamic, and server
always changing host machine. It can make the attack confused about where is
the container service running. By applying some algorithms to the moving target
defense policies, we could add more difficulties to the attacker.

29

Chapter 4

System Architecture Design

In this chapter, we will focus on the system architecture design inspiration, as well
as the usage of each component. Furthermore, database design and some essential
data structures will be presented and explained. The architecture aims to achieve
a programmable policy-based migration system, provides flexibility for adapting
different application needs by just changing one parameter in the system configu-
ration file. Besides, the system is designed that can collect network traffic statistics
leveraging software defined network controller, then software defined measurement
will be applied based on the statistics. Thus, a more accuracy migration decision
will be made by the policy used based on the current network situation.In addi-
tion, migration process could be performed from the migration source host which
running the container to destination host within cloud edge.

The key value of this architecture is to enable the container migration between
different hosts along with programmable policy-based mechanism.

A well-designed migration system should be able to answer three questions:

1. Which container(LVM) should use migration?

2. When should we migrate?

3. Where to migrate?

Following those questions, we designed our system architecture. Each component
in our architecture is responsible to answer one or more these questions.

4.1 System Architecture Overview
Figure 4.1 shows the general architecture and key components of the system. The
green blocks are my contribution. There are 4 main blocks designed for migration
system, Database & VIB, Software defined measurement, migration manager, mi-
gration daemon. The database is designed to store the network traffic statistics,

30

4 – System Architecture Design

Figure 4.1. System Architecture and Components

migration manager is for maintaining policy sets, executing the specified policy in
the configuration file, in order to make migration decision. Migration daemon basi-
cally is the migration process that running on each host which running the container
service. In the following sections, we will explain the details of each component.

4.1.1 Software Defined Measurement
Software defined network(SDN)enables network traffic measurement more flexible
and efficient. Software Defined Traffic Measurement with OpenSketch [18] is a good
example by leveraging SDN. It provides a programmable software network traffic
measurement tool by separating the data measurement plane from data plane.

Inspired by OpenSketch, we create our software defined measurement system
in our SDN-based prototype environment. SDN controller provides the API for
acquiring the network traffic statistics. We concentrate on the switch aggregate
packets number and bandwidth consumption in each switch port. We collect net-
work traffic statistics through SDN controller northbound API and stores the data
in the database. There are two statistics collectors, one is bandwidth collector,
another is aggregate collector:

• Bandwidth collector it is used for getting the bandwidth consumption per

31

4 – System Architecture Design

switch per port at each query time from SDN controller.

• Aggregate collector it is used for getting the aggregate packet number per
switch at each query time from SDN controller.

Both of them have two working modes. One is default mode which is used by
collector with a standard query frequency. When the aggregate packet number
exceeds the threshold, the switch will be detected and put in target migration
switch set. Then it will enter the customized mode by changing a smaller monitor
frequency among the switch set.

Software defined measurement system enables the simplicity and flexibility for
collecting the network traffic statistics. By using two working modes, the accuracy
of selecting the migration source host will be improved.

Software measurement block answers the essential migration question 1, and 2.

4.1.2 Migration Manager
Migration Manager is the core component to realize policy-based architecture. It is
responsible for maintaining the system configuration file, policy sets and executing
the required policy to make migration decision. In the configuration file, it specifies
a set of threshold parameters, system running environment parameter and the
required policy name.(see table 4.1)

Each policy set can be used for a use case. For example, here we implement two
policy sets as two use cases, one is for load balancing, and another is for moving
target defense. However, the user can implement and integrate the policy set to
the system according to their perspective of the application needs.

Migration Engine executes the corresponding policy which specified in the con-
figuration file to make migration destination decision.

Parameter Value
port SDN controller REST API port
image Migration container image name
container Container name
hostInfoDir Path where store the host information

lookupTableDir Path where store the look up table for moving
target defense

serverdeployRatio Ratio of hosts in user infrastructure that will
run the container at system initialize stage

policy Name of the policy will be used

securityMode Name of the policy for security(moving target
defense)

32

4 – System Architecture Design

keyNumber Number of the keys needed for moving target
defense(default 4)

aggregateThreshold
Threshold of the switch aggregate packet num-
ber to trigger migration used by aggregate col-
lector in default mode

aggregateDifferenceThreshold
Threshold of the switch aggregate packet num-
ber difference used by aggregate collector in
customized mode

aggregateDefaultFrequency Default monitoring frequency used by aggre-
gate collector in default mode

aggregateCustomizeFrequency Customized monitoring frequency used by ag-
gregate collector in customized mode

bandwidthDefaultFrequency Default monitoring frequency used by band-
width collector in default mode

bandwidtCustomizeFrequency Customized monitoring frequency used by ag-
gregate collector in customized mode

customizedMornitorTime
Customized monitoring frequency used by mi-
gration software defined measurement process
for detecting the migration source

checkingFrequency Migration checking frequency used by migra-
tion engine

Table 4.1: migration manager configuration file

4.1.3 Migration Daemon
Migration Daemon is the process running on each host which is running the docker
container to perform migration process, and enables the communication between
migration source and destination host.

Container API is used to create, start, stop a container, as well as take the
snapshot of the current container status. when the migration process starts, mi-
gration source host will negotiate with the migration destination host, and send
the container image files which are needed to resume the container in migration
destination host.

TCP/IP is used for communication between hosts by defined migration protocol.

Migration Protocol

1. Migration Manager has the knowledge of the migration source and destination

33

4 – System Architecture Design

IP address after making the decision, opens a TCP connection to the source
host, send command:
MIGRATE “destination host IP”

2. Each host listens on TCP port 8088, waiting for commands from Migration
Manager or another host.
pseudo code:
switch(command):
case “MIGRATE”:
do docker checkpoint command;
Open a TCP connection to the destination host;
Send the files which save the concurrent status of the container;
case “Restart”:
Receive files;
Execute the docker restart command to resume the container;

4.2 Migration Process

Figure 4.2. migration model: negotiation between migration manager and mi-
gration souce host, migration source host and migration destination host

The negotiation model is as 4.2, after migration manager making the migration

34

4 – System Architecture Design

decision. It means that the migration source host and migration destination host is
known. Then it will first negotiate with migration source host, send the migration
decision. After the migration source receives the migration command and migration
decision IP address, it will negotiate with migration destination to perform the
migration process.

Each block in Figure 4.2 acting the role and perform the task as following:

• Migration Manager makes the migration decision, negotiates with migration
source host through TCP/IP for sending migration command.

• Each host is running migration daemon as a migration server.

• Each host can receive the two kinds of connections:

1. Connection is from migration manager for receiving migration command
and migration decision IP address.

2. Connection is from another host for performing container migration pro-
cess and receiving the container image files.

Migration Process:

1. Migration Manager opens TCP connection to migration source host after
making migration decision.

2. Migration source host checks the command:

• If the command is “MIGRATE”, it does docker checkpoint, then open a
TCP connection to migration destination host for transferring container
image files.

• if the command is “RESTART”, it prepares to receive the container
image files, restarts the container.

The message exchange sequence is shown in Figure 4.3

35

4 – System Architecture Design

Figure 4.3. migration: message exchange between migraton manager and migra-
tion source host, migration source host and migration destination host

Error code:
-1: Migration source hosts execute docker checkpoint Error.
-2: Migration hosts execute file transfer Error.
-3: Connection between migration source host and migration destination host Er-
ror.
-4: Migration destination hosts receives files Error.

36

4 – System Architecture Design

4.3 Database Design for Software Defined Mea-
surement

In this section, we will show all the relational tables used in the database and the
usage for each one.
"Connection"

source dstType destiantion
S1-eth1 host h1-eth0
S1-eth1 server s2-eth2

Explain:
Store the connection information between switch interface and the host interface
in order to know the attached host in each switch port.
The information of the connection table can be got from MININET, GENI or from
the network administrator.

"Mapping"

name value
00:00:00:00:00:00:00:01_1 S1-eth1

h1 10.0.0.1

Explain:
The switch identifier used in floodlight is SwitchDPID number,such as "00:00:00:00:00:
00:00:01_1" is the SwitchDPID number "00:00:00:00:00:00:00:01" with the switch
interface number "1". However, in network topology, the switch is identified by
the switch name. This mapping table is for matching the switchDPID with switch
interface name.
Another kind of mapping is for matching the host name with the the IP address.
The IP address is used for opening the TCP connection.

"StatisticAggregate"

switchDPID Time Flow_count Packet_count textbfPCDifference

00:00:00:00:00:00:00:01 2017-09-25
15:41:47 3 5750 734

37

4 – System Architecture Design

Explain:
This table can be used as the first input data set for the migration decision algo-
rithms in order to measure the switch aggregate packets number difference in each
query time. If the packets aggregate difference changes dramatically, it could have
the high possibility that the corresponding switch port experiencing a heavy traffic.
This table is used by software defined measurement in standard mode.

"StatisticsBandwidth"

switchDPID port Time bitPerSecondRx bitsPerSecondTx

00:00:00:00:00:00:00:01 1 2017-09-25
15:41:47 0 126

Explain:
This table is the second input data set for the migration decision algorithm. After
it detects the heavy switch, it will check the bandwidth consumption on each inter-
face. The host will be selected as the migration source when the attaching switch
interface is detected with the minimum available bandwidth.

"temp_bandwidth_xxxxxxxxxxxxxxxxPx"

id Time bitPerSecondRx bitsPerSecondTx

1 2017-09-25
15:41:47 0 126

Explian:
This table is used for software defined measurement in customized mode. After the
heavy switch set is known, it will use a smaller monitoring frequency to check the
switch aggregate packets more precisely. The table is created for each switch in the
heavy switch set for store the customized mode monitoring. In the end, only one
switch will be selected as the migration target switch.

How to construct these tables?

• From MININET/GENI, we can get the connections between host and switch
. ("Connection" table)

38

4 – System Architecture Design

• From SDN controller, we can get host information and switch information,
then do the mapping. Since SDN controller uses the interface number and
DPID as the identifier of the switch, MININET/GENI use the switch name
and interface name, like s1, eth1, to identify the switch and hosts, we need
collect the information on both side to creating the mapping. ("mapping"
table)

• From SDN controller northbound REST API, we can acquire the network
traffic statistics: bandwidth and aggregate packet number.("StatisticsBand-
width", "StatisticsAggregate", "temp_bandwidth_xxxxxxxxxxxxxxxxPx" ta-
ble)

39

Chapter 5

System Implementation

The system is build in Java. In this chapter, we will show the tools and technologies
we use to provide some necessary functionalities for the system. Nevertheless, we
will discuss the import threads in the system to perform important task.

5.1 Prototype Components
In this section, we will describe the tools and technologies we employed and how
they are integrated with the system.

5.1.1 SDN Floodlight controller
Floodlight controller is an open Java-Based SDN Controller. We can get benefits
from floodlight controller thanks to the following features:

1. It provides a module loading system, so the needed module can be flexibly
loaded.

2. It is Apache-licensed, we can use Floodlight for almost any purpose.

3. It offers the Northbound API, we can get the topology information and net-
work traffic statistics very easily by just sending the REST API request. It
will return JSON object which can be interpreted easily.

4. It offers the Southbound API, which can work with physical and virtual
switches which speak the OpenFlow protocol. It simplifies the procedure
and hinds the complex part of the communication between network and SDN
floodlight controller.

40

5 – System Implementation

We build our system on the top of Floodlight controller, it is the bridge that
links our migration system with the physical or virtual network device for network
topology prevision, and network traffic statistics message exchange. It is mainly
integrated with Software defined measurement bock which shows in 4.1. The
network statistics are acquired leveraging the following REST API:

1. Retrive the port list information per switch.
http://<controller-ip>:8080/wm/core/switch/all/port-desc/json

2. Retrieve aggregate stats across all switches.
http://<controller-ip>:8080/wm/core/switch/all/aggregate/json

3. Retrieve bandwidth consumption per switch, per port.
http://<controllerip>:8080/wm/statistics/bandwidth/<switchId>/
<portId>/json

4. Get an ordered list of paths from the shortest to the longest path.
http://<controllerip>:8080/wm/routing/paths/<src-dpid>/
<dst-dpid>/<num-paths>/json

Some information will be stored in the database as described in 4.3, some will be
used in the algorithms for executing policies.

5.1.2 Open VSwitch
Open vSwitch is a multilayer virtual switch licensed under the open source Apache
2.0 license. It can be used as a software switch. It provides the programmability for
massive network automation. Besides, it is compatible with the standard manage-
ment interface and protocols. Figure 5.1 shows that what can be done with Open
VSwitch.

In our system, we deploy the network topology using Open VSwitch. Each
switch can be configured with the remote SDN controller. It enables the visible
possibility to SDN floodlight controller. It speaks OpenFlow protocol, so it can be
integrated with SDN controller though controller southbound API.

Hence, whenever the Open VSwitch is attached to the Floodlight controller.
It can be noticed by the controller, and all the topology information and statistic
information can be got through the controller REST API.

41

5 – System Implementation

Figure 5.1. Open VSwitch: management interface and protocols that are com-
patible with Open VSwitch

5.1.3 Criu
It is a software tool for the Linux operating system. A running application can be
frozen and checkpointed. The application current status can be stored as a set of
files. It providess the possibility to restore the application or container and run it
by using the files without losing the current status.
In our system, Criu is integrated with Docker Container API. Thus, we can check-
point a running Docker container, leave the container running, transfer the stored
container image files to another host in order to resume the container. Thus, we
can achieve the container live migration.

Docker API Commands employed in our system:

1. Create a new container.
$ docker create [OPTIONS] IMAGE [COMMAND] [ARG...]
eg. docker create -t -i fedora bash

42

5 – System Implementation

2. Start a new containe.
$ docker start [OPTIONS] CONTAINER [CONTAINER...]
eg. docker start myContainer.

3. Create a checkpoint from a running container.
$ Docker checkpoint create [OPTIONS] CONTAINER
CHECKPOINT
eg. docker checkpoint create looper checkpoint1

4. Restart a container using checkpoint files. $ docker start
–checkpoint-dir ContainerRestoreDir –checkpoint=checkpoint
NewContainerName
eg. docker start –checkpoint chpointDir –checkpoint=checkpoint ubuntu

5.1.4 Database
Here, we create the database using MySQL. It is easy to instill in Linux System. It
provide the high level flexibility, scalability, reliability. We can create the relational
tables. By using library, It enables to interact with the Database.

5.2 Software Defined Measurement
The goal of software defined measurement is creating a system which can be used to
analyze the data from the database in which there are network traffic statistics, such
as bandwidth, aggregate packets number. The key point of the software defined
measurement is that we can control the monitoring frequency. According to the
needs, it is flexible to switch the working modes. One mode is using the standard
query frequency, while another mode is using the customized frequency which could
be smaller.

Standard frequency enables us to select the preliminary migration target switches
with heavy traffic, while customized frequency allows to further monitoring the pre-
liminary migration target switches in a small range with a small frequency. It helps
to improve the accuracy to select the migration source host.

This software defined measurement model provide us the flexibility to create
our algorithm to make migration source and destination decision.

The process is shown in Figure 5.2.

43

5 – System Implementation

Figure 5.2. System Implementation: the process of software defined
measurement system

5.3 Key Threads and Classes
In this section, we will show some essential threads and classes that used in the
system.
Aggregate Thread
A thread that collects the packets aggregates statistics and store in table "Statis-
ticAggregate". There are two modes, one is the default mode, it collects all the
switches aggregate package number and calculate the package difference according
to the frequency specified in the configuration file. In the customized mode, the
statistics data is stored in a a temporary tables for each specified switch, and a
different frequency is used in order to monitor one switch precisely.

Bandwidth Thread
A thread that collects the bandwidth consumption per switch per port for both
send and receive speed. These statistics are stored in table "StatisticsBandwidth".
There are two modes, one is default mode as aggregate thread, it collects all the
switch ports bandwidth using the default frequency specified in the configuration
file. Another mode is customize mode, it receives the port lists, creates a table for
each port, monitors it using a smaller frequency in order to analyze the bandwidth
consumption more precisely.

Checking Thread

44

5 – System Implementation

A class that checks the statistics according to different policies specified in the con-
figuration file. For random policy, it will directly run the policy executor. However,
for the bandwidth and shortest path policies, it will execute the migration source
host decision made algorithm. When it gets the migration source host, it will run
the policy executor by passing migration source host as a parameter.

Statistics Client
A class that creates all the statistics threads and also exchanges the messages
between checking threads and bandwidth thread, checking thread and aggregate
thread.

Policy Executor
A class that executes different algorithms according to different policy used.

HostInformationCollector
A class that collect the host information and link bandwidth from the network
topology(Mininet/GENI) or files provide by network administrator, then store them
in the database to construct the "connection" and "mapping" table.

systemInitialize
A class that loads the configuration file to the system.

tcpClient
It opens TCP connections to host to send start container and migration command.

ClientWorker
A class that each time migration daemon in the host receive a TCP connection,
it will create a new client worker thread to execute the command form migration
manager or another host. If it receives “START” command, it will deploy the a
new docker container in the host.
If it receives ”MIGRATE” command, it will receive the migration destination IP
Address.
If it receives “RESTART” command, this command comes from another host and
it will receives the image files to restart the container.
The detailed sequence of software defined measurement with two different working
modes, and how it switch from one mode to another one is shown in Figure 5.3.

45

5 – System Implementation

Figure 5.3. System Implementation: the detailed sequence of software
defined measurement system

5.4 Decision Made Process
When Statistic Client starts running, first it retrieves the policy specified in the
configuration file, if it is random policy, it will start checking thread. If it is
bandwidth or shortest path, it will start the aggregate thread, bandwidth thread,
checking thread. In the case of random policy, checking thread will directly run
policy executor. In case of bandwidth and shortest path policy, checking thread
will first make migration source host decision, then run policy executor.

In order to make migration source decision, it retrieves all the switches aggregate
package number, and select a set of switches which both the package aggregate
number and the package difference between current time and last time exceed the
threshold specified the configuration file. After it selects the set of target migration
source switches with container running, for example S1, S2. it will enter the second
checking phase. In this phase, the aggregate thread enters customized mode, which
checking thread create a table for each switch within the moving target switch set
and monitor each one in a smaller frequency, it selects the one with the package
difference keeping greater than 0, and continuing increase. After aggregate thread
phase 1 default mode, and phase 2 customized mode, the checking thread has
the target migration switch, then it checks which port is consuming the highest

46

5 – System Implementation

bandwidth with the minimum available bandwidth. From this port, we can get the
migration source host.

Migration Source host Decision:

Algorithm1:
Select the target switch set.
Factor1: aggregate packets number and packets difference.
If the switch is detected by algorithm 1, it means that the switch, at this moment,
experiences heavy traffic. And it has the potential possibility to be a heavy switch
also in the soon future.

Alogithm2:
Select the target host
Factor2: Attached switch aggregate package number difference great than 0
constantly and the host consumes the highest bandwidth.

After the migration source host decision is made, the policy executor can execute
the migration policy.

If it is Random policy, the policy executor randomly select a migration source
host from the free hosts, a migration destination from the busy hosts.

If it is bandwidth policy,the policy executor will request path to each free host
from floodlight. Then for each path, it calculate the available bandwidth using
MaxMin(bandwidth) function, and it select the one with the maximum available
bandwidth.

If it is shortest path policy, the policy executor will request the fast path to each
free host from the floodlight, then it sorts the latency of all the path. The one
with smallest latency will be selected.

5.5 System Implementation prototype
Floodlight controller provides Northbound REST API to migration engine, gets
the under layer network topology prevision thought OpenFlow protocol.
Migration engine maintains database, runs software defined measurement and mi-
gration manager. It can send statistics request though REST API to floodlight
controller, and store the results in database. After migration Manager making the
decision, it will send this migration decision to migration source host which is run-
ning migration Daemon though migration protocol. After migration source host
receives the migration decision, it will start the migration process with migration
destination host, send the migration container files.

47

5 – System Implementation

Figure 5.4. System Implementation: System Integration

48

Chapter 6

Migration Policy Tradeoff and
Use Cases

In this chapter, we give two use cases Load Balancing and Moving Target Defense
for testing our migration system. The policies used in each use case will be listed
and compared.

6.1 Use Case 1: Load Balancing
This application allows migration happen by monitoring the network traffic. Through
monitoring the network traffic, migration can be done regarding to the current net-
work traffic status. The migration destination host is selected according to different
network measurement criterion.

6.1.1 Policies for Load Balancing

Random: Migration source host and destination host are selected by the system
randomly, regardless traffic situation.
Bandwidth:Migration decision is made according to the network traffic situation.
In particular, according to the path bandwidth, system select the migration desti-
nation host which has the maximum available bandwidth.
Shortest Path:Migration decision is made according to the network traffic situa-
tion. In particular, according to the shortest path, the system selects the migration
destination host which is the closest one with respect to some matrix, here we use
latency.

Policy Implementation
The process is shown as in Figure 6.1

49

6 – Migration Policy Tradeoff and Use Cases

Figure 6.1. Load Balancing policy process: a detailed process for load balancing

Migration Source Host selection(Algorithm 1):

1. check AggregateStatistics table from the database, search the switches which
both aggregate packet number and aggregate packet difference number are
greater than the threshold. These switches are in the heavy switch set, then
it uses customized mode for selecting one switch from the heavy switch set
which will be potentially heavy in the future. ——-> heavy switch selected

2. check BandwidthStatistics table from the database, search the host which
has the maximum Bandwidth consumption ——–> migration source host
selected

Migration Destination selection is policy based(Algorithm 2):

1. Bandwidth-based: Send REST API requests to floodlight controller to
get the paths to each free switch, then use the function
Maxmix(Bandwidth) to select the switch which has the maximum available

50

6 – Migration Policy Tradeoff and Use Cases

Path bandwidth. The host which has the maximum available bandwidth is
selected as migration destination host.

2. Shortest Path: Send REST API requests to floodlight to get the fast path
to each free switch, then select one has the fastest path with the smallest
latency as the target destination switch. Select the first free host from the
target destination switch.

Random Policy
One pseudo random function is used, source host and destination host are
selected at random.

6.1.2 Compared 3 policies for Load Balancing
Random

Pros: no computation, less CPU usage, can be used to defence server attack.
no interact with SDN controller.

Cons: high possibility of making bad decision.
-select light host as migration source.
-select heavy host as migration host.
Migration time is not predictable.

Bandwidth-Based

Pros: more compatible with dynamic network traffic situation.
guarantee server can provide better performance after migration.

Cons: more CPU usage(executing algorithm to make migration decision).
migration time is not predictable.

Shortest Path

Pros: more compatible with dynamic network traffic situation
migration travels less network device

Cons: more CPU usage(executing algorithm to make migration decision).
Server performance are not guaranteed.

51

6 – Migration Policy Tradeoff and Use Cases

6.2 Use Case 2: Moving Target Defense
Instead of defending unchanging infrastructure by detecting, preventing, monitor-
ing, tracking, or remediating threats, moving target defense makes the attack sur-
face dynamic. It tries to make the system dynamic and therefore harder to explore
and predict. The ultimate goal of moving target defense is to increase the at-
tacker’s workload so as to level the cybersecurity playing field for both defenders
and attackers.

In the original system, we can use the random policy as moving attacker defense
strategy. The system every time generates two random number using pseudo ran-
dom function for selecting the migration source and destination host. These two
numbers are easy to predict if someone studies the random generation function, and
monitor the network. Hence, we start to think about updating the system with a
more secure way to protect the container service against attack.
Initial System

Figure 6.2. Random Policy: one moving target defense strategy

As shown in Figure 6.2, the migration decision is made by the system. After
that, it sends the migration destination host IP to migration source host through
TCP connection. Here, we propose that part task of making migration decision is
delegated to host. Migration system will not send the clear migration destination
IP anymore.

52

6 – Migration Policy Tradeoff and Use Cases

6.2.1 Possible Attack
1. Migration destination host is selected by a pseudo random function, which is

easily predicted.

2. The attacker could be inside the network, monitor the traffic and listen to
the network.
TCP connection1
The migration destination IP is sent explicitly.
TCP connection2
For small traffic generation network, the attacker could do network traffic
analysis. It can determine the destination host if the migration container
images files are huge, the throughput from source to destination will increase
dramatically.

6.2.2 How to share a secret?
1. Shamir threshold schema a(k,n)

we adopted the concept of Shamir threshold schema a(k,n) [19]. That is
dividing a secret into n parts, distributing each participate an unique part.
Any k of the parts are needed to reconstruct the original secrete.
Here, we choose at random k-1 positive integers as the polynomial
multinomial coefficient. we use the polynomial interpolation:

Q(x) = a0 + a1x + ... + ak−1xk−1

Secret is a0.
Every participant is given with a point (x,y). Given any subset of k different
points (x,y), we can construct the secret a0.

2. Digital Fountain
Here each participate still has one unique key pair(x,y), and in order to
construct the original secrete, it need k key pairs. But these k key pairs can
be non-disjoint. The host will be asked for the key pair according a
probability P. P is calculated by the following formula, the key factor is the
latency.

P (i, k) =
1

latency(i,k)∑n
j=1
j /=i

1
latency(i,j)

(6.1)

Suppose there are n hosts in total. Host i is the migration source host, the
probability of host k selected depends on the latency from host i to host k, if
the latency is smaller, the numerator will be bigger. So the probability will
be higher.

53

6 – Migration Policy Tradeoff and Use Cases

6.2.3 New Items and System Initialization for Moving Tar-
get Defense

After improve the system security, new model we use is shown in Figure 6.3
New Items

Figure 6.3. Moving target defense model

• Threshold Schema: a(k,n)

• Mater Secrete S: a random polynomial function only known by migration
system.

Q(x) = a0 + a1x + ... + ak−1xk−1

S = a0

• Random Number R: a number generated by migration system and send
to host to make the migration decision.

54

6 – Migration Policy Tradeoff and Use Cases

• Key (x,y): a point on the polynomial function generated and distributed by
the migration system, a part of information to construct the Master Secrete.

• Look Up Table: A table contains two columns, first column is the index,
second column is the host IP Address. It is encrypted using the master secrete
S by the migration system.
The table is shown as following:
Index IP

1 10.0.0.1
2 10.0.0.2

System Initialization for Moving Target Defense

1. Configure Polynomial Function, the parameter of K which stands for the
number of keys will participate in the decryption process, and N can be the
total host number.

2. Hash function hash(x)=Hash(R1+X1*Y1)%(N+1) (N is the total hosts
number).

3. Encrypt look up table using master key A

6.2.4 Compared 3 policies for Moving Target Defense
Random
Migration Source and Destination host are selected at random.

Pros: very fast

Cons: attacker still can predict

Shamir
To obtain migration destination host IP address, migration source host needs to
ask k disjoint hosts for k different key pairs.

Pros: highest safety level

Cons: performance will be slow
more operation for system configuration
more network traffic overhead will be created

Digital Fountain
-To obtain destination need to ask k (non-disjoint) hosts.
-k hosts are selected according to a probability P.

55

6 – Migration Policy Tradeoff and Use Cases

Pros: Safety level is between Shamir and Random.

Cons: more operation for system configuration
more network traffic overhead will be created

6.2.5 Moving Target Defense Process
The process sequence diagram is shown in Figure 6.4.

1. Migration System distributes different encrypted look up table with the
master secret to each host.

2. Migration system generates a set of key pairs (x,y) and distributes to each
host. Hence each host has a part of the information to decrypt the look up
table.

3. Migration system chooses an arbitrary host, opens TCP connection(TCP
connection1 in the figure), send a random number to the host(Host M).

4. Host M applies hash(x), the result is the migration destination host index i.

5. According to the configuration file, Host M uses corresponding policy to
decrypt the table:

Digital Fountain: Host M opens random k TCP connections to other k
hosts for asking the key pair in order to decrypt the look up table.
The hosts will be asked may be not disjoint. The one which has
the shorter path will have the higher probability to be chosen. It
also could be chosen for multiple times.

Shamir: Host M randomly opens k TCP connections to other k disjoint
hosts for asking the key pair in order to decrypt the look up table.
Each host has the equal probability to be chosen.

6. After getting the k key pairs, the migration source host applies the
algorithm(Digital Fountain or Shamir) to get the master secrete S.

7. Migration source host H1 decrypt the look up table using S, get the
migration destination host IP.

8. Migration source host H1 start migration process with migration destination
host H2.

56

6 – Migration Policy Tradeoff and Use Cases

Figure 6.4. Sequence Diagram for Moving Target Defense

Why look up table should be encrypted?

1. The migration system distributes the table while the host is setting up, the
attacker could do man-in-the-middle attack to get the table of each host, and
ask for the key pairs from each host to get the secrete.

2. Even the docker itself is sage, but it can not be sure that other docker con-
tainer in the same host is not a attacker to steal this table.

Why when migration source host asks key pair from other hosts, don’t
need to do authentication?

1. If the attack is after the loop up table distributed, it does not have the cypher
look up table, so even it get the k key pairs, it still can not decrypt.

2. Here, each host has different look up table, even the attacker asks k key pairs
from other hosts, it just can decrypt the one table, it does not know the
migration destination other host will go.

57

Chapter 7

Experimental Validation

In this chapter, we test our system within software defined network. Compared for
each use case different policies tradeoff and performance.

7.1 Test Environment

7.1.1 Hardware and OS
Processor: Intel i7-6500U CPU 2.50GHZ

RAM: 8.00 GB

System Type: 64-bits operation system, x64-based processor

OS: windows 10

System is running in Linux environment, host ubuntu operating system is:

Name: ubuntu

Operating System: Ubuntu(64-bit)

Base Memory: 6096 MB

58

7 – Experimental Validation

7.1.2 Network topology deployment
Network topology is deployed within MININET. which is a network simulator.
We can create realistic virtual network using Mininet, runing real kernel, switch,
and application code on a single machine, such as VM, Cloud.

7.2 Use Case1: 3 policies evaluation for Load
Balancing

7.2.1 Scenario 1: link capacity is heterogeneous
Network Topology
The topology is shown in Figure 7.1, H1 runs iperf client,H1 and H2 runs a con-

Figure 7.1. Network topology for evaluation link capacity heterogeneous

tainer hosting the iperf server. H1 sends request to H2, traffic is generated from
H1 to H2. The link capacity varies a lot. In this case bandwidth-based policy and
shortest path make different decision.

3 policies analysis

1. Bandwidth-based policy

Migration Analysis: using Max(min(bandwidth)) select one has the
highest available path bandwidth.

59

7 – Experimental Validation

H2 is detected as heavy host(migration source host) H2 -> H3,
path bandwidth=10
H2 -> H4, path bandwidth=5
H2 -> H5, path bandwidth=2
So H3 is selected as migration destination host.

Migration Decision: H2->H3

2. Shortest path policy

Migration Analysis: using floodlight REST API query the fastest
path,according to the path latency
H2 is detected as heavy host(migration source host)
H2 -> H3 , path H2->S2->S1->S3->H3
H2 -> H4 , path h2->S2->S1->S4->H4
H2 -> H5 , path h2->S2->S5->H5
So H5 will be considered as the shortest path with least latency

Migration Decision: H2->H5

3. Random Policy

Migration Analysis: randomly select migration source host from busy
host set, randomly select migration destination host from free host
set.
busy host set (H1, H2)
Free host set (H3,H4,H5)

Migration Decision: H2 -> H3 , path H2->S2->S1->S3->H3
H2 -> H4 , path h2->S2->S1->S4->H4
H2 -> H5 , path h2->S2->S5->H5

Migration source host bandwidth consumption change

How do we do the plot?

1. For bandwidth consumption plot, the value is the sum of send and receive
bandwidth consumption, it starts before migration occurs. It experiences
migration process, a period after migration done. The plot clearly showed
the bandwidth consumption change of the migration source host before,
during, and after migration.

2. For throughput accumulation plot, the value is the number of bytes transfer
along with the time. It showed that the total traffic generated during the
migration process measured during the migration source host.

60

7 – Experimental Validation

Figure 7.2. bandwidth-based policy left:Migration Source Host Bandwidth Con-
sumption Change right:throughput accumulation

From Figure 7.2 left picture bandwidth consumption, it can prove that migration
happens. we can characterize in 3 periods:

First period, the traffic data is collected before migration process from the
system starts running, so for the red line(source host) initially it just running the
docker container which acts as the iperf server, it receives and send data to the
iperf client.

Second period, as the time going after the first period, the iperf traffic is
increasing. Then the switch is detected as a heavy switch and the host is selected
to be the migration source host. After, It starts the migration process. During
this period, the source host not only generates traffic with the iperf client, but also
has the traffic to the migration destination host for Docker container image files
transfer. As for the blue line(destination host), it starts to receive the migration
files, so bandwidth consumption is starting increase during this interval. Then after
migration process is done, it enters the third period.

Third period, source host(red line), does not run the iperf server anymore, so
there is no traffic (since here we only have iperf server, no other server). Instead
of destination host(blue line), it starts to run the iperf server after migration, it
will receive the connection from the iperf client. So the bandwidth consumption
for destination host is increasing continuously.

Thoughput accumulation comparison
How do we do the plot?

The traffic is collected from migration source host before migration process
starting. It stops when the migration is done. Here the host only runs iperf
server, so when the server is migrated from the host, there is no traffic anymore,
the cumulation throughput enters a stable stage.
It is shown in Figure 7.3.

61

7 – Experimental Validation

Figure 7.3. Traffic throughput accumulation in Migration Source host

Vertical comparison:
It shows that in the first 50s, the throughput accumulation of random policy is
increasing faster than bandwidth and shortest path policy. It implies that system
starts migration process earlier when using random policy than bandwidth and
shortest path policy. When random migration occurs, the network situation is not
congestion, and the migration source host doesn’t suffer a high load of traffic. After
50s, the random policy already finished the migration process, the accumulation
doesn’t increase anymore. Instead of bandwidth and shortest path, it continues
increasing, this means the network traffic is heavier and heavier until when it is
detected, and migration is done.Both bandwidth and shortest path policy have a
larger number accumulation throughput , it means that when migration occurs, the
migration source host is suffering heavy traffic.
Horizon comparison:
Here we compare the saturation point, which means the migration process com-
plete time. It can be seen clearly that random policy arrives much earlier than
bandwidth and shortest path policy at about 50s. Then bandwidth policy finishes
the migration process at about 120s, which is earlier than shortest path.
Random < bandwidth < shortest path
When the network has high requirement of latency, for example, migration must
be done within 50s, it is better to choose random policy. If we want to choose one
policy considering the tradeoff of migration finish time and load balancing. It is
better to choose bandwidth policy in this case.
As we can see, when the link bandwidth is heterogeneous, the bandwidth policy
performance is better than shortest path.
Accumulation confidence Interval:

62

7 – Experimental Validation

The migration decision made by bandwidth and shortest path is determinate. For
bandwidth policy is H2->H3, for shortest path policy is H2->H5. So each run the
value is very similar. As can be seen in figure5, the error bar is very small nearly
invisible. Instead of Random, the migration destination is not determinate, so each
run, it may choose different migration decision, the accumulation value at each time
point is different. Hence, the error bar is bigger.

Migration time comparison
We run 10 times, collect the migration time of 3 policies as shown in table 7.1.

bandwidth shortest path random
1 9s 40s 9s
2 9s 40s 9s
3 9s 40s 9s
4 9s 40s 9s
5 9s 40s 16s
6 9s 40s 17s
7 9s 40s 40s
8 9s 40s 40s
9 9s 40s 40s
10 10s 41s 40s

average (9.1 ±0.15)s (40.1 ±0.15) s (23.6 ±7.12) s

Table 7.1. migration time of 3 policies for Scenario 1

This table implies that if the link bandwidth change, it affects the migration time
greatly for different policies. Here bandwidth policy takes the advantage of the big-
ger link bandwidth, so the migration time is much smaller than shortest path policy,
random policy. For the confidence interval, random policy varies a lot. Because
different migration destination path experiences different path available bandwidth.

Combine all the features, if the network topology link capacity is heterogeneous.
From different requirement aspects, if the user wants the smaller migration finish
time, the random policy may be considered. If user wants do network load balancing
and balance the migration time, bandwidth policy is considered.

7.2.2 Scenario 2: Link capacity bottleneck presence
Network Topology
The topology is shown in Figure 7.4, it is the same as in scenario 1, but we

change the value of link capacity. H1 runs iperf client, H2 runs a container host-
ing the iperf server. H1 sends request to H2, traffic is generated from H1 to H2.

63

7 – Experimental Validation

Figure 7.4. Network topology for evaluation link bandwidth bottleneck presence

L2 is the bottleneck link in the path bandwidth from H2 to H3, and from H2 to H4.

3 policies analysis

1. Bandwidth-based policy

Migration Analysis: using Max(min(bandwidth)) select one has the
highest available path bandwidth.
H2 is detected as heavy host(migration source host) H2 -> H3,
path bandwidth=5
H2 -> H4, path bandwidth=5
H2 -> H5, path bandwidth=7
So H5 is selected as migration destination host.

Migration Decision: H2->H5

2. Shortest path policy

Migration Analysis: same as in scenario 1
Migration Decision: H2->H5

3. Random Policy

Migration Analysis: same as in scenario 1

64

7 – Experimental Validation

Migration Decision: H2 -> H3 , path H2->S2->S1->S3->H3
H2 -> H4 , path h2->S2->S1->S4->H4
H2 -> H5 , path h2->S2->S5->H5

Thoughput accumulation comparison

How do we do the plot?

The traffic is collected from migration source host before migration process
starting. It stops when the migration is done. Here the host only runs iperf
server, so when the server is migrated from the host, there is more traffic
anymore, the cumulation throughput enters a stable stage.
It is shown in Figure 7.5.

Figure 7.5. Traffic throughput accumulation in Migration Source host

Vertical comparison:
The same conclusion as in scenario 1.
Horizon comparison:
Here we compare the saturation point, which means the migration process complete
time. It can be seen clearly that random policy arrives much earlier than bandwidth
and shortest path policy. When the network has high requirement of latency, for

65

7 – Experimental Validation

example, migration must be done in 50s, it is better to choose random policy. As
we can see, when the migration decision made by shortest and bandwidth policy is
the same, their performance are compatible with each other.
Accumulation confidence Interval:
The migration decision made by bandwidth and shortest path is determinate. For
bandwidth policy is H2->H3, for shortest path is H2->H3. So each run in the same
network condition the throughput accumulation value varies lightly. As can be seen
in Figure 7.5 , the error bar is very small. Instead of random policy, the migration
destination is not determinate, so each run, it may choose different migration de-
cision, the accumulation value at each time point is different. Hence, the error bar
is bigger comparing with bandwidth and shortest path policy.

Migration time comparison
We run 20 times, collect the migration time of 3 policies as shown in table 7.2.

bandwidth shortest path random
1 12s 12s 30s
2 12s 37s 29s
3 12s 13s 12s
4 14s 17s 33s
5 15s 17s 34s
6 15s 28s 12s
7 15s 17s 33s
8 17s 28s 37s
9 37s 19s 12s
10 18s 21s 35s
11 33s 19s 35s
12 18s 20s 12s
13 31s 19s 31s
14 18s 20s 31s
15 29s 19s 12s
16 19s 20s 38s
17 27s 20s 38s
18 24s 20s 12s
19 25s 20s 35s
20 25s 20s 12s

average (20.8 ±2.7)s (20.3 ±1.9) s (26.15 ±3.91) s
Table 7.2: migration time of 3 policies for Scenario 2

66

7 – Experimental Validation

For the random policy, since the decision is non-determinate. We collect 20
times for each decision, compared the migration time.

H2-H3 H2-H4 H2-H5
1 30s 29s 12s
2 33s 34s 12s
3 37s 37s 12s
4 31s 29s 12s
5 35s 35s 12s
6 38s 38s 12s
7 31s 32s 12s
8 35s 35s 12s
9 38s 38s 12s
10 31s 32s 12s
11 35s 36s 12s
12 43s 39s 12s
13 32s 33s 12s
14 35s 36s 12s
15 32s 34s 13s
16 36s 36s 13s
17 32s 34s 13s
18 37s 36s 13s
19 33s 34s 13s
20 37s 37s 13s

average (34.6 ±1.2) s (34.7 ±1.0) s (12.3 ±0.2) s
Table 7.3: random policy migration time

From table 7.2 , it can be seen that the migration time between bandwidth, short-
est path, random, from the same source host H2 to the same destination host H5,
concerning the average migration time, random has the smallest migration time.
Shortest path, and bandwidth they are almost the same.
The story behind: For bandwidth and shortest path policy, the main goal is load
balancing, the system first detects the heavy switch, then apply the policy algo-
rithm, so in this case, the available bandwidth for migration will be much smaller,
this results in larger migration time. Instead of random, it doesn’t concern the load
of each switch, just simply choose the source and destination. Most of the case,

67

7 – Experimental Validation

before the switch getting heavy, it starts the migration process, so the available
bandwidth is larger, this results in smaller migration time.

From table 7.3 , it can be seen that the migration time various under policy
random while migrating to a different host. It proves that L2 is the bottleneck
link with small bandwidth. When migration to h3 or h4, it always needs larger
migration time. It implies that random policy has uncertainty, this feature can be
used to do simple attack defense. But in terms of the migration performance, it
can not guarantee the best migration destination.

Combine 7.2 and 7.3, we can conclude that shortest path and bandwidth can do
load balancing. After migration, it can guarantee the better service performance.
But under switch overloading, migration process takes longer time. The random
policy is good for attack defense, but it concerns less the traffic situation. It does
migration even when the source switch is not overloaded. Or it may migrate to a
host with the attaching switch is heavy.

7.2.3 Scenario 3: Link capacity is heterogeneous
Network Topology
The topology is shown in Figure 7.6, it is the same as in scenario 1,scenario 2, but

Figure 7.6. Network topology for evaluation link capacity is homogeneous

we change the value of link capacity.The link capacity is heterogeneous. H1 runs
iperf client, H2 runs a container hosting the iperf server service. H1 sends request
to H2, traffic is generated from H1 to H2. In this case, bandwidth-based decision

68

7 – Experimental Validation

is non-determinate, it is the same with random policy.

3 policies analysis

1. Bandwidth-based policy

Migration Analysis: using Max(min(bandwidth)) select one has the
highest available path bandwidth.
H2 is detected as heavy host(migration source host) H2 -> H3,
path bandwidth=5
H2 -> H4, path bandwidth=5
H2 -> H5, path bandwidth=5
So H3,H4,H5 may be selected as migration destination host.

Migration Decision: H2->H5, or H2->h4, or H2->H5.

2. Shortest path policy

Migration Analysis: same as in scenario 1,scenario 2
Migration Decision: H2->H5

3. Random Policy

Migration Analysis: same as in scenario 1,scenario 2
Migration Decision: H2 -> H3 , path H2->S2->S1->S3->H3

H2 -> H4 , path h2->S2->S1->S4->H4
H2 -> H5 , path h2->S2->S5->H5

Thoughput accumulation comparison

Vertical comparison:
The same conclusion as in scenario 1.
Horizon comparison:
Here we compare the saturation point, which means the migration finishing time.
Random < Shortest Path < bandwidth
When the network has high requirement of latency, for example, migration must
be done within 50s, it is better to choose random policy. If we want to choose one
policy considering the tradeoff of migration finish time and network load balancing.
It is better to choose bandwidth policy or shortest path policy.
As we can see, when the link bandwidth is evenly distributed, probably there are
multiple migration destinations when using bandwidth policy. If shortest path pol-
icy chooses the destination has the equivalent bandwidth with bandwidth based
policy, shortest path policy is better than bandwidth-based policy.
Accumulation confidence Interval:

69

7 – Experimental Validation

Figure 7.7. Traffic throughput accumulation in Migration Source host for scenario 3

The migration decision made by bandwidth is not determinate. For bandwidth,the
decision could be H2->H3, H2->H4, H2->H5. So when the migration decision will
be different, during the migration process, the network traffic condition will also be
different, in the figure, we can see that the error bar for bandwidth is bigger than
shortest path and random.

Migration time comparison
We run 10 times, collect the migration time of 3 policies as shown in table 7.4.

bandwidth shortest path random
1 17s 17s 17s
2 17s 17s 17s
3 17s 17s 17s
4 20s 17s 22s
5 21s 17s 17s
6 18s 17s 18s
7 18s 17s 19s
8 19s 17s 18s
9 17s 17s 21s
10 22s 18s 20s

average (18.6 ±0.91)s (17.1 ±0.16) s (18.6±0.91) s
Table 7.4: migration time of 3 policies for Scenario 3

70

7 – Experimental Validation

Table 7.4 implies that when the link bandwidth is homogeneous in the network
with a smaller value. It causes bandwidth policy has multiple choices. So the
migration destination is not determinate, and it causes the migration time is also
different when concerning the load balancing. And in this case, shortest path, and
random, they use compatible migration time.

Combine all the features, if the network topology link bandwidth is homoge-
neous, shortest path performs better than bandwidth. From different requirement
aspects, if the user wants the sooner migration finish time, random policy is con-
sidered. If user wants do network load balancing and minimize the migration time,
shortest path policy is considered.

7.3 Use Case2: 3 policies evaluation for Moving
Target Defense

We evaluated how much should we pay in order to do system security. We evaluate
how much should we pay in order to do system security. Here we plot accumula-
tion throughput to evaluate how much network overhead will it be with reference
to random policy. Besides, we also collect and compare the migration time.

Digital Fountain Shamir Random
1 40s 45s 12s
2 44s 45s 12s
3 44s 46s 12s
4 44s 54s 12s
5 45s 55s 13s
6 51s 58s 13s
7 52s 71s 29s
8 38s 44s 29s
9 43s 44s 30s
10 44s 45s 31s
11 48s 51s 31s
12 50s 55s 32s
13 53s 56s 33s
14 41s 60s 34s
15 15s 15s 35s
16 16s 15s 35s
17 16s 15s 37s
18 18s 16s 37s
19 15s 17s 38s

71

7 – Experimental Validation

20 15s 14s 38s
average (36.6 ±5.2) s (40.1 ±6.6) s s (27.2 +3.7) s

Table 7.5: migration time of 3 policies for Moving Target
Defense

Figure 7.8. accumulation throughput comparison for 3 policies

From Figure 7.8 and Table 7.5 we can get the messages are that since Shmir
policy asks for k disjoint hosts for k different keys, so it may choose some very
far and high latency host, In this case, the network overhead will be higher, and
migration time will be bigger. Random policy applies a pseudo function by the
migration system to choose one migration destination host in the free host list. It
is the fast one and has less network traffic overhead. Digital Fountain policy asks
for k non-disjoint hosts for k keys. It probably asks the host with small latency
more times. In this case, it will create less network traffic, and also the migration
time is smaller.
In conclusion, Digital fountain has the better speed-security tradeoff.

72

7 – Experimental Validation

7.3.1 Experiment in GENI
Apart from using Mininet, we also deploy our topology in GENI to evaluate whether
the behavior and policies performance are the same or not.

Environment difference between GENI and MININET:
In MININET, when we specify the link bandwidth, we can use approximately the
same link capacity. However, in GENI, since the physical resource is shared by us
and other users, when we reserve the link bandwidth, for example, we set a link
bandwidth with 10Mbps when we deploying the network, it can not guarantee
that in any moment we can use 10Mbps. But the maximum capacity is 10 Mbps,
sometimes it is 10Mpbps, 8Mbps, sometimes it is 6 Mbps or 7 Mbps. We tested
the link bandwidth using Iperf. So, we can see from the experiment result that
the average migration time is bigger.

We evaluated the same topology as we used in Mininet to compare that whether
the policy performance in GENI is compatible with it in Mininet or not. I found that
the policy performance conclusion is almost the same, but in GENI, the migration
time, and throughput varies a lot because of the available link bandwidth varies a
lot.

For each topology with different link capacity, I run 10 times, computed the
average migration time.

Load Balancing Policies:link capacity is heterogeneous

The link capacity is shown as in Figure 7.1, Compared 3 policies performance:
Bandwidth-based policy provides better performance(it has less network overhead)
Here accumulation throughput represents the network overhead before,during and
after migration.We can notice that random has a bigger error bar because every
time the choice could be different, also link capacity varies a lot. Shortest Path is
pretty slow, even worse than random policy.

bandwidth shortest path random
(39.0± 8.21)s (259.7±49.41)s (139.5 ±60.79) s

Table 7.6. migration time of 3 policies for Scenario 1:link capacity
is heterogeneous(GENI)

73

7 – Experimental Validation

Figure 7.9. Bandwidth accumulation throughput for Scenario 1: link
capacity heterogeneous(GENI)

Load Balancing Policies:link capacity is homogeneous

The link capacity is shown as in Figure 7.6, Compared 3 policies performance:
Shortest path policy provides better performance(it has less network overhead)
Bandwidth-based and random have compatible performance. Here accumulation
throughput represents the network overhead before,during and after migration.

bandwidth shortest path random
(97.7± 41.27)s (63.4±17.08)s (96.7 ±29.90)s

Table 7.7. migration time of 3 policies for Scenario 3:link capacity
homogeneous(GENI)

74

7 – Experimental Validation

Figure 7.10. Bandwidth accumulation throughput for Scenario 3:link
capacity homogeneous(GENI)

75

7 – Experimental Validation

Moving Target Defense:Digital Fountain has better speed-security
tradeoff

For the security, 3 Moving Target Defense policies, Digital Fountain policy still
has the better speed, network overhead tradeoff. Shamir asks disjoint hosts for
the keys, we can notice that the confidence interval is bigger comparing with the
random and digital fountain policies.

Figure 7.11. Bandwidth accumulation throughput for Moving Target Defense(GENI)

Shamir Digital Fountain Random
((74.7 ± 15.76)s)s (24.8± 4.85)s (18.4 ± 6.96) s

Table 7.8. migration time of 3 policies for Moving Target Defense(GENI)

In GENI environment, we can compare the policies performance in different
network link capacity type. But the bandwidth used for migration varies each
time because of the link bandwidth we specified in GENI topology is the maximum
bandwidth we can use, not the exact bandwidth. So it happens that the available
bandwidth we can use is in the range [0, bandwidth]. So, from the plot and also
the migration time, we can notice that there is very big confidence interval value.

76

Chapter 8

Conclusion and Future Plan

In this thesis, we designed a policy-programmable container migration architecture
based on Docker within SDN prototype. By policy, it means the architecture al-
lows you to change policies with a simple configuration file, so programming the
migration mechanism is easy. Software defined network makes network manage-
ment simpler, it provides the REST API which can easily get the network topology
and traffic statistics from the system.The architecture contains 3 main components.
software defined measurement is a system that monitors the network traffic statis-
tic, such as bandwidth, packets aggregate. It helps to make migration source host
decision by detecting switches suffering the heavy traffic. migration manager is
a system that maintains the database, policy sets for different application needs.
Here we implement Loading Balancing policies, Moving Target Defense policies.
Moving Target Defense policies aims to improve the system security, protect the
migration destination host IP address. migration daemon is a process running
in the host running Docker container. it enables the migration process between
migration source host and migration destination host.

In order to test and evaluate the security and load balancing policies, we deploy
the network within our SDN-based prototype over MININET. We test the migration
happens from one host to another host, and compare the policies performance in dif-
ferent network situations, in particular, with different link capacity(heterogeneous
and homogeneous). It proves that different policy in different network type, the
performance is different, so this policy-based programmable architecture enables
the flexibility to change the policy for adapting different application needs. Fur-
thermore, we evaluate the payment in order to achieve network security by moving
target defense policies. In particular, we compare the network traffic overhead and
migration time using random policy as a reference.We get that Digital Fountain
has a better better speed-security tradeoff.

As a plan for the future, we want to improve the system in several aspects. For
the software defined measurement, we could integrate with big data and machine
learning. In this case, the migration destination host can be predicted. By doing

77

8 – Conclusion and Future Plan

this we can improve the network management service. For the testing part, we
could deploy the system in GENI. In addition, we could test the policies tradeoff
using different topology type, such as tree, linear, star, fully connected, evaluate
different policies performance.

78

Chapter 9

Appendix: Migration System
Install Guide

These installation instructions have been tested on Ubuntu 14.04.5.

According to the Architecture Design in Figure 4.1, we suggest that one machine
can host Floodlight Controller, Database, and SDN Statistics Controller project
which implements software Defined Measurement block and Migration Manager
block. This host we call it Statistics Controller. Then, a set of hosts running
docker container and need to perform migration. Each of the host running
Migration Daemon block, we implement this block in a project named Migration
Server. In the following steps, we will explain how to install software and tools
needed as well as how to run this project.

9.1 Statistics Controller Side installation
In Statistics Server Side, we need to install SDN floodlight controller, mysql database,
Maven, and Statistics Server project.
; Install floodlight controller
git clone http :// github .com/ floodlight / floodlight
sudo apt -get update
sudo apt -get -y install software -properties - common

python -software - properties
sudo add -apt - repository ppa: webupd8team /java
sudo apt -get update
sudo apt -get -y install oracle -java8 - installer
java -version
sudo apt -get -y install ant
sudo apt -get -y install curl
cd floodlight

79

9 – Appendix: Migration System Install Guide

ant

; Install maven
sudo apt -get install maven

; Install mysql database
sudo apt -get update
sudo apt -get install mysql - server
mysql_secure_installation
systemctl status mysql. service

; clone Statistics Controller maven project from Git hub
git clone

https :// github .com/ TaoXu00 / sdnStatisticController .git

After install all the tools, in sdnStatisticController project, in the resource folder,
there is the database file. You can follow these step to import the database.
; import the database file to the mysql
mysql -u your username -p SDN < path/SDN.sql

9.2 Deploy network topology
We deploy and test our system in both Mininet testbed and Geni Testbed, you can
build your own topology. Also can find the example file for mininet and Geni, from
the Migration Statistics project resource folder. There are two script examples.

If you will deploy the system in Mininet, follow this link to install and get
familiar with Mininet.

http://mininet.org/download/
If you will deploy the system in Geni, follow this link to register and learn how

to use floodlight controller in Geni.
http://groups.geni.net/geni/wiki/GENIExperimenter/Tutorials/

OpenFlowOVS-Floodlight
After deploying your topology, there are some configurations should be done in

each open vswitch. First, you need to find all the interfaces that connecting with
the hosts and other switches, for example, in switch1, you have port eth1, eth2,
eth3, eth4, and eth5. Do not touch eth0. The commands are:
; eraser the IP address for the interface , set up the bridge
sudo ifconfig eth1 0
sudo ifconfig eth2 0
sudo ifconfig eth3 0
sudo ifconfig eth4 0

80

http://mininet.org/download/
http://groups.geni.net/geni/wiki/GENIExperimenter/Tutorials/OpenFlowOVS-Floodlight
http://groups.geni.net/geni/wiki/GENIExperimenter/Tutorials/OpenFlowOVS-Floodlight

9 – Appendix: Migration System Install Guide

sudo ifconfig eth5 0
sudo ovs -vsctl add -br br0
sudo ovs -vsctl add -port br0 eth1
sudo ovs -vsctl add -port br0 eth2
sudo ovs -vsctl add -port br0 eth3
sudo ovs -vsctl add -port br0 eth4
sudo ovs -vsctl add -port br0 eth5
sudo ifconfig
sudo ovs -vsctl list -ports br0
; configure the switch with a remote floodlight controller ,

the controller ip should be the controller host eth0 IP
address

ovs - vsctl set - controller tcp:< FloodLight_controller_ip >:6633

9.3 Migration Server Side Installation
In each host which will perform migration, we need to install Java, Maven, Docker,
Criu. Criu is a tool use together with Docker API to perform container checkpoint.

After all the installation, we need to download Migration Server project from
Git.

; Install Java
sudo apt -get update
sudo apt -get -y install software -properties - common

python -software - properties
sudo add -apt - repository ppa: webupd8team /java
sudo apt -get update
sudo apt -get -y install oracle -java8 - installer
java -version

If you already have java and maven installed, you can skip this step.

; Install maven
sudo apt -get install maven
mvn --version

Each host could run Docker container, and Criu is a tool integrated with docker to
perform container checkpoint, store container image files.

; Install Docker
sudo apt -get update
curl -fsSL https :// download . docker .com/linux/ ubuntu /gpg |

sudo apt -key add -

81

9 – Appendix: Migration System Install Guide

sudo add -apt - repository "deb [arch=amd64]
https :// download . docker .com/linux/ ubuntu $(lsb_release
-cs) stable "

sudo apt -get update
sudo apt -cache policy docker -ce
sudo apt -get install docker -ce =17.06.0~ ce -0~ ubuntu
sudo docker version

In order to integrate Criu with Docker API, we need to set Docker Server experi-
mental to true.
;set Docker Server experimental mode to true
cd /lib/ systemd / system
sudo vim docker . service
ExecStart =/ usr/bin/ dockerd -H fd :// --experimental =true
sudo systemctl daemon - reload
sudo systemctl restart docker

; install Criu
sudo apt -get update \&\& sudo apt -get install -y

protobuf -c- compiler libprotobuf -c0 -dev protobuf - compiler
libprotobuf -dev:amd64 gcc build - essential bsdmainutils
python git -core asciidoc make htop git curl supervisor
cgroup -lite libapparmor -dev libseccomp -dev
libprotobuf -dev libprotobuf -c0 -dev protobuf -c- compiler
protobuf - compiler python - protobuf libnl -3- dev libcap -dev
libaio -dev apparmor

git clone https :// github .com/xemul/criu.git criu
sudo apt -get -y install libnet1 -dev
cd criu
make clean
make
sudo make install
cd ..

; clone Migration Server maven project from Github
git clone https :// github .com/ TaoXu00 / migrationServer_geni .git

9.4 Configurations
In the Statistic Controller side,the configurations are :

• floodlight controller
In order to provide the possibility to allow the Statistic Controller collect the

82

9 – Appendix: Migration System Install Guide

statistics from floodlight controller, we should enable the statistic module in
floodlight configuration file.
Floodlight stores its startup configuration src/main/resources/floodlightde-
fault.properties. Add or set the following to modify the startup behavior of
the statistics module.

; open file
src/main/ resources / floodlightdefault . properties

; change
net. floodlightcontroller . statistics . enable =TRUE

• Statistics Controller system files
host information
After you develop your topology, you should construct a file containers the
information of each hosts. The file name is hostsInfor.txt. The format is as
following:
connections
;if the connection is between switch and host, add switch port MAC address
s1-eth2#02:5a:31:eb:98:57<->h1-eth1
;if connection is between switch and switch, only specify the interface name
s1-eth4<->s3-eth1
;the connections switch and switch, host and host.
IP
;host name and IP address h1 10.0.0.1
h2 10.0.0.2
h3 10.0.0.3
h4 10.0.0.4
h5 10.0.0.5
link bandwidth
;link bandwidth followed by the bandwidth value(Mbps) s1<->h1:10
s2<->h2:10
s3<->h3:10
s4<->h4:5
s5<->h5:2
s1<->s3:10
s1<->s4:5
s1<->s2:10
s2<->s5:2
configuration file
In the Statistics Controller project, there is the configuration file, in order
to test the policy, you can have several different choices. Change the policy
name in the file named configuration.

83

9 – Appendix: Migration System Install Guide

policy for load balancing:
policy=random,secureMode=no
policy=bandwidth,secureMode=no
policy=shortest path,secureMode=no

policy for security(moving target defense):
policy=random,secureMode=Shamir
policy=random,secureMode=Digital_Fountain

9.5 Instructions to run system

First, launch Floodlight controller.
;In the floodlight controller root folder

java -jar target / floodlight .jar

Second, launch Migration Server in each host.
cd migrationServer_geni
sudo chmod +x startup .sh
./ startup .sh

Third, launch Statistics Controller project.
cd sdnStatisticController
sudo chmod +x startup .sh
./ startup .sh

84

Bibliography

[1] Divya Kapil, Emmanuel S Pilli, and Ramesh C Joshi. «Live virtual machine
migration techniques: Survey and research challenges». In: Advance Comput-
ing Conference (IACC), 2013 IEEE 3rd International. IEEE. 2013, pp. 963–
969.

[2] Yi Wang, Jacobus E van der Merwe, and Jennifer Rexford. «VROOM: Virtual
ROuters On the Move.» In: HotNets. 2007.

[3] Peng Lu et al. «Adaptive live migration to improve load balancing in vir-
tual machine environment». In: European Conference on Parallel Processing.
Springer. 2013, pp. 116–125.

[4] Inderjit Singh Dhanoa and Sawtantar Singh Khurmi. «Energy-efficient virtual
machine live migration in cloud data centers». In: International Journal of
Computer Science and Technology (IJCST) 5.1 (2014), pp. 43–47.

[5] Blain Barton. Step-By-Step: Migrating Physical Servers to Virtual Machines.
2014. url: https://blogs.technet.microsoft.com/blainbar/2014/
09 / 09 / step - by - step - migrating - physical - servers - to - virtual -
machines-blain-barton/ (visited on 09/2014).

[6] KVM for virtual machine migration. 2014. url: https://www.linux-kvm.
org/page/Migration.

[7] Christopher Clark et al. «Live migration of virtual machines». In: Proceed-
ings of the 2nd Conference on Symposium on Networked Systems Design &
Implementation-Volume 2. USENIX Association. 2005, pp. 273–286.

[8] Divya Kapil, Emmanuel S Pilli, and Ramesh C Joshi. «Live virtual machine
migration techniques: Survey and research challenges». In: Advance Comput-
ing Conference (IACC), 2013 IEEE 3rd International. IEEE. 2013, pp. 963–
969.

[9] Gulshan Soni and Mala Kalra. «Comparative study of live virtual machine
migration techniques in cloud». In: International Journal of Computer Ap-
plications 84.14 (2013).

85

https://blogs.technet.microsoft.com/blainbar/2014/09/09/step-by-step-migrating-physical-servers-to-virtual-machines-blain-barton/
https://blogs.technet.microsoft.com/blainbar/2014/09/09/step-by-step-migrating-physical-servers-to-virtual-machines-blain-barton/
https://blogs.technet.microsoft.com/blainbar/2014/09/09/step-by-step-migrating-physical-servers-to-virtual-machines-blain-barton/
https://www.linux-kvm.org/page/Migration
https://www.linux-kvm.org/page/Migration

BIBLIOGRAPHY

[10] William Voorsluys et al. «Cost of virtual machine live migration in clouds: A
performance evaluation». In: IEEE International Conference on Cloud Com-
puting. Springer. 2009, pp. 254–265.

[11] Yulong Wang et al. «U-TRI: Unlinkability Through Random Identifier for
SDN Network». In: Proceedings of the 2017 Workshop on Moving Target De-
fense. ACM. 2017, pp. 3–15.

[12] Amirreza Niakanlahiji and Jafar Haadi Jafarian. «WebMTD: Defeating Web
Code Injection Attacks using Web Element Attribute Mutation». In: Proceed-
ings of the 2017 Workshop on Moving Target Defense. ACM. 2017, pp. 17–
26.

[13] Carlos E Rubio-Medrano et al. «Mutated Policies: Towards Proactive A
ribute-based Defenses for Access Control». In: (2017).

[14] .
[15] Criu for process and container migration. url: https://criu.org/Main_

Page.
[16] Criu for process and container migration. url: https://criu.org/P.Haul.
[17] Natasha Gude et al. «NOX: Towards an Operating System for Networks».

In: SIGCOMM Comput. Commun. Rev. 38.3 (July 2008), pp. 105–110. issn:
0146-4833. doi: 10.1145/1384609.1384625. url: http://doi.acm.org/
10.1145/1384609.1384625.

[18] Minlan Yu, Lavanya Jose, and Rui Miao. «Software Defined Traffic Measure-
ment with OpenSketch.» In: NSDI. Vol. 13. 2013, pp. 29–42.

[19] Adi Shamir. «How to Share a Secret». In: Commun. ACM 22.11 (Nov. 1979),
pp. 612–613. issn: 0001-0782. doi: 10.1145/359168.359176. url: http:
//doi.acm.org/10.1145/359168.359176.

86

https://criu.org/Main_Page
https://criu.org/Main_Page
https://criu.org/P.Haul
https://doi.org/10.1145/1384609.1384625
http://doi.acm.org/10.1145/1384609.1384625
http://doi.acm.org/10.1145/1384609.1384625
https://doi.org/10.1145/359168.359176
http://doi.acm.org/10.1145/359168.359176
http://doi.acm.org/10.1145/359168.359176

	List of Figures
	List of Tables
	Introduction
	State of the art
	Existing Work on Network Migration Technologies
	Virtual Machine Migration

	Moving Target Defense Strategies
	Existing Work on Container Migration

	Background
	Software Defined Network and OpenFlow
	Software Defined Network
	OpenFlow

	Floodlight controller
	Container Technologies and Docker
	Moving Target Defense

	System Architecture Design
	System Architecture Overview
	Software Defined Measurement
	Migration Manager
	Migration Daemon

	Migration Process
	Database Design for Software Defined Measurement

	System Implementation
	Prototype Components
	SDN Floodlight controller
	Open VSwitch
	Criu
	Database

	Software Defined Measurement
	Key Threads and Classes
	Decision Made Process
	System Implementation prototype

	Migration Policy Tradeoff and Use Cases
	Use Case 1: Load Balancing
	Policies for Load Balancing
	Compared 3 policies for Load Balancing

	Use Case 2: Moving Target Defense
	Possible Attack
	How to share a secret?
	New Items and System Initialization for Moving Target Defense
	Compared 3 policies for Moving Target Defense
	Moving Target Defense Process

	Experimental Validation
	Test Environment
	Hardware and OS
	Network topology deployment

	Use Case1: 3 policies evaluation for Load Balancing
	Scenario 1: link capacity is heterogeneous
	Scenario 2: Link capacity bottleneck presence
	Scenario 3: Link capacity is heterogeneous

	Use Case2: 3 policies evaluation for Moving Target Defense
	Experiment in GENI

	Conclusion and Future Plan
	Appendix: Migration System Install Guide
	Statistics Controller Side installation
	Deploy network topology
	Migration Server Side Installation
	Configurations
	Instructions to run system

		Politecnico di Torino
	2018-04-02T20:34:02+0000
	Politecnico di Torino
	Guido Marchetto
	S

