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Abstract

We analyze globally normalized transition-based neural network models for dependency
parsing on English, German, Spanish, and Catalan. We compare the results with FreeLing,
an open source language analysis tool developed at the UPC natural language processing
research group. Furthermore we study how the mini-batch size, the number of units in
the hidden layers and the beam width affect the performances of the network. Finally we
propose a multi-lingual parser with parameters sharing and experiment with German and
English obtaining a significant accuracy improvement upon the monolingual parsers. These
multi-lingual parsers can be used for low-resource languages or for all the applications with
low memory requirements, where having one model per language is intractable.
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Chapter 1

Introduction

1.1 Background

Natural Language Processing (NLP) refers to the use and capacity of systems to process
sentences in a natural language, for any purpose, independent of the level of in-depth anal-
ysis. Natural language means the language we use in everyday life, such as English, Span-
ish, Chinese, and Italian. It is synonymous with human language, mainly to distinguish it
from formal language, including computer language. As it is, natural language is the most
natural and common form of human communication. Compared to formal language, natu-
ral language is much more complex, it often contains misunderstandings and ambiguities,
which makes it very difficult to elaborate. Interest in NLP began in 1950 with the publication
of Alan Turing’s paper "Computing Machinery and Intelligence" and ever since it exponen-
tially increased: machine translations, predictive typing, spell checkers, and Spam detections
are just few of everyday tools using NLP as foundation.

Natural Language Understanding (NLU) is a branch of NLP in artificial intelligence that
studies machine reading comprehension. NLU is considered an hard problem. One of the
main obstacle that makes NLU so difficult is that human languages exhibit notable degrees of
ambiguity. Natural language grammars are ambiguous and common phrases have numer-
ous potential analyses. Indeed for a normal sentence there may be thousands of probable
parses (most of which will appear absolutely senseless to us).

Dependency-based parsers can be used to resolve such ambiguities. In recent years there
has been an increasing interest in neural network models for dependency parsing. These
models present all advantages and disadvantages that neural networks models usually present:
training these types of parsers does not require a lot of expertise, but to obtain state-of-art
results a considerable amount of annotated data is required.

On March 2016 Google published a globally normalized transition-based neural network
model (SyntaxNet) obtaining state-of-the-art results in part-of-speech tagging and depen-
dency parsing, among others (Andor et al., 2016).

1



2 CHAPTER 1. INTRODUCTION

1.2 Intended readers

In this thesis, dependency parsing and neural networks models for dependency parsing
are the main topics. A reader interested in either of these topics may find the results pre-
sented useful for further study. A casual reader will be presented with an introduction to
dependency parsing, neural networks model for dependency parsing and SyntaxNet, the
model that we aim to study and extend.

1.3 This thesis

We aim to understand how well globally normalized transition-based neural networks for
dependency parsing perform on four different languages (English, German, Spanish and
Catalan) and how the choice of parameters affects the performances.

We also aim to understand if you can somehow exploiting the similarities among two or
more languages to train more robust models, jointly training a dependency parser for two
languages at the same time. We also try to understand if the same methodology can be used
for low resource languages, for which small annotated corpora are available.

We consider worthwhile this work as to our knowledge there is not yet an extensive study
of SyntaxNet’s parameters. This study can be used by the research community or by anyone
else interested in training a SytaxNet model to tweak the parameters and to avoid a time-
expensive parameters search to improve the accuracies. We also believe that the work on the
bilingual parser can be used to get competitive accuracies for low-resource languages or in
all the cases where we need to deal with more than one language and we cannot afford to
waste memory and storage resources. It is indeed clear that having one model for language
is more resources-demanding than having a single multi-lingual model. Resources used not
to be a problem when inference was done on powerful systems, but nowadays we see more
and more interest in performing inference directly in embedded devices.

The main contributions of this thesis are: an extended study on how SyntaxNet’s parame-
ters affect the performance of the model, and a novel multilingual parser based on SyntaxNet
and trained on more languages.

1.3.1 Delimitations and Limitations

Considering the limited amount of computations resources available we limit the study of
SyntaxNet to four languages: English, German, Spanish and Catalan. We also limit the study
of the multilingual parser to two languages, German and English, performing a reduced but
still valid training, as explained in more details in Chapter 8.

1.3.2 Related works

To our knowledge this is the first extended study of SyntaxNet’s parameters. Even if An-
dor et al. (2016) extensively introduce SyntaxNet and its background and motivation, the
presented results are limited to a small set of parameters.
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On the other side this is not the first attempt to build a multilingual parser. Zeman and
Resnik (2008) use delexicalized parsing. A delexicalized parser is a parser trained without
any lexical features using the treebank of resource-rich source language. The delexicalized
parser is then used to analyze phrases in the target resource-poor language. This take ad-
vantage of the idea that identical POS tags are highly descriptive of binary relations, and that
many languages shares some semantic structure. Petrov et al. (2016) and Ma and Xia (2014)
take advantage of parallel corpora as a way to project constraints from the source language
to the target language. Duong et al. (2015) proposed a model for training a bilingual parser
exploiting the idea of an interlingual continuous representation of language using a bilingual
dictionary as a set of soft constraints.

Our approach is similar to the one of Duong et al. (2015) but we use pretrained multilin-
gual word-embeddings instead of a bilingual dictionary, and we use as a baseline model
SyntaxNet.

1.3.3 Ethical Concerns and Sustainability

Even if artificial intelligence is raising more and more ethical questions in the last few
years, we cannot see any ethical concern in this thesis.

1.3.4 Outline of the thesis

From Chapter 2 till Chapter 5 we progressively introduce the reader to Dependency Pars-
ing, Transition-Based Dependency Parsing, Neural Network Models for Dependency Pars-
ing and SyntaxNet.

The last two chapters contains the main contributions of our thesis. In Chapter 6 we de-
scribe how we trained several SyntaxNet models for multi-lingual dependency parsing. In
Chapter 7 we study how the choice of SyntaxNet’s parameters affects the performances of
the models. In Chapter 8 we describe our experiments to build and train jointly bilingual
parsers based on the idea that we can exploit similarities between languages.



Chapter 2

Dependency Parsing

Dependency-based syntactic theories are built around the theory that the syntax of a sen-
tence can be expressed as a set of relations between the words of the sentence (Nivre, 2008).
Dependency parsing demonstrated its value in several applications such as Machine Trans-
lation (Chris Quirk, 2006; Ding and Palmer, 2005; Shen et al., 2008), Question Answering
(Jijkoun et al., 2004; Cui et al., 2005a; Bouma et al., 2006; Cui et al., 2005b), Information Ex-
traction (Ciravegna and Lavelli, 1999; Sætre et al., 2008; Alphonse et al., 2004) and Natural
Language Generation (Koller and Striegnitz, 2002) among others.

2.1 Dependency Graph

The syntactic structure of a sentence is expressed by a dependency graph as illustrated in
Figure 2.1 for an English sentence taken from the Penn Tree-bank (Marcus et al., 1993). It’s
common practice to add a bogus token ROOT at the beginning of the sentence, acting as the
unique root of the graph. More formally:

Figure 2.1: Dependency graph for an English sentence from the Penn Tree-bank (source (Gómez-
Rodríguez and Nivre, 2013)).

Definition 2.1.1. Identified a setL = {l1, . . . , l|L|} of dependency labels, a dependency graph
for a sentence x = {w0, w1, . . . , wn} is a labeled directed graphG = (V ,A), where

1. V = {0, 1, . . . , n} is a set of nodes and each node is a non-negative integer correspond-
ing to the index of a word in the sentence (including ROOT).

2. A ⊆ V × L × V is a set of labeled directed arcs. Each labeled arc can be expressed as
an ordered triple (i, l, j) where i and j are nodes and l is a dependency label. The node
i can be referred to as the head, l as the dependency type of j, and j as a dependent of
i (Nivre, 2008).

4



CHAPTER 2. DEPENDENCY PARSING 5

Definition 2.1.2. A dependency graphG = (V ,A) is well-formed on these terms:

1. The node 0 is a root.

2. Every node has just no more than one head and one label.

3. The graphG has no directed cycles.

A well-formed dependency graph (satisfying all the above conditions) is a dependency for-
est. A connected dependency forest is also called dependency tree.

2.2 Dependency Parsers

In computational linguistics, a dependency parser is a device that produces a dependency
graph G = (V ,A) from an input sentence x = w0, . . . , wn and eventually other inputs, e.g.
PoS tags as illustrated in Figure 2.2.

Figure 2.2: Dependency parser schema

In the last few years dependency-based syntactic representations have been used mostly
in data-driven models, which learn to parse sentences for syntactic relations merely from an
annotated corpus. One potential advantage of these type of models is that they are handily
ported to any language in which annotated corpora subsist.

In the course of our work we made use of two dependency parsers, SyntaxNet and FreeL-
ing. SyntaxNet is an open-source neural network framework implemented in TensorFlow
that provides a base for NLU systems (Andor et al., 2016). We’ll talk more about it in Chapter
5.

FreeLing is an open source language analysis tool suite created and currently leaded by
Lluís Padró as a tool to make easily available the results of the research conducted at the Poly-
technic University of Catalonia NLP research group (Padró and Stanilovsky, 2012). FreeLing
implements both a command-line interface and a C++ library that can be used to parse text
and obtain output in the several format (XML, JSON, and CoNLL) for several languages
(English, Spanish, Italian, Catalan, and German among others). For dependency parsing
FreeLing offers both rule-based and statistical models. The statistical one based on (Car-
reras, 2007) will be used in this thesis from now on. The statistical dependency parser uses
the Treeler1 machine learning library.

1http://devel.cpl.upc.edu/treeler/



Chapter 3

Transition-Based Dependency Parsing

Transition-based dependency parsers scan a sentence word by word, and sequentially ex-
ecute transition actions to build the parse tree of the sentence(Nivre, 2008). Transition-based
dependency parsers are defined in terms of two components, a transition system and an
oracle.

3.1 The Transition System

Definition 3.1.1. A transition system for dependency parsing consist of:

1. a set of configuration (or parser states) C,

2. a set of rules (or transitions) T for which configuration to go from each configuration,

3. a set of initial configurations

4. the set of terminal configurations Ct ⊆ C

A configuration has to contain a buffer β, initially containing the nodes [1, . . . , n] match-
ing the words of a phrase x = (w0, w1, . . . , wn), and a set A of dependency arcs. Real-word
transition systems enhance this essential definition of configuration with various data struc-
tures, such as list and stacks. We use the notation βc andAc to refer to the value of β andA,
respectively, in a configuration c. An empty buffer is denoted using [].

Definition 3.1.2. Given a transition system S, A transition sequence for a sentence x =

(w1, . . . , wn) in S is a sequence C0:m = (c0, c1, . . . , cm) of states, so that:

1. c0 is an initial state

2. cm is a terminal state, cm ∈ Ct

3. for every i (1 ≤ i ≤ m), ci = t(ci−1) for some t ∈ T .

The parse assigned to the sentence x by the transition sequence C1:m is the dependency
graph Gcm = ({1, . . . , n},Acm). Starting from the initial parser state, transitions will ma-
nipulate the buffer β and the set of dependency arcs A (and other available data structures)
until a terminal configuration is hit. The set Acm of dependency arcs in the terminal parser
state will determine the output dependency graph Gcm = (V ,Acm). We can consider a

6
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Table 3.1: An example of transition-based dependency parsing using the arc-standard rules.

Transition Stack Buffer A

[ROOT] [She has bad taste .]
SHIFT [ROOT She] [has bad taste .]
SHIFT [ROOT She has] [bad taste .]
LEFT-ARC (nsubj) [ROOT has] [bad taste .] A[nsubj(has, She)]
SHIFT [ROOT has bad] [taste .]
SHIFT [ROOT has bad taste] [.]
LEFT-ARC (amod) [ROOT has taste] [.] A[amod(taste, bad)]
RIGHT-ARC (dobj) [ROOT has] [.] A[dobj(has, taste)]
SHIFT [ROOT has .] []
RIGHT-ARC (punct) [ROOT has] [] A[punct(has, .)]
RIGHT-ARC (root) [ROOT] [] A[root(ROOT, has)]

bijective correspondence between decision sequences t0:j−1 and configurations cj : in other
words, we consider that the whole history of decisions is encoded by a configuration and
each configuration can reached by a unique decision sequence from c0.

Two of the most common used transition system for dependency parsing are the arc-
standard and the arc-eager.

3.1.1 Arc-standard Transition System

In the arc-standard a state c = (s, b,A) subsists of a buffer b, a stack s, and a set of dependency
arcs A. For an input sentence w1, . . . , wn parsing starts with s = [ROOT], b = [w1, . . . , wn]],
and A = ∅. On the contrary parsing stops if the buffer is empty and the stack only contains
the node ROOT. At each step one of the following transition action can be taken:

• SHIFT: pushes the front token b1 from the buffer onto the stack.

• LEFT-ARC(l): insert an arc s1 → s2 with label l and pops s2 from the stack.

• RIGHT-ARC(l): insert an arc s2 → s1 with label l and pops s1 from the stack.

Table 3.1 illustrates an example of a transition sequence from the initial configuration to a
terminal one for the sentence "She has bad taste".

3.1.2 Arc-Eager Transition System

In the arc-eager, a state c = (s, b,A) subsist of a buffer b, a stack s, and a set of dependency
arcs A. For an input sentence w1, . . . , wn parsing starts with s = [ROOT], b = [w1, . . . , wn],
and A = ∅. On the contrary parsing stops if the buffer is empty. At each step one of the
following transition action can be taken:

• SHIFT: pushes the front token b1 from the buffer onto the stack.

• LEFT-ARC(l): insert an arc w0 → s0 with label l and pops s0 from the stack.

• RIGHT-ARC(l): insert an arc s0 → w0 with label l and pops w0 onto the stack.
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• REDUCE: pops the stack.

In the arc-eager system arcs are added at the earliest possible chance. It consequently
produces parts of the tree top-down rather than bottom-up. It does not guarantee well-
formedness.

3.2 The Oracle

Definition 3.2.1. An oracle for a transition system S = (C,T , cs,Ct) is a function o : C → T .

Deterministic parsing can be implemented as in Algorithm 1. It’s straightforward to see
that a deterministic parser builds one and only one transition sequence C0:m for a sentence
x. The terminal configuration cm defines the final parse tree.

Algorithm 1: Oracle parsing algorithm
Data: x = (w0, w1, . . . , wn−1)

Result: Gc
1 c← cs;
2 while c /∈ Ct do
3 c← [o(c)](c)

4 end

In data-driven dependency parsing, oracles normally take the form of classifiers (Nivre,
2008). In the last few years oracles have been usually implemented using neural networks.

Over-generalizing we can classify them as:

• local - e.g. at each iteration a set of successor states are produced, a classifier (e.g. a
SVM) is then used to predictably pick the one with the highest score as the next state
so behaving as a local classifier.

• structured - the oracle optimizes whole sequences of actions. They’re called structured
because full sequences of actions corresponds to tree structures



Chapter 4

Neural Network Models for Transition-
Based Dependency Parsing

Until few years ago, transition-based dependency parsers described in Chapter 3 were
implemented using rule-based oracles. The use of many feature templates, required in these
types of parsers, creates several problems: first of all because the feature templates have to
be manually designed, a lot of know-how is required; even with a huge amount of training
data is required, it’s almost impossible to train all feature weights; last but not least, the time
required to extract the feature is usually higher than the time required by the main parsing
algorithm Chen and Manning (2014),

Neural network models for transition-based dependency parsing address all the these
problems. Chen and Manning (2014) use dense features in place of the sparse indicator
features as inspired by the success of distributed word representations in several NLP tasks.
Furthermore a neural network classifier is trained to make parsing decisions. The neural
network learns dense vector representation of words, dependency labels, and part of speech
tags. Chen and Manning (2014) introduced for the first time PoS tag and arc label embed-
dings in place of discrete representations.

In the next few pages we are going to give a short introduction to word embeddings, what
they are and why in the few past years there has been so much interest in them. Furthermore
we’ll briefly describe the greedy and the structured architectures.

4.1 Word Embeddings

Until few year ago, the standard way to encode sentences and works was the Bag-of-
Words. With this model each word is encoded as one-hot vector. The dimensionality of the
vector is equal to the size of the vocabulary. So let’s consider a 6-words vocabulary: king,
queen, man, woman, uncle, and aunt. The representation for each word in the vocabulary is re-
spectively

[
1 0 0 0 0 0

]
,
[
0 1 0 0 0 0

]
,
[
0 0 1 0 0 0

]
,
[
0 0 0 1 0 0

]
,[

0 0 0 0 1 0
]
, and

[
0 0 0 0 0 1

]
.

This model presents several issues:

9
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Figure 4.1: Example of encoded semantic relationships in word embeddings.

• each word vector has no semantical meaning. That’s to say there is no relationship
between vectors that encode similar words (e.g. king and queen, man and woman)

• in real-word scenarios, the vocabulary size can be huge. This mean that the dimen-
sionality of each word vector is huge and the possibilities to stumble in the curse of
dimensionality are high.

Word embeddings (also referred to as distributed representation, semantic vector space, or
word space) solve both these issues. The idea is to use a mathematical embedding to go from
a one-dimension-per-word vector space to a continuous one with much lower dimension.
Credit for the definitive spread of word embeddings goes to Mikolov et al. (2013) with the
introduction of word2vec. It was shown that the similarity of word representations goes
beyond simple syntactic regularities. For example that vector(”Uncle”) − vector(”Man”) +

vector(”Woman”) results in a vector that is close to the vector embedding of the word Aunt
as shown in picture 4.1.

4.1.1 PoS and Label Embeddings

Although the PoS tags and arc labels are relatively small discrete sets, they still manifest
many semantical similarities like words. For instance, NN (singular noun) must be closer
to NNP (Proper Noun) than JJ (Adjective), and amod (adjective modifier) must be closer to
poss (possession modifier) than dobj (direct object). As first shown by Chen and Manning
(2014), the learned dense representations of PoS tags and arc labels correctly carry these
semantical similarities. Figure 4.2 presents t-SNE visualizations of these embeddings.

4.2 Greedy Neural Network Model

Figure 4.3 describes the neural network architecture introduced by Chen and Manning
(2014) that still serves as baseline for more recent works, including SytanxNet. As stated
above each word, PoS tag and arc label is represented as a d-dimensional vector. A set of el-
ements are chosen in accordance with the stack/buffer position for each type of information
(word, PoS or arc label). A benefit of this kind of parser is that we can easily add a rich set of
elements, rather than manually defining many more indicator features.
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Figure 4.2: t-SNE visualization of PoS and label embeddings. Similar PoS and labels are close in the
embedding space. Source Chen and Manning (2014).

Figure 4.3: Neural network architecture used in Chen and Manning (2014) .

A neural network with one hidden layer is built, where the corresponding embeddings
of the chosen elements (words, PoS tags and labels) are added to the input layer. A cube
activation function is used. Finally a softmax layer is used to model multi-class probabilities.

Training instances are produced from the training data and their parse trees adopting a
deterministic oracle which always choose LEFT-ARC over SHIFT. The training objective is
to minimize the cross-entropy loss. A l2-regularization term is used to reduce overfitting.

At parsing time the model performs greedy decoding. At each step, all the corresponding
word, PoS tag and label embeddings from the current configuration are extracted, the hidden
layer activation is computed and the transition with highest score is picked.
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4.3 Structured Neural Network Model

The downside of greedy (or local) parsing described above is error propagation: an incor-
rect action will have a negative impact on the following ones, resulting an incorrect output
parse tree. To cope with this issue global structural learning can be used.

• In the aspect of decoding, beam-search can be applied to improve upon greedy one-
best search.

• In the aspect of training, global structural learning can be used to replace local learning
on each decision.

Beam search is a heuristic search algorithm that reduces the number of nodes to be vis-
ited pruning at any step all non-promising nodes (Zhang, 1999). The pruning is driven by
problem-specific heuristics. The group of most promising nodes is named "beam" (Xu and
Fern, 2007). The size of the beam is considered a parameter of the search, and can vary
during the search process.

Global structural learning maximizes the likelihood of action sequences rather than the
likelihood of individual actions. Not doing so means that at any search step we consider
each action conditionally independent from the past and the future ones. Regarding depen-
dency parsing, this is in general not true, hence a structured learning should improve the
effectiveness of a model.

Structured learning means predicting structured objects, instead of "simple" values. Here
"simple" implies regression, binary and multi-class classification. For instance, the problem
of obtaining the parse tree of a phrase can be seen as a structured learning problem in which
the output domain is the set of all potential parse trees.

One of the most common example of structured learning algorithms is the structured per-
ceptron (Collins, 2002). The desired outcome is a mapping from inputs x ∈ X to outputs
y ∈ Y . Given:

• Training epochs T

• Training data (xi, yi) ∀i = 1 . . . n.

• A function GEN which generates a set of successors given an input x.

• A representation Φ mapping each (x, y) ∈X × Y to a feature vector Φ(x, y) ∈ Rd.

• A parameter vector ~w ∈ Rd.

The mapping from an input x to an output F (x) is defined in such a way:

F (x) = arg max
y∈GEN(x)

Φ(x, y) · ~w

Algorithm 2 and training data can be used to learn the parameter vector ~w.
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Algorithm 2: The structured perceptron learning algorithm
Data: training examples (xi, yi)

Result: ~w
1 ~w ← 0;
2 for t← 1 to T do
3 for i← 1 to N do
4 zi ← arg maxz∈GEN(x) Φ(xi, z) · ~w;
5 if zi 6= yi then
6 ~w ← ~w + Φ(xi, yi)− Φ(wi, zi);
7 end
8 end
9 end

The structured perceptron has been successfully applied to several NLP tasks. For example
for dependency parsing the most common used algorithm used is shown in Algorithm 3.
On each training example, beam search (DECODE) is used to decode the sentence until the
gold-standard parse tree falls out of the beam. As stated before beam search requires a score
function for each parser state. This is usually calculated running a feed-forward network
with the state as input (that’s to say the set of features that describe each parser state). The
last layer (the soft-max) of the feed-forward network is usually the distinguishing feature:
e.g. Zhou et al. (2015) use a contrastive probabilistic learning objective, and Andor et al.
(2016) introduce a Conditional Random Field (CRF) objective. The UPDATE function is
normally a stochastic gradient step taken on the particular objective.

Weiss et al. (2015) do not use a stochastic gradient step for the "update" function neither
a special soft-max for decoding, instead a feed-forward network is first trained as by Chen
and Manning (2014) and then a perceptron layer is trained using the standard structured
perceptron algorithm where the representation function Φ is computed by the trained feed-
forward network as show in Figure 4.4.
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Algorithm 3: Training Algorithm for Structured Neural Parsing
Data: training examples (X,Y )

Result: θ
1 initialize θ;
2 for t← 1 to T do
3 foreach i← 1 to N do
4 beam = ∅;
5 goldState = null;
6 terminate = null;
7 beamGold = true;
8 while beamGold and not terminate do
9 beam = DECODE(beam, xi, zi);

10 goldState = GOLD_MOV E(goldState, xi, zi);
11 if not IS_GOLD(beam) then
12 beamGold = false;
13 end
14 if ITEMS_COMPLETE(beam) then
15 terminate = true;
16 end
17 end
18 θ = θ + UPDATE(goldState, beam);
19 end
20 end

Figure 4.4: Schematic overview of Weiss et al. (2015) neural network model.



Chapter 5

SyntaxNet

In Chapter 4 we introduced the concept of structured neural network models for transition
based parsing along with the abstract training algorithm. The beam search heuristic requires
to score each parser state. The scoring function can be defined and implemented in several
ways. Following Zhou et al. (2015) and Weiss et al. (2015), Andor et al. (2016) defines it via a
feed-forward neural network as:

p(s, d; θ) = Φ(s; θ(l)) · θ(d)

where:

• θ(l) are the parameters of the neural network, not including the parameters of the ter-
minal layer.

• Φ(s; θ(l)) is the representation for state s computed by the model using the parameters
θ(l).

• θ(d) are the terminal layer parameters for the decision d.

We can observe that the above-defined score is linear in the parameters θ(d). The different
models in the literature usually share the first layers of the feed-forward neural network but
differ in the choice of the last layer, normally a softmax-style one. In the next few subsections
we’ll briefly describe the architecture of SyntaxNet shown in Figure 5.1.

5.1 The model

5.1.1 Input Layer

From a parse configuration c (consisting of a stack s and a buffer b), a set of discrete features
F (grouped by category e.g. words, arc labels, and part of speech tags), is obtained and fed
into the network. Once the features are obtained a F×V matrixX is constructed: the element
Xfv is 1 if the f -th feature has value v, 0 otherwise. Please notice that F is the number of
features and V is the size of the vocabulary of the feature group. For all groups, additional
"tokens" are used:

• ROOT pointing out the part-of-speech or word of the root token.

• UNK pointing out an out-of-vocabulary token.

• NULL pointing out that no valid feature value could be determined.

15
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Figure 5.1: Feed-Forward SyntaxNet architecture (source Google).

5.1.2 Embedding Layer

The first learned layer h0 converts the sparse features X into an embedded representa-
tion. For each feature group Xg, we learn a Vg ×Dg embedding matrix Eg that applies the
conversion:

h0 = [XgEg|g ∈ word, tag, ...]

the computation is applied separately for each group g and the results concatenated. The
embedding dimensionality D can be chosen freely for each group.

5.1.3 Hidden Layers

Two fully-connected layers of rectified linear units (ReLu) are used as hidden layers. This
differs from Chen and Manning (2014) that used a novel cube activation function.

5.1.4 Global vs. Local Normalization

For greedy neural network parsing, the conditional probability distribution over decision
dj given context d1:j−1 is defined as

p(dj |d1:j−1; θ) =
exp p(d1:j−1, dj ; θ)

ZL(d1:j−1; θ)
(5.1)

where
ZL(d1:j−1; θ) =

∑
d′∈A(d1:j−1)

exp p(d1:j−1, d
′; θ)

where A(d1:j−1) is the set of allowed decisions from the state si. Each ZL(d1:j−1 is a local
normalization term. The probability of a decisions-sequence d1:n is:
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pL(d1:n) =
n∏
j=1

p(dj |d1:j−1; θ)

=
exp

∑n
j=1 p(d1:j−1, dj ; θ)∏n

j=1 ZL(d1:j−1; θ)

(5.2)

Beam search can be applied to maximize Equation 5.2 with respect to d1:n.

On the contrary, a CRF defines a distribution pG(d1:n) in the following way:

pG(d1:n) =
exp

∑n
j=1 p(d1:j−1, dj ; θ)

ZG(θ)
(5.3)

where

ZG(θ) =
∑

d′1:n∈Dn

exp
n∑
j=1

p(d′1:j−1, d
′
j ; θ)

and Dn is the set of all valid sequences of decisions of length n. ZG(θ) is a global normal-
ization term. The inference problem is to find:

arg max
d1:n∈Dn

pG(d1:n) = arg max
d1:n∈Dn

n∑
j=1

p(d1:j−1, dj ; θ)

Beam search is used to approximately find the argmax.

5.2 Training

Training data consists of input x paired with gold decision sequences d∗1:n. Averaged
Stochastic gradient descent with momentum is used on the negative log-likelihood of the
data under the model to update the parameters. Under a locally normalized model, the
negative log-likelihood is

Llocal(d
∗
1:n; θ) = − ln pL(d∗1:n; θ)

= −
n∑
j=1

p(d∗1:j−1, d
∗
j ; θ) +

n∑
j=1

lnZL(d∗1:j−1; θ)
(5.4)

while under a globally normalized model it is:

Lglobal(d
∗
1:n; θ) = − ln pG(d∗1:n; θ)

= −
n∑
j=1

p(d∗1:j−1, d
∗
j ; θ) + lnZG(θ)

(5.5)

considering that the ZG is in many case intractable, beam search and early updates are
used. As per algorithm 3, in case the gold path falls off of the beam at step j, a stochastic
gradient step is executed with the following objective:

Lglobal−beam(d∗1:j ; θ) = −
j∑
i=1

p(d∗1:i−1, d
∗
i ; θ) + ln

∑
d′1:j∈Bj

exp

j∑
i=1

p(d′1:i−1, d
′
i; θ)
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Bj includes all paths in the beam at iteration j. In case the gold path persists in the
beam once the decoding is over, a gradient step is executed using Bn, the beam at the end of
decoding.

While directly optimizing the global model defined by Equation 5.5 works well, it has been
seen that training the model in two steps gets the same precision much faster: in the first step
the local objective from Equation 5.4 is adopted to pretrain the network; in the second step
the the global objective from Equation 5.5 is used.



Chapter 6

Evaluation of SyntaxNet on Multilin-
gual Tasks

We evaluated SyntaxNet on 4 different languages (Catalan, German, English and Spanish)
and compared our models with FreeLing. Even if SyntaxNet can be used both as a PoS tagger
and as a dependency parser, in our work we focused on the latter part. Please note that here
we trained and evaluated SyntaxNet for each language separately. In chapter 8 we describe
our experiments to train the model jointly for two languages.

6.1 Corpora

To train and evaluate the models we used a modified version of CoNLL datasets pro-
vided by the Polytechnic University of Catalonia. The corpora provided by UPC included
just training and tuning datasets. In order to properly evaluate the trained models we ran-
domly extracted from the training sets a set of sentences to be used during testing. The exact
statistics are shown in Table 8.1.

Table 6.1: Number of documents for dataset.

# training # tuning # test

English 37945 1334 1334
German 31591 1828 1828
Spanish 12651 1654 1654
Catalan 11414 1709 1709

6.1.1 EAGLES PoS Tags

The corpora provided by UPC does not use the Universal PoS tags. Instead it uses PoS
tags based on the proposals by EAGLES.

EAGLES PoS tags consist of labels of variable length where the front character always
indicates the category (PoS). The length of the tag and the meaning of each character in the
tag is regulated by the category.

19
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For example, we could have the following definition for the category noun:

Position Attribute Values

0 category N:noun
1 type C:common; P:proper
2 genre F:feminine; M:masculine; C:common
2 number S:singular; P:plural; N:invariable

This would allow PoS tags such as NCFP (standing for noun/common/feminine/plural). Fea-
tures that are not applicable or undetermined are set to 0 (zero). E.g. NCF0 stands for
noun/common/feminine/underspecified-number. The meaning of a character at a certain position
of a tag depends on the category (determined by the first letter) and on the target language.
E.g. for languages where nouns can have supplementary features (case, etc.) the tag charac-
terization would include one further character.

Even if SyntaxNet is flexible enough to accept different tag sets, the tag set choice can
sensibility affect the performance of the system. For more information we refer the reader to
FreeLing documentation1.

6.2 Model Configuration and Training

6.2.1 Features

The adopted model configuration is essentially the same as the one proposed by Andor et
al. (2016) as shown in Figure 5.1. The arc-standard transition system was used and two dif-
ferent sets of features were experimented with. In the first configuration we extracted words
(Xw), part of speech tags (Xt), and dependency arcs and labels (X l) in the surround context
of the state as shown in Table 6.2. In the second configuration we also added morphological
features (Xm) if available. We used the following embedding sizes: 64 for words and 32 for
all the other features.

SyntaxNet uses a flexible markup language to define feature functions:

• word (w) - to get the word from the focus token.

• tag (t) - to get the POS tag from the focus token.

• label (l) - to compute the label from focus token.

• morphology-set (m) - to get the list of morphological features from the focus token.

And feature locators:

• input (i) - Accesses the remaining input tokens in the parser state.

• stack (st) - Accesses the stack in the parser state.

1https://talp-upc.gitbooks.io/freeling-user-manual/content/tagsets.html
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Table 6.2: Feature templates in the first and second configuration. The highlighted row is used just
in the second configuration.

Templates

Xw

i.w i(1).w i(2).w i(3).w st.w st(1).w st(2).w st(3).w st.rc(1).w
st.rc(1).ls(1).w st.lc(1).w st.lc(1).rs(1).w st(1).rc(1).w st(1).rc(1).ls(1).w
st(1).lc(1).w st(1).lc(1).rs(1).w st.rc(2).w st.lc(2).w st(1).rc(2).w
st(1).lc(2).w

Xt

i.t i(1).t i(2).t i(3).t st.t st(1).t st(2).t st(3).t st.rc(1).t st.rc(1).ls(1).t st.lc(1).t
st.lc(1).rs(1).t st(1).rc(1).t st(1).rc(1).ls(1).t st(1).lc(1).t st(1).lc(1).rs(1).t
st.rc(2).t st.lc(2).t st(1).rc(2).t st(1).lc(2).t

X l st.rc(1).l st.rc(1).ls(1).l st.lc(1).l st.lc(1).rs(1).l st(1).rc(1).l st(1).rc(1).ls(1).l
st(1).lc(1).l st(1).lc(1).rs(1).l st.rc(2).l st.lc(2).l st(1).rc(2).l st(1).lc(2).l

Xm

i.m i(1).m i(2).m i(3).m st.m st(1).m st(2).m st(3).m st.rc(1).m
st.rc(1).ls(1).m st.lc(1).m st.lc(1).rs(1).m st(1).rc(1).m st(1).rc(1).ls(1).m
st(1).lc(1).m st(1).lc(1).rs(1).m st.rc(2).m st.lc(2).m st(1).rc(2).m
st(1).lc(2).m

• left child (lc) - Locates left children of the focus token.

• right child (rc) - Same as above but it locates right children.

• left sibling (ls) - Locates left siblings of the focus token.

• right sibling (rs) - Same as above but it locates right siblings.

6.2.2 Training

The model is trained in two steps in order to speed up the training process (Andor et al.,
2016): in in the first step the local objective from Equation 5.4 is adopted to pretrain the
network; in the second step the the global objective from Equation 5.5 is used. All layers
(including the embeddings and except the soft-max) were pretrained in this way. Averaged
stochastic gradient descent with momentum is used.

If not specified we used an initial learning rate of 0.07/0.02 (greedy/structured), a momen-
tum of 0.85/0.9 and a decay rate that corresponds to about one tenth of the training corpus
size. All the models were trained with early stopping for a maximum of 12/20 epochs. We
did not feed pre-trained word-embeddings, instead we normally initialized and learnt them.

6.3 Results

Table 6.3 shows our final parsing test-set results and a comparison with FreeLing. The
FreeLing models were trained with the exact same corpora used for our models. We provide
the UAS, the Labeled Attachment Score (LAS) and the Label Accuracy (ACC) calculated
using the CoNLL-2007 Shared Task Scorer:

• LAS - indicates the percentage of words for which the appropriate HEAD and LABEL
were inferred.
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• UAS - indicates the percentage of words for which the appropriate HEAD was inferred.

• ACC - indicates the percentage of words for which the appropriate LABEL was in-
ferred.

The best results are highlighted column by column in bold. Our results significantly out-
perform FreeLing for all the four languages under studying except the LAS for English.

As expected the model with best accuracies is the one with the larger beam width (β=64)
with few exceptions. But if we consider that a small increase in beam width can cause a huge
increase in training and decoding time, models with smaller beam width still perform good
with an accuracy drop on average between 0.5% and 1.0%.

The last rows of Table 6.3 show the accuracy scores for the two configurations using mor-
phological features too. We observe a drop in all the scores. This is likely due to the fact that
EAGLES tags already include rich morphological features and the duplication of information
just cause unneeded noise.

In Chapter 5 we introduced Et and El as the continuous embedded representations of
all PoS tags and arc labels. Chen and Manning (2014) showed that these embeddings carry
some semantic information. We wonder whether the same thing happens using our trained
models. Figure 6.1 presents t-SNE visualizations of Et embedding, the PoS tags are colored
by category. It clearly shows that this embedding effectively exhibit the similarities between
PoS tags.

Table 6.3: Final dependency parsing test-set results. The β stands for beam width, the M indicates if
morphology features are used. All the models use two hidden layers of 1024 units each, batch size of 64,
learning rate of 0.07/0.02 (greedy/structure), momentum of 0.85/0.9 and a decay rate that corresponds
to about one tenth of the training corpus size. All the models were trained with early stopping for a
maximum of 12/20 epochs without pre-trained embeddings.

Catalan Spanish English German
Method UAS LAS ACC UAS LAS ACC UAS LAS ACC UAS LAS ACC

FreeLing 90.15 87.29 93.44 90.31 87.34 93.03 90.48 89.61 92.27 84.95 82.81 91.60

SyntaxNet β=8 91.60 88.47 93.66 91.54 88.51 93.56 91.26 88.46 92.76 88.98 86.89 94.06
SyntaxNet β=16 92.01 88.90 93.93 92.42 89.40 93.89 91.81 89.09 93.15 89.12 87.05 94.13
SyntaxNet β=32 92.09 89.09 94.00 92.23 89.30 93.88 91.95 89.24 93.26 89.49 87.45 94.30
SyntaxNet β=64 92.11 89.14 94.08 92.40 89.50 93.99 92.07 89.37 93.31 89.73 87.82 94.57

SyntaxNet β=16 M=1 91.96 88.78 93.78 92.32 89.04 93.41 - - - - - -
SyntaxNet β=32 M=1 91.99 88.95 93.99 92.41 89.45 93.91 - - - - - -
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Figure 6.1: T-SNE visualization of POS tag embeddings trained with our models. The tags are colored
by categories. Tags that are similar in meaning are also closer in the embedding space.



Chapter 7

Evaluating SyntaxNet Parameters

We performed several experiments to study how each parameter affect the behavior of the
model. We present here the results. This study does not want to give precise numbers and
statistics but just to show how the choice of a parameter can affect model performances.

7.1 Mini-Batch Size

The batch size defines the number of samples that are propagated through the network.
When choosing the mini-batch size we need to consider:

• time efficiency of training - Larger mini-batches are very appealing computationally, after
all considering the increased adoption of GPUs to train neural networks in the last few
years.

• noisiness of the gradient estimate - Computing the gradient of a mini-batch corresponds in
approximating the gradient of the whole training set. Given that, it’s straightforward to
notice that the gradient of a 100-batch is going to contain more noise than the gradient
of a 100000-batch. From literature it’s known that parsing effectiveness using neural
networks is remarkably sensitive to the training batch size Zhou et al. (2015).

We performed several experiments where we kept fixed all the parameters but not the
the batch size. We made sure to use the same random seeds to avoid that differences in per-
formances were due to parameters initializations. On the choice of the batch size we were
limited by the available computational resources. An example can be seen in Figure 7.1.
From these first two examples we can notice that our models tend to perform significantly
better with smaller mini-batches. Table 7.1 and Figure 7.2 confirm this results.

We think that smaller mini-batches give better accuracies because the noisiness caused
by small mini-batches isn’t always bad. Noisiness is regularly used in optimization meta
heuristics in order to escape from local minima. Using smaller mini-batches can be seen,
from an optimization point of view, as a way to get more noise in the gradient computation
and hence as a way to escape a local minimum and increase the search space visited.
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Figure 7.1: Parsing performance with different training mini-batch sizes for two models. We used
the same training epochs 12/20 (greedy/structured). As we can seen increasing the mini-batch sizes
results in worse accuracies.
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Figure 7.2: UAS results for several
configurations with different batch sizes. This

uses just complete configurations where we have
the results for all batch sizes.

∆ UAS

64→ 128 −0.36± 0.03

128→ 256 −0.61± 0.06

256→ 512 −0.60± 0.07

512→ 1024 −1.86± 0.37

Table 7.1: Final statistics on
batch size parameter. This
uses all our experiments

configurations no matters if
they are complete or not.

It can be argued that training with smaller mini-batches implies that the neural network
parameters are updated more often and with bigger learning rates hence the higher accuracy.
We tried to increase the number of learning epochs linearly with the size of the mini-batch.
Figures 7.3a and 7.3b show the UAS on tuning-set for the configuration Catalan 64x64 B=8
in the greedy training step with different batches sizes and/or training epochs. Table 7.2
contains the results for the structured training step. As we can see smaller mini-batches still
outperform bigger ones: increasing the number of maximum epochs reduces the gap but
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Figure 7.3: Parsing performance with different training mini-batch sizes for the same model (Catalan
64x64 greedy) with same number of epochs (7.3a) or with a bigger maximum number of training
epochs for larger mini-batches (early-stopping is still applied) 7.3b.

does not fill it.

Table 7.2: Tuning UAS results increasing the number of maximum epochs for configurations with
bigger mini-batches. As we can see increasing the number of epochs helps but configurations with
smaller batches still outperform the other ones.

Hidden Layers Beam Size Batch Size Epochs Greedy Epochs Structured tuning UAS

64x64 8 64 12 20 90.85

64x64 8 128 12 20 90.24
64x64 24 40 90.28

64x64 8 256 12 20 89.41
64x64 48 80 89.89

64x64 8 512 12 20 88.21
64x64 96 160 89.94

64x64 8 1024 12 20 84.28
64x64 192 320 88.87

7.2 Hidden Layers Sizes

We analyzed the parsing performances with different number of units in the two hidden
layers in the Feed-Forward network of SyntaxNet (please refer to Figure 5.1). Intuitively we
expected larger networks to generalize better than smaller network, nevertheless knowing
that using too many neurons can result in several problems such as overfitting. Overfitting
takes place when a very complex statistical model fits too closely or exactly the the observed
data because it has too many parameters with respect to the number of observations. An
basic example of overfitted model is shown in Figure 7.4.
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Figure 7.4: An overfitted model (green line) vs a regularized one. The overfitted model fits too closely
the training data and it will probably have a greater error rate on test data compared to the regularized
one (source Wikipedia).

Somewhat like the mini-batch experiments, we trained several models keeping fixed all
the parameters but not the hidden layers sizes. Figure 7.1 shows the UAS results on test-
set for three model configurations. Table 7.3 shows the final statics on all the experimented
configurations. As expected larger networks tends to perform better than smaller one, but
the accuracy gain is insignificant if we try to increase the sizes too much (512×512→ 1024×
1024). The risk of overfitting, measured as the difference between training UAS and test
UAS, is also higher as showed in table 7.3.
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Figure 7.5: Parsing performance with different hidden layers sizes. The left figure shows three partic-
ular configurations. The right one visualizes the trend for all the trained models. Ba stands for mini
batch size, B for beam size.
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Table 7.3: Final statistics for hidden layers sizes.

∆ UAS

64x64→ 128x128 0.44± 0.13

128x128→ 256x256 0.08± 0.02

256x256→ 512x512 0.20± 0.03

512x512→ 1024x1024 0.06± 0.02

Avg Overfitting

64x64 4.00± 0.31

128x128 4.34± 0.31

256x256 4.58± 0.18

512x512 6.30± 0.25

7.3 Beam Width

Beam search is a heuristic search algorithm that reduces the number of nodes to be vis-
ited pruning at any step all non-promising nodes (Zhang, 1999). The pruning is driven by
problem-specific heuristics. The group of most promising nodes is named "beam" (Xu and
Fern, 2007). The size of the beam is a parameter of the search and it is usually referred to as
beam width β. It’s easy to notice that β bounds the time and memory complexity required to
perform the search, at the cost of the completeness, that’s to say that beam search does not
guarantee that the optimal solution is found.

Same as above we trained several configurations keeping fixed all the parameters but not
the beam width. Figure 7.6 shows the UAS results for three model configurations. Table 7.4
and Figure 7.7 presents the final results for all our configuration. As expected a larger beam
size induces an higher accuracy.
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Figure 7.6: Parsing performance with different beam widths for three models. Ba stands for mini
batch size, β for beam size. Increasing the beam width results in better accuracies.

As we can seen there is a sensible gain in accuracy increasing the beam width. Considering
that even a small increment in the beam width can cause a huge amplification in the training



CHAPTER 7. EVALUATING SYNTAXNET PARAMETERS 29

0 10 20 30 40 50 60 70

89

90

91

92

Figure 7.7: UAS results for several
configurations with different beam widths. Most

of time increasing the beam width results in
better accuracies.

∆ UAS

8→ 16 0.28± 0.04

16→ 32 0.16± 0.02

32→ 64 0.11± 0.01

Table 7.4: Final
statistics for beam width

parameter for all our
experiments.

and decoding times, smaller beam widths are preferable for every day use.



Chapter 8

Building a Bilingual Parser

While in transfer learning there is a sequential process, you learn from task A and then
transfer to task B, in Multi-Task Learning (MTL) you kickoff concurrently trying to have
one model do multiple things at the same time. MTL acts as a regularizer: forcing a model
to perform well on a related task can be seen as a way to reduce overfitting. Even if MTL is
successfully used in several fields, little work can be found in the literature regarding natural
language.

We applied MTL to SyntaxNet. The underlying hypothesis is that some languages share a
some sort of semantic structure (e.g. Catalan and Spanish, German and English, etc.). In par-
ticular we jointly trained SyntaxNet for both English and German at the same time. Limiting
the study to English and German cannot make the whole picture of the situation, but we
had to desist from training other languages pairs given the lack of available computational
resources.

8.1 Related Works

This is not the first attempt to build a multilingual parser. Zeman and Resnik (2008) use
delexicalized parsing. A parser is defined delexicalized if it is trained without any lexical fea-
tures. The idea is to exploit a delexicalized treebank of resource-rich source language to train
a model. The model is then used to analyze delexicalized phrases in the target resource-poor
language. This take advantage of the idea that identical POS tags are highly descriptive of
binary relations, and that there are shared dependency structures across languages. Petrov
et al. (2016) and Ma and Xia (2014) take advantage of parallel corpora as a way to project
constraints from the source language to the target language. Duong et al. (2015) proposed
a model for learning a shared universal parser that builds and exploits an interlingual rep-
resentation of language, in conjunction with language-specific mapping components. They
also incorporate a bilingual dictionary as a set of soft constraints on the model, such that it
learn similar representations for each word and its translation(s).

8.2 Model

Our main contribution is the application of the method proposed by Duong et al. (2015) on
top of SyntaxNet. Unlike Duong et al. (2015) we don’t use a bilingual dictionary as a set of
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soft constraints on the model, but we use pretrained multilingual word embeddings. To our
knowledge this if the first attempt to do such a thing.

The architecture is illustrated in Figure 8.1. We named the component introduced by
Duong et al. (2015) as language multiplexers. The idea is to allow the embedding matri-
ces to differ in order to fit language specific features. Indeed different languages can have
different lexicon, part-of-speech can exhibit different roles, and dependency edges can serve
different functions. In a nutshell the language multiplexer selects the language-specific em-
bedding matrix when forwarding or back-propagating values. The multiplexer is completely
optional: e.g. if training two or more languages with the same part-of-speech tags set we can
use the same matrix embedding Et for all the languages. During training, sentences are
sampled from both languages to form the mini-batches.

Figure 8.1: Feed-Forward multi-lingual SyntaxNet architecture with language multiplexer.

Please note that even if here we focus the discussion on a bilingual parser, the same idea
(and the same code) can be used for multilingual parsers.

8.2.1 Bilingual Word Embeddings

As already illustrated in Chapter 4 distributed word representations have been crucial to
the recent breakthrough of numerous neural network models in facing several NLP tasks.
In Chapter 4 we focused on monolingual word embeddings, however the increasing interest
on a wide range of multilingual NLP tasks have inspired recent work in training bilingual
representations where similar words in two languages have a similar representation in the
embedded space. Figure 8.2 shows an example of bilingual word embedding between Ger-
man and English. Several different approaches to training bilingual word embeddings can
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be used:

• Bilingual Mapping - Word embeddings are first learned for each language separately
and then a (linear) transformation is found to convert embeddings from one language
into embeddings of the other language.

• Monolingual Adaption - The idea is to use a well trained embeddings of a source lan-
guage (e.g a resource-rich one like English), to train the target representations, mak-
ing sure that embeddings of semantically related words across languages are close to-
gether.

• Bilingual Training - Word embeddings are jointly trained from the beginning.

Figure 8.2: A shared embedding space between two languages (Luong et al., 2015)

For the purpose of this thesis we used bilingual word embeddings trained with the same
recipe used by Luong et al. (2015). Our joint model was trained using the parallel Europarl-v7
corpus between German and English (Koehn, 2005). The corpus was pre-processed lower-
casing and tokenizing the sentences and mapping each digit into 0, i.e. 2017 becomes 0000.
Other uncommon terms appearing less than 5 times were mapped to <unk>. The resulting
vocabularies are of size 95000 for German and 40000 for English . The following settings
were used: SGD with a exponential decay learning rate starting from 0.025, skip-gram with
context window of size 5, negative sampling with 30 samples, and a sub-sampling rate of
value 1e − 4. The model is trained for 10 epochs. We set the hyper-parameters to 1 for α
and 4 for β in our experiments. We used unsupervised alignment information learned by the
Berkeley aligner (Liang et al., 2006). For more information please refer to Luong et al. (2015).
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8.3 Corpora

To train and evaluate the performances of our bilingual models we used the German and En-
glish corpora for the CONLL-2017 shared task 1. Because the test sets were not yet available
we had to extract them from the training sets. The corpora statistics are shown in Table 8.1.

Table 8.1: Corpora statistics for bilingual parsing. The stats on the number of words (lowercased or
non) refer just to the training set.

# training # tuning # test

English 11743 2002 800
German 13318 799 800

# words # lc words

English 18091 15262
German 45726 44107

8.4 Experiments

For training and decoding we used the set of features described in Table 8.2:

• Lowercased words (F lw) - We used lowercased words to improve the hit rate in case we
use pretrained word embeddings. In the monolingual models we used words without
lowercasing them.

• Universal Tags (F t) - These are the universal part-of-speech tags, shared between all
the languages.

• Morphological Features (Fm) - It’s known that morphological information proved to
be valuable for parsing morphologically rich languages. These are shared between the
two languages and should compensate the use of universal part-of-speech tags instead
of languages specific ones.

• Labels (F l) - Universal dependency relation.

• Language of the sentence under focus.

In order to reduce the training time, we performed just the greedy step with two hidden
layers 1024 × 1024, batch size of 64, initial learning rate of 0.07, a momentum of 0.85 and a
decay rate that corresponds to about one tenth of the training corpus size. All the models
were trained with early stopping for a maximum of 12 epochs. We experimented both with
pretrained multi-lingual word embeddings and with normal initialization.

We aim to understand if the bilingual models outperform the monolingual ones and if this
can be used for low-resource languages with small or no annotated tree banks. To do so we
trained our models with different ratios of the German corpus, e.g. 10%, 20%, etc with and
without repetitions to guarantee a similar number of English and German sentences.

1http://universaldependencies.org/conll17/
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Table 8.2: Feature templates for our bilingual parser.

Templates

F lw

i.lw i(1).lw i(2).lw i(3).lw st.lw st(1).lw st(2).lw st(3).lw
st.rc(1).lw st.rc(1).ls(1).lw st.lc(1).lw st.lc(1).rs(1).lw st(1).rc(1).lw
st(1).rc(1).ls(1).lw st(1).lc(1).lw st(1).lc(1).rs(1).lw st.rc(2).lw st.lc(2).lw
st(1).rc(2).lw st(1).lc(2).lw

F t
i.t i(1).t i(2).t i(3).t st.t st(1).t st(2).t st(3).t st.rc(1).t st.rc(1).ls(1).t st.lc(1).t
st.lc(1).rs(1).t st(1).rc(1).t st(1).rc(1).ls(1).t st(1).lc(1).t st(1).lc(1).rs(1).t
st.rc(2).t st.lc(2).t st(1).rc(2).t st(1).lc(2).t

Fm

i.m i(1).m i(2).m i(3).m st.m st(1).m st(2).m st(3).m st.rc(1).m
st.rc(1).ls(1).m st.lc(1).m st.lc(1).rs(1).m st(1).rc(1).m st(1).rc(1).ls(1).m
st(1).lc(1).m st(1).lc(1).rs(1).m st.rc(2).m st.lc(2).m st(1).rc(2).m
st(1).lc(2).m

F l
st.rc(1).l st.rc(1).ls(1).l st.lc(1).l st.lc(1).rs(1).l st(1).rc(1).l st(1).rc(1).ls(1).l
st(1).lc(1).l st(1).lc(1).rs(1).l st.rc(2).l st.lc(2).l st(1).rc(2).l st(1).lc(2).l

8.5 Results

Table 8.3, Figure 8.3, and Figure 8.4 show the final results for both our monolingual and
bilingual model with different German corpus ratios. As we see, at least when enforcing a
similar number of German and English sentences, our bilingual model significantly outper-
form our monolingual models.

Even when no German corpus is used to train the model, the model gets close to 50% UAS.

Table 8.3: English and German UAS for our monolingual and bilingual model with different German
corpus ratios. Words that are similar in mean, no matter the language, are close in the embedding
space.

0% 10% 20% 30% 40% 50%
en de en de en de en de en de en de

mono - - - 66.85 - 78.26 - 80.83 - 82.64 - 83.33
bi 87.6 45 87.5 68.74 87.1 76.11 86.86 81.55 87.37 82.82 87.48 83.9
bi w\rep - - 87.64 72.38 87.32 79.11 87.96 82.86 87.01 83.58 87.05 84.8

mono w\emb - - - 66.85 - 78.13 - 80.69 - 82.70 - 83.12
bi w\emb 88.11 47.68 88.16 69.53 87.50 77.51 87.08 81.90 88.06 83.50 88.17 84.08
bi w\emb and rep - - 86.83 72.30 87.82 78.76 87.41 82.38 87.18 84.12 86.93 85.1

60% 70% 80% 90% 100%
en de en de en de en de en de

mono - 84.38 - 84.71 - 84.21 - 84.22 - 84.8
bi 86.92 84.63 87.35 85.14 87.6 86.4 87.22 86.21 87.08 85.49
bi w\rep 86.83 85.88 85.91 83.81 - - - - - -

mono w\emb - 84.84 - 84.71 - 83.84 - 84.22 - 84.80
bi w\emb 87.9 85.34 88.07 85.48 87.48 85.96 87.76 86.56 87.71 85.68
bi w\emb and rep 87.91 85.8 87.69 86.11 - - - - - -
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Figure 8.3: On the left, German UAS results with our bilingual (with and without repeated training
sentences) and monolingual models with different ratio of German corpus used for training the models.
On the right the English UAS.

40 60 80 100
80

82

84

86

% German Corpora

G
er

m
an

U
A

S

Bilingual
Bilingual emb.

Bilingual rept. emb.

(a)

0 20 40 60 80 100
80

82

84

86

88

% German Corpora

En
gl

is
h

U
A

S

Bilingual
Bilingual emb.

Bilingual rept. emb.

(b)

Figure 8.4: Same as Figure 8.3 but using pretrained word embeddings.

8.5.1 Effect of Corpus Repetition

We wonder if repeating sentences, to guarantee that inside a mini-batch there always a
similar number of English and German sentences, help to increase the accuracy. As we can
see in Table 8.5, at least for small corpus there is a substantial German UAS gain using rep-
etition. The gain tend to decrease when the number of sentences in the German is already
enough. Enforcing a similar number of English and German sentences has also a significant
effect on the English UAS. This is shown in Figures 8.3 and 8.4.

8.5.2 Effect of Pre-trained Word Embeddings

. We wonder if using pretrained word embeddings help to increase the accuracy. As we can
see in table 8.5, without enforcing a similar number of sentences for the two corpora, using
pretrained embeddings usually comports an increase both in German and English accuracies
(for the English UAS please refer to table 8.3). When enforcing a similar number of sentences
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Table 8.4: Effect of enforcing a similar number of English and German sentences for different ration
of the German corpus, with and without pretrained word embeddings. The reported accuracy is the
German UAS.

10% 20% 30% 40% 50% 60% 70%

bilingual 68.74 76.11 81.55 82.82 83.9 84.63 85.14
bilingual w\rep 72.38 79.11 82.86 83.58 84.8 85.88 83.81

10% 20% 30% 40% 50% 60% 70%

bi w\emb 69.53 77.51 81.90 83.50 84.08 85.34 85.48
bilingual w\emb and rep 72.30 78.76 82.38 84.12 85.1 85.80 86.11

for the two corpora, this is not always true.

Table 8.5: Effect of using pretrained word embeddings, with and without corpus repetition. The
reported accuracy is the German UAS.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

bilingual 45 68.74 76.11 81.55 82.82 83.9 84.63 85.14 86.4 86.21 85.49
bilingual w\emb 47.68 69.53 77.51 81.90 83.50 84.08 85.34 85.48 85.96 86.56 85.68

10% 20% 30% 40% 50% 60% 70%

bilingual w\rep 72.38 79.11 82.86 83.58 84.08 85.88 83.81
bilingual w\rep and emb 72.30 78.76 82.38 84.12 85.10 85.80 86.11



Chapter 9

Conclusion

We introduced the reader to SyntaxNet going through the concepts of dependency pars-
ing, transition-based dependency parsing and neural network models for transition-based
dependency parsing. We then trained SyntaxNet for four different languages and compared
the accuracies with FreeLing, showing a significant gain in accuracies. We then experimented
with several configurations, tweaking the mini-batch size, the number of units in the hid-
den layers and the beam-width. Somehow unexpected we showed that small mini-batches
tend to perform better even if similar studies on similar networks showed the exact oppo-
site. This has big implications for everyone training a SyntaxNet model: training with larger
mini-batches is preferable to reduce the training times but will deeply affect the accuracies
of the system.

Last but not least we built a bilingual parser, training jointly a model for English and
German. The idea is that we can exploit similarities between languages. We performed
similar experiments with different ratios of the German corpus, in order to understand if our
bilingual parser can be used to improve dependency parsing model for languages with small
or no-existing tree banks. We experimented using bilingual word embeddings and forcing
a similar number of English and German sentences inside a mini-batch, showing that both
techniques significantly help to increase the accuracies of the trained models. The results
on the multi-lingual parser can be extremely useful in several applications. In all the cases
we have to deal with low-resource languages a multi-lingual model can be effectively used
to get competitive results. Considering also the increasing interest in performing inference
directly in embedded devices instead that in powerful servers, this work can be used to build
models that can deal with more than one language and at the same time requiring a limited
amount of memory and storage resources.

9.1 Future Work

For future work we aim to understand how bilingual models help with languages with
even bigger similarities, e.g. Catalan and Spanish, and with languages with low similarities.
It’s also interesting to understand how the model behave when training with three or more
languages.

We also acknowledge the limit of the used pretrained word embeddings. Some recent
works explored the idea of using Gaussian (or mixture of Gaussians) word embeddings.

37
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Those have some nice properties:

• they can deal with words with more that one meaning,

• they inherently have a hierarchic structure, e.g. in standard word embeddings the
word fruit and apple are close together in the embedded space, but there is no way to
represent (and to learn) that apple is a fruit.

In other to go further with Gaussian word embeddings several issues needs to be addressed,
that to our knowledge are still open or not very well understood:

• using Gaussian word embeddings would imply dealing with neural networks accept-
ing uncertainty in the input and/or in the hidden layers.

• how to train multilingual Gaussians word embeddings?

Considering that multilingual parsers, and more in general multilingual models for NLP
tasks, can be seriously useful in the embedded word, further study are required comparing
and/or combining our proposed technique with other ones, e.g. quantization.

Last but not least our bilingual parsers improves accuracy on target languages but proved
to sacrifice accuracy on source languages. Further studies are required to study and possibly
stem this phenomenon.
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