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Abstract

Variability of assembly operations (MURA) in a high quality production line is one of the main

sources of losses in assembly operations. Typically it is caused by difficult operations which the

operator cannot always perform in the same time. Common causes are product tolerances, method

weakness, weak tooling design or balancing not efficient. Moreover, on top of variability in timing

of the operations in a workplace caused by difficult operations one must add that caused by vehicle

and logistic complexity (different combinations of product features and optional). A high level of

variability negatively affects the stability and robustness of line balancing since operators could be

unable to perform the required operations in the expected time and therefore potentially exceed

the set tack-time. The result of such situation is the generation of multiple micro stoppages (loss

in line productivity), quality issues due to an increase in stress of the operator and workplaces

non accessible to everyone. However, identifying such losses is difficult since it requires multiple

(usually at least thirty records a operator) and accurate measurements of the duration of operations.

Traditionally, Industrial Engineering identifies those stations where the variability is suspected to

generate problems and spends a considerable effort in measuring the real duration of operations

during a shift or throughout different shifts. Even if this approach is accurate and effective, it is very

time-consuming especially when it comes to identify variability and can therefore not be used to

cover all stations. Conversely, in the new generation of Manufacturing Execution System (MES) of

FCA (Fiat Chrysler Automobiles) Plants, timestamps of various operations are stored. Therefore,

the aim of this work is trying to give a different approach to the Mura analysis, different from the

traditional one, thanks to the new Industry 4.0 paradigms, through building a tool able to perform

statistical analysis able to describe operations’ features and detect the variability contributors, by

using also machine learning techniques.
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Chapter 1

Introduction

1.1 Introduction

This master thesis is part of the new trend of car makers and manufacturers in general of moving

technologies, methodologies and tools towards digital and Industry 4.0 concepts. In particular,

the focus of these new paradigms applied to cars production involves the utilization of very new

academical knowledge to existing plants and Information Technologies infrastructure in order to

find useful insights to improve performances, enlarge the business and reduce wastes and losses.

At the moment, FCA plants have reached a very high degree of digitalization in which there

are a lot of softwares that hold different functionalities, e.g. robot management, production flow

control, logistics management, and collect data from different data sources. Unfortunately, very

often, data collected are unused and platforms are independent each other causing a serious waste

of opportunity in terms of analysis. Hence, the guideline for the next future of the company

is trying to build a platform in which the whole production pours every kind of data with the

purpose of aggregating them and then performing more in-depth analysis involving Big Data,

Machine Learning and Artificial Intelligence techniques. The final goal is reaching a condition of

Data Driven Decision Making (DDDM) which is an approach to business company governance

that values decisions that can be backed up with verifiable data. The success of the data-driven

approach is reliant upon the quality of the data gathered and the effectiveness of its analysis and

interpretation [6].

Within this scenario, the very early stage of the implementation of the digital revolution deals

with gathering some practical use cases with the purpose of testing some innovative solution to

real industrial problems and investigate the potential advantages of using the newest solutions
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1.2 Thesis goal

and technologies, e.g. virtual reality, augmented reality, Internet of Things devices, etc. This

innovation path should be the test bench where digital methodologies mix with manufacturing

process underlying the benefits and improvements with respect to the traditional one. These use

cases, are typically proposed by people working in plants and white collars expose a practical

problem that could be solvable thanks to digital technologies that do not exist yet in FCA’s

systems.

1.2 Thesis goal

The goal of this Master Thesis is trying to give a methodological solution to an use case pro-

posed by "Avv. Giovanni Agnelli" Plant (AGAP) about the analysis of the variability (Mura) of

labor intensive operations1 that are severely affected by NVA Activities2, representing a bunch

of problems for either plant and company business, workers safety and product quality. The sce-

nario of the analysis is a high quality assembly line. High quality reflects the fact that the time

cycle is very high and the number of operations made by workers is significantly higher than a

traditional assembly line. In particular, at the moment, the variability of operations is very dif-

ficult to be taken into account because it deals with off-line and very expensive analysis where a

worker should film the supposed most critical station. timing the operation times. If the number

of critical operations is very high, the analysis might be very expensive in terms of time and money.

This work aims to provide a tool able to automate the Mura analysis and detection, investigate

the statistical distribution of operation times for different operations and operators; try to find

correlations between features using statistical tools and machine learning algorithms and find the

main contributors, compute some statistical parameters in order to extract new KPIs (Key Perfor-

mance Indicators) useful to keep under control labor intensive areas and detecting the most critical

stations or operations and the possible factors that cause variability and solving them to improve

productivity performances. Two different machine learning algorithms have been tested with the

available dataset: performances have been evaluated and the actual potential was brought to the

attention of the plants stakeholders.

1Labor intensive refers to a process or industry that requires a large amount of human labor to produce its goods
or services. On the other side, capital intensive, refers typically to automated and robotic processes.

2Non-Value Added Activities add costs to a product but do not add any value to the realization or management
of itself.
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1.2 Thesis goal

Operations data are stored in MES (Manufacturing Execution System), which is a computerized

system that stores features of the labor intensive operations. In this work, the data source is

represented by nine MES extractions into Excel files containing just two weeks of operations made

in "Avv. Giovanni Agnelli" Plant (AGAP). Files contain just temporal data and information related

to operators and teams.

The core of this work is basically extracting useful information from existing data. Hence, a data

analysis activity has been conducted, performed with Python programming language because this

language is going to establish itself as one of the most popular languages for scientific computing,

thanks to its high-level interactive nature and its huge ecosystem of scientific libraries, for the

statistical analysis, machine learning algorithms and results visualization. It is an appealing choice

for algorithmic development and data analysis [11] in trend with the very last state-of-the-art

research fields. The code is developed within the Anaconda platform, using both Spyder IDE and

Jupyter Notebook.

3



Chapter 2

Fiat Chrysler Automobiles and

the Word Class Manufacturing

2.1 Background

This thesis is the outcome of an internship experience in the World Class Manufacturing (WCM)

Development Center of Fiat Chrysler Automobiles Group.

Since this work is inserted in a sort of digital revolution in the manufacturing field, is important

to explain the main concepts behind the methodologies and tools used to build an efficient and

productive car making process applied by the company. WCM is the cornerstone of FCA manu-

facturing and with the advent of Industry 4.0, it is going to implement tools more advanced and

innovative to solve traditional and difficult problems and improving manufacturing methodology.

Hence, a solid introduction to the Industry 4.0 context should be discussed. It is characterized by

innovative Information and Communication Technologies (ICT) applications with the final conse-

quence to reach the status of "smart factory" (shown as a conceptual model in the figure 2.3) able

to change every aspect of manufacturing management.

This work is going to explore some practical case studies that should introduce the combination

of the traditional manufacturing methodologies with advanced Industry 4.0 applications, by not

distorting the existing structure of the plant, but simply exploiting systems and data already present

in IT systems and try to use them following innovative knowledge and tools as Machine Learning

and Artificial Intelligence

The WCM Development Center [18] is the bridge between innovation, research and development
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2.2 Industry 4.0 and digital revolution

Figure 2.1: Smart factory model. The actual strength is the point number 3, where data gathered
are managed, computed using state-of-the-art methodologies and transformed into useful informa-
tion to the company business.

of the methodologies and application at Group plants. The Center develops methods and tools to

support the evolution of WCM. The Center’s activities include management of a large number of

projects, training and coaching, support with implementation and development of best practices.

It is also responsible for people development through specialized task forces, planning workshops,

training events and web-based events.

The next section tells about the already mentioned Industry 4.0 paradigms and concepts and

gives an idea of how this revolution is going to transform and change industrial processes and

manufacturing.

2.2 Industry 4.0 and digital revolution

Throughout history, industrial revolutions characterized precise moments in which human life

widely change from technological, socioeconomic and cultural point of view. The first industrial

revolution was the major step in human history; in particular, regarding manufacturing technology,

where production methodologies moved from human powered technology to machines. This lead

to both factories emerging as well as new ways of processing old and new materials and improved

water power and the use of the steam-engine. The second industrial revolution introduced the

power of electricity, chemical products, oil and the combustion engine and lead to a shift towards

5



2.2 Industry 4.0 and digital revolution

a new economy. If during the first industrial revolution consequences were slow, with the second

one they were very faster and society radically changed, from the humblest to the richest, with the

birth of new jobs, as laborer and industrial capitalist.

The third industrial revolution refers to a modern digital revolution. It started after the Second

World War and during Cold War, where scientific discoveries and new technologies, especially

in telecommunications field, represented the actual strength of Nations. For example, in 1969,

the American Department of Defense built the first working telematics network able to allow

communication among remote places for security and research reasons, called ARPANET1, that was

going to be the ancestor of the Internet of nowadays. The effect of the third industrial revolution

on industry materialized with the advent of computers that boosted the beginning of automation,

when robots and machines began to replace human workers in manufacturing processes, assembly

lines and general management like transports, logistics, etc.

Nowadays, the very last trend in industry is the so called "Industry 4.0". Industry 4.0 was proposed

by the German Government, in which the essence is mixing the Internet with the manufacturing.

Industry 4.0 describes the future of manufacturing and will be established over the Internet and

Information and Communication Technologies (ICT) based on innovative interactive platforms,

the Internet of Things (IoT), industrial Internet of Things (iIoT), clouds, Artificial Intelligence

(AI) and Machine Learning (ML) [7] (Figure 2.2). The fourth industrial revolution takes the

Figure 2.2: Industrial revolutions main changes [39]

automation of manufacturing processes to a new level by introducing those customized and flexible

mass production technologies. The main consequence is that machines will operate independently,

or cooperate with humans in creating a customer-oriented production field that constantly works

1ARPANET was an early packet switching network and the first network to implement the protocol suite TCP/IP.
Both technologies became the technical foundation of the Internet
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2.2 Industry 4.0 and digital revolution

on maintaining itself, giving the birth to the so called "smart factory" (figure 2.3). The machine

rather becomes an independent entity that is able to collect data, analyze it, monitoring physical

processes and taking decisions upon it. This becomes possible by introducing different new concepts

as self-optimization, self-cognition, and self-customization into the industry. The manufacturers

would be able to communicate with computers rather than operate them.

Andrew Kusiak gives general concept of a smart manufacturing enterprise in his publication [21].

Basically, the main transformation in manufacturing is the birth of the Cyber-Physical System

(CPS) able to provide a lot of new functionality and management methods.

(a) General architecture working for a smart factory (b) Main capstone principles for a smart factory

Figure 2.3: General concept of a smart manufacturing enterprise [21].

Every existing mechatronics system has been transformed into a CBS, allowing humans to

perform complex tasks that require a minimums of suitability and specialized knowledge. Basically,

these systems act as industrial production integrators of computing and management of the physical

process happening in a plant, interacting in a dynamics continuous time and discrete events.

Cyber-Physical System, hence, connects the virtual space with the physical reality, which inte-

grates computing, communication and storage capabilities, and can be real-time, reliable, secure,

stable and efficient operation. The core concept of the Cyber-Physical System is: computation,

communication and control, to achieve collaborative and real-time interaction between the real

(physical) world and the information world through feedback loops of the interaction between

computational processes and physical processes [29] [35].

Basically, there are four general design pattern within Industry 4.0. These are used as guidelines

by companies to implement industry 4.0 scenarios and are summarized as follows:

• Interoperability Represents the capability of machines, electronic devices, sensors and soft-

ware to connect and communicate each other via Internet or Internet of Things.

7



2.2 Industry 4.0 and digital revolution

• Information transparency Deals with the free access to data, which would allow to create

a virtual copy of the physical world by enhancing digital plant models with smart sensors data

with huge advantages in simulations. This requires the aggregation of different data coming

from different sources to higher-value context information in order to build and validate the

model.

• Technical assistance Consists of supporting human activities by aggregating and visualiz-

ing information comprehensibly. Then, it deals with the ability of CPS to physically support

humans by conducting a range of tasks that are difficult, unpleasant, too exhausting or unsafe

for humans.

• Decentralized decisions The ability of CPS to make decisions on their own starting from

autonomously performed analysis and to perform their tasks as independently as possible.

This leads to the ideal situation of data-driven decision making, where data provides the

necessary insights to properly move towards business decisions.

But as with any major shift and changing, there are a lot of challenges inherent in adopting

this model like: data security issues that are hugely increased by integrating new systems and

more access to those systems, a high degree of reliability and stability needed for successful of

cyber-physical communication that needs a robust and secure physical infrastructure, maintaining

the integrity of the production process with less human interventions with the consequent saving

on workers.

By the way, there is a systemic lack of experience and manpower to create and implement these

systems (especially in Italian companies), without mentioning a general reluctance from stakehold-

ers, investors and high company management, even if there are a bunch of advantages in using

Industry 4.0 practices they are not totally aware of them2. Globally, when it is about increasing

the degree of digitalisation of the company, managers agree the changing. But when the proposal

is renewing the business model, which is actually the central theme of Industry 4.0, management

is reluctant to move in that direction [25].

However, for sake of clarity, smart manufacturing is not about the degree of automation of the

manufacturing floor; it is about autonomy, evolution, simulation and optimization of the manufac-

turing enterprise. The scope and time horizon of the simulation and optimization will depend on

2A study from Politecnico di Milano shows how Italy is still very backlog in Industry 4.0 theme: the 23% of the
managers interviewed declared that they have no idea about these themes.
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the availability of data and tools. The level of "smartness" of a manufacturing enterprise will be

determined by the degree to which the physical enterprise has been reflected and invested in the

cyber space.

Before going in the detail of Industry 4.0 and the description of the scope of this work and the

reached results, is needed to briefly show how the company is moving in the Industry 4.0 scenario

and what is the direction it is walking towards.

2.2.1 Digital in FCA manufacturing

Within this scenario of innovation and new ideas, how is FCA going to act in manufacturing

innovation? Actually, the digital manufacturing field was born a lot of years ago, when the personal

computers and electronic devices started to be controllable from remote: that was the birth of

large scale automation. The figure 2.4 shows the WCM evolution steps, from its birth to the

implementation of "digital WCM", which means that the new digital methodologies have heavily

embraced WCM [13].

Figure 2.4: Caption

Today, with Industry 4.0 there are not only automated and very smart processes, but also,

thanks to a lot of new concepts like machine learning, artificial intelligence, business intelligence,

companies like FCA are able to find insights from data in order to improve their own business in

advance. Machine learning’s core technologies align well with the complex problems that man-

ufacturers face every day: from striving to keep supply chains operating efficiently to produce

customized, built-to-order products on time, machine learning algorithms have the potential to
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2.2 Industry 4.0 and digital revolution

bring greater predictive and analysis accuracy to every phase of the production.

Figure 2.5: Digital manufacturing for FCA company. On the left the enabling technologies ex-
ploited in plants. On the right the main fields of application of such technologies.

The figure 2.5 synthetically explains how the company is behaving with respect to the Industry

4.0: on the left side there are the main enabling technologies exploited for the continuous im-

provement projects, while on the right side, there is a list of main project areas, where the digital

projects are going to be implemented. In this work, the focus is placed into big data and machine

learning analytics: they are fundamental to the digital revolution and in realizing systems with

intelligent behavior [22].

Many of the algorithms used within this scenario being developed are iterative, designed to

learn continually and seek optimized outcomes. In order to explain and clarify the opportunity

that algorithms may bring to manufacturers, is reported the following list [8]:

• Increasing production capacity while lowering material consumption: smart manufacturing

systems designed to capitalize on predictive data analytics and machine learning have the

potential to improve yield rates at the machine, production cell, and plant levels.

• Providing more relevant data such that operations, finance and supply chain teams can better

manage factories and demand-side constraints.

• Improving preventive maintenance and maintenance in general terms. It would prevent use-

less repairing procedures and line stoppages, with the consequent reduction of productivity.
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2.2 Industry 4.0 and digital revolution

Integrating machine learning databases, apps, and algorithms into cloud platforms are be-

coming pervasive. The following graphic (figure 2.6) illustrates how machine learning is

integrated from a conceptual point of view.

Figure 2.6: The graph shows a conceptual model of the global structure of a smart factory.

• Enabling monitoring conditions that provide manufacturers tools that increase OEE (Overall

Equipment Effectiveness) performance considerably, hence plant performances.

• Revolutionizing product and service quality by determining which factors most and least

impact.

Despite car makers worldwide seem to be a bit far from the actual application of digital concepts

described above, FCA is moving toward the innovation in digital from lots of point of views. This

master thesis was born thanks to the willingness of linking academical knowledge to plants’ needs

and trying to solve them with already present technologies and using the huge amount of data which

automated systems produce. Before going in the details of WCM, following, the next section deals

with a very quick overview on the classical structure of a car making plant, so that the reader can

understand the practical context of the case study.
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2.3 FCA plant structure

2.3 FCA plant structure

The car making process is hugely complex and difficult and requires a high degree of organization

and the splitting of manufacturing processes that are described as follows ([17]):

• Stamping Production starts in the stamping shop, where gigantic presses transform rolls of

metal into the main parts of the body of the car. The stamping shop is also equipped with

a state-of-the-art metrology room where, before delivery to the body-in-white area, a pair of

3D camera robots use anti-reflective blue light to scan the components for imperfections.

• Body-In-White The next step in the process takes place in the body-in-white (BIW) area

(shown in Figure 2.7), which is equipped with lot of robots. Assisted by sensors and cameras,

these next-generation robots assemble the stamped metal parts to form completed bodies-

in-white. A variety of joining techniques are used – including welding, gluing and screwing

– and each process is subject to rigorous controls.

Figure 2.7: Assembling of the body metal components

• Paint Shop The assembled body is transferred from the BIW area to the paint shop, where

it undergoes multiple washes to remove grease and other impurities. It is then submerged in

the cataphoresis tank where, using an electro-chemical process, a uniform protective coating

is applied to protect the vehicle from corrosive elements. Once dried, about 100 meters

of sealant are applied to completely seal the body and prevent air and water entering the

passenger compartment. The vehicle then enters a sterile chamber, where highly-efficient

robots can paint the entire body in just 90 seconds – using only 3.5 kg of paint. Once the
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2.3 FCA plant structure

paint has been baked, a team of specialists checks that the spraying has been carried out

with perfect precision.

• Assembly Shop Finally, after the principal mechanical components (engine, suspension and

transmissions) are fixed to the body with high-strength steel screws, wheels, brakes, seats,

control panels, steering wheels, lights, the on-board entertainment and electrical wires and

other systems are fitted as the vehicle moves down the assembly line (Figure 2.8) which is

basically the field in which human made operations happen and transform the final product.

Each component is sourced and delivered to the stations on the assembly line at precisely

the right time. This complex logistics process requires methodical planning and organization

supported by an advanced IT platform that connects factory, suppliers and logistics in real

time. In addition, all workstations are equipped with eight anti-error devices that automat-

ically stop the assembly line if an abnormality is detected, as well as terminals for logging

completed activities and submitting suggestions for improvement. Members of a workstation

team are trained on all tasks to enable rotation.

Figure 2.8: The assembly line of Melfi plant

In order to clarify the scenario of the plant in which there are the actors related to the Mura

analysis, the following graph (Figure 2.9 summarizes how workers are organized within an FCA

plant and the plant management system.

Assembly shop is composed by a lot of stations. Each station is the workplace of six operators

performing some manual operations, and a Team Leader. Rather than the traditional top-down ap-

proach, FCA plants adopt a lean organizational model centered on production units, through direct

and effective communication, the multi-disciplinary role of Team Leader ensures alignment with the
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2.4 World Class Manufacturing

Figure 2.9: Global organization of an FCA plant.

highest production and quality standards. Therefore, the most involved part of the organization

in the generation of Mura is represented by these figures, that are coordinated by the Supervisor,

which manages the whole UTE (Unità Tecnologica Elementare), which is the set of all the stations.

Before analyzing how the work is accomplished, since the manufacturing is guided by the WCM

principles as already said, the next section will focus on the methodology used by FCA, how it

was born and how it is used nowadays.

2.4 World Class Manufacturing

2.4.1 Introduction to WCM

During 50s, Japanese car manufacturers started to develop several methods to optimize manufac-

turing processes since profit margins are usually very small: one of the most famous is the Toyota

Production System (TPS). The aim of this methodology focused on eliminating all wastes from

plants and gave birth to several new concepts such as Lean Manufacturing, Just In Time, Total

Productive Maintenance and Total Quality Management [36].

World Class Manufacturing was born in the United States in the 80s. It is an innovation program

based on the concept of continuous improvement which inherits all Japanese concepts mentioned

above, but it is different from TPS since every kind of strategy is guided by the concept of "focus-

ing" attentions and resources towards attacking every kind of waste and loss. This approach is lead

by Cost Deployment (CD) pillar, which is the compass that highlights the main loss sources and
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quantifies the benefits coming from eliminating them. It implies that each activity should be ana-

lyzed from its own economical impact on the plant balance. It is a working method to be applied

every working day without an end point: this is the benefit brought by continuous improvement

until reaching the World Class level and the condition of zero wastes and zero losses.

Every WCM team plant activity is oriented to the realization of projects called "Kaizen" which aim

to reduce losses and eliminate their causes. The figure 2.10 shows the structure of the so-called

standard kaizen, which is used for the analysis of the workflow of a standard problem-solving. The

Figure 2.10: Standard Kaizen: used for the implementation of a project aiming to the continuous
improvement.

word "Kaizen" is the composition of two Japanese words: "kai" means changing, improvement and

"zen" means better and refers to the step by step gain in order to reach a condition of zero acci-

dents, zero losses, zero wastes, zero stock, maximizing the benefits-costs ratio and get the greatest

satisfaction for both company and workers [2].

This methodology was introduced in Italy in 2005 by Fiat Group and contributed to the re-

launch of the car manufacturer sector, thanks to Hajime Yamashina, Professor Emeritus at Kyoto

Universality in Japan which played a key role, able to re-elaborate and contextualize the method-

ology in the European scenario. The greatest innovation introduced by the Japanese professor
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deals the introduction of Total Industrial Engineering (TIT): "A systyem of methods where the

performance of labor is maximized by reducing Muri (unnatural operation), Mura (irregular oper-

ation) and Muda (non-value added operation), and then separating labor from machinery through

the use of sensor techniques". TIT system integrated by professor Yamashina deals, hence, with

the solution of manufacturing problems which realizes the continuous improvement by involving

the whole operations staff through the usage of precise concepts as:

• Orientation to the whole system rather then the single department

• Inclusion of people in improving actions from the methodological point of view

• Knowledge of industrial engineering techniques

• Focus on people working in the plant

There are few revolutionary and distinctive aspects that differentiate WCM from the classical

approaches [14]:

• Structured and strict approach organized in pillars and steps

• Strong attention to measurability

• Introduction to new topics (client service and people development)

• Structuring of elements such as planning, organization, leadership and motivation

All the group companies and suppliers joined to the program: Fiat, Maserati, Lancia, Alfa

Romeo, Magneti Marelli, Teksid, Comau, CNH Industrial, and also Chrysler when is was acquired

by the group which became FCA, i.e. Fiat Chrysler Automobiles. Today, more then 560 FCA plants

apply WCM and the whole company gets benefits year by year, enough to export the application

to other companies operating in totally different fields, offering training materials and coaching

on World Class methodologies by following a business line lead by WCM Training and Consulting

office. Technical aspects of WCM integrate perfectly with Industry 4.0 model, which forecasts

the digitalization of production processes by applying some new enabling technologies (KET -

Key Enabling Technologies), like 3D-print, advanced robotics, simulation systems, augmented

and virtual reality, object communicating through the Internet of Things, new telecommunication

paradigms and protocols and very powerful and cheap computation capabilities in order to reach

as much as possible the status of "smart factory" [37]. All actions are evaluated by their capacity

of affecting the processes performances, thanks to the actual evaluation of solutions’ benefits in
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order to guarantee sustainability of the industrial development of the company. At the moment,

WCM methodology is implemented in every plant of the FCA Group, including historical ones like

Mirafiori, Giambattista Vico in Pomigliano D’Arco, Melfi and Cassino.

2.4.2 WCM structure

WCM strategy is transverse to every process and involves all the company activities by using and

implementing methods included in ten technical pillars and ten managerial pillars. This model

deals with the determination of priority of action by means of the identification and analysis of

wastes and losses in the production system called "Cost Deployment" pillar. As already explained,

it is a kind of helm which guides actions toward the solution of the most onerous problems or

conditions. So, the output of Cost Deployment is the identification of small plant area in which a

problem has been identifies, characterized and evaluated in terms of cost, called model area, where

doing projects (Kaizen) and actions to face and attack the loss detected by Cost Deployment. The

target is reached through implementing methods and tools included in the ten technical pillars

and managerial pillars that ensure the management of production and operative problems and the

commitment needed to carry on the program.

Managerial pillars are aimed to support the technical pillars and inform the management and the

entire organization of WCM benefits. The main result of managerial pillars implementation is the

allocation of resources and the commitment for the WCM program. They are still today in an

early phase of both implementation and application. These pillars are part of the revolutionary

concept lead by WCM, in which planning, organization and leadership, differently from Japanese

model, play an very central role. Pillars are summarized in the following temple-like structure,

shown in figure 2.11, where columns represent technical pillars, and basis represent the managerial

ones. The whole continuous improvement process starts from the identification of a model area

where pillars act in order to solve findings; then, whenever the result is reached, the project is

expanded to the other plant areas and continues with the standardization and implementation of

the found solutions in the expansion areas, until it arrives to the whole plant.

Each pillar is composed by seven different steps: each of which has an input, which is usually

the problem to solve or an indicator to improve and an output, which is usually a performance

indicator called Key Performance Indicator (KPI) and/or an activity indicator called Key Activity

Indicator (KAI).

The verification and the achieving of different performances level of WCM plan is documented by

a system of internal and external audit. They are used to validate the implementation of WCM
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Figure 2.11: WCM temple structure: columns represent technical pillars. Basis represent manage-
rial pillars.

toward the principles of continuous improvement. While internal audits are focused on the self-

assessment and are conducted by own pillar leaders, external audits are assigned by World Class

Manufacturing Association [19] and with the purpose of evaluating each of the twenty pillars and

assign a score. The final score labels the plant level which can be Bronze, Silver, Gold or World

Class.

The case study in question, is managed by and implemented within the "Autonomous Activities"

pillar. Next paragraph focuses the attention on the explanation of the theoretical concepts behind

it and how it is linked with this work.

2.4.3 Workplace Organization sub-pillar

After the explanation of the general structure of WCM, the focus moves into the pillar closely

related to this work, which is "Autonomous Activities" pillar. It is actually divided into two

sub-pillars: Autonomous Maintenance (AM) dealing with capital intensive areas and Workplace

Organization (WO) dealing with labor intensive areas, that are areas requiring a high level of

manually executed operations by operators. In FCA plants these areas are assembly UTE (Unità

Tecnologica Elementare). Since the aim of this master thesis is analyzing the variability of operation

times made by human operators, the focus is pointed to the WO sub-pillar.

The main objective of WO pillar is increasing of productivity in labor intensive areas keeping

the principle of Minimal Material Handling3 Furthermore, it must:

3Minimal Material Handling involves short-distance movement within the confines of a building or between a
building and a transportation vehicle. In WO case, it deals with minimization people movements.
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• Guarantee ergonomics and safety to operators

• Product quality through a robust process foolproof

• Respect production plans and realize high services to workers

Basic principles

There are some common principles that should help the comprehension of the discussion.

The first one is the concept of "action" that can be done into a plant and can be quantified

from an economical point of view. Basically, there are different kind actions that can be performed

within a production process:

• Value Added (VA) Action: is the time used to perform activities that actually transform and

add value to the final product. E.g. Screwing a piece of body.

• Semi-Value Added (SVA) Action: is the time used to perform activities that are necessary

to VA actions, but whose do note add a value to the product. E.g. Taking a tool.

• Non-Value Added (NVA) Action: is the time used to perform activities useless and not

requested by the process that, therefore, do not add any value to the product. E.g. Walking,

looking for a tool.

Another important principle it the Takt Time (TT). It is the production rhythm such that the

market demand would be satisfied. It is calculated as follows:

TT = Availabletimeperday

Clientsdemandperday
(2.1)

Takt Time is different from Time Cycle (TC), which is the time necessary to the completion

of an assembly operation, and depends on the process. From the knowledge of both of them, is

possible to get another important parameter, which is the number of operators (NoP):

NoP = TC

TT
(2.2)

Finally, the two most important concepts of an assembly line are shown in the figure 2.12 to

better understand. The time cycle of the production line is determined by the time cycle of the

bottleneck operation, that is the longest one in terms of time. The dissaturation is the difference

between operation time cycle and the bottleneck operation time and reflects an amount of dead

time in which the plant does not produce. The yellow part deals with all the actions related to

19



2.4 World Class Manufacturing

Figure 2.12: Figure shows 10 operators doing 10 operations each. The arrow highlights the bot-
tleneck operations and "forces" the time cycle to be very close to the takt time.

the sequence of operations, while the violet part is the unbalancing and is the difference between

the bottleneck operation and the time cycle of the single operation. This is a time in which some

operators work, while other operators have already done their own operations. Hence, it is easy

to understand that the more the small yellow towers are low, the faster is the production line,

with very high consequences in the company business. The ideal situation would forecast that

every operator performed the sequence of operations employing always the same time in order

to reduce the time cycle, hence producing more cars, or to re-organize the unbalancing such that

company earns on worker salary. Figure 2.13 summarizes a cost matrix made by Cost Deployment,

which clusters losses per macro-fields, and is possible to notify that unbalancing is one of the main

cost voices. Going deeper in the cost deployment analysis, figure 2.14 shows that the main pillar

involved in the losses is WO in a stratification losses graph, and it is very higher then the others

pillars. For this reason, is very important analyzing the main factors and the reasons for which this

pillar is so critical. All these losses that involve WO are due to incorrect allocation of tasks among

all assembly shop workers. The causes might be related to technical constraints, bad logistics

organization or lack of capabilities by the blue collars themselves. Starting from the root-cause of

the problem, different pillars are called to purpose to solve it.

Since the variability of the human-made operations is fully faced by the step 2 of Workplace

Organization sub-pillar, for sake of clarity the step 1 should be briefly discussed in the next
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Figure 2.13: Actual C-Matrix from cost deployment. It shows as the main losses sources are NVAA,
logistics and unbalancing: typical human related operations.

Figure 2.14: Total losses per WCM pillar. The first one is Workplace Organization, highlighting
its importance in the plant business.

paragraph.

Step 1

The main activity of the first step of WO pillar is application of 5 S, shown in Figure 2.15.

It comes directly from the Japanese TPS [41], and has the purpose of getting the workstation

cleaned, ordered and organized so as to keeping the process under control (with low variability)

and standardizing tools positions and cleaning procedures . This methodology contributes in

creation of a certain mindset able to keep the workplace cleaned and ordered getting easy the

little continuous improvement actions. These operations are done in parallel with the first step of
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"Logistics" pillar, where different operators come into contact and work with the same tools.

Figure 2.15: 5S application picture

Step 2

The step 2 of WO is the core of this master thesis. The aim of this step is the creation of a

workplace in which it is easy to work, it is easy to work and the workers are efficient in total safety

conditions, by attacking the main enemies of productivity, which are the so called 3 M :

1. Muri means fatigue. Effects of Muri are speed reduction of activities, injuries, absenteeism

caused by illness and dissatisfaction of the workers.

2. Mura means variability. Is the capstone of the wastes in industrial processes because it

generates instabilities in the system with the consequent variation in the productivity and in

the processes parameters.

3. Muda indicates the real wastes: Non-Value Added Actions. It represents all the activities

that do not generate added value to the product or the service provided to the final client,

hence it is useless cost to the company balance.

For sake of clarity, the figure 2.16 shows the composition of a Time Cycle for an operator. Is

composed by VAA, SVA and NVAA. The red circle highlights the fact that waits (Muda) should

also be taken into consideration for the line balancing.

Undoubtedly, whenever a problem of Workplace Organization must be faced, the 3Ms should

be attacked fairly buttoned up, because, for example, is not reasonable thinking about deleting the

variability without creating a safe and comfortable workplace, otherwise the fatigue would heavily

condition the variability of the operation itself. Muri is solved by considering all operations requir-

ing physical strength, postural fatigue and unpleasant operations. These concepts are summarized
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Figure 2.16: The figure shows the composition of a Time Cycle for an operator.

by projecting the operation such that worker works in the so called golden zone [27], which is the

most comfortable region of movement for a person.

Hence, whenever the process is stable, standardized and variability is reduced, is possible to attack

Mudas, that are useless activities.

Since Mura is the core of this master thesis, the next paragraph goes into details highlighting

the main definitions and the way in which is actually analyzed.

2.4.4 Mura

The concept of elimination of Mura comes, again, from the Japanese culture with its own TPS,

thanks to the concept of "Lean Manufacturing" [3], in which the focus is upon improving the "flow"

or smoothness of work, thereby steadily eliminating Mura through the system and not upon waste

reduction itself.

Hence, Mura points out the fluctuations, variations, irregularities of workload. These factors

involve the creation of some zones of the production cycle in which there is a serious overload that

could create Muri, and zones in where there is an under load that could form wastes of time, hence

Muda. The production flow, of course would suffer some troubles. So, investigating the causes

of these fluctuations is very interesting, and it is the main scope of this work. Hence, Mura is

the capstone of every waste (Muri and Muda) and that is why at the bottom of lean production

there is the stability of the system that is obtained by eliminating the causes of the fluctuations
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and standardizing activities. Moreover, a stable system is easier to be controlled and kept under

control and does not require a lot of resources and it is safer than an unstable one.

But, starting from the assumption that a process has not Muri, measuring Mura is the actual

challenge, becouse is not easy at all. Basically, the FCA approach is based on very difficult and

expensive analysis. From a theoretical point of view, the ideal approach to face variability problems

followed by FCA plants is cyclically repeated and is the following:

• Variation analysis of the time cycle of each operator/operation

• Reducing variation of the time cycle of the most critical operator, which is the one that has

the highest variation level in operation times4

• Evaluation of the mean time cycle of each operator/operation

• Shifting the mean time of each operator/operation towards the best one5

• Now that operation is standardized, is possible to try to analyze the new standard and to

work on the reduction of NVA

Whenever Mura is deleted for an operation, hence the process is totally stable and regular, the

mean operation time is undoubtedly lowered because there is the certainty that the operation is

so robust such that the variability would not affect the time cycle and so a line stoppage. The

following graph, shown in the Figure 2.17 shows the shifting from a wide time distribution to a

narrower one with a minor nominal time.

Whenever the step 2 of Workplace Organization pillar is done, there is a huge impact on the

process. Considering again the example done in figure 2.12, is possible to explain conceptually

how the unbalancing would change. The figure 2.18 compares the situation of the balancing before

and after step 2 application. The most important concept shown in the graphs is, on one hand,

the great reduction of Time Cycle that implies the growth of both dissaturation and unbalancing.

On the other hand, is possible to notify that the most critical operations, before the application of

step 2, was the second one. While after the step 2, the most critical set of operations, hence the

one with the bottleneck time cycle, is the one labeled with 40.

As already explained, for sake of clarity, this process of standardization and stabilizing the

process would continue until all operations last more or less the same time, such that there would be

4Attacking the operator with the highest variability gets the chance of correct an higher number of wrong actions.
5The operator that perform operations in the minor time will be also the best one, and its own standard will

substitute the old standard in order to optimize the operation.
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Figure 2.17: Effect on the nominal time of the results of a Mura analysis

Figure 2.18: Re-organization of the labor intensive process due to application of Step 2 of WO
pillar

a fair distribution of the workload, and the labor specialists would be able to re-organize properly

the process, with all the benefits and advantages already discussed. The figure 2.19 shows the

concepts already explained, but actually it happens during the implementation of step 3: thanks

to the elimination of NVA, hence after the completion of the step 2 application, the Time Cycle is

reduced. The economic benefit discussed above, coming from the re-organization of activities and

the restoration of the balancing, such that a completely dissaturated operator could be assigned

to other activities and line productivity is improved.
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Figure 2.19: New line balancing coming from the elimination of NVA actions. Operators have been
displaced to other tasks, with economic benefits for the plant.

In order to conclude the presentation of the pillar involved in this work, the last graph (shown

in figure 2.20), describes a real situation in an FCA plant.

Figure 2.20: Actual Key Performance Indicator of the implementation of step 2 in a Fiat Power-
Train plant.

The next chapter focuses more in details in the Mura analysis from the technical point of view.

It explains how, at the moment, this problem is faced by people working in the plant and how data

are gathered and analyzed.

Then, it will be explained in detail the core of this Master Thesis with the analysis conducted in

collaboration with the WO pillar leader of Mirafiori plant, where some innovative data anlysis tools

are used, linking the discussed Industry 4.0 trend with traditional manufacturing methodologies.
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Chapter 3

Analysis

3.1 Mura analysis: premise

Mura means loss due to irregular movements and not repetitive operations. The stakeholders in-

volved in Mura analysis are basically Team Leaders, WO Specialists, Work Analysts (Industrial

Engineers) and the higher levels of plant management. The aim is to identify variation in all man

related operations, including semi-auto operations (machine interactions)1.

At the moment, in FCA plants, the state of the art of Mura analysis is closely related to the

"classical" approach, coming from Japanese methodology which forecasts the already mentioned

lean manufacturing. Basically, analysis is based on observation of workers and the revision of the

list of operations. Unless being observed for some time, this problem could be very difficult to be

detected, or could not be recognized at all.

In a high quality assembly line, Mura covers a huge importance on process indicators. High quality

reflects the fact that the Takt Time is considerably higher (about 6 minutes), meaning that the

number of operations to be done on the body is huge with respect to a line in which the Takt

Time is lower2. Usually, the high quality production lines build the FCA premium brands, i.e.

Alfa Romeo and Maserati.

1Semi-auto operations refers to operations aimed to control robots status. Typically present in paint shop and
body shop

2In the lines where the Takt Time is lower, typically, the mass market brands are produced, like Fiat and Lancia
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First of all, is important to clarify that each operator has a precise list of operations3 to be done

in a perfect order, from a theoretical point of view. Figure 3.1 shows an example of operation tag,

with the sequence of actions be be made by an operator. Actually, this does not always happen

because of a lot of factors, both human or external, e.g. related to the operation itself, or related

to the availability of pieces or the tools to be used.

Figure 3.1: Operations tag for the specified workplace, with each single operation’s description

In order to improve the quality of the job of an operator, each single operation could have some

further facilitation, especially for difficult or uncomfortable actions. This additive tool is called Job

Element Sheet (JES). An example of JES is given in figure 3.2. The philosophy is that using very

detailed work instructions, where everybody would be able to carry out the same tasks in exactly

the same fashion, would reduce variability in executing the operation in question by favouring, on

the other side, the standardization of the operation itself and the reduction of number of defects

on the final product.

Therefore, having told about this premises, the next section deals with a brief discussion about

the state of the art of Mura analysis in FCA plants in order to point out the weakness of the current

methodology used and highlight the great advantages that would give an innovative approach based

on Industry 4.0 principles and techniques.

3The list of operations that an operator should done within the TC is called operations tag
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Figure 3.2: Job Element Sheet (JES): shows in a very detailed fashion the exact sequence of the
operation to be performed. The example shows, also with a graphical aid for the sake of clarity,
how to fix the window to the body of the door.

3.2 Mura analysis: state of the art

Mura is a very time consuming analysis that requires time studying at least thirty times video

recording (thirty cycles), gathering operation times and statistical distribution analysis. This

analysis is, hence, an observational activity that must performed directly on the field and it could

be very difficult to detect the more critical stations and, therefore, a criterion of prioritization.

The very first step for the detection of an area that requires a Mura analysis deals with a

checklist. It is a tool, consisting in a series of simple questions, that helps to define the jobs that

require video analysis.

Whenever a critical station or operation has been found, starts the analysis by element, that is the

already mentioned recording of 30 cycles. This is done to all operators that do the same operation,

every shift and every crew.

At the end of recording, is possible to build an histogram of operation times per each monitored

operation executed. An example is shown in figure 3.3

Whenever the times histogram is built, data are analyzed by using simple statistical analysis.

The two main parameters used are the following:

• Statistical variance gives a measure of how the data distributes itself about the mean of

expected value. Unlike the range that only looks at the extremes, the variance looks at all

the data points and then determines their distribution (figure 3.4).
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.

Figure 3.3: A result of the 30 cycle recording on a histogram for the "Operator A"

Figure 3.4: Distribution of operation times. In x axis, the mean time. In y axis the percentage of
samples.

• Variance is a numerical value used to indicate how widely individuals of a population vary.

If individual observations vary greatly from the group mean, the variance is big and vice

versa.

Every single operation has a reference time, established from a theoretical point of view by

labor specialists that quantify each single action during an operation. The target times are stored

into a system called TiCon. The operation times statistical parameters are, then, compared with

target times and is possible to detect how the operation times are displaced from the standard

times.

Finally, the output of Mura analysis can be computed, starting from the discussed statistical

parameters. In order to evaluate how the process is behaving with respect to the cycles, the Process

Capability Indices (PCI) are used [40] [32] [1].
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3.2.1 Weakness of the standard Mura analysis and advantages of Ma-

chine Learning

The current method has a lot of drawbacks. First of all, it uses standard tools which nowadays

result to be very expensive and inefficient. Furthermore, the digitisation of manufacturing allows

a great capability of generate and store data that are not efficiently used to perform these kind of

analysis. The modern Machine Learning and Artificial Intelligence techniques would enable faster

and smarter kind of computation and finding useful insights from data would result faster and

easier [42].

Actually, ML is of course a very powerful resource that is widely used successfully in many fields.

However, the field is very broad and even confusing which presents a challenge and a barrier hinder-

ing wide application. The aim of this handling points also out into the direction of demonstrating

the real potential of ML applied to the manufacturing field in order to force the high management

to innovate the traditional and standard approaches towards the continuous improvement.

The general advantages of ML have been established in previous sections stating that ML tech-

niques are able to handle Non-Polynomial complete problems which often occur when it comes to

optimization problems of intelligent manufacturing systems.

Another advantage of ML techniques is the increased usability of application of algorithms due to

a lot of open sources programs and libraries, i.e. Tensorflow, Scikit-Learn [16] [30]. This allows

(relatively) easy application in many cases and furthermore comfortable adjustment of parameters

to increase the classification or whatever tasks performance.

The following paragraph explains the approach used to reach the thesis goals, highlighting the

main aspects of Machine Learning and new Industry 4.0 tools applied to a real industrial case

study.

3.3 Automatic Mura analysis

The basic idea of this work, is realizing a tool capable to automatize the complex operation of Mura

analysis and detection, avoiding to carry out the expensive recording operations, and extending

the analysis to the whole assembly line. With the introduction of new Information Technologies

and tools, this task should be got in an easier way.

First of all, is important to clarify that operators should perform a list of operations. Some of
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which are defined as MES relevant. As briefly explained in the introductory section, MES is an

information system with the purpose of managing and controlling the productive function of the

company. It has a direct link with the production line, with tools and operators and it acts as data

collector of the whole plants system of FCA. Therefore, it covers a huge importance and it could

be a great source of useful information.

With this tool, the plant will have a better work cycles control that will bring to an increasing

time modelling accuracy with a production losses reduction expectations.

Monitoring user operations needs a comparison between effective and expected operation tim-

ing. Needed data are available on two different systems:

• plant MES that collects real time data from operations already executed.

• TiCon that stores nominal and expected process values.

Line users will be involved in the process. In particular, work cycles regarding screwing, trace-

ability and quality reports will be monitored. The below picture (figure 3.5) shows the mainly

features involved in the monitoring process at a single working station level. Whenever an op-

eration has been fully completed, the system timestamps the event and record the entry in the

database. In the upper part, are shown all the time delays related to the operations. Each of red

highlighted sections, are referred to a single operation delay.

Figure 3.5: Example of process of a single workplace. Manuel operations are not considered in
MES detection. In this case the line stops due to a delay coinciding with the last quality report
operation (in red).

It is important to highlight that every operation time in MES is always the time period between
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the T0 (start point) and the moment when the system receives the operation result from the line

machines. Then, the instances are treated as traditional time series, therefore will be used some

traditional tools for time series analysis [23].

From the operation times distributions, are evaluated the following parameters [26], which

assume that population is normally distributed:

• Upper Specification Limit (USL) and Lower Specification Limit (LSL)

• Cp estimates a measure of how the process is distributed around a mean value.

• Cpk estimates a measure of how the process is distributed within the Upper and Lower Limits.

Both the indicators suppose that the distribution times were normally distributed. Actually,

the state of the art analysis supposes that distribution times are normal.

Hence, the following analysis is basically composed by two parts: the first one is about the statistical

analysis on operation times through the application of some statistical tools in order to check

Gaussianity and to retrieve information about the statistical features of data. Then, the second

one deals with contributors detection through the application of two ML algorithms.

3.3.1 Statistical Analysis

Statistics, independently from the field of research, represents an essential part of a study because,

regardless of the study design, investigators need to summarize the collected information for in-

terpretation and presentation to others [9]. The first step in a data analysis plan is to describe

the data collected in the study. This can be done using certain data visualization techniques and

generic descriptions [33] [24].

Before going into the detail of the analysis, is important to discuss briefly the data format to let

the reader understand the kind of information that is possible to deal with. The figure 3.20 shows

a sample of MES extraction from AGAP plant, where there are just two shifts, from 6 to 14 and

from 14 to 22. Therefore, there are two teams alternating in the first and second shift. Basically

there are data related to the operator and the operation time. There is also a label related to the

line stoppage, and whenever it is present, the entry is "SI".

As already mentioned in the introduction section, the data source is represented by nine MES

extraction corresponding to nine different operations. Basically, these extractions are contained

into Excel files, each of which is imported into Python environment thanks to Pandas library,
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Figure 3.6: Sample of MES extraction from AGAP plant.

which is an open source library for data structure, manipulation and visualization [28].

The data structure has been organized such that every operation is inserted into a list, and each

element of the list is a dictionary containing a lot of information like the dataframe itself, statistical

parameters and other useful information keeping easy the readability and the management of

accessing data (listing 3.1).

Listing 3.1: Data opening and creation of the data structure

import pandas as pd

import glob , os

def ge tOpera t i on sL i s t ( path ) :

os . chd i r ( path )

ope ra t i on s = [ ]

f i l enames = [ ]

# Loop over EVERY xlsm f i l e and appends dataframe to opera t i ons l i s t

for f i l e in glob . g lob ( " ∗ . xlsm " ) :

df = pd . read_excel ( f i l e , "DATI" )

f i l enames . append ( f i l e )

dataframes = {}

dataframes [ " OperationsName " ] = f i l e

dataframes [ " Dataframe " ] = df

ope ra t i on s . append ( dataframes )
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return ope ra t i on s

Before applying any kind of analysis or machine learning algorithm, the dataset must be cleaned

through proper data cleaning analysis and outliers detection.

Data cleaning

In order to perform the statistical analysis, the very first phase to be done is data cleaning. Since

the aim of this work is analysis of variability of human made operations, is needed taking into

account just operations without line stoppages, because they bring a lot of variability in operation

times. Hence, the listing 3.2 aims to delete all the entries which cause a line stoppage and every

non-valid entry, like zeros or NaN columns.

Listing 3.2: Code showing the very first step of datasets cleaning

import numpy as np

c o l s = [ "CIS " , " Sequenza " , " Operazione " , " De s c r i z i one " , " Stato " ,

"Workplace " , " I n i z i o ␣Fermo␣Linea " , " Fine ␣Fermo␣Linea " ,

" Usc i ta ␣Workplace " , "Fermo␣Linea " , " Percentua le " , " I ng r e s s o ␣Workplace " ,

" Permanenza " ]

def getCleanedOperationTimes ( d i c t i onary , taktTime ) :

"−−>␣NOTE: ␣ the ␣ opera t ion ␣ time␣ should ␣be␣ in ␣ the ␣LAST␣column "

df = d i c t i ona ry [ " Dataframe " ]

df = df [ df .Tempo < taktTime ]

columns = df . columns

appoggio = df [ "Fermo␣Linea " ]

appoggio = appoggio . dropna ( ax i s=0)

i n d i c i d a e l im i n a r e = appoggio . index . va lue s

df = df . drop ( df . index [ i n d i c i d a e l im i n a r e ] )

df = df . drop ( co l s , ax i s=1)

d i c t i ona ry [ " Dataframe " ] = df

Since the first step of cleaning is done, is possible to discover the time distribution’ features

without performing any filtering action. Is important to say that in the dataset there are both

team A and team B, therefore from now, every kind of visualization will be made for both teams.
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Scatter plot Is a graph where two variables of a certain dataset are reported on a cartesian

coordinate system. Data are visualized through a collection of points each of which with a position

on horizontal axis determined by a variable and on vertical one determined by the other variable.

Box plot Is a method for graphically depicting groups of numerical data through their quartiles4.

The central box represents the values between the first (Q1) and the third (Q3) quartile. The

difference between the third and the first quartile gives the Inter-Quartile Range (IQR). The

horizontal red line represents the median value, which is the central value of the distribution. In

the end, the lines correspond to the lower (Q1 − 1.5 × IQR) and the upper (Q3 + 1.5 × IQR)

values. Outliers may be plotted as individual points. Box plots are non-parametric: they display

variation in samples of a statistical population without making any assumptions of the underlying

statistical distribution. The figure 3.7 shows an example of box plot for a Gaussian distribution

population5.

Figure 3.7: Box plot example for a Gaussian distribution.

Histogram Is a kind of bar graph, in which continuous or discrete data are divided into "bins",

in x axis, representing the range of the variable and then counting how many values fall into each

4Quartiles are values that split a statistical population in four equal parts.
5Example written in the Wikipedia web page: https://en.wikipedia.org/wiki/Box_plot
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interval, in the y axis. The represented histograms are normalized, meaning that each bin is di-

vided by the total number of entries, showing the relative frequencies.

For sake of clarity, only a few of significant operations are taking into account for this analysis.

The Takt Time of the line is about six minutes: so, every operation time lasting more then this

interval are not considered in the visualization plots (method shown in 3.3).

Data are also extracted in a period in which the saturation remains still the same, meaning that

operations procedures are the same and do not change. It is important to clarify it because some-

times plants use to re-balance workload, and so operations’ sequence may change.

Listing 3.3: Method that plots scatter plot box plot and times histograms for every team presents

in the dataframe

import matp lo t l i b . pyplot as p l t

from s c ipy . s t a t s import lognorm

import matp lo t l i b . dates as mdates

def plotTeamOperationTimes ( d i c t i ona ry ) :

df = d i c t i ona ry [ " Dataframe " ]

opName = d i c t i ona ry [ " OperationsName " ]

count = 0

f , ax = p l t . subp lo t s ( nrows=len ( df . Squadra . unique ( ) ) , n co l s=3)

for sq in df . Squadra . unique ( ) :

df_sq = df . l o c [ df . Squadra == sq ]

ax [ count , 2 ] . h i s t ( df_sq .Tempo , b ins=80, normed=True ,

l a b e l="Times␣ histogram " )

ax [ count , 2 ] . g r i d ( )

ax [ count , 2 ] . l egend ( )

ax [ count , 2 ] . s e t_x labe l ( " s " )

ax [ count , 2 ] . s e t_ t i t l e ( " Operation ␣ t imes ␣ f r e qu en c i e s ␣Team␣ " + sq )

ax [ count , 1 ] . boxplot ( df_sq .Tempo , 0 , ’ . ’ )

ax [ count , 1 ] . g r i d ( )

ax [ count , 1 ] . s e t_y labe l ( " s " )

ax [ count , 1 ] . s e t_ t i t l e ( " Boxplot ␣Team␣ " + sq )
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ax [ count , 1 ] . l egend ( )

df_sq [ " Esecuz ione " ] = pd . to_datetime ( df_sq [ " Esecuz ione " ] )

ax [ count , 0 ] . s e t_x t i c k l a b e l s ( df_sq [ " Esecuz ione " ] . va lues , r o t a t i on=35 )

ax [ count , 0 ] . p l o t ( df_sq [ " Esecuz ione " ] . va lues , df_sq .Tempo , ’ . ’ )

myFmt = mdates . DateFormatter ( ’%m␣%d ’ )

ax [ count , 0 ] . xax i s . set_major_formatter (myFmt)

#ax [ count , 0 ] . r o t

ax [ count , 0 ] . g r i d ( )

ax [ count , 0 ] . axh l ine (y=np . median ( df_sq [ "Tempo" ] . va lue s ) ,

c o l o r=’ r ’ , l i n e s t y l e=’− ’ , l a b e l="Median␣ time " )

ax [ count , 0 ] . s e t_ t i t l e ( " Sca t t e r ␣ p l o t ␣Team␣ " + sq )

ax [ count , 0 ] . l egend ( )

ax [ count , 0 ] . s e t_y labe l ( " s " )

count = count + 1

p l t . l egend ( )

p l t . s u p t i t l e (opName)

p l t . rcParams [ " f i g u r e . f i g s i z e " ] =(15 ,10)

p l t . show ( )

The figure 3.8 shows the first operation for a certain workplace, divided into the two teams

that perform the operation: The very first comment to be done by analyzing the graph is that the

operation is performed more or less coherently. Median times are very similar. On the other side,

the boxplot shows a huge number of outliers due to operation times very higher then the median

time. In the end, the histogram shows that distribution is not Gaussian at all, but it seems to be

lognormal.

The second operation which is interesting to be discussed is showed in figure 3.9. Again, the

distribution of times seems to be lognormal. In this case, there is a bigger difference between the

teams. The first one seem to work more standard than the second, concerning the scatter plot

and the histogram. Operation times of B team are distributed along the whole time cycle, even

beyond the limit of six minutes. This is also confirmed by box plot where, the A team has a lot of

outliers in the upper part, and the second one do not seem to have outliers. This happens because

the population is so distributed enough to cover all the Time Cycle. Hence, this operation should
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Figure 3.8: Visualization plot operation 2: scatter plot, box plot and times histogram

be investigated more in depth, expecially for what concerns the B team.

This is a perfect example of how heavily the premium brand assembly line impacts the variability

of operations.

For what concerns the last figure 3.10, it shows an interesting pattern in the time histogram.

Distribution appears to be as a bimodal distribution: by definition it is a continuous probability

distribution with two different peaks (local maxima) in the function.

This behaviour reflects the presence of two different prevailing mean operation time as con-

sequence of the presence of two different operators per each team, or two very different kind of

customization that cause a huge difference in timing.

Normality tests

After the removing of the main outliers with the explained method, the next step of pipeline

experimented forecasts the application of two statistical tests capable to "how" the distribution of

times is Gaussian, because, as already mentioned, the parameters used to control process capability

assume the normality of population: when the process has a non-normal distribution, classical PCIs

will be inappropriate and can misled the assessment of process capability[34].

Both tests start from the so-called null hypothesis, which is a statement about the probability
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Figure 3.9: Visualization plot operation 6: scatter plot, box plot and times histogram

Figure 3.10: Visualization plot operation 5: scatter plot, box plot and times histogram

density function, which is, in this case that time distributions are normal. The hypothesis is testable

40



3.3 Automatic Mura analysis

on the basis of observing the process that is modeled via a set of random variables, comparing the

two distributions. The comparison is deemed statistically significant if the relationship between

the data sets would be an unlikely realization of the null hypothesis according to a threshold

probability, called the significance level. Typically, significance level is a threshold set to 0.05. If

the test’s result is lower than the significance level, claiming that distribution is not normal is

impossible. Otherwise, data are statistically significant such that is possible to state that they do

not belong to a normal distribution, hence null hypothesis could be rejected. In this case, it would

be impossible to use the process indicators actually used now.

According to the available literature, visual analysis of a distribution could be powerful and reliable

as well.

Shapiro-Wilk test It is a non-parametric test6. The null-hypothesis of this test is that samples

come from a normally distributed population. The significance level of the test is defined as 5%.

Hence, if the p-value of the test is lower than that value, then the null hypothesis is rejected and

there is not proof that tested data come from a normally distributed population. On the other

side, if the p-value if higher, the null hypothesis can not be rejected and the test can not state

anything else. Said that, the test has some weaknesses: for example, if the sample dimension is

large, the test may not sense significant effects of eventual relevant data [15].

D’Agostino-Pearson test Is is a non-parametric test. It has the same level of significance of

the previous one (5%). This test aims to prove the null hypothesis that a sample comes from a

normal distribution. It is based on D’Agostino and Pearson’s test that combines skew and kurtosis7

to produce an omnibus test of normality. This test is useful for moderate size datasets.

The following graph (Figure 3.11) shows that almost every operation fails the normality test.

Entries are divided into teams, because each team has its own operator working on that operation

and it is independent from the others. If the cell is flagged as "False", hence the null-hypothesis

can not be rejected.

After having demonstrated that the most of distribution is not Gaussian, the discussion goes

on in the direction of unpacking data, almost feature by feature and find the variation patterns in

6Non-parametric test means that statistics is distribution-free, hence there are not assumptions on distributions’
parameters.

7Kurtosis is a displacement from the statistical normality.
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Figure 3.11: Summary of normality test for the available operations.

operation times, in order to allow the final user to choose certain criteria of more in depth visual-

ization criteria and to investigate the possibility of find a way to extract a performance indicator

for the process.

Summing up the normality tests part, only the 11.1% of the available operations do not fail the

statistical tests. It means that process has different problems in terms of stability, hence, before

using process indicators that assume the normally distributed operation times, it is needed to act

over the process structure and find some ways to keep it stable, by using WCM methodologies, i.e.

training sessions to the workers using One Point Lessons (OPL) or improving the JES frequency

on assembly line.

It is unrealistic to expect that data visualization tools and techniques will unleash a barrage

of ready-made stories from datasets (figure 3.12). There are no rules, no ‘protocol’ that will

guarantee the certainty of finding useful information by just visualizing data. But undoubtedly, it

makes sense thinking about finding some input to direct the investigation towards certain directions

and methodologies [24].

With the insights gathered from the last visualization is possible to have an idea of what to
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Figure 3.12: Conceptual schema for data visualization [24]

do next. It allows the detection of some interesting patterns in the dataset which is possible to

investigate more in detail by transforming and manipulating data:

• Zooming: to have look at a certain detail in the visualization aggregation to combine many

data points into single or more groups.

• Filtering: to temporarily remove data points that are not major focus.

• Outliers removal: to get rid of points that are not representative for the current dataset.

Outlier detection

As shown in the very first step of the visualization, there are different outliers from the box

plot view. But this technique of outliers detection works well for normally distributed variables

because it supposes that population is fairly distributed [10]: hence, outliers may be evidence of

a contaminated data set; they may be evidence that a population has a non-normal distribution;

or, they may appear in a sample from a normally distributed population. The following method

3.4 has been used to flag outliers with 1 and non-outliers with 0.

Two categories of outlier are defined, in general: "Additive Outliers (AO)" where a single point,

or a group of points is affected and "Innovative Outliers (IO)" where an innovation to the process

affects both an observation and the subsequent series [38]. In this case outliers are samples of AO
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because, from a theoretical point of view, the outlier should be isolated itself and not conditioning

the following process.

Listing 3.4: Method used to add an "outlier" column and flag the entries as outlier or not.

def ou t l i e r sDe t e c t i o n ( d i c ) :

df = d i c [ " Dataframe " ]

#df_a = df . l o c [ d f . Squadra == "A" ]

qua_1 , qua_3 = np . p e r c e n t i l e ( df . l o c [ df . Squadra == "A" ] . Tempo . values , [ 2 5 , 7 5 ] )

i q r = qua_3 − qua_1

lb = qua_1 − ( i q r ∗ 1 . 5 )

ub = qua_3 + ( i q r ∗ 1 . 5 )

qua_1 , qua_3 = np . p e r c e n t i l e ( df . l o c [ df . Squadra == "B" ] . Tempo . values , [ 2 5 , 7 5 ] )

i q r = qua_3 − qua_1

lb_b = qua_1 − ( i q r ∗ 1 . 5 )

ub_b = qua_3 + ( i q r ∗ 1 . 5 )

df [ " Ou t l i e r s " ] = np . where ( ( ( df . l o c [ df . Squadra == "A" ] [ "Tempo" ] < lb ) |

( df . l o c [ df . Squadra == "A" ] [ "Tempo" ] > ub) |

( df . l o c [ df . Squadra == "B" ] [ "Tempo" ] < lb_b ) |

( df . l o c [ df . Squadra == "B" ] [ "Tempo" ] > ub_b) ) ,

1 , 0)

d i c [ " Dataframe " ] = df

#return d f

The effect on this flag operation is shown in the following scatter plots (figure 3.13).

Since the operation number 3 has a strange behaviour during a single day of production, the

next step of the unpacking analysis is plotting a box plot per every execution day in order to check

in detail if and how the execution day act in the global median time evaluation. Figure 3.14 refers

to a severe variability problem in that station because the median operation time is three times

higher than what happened the other days, highlighting a low number of outliers for the single

production days. Hence is necessary to deeper in analysis of outliers in order to understand why

the variability is that increased.

Figure 3.15 shows the said operation clustered by the execution day and worker and basically

there are two situations appearing useful. The first one is that the operator named as "Silvia"

is present into the dataframe but actually does not perform any operation. It could be due to a
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(a) Operation 2 made more or less coherently by both teams.

(b) Operation 3 made in a widely different way by both teams. In Team A is possible
to individuate a very critical day in terms of outliers.

Figure 3.13: Scatter plots for two operations: outliers are labeled by red dots.

Figure 3.14: Box plot per each execution day for operation 3.

problem in line, and the operator changed station momentarily, hence it could be considered as

an outlier. The second observation is more interesting. Is possible to notify that the operation is
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Figure 3.15: Box plot of operation clustered per execution day.

always made by the same operator called "Pasquale", while the twelfth of December the worker is

changed and the new one has introduced a huge level of variability (the relative box plot covers

almost the whole time cycle).

So, this simple observation could suggest that the operation is not properly made by the opera-

tor and consequently it introduces variability. It can also suggest to improve the mechanism of

operation tag or the already mentioned JES.

Going deeper in the analysis of the single operator, the next step aims to investigate what

happens in the most critical day explored above. It could be interesting because some correlations

could highlights moments of the day more critical than others like the early phase of the shift in

the morning, of the last phase of the shift, when maybe the operator is going to be tired. Figure

shows the trend of operation times for the said day.

Figure 3.16: Box plot of operation clustered per hour of the day. It shows a huge variability during
the early phase of the shift.
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The graph mentioned (figure 3.16) shows a very predictable pattern: at 6 AM, hence when the

shift starts, variability is very higher than the other hours. By the way, even median times are

definitely far from being constant over the considered time.

This is an example of how the tool would be used by WO analysts: it could be a very first

analysis to guide the attention of stakeholders towards the actual problems that cause Mura. Unfor-

tunately, the available data is, until the realization of this Master Thesis, very reduced. Therefore,

the statistical analysis is not that reliable because data agglomerate a lot of different scenarios,

cases and also different operators.

Moreover, the effect of car customization has not been mentioned so far. An high quality assembly

line, for FCA company, reflects the high level oh complexity and quality of the final product. This

implies that there is also a huge number of possible customization: in fact, every body crossing

the line has its own customization (optional) code, called "mix", e.g. right-hand drive, particular

internal materials, etc. Unfortunately, the datasets used have not information about optionals,

hence, data is pretty contaminated by the presence of operations with different features.

The following example shows the utility of the tool for more "strange" distribution times, like

the case of operation 5 (figure 3.10). In this case the times’ distribution is bimodal, highlighting

the presence of two different events that characterize the distribution without influencing each

other. Again, without going into execution day or hour level of detail, the tool shows that the

main variability component is related to human worker (figure 3.17)

Again, team B seems to work a little bit better than the other one. In team A there are ex-

cessive fluctuations of median times: it could reflect the presence of different operators, working

differently each other. Through visualizing unpacked data for what concerns team A, there will be

another prove that operator introduces a huge degree of variability in operation times (figure 3.18).

Ordered operation

Since the visualization part shows that operation times are widely spread along the whole time

cycle, the investigation goes towards the analysis of the order of operations made by the teams.

Since datasets are very poor, each median operation time, instead of mean operation time,

is going to be compared among the operators in order to investigate if the operations sequence

is respected or not, as already discussed above. Since the actual time targets are not available
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(a) Scatter plots for operation number 5 - Team A.

(b) Scatter plots for operation number 5 - Team B.

Figure 3.17: Scatter plots for operation number 5 for the two teams involved.

Figure 3.18: Caption
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for security reasons, is not possible to evaluate directly time differences between ideal and actual

operation times. Hence, a different approach has been used: if operations are performed within

"timeThreshold" seconds each other, they can be considered not switched. The analysis is made

for teams. If the real target operation times were available, it would be interesting to evaluate

how many operators follow properly the operation tags and look for the process causes that are

involved in operations switch. Listing 3.5 shows the criteria of decision of ordered/non-ordered

operation.

With the used method, the 55% of operations are not ordered at all. This tool works whatever

the threshold applied was because it is independent from the reference times. Whenever the target

times were available, would be possible to consider it for the time difference.

Listing 3.5: Key method to evaluate whenever the two teams use to switch the operation execution

with another one

def i sOrdered ( operat ion , t imeThreshold ) :

i f (abs ( operat i on [ "Team␣A␣median␣ time " ] −

opera t ion [ "Team␣B␣median␣ time " ] ) > timeThreshold ) :

return False

else :

return True

def orderedOperat ionsPerc ( ops , t imeThreshold ) :

notOrdered = 0

unorderedOperation = l i s t ( )

numOfOperations = len ( ops )

for opera t ion in ops :

# I f the opera t ion cou ld be cons idered ordered add 1 to the counter

i f ( i sOrdered ( operat ion , t imeThreshold ) ) :

pass

else :

notOrdered = notOrdered + 1

unorderedOperation . append ( opera t i on [ " OperationsName " ] )

return 100∗( notOrdered/numOfOperations ) , unorderedOperation

The previous analysis has been carried on in parallel with the WO pillar leader of Mirafiori

49



3.3 Automatic Mura analysis

plant, and results were absolutely coherent. Basically they have every kind of information related

to the assembly line. They used the whole set of MES relevant operations in order to effectively

detect the switch of the order of operations. The actual scenario they found is the following (figure

3.19):

Figure 3.19: MES relevant operations for a single workplace. X axis the operations, Y axis the
execution time.

Operations along x axis are to be done consequently, hence the y axis should grow up more or

less linearly. Instead, the actual situation demonstrates that operators use to switch operations.

In particular, this happens because workers should validate and objectify the operation, whenever

it is done. Validation happens thanks to some wearable devices or some big screens where operator

must select the operation already done.

This analysis and the one made by WO team, highlight that operators use to certificate actions,

and then actually execute them. It represents a huge problem in process stability evaluation,

because it may happen that a worker certifies an operation and at the end it is not completed at

all, generating a line stoppage and a contamination in MES database.

Autocorrelation analysis

After the demonstration that some operations are completely random, a correlation coefficient has

been evaluated in order to test how the two teams work linearly.

Since the most of operations are nor Gaussian, nor ordered in sequence coherently, another kind of

activity to be performed is checking the correlation of the same operation made by the two teams.
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It could be possible that operations are not ordered, but anyway operators work following the same

logic and it might reflect on the fact that operations would have an high level of correlation. This

analysis can be performed by using Pearson correlation coefficient that gives a measure of linear

correlation between two variables X and Y (that represent, in this case, the distribution times):

ρXY = cov(X,Y )
ρXρY

where

• cov(X,Y) is the covariance of the two variables, which is a coefficient of joint variability

• ρX is the standard deviation of X variable

• ρY is the standard deviation of Y variable

Depending on Pearson correlation coefficient, the two variables may be correlated, not corre-

lated or negatively correlated. The coefficient has a value between -1 and 1, where:

• ρXY > 0 variables are directly correlated

• ρXY < 0 variables are indirectly correlated

• ρXY = 0 variables are uncorrelated

From the official Python documentation: The Pearson correlation coefficient measures the

linear relationship between two datasets. Strictly speaking, Pearson’s correlation requires that each

dataset be normally distributed. Like other correlation coefficients, this one varies between -1 and

+1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship.

Positive correlations imply that as x increases, so does y. Negative correlations imply that as x

increases, y decreases [31]. The following method inserts Pearson correlation coefficient between

the two teams operation times into the data structure, with the assumption that distributions are

Gaussian. It was supposed that distributions are lognormal, hence in order to bring them to a

more Gaussian behaviour, the method was applied to the logarithm of the time series.

The result is that every operation has a Pearson coefficient greater than 0.80, at least, meaning

that the two teams work more or less coherently. However, is important to notice that the method

may be not entirely reliable for datasets larger than 500 entries, for the reason already explained

in the previous paragraph.
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Data conversion

Original datasets present temporal features, but as they are, is not possible to use them because

they are just strings. Hence, the data format has been introduced thanks to Pandas package and

temporal features (columns) are added to the dataframe (figure 3.20)

Figure 3.20: Example of dataframe with the updated features

Dataset consistency

Starting from this assumption, having as purpose to perform more in depth analysis, like applying

machine learning algorithms, of making whatever kind of data aggregation, is necessary validating

available data and test the usability of them. The instrument used to perform this task is Principal

Component Analysis (PCA). Before performing any kind of machine learning analysis, is needed

to evaluate the consistency of the current dataset features, i.e. be sure that information is not

lead by a single feature, otherwise dataframe would not be useful. PCA provides also a method

to reduce a complex dataset to lower dimension to reveal sometimes hidden, simplified structure

that often underlies it. If a strong correlation between variables exists, the attempt to reduce the

dimensionality makes sense. In a nutshell, this is what PCA is all about: finding the directions of

maximum variance in high-dimensional data and project it onto a smaller dimensional subspace

while retaining most of the information.

In this case, PCA is used to check if every feature brings a certain amount of information

with respect to the others by evaluating the related eigenvalues, which represent the percentage of

variance of the selected components. The eigen vectors with the lowest eigenvalues bear the least

information about the distribution of the data; those are the ones can be dropped. If the whole

amount of variance is brought by just a single feature, the dataset is not consistent and not usable.
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Figure 3.21: PCA applied on the dataframe of operation number 4

From a practical point of view, a useful measure of the how good is the dataset is the so-called

"explained variance," which can be calculated from the eigenvalues. The explained variance tells

us how much information (variance) can be attributed to each of the principal components. The

following method shows graphically the cumulative explained variance against the percentage ex-

plained variance [43]. Figure 3.21 shows an example of PCA applied on the normalized dataframe

of the operation number 4. Every operation analyzed has the same pattern, hence the datasets

contains well spread information. Hence, it is no needed any dimensionality reduction or artificial

data manipulation.

After being applied different statistical methodologies, found some useful insights in terms of

operations switched, correlation between teams and visualized information that can be very useful

to the people working in assembly line, like team leaders and supervisor, it is going to be useful

apply some machine learning algorithms to find some hidden correlation and to exploit a feature

of decision trees to select the most relevant column to the variability of the operation time.

3.3.2 Contributors detection

The datasets used have different columns, each of whose is related to the temporal features of

the operation and to the operator itself. This paragraph focuses on finding a set of contributors
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that have caused the variability in the operation time. The ideal situation would forecast that

a mathematical model describes the operation: unfortunately the elements for building a robust

model are not that large, that means that there is a not negligible possibility that machine learning

algorithms fail the contributors detection. The output of this analysis is finding a set of "relevant"

features that allow to build the model avoiding the use of meaningless features. This contributors

detection phase is represented by a classification task and the consequent analysis of the model

resulting from the testing phase.

Classification labeling

Every operation is translated into time window by some specialists in labour field and stored in a

proprietary software called TiCon, as already explained in previous chapters. These operation times

are considered as ideal references for each operation. The Mura is the variability of the executed

operations with respect to the reference times. The following analysis focuses on investigating and

clustering the main factors and reasons why the variability happens.

In the very early stage of the classification analysis, the problem is translated into a binary

classification problem by separating the "in time operations" from "out of time operations" by

selecting a percentage of the median time and subtracting from it to obtain the left side "out of

time" region and adding to obtain the right side "in time" region. The median is used because

it is more robust than the mean against the outliers and because of the dataset dimension. The

result, assuming the distribution as Gaussian, is shown in the figure below (figure 3.6), where times

distribution is splitted into three decision regions. The reference methods used are listed into 3.6.

Figure 3.22: Qualitative example of classification for a (supposed) Gaussian distribution of opera-
tion times.

54



3.3 Automatic Mura analysis

Where in particular, the labels are so defined:

• Out of time –> 1

• In time –> 0

Listing 3.6: Methods that perform classification based on the concept of "reference time"

def b i n a r yC l a s s i f i c a t i o n (x , meanTime , percentage ) :

l e f t L im i t = meanTime − int (meanTime ∗ percentage )

r i gh tL im i t = meanTime + int (meanTime ∗ percentage )

i f ( ( x < l e f t L im i t ) | ( x > r i gh tL im i t ) ) :

r i s = 1

else :

r i s = 0

return r i s

def i n s e r tLab e l s ( d i c t i onary , percentage ) :

l i s t aOp e r a t o r i = d i c t i ona ry [ " L i s t a ␣ op e r a t o r i " ]

for op in l i s t aOp e r a t o r i :

d i c = d i c t i ona ry [ op ]

meanTime = dic [ "Median␣ opera t ion ␣ time " ]

l e f t L im i t = meanTime − int (meanTime ∗ percentage )

r i gh tL im i t = meanTime + int (meanTime ∗ percentage )

d i c [ " Le f t ␣ l im i t " ] = l e f t L im i t

d i c [ " Right␣ l im i t " ] = r i gh tL im i t

d i c [ " Operator ␣dataframe␣LGBM" ] [ " C l a s s i f i c a t i o n " ] = \

d i c [ " Operator ␣dataframe␣LGBM" ] \

[ "Tempo" ] . apply ( b i n a r yC l a s s i f i c a t i o n , args=(meanTime , percentage ) )

def i n s e r tLabe l sPe rOpera t i ons ( d i c t i onary , percentage ) :

meanTime = d i c t i ona ry [ " Dataframe " ] [ "Tempo" ] . sor t_va lues ( ) . median ( )

#meanTime = d i c t i ona r y [ " Median opera t ion time " ]

l e f t L im i t = meanTime − int (meanTime ∗ percentage )

r i gh tL im i t = meanTime + int (meanTime ∗ percentage )

d i c t i ona ry [ " Dataframe " ] [ " C l a s s i f i c a t i o n " ] = d i c t i ona ry [ " Dataframe " ] [ "Tempo" ] \
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. apply ( b i n a r yC l a s s i f i c a t i o n , args=(meanTime , percentage ) )

In order to evaluate some classification parameters, the following method computes the classi-

fication’s output versus the real classification labels: 3.7

Listing 3.7: This method computes the performance of the classification

def g e tC l a s s i f i c a t o rPa r ame t e r s (x , x_hat ) :

" x␣=␣ true ␣ c l a s s i f i c a t i o n "

" x_hat␣=␣ pred i c t ed ␣ c l a s s i f i c a t i o n "

" 1␣−−>␣Out␣ o f ␣ time "

" 0␣−−>␣In␣ time "

f a l s e P o s i t i v e = 0

f a l s eNega t i v e = 0

t r u ePo s i t i v e = 0

trueNegat ive = 0

for i in range ( len ( x ) ) :

i f ( x [ i ] == 1 and x_hat [ i ] == 1 ) :

t r u ePo s i t i v e = t ru ePo s i t i v e + 1

i f ( x [ i ] == 0 and x_hat [ i ] == 0 ) :

t rueNegat ive = trueNegat ive + 1

i f ( x [ i ] == 1 and x_hat [ i ] == 0 ) :

f a l s eNega t i v e = f a l s eNega t i v e + 1

i f ( x [ i ] == 0 and x_hat [ i ] == 1 ) :

f a l s e P o s i t i v e = f a l s e P o s i t i v e + 1

accuracy = round ( ( t r u ePo s i t i v e + trueNegat ive ) / i , 2)

p r e c i s i o n = round( t r u ePo s i t i v e / ( t r u ePo s i t i v e + f a l s e P o s i t i v e ) , 2)

r e c a l l = round( t r u ePo s i t i v e / ( t r u ePo s i t i v e + f a l s eNega t i v e ) , 2)

return accuracy , p r e c i s i on , r e c a l l

The method returns basically three variables. They are the most used parameters in computing

the performance of a classification task:

• Accuracy is the most intuitive performance measure and it is simply a ratio of correctly

predicted observation to the total observations. One may think that, if we have high accuracy
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then our model is best. Yes, accuracy is a great measure but only when you have symmet-

ric datasets where values of false positive and false negatives are almost same. Therefore,

consulting other parameters is needed to evaluate the performance of the model.

• Precision is the ratio of correctly predicted positive observations to the total predicted

positive observations.

• Recall or sensitivity, is the ratio of correctly predicted positive observations to the all ob-

servations in actual class.

Another source of evaluation for a classification task is the so-called Receiver Operating Curve

(ROC) [12]. It is a graphical schema for binary classifiers. In x axis, there is the false positive

rate, that is number of false positives over all the entries, and in y axis there is the true positive

rate, also called recall that is the fraction of relevant instances that have been retrieved over the

total amount of relevant instances. Both are defined between 0 and 1. In other words, this curve

highlights the ratio between the correct detection and the false alarm, and it is prepared by setting

a threshold value based on which choosing the prediction value. It is ideal to maximize the true

positive rate while minimizing the false positive rate. The ideal situation would happen when the

number of false positive is zero, and the number of true positive is one. Hence, the ideal position

of the ROC would have (0, 1) as coordinates.

When the ROC is built, a parameter called Area Under the Curve (AUC) that evaluates the area

under the ROC. The closer to 1 is, the better the classifier is. The AUC however, appears to be

one of the best ways to evaluate a classifier’s performance on a data set when a "single number"

evaluation is required or an operational point has not yet been determined [5].

In the end, the last parameter used to discuss algorithms’ performances is confusion matrix. It

is a table that gathers some useful information in terms of true labels versus predicted labels. It

is typically used for binary classification. Each row of the matrix represents the instances in a

predicted class while each column represents the instances in an actual class (or vice versa).

Machine learning algorithms

Basically, the classification task has been carried on using decision trees because of an interesting

feature. Decision trees have a particular field which indicates how each feature is relevant with

respect the others in the current classification task which is called feature importance. Basically,

each leaf of the tree splits the dataset into two parts trying to maximize the information gain in

among every possible split. Of course, the more a feature is used into a tree to split the data,
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the more is important and relevant. Furthermore, decision trees require a little data preparation:

they do not require data normalization because it deals with models that need absolute values for

branching.

In the end, a prediction has been performed in order to check the model goodness. Since, again,

the dataset is very small, different upsampling applications have been performed because is not

assumed that datasets fits well with the decision trees. Hence, classification and parameters have

been evaluated in different scenarios:

1. Upsampling of the whole dataset and using the same train and test dataset

2. Upsampling of the whole dataset and split train and test datasets

3. Upsampling only train dataset

Upsampling method There are a number of methods available to oversample a dataset used

in a typical classification problem: the most common technique is known as SMOTE: Synthetic

Minority Over-sampling Technique (SMOTE). Basically, each row belonging to the minority class

has k neighbors in feature space; then, the new synthetic data is chosen among the neighbors

multiplied by a random number between 0 and 1. From literature, is shown that applying this

technique improves classification performances [4]. The upsampling procedure has been performed

by using a Python package called imblearn.

The following paragraph deals with the discussion of the algorithm used.

LightGBM LightGBM is a gradient boosting framework that uses tree based learning algorithm,

made within a project by Microsoft8. Gradient boosting is a machine learning technique of regres-

sion and classification that produce weak predictive models, typically decision tress. It builds the

model through the optimization of a loos function with a certain criterion. Hence, basically boost-

ing is a gradient descent technique that has the aim of building a classifier by gathering different

weaker classifiers trying to parameterize them with some weight coefficients trying to improve the

performance in gradient descent procedure [20].

For sake of clarity, to find weak learner, base ML concepts are applied with different distributions.

Each time the learning rule is applied, it generates an output, which basically is a new weak pre-

diction rule. This is an iterative process: after a lot of iterations, the boosting algorithm mixes

8https://github.com/microsoft/dmtk
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the weak learners into a single stronger prediction rule, combining and assigning to each of them

some weights that will be used by the final learner.

LightGBM is therefore a fast, distributed, high-performance gradient boosting framework based on

decision tree algorithm. Since it is tree based, it splits the dataset through its leaves, which are the

weak learners, rather than splitting the data depth wise. Hence, when growing on the same leaf,

in LightGBM, the leaf-wise algorithm can reduce more loss than the depth-wise one, and result is

much better in terms of accuracy (Figure 3.23 shows the different concepts of level and leaf wise

algorithms).

(a) Level wise tree growth in a simple gra-
dient boosting algorithm.

(b) Leaf wise tree growth in LightGBM

Figure 3.23: Diagrammatic representation by the producers of LightGBM to explain the difference
between level and leaf wise algorithms.

Leaf wise leads to increase in complexity and may lead to overfitting: it may be overcome by

defining some parameters related to the trees, like the max depth or the maximum number of

learners (leaves).

Very recent literature shows the strength of this algorithm and the huge number of advantages it

brings:

• Fast training and high efficiency

• Low memory usage

• Better accuracy than other boosting algorithms

• Compatibility with large datasets

• Parallel learning supported

• Reduces calculation cost of split gain thanks to the use of histogram to split data: replaces

continuous values with discrete bins

• Supports categorical features with no need for encoding them
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Unfortunately, it does not work that well with small datasets, like those used in this work: the

resulting learners are, as discussed later, very overfitted to the data, hence a prediction task would

result very complex, in this case.

In this work, the implementation of the algorithm is provided by Microsoft itself as an open

source library.

Random Forest Random Forest is a machine learning algorithm that can perform whatever kind

of tasks, but is typically used for regression and classification. It is based on bagging (Bootstrap

Aggregating): is an ensemble algorithm designed to improve the stability and accuracy of machine

learning methods in order to improve the diversity of learning models, introducing randomness in

input data at the expense of the precision of the single learners.

Bagging is considered as a special case of model averaging approach, trying to introduce randomness

in the choice of samples and learners in order to remove bias and overfitting. In fact, Random

Forest, like LightGBM, has different learners (trees). In order to randomize the choice of classifiers

leaf by leaf, the choice of the best feature on which performing data splitting is not made on the

whole dataset9, but on an undersample of features.

In particular, Python package used10, performs an average on all learners

A forest allows to build a classifier made by lot of decision trees and that presents a result

generated by single trees’ prediction as output. The main feature is that each tree, basically works

on an undersample of instances randomly extracted from the starting dataset. The more correlated

are the trees, the higher will be the error. Hence, the purpose is to select independent features

such that final classifier will have learners with very low correlation.

As in LightGBM case, Random Forest works well with large dataset. At least, with a high

number of features. In this case, dataset is very limited, hence you would expect a very poor result

in terms of classification.

Analysis report for cluster of operators The analysis described above, using the algorithms

described and the upsampling technique performed on cluster of operators does not bring any

relevant information. The classifiers’ features do not lead to any useful insight: the most operations

9Bagging is important because without this one, every node would choose with a high probability the same
variables to split data.

10Python package used for Random Forest is scikit-learn
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are affected by the minute of execution, which is obviously not relevant at all. A possible way to

use these data could be by producing a descriptive model able to describe the operations from

a statistical point of view, but is very difficult to perform some kind of prediction based on the

available data. For this reason, an additional analysis has been performed by clustering available

data on operations, even if is already been discussed that the variability introduced by different

operators is very consistent. Hence, the expected result is that one of the main contributors

would be operators, with the possibility to perform some predictions in terms of the most critical

operators and the most critical stations.

For operations clusters, the same logic pipeline is applied in order to detect Mura contributors.

In this case, analysis shoul be a little bit more complicated due to the categorical features "Oper-

ator" and "Team". While LightGBM deals with this kind of feature, for Random Forest algorithm

an encoding process is needed. At the end, the logic flow of the analysis remains the same as well.

In order to repeat the same analysis, is needed to say that SMOTE, in Python does not support

categorical data. Hence, an encoding procedure is needed for both LightGBM and Random Forest,

even though the first one supports categorical data.

3.3.3 Upsampling of the whole dataset and using the same train and

test dataset

The first step aims to check that algorithms fit into datasets features. If they fail this phase, then

going on with the analysis would be totally useless. What is expected is very high values of AUC,

almost close to 1. Whenever the classification is done, there is always an unbalancing in minority

class. Hence, SMOTE technique rises the number of minor class entries and balance again the

dataset improving the classification performances.

Figures 3.24 show the classification performances of operation number 2 when LightGBM is

applied. Since both training and testing phase are performed on the same dataset, the perfor-

mances are excellent in terms of sensitivity and specificity. More or less, the same result is got for

the other operations.

A comment should be done for feature importance plot. Since the dataframes are very small and

poor in features number, the result shown in 3.25c does not make that sense: the first feature in

the plot is the one that is more present into the final model, but it is the feature with the highest

level of variance, which can indicate that model highly overfits data.

The Random Forest algorithm outputs the same results. Hence, these algorithms may work prop-

erly with this kind of datasets.
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(a) Confusion matrix
(b) ROC

(c) Feature importance plot

Figure 3.24: Operation 2: LightGBM performance analysis for training and testing on the same
dataset.

3.3.4 Upsampling of the whole dataset and split train and test datasets

In this second phase, the dataset is totally upsampled using SMOTE, but training and testing

steps are made on different dataframes. Figure 3.25 shows LightGBM results.

Again, the Random Forest algorithm shows almost exactly the same results. The table below

3.1 summarizes the values of accuracy, precision, recall and AUC of every operation per either

LightGBM and Random Forest. Anyway, the feature importance graphs show that the most

relevant feature is the one which has the highest variance. This fact, again, reflects the huge level

of overfitting of models on the data, due to the limited number of entries.

Classification results seem now to be more realistic. Even if there is still the same problem

of overfitting because of the datasets dimension. If more data would be available, a more robust

testing procedure would be carried on and models would be validated. Until now, is just possible

to describe operations through these overfitted decision trees.
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(a) Confusion matrix
(b) ROC

(c) Feature importance plot

Figure 3.25: Operation 2: LightGBM performance analysis for upsampled dataframe. Training
and testing phase made by splitting dataset.

Table 3.1: The table below summarizes the classification performances for the upsampled dataset.

Operation Acc_LG Acc_RF Prec_LG Prec_RF Rec_LG Rec_RF AUC_LG AUC_RF
Operation 2 0.89 0.92 0.88 0.94 0.9 0.88 0.94 0.94
Operation 6 0.79 0.79 0.75 0.75 0.85 0.83 0.84 0.84
Operation 5 0.78 0.82 0.71 0.78 0.86 0.83 0.87 0.89
Operation 23 0.64 0.64 0.62 0.66 0.63 0.5 0.68 0.63
Operation 1 0.93 0.92 0.93 0.95 0.92 0.89 0.96 0.96
Operation 4 0.71 0.69 0.72 0.71 0.64 0.60 0.74 0.74
Operation 3 0.8 0.79 0.8 0.81 0.79 0.75 0.89 0.86
Operation 5_2 0.65 0.65 0.66 0.67 0.64 0.62 0.73 0.71
Operation 4_2 0.86 0.92 0.85 0.92 0.85 0.85 0.95 0.97
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3.3.5 Upsampling only train dataset

The last task is the one closer to the machine learning itself: the upsampling procedure is only

applied to the training set in order to model the trees and then apply them to an actual test-

ing dataset. The following table (3.2) shows how the performance of classifiers are drastically

diminished in terms of AUC, especially.

Table 3.2: The table below summarizes the classification performances for the upsampled training
set.

Operation Acc_LG Acc_RF Prec_LG Prec_RF Rec_LG Rec_RF AUC_LG AUC_RF
Operation 2 0.82 0.84 0.18 0.08 0.11 0.03 0.53 0.46
Operation 6 0.70 0.68 0.79 0.78 0.82 0.80 0.57 0.51
Operation 5 0.73 0.77 0.79 0.88 0.72 0.70 0.75 0.81
Operation 23 0.57 0.56 0.53 0.53 0.53 0.28 0.62 0.54
Operation 1 0.89 0.91 0.25 0.43 0.12 0.12 0.59 0.66
Operation 4 0.64 0.68 0.54 0.60 0.53 0.05 0.69 0.70
Operation 3 0.72 0.66 0.78 0.77 0.86 0.78 0.60 0.57
Operation 5_2 0.58 0.60 0.35 0.37 0.34 0.32 0.55 0.50
Operation 4_2 0.76 0.80 0.19 0.17 0.43 0.29 0.70 0.75

Partial results From the classification parameters table 3.2, is possible to understand that, at

the moment, with the available data there is not the possibility of doing prediction on variability

operation times. A lot of operations have an AUC between 50 and 60%, meaning that the prevision

is a little bit better than random classification.

Separating the decision regions

There is a last chance to improve performances of classifiers, which is separating the decision

regions, deleting the operation times that are within a certain threshold of the reference time,

starting from the logarithm of the original operation times. The following graph shows an idea of

removing the entries that are in the middle of the two decision regions (Figure 3.26).

Unfortunately, the performance trend follows the one analyzed in the previous chapter: if from

one hand there is a better optimization of the decision regions, on the other hand the datasets

are smaller in terms of dimensions. Therefore, the models are more overfitted on the data and are

not usable for the purpose of contributors detection to the variability in most cases. Sometimes,

for datasets bigger than 500 rows, the classes splitting improves the classification tasks for either

LightGBM and Random Forest. The improvement is very small in terms of precision, accuracy

and AUC, but it is undoubtedly a methodological starting point point for the next steps analysis.
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Figure 3.26: Scatter plot that shows the separation of decision regions. Time is logarithmic in
order to allow a more balanced division.

Feedback to production line At the moment, this use case is subject of study of WO team

of Mirafiori plant. They are going to perform analysis on MES relevant operation and they are

going to use the visualization tools used in this work. What is not clear at all, is how to show the

result of Mura analysis: initially, the aim was to build a real time algorithm able to detect Mura

on operation times.

Figure 3.27: Caption

But it would be an example of over-engineering, because real time information would not

improve that much line performances. Instead, it would be interesting to visualize the features of

a shift detail, the most critical hours and the most critical operations. A possible indicator that

summarizes variability is variance coefficient, which is a dispersion index that allows to compare

different operation times without knowing the reference time. The figure 3.27 shows the indicator
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that could be used into the screens in production line: it is a percentage coefficient and assumes

that process is stable, therefore distribution times should be as much Gaussian as possible.
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Chapter 4

Summary

In this chapter, there will be a detailed list of all results found thanks to the development of the

use case about Mura analysis.

Analysis has been performed from two sides because of the reduced data size:

1. statistical analysis on true data

2. machine learning analysis on synthesized and manipulated data

Before analyzing results, is important to consider that during the internship in FCA, there have

been a lot of difficulties in finding available data from the plants because of security reasons. This

Master thesis, initially, was supposed to focus on big data and machine learning analytics and deal

with IT systems in order to build a real tool which integrate with FCA systems.

Instead, people has proved to be very reluctant in sending operation data. Moreover, the teams

working on Mura analysis, face huge bureaucracy processes to send data. Hence, a great objective

reached by this work is the awareness of plant people and all stakeholders in new data analytics

techniques potential.

Statistical analysis Statistical analysis has the aim of detect the major statistical features

of the operations. At the moment, FCA plants use some parameters to evaluate and monitor

the variability of operations. But, from literature review, the parameters that monitor process

capabilities assume that events are normally distributed. Hence, the very first step of analysis

aims to verify the distribution of operation times. The results emerged are that the 11.1% of

available operations are Gaussian distributed. It is a very low percentage, considering the fact
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that the analyzed operations are just nine, a small fraction of all MES relevant operations of the

AGAP assembly line.

Once Gaussianity was tested, a big part of data visualization is performed to investigate the

kind of distribution and looking for some parameters to keep under control and to use them as

KPIs. Whenever the distribution features are investigated, there will be a graphical method to

look for contributors to the variability.

Each dataframe is splitted into the two teams, because each team has its own operator and

its way of working. Hence, an important result found is that each team works non-coherently

with the other one. This suggests that there is a lack of rigour in working and in keeping the

WCM standards. In fact, the 55% of analyzed datasets show the switch of the order of operations,

without keeping the WCM standardization principles. The analysis would be improved is the

whole MES relevant data of a station were available, in order to detect what operations are used

to be switched. As it has been discussed in previous chapters, providing a tool able to detect

the behaviour of operators, may help in breaking some wrong habits and improves the process

methodologies.

Hence, the investigation goes more in detail into contributors detection.

The approach of visualization part is basically top-down, in the sense that original dataframe

itself contains a lot of information and features. The criterion used is to unpack, step by step

data in order to find interesting trends and find some correlations between time variability and

operations’ features.

Analysis starts with the plot of the frequencies of operation times with respect to the features, i.e.

day of the week, operator, day of production, etc. Whenever interesting trends have been found,

the final system would let the user to choose the column with which unpack data and zooming

into data more in detail.

Basically, the main contributors found is operator. In fact, operators seem to work, sometimes,

completely differently from the other one.

Machine learning analytics Machine learning analytics was aimed to face the problem of

getting an automatic tool that outputs the list of contributors and provides predictions about

variability.

In particular, this is a binary classification task, where classes deal with operation made "in time",

and "out of time".

Basically, two algorithms have been tested on the datasets, divided per teams. The purpose of

contributors detection has carried on by decision trees, chosen because of an interesting feature.
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Algorithms chosen are LightGBM and Random Forest and they are applied, more or less, with the

same mathematical parameters, e.g. number of nodes, depth, learning rate, etc. They by definition

are composed by nodes, that are weak learners, because no matter what the distribution over the

training data is will always do better than chance, when it tries to label the data. This means that

the learner algorithm is always going to learn something, not always completely accurate, i.e. it is

weak and poor. Each learner splits the dataset by a certain feature, and of course, the more the

feature is present into the nodes, the more that feature is relevant to the classification.

Because of datasets size and the unbalancing of the classes, different setups are used in order to

test how the algorithms work because a traditional approach seems to not lead any insights.

• Upsampling the whole dataset and applying algorithms to the same train and test set.

• Upsampling the whole dataset and applying algorithms splitting the resulting dataset into

train and test dataset.

• Updampling only the train set and apply the model to the test set as it is.

The first item works perfectly. Classification parameters are close to 1. This means that

algorithms learns perfectly the trend of dataset.

The second one, for certain operations seems to work well (reference in table 3.2). This, again,

depends strictly on dataset size. However, every model, suffers hugely of overfitting.

The last item deals with a more common machine learning pattern. For the reasons discussed

above, performances are very bad: a lot of classifiers shows almost random prediction.

Since important results have not been found, the analysis went into deeper analysis of decision

regions. In fact, from literature review, in classification tasks the more regions are separated, the

better is the performance of prediction. So, another classification criterion has been applied to the

dataset: the entries in an intermediate region, defined as a percentage of the median operation

time, are not considered. Classification parameters improve for both the algorithms used. How-

ever, the mathematical model is not usable yet.

Finally, the actual output of this work is supposed to be very useful to the production line

workers through the introduction, into the screens, of an indicator that updates shift by shift

able to show variability in terms of percentage of displacement from the nominal value, per each

operation.
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Chapter 5

Future works

Since the context of this work, within the business environment, is at the early stage, there are a

lot of fields to be improved into the future work steps.

Basically, the future works involves either the field of infrastructure system, and the setting of

different data source integration and the application of machine learning algorithms in order to

lead the manufacturing to more efficiency and higher performances.

First of all, with Industry 4.0 paradigms, it could be possible to integrate different IT systems

in order to converge different sources into a single one. In this work, columns of dataframes seem

to not bring relevant information. It would be interesting to integrate data from different fields

like quality, external environment, market and business trend or other WCM indicators on people

capabilities.

The integration between different data sources may be very difficult and complex, because each

of them works in separate IT environments. So, the very first step towards the implementation

of a robust architecture is building a cloud-like infrastructure, where every manufacturing datum

converges and is properly stored. Then, an efficient system of API (Application Programming

Interface) could be built in order to manage whatever kind of application, independently from

infrastructure allowing scalability of the whole system.

Another aspect that has not been considered deals with customization of cars: each body,

into the assembly line could have a lot of different customization accessories, This implies that

operations may be slightly different from the "basic" operation. So, through machine learning

analytics it would be possible to detect the most critical sequence of operations in order to better

organize the flows of the bodies avoiding that more complex set of operations passes into a station.

consecutively optimizing the cars’ sequence.
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5 – Future works

A field in which WO teams are working on is the balancing of the line: in order to get an easier

Mura analysis, lots of MES relevant operations are going to be shifted earlier in the time cycle

in order to eliminate all the random and independent variability introduced by non-MES relevant

operations.

In the end, some new KPI may be defined in order to keep under control the assembly line and

operators: real time algorithms may introduce some kind of real time control and dynamic control

on human made operations.

Finally, whenever the analysis is more robust is possible to implement an interface to the final

users that get the tool usable. Actually, a mockup of the final interface is under construction.
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AGAP Avvocato Giovanni Agnelli Plant

AI Artificial Intelligence

AM Autonomous Maintenance

AO Additive Outliers

API Application Programming Interface

ARPANET Advanced Research Projects Agency NETwork

AUC Area Under the Curve

CD Cost Deployment

CPS Cyber-Physical System

DDDM Data-Driven Decision Making

FCA Fiat Chrysler Automobiles

ICT Information and Communication Technology

IDE Integrated Development Environment

iIoT industrial Internet of Things
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IoT Internet of Things

IQR Inter-Quartile Range

77



List of Acronyms

JES Job Element Sheet

KAI Kay Action Indicator

KET Key Enabling Technologies

KPI Key Performance Indicator

LSL Lower Specification Limit

ML Machine Learning

NaN Not-A-Number

NoP Number of Operators

NVA Non-Value Added

OEE Overall Equipment Effectiveness

OPL One Point Lesson

PCA Principal Component Analysis

PCI Process Capability Indices

ROC Receiver Operating Curve

SMOTE Synthetic Minority Over-sampling Technique

SVA Semi-Value Added

TC Time Cycle

TIT Total Industrial Technology

TPS Toyota Production System

TT Takt Time
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List of Acronyms

USL Upper Specification Limit

UTE Unità Tecnologica Elementare

VA Value Added

WCM World Class Manufacturing

WO Workplace Organization
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