

POLITECNICO DI TORINO

Collegio di Ingegneria Informatica, del cinema e meccatronica

Corso di Laurea Magistrale

 in Computer Engineering for

Embedded System

Master Degree Thesis

A Low-Power Embedded System for
Outdoor Industrial Geolocation

Applications

Relator
prof. Andrea Acquaviva

Co-Relator
Dott. Daniele Jahier Pagliari Candidate
 Igli Baruti

April 2018

Abstract

Embedded Systems are computers created for single purpose applications, optimized to offer

great performance at very low cost. Today we talk about Internet of Things and ultra low-

power devices at home as well as in factory since there are many possible applications. The

real research in Embedded is to find the best solution, in terms of cost, size, performance,

power consumption or complexity for the specific purpose to which it is dedicated. This thesis

documents the implementation of an application able to get the position on GPS coordinates

and transmit them to a server connected wirelessly on a wifi network. The system was though

for automotive production area and boast as strong point the low-power consumption, low

cost, size and complexity. The system. connected in a network, is able to communicate with a

server and is based on the principle of vibrations analysis, thanks to an accelerometer, to

implement a dynamic power management of the modules used and limit power consumption.

1

Index 1

1. Introduction 4

1.1 Outline 4

1.2 Overview 5

1.3 Project Plan 6

2. Background 9

3. Contribution 11

 3.1 Raspberry Pi 3 11

 3.1.1 Board Setup 11

 3.2 Accelerometer 12

3.2.2 Threshold sensibility 13

3.3 GPS 14

 3.3.1 Vibration Sensitive Analysis 15

 3.4 WIFI Module 15

 3.4.1 Client-Server Communication – Socket 16

 3.5 Software FSM 18

 3.5.1 Configuration 20

 3.5.2 Acquisition 20

 3.5.3 Transmission 20

 3.6 Power Management 21

 3.6.1 Static DPM 22

 3.6.2 Power Saving Optimization 23

 3.7 Power Estimation 24

4. Results 24

5. Discussion and Conclusion 25

 5.1 Future Development 25

6. Bibliography 26

Appendix A: Modules 27

 I – Raspberry PI 3 27

 II – Adafruit Ultimate GPS Breakout V3 / GPS Neo 6M 28

 III – Accelerometer ADXL345 Sparkfun 29

 IV – Accelerometer LSM9DS0 29

2

Appendix B: Protocol 30

 I – SSH 30

 II – I2C 30

 III – SPI 31

 IV – UART 31

Appendix C: Algorithms & Code 32

 I – Modules Configuration 32

 II – Data Management 34

 III – WIFI Power Management 34

Appendix D: Acronyms 35

3

4

1. Introduction

1.1 Outline

The document is structured with an initial abstract with the recap of the thesis scope, six

chapters and three appendixes for further information about modules, protocols and

implemented code:

 Abstract: brief discussion about the study case, the thesis and what is aimed to do

Chapters

 Introduction: short description of “Factory 4.0”, what is and principles on which is

based, description of FCA and introduction to the study case considered in this

thesis.

 Background: the state of art of the technology adopted in this case, listing pros and

cons and justifying the choice made.

 Contribution: the hardware and software implementation made to realize the

prototype, so the configuration of the Raspberry, the project plan, so reasons of the

adopted technologies, algorithms and protocols, the modules configurations, the

implementation of the previous versions the FSM structure, the PSM for power

analysis, the DPM policy adopted for the power optimization.

 Results: the final implementation, what is able to do, comparisons, considerations

and application on field.

 Discussion & Conclusion: alternatives and possible updates, description of errors,

problem found and solution adopted and indoor part introduction.

 Bibliography: list of websites and documents considered for the realization of the

thesis.

APPENDIX A: small description of the modules adopted, for detailed description check

bibliography

APPENDIX B: list of some protocols used for interconnections of modules with the

raspberry board.

APPENDIX C: pieces of the python code implemented like code blocks of GPS data

management and power management.

APPENDIX D: acronyms adopted in the document.

For further information about protocols and modules the reader is invited to check the

bibliography or the appendixes for brief explanation.

5

1.2 Overview

The evolution of industries, in particular the manufacturing and service system, in the last

years, followed the advancement of information technology in order to improve productivity

and quality of manufacturing environment.

Nowadays with Industry 4.0, or “Smart Factory”, we denote a new kind of industry that join

all the developments in Information Technology, such as the Internet of Things (IoT),

Cybersecurity, cloud and cognitive computing, cyber-physical systems, to enhance industrial

processes of automation and data communication. We can resume this new industrial

revolution in four principles:

– Interoperability: the ability to interconnect in a network, typically an IoT, devices, sensors

and people in order to communicate and exchange data in a straightforward way.

– Information transparency: the resolution of the surrounding environment through a set of

sensors that provide a detailed context of information.

– Technical assistance: the ability to automate the problem fixing without human

involvement or to support them in unpleasant and exhausting tasks.

– Decentralized decisions: the ability of cyber-physical systems to make decisions on their

own and to perform their tasks as autonomously as possible. Only in the case of exceptions,

interferences, or conflicting goals, tasks are delegated to a higher level.

The synergy between IT improvements and industries leads to an increase of productivity

maintaining the overall cost (in terms of easiness of tasks and economic costs) low, reducing

costs of maintenance, keeping trace of the product in its entire productive chain.

However, there is a negative side too, the digitalization of the industry introduces the cyber

security issue, a factor that cannot be ignored, especially on embedded systems and low-

power devices. Also, the almost full automation of the industry leads to a non-negligible risk,

that’s why the human presence it’s always necessary.

FCA (Fiat Chrysler Automobiles) is one of the biggest auto-maker companies that is focusing

a lot on the modernization of plants and factories, aiming to compete with other industrial

realities that already embraced the dynamics of the “Smart-Industries”.

This thesis addresses a study case of FCA, regarding tracking of vehicles in the car park using

a device able to give its position, regardless the environment (indoor or outdoor) and

communicate with the server through a wireless network.

So we aim to create a network of cars in an environment where we keep trace of position,

actual and previous, using an embedded system, with its own distinctiveness that we will see

later, that communicate with a central server to fill a database (the back-end project of

handling data sent by devices is the second part of the project not covered in this thesis) of

6

position, car identifier, time and other info as validity flag or number of positions changed (to

define during requirements phase). The indoor part was not covered in this thesis due to the

different technology adopted for the 2 kinds of environment, the GPS was suitable for open

and large areas, but questionable in closed context, where was used instead, the Bluetooth and

the Beacons technology.

Figure 1: Outdoor car park

As already told, one of the goals of Factory 4.0 is the interoperability principle of products. A

network of interconnected cars produces a database where is possible to know always the

position and the background history of each car and its movement, making easier to find, to

know in which production phase it is and so, making the technical assistance faster and

untroubled.

1.3 Project Plan

So before starting the project we must take in consideration the Requirements of the study

case:

1) a system mounted in a car that will send its updated position to a server.

2) a battery-powered system with no other power supply connected

 -- Low power system

3) small size of the final system (although in the prototyping we used a complex board like

the Raspberry)

4) low cost device, for mass-production

5) performance trade-off, real time is unnecessary, but positioning precision must be accurate.

6) able to connect and communicate data, wirelessly with a main server.

7) simple implementation, the device must not have complex hardware inside, in order to

limit power consumption and system size

7

Then we can consider the Use Cases:

1) the device should use a GPS module able to get the latitude and longitude of the device

2) once it got the position it sends the data to the server that will handle it and put in the

database

3) it should not consume too much, so we should limit the usage of GPS and Wifi

transmission as much as possible

4) it should recognize the stationary and motion phase, to avoid useless data communication

during motion but only when stationary

5) should distinguish from permanent stop to erroneous or short stops (position only when

permanently stopped) with the help of an accelerometer.

After defined requirements and use cases, it’s possible to set up the hardware and software

technology to adopt, taking in consideration the previous points.

Hardware:

-- hosting board: we selected the Raspberry Pi 3 model B

-- accelerometer: we tried 2 devices, Sparkfun adxl345 and Berry-IMU LSM9DS0, we choose

the adxl345

-- GPS, again we tried with 2 models, Adafruit Ultimate V3 and NEO-6M and choose the V3

-- Wi-Fi module: we used the internal module, embedded in the raspberry.

-- ethernet cable: connecting the rpi to a pc.

-- wires: to connect rpi GPIOs to modules

Software:

-- programming language: Python, because of the great amount of resources regarding

programming on RPI

-- Operating System: Raspbian Stretch 4.9

-- Matlab: for analysis of vibration voltage to obtain thresholds.

-- PuTTY: to create an ssh connection from rpi to pc

-- Xming: to visualize on pc the OS of the rpi

-- python packages: we will see for each module the library imported and package adopted

Now that we have a first set of requirements, use cases and selected HW/SW component, we

create the structure and the algorithm that is exposed in Chapter 3.

8

9

2. Background

Geolocator devices are already adopted in industries and many other fields, car GPS trackers

are a great example of geolocation utilization.

These devices can be turned on/off manually or on car ignition and use intensively the GPS

module inside to provide a constant updated position from the satellites. On the other hand,

the device consumes so much energy that has to be constantly connected to a source of power,

in this case the car itself, its size is not negligible, and cost is high.

For our purpose these devices are unsuitable, so another solution is the one adopted in the car

sharing environment: cars are monitored with the GPS inside that gives the position and track

the itinerary of the car in movement, until turned off. Although the solution adopts some low

power strategies (turned off during long stationary periods), its cost is still too high, and the

tracker feature consumes a lot of power, it can’t be battery powered.

So, what is the kind of solution we are looking for?

The solution is an ad-hoc small low-power embedded system, battery powered, connected to

the wireless network and able to communicate with the server.

Low-Power: the system must use as less as possible the high power consuming modules, like

GPS and Wifi, to extend battery lifetime. Our solution is to reduce the transmissions of

position only when the car is definitely stationary, avoiding uses of these modules during

movement (no tracking).

Small size: the final product will be an embedded system that will mount a small processor

(8-bit data), a memory (few Kbytes for temporary data), an E
2
PROM for the code, a gps

module, an accelerometer, a Wifi and a Bluetooth module and some GPIOs. The

implementation with the Raspberry Pi3 is a prototype, the board has dozens of modules we

don’t need in the final implementation so in the calculation of the power consumption, we

have to take into account this factor.

Wireless-Connection: positions of the cars are sent to the main server through a socket

connection in a wireless network, data is split in TCP packets and sent to a server in constant

listening.

Low-Cost: in our case performance is not particularly distinctiveness: we can choose low-

cost GPS modules since we don’t want tracking but positioning. And other modules

(accelerometer and wifi) are cheap and makes this solution suitable for mass production.

Outdoor/Indoor: the final product should work both on external environments, with the use

of the GPS and internal structure with Bluetooth localization through Beacon network. Our

prototype implements the outdoor part.

10

11

3. Contribution

3.1 Raspberry PI 3

The Raspberry PI 3 (appendix A.I) is the board choose for the prototype, due to its easiness to

program and the huge number of resources made available for programmers. It was preferred

respect other the previous versions, mainly because it has an internal Wi-fi module (not

present for example in the PI 2), which is better respect an external module, both in terms of

power consumption and performance. The board has an OS, Raspbian Stretch 4.9.

3.1.1 Board Setup

Following, the steps to configure the board to the PC, the choice to connect the board to the

pc and to peripherals through usb connection was made to not consider in our power

consumption estimation their contribution and because they reduce portability and so the

possibility to test it outside, moreover the detailed guide can be found on site given in

bibliography, here we have the main points of our configuration:

1) Flash the SD card with the operating system Raspbian Stretch 4.9 using the SD

Formatter 4.0, an open-source software available online and insert the SD card into the

board

2) Connect the board to the pc through micro-USB as power supply and via Ethernet

cable

3) We need 2 software on PC side to communicate with the RPI: PuTTY, an SSH client

software that allows connection to the shell of the RPI and Xming, a X11 display

server that combined with ssh connection allow to use the GUI of Rasbian. Then

initiate a ssh session to the local address of the RPI. The prompt will ask for username

and password which of default are:

Username: pi

Password: raspberry

Once connected we start enabling in raspi-config serial communication protocols like I
2
C, SPI

and UART, we change the configuration of network address switching from dhcp (that give

the address automatically once connected) to static, defining which will be our address:

sudo nano /etc/network/interfaces

change the row iface eth0 inet dhcp to iface eth0 inet static and adding below the lines

address 192.168.1.10
netmask 255.255.255.0
network 192.168.1.0
broadcast 192.168.1.255
gateway 192.168.1.254

12

So that next connections will be to that specific address. The same thing for the wifi interface,

but to the wlan0 row.

Finally, after connection and configuration of the boards we start to initialize our modules

preparing them for the project.

3.2 Accelerometer

The accelerometer adopted was the Sparkfun adxl345 (check A.III), a small and low-power

module that we will use for our project. We need it because as told before, our goal is to

detect the position of the car when it is stopped and we use the vibration of the car in motion

to distinguish the two phases of motion/stop. This accelerometer can detect these small

movements, gives information to decide when to turn on the GPS for capturing a position and

send it to server. Furthermore, the module is the only one always on, that’s why the power

consumption factor is significantly important.

The module is connected to the board through I
2
C connection in the appropriate GPIOs like in

picture, (the 4 wires are GND, VCC (3,3V), SDA, SCL):

In Appendix C.I there is the code related to the initialization of the values of Range, from 2g

to 16g, for small vibrations better to keep the lowest value so it is more sensitive, of

Bandwidth, the frequency response to dynamic acceleration (in our case vibrations) that goes

from 25 Hz to 1600 Hz depending on intensity of vibrations that we want to capture and of

axes taking in consideration earth gravity.

In order to use the information given by the accelerometer, we implement a function getAxes

(C.1) that will return the data of the three axes x, y, and z.

The idea is to compare consecutive values of the axes to see if there was a vibration, the

procedure that follow is:

 If [x,y,z] consecutive values are equal the car is stopped or in constant acceleration,

but since we are using a bandwidth high enough to sense dynamic acceleration, only

the first case is possible

 When values are different we have vibrations: to distinguish transient vibrations due

to accidental movement of the device, from the movement of the car, we adopt a

threshold in terms of time and intensity so to not consider them

13

 When time and intensity are above the thresholds adopted, we can tell that the car is

in movement

After that, when values turn equal for a given time, we can say that car is stopped and proceed

with positioning.

So, the key point is the choice of the timeouts to detect motion/stop and the sensitivity to

vibrations, because the main problem is to distinguish a temporary stop to a permanent stop to

avoid useless activation of the GPS and WIFI module

3.2.1 Threshold sensibility

The choice of thresholds was made analyzing a typical car route, identifying 3 phases: stop

with car Off, motion with car On and in movement and stop with car On. Distinction between

stop with car On and Off is trouble because it depends on the type of car, for example electric

car and cars with the Stop&Go system produce no vibration at all during temporary stops. The

only distinction can be made between generic stop and motion using a timeout value.

 Axes x : time
 Axes y: vibration intensity on 1 of the 3-axis scale of the accelerometer

Figure 2: Vibration analysis made on car with Android: red circles are the stop phases with
car Off, at the beginning and at the end; black circles are the ones with car On and green
squares represent the motion phases.

In the picture we can see the effective difference in terms of vibrations when the car is

moving and when is not and, also the duration of these phases. But stops with car On and Off

are indistinguishable.

The solution proposed is to apply a time value of stationarity and considering our particular

case we can set it to several minutes in fact, the car during production phase is not moved

frequently, we can assume a distribution where there is a lot of stationary time and a few

movements of small duration. The analysis made in the picture is the worst scenario where the

difference of motion and stop is clearly visible.

14

In this case the GPS is activated only several minutes after the last stop, in this way the GPS

is turned On only when necessary, since it is the most critical module in terms of power

consumption.

3.3 GPS

The GPS adopted is the Adafruit Ultimate V3 (Appendix A.II), a ultra low-power module,

with just 20 mA of current draw, and great quality and sensitivity. We connect the module to

the board with UART connection like in picture (the wires are the block of 4 for VCC (5 V),

GND, RX connected to the TX of the board and TX connected to the RX of the board, plus a

wire for the ENABLE pin):

and enable the UART connection on the board-side, adding at the config.txt file the line

enable_uart =1:

1. sudo nano /boot/config.txt

and add at the end, the line

1. enable_uart=1

the next step is to download the libraries needed to convert and understand the rough data

coming from the GPS to the board, so we install the package related to GPS with the

command:

1. sudo apt-get install gpsd gpsd-clients python-gps

disable the services that can interfere with the application:

1. sudo systemctl enable gpsd.socket

2. sudo systemctl start gpsd.socket

and connect the serial port of the board to the GPS:

15

1. sudo gpsd /dev/ttyS0 -F /var/run/gpsd.sock

finally, we are ready to use the functionalities of the gps package to read data from gps.

In C.I there is the code of configuration of the GPIO responsible of turning On/Off the

module, the V3 has a pin ENABLE that allow to disable and so to cut current draw of the

module by simply 0/1 to that pin. Moreover there is the creation of a function that allow

us initialization and data acquisition from the GPS: in our case “gpsd” is a data structure

that contains the information of latitude, longitude, altitude and other information, once

activated and prepared, with the gpsd.start() function, it returns values we wanted in string

form like gpsd.fix.altitude, gpsd.fix.longitude ecc.

We need to make a consideration, the GPS once turned off, requires time to be ready and

acquire a new position, this depend mostly on the quality signal from satellite. Using the

device outside, on open environments, allow to a faster position fix, we are talking about

20 seconds to several minutes in case the antenna is covered and not directly looking in

the sky.

3.3.1 Vibration Sensitive Analysis

The use of the GPS module is strictly related to the analysis of vibrations data given by the

accelerometer. The application works like a positioning system and not like a tracker, which

would be more expensive in terms of power consumption, so we need to get the position only

when the vehicle is stationary, at least for predefined period and not when it’s moving. The

idea was to consider car vibrations as signal to distinguish stationarity and motion, as we will

see later I made some tries with the only accelerometer inside a car to check the effective

sensing of these 2 states and results were as expected, the difference was high enough to be

recognized easily by the sensor and we apply this strategy for the DPM implementation (see

C.II).

3.4 WI-FI

The last module to discuss is the wifi module built-in the RPI 3. To transmit the position to

the server, we must be connected wirelessly through a wifi network. But data transmission on

a wifi network leads to a non-negligible power consumption of the antenna, so of the overall

system. The same consideration done for the GPS must be taken here, we must reduce as

much as possible activity of the WIFI module.

This can be done acting a static DPM as before, turning On the module and open a connection

to the server when we need to send data and turning it Off when unneeded. The

communication is made using a client-server socket connection from the device to the main

server, following the instruction on both the device-side and server side.

16

To disable the internal wifi module we used the command sudo ifconfig wlan0 down, the

command that disable the wireless interface wlan0 and used the option up to enable it again,

on the application the command was run thanks the function system imported from the

module os:

os.system(“sudo ifconfig wlan0 up”) os.system(“sudo ifconfig wlan0 down”)

3.4.1 Client-Server communication socket

The stream socket is a connection-oriented mode based on TCP protocol, to transmit and

receive data through a network among nodes inside it, used sometimes even for interprocess

communication. And was the solution adopted due to its easiness of implementation, and

speed of connection and data transmission.

Below we have the scripts used on the device and on server side, this one was running on the

pc to simulate the server and the explanation of the python code:

First, we import the package socket that contains functions and variable definitions that we

will use

from socket import *

17

we proceed to create a socket variable s on both sides, specifying the type of addressing and

the type of socket

s = socket(AF_INET, SOCK_STREAM)

AF_INET  IP protocol-based socket

SOCK-STREAM  indicates a TCP socket

Then, on server side we tell the port that is listening with the instruction bind()

Server_socket.bind(Host_address, Port_number)

and put the port in waiting state specifying the maximum number of pending connections

Server_socket.listen(max_num_pending_connections)

On client side we are ready to connect to the server socket

Client_socket.connect(ServerHost, ServerPort)

and on server side to accept the connection

 connection, address = Server_socket.accept()

accept() return a file descriptor of the opened socket and the address. Once the connection is

successfully done the server goes on a loop ready to receive data with the command

data = connection.recvfrom(size_of_data)

and the client can send with

Client_socket.send(data)

The data to send is in String format, so is up to the server to parse the information and get the

individual values. In Appendix C.II Data Management, there is the implemented code and the

utilization of these instructions to send positioning information like latitude, longitude and

altitude.

18

I proceeded with this type of connection for sake of simplicity and for not overloading the

system with complex connections even if better and more secure.

3.5 Software FSM

In this section we will see the functional flow of the application that can be described in the

FSM (Finite State Machine) picture below.

We adopted this solution to make an easier power management, as we will see later each state

of the system has its functionality and so its relative power consumption, splitting the

application in blocks help to estimate this measure.

The application starts with a configuration phase, to initialize variables and prepare peripheral

modules, then we proceed with the first acquisition of data, even if not strictly necessary, an

initial positioning is useful to check if all configurations went well.

After that all the module are turned off except for the accelerometer, the device is put in an

idle low-power state waiting to sense vibrations long enough to determine a movement.

In the figure BELOW we can recognize the first position acquisition, transmission and

beginning of idle phase (---- START ----). Values x, y and z are the axis of the

accelerometer on which we are rely.

mov and stop are the counter flags used for timeouts: the first is used for vibration sensitivity,

see in the second picture as it reaches a certain threshold, print --- MOVEMENT --- and from

state S0 goes to state S1:

19

If this happens, the device waits for periods without vibrations long enough to determine a

stop, exactly the contrary of the previous state.

And only the GPS module is activated to get the position of the vehicle, if the data is not

suitable, it returns on idle state. The GPS module is turned off independently on the

correctness of data to avoid further consumption and if data is good then the WIFI module is

turned on, created a socket connection to the server and data is transmitted. Then it begins

again from S0.

20

3.5.1 Configuration

We must distinguish between the calibration and the configuration phase. The first is the

analysis of the vibrations of the vehicle made before the application is launched, we need to

specify the ideal timeout value and vibration sensitivity in order to optimize the performance

of the system.

For example, making a study of the typical path of the vehicle to check the number and

durations of temporary stops, or choosing a low vibration sensitivity in case of trucks.

While the configuration phase is the initialization at the beginning of the application, of the 3-

axis of the accelerometer and its relative parameters, the address and port of the server to

connect, and the functions and values of the GPS, like the enable pin adopted switch it

On/Off. All values are stored outside the source code, in a JSON file, check the Appendix C.I

for the code.

3.5.2 Acquisition

Position acquisition is made with the GPS module introduced before and is the most critical

phase due to its large power consumption when active. But we must consider even the latency

of the provided data: once turned On, the module needs some time, from 30 seconds to few

minutes to be ready to get a fix from satellite, it depends on sky coverage and environment.

A solution adopted was to plug an external antenna to the module to magnify the signal

acquisition and reduce this time of latency. In the test on field, inside a car the module can be

ready for positioning in 1 minute without the external antenna, thanks to the high performance

given by the adxl345.

3.5.3 Transmission

As already said before communication is made with a client-server socket connection from

the application to the main server. GPS position (latitude, longitude, altitude) plus ID of the

device and time with hour and minutes are put in a string and send through TCP connection.

On server side then, there is the parsing of the data to retrieve all the information. Of course,

this solution was adopted since other best options in terms of speed and security were

complex to implement that could need more computational power and leads to an increase of

power consumption and overall complexity.

With socket the server can handle up to 100 client connections, but it has to be implemented

on server-side and it was out of the scope of this thesis, so the example proposed (3.4.1) was

for just 5 pending client connections. To sum it up, the board was connected via ethernet

cable to the pc, to print data and help to check the correctness of the application and when

data was ready, it was sent to another pc, or just the same one, wirelessly through wifi

network. On the pc was implemented a script simulating the server (see 3.4.1) and made it run

so we could see that the data position sent by the board, was received.

21

3.6 Power Management

The most important property to preserve for this application is the low-power factor. Below

there is a table showing the differences between few possible solutions that were considered,

evaluating Power consumption, the power dissipated by the overall system, Complexity, the

difficulty of realization, Performance, the amount of information, latency and accuracy of

data, Cost, the overall cost including modules:

The Tracking solution, is the solution to maintain all the modules active to keep always an

updated position of the vehicle. The best solution in terms of performance, thanks to the

always updated data and complexity, no need for DPM, but the worst in terms of power

consumption, precisely because all modules are always active, even when unneeded. To know

the position of the car in motion is useless for our purpose.

So, the best solution is to limit the use of GPS only when car is stationary. And we can decide

on 3 methods: to distinguish between motion and stationarity we could use the GPS position

to know when effectively the position changed and when not with interspersed acquisitions,

better than tracking in terms of power consumption but still high, or we could use the

accelerometer to sense acceleration of cars, but what about vehicle in constant speed? Before

starting to find a solution, we can try to assume that cars in motion make vibrations, even if

very small and considering this principle we can determine the different state shown in the

previous FSM. So, the best solution is the positioning based on vibrations that allow us to

identify the right moments to take GPS data.

To improve this method, we can use the DPM technique, simply turning on/off modules

without even find possible intermediate low-power states. It will allow to choose low-cost

modules, since performance is not strictly needed. Of course, switching on/off a module will

create a great latency in data acquisition and transmission: as said before 20 seconds to 5

minutes to activate the GPS and 5 to 10 seconds to turn on the wifi module, connect to the

wireless network, create a connection with the server and transmit data. On our study case the

worst-case scenario was a vehicle moved 4-5 times per day with break of hours so timing to

give a GPS position is not important, so worse performance in exchange of extreme low

power consumption is a great deal. The DPM solution was made turning on/off modules

according to the Power State Machine elaborated below.

Solutions Power

consumption

Complexity Performance Cost

Tracking Very High Low High High

Positioning: Based on GPS

 Based on Vibrations

 Based on Acceleration

High Normal High Normal

Low Normal Low Normal

Low Very High Low Normal

Positioning based on vibrations with

DPM

Very Low Normal Low Low

Positioning based on vibrations

without DPM

Low Low Normal Normal

22

3.6.1 Static DPM

The PSM is finite state machine that represents the different power states of the workload. We

identified 4 states of different energy consumption, each related on the module that is active.

Power State Machine

Essentially the difference between power states is the module active in that moment; the state

P1 is the state off. In a possible future development, we thought turn off manually the

application when not necessary to improve its lifetime, but this imply the physical attendance

of someone for each device. So, we preferred to leave the application in an idle-listening state

P2 where the accelerometer is the only module active, since it is a ultra-low power module,

this state can last for very long periods.

ADXL345 current draw: 40μA with voltage supply: 3,3V -> electric power = 132μW

On P2, we are in the state of positioning, where the GPS is active and getting data, in this case

we should add the consumption of the GPS module.

Adafruit V3 current draw: 20mA with voltage supply: 3,3V -> electric power = 66mW

And on P3, the GPS is turned off and the internal wifi module is enabled and prepared to

transmit data.

WIFI current draw: 33mA with voltage supply: 5V -> electric power -> 165mW

23

Of course, energy required of wifi is higher than the GPS, transmission is always critical in

terms of power consumption, but the module in our case is activated for just 10 seconds and

then turned off again and it does just a single transmission so compared to energy required by

the GPS is a lot lesser:

GPS -> Average Power = 0.066W Average Time = 180 s Energy required = 11.88 J

WIFI -> Average Power = 0.165 Average Time = 10 s Energy required = 1.65 J

ADXL345 -> Average Power = 0.000165W Average Time = 3600 s Energy required = 0.59 J

For 1 hour of activity (3600 s) and 1 activation (1 positioning with GPS active for 180 s and 1

transmission with wifi module active for 10 s) of the application we see the great difference of

contribution in terms of power consumption and understand why turning off the

accelerometer during positioning and transmission will not give enough power saving to

compensate the loss in performance of switching On/Off the module.

3.6.2 Power Saving Optimization

In the following we have the strategies adopted to obtain a low-power application:

 selection of hardware: the choice of modules was made considering their power

consumption and capability to be turned on quickly once turned off, in order to

avoid long periods of active modules.

 DPM: turning off devices when unneeded

 Activating only one module at time to avoid overcharging and burst of consumption

 Turning off other useless modules as Bluetooth, HDMI, LEDs and (adopted for the

raspberry prototype). Use the accelerometer as a vibration sensor to recognize stages

where to turn on modules.

 Compare the acquired GPS position with the previous, so that redundant data are not

transmitted and wifi is not activated. This happens in case of error or unwanted

vibrations that activate the process.

 Allow to save energy and not overload the server with useless data

 Prevent activation of modules due to temporary vibrations, setting a timeout large

enough for active period, ex. if the device sense vibrations for not longer than 10/20

seconds, doesn’t activate the modules and continue to keep the idle-listening phase.

 Another possible solution is to turn off the Accelerometer module during

positioning and transmission but considered the extremely low consumption of the

module the gain in terms of power saving is minimal (see 3.6.1).

24

3.7 Power Estimation

Measurement of power consumption were made with estimations according to the specifics of

all the module connected and the board adopted. Of course, since these are estimation

measurements, that can be different from the real consumption, we cannot fully trust them,

but this is a prototype (the raspberry board is pretty like a small computer), on the final

product the embedded system that we will create will mount only the modules that really

needs, an 8-bit processor and memories for code and data, and power consumption will be

totally different.

Ex the board mount a quad-core Cortex-A53 at 1.2 Ghz that is way over the 8-bit processor

that was thought for the final device and dozens of modules not necessary for our scope.

Another reason to make estimations instead of measure directly is that consumption of the

board was way too higher of consumption of single modules, so we could not make a clear

distinction from the different power states seen previously and determine the effective power

of all of them, the raspberry pi3 power consumption is of 1.4W and modules are of order of

mW and μW.

4. Results

The final prototype consists on a raspberry pi3 board connected to the pc via microUSB for

power supply and via ethernet for the ssh connection that allow to print data to the pc. On the

board the accelerometer was connected to the GPIOs relative to I
2
C connection and the GPS

to the GPIOs related to UART connection, see the below picture of the full mounted board.

On “server-side”, that in our case was simulated by the pc before launching the application, is

necessary to run the server script seen before, able to prepare the connection on the predefined

socket, for the board. After setting up everything, we can run the python program and check

its functionality.

The test-on-field was made placing the board with the application inside a car to check if it

works and after few tries (in order to make it works we had to choose the right sensitivity to

vibrations and a timeout value enough to distinguish between temporary stops from

permanent stops, that was not too long) the system demonstrated its operations.

The wireless network adopted to include the board and the pc was the one shared by the

phone and actually we saw that positioning was made respecting the rules of the algorithm

and transmission was always successful to the pc.

Another result checked was the effective gain in power reduction using our method respect

other methods, such as using the GPS as a tracker or not applying a DPM and leaving the

modules always on, the difference on these two methods was that the first always get gps

position and send to server, while the other restrict the number of positioning and

transmission but leaves the modules active.

25

5. Discussion & Conclusion

Our goal is to prove that an application embedded in a device able to handle GPS positioning,

for an outdoor environment car park is possible, maintaining a low-power profile that lead the

system to a long lifetime even if battery-powered. And with the analysis of vibrations made

by an accelerometer, we can minimize the activation of expensive operations, such as GPS

position and data transmission through wifi network and confirm that our goal is possible.

We have to take in consideration the possible use cases, since the analysis of vibrations is

strictly related to the kind of environment, to the vehicle tested and its path along the car park

and structure of wireless network.

So, a pre-configuration step before the application is initiated, must be taken in order to

enhance the vibrations threshold adopted, to decrease/increase the timeout value for motion

and stationarity and to agree the right parameters according to the wireless connection

implemented.

Eventually, the system is able to launch the application and perform its operation without any

external help and last long periods thanks to the low power idle-listening state.

The complete application will involve another feature, that is the relative geolocation in an

indoor environment using a network of Bluetooth Beacons and about the overall project, the

implementation, on server side, of the application that will handle the data received. For this

part of the project, I used a pc running a python script to simulate the server.

5.1 Future Development

There are other possible developments to take in consideration like for example security:

the position data is sent wirelessly through socket connection without any sort of protection,

data are not critical so securing the connection is useless considering even that a more

complex system is needed, but if we want to guarantee a certain security we can consider the

idea of cryptographic communication made with an HSM or a cryptographic accelerator,

always taking into account the possibility to increase complexity and power consumption.

The possibility for the server to ask the position any time he wants, of course all modules

should be always connected to the wireless network and that means that their wifi module

would be always On, so a lot of power consumption.

Always on server side, in case of earthquake or defects distributed all over the network of

devices, we can consider issuing an error if more than a certain number of devices sends

simultaneously data to the server and act accordingly cutting off connection or simply

ignoring those who come later, which is good to prevent a denial of service. In the second

case on application side the device should be able to send back data after some time if server

have ignored it.

Or the possibility to assign to the device more activity modes to switch depending on the

request (secure connection, fast mode with high power consumption, sleep mode to turn off

26

even the accelerator and disable the functionality for a certain period), keeping in

consideration that each feature leads to an increment of complexity and power waste.

6. Bibliography

Raspberry configuration

https://pihw.wordpress.com/guides/direct-network-connection/

https://www.raspberrypi.org/documentation/

Sparkfun ADXL345 datasheet

https://www.sparkfun.com/datasheets/Sensors/Accelerometer/ADXL345.pdf

Programming accelerometer with RPI

http://ozzmaker.com/guide-to-interfacing-a-gyro-and-accelerometer-with-a-raspberry-pi/

http://www.instructables.com/id/3-Axis-Accelerometer-ADXL345-With-Raspberry-Pi-Usi/

Adafruit Ultimate Breakout GPS V3

https://cdn-learn.adafruit.com/downloads/pdf/adafruit-ultimate-gps.pdf

Socket programming

https://www.python.it/doc/howto/Socket/sockets-it/sockets-it.html

https://docs.python.org/2/library/socket.html

www.tutorialspoint.com › Python › Python - Networking

Programming Raspberry GPIO

https://learn.sparkfun.com/tutorials/raspberry-gpio/python-rpigpio-api

Develop with Python

https://pythonprogramming.net

https://www.python.org/about/gettingstarted

https://www.programiz.com/python-programming

https://pihw.wordpress.com/guides/direct-network-connection/
https://www.sparkfun.com/datasheets/Sensors/Accelerometer/ADXL345.pdf
https://cdn-learn.adafruit.com/downloads/pdf/adafruit-ultimate-gps.pdf
https://www.python.it/doc/howto/Socket/sockets-it/sockets-it.html
https://learn.sparkfun.com/tutorials/raspberry-gpio/python-rpigpio-api

27

APPENDIX A

I Raspberry PI 3 - Model B

Figure 3: Raspberry Pi 3 model B

The Raspberry Pi 3 model B is a very common single-board computer used for

development of small project in electronic and robotic fields. The reasons that makes it

popular are the cheap price of the system, the easiness to use and the great HW

performance.

It includes a quad-core superscalar ARM Cortex-A53 processor, with 64-bit and

1.2 GHz, an L2 shared cache of 512 KB, a 1 GB RAM and several internal modules as:

- 4 USB 2.0 port

- MicroSDHC slot

- BCM 43438 Wireless LAN and Bluetooth Low Energy (BLE)

- Full size HDMI

- 40-pin GPIO

- CSI/DSI camera and display port

28

II Adafruit Ultimate GPS Breakout V3 / GPS Neo 6M

 Figure 2: Adafruit Ultimate V3 Figure 3: NEO 6-M

The Global Positioning System (GPS) receiver is a device that receives from satellites

(at least four) data about time and position and compute, using navigation equations, its

own position in terms of latitude and longitude coordinates. The 2 GPS taken in

consideration are the V3 and the neo-6M.

Adafruit Ultimate V3

The Adafruit Ultimate Breakout V3 GPS has 66 channels to track up to 22 satellites and

so to speed up satellite acquisition, has a maximum of 10 Hz Updates, -165 dBm of

receiver sensitivity. Then a low dropout 3.3V regulator, an internal led that indicates the

state of the GPS, alternatively can use the FIX pin connected to an external led and an

EN (enable) pin that allows to turn on/off the GPS. Internal antenna of 15mm x 15mm x

4mm.

The 20-25 mA during navigation and tracking respectively, makes it suitable for low-

power and battery operated applications.

NEO 6-M

The u-blox NEO 6-M has 50 channels, 5 Hz update rate and sensitivity of -160 dBm, is

a valid alternative to the V3 with same configuration and an external stronger antenna

respect the other, useful for semi-closed environment where satellite signal is weak.

29

III ACC

 Figure 4: SparkFun adxl345

The Digital Accelerometer ADXL345 of Sparkfun is a 3-axis acc. with 13-bit resolution

for measurement in range of ±2g, ±4g, ±8g and ±16g. The device is ultra low-power

with current draw of 40μA in active mode and 0.1 μA in standby mode and acquisition
frequency in range of 25-1600 Hz. Provide serial interfaces as SPI and I2C.

IV ACC BERRY IMU

 Figure 5: LSM9DS0 Acc/Gyr/Mag

Is a multifunctional module that act as accelerometer, gyroscope, magnetometer. Serial

interfaces with SPI and I2C, current consumption in normal mode (accelerometer and

magnetometer) of 350 μA and 6 μA in power-down mode. Range of accelerometer from

±2g to ±16g, magnetic scale of ±2 / ±4 / ±8 / ±12 gauss and angular rate of ± 245 / ±500

/ ± 2000 dps.

30

APPENDIX B

I SSH

The Secure Shell is a network protocol for remote connection on computer systems in a

unsecured network.

Mostly used for remote login, this protocol allows to create a secure channel of

communication among nodes with client or server SSH mounted on them with

authentication made available with passwords or cryptographic key pair, public and

private (SSH keys)

II I2C

 Figure 6: Example of I2C interconnection

I2C (Inter-Integrated Circuit) is a serial bus communication protocol for multi-slave and

multi-master systems. It needs only 2 bidirectional open-drain lines, one for data called

SDA and one for clock called SCL. Works on 7-bit address space and speeds of

100 kbit/s, arbitration occur comparing the SDA level with the expected one, if different

means that another master is sending data.

This protocol is mostly used to reduce wires overhead and allow peripheral devices

connection with discrete bus speed.

31

III SPI

Figure 7: Example of SPI interconnection

SPI (Serial Peripheral Interface) is a synchronous serial protocol for single-master

multi-slave system that adopt 4 wires for connection: one for clock, SCK, one for

selecting the slave to communicate with, SS, two half-duplex channel, a Master Out

Slave In, MOSI and a Master In Slave Out, MISO that allow to a full-duplex

communication among master and slaves.

Bus speed is of order of Mbits/s so better than I2C, but with more space overhead. For

this application were tried both solution to interconnect modules to the RPI and I2C was

chosen

V UART

Figure 8: Example of UART interconnection

UART (Universal Asynchronous Receiver-Transmitter) is an asynchronous serial

communication protocol with configurable speed transmission. Allow to communicate in

simplex, half duplex and full-duplex. The transmitter split the bytes of data in single bits and

send them sequentially while the receiver reassembles them with a shift register. As seen in

the picture, data sent by the transmitter starts with a special start bit (e.g. logic 0) and ends

with a stop bit (logic 1), with eventually a parity bit.

32

APPENDIX C

I Modules Configuration

JSON data

 import json

 json_file = open(“filename.txt”, “r”)

 data = json.load(json_file)

GPS Configuration

 from gps import *

 import time

 import threading

 import RPi.GPIO as GPIO

 gpsd = None

 GPIO.setmode(GPIO.BCM)

 GPIO.setup(17,GPIO.OUT)

 GPIO.outuput(data[“pin”],1)

 Class GpsPoller(threading Thread)

 def _init_(self):

 threading.Thread._init_(self)

 global gpsd

 gpsd = gps(mode=WATCH_ENABLE)

 self.current_value = None

 self.running = True

 def run(self)

 global gpsd

 while gpsd.running:

 gpsd.next()

33

Accelerometer Configuration

class ADXL345:

 address = None

 def __init__(self, address = 0x1d): #IB: changed 0x53 for 0x1d new i2c address

 self.address = address

 self.setBandwidthRate(BW_RATE_25HZ)

 self.setRange(RANGE_2G)

 self.enableMeasurement()

 def enableMeasurement(self):

 bus.write_byte_data(self.address, POWER_CTL, MEASURE)

 def setBandwidthRate(self, rate_flag):

 bus.write_byte_data(self.address, BW_RATE, rate_flag)

 def setRange(self, range_flag):

 value = bus.read_byte_data(self.address, DATA_FORMAT)

 value &= ~0x0F;

 value |= range_flag;

 value |= 0x08;

 bus.write_byte_data(self.address, DATA_FORMAT, value)

 def getAxes(self, gforce = False):

 bytes = bus.read_i2c_block_data(self.address, AXES_DATA, 6)

 x = bytes[0] | (bytes[1] << 8)

 if(x & (1 << 16 - 1)):

 x = x - (1<<16)

 y = bytes[2] | (bytes[3] << 8)

 if(y & (1 << 16 - 1)):

 y = y - (1<<16)

 z = bytes[4] | (bytes[5] << 8)

 if(z & (1 << 16 - 1)):

 z = z - (1<<16)

 x = x * SCALE_MULTIPLIER

 y = y * SCALE_MULTIPLIER

 z = z * SCALE_MULTIPLIER

34

 if gforce == False:

 x = x * EARTH_GRAVITY_MS2

 y = y * EARTH_GRAVITY_MS2

 z = z * EARTH_GRAVITY_MS2

 x = round(x, 4)

 y = round(y, 4)

 z = round(z, 4)

 return {"x": x, "y": y, "z": z}

II Data Management

axes = adxl345.getAxes(True)

if ((int)(appx*val_vib) != (int)(axes['x']*val_vib)) or ((int)(appy*val_vib) != (int)(axes['y']*val_vib)) or
((int)(appz*val_vib) != (int)(axes['z']*val_vib)):

print (" x = %fG -- y = %fG -- z = %fG mov=%d stop=%d" % (axes['x'],axes['y'],axes['z'],
vett_mov, vett_stop))

 vett_mov = vett_mov + 1

 vett_stop=0

 if(flag==0 and vett_mov > move_value):

 flag=1

 print("----Movement----")

else:

vett_mov=0

 if(vett_stop < (stop_value+1)):

 vett_stop=vett_stop+1

 if(flag == 1 and vett_stop > stop_value):

 …C.III WIFI/GPS Power Management

III WIFI/GPS Power Management

GPIO.output(data["pin"],1) #ENABLE GPS

print("----Capture GPS data----\n") #START handling gps/transmission

gpsp = GpsPoller() #start polling gpsd

gpsp.start()

while lati == 0: #wait until a valid value is get

 lati = gpsd.fix.latitude #get latitude

longi= gpsd.fix.longitude #get longitude

35

alti = gpsd.fix.altitude #get altitude

print ("lat: %f -- long: %f -- alt: %f " % (lati,longi,alti)) #print GPS data on screen

GPIO.output(data["pin"],0) #DISABLE GPS

print("Gps__Off")

if (lati != prev_lat or longi != prev_lon): #check if different from previous value

cmd = 'sudo ifconfig wlan0 up' #prepare command

os.system(cmd) #ENABLE WIFI

 time.sleep(8) #wait connection

 s = socket(AF_INET, SOCK_STREAM) #create socket

 print("Data sent to server!!")

 s.connect((serverHost, serverPort)) # connect to server on the port
 #connect to remote server

 s.send(str(i)+' Position: LAT= '+str(lati)+' LONG= '+str(longi)+' ALT= '+str(alti)) # send
the data

 s.close() #close connection

 cmd = 'sudo ifconfig wlan0 down' #prepare command

 os.system(cmd) #DISABLE WIFI

 prev_lat = lati

 prev_lon = longi

 print("Wi-Fi__Off")

lati=0

print("----START AGAIN----")

APPENDIX D

GPS Global Positioning System

RPI Raspberry PI

PSM Power State Machine

FSM Finite State Machine

DPM Dynamic Power Management

GPIO General Purpose Input/Output

OS Operating System

TCP Transmission Control Protocol

		Politecnico di Torino
	2018-04-07T09:46:20+0000
	Politecnico di Torino
	Andrea Acquaviva
	S

