
Politecnico di Torino

Department of Control and Computer Engineering

(DAUIN)

Master of Science in

Mechatronic Engineering

Modelling and Identi�cation of a Dual Clutch Actuator

Supervisors:

Prof. Diego Regruto

Prof. Vito Cerone

Prof. Massimo Canale

Author:

Talal Almutaz Almansi Abdalla

April 2018

�They said, "Exalted are You; we have no knowledge except

what You have taught us. Indeed, it is You who is the Knowing,

the Wise."�

-Quran, 1:32

Acknowledgments

First, I would like to thank my beloved parents, brothers and my lovely

sister, for always being caring, understanding and supporting me throughout

my life.

I want to express my love and a�ection to my wife Mayada, having always

been by my side, providing me with unfailing support and continuous encour-

agement throughout my years of study and through the process of researching

and writing this thesis.

I am deeply grateful to my thesis supervisor Prof. Diego Regruto. In spite

of his great responsibilities, he managed to spare some of his valuable time

to advise and guide me through out this work. I could not have imagined

having a better supervisor for my thesis.

I would also like to express my sincere gratitude to Prof. Vito Cerone

and Prof. Massimo Canale for the help and guidance I received from them

throughout this journey. Without their passionate participation and input,

this work could not have been successfully completed.

My personal and deep appreciation goes to Dr. Valentino Razza, my col-

league Ahmed Elhaddad, the Centro Ricerche Fiat (CRF) team represented in

Eng. Emanuel Corigliano, Eng. Simone Baliva and Eng. Sabrina Spagnolo.

I

Abstract

In this thesis we introduce the problem of identifying a model for a dual clutch actuator

from experimentally collected data to be used to control the position of the clutch. How-

ever, since the measurement of the clutch position is not present in the real application,

a Virtual Sensor has been implemented to provide this measurement.

The �rst stage of this thesis was to identify a model to produce the clutch actuator's

output pressure from the input current. Set-Membership (SM) identi�cation techniques

were applied on the data sets to get a model able to cope with the uncertainties a�ecting

the measurements. The data sets were examined and a dead zone was found present,

this has motivated the need to use a Single-Input Single-Output (SISO) Linear Time

Invariant (LTI) Hammerstein model structure. The collected experimental data has two

signal pro�les for the input current, ramp and step, and were collected at 3 di�erent

operating temperatures −20◦C, 20◦C & 60◦C. Applying the data sets with ramp pro�le

on the identi�ed model produced relatively good results.

Applying the data sets with step pro�le, the model was not able to cope up with the

plant's dynamics that are changing in a rapid and unpredictable manner. This motivated

the need to use Recursive Estimation for this identi�cation problem. The Recursive

Estimation algorithm was able to obtain good results in the sense that the absolute error

between the measured and the estimated pressure (through the Normalized Gradient

algorithm), was found to be bounded by |2 × 10−14 |.

In the second stage of this thesis, the Virtual Sensor was implemented using two

di�erent structures. The �rst structure was a Feedforward Neural-Network trained for

a model in the form of a Moving-Average Model (FIR) for each operating temperature.

The other structure was a �nite and known order polynomial modelled with Curve Fitting

techniques.

Using the experimental data of the current and pressure as inputs and the position

as output, the modelled virtual sensor was able to track the position measurements with

glitches. The glitch phenomena was eliminated by introducing a Median Filter on the

output of the Virtual Sensor.

The second phase of the Virtual Sensor modelling was motivated by the curve shape

between the pressure and the position. The Virtual Sensor was modelled with both, a

Feedforward Neural-Network and a Curve Fitting Polynomial, where both these structures

had similar performances in terms of the Mean Squared Error (MSE).

II

Contents

1 Introduction 1

1.1 Overview of Transmission Systems and DDTC 1

1.1.1 C635 DDCT Transmission . 2

1.1.2 Dry Dual Clutch Unit . 3

1.1.3 Electro-Hydraulic Actuation System 3

1.1.4 C635 DDCT Control Unit . 4

1.2 Objective . 5

1.3 Thesis Organization . 5

1.4 Non-Disclosure Agreement . 6

2 Set-Membership 7

2.1 Overview of System Identi�cation Frameworks 7

2.2 Set-Membership Framework . 7

2.2.1 Problem Formulation in SM Framework 7

2.2.1.1 Feasible Parameter Set . 9

2.2.1.2 Extended Feasible Parameter Set 9

2.2.1.3 Parameter Uncertainty Intervals 9

3 System Identi�cation 11

3.1 Introduction . 11

3.2 Hammerstein System . 11

3.2.1 Overview . 11

3.2.2 Problem Formulation . 12

3.2.2.1 Feasible Parameter Set . 13

3.2.2.2 Extended Feasible Parameter Set 14

3.2.2.3 Parameter Uncertainty Intervals 14

3.2.2.4 Stability . 14

3.2.2.5 Optimization Problem Formulation 15

3.2.2.6 Optimization Problem Characteristics 16

3.2.3 Results . 16

3.2.3.1 System Identi�cation - Step Data Sets 19

3.2.4 Conclusions . 20

3.3 Recursive Model Estimation . 21

3.3.1 Overview . 21

3.3.2 Problem Formulation . 21

3.3.2.1 Stability . 23

III

3.3.3 Results . 24

3.3.4 Conclusions . 31

4 Neural Networks 32

4.1 What is a Neural Network? . 32

4.2 Properties and Capabilities . 32

4.3 General Structure of a Neural Network . 33

4.3.1 Neuron Model . 34

4.3.2 Activation Function . 34

4.3.2.1 Bipolar Function . 35

4.3.2.2 Step Function . 35

4.3.2.3 Linear Function . 36

4.3.2.4 Sigmoid Function . 36

4.3.2.5 Tanh Function . 37

4.3.2.6 ReLU Function . 38

4.4 Neural Network Architectures . 38

4.4.1 Single Layer Feedforward Networks 38

4.4.2 Multilayer Feedforward Networks 39

4.4.3 Recurrent Networks . 39

4.5 Neural Network Learning . 40

4.5.1 Supervised Learning . 40

4.5.2 Unsupervised Learning . 41

4.5.3 Reinforcement Learning . 41

5 Virtual Sensor 42

5.1 Introduction . 42

5.2 Virtual Sensor Modelling - CPX Model . 43

5.2.1 Overview . 43

5.2.2 Problem Formulation . 44

5.2.2.1 Modelling Problem Characteristics 45

5.2.3 Results . 45

5.2.4 Glitch Elimination . 50

5.2.5 Conclusions . 52

5.3 Virtual Sensor Modelling - PX Model . 53

5.3.1 Overview . 53

5.3.2 Problem Formulation . 55

5.3.3 Results . 56

5.3.4 Neural Networks vs Curve Fitting 62

5.3.5 Conclusions . 65

IV

6 Conclusions and Future Work 66

6.1 Conclusions . 66

6.2 Future Work . 66

Bibliography 67

V

List of Figures

1.1 C635 MT and DDCT Versions . 1

1.2 Cross Section of the C635 DDCT . 2

1.3 Complete Actuation System (CAS) Hydraulic Circuit 3

1.4 The Hydraulic Power Unit (PU) and The Complete Actuation Module

(CAM) . 4

2.1 Errors-in-Variables Model Structure . 7

2.2 Global and Local Minima . 10

3.1 SISO Hammerstein Model . 12

3.2 Pole-Zero Map in the z Domain (r=1) . 15

3.3 Hammerstein Model Validation for 4 Di�erent Data Sets from Set (1) . . . 18

3.4 Hammerstein Model Validation for 3 Di�erent Data Sets from Set (2) . . . 18

3.5 HS20 Model Validation for Data Set 20°C Step_a using MATLAB System

Identi�cation Toolbox . 19

3.6 HS20 Model Validation for Data Set 60°C Step_a using MATLAB System

Identi�cation Toolbox . 20

3.7 Recursive Estimation Model Layout . 21

3.8 Forgetting Factor Algorithm with λ = 0.995 24

3.9 Kalman Filter Algorithm . 24

3.10 Normalized Gradient Algorithm with γ = 1 25

3.11 Unnormalized Gradient Algorithm with γ = 1 25

3.12 Adaption Gain γ E�ect . 26

3.13 Recursive Estimation Validation for Data Set 20°C Ramp_a 27

3.14 Recursive Estimation Validation for Data Set 60°C Ramp_a 27

3.15 Recursive Estimation Validation for Data Set 60°C Step_a 28

3.16 Recursive Estimation Validation for Data Set -20°C Ramp_a 28

3.17 Recursive Estimation Validation for Data Set -20°C Step_a 29

3.18 Recursive Estimation Validation for Data Set 20°C Step_b 29

3.19 Recursive Estimation Validation for Data Set 60°C Step_c 30

3.20 Recursive Estimation Validation for Data Set -20°C Step_c 30

4.1 Neural Network General Structure . 33

4.2 Model of a Neuron . 34

4.3 Bipolar Activation Function . 35

4.4 Step Activation Function . 36

VI

4.5 Linear Activation Function . 36

4.6 Sigmoid Activation Function . 37

4.7 Tanh Activation Function . 37

4.8 ReLU Activation Function . 38

4.9 Sinlge Layer Feedforward Network . 39

4.10 Multilayer Feedforward Network with 3 Hidden Layers 39

4.11 Recurrent Network General Structure [13] 40

5.1 CPX Model Structure . 43

5.2 CPX20 Virtual Sensor Validation for Data Set 20°C Step_a 46

5.3 CPX20 Virtual Sensor Validation for Data Set 60°C Step_a 46

5.4 CPX20 Virtual Sensor Validation for Data Set -20°C Step_a 47

5.5 CPX60 Virtual Sensor Validation for Data Set 60°C Step_a 48

5.6 CPXm20 Virtual Sensor Validation for Data Set -20°C Step_a 48

5.7 CPX20 Virtual Sensor Validation for Data Set 20°C Step_b 49

5.8 CPX20H Virtual Sensor Validation for Data Set 20°C Step_b 49

5.9 CPX20 Virtual Sensor Validation for Combined Data Sets at 20°C 50

5.10 CPX Virtual Sensor with Median Filter . 50

5.11 CPX20 with Median Filter Validation for Combined Data Sets at 20°C . . 51

5.12 CPX60 with Median Filter Validation for Combined Data Sets at 60°C . . 51

5.13 CPXm20 with Median Filter Validation for Combined Data Sets at -20°C . 52

5.14 Pressure-Position Curve Shape for Data Set 20°C Step_a 53

5.15 PX Model Structure . 54

5.16 PX20 Virtual Sensor Validation for Data Set 20°C Step_a 56

5.17 PX60 Virtual Sensor Validation for Data Set 60°C Step_a 57

5.18 PXm20 Virtual Sensor Validation for Data Set -20°C Step_a 57

5.19 PX20 Virtual Sensor Validation for Data Set 20°C Step_a with enforced

Input Dead Zone . 58

5.20 PX60 Virtual Sensor Validation for Data Set 60°C Step_a with enforced

Input Dead Zone . 58

5.21 PXm20 Virtual Sensor Validation for Data Set -20°C Step_a with enforced

Input Dead Zone . 59

5.22 PX20 Virtual Sensor Validation for Combined Data Sets at 20°C with

enforced Input Dead Zone . 59

5.23 PX60 Virtual Sensor Validation for Combined Data Sets at 60°C with

enforced Input Dead Zone . 60

5.24 PXm20 Virtual Sensor Validation for Combined Data Sets at -20°C with

enforced Input Dead Zone . 60

VII

5.25 PX20 Virtual Sensor Validation for Ramp Pro�le Data Set at 20°C with

enforced Input Dead Zone . 61

5.26 PX20H Virtual Sensor Validation for Data Set 20°C Step_b 61

5.27 PX20 vs CFPX Models for Data Set 20°C Step_a 63

5.28 CFPX20 with Median Filter Validation for Data Set 20°C Step_a 63

5.29 CPX20, PX20, CFPX20 Output Comparison for Data Set 20°C Step_a . . 64

VIII

List of Tables

5.1 CPX - Performance Comparison for Di�erent Neural Network Structures . 44

5.2 PX - Performance Comparison for Di�erent Neural Network Structures . . 55

5.3 CFPX - Performance Comparison for Di�erent Polynomial Structures . . . 62

5.4 Complexity and Performance Comparison for CPX20, PX20, CFPX20

Virtual Sensors . 64

IX

Chapter 1

Introduction

1.1 Overview of Transmission Systems and DDTC

The transmission system is the component responsible for transferring the engine's

generated power to the wheels of the vehicle and enhances the power �ow through the

required gear ratios. Currently, there are �ve main transmissions systems deployed to ve-

hicles, those are Manual Transmission (MT), Automatic Transmission (AT), Automated

Manual Transmission (AMT), Dual Clutch Transmission (DCT) and Continuously Vari-

able Transmission (CVT). We will now go into details talking about the DCT.

Dual clutch transmission is an automated manual transmission with two clutches, one

for even gears and the other for odd gears. The advantage of using two separate clutches

is to avoid the traction interruption when shifting from one gear to the other. This

transmission allows near instant shifting between gears.

There are two di�erent types of clutches in the DCT transmission system, wet (WDCT)

and dry (DDCT). Wet clutches are used for high torque engines that can generate 350

Nm, while the dry clutches can reach up to a maximum of 250 Nm and is suitable for

small vehicles. The dry clutch has an advantage over the wet one as it o�ers an increase

in fuel e�ciency.

In this thesis, we will be working on the on the Dual Dry Clutch Transmission de-

veloped by Fiat Powertrain Technologies [1]. This transmission is part of the C635 new

family. This new transmission family consists of a range of manual, all wheel drive and

DCT transversal, 6-speed transmissions with a maximum input torque of 350 Nm and

output torque of 4200 Nm.

Figure 1.1: C635 MT and DDCT Versions

1

Chapter 1 Introduction

1.1.1 C635 DDCT Transmission

As shown in �gure (1.2), the 3-shaft transmission architecture is contained in a two

piece aluminum housing with an intermediate support plate for the shaft bearings. The

gear set housing is characterized by reduced upper secondary shaft length, a feature which

was also necessary in order to ensure packaging in the lower segment vehicles where the

longitudinal crash beam imposes serious installation constrains.

Figure 1.2: Cross Section of the C635 DDCT

The most important feature of this transmission in terms of packaging characteristics

is the adoption of a coaxial pull-rod for the actuation of the odd-gear clutch (K1), while

the even gear clutch (K2) is actuated with a rather conventional hydraulic Concentric

Slave Cylinder (CSC). This pull-rod is connected to a hydraulic piston actuator located

on the rear face of the transmission housing in a manner identical to the one adopted in

the past in an earlier FPT technical demonstrator.

2

Chapter 1 Introduction

1.1.2 Dry Dual Clutch Unit

In order to motivate the model decomposition into the di�erent subsystems it is im-

portant to describe �rst the main operations and elements of a DCT. During the shifting

process the transmitted torque is obtained by the overlap of the engagement of the closing

clutch and the release of the opening clutch. The clutch K1 is normally closed as in con-

ventional manual transmissions and its position is controlled by means of a contact-less

linear position sensor integrated in the rear hydraulic piston actuator. The even gear

clutch K2 is normally open and is controlled in force, i.e., through hydraulic pressure.

The two clutches act on a center plate together with the two pressure plates. The entire

dual clutch unit is mounted on the clutch housing by means of a single main support

bearing. This compact mounting solution was developed thanks to the adoption of the

speci�c actuation system of the clutch K1 which allows the space for such a bearing to

be installed [2].

1.1.3 Electro-Hydraulic Actuation System

The hydraulic circuit of the actuation system is represented in �gure (1.3), it consists

of 4 double action pistons, 5 non-contact linear position sensors (one for each shifting

piston and one for the shifter spool), 2 speed sensor for the two primary shafts, 5 solenoid

valves (4 pressure proportional (PPV), 1 �ow proportional (QPV)). The QPV is used for

the position control of clutch K1.

Figure 1.3: Complete Actuation System (CAS) Hydraulic Circuit

3

Chapter 1 Introduction

The system is composed of a hydraulic power unit (PU, Figure 1.4, left picture),

consisting of an electrically driven high pressure pump and accumulator, and an Actuation

Module (CAM, Figure 1.4, right picture) which includes the control solenoid valves, the

gearshift actuators and the sensors.

Figure 1.4: The Hydraulic Power Unit (PU) and The Complete Actuation Module (CAM)

1.1.4 C635 DDCT Control Unit

The C635 DDCT has been designed as a standalone unit. The control strategies run in

a multitasking environment, preserving the resources of the Main Microcontroller, these

strategies can be grouped as:

� Actuator Control:

� Engagement Actuators Control.

� Shifter (Selector) Control.

� Odd Gears Clutch (K1) Control: The normally closed clutch (K1) is controlled

by a position closed loop. This is the clutch of the �rst and of the reverse

gear,therefore this control strategy is essential also for the vehicle starting

performance.

� Even Gears Clutch (K2) Control: The normally open clutch (K2) is controlled

in force with a pressure feedback signal delivered by one of the CAM sensors.

� Self-Tuning Control: The main self-tuning control algorithms concern the conversion

of the requested clutch transmitted torque to K1 position and K2 pressure.

� Launch and Gear Shift Strategies: The C635 DDCT implements various driving

modes, depending on the desired performance and Brand/OEM requirements, both

in manual and in automatic mode. In e�ect, three di�erent modes of shift patterns

4

Chapter 1 Introduction

in automatic and two di�erent ones in manual (tip) mode are contemplated and

are accomplished also by speci�c control strategies and calibrations on the engine

side. Vehicle creeping on brake release is also implemented, in collaboration with

the braking systems hill holding functions.

1.2 Objective

The objective of this thesis can be addressed in the following two points:

� System Identi�cation for the K2 Actuator: Finding a suitable model for the K2

actuator to be used to control the clutch position.

� Virtual Sensor Modelling: To design a Virtual Sensor able to provide the K2 clutch

position in real-time operation.

1.3 Thesis Organization

In this chapter we gave a brief overview of vehicle transmission systems and the Dual

Dry Clutch Transmission (DDCT) developed by Fiat Powertrain Technologies.

In Chapter 2 we introduce the theory behind the Set-Membership framework (SM)

used in system identi�cation of Linear Time-Invariant (LTI) systems. This framework

will be used to identify a model for the K2 actuator plant to estimate the system's output

pressure.

Chapter 3 introduces the system identi�cation process followed to model the K2 ac-

tuator. First we start by identifying a model in the Set-Membership framework able to

provide reasonably good estimation for some sets of the experimental data, but fails to

cope up with the system's varying dynamics for the other sets of the experimental data.

The latter mentioned point was the main motivation to move to a recursive system iden-

ti�cation approach. The recursive approach proved to be successful for this application

as demonstrated by the achieved results.

Chapter 4 highlights the main theory and concepts behind Neural Networks. The

chapter brie�y reviews the structure of a Neural Network, its activation functions and the

learning processes.

In chapter 5 we apply the concepts introduced in chapter 4 to model a Virtual Sensor

able to provide a real-time estimate of the clutch position given the current and pressure

measurements. We use theMultilayer Feedforward Neural Network to model three sensors,

corresponding to three di�erent operating condition of the clucth, characterized by three

di�erent operating temperatures (−20◦C, 20◦C & 60◦C).

The last chapter, chapter 6, gives a summary about the work completed in this thesis

and the proposed future work.

5

Chapter 1 Introduction

1.4 Non-Disclosure Agreement

As per the Non-Disclosure Agreement signed between Fiat Chrysler Automobiles

(FCA) and me the author of this thesis, Talal Almutaz Almansi Abdalla, the mea-

surement data sets used in all the modelling processes presented in this thesis have been

normalized between 0 and 1.

6

Chapter 2

Set-Membership

2.1 Overview of System Identi�cation Frameworks

The most popular system identi�cation approaches are based on the assumption that

the measurement uncertainties entering the identi�cation problem are random values with

a known probability density function (for more details, see [3, 4, 5]).

Throughout the years, many powerful estimation methods have been developed, as an

example, Least Squares, Gauss-Markov, Maximum Likelihood and Bayesian estimators.

Even though the previously mentioned methods are used in a wide range of applications,

they su�er from a major drawback. These method need a large enough number of collected

input-output data samples to in order check a posteriori the correctness of the statistical

hypotheses and to evaluate reliable con�dence intervals for the estimated parameters. It

is important to note that it is not always possible to observe a large number of samples,

such as in biological systems. This drawback is the motivation for the need to introduce

the Set-Membership estimation theory.

2.2 Set-Membership Framework

Set-Membership (SM) Estimation, also known as Bounded-Error Estimation, is an al-

ternative stochastic estimation theory, where the noise entering the identi�cation problem

is assumed to be unknown but bounded.

2.2.1 Problem Formulation in SM Framework

Gp(q−1)
ut wt

++ζt

ũt

+ + ηt

yt

Figure 2.1: Errors-in-Variables Model Structure

We can look at the problem formulation of systems described by the following Single-

Input Single-Output (SISO) Linear Time-Invariant (LTI) model in the form of an Errors-

7

Chapter 2 Set-Membership

in-Variables (EIV) structure as in �gure (2.1). The noise-free output wt at time t is given

by,

wt = Gp(q−1)ut (2.1)

where ut is the noise-free input at time t and Gp(q−1) is a discrete-time in the backward

shift operator q−1, which transforms ut into wt ,

Gp(q−1) =
B(q−1)
A(q−1)

(2.2)

A(·) and B(·) are polynomials in the backward shift operator q−1,

A(q−1) = 1 + α1q−1 + ... + αnaq−na (2.3)

B(q−1) = β0 + β1q−1 + ... + βnbq−nb (2.4)

na ≥ nb

where na ≥ nb

Equation (2.2) can be rewritten as,

Gp(q−1) =
β0 + β1q−1 + ... + βnbq−nb

1 + α1q−1 + ... + αnaq−na
(2.5)

The noise corrupted input ũt and output yt are given by,

ũt = ut + ζt (2.6)

yt = wt + ηt (2.7)

where:

ζt is the input measurement uncertainty at time t,

ηt is the output measurement uncertainty at time t.

As stated in the beginning of this section, the noise entering the problem is assumed to

be unknown but bounded,

|ζt | ≤ ∆ζ (2.8)

|ηt | ≤ ∆η (2.9)

Now we can de�ne the Feasible Parameter Set (FPS), the Extended Feasible Parameter

Set and the Parameter Uncertainty Intervals (PUI) for this modelling problem.

8

Chapter 2 Set-Membership

2.2.1.1 Feasible Parameter Set

De�nition: The Feasible Parameter Set is the set of all the possible parameter values

which are consistent with the equation describing the assumed model structure, noise

structure and noise bound.

From equations (2.1) to (2.9), the Feasible Parameter Set can be formulated as follows,

Dθ = {θ ∈ R
na+nb+1 : wt = −α1wt−1 − α2wt−2 − ... − αnawt−na + β0ut + β1ut−1+

+... + βnbut−nb ; yt = wt + ηt ; ũt = ut + ζt ; |ηt | ≤ ∆η; |ζt | ≤ ∆ζ ;∀t = na + 1, ..., N}
(2.10)

where N is the number of input-output data samples.

θT = [α1, α2, ..., αna, β0, β1, ..., βnb] (2.11)

2.2.1.2 Extended Feasible Parameter Set

As it can be seen in the FPS represented in equation (2.10), the noise entering the

problem (both ζt and ηt) are unknown variables as well, hence they have to be included in

the FPS. Now we will introduce the Extended FPS to include these unknown variables,

Dθ,ζ,η = {θ ∈ R
na+nb+1, ζ ∈ RN, η ∈ RN : yt − ηt = −α1(yt−1 − ηt−1) − ... − αna(yt−na − ηt−na)+

+β0(ũt − ζt) + ... + βnb (ũt−nb − ζt−nb); |ηt | ≤ ∆η; |ζt | ≤ ∆ζ ;∀t = na + 1, ..., N}

(2.12)

ηT = [η1, η2, ..., ηN] (2.13)

ζT = [ζ1, ζ2, ..., ζN] (2.14)

2.2.1.3 Parameter Uncertainty Intervals

De�nition: The Parameter Uncertainty Interval (PUI) in the Set-Membership Frame-

work, is de�ned as the region which bounds a parameter's value by its maximum and

minimum intervals.

For a parameter θi ∈ θ, the PUI can be de�ned as follows,

PUIθi = [θ
min
i , θmax

i] (2.15)

θmin
i = min

Dθ

θi , i = 1, 2, 3, ..., na + nb + 1 (2.16)

θmax
i = max

Dθ

θi , i = 1, 2, 3, ..., na + nb + 1 (2.17)

9

Chapter 2 Set-Membership

The problem described in (2.12) is a Polynomial Optimization Problem (POP) and is

a nonconvex problem.

Convex Relaxation techniques are applied to avoid the optimization problem to get

trapped in a local minima and to assure the parameter's convergence to the global minima

(see [6] for more details).

O
b
je
ct
iv
e
F
u
n
ct
io
n
V
al
u
e

Parameter Value

Global Minima

Local Minima

Local Minima

Figure 2.2: Global and Local Minima

10

Chapter 3

System Identi�cation

3.1 Introduction

In this chapter, we introduce the system identi�cation procedure followed in order to

identify a model for the K2 actuator. The data sets use in this identi�cation process have

been provided by Centro Ricerche Fiat (CRF) and are divided into 2 sets of data:

� Set (1): Ramp pro�le data, where the input current is a ramp input.

� Set (2): Step pro�le data, where the input current is a step input.

The Set (1) was the �rst set available and was used to perform the identi�cation

process mentioned in section (3.2). The other data set, Set (2), was used to validate the

obtained model following the identi�cation process on Set (1) and hence led to further

investigations and work on the plant's identi�cation procedure as presented in section

(3.3).

The K2 actuator model to be identi�ed in this process is considered as a black-box,

as no apriori information in regards to the model structure is available (for more details,

see [7]). This model has as input the current and the pressure as output.

The data sets were examined and there was found to be a dead zone for the output

pressure in presence of the input current.

The sampling time for the samples collected within the data sets was not the same

between two consecutive measurements, hence as part of the preliminary processes the

sampling time for all data sets was uni�ed and set to 2 ms.

In the following sections, two identi�cation procedures are introduced:

� Section 3.2: LTI Discrete time Model Identi�cation with a static input nonlinearity

in the form of a Hammerstein system.

� Section 3.3: Recursive Model Estimation.

3.2 Hammerstein System

3.2.1 Overview

In this section, we address the identi�cation of a single-input single-output (SISO)

linear time invariant (LTI) discrete-time system with a static input nonlinearity in the

11

Chapter 3 System Identi�cation

form of a Hammerstein Model.

The key points for the identi�cation process which were obtained on the basis of data

analysis and preliminary processing are:

� The identi�cation problem is in the form of an Output Error structure.

� The linear dynamic model Gp(q−1) is a �rst order transfer function with one pole α

and gain β.

� The static input nonlinearity N(·) is a dead zone and is modeled with a �nite and

known order polynomial and is considered.

� This model structure has been selected after several trails, where it has proven to

be the most suitable structure for this identi�cation problem.

� The noise ηt entering the problem and a�ecting the output is assumed to be bounded

by ∆η.

� The sampling time Ts is equal to 2 ms.

N(·) Gp(q−1)
ut xt +wt +

ηt

yt

Figure 3.1: SISO Hammerstein Model

3.2.2 Problem Formulation

In reference to the Hammerstein system shown in �gure (3.1) and the procedure men-

tioned in 2.2.1, where the linear dynamic part is modeled by a discrete-time system which

transforms xt into the noise-free output wt according to:

wt = Gp(q−1)xt =
B(q−1)
A(q−1)

xt (3.1)

where xt is the unmeasurable inner signal and A(·) and B(·) are polynomials in the back-

ward shift operator q−1,

A(q−1) = 1 + αq−1 (3.2)

B(q−1) = β (3.3)

The Hammerstein system input ut is scaled to vt according to:

vt = Kut (3.4)

12

Chapter 3 System Identi�cation

where K = 0.01 is the scaling gain.

This scaling is necessary in order to obtain a feasible solution for the optimization problem.

The nonlinear block transforms the scaled input vt into xt according to:

xt = γ1v
5
t + γ2v

4
t + γ3v

3
t (3.5)

The selection for the structure of xt as a polynomial with the terms shown in (3.5) was

the best structure found to suitably model the dead zone.

Let yt be the noise-corrupted measurements of wt ,

yt = wt + ηt (3.6)

where ηt is the noise entering the problem,

ηT = [η1 η2 ... ηN] (3.7)

Measurement uncertainty is known to be bounded by ∆η,

|ηt | ≤ ∆η (3.8)

Unknown parameter vectors γ ∈ R3 and θ ∈ R2 are de�ned respectively as,

γT = [γ1 γ2 γ3] (3.9)

θT = [α β] (3.10)

For reasons of simplicity, we will combine the parameters presented in equations (3.9) and

(3.10) into one vector,

Θ
T = [γ1 γ2 γ3 α β] (3.11)

In order to assure a unique parametrization for the Hammerstein system shown in �gure

(3.1), we must set the steady-state gain KDC of linear dynamic part Gp(q−1) equal to 1,

KDC =
β

1 + α
= 1 (3.12)

3.2.2.1 Feasible Parameter Set

We can de�ne the Feasible Parameter Set (FPS) for the Hammerstein system as fol-

lows:

DΘ = {Θ ∈ R
5 : wt = −αwt−1 + βxt−1;wt = yt + ηt ; xt = γ1v

5
t + γ2v

4
t + γ3v

3
t ;

vt = Kut ; |ηt | ≤ ∆η;∀t = 2, ..., N}
(3.13)

13

Chapter 3 System Identi�cation

where N is the number of measurements.

3.2.2.2 Extended Feasible Parameter Set

We need to extend the FPS represented in (3.13) because we have to consider the noise

ηt entering the problem, hence we will have new parameters to be added, represented in

the noise entering the problem. These parameters will not be estimated.

Now the extended Feasible Parameter Set (FPS) is as follows:

DΘ,η = {Θ ∈ R
5, η ∈ RN : yt − ηt = −αyt−1 + αηt−1 + βxt−1; xt = γ1v

5
t + γ2v

4
t + γ3v

3
t ;

vt = Kut ; |ηt | ≤ ∆η;∀t = 2, ..., N}

(3.14)

3.2.2.3 Parameter Uncertainty Intervals

The Parameter Uncertainty Intervals (PUI) can be described by considering the upper

and lower bounds for the parameters to be estimated,

Θ
min
i = min

DΘ
Θi , i = 1, ..., 5 (3.15)

Θ
max
i = max

DΘ
Θi , i = 1, ..., 5 (3.16)

PUIΘi = [Θ
min
i ,Θmax

i] (3.17)

The Central Estimate for the parameters,

Θ
C
i =
Θmin

i + Θmax
i

2
(3.18)

3.2.2.4 Stability

To assure the the stability of the linear model represented in equation (3.1), we need

to enforce a constraint on the optimization problem to be solved [8]. Since the structure of

the linear model is a �rst order discrete time transfer function with gain β and pole α, to

assure that the system is BIBO stable (Bounded-Input, Bounded-Output), the pole alpha

must lay within the bounds of the pole-zero map shown in �gure (3.2). The condition to

be enforced is,

|α | < 1 (3.19)

14

Chapter 3 System Identi�cation

O

r

Re(z)

Im(z)

Figure 3.2: Pole-Zero Map in the z Domain (r=1)

3.2.2.5 Optimization Problem Formulation

For the optimization problem (3.15) the formulation considering all the constraints is

as follows,

Θ
min
i =min

DΘ
Θi

subject to

yt + αyt−1 − βxt−1 − ηt − αηt−1 = 0,

xt = γ1v
5
t + γ2v

4
t + γ3v

3
t ,

vt = Kut,

|η(t)| ≤ ∆η,

|α | < 1,

∀t = 2, ..., N

(3.20)

For the optimization problem (3.16) the formulation considering all the constraints is as

follows,

Θ
max
i =max

DΘ
Θi

subject to

yt + αyt−1 − βxt−1 − ηt − αηt−1 = 0,

xt = γ1v
5
t + γ2v

4
t + γ3v

3
t ,

vt = Kut,

|η(t)| ≤ ∆η,

|α | < 1,

∀t = 2, ..., N

(3.21)

15

Chapter 3 System Identi�cation

3.2.2.6 Optimization Problem Characteristics

In regards to the optimization problem to be solved we can point out the following:

� The problem will be solved under the Set-Membership framework (introdued in

chapter 2).

� This problem is a Polynomial Optimization Problem (POP).

� Since this optimization problem is in the class of an Output-Error structure, as

the noise entering the process is a�ecting the measured output, we can classify this

problem as a nonconvex problem.

� In order to be able to solve this optimization problem, we have to apply convex

relaxation techniques in order to guarantee the convergence of the parameters rep-

resented in (3.11) to the global minima.

3.2.3 Results

Following the procedure presented in subsection 3.2.2, the optimization problem has

been solved using SparsePOP package under the MATLAB environment (for more details

about SparsePOP see [9]).

The optimization problem is solved in 3 phases as described in the following points:

� Estimate the bound for the error entering the optimization problem.

� Estimate the lower and upper bounds for the parameters shown in (3.11).

� Validate the computed model using data sets di�erent from the one used to perform

the model identi�cation.

The error bound for the noise a�ecting the output measurement was found to be:

∆η = 1.41

As for the estimation of the parameters in (3.11), the minimum relaxation order δ was

found to be equal to 1,

δ ≥
ρ

2

where ρ is the highest degree of the polynomial described in equation (3.1).

The Parameter Uncertainty Intervals and the Central Estimates for the parameters in

(3.11) with a relaxation order δ equal to 2:

16

Chapter 3 System Identi�cation

PUIΘ =



α∈

Θmin︷ ︸︸ ︷
− 0.651574

Θmax︷ ︸︸ ︷
− 0.651257

β∈ +0.348427 +0.348777

γ1∈ −0.002722 −0.0027232

γ2∈ +0.039016 +0.039050

γ3∈ −0.081878 −0.081552



Θ
C =



α= −0.65142

β= +0.34860

γ1= −0.00272

γ2= +0.03903

γ3= −0.08172


The Hammerstein model in �gure (3.1) can now be described with the following equations:

Gp(q−1) =
0.3706738

1 − 0.62932623q−1
⇐⇒ Gp(z) =

0.3706738

z − 0.62932623

xt = −0.0026051v
5
t + 0.0375240v

4
t − 0.0771024v

3
t

From the obtained results we can see that the stability condition mentioned in 3.2.2.4

has been satis�ed.

The identi�cation was performed using only part of the measurements from data set

[20°C Ramp_a]. The next �gure (3.3) shows validation for the identi�ed model for four

data sets from Set (1). ym is the measured pressure and yn is the simulated pressure.

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Sample

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 P
re

ss
ur

e

ym

yn

(a): 20°C Ramp_a

0 5000 10000 15000
Sample

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 P
re

ss
ur

e

ym

yn

(b): 20°C Ramp_b

17

Chapter 3 System Identi�cation

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Sample

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 P
re

ss
ur

e
ym

yn

(c): 60°C Ramp_a

0 2000 4000 6000 8000 10000 12000 14000
Sample

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 P
re

ss
ur

e

ym

yn

(d): 60°C Ramp_b

Figure 3.3: Hammerstein Model Validation for 4 Di�erent Data Sets from Set (1)

As the Identi�cation process was performed and validated so far in regards to Set (1)

(Ramp Data Sets), the next step was to validate the obtained model using Set (2) (Step

Data Sets), the results can be seen in �gure (3.4),

0 0.5 1 1.5 2 2.5 3 3.5
Sample 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 P
re

ss
ur

e

ym

yn

(a): 20°C Step_a

0 1 2 3 4 5 6 7 8
Sample 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 P
re

ss
ur

e

ym

yn

(b): 60°C Step_a

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Sample 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 P
re

ss
ur

e

ym

yn

(c): -20°C Step_a

Figure 3.4: Hammerstein Model Validation for 3 Di�erent Data Sets from Set (2)

18

Chapter 3 System Identi�cation

3.2.3.1 System Identi�cation - Step Data Sets

HS20 Model : Hammerstein Model identi�ed using the MATLAB System

Identi�cation Toolbox

We now deploy the data set [20°C Step_a] to model the Hammerstein System using

the MATLAB System Identi�cation Toolbox. Several structures were tried and the most

suitable model can be seen in equations (3.22), (3.23). The structure is the same as

presented in �gure (3.1).

wt = Gp(q−1)xt =
1

1 − 0.9562
xt (3.22)

xt = 7.31 × 10−15u5t − 2.28 × 10
−11u4t + 2.36 × 10

−8u3t − 6.9 × 10
−6u2t + 5.77 × 10

−4ut (3.23)

From �gure (3.5) below, it can be seen that the simulated output pressure yn is not able

to track the measured output pressure ym. Figure (3.6) shows that the HS20 model is not

able to reproduce the measured output pressure ym for the data set [60°C Step_a], which

is a di�erent data set than the one used to model the plant.

0 0.5 1 1.5 2 2.5 3
Sample 105

0

0.5

1

N
or

m
al

iz
ed

 P
re

ss
ur

e

ym

yn

0 5 10
Sample 104

0

0.05

0.1

0.15

0.2

N
or

m
al

iz
ed

 P
re

ss
ur

e

0 1 2 3
Sample 105

-15

-10

-5

0

5

Er
ro

r

Figure 3.5: HS20 Model Validation for Data Set 20°C Step_a using MATLAB System
Identi�cation Toolbox

19

Chapter 3 System Identi�cation

0 1 2 3 4 5 6 7
Sample 105

0

0.5

1

N
or

m
al

iz
ed

 P
re

ss
ur

e

ym

yn

0 5 10 15
Sample 104

0

0.05

0.1

0.15

0.2

N
or

m
al

iz
ed

 P
re

ss
ur

e

0 2 4 6
Sample 105

-15

-10

-5

0

5

Er
ro

r

Figure 3.6: HS20 Model Validation for Data Set 60°C Step_a using MATLAB System
Identi�cation Toolbox

3.2.4 Conclusions

From the results introduced in subsection 3.2.3, we can conclude this section by stating

the following points:

� The system identi�cation process for the Hammerstein system provided relatively

good results for the Ramp data sets. However, for the Step data sets, the Hammer-

stein model was not able to cope up with the physical system's dynamics.

� The physical system's dynamics are varying in correspondence to the input current

in a nonlinear manner.

� For every input range corresponds a di�erent model for the plant Gp(q−1).

� Several models have to be identi�ed in order to cover up the entire range of in-

put/output data, assuming that the operating points are the ones available in the

data sets.

� The above mentioned points motivated the need to use recursive estimation for this

problem that will be introduced in the next section 3.3.

20

Chapter 3 System Identi�cation

3.3 Recursive Model Estimation

3.3.1 Overview

In section 3.2, we concluded with the fact that we need to use recursive estimation

in order to obtain a model for the plant. In this section we will introduce the recursive

model estimation identi�cation technique that allows to estimate a model for the plant

based on input and output data collected at each sampling instant.

Recursive estimation is based on the selection of a cost function such that the resultant

recursive algorithm is in the form of a least squares problem. It also implies minimizing

the one step-ahead prediction error which represents only that part of yt that cannot be

predicted from the past data [10].

The starting points for this identi�cation process can be summarized in:

� The system to be identi�ed Gp(q−1) is a single-input single-output system having

one pole αt and a gain βt (most suitable model).

� The sampling time Ts is equal to 2 ms, where at each sampling instant, a model for

the plant is estimated recursively.

Gp(q−1)

Disturbances

ut

Recursive
Estimator

θ̂t

yt

Figure 3.7: Recursive Estimation Model Layout

3.3.2 Problem Formulation

In reference to the points stated in subsection 3.3.1, we can now introduce the main

structure for the recursive estimation algorithm. In this subsection we are going to intro-

duce 4 algorithms for recursive estimation [3]:

(a) Forgetting Factor

(b) Kalman Filter

(c) Unnormalized Gradient

(d) Normalized Gradient

21

Chapter 3 System Identi�cation

Now we can introduce the general form for the recursive estimation algorithm, taking

into account that the main di�erence between all four algorithms mentioned above is the

gain matrix Kt .

The recursive estimation model can be described as,

yt =
βt

1 + αtq−1
ut (3.24)

The parameter vector θ̂t ∈ R
2 is de�ned according to the following equation,

θ̂t = θ̂t−1 + Ktet (3.25)

θ̂T
t = [αt βt] (3.26)

where et is the prediction error and is given by,

et = yt − ϕ
T
t θ̂t−1 (3.27)

The regression vector ϕt which is computed on the basis of previous input ut and output

yt measurements,

ϕt = [−yt−1 ut−1] (3.28)

The gain matrix Kt is as follows,

Kt = Qtϕt (3.29)

Qt is computed as follows depending on the estimation algorithm:

Qt =
Pt−1

λ + ϕT
t Pt−1ϕt

(3.30)

λ is the forgetting factor which exponentially, determines the weight of older samples to

the estimation at time t.

i f λ = 1→ Time-Invariant Parameters Estimation

i f λ < 1→ Time-Varying Parameters Estimation

λ is usually selected between 0.98 and 0.995.

Pt is the prediction error variance and is given by,

Pt =
1

λ

(
Pt−1 −

Pt−1ϕtϕ
T
t Pt−1

λ + ϕT
t Pt−1ϕt

)
(3.31)

Forgetting Factor

22

Chapter 3 System Identi�cation

Qt =
Pt−1

R2 + ϕ
T
t Pt−1ϕt

(3.32)

R2 is the variance of the process noise et .

The prediction error variance Pt is given by,

Pt = Pt−1 + R1 −
Pt−1ϕtϕ

T
t Pt−1

R2 + ϕ
T
t Pt−1ϕt

(3.33)

R1 is the covariance matrix (drift matrix).

R1 and Pt=0 are scaled such that R2 is equal to zero.

Kalman Filter

For the Unnormalized Gradient algorithm,

Qt = γ (3.34)

where γ is the adaption gain.

As for the Normalized Gradient algorithm,

Qt =
γ

‖ϕt ‖
2 + Bias

(3.35)

The adaptation gain γ is scaled at each time instant by ‖ϕt ‖
2. If ϕt approaches zero, it

may cause huge variations in the estimated parameters and lead to instability. To prevent

this from happening, the Bias term is added.

Normalized & Unnormalized Gradient

3.3.2.1 Stability

To assure the the stability of the recursive model represented in equation (3.24), the

estimation algorithm veri�es whether the absolute value for estimated pole αt is less than

one. In case the absolute value of the pole is greater than or equal to one, the algorithm

assigns the pole a value of |αt | = 0.99 depending on it's estimated value's sign. After

enforcing the pole αt , the algorithm recomputes the value for the gain βt on the basis of

having αt as apriori information.

23

Chapter 3 System Identi�cation

3.3.3 Results

The following �gures represent a compassion between the four algorithms mentioned

in subsection 3.3.2 for the data set [20°C Step_a]. The Bias for all the results presented

in this subsection is equal to 2.2204×10−16. The measured output pressure is represented

by ym and the simulated output pressure is yn.

0 0.5 1 1.5 2 2.5 3
Sample 105

0

0.5

1

N
or

m
al

iz
ed

 P
re

ss
ur

e

ym

yn

0 0.5 1 1.5 2 2.5 3
Sample 105

-4

-2

0

2

4

Er
ro

r

Figure 3.8: Forgetting Factor Algorithm with λ = 0.995

0 0.5 1 1.5 2 2.5 3
Sample 105

0

0.5

1

N
or

m
al

iz
ed

 P
re

ss
ur

e

ym

yn

0 0.5 1 1.5 2 2.5 3
Sample 105

-5

0

5

Er
ro

r

Figure 3.9: Kalman Filter Algorithm

24

Chapter 3 System Identi�cation

0 0.5 1 1.5 2 2.5 3
Sample 105

0

0.5

1

N
or

m
al

iz
ed

 P
re

ss
ur

e

ym

yn

0 0.5 1 1.5 2 2.5 3
Sample 105

-2

-1

0

1

2

Er
ro

r

10-14

Figure 3.10: Normalized Gradient Algorithm with γ = 1

0 0.5 1 1.5 2 2.5 3
-10

-5

0

5

Sample 105

N
or

m
al

iz
ed

 P
re

ss
ur

e

10302

ym

yn

0 0.5 1 1.5 2 2.5 3
0

1

2

3

4

Sample 105

Er
ro

r

10304

Figure 3.11: Unnormalized Gradient Algorithm with γ = 1

As it can be seen from �gures (3.8), (3.9), (3.10), (3.11), the Normalized Gradient

algorithm proves to be the most suitable algorithm. As for the Unnormalized algorithm,

it can be clearly seen that it can not cope up with the rapidly changing dynamics of the

system for all possible values for the adaption gain γ.

25

Chapter 3 System Identi�cation

It is necessary to note that the adaptation gain γ was selected equal to 1, which pro-

vides the best results as it can be seen in �gure (3.12) which shows the error for several

models with di�erent adaption gain γ values (this was performed on the data set [20°C

Ramp_a]).

0 2 4 6 8 10 12 14
Sample 104

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Er
ro

r

=1
=1.1
=1.5
=0.995
=0.99

Figure 3.12: Adaption Gain γ E�ect

The following �gures represent the results obtained using the Normalized Gradient

algorithm described in subsection 3.3.2 for various data sets. The measured output pres-

sure is represented by ym and the simulated output pressure is yn.

Figures (3.18), (3.19) and (3.20), show the results for data sets with Hysteresis.

26

Chapter 3 System Identi�cation

0 2 4 6 8 10 12 14
Sample 104

0

0.5

1

N
or

m
al

iz
ed

 P
re

ss
ur

e ym

yn

0 2 4 6 8 10 12 14
Sample 104

-2

-1

0

1

2

Er
ro

r

10-14

Figure 3.13: Recursive Estimation Validation for Data Set 20°C Ramp_a

0 2 4 6 8 10 12 14 16
Sample 104

0

0.5

1

N
or

m
al

iz
ed

 P
re

ss
ur

e

ym

yn

0 2 4 6 8 10 12 14 16
Sample 104

-2

-1

0

1

2

Er
ro

r

10-14

Figure 3.14: Recursive Estimation Validation for Data Set 60°C Ramp_a

27

Chapter 3 System Identi�cation

0 1 2 3 4 5 6 7
Sample 105

0

0.5

1

N
or

m
al

iz
ed

 P
re

ss
ur

e
ym

yn

0 1 2 3 4 5 6 7
Sample 105

-2

0

2

4

Er
ro

r

10-14

Figure 3.15: Recursive Estimation Validation for Data Set 60°C Step_a

0 2 4 6 8 10 12 14
Sample 104

0

0.5

1

N
or

m
al

iz
ed

 P
re

ss
ur

e ym

yn

0 2 4 6 8 10 12 14
Sample 104

-2

-1

0

1

2

Er
ro

r

10-14

Figure 3.16: Recursive Estimation Validation for Data Set -20°C Ramp_a

28

Chapter 3 System Identi�cation

0 0.5 1 1.5 2 2.5 3 3.5 4
Sample 105

0

0.5

1

N
or

m
al

iz
ed

 P
re

ss
ur

e

ym

yn

0 0.5 1 1.5 2 2.5 3 3.5 4
Sample 105

-2

-1

0

1

2

Er
ro

r

10-14

Figure 3.17: Recursive Estimation Validation for Data Set -20°C Step_a

0 1 2 3 4 5 6
Sample 105

0

0.5

1

N
or

m
al

iz
ed

 P
re

ss
ur

e

ym

yn

0 1 2 3 4 5 6
Sample 105

-2

-1

0

1

Er
ro

r

10-14

Figure 3.18: Recursive Estimation Validation for Data Set 20°C Step_b

29

Chapter 3 System Identi�cation

0 1 2 3 4 5 6
Sample 105

0

0.5

1

N
or

m
al

iz
ed

 P
re

ss
ur

e

ym

yn

0 1 2 3 4 5 6
Sample 105

-2

-1

0

1

2

Er
ro

r

10-14

Figure 3.19: Recursive Estimation Validation for Data Set 60°C Step_c

0 1 2 3 4 5
Sample 105

0

0.5

1

N
or

m
al

iz
ed

 P
re

ss
ur

e

ym

yn

0 1 2 3 4 5
Sample 105

-2

-1

0

1

Er
ro

r

10-14

Figure 3.20: Recursive Estimation Validation for Data Set -20°C Step_c

30

Chapter 3 System Identi�cation

3.3.4 Conclusions

From the results obtained in subsection 3.3.3, we can conclude with the following:

� The recursive estimation algorithm proves to be suitable for this problem as it can

be seen from the obtained results. The only exception is the Unnormalized Gradient

algorithm as seen in �gure (3.11).

� The absolute error between the measured output pressure ym and the simulated

pressure yn is relatively very small and is bounded by |2 × 10−14 |.

� The Hammerstein system provided relatively good results for Set (1) but wasn't able

to cope with the system's dynamics for Set (2). On the other hand the recursive

estimation algorithm was able capture all the dynamics in both sets.

31

Chapter 4

Neural Networks

4.1 What is a Neural Network?

De�nition: An arti�cial neural network (ANN), commonly referred to as neural net-

work, is a computational model which is vaguely inspired by the human brain as it consists

of an interconnected network of simple processing units (neurons) that learns from expe-

rience by modifying its connections [11].

A Neural network can be seen as a machine that is designed to model how the brain

performs speci�c tasks. Two important aspects that can be seen to resemble the brain

are [12]:

� A learning process is used to acquire information/knowledge from the network's

environment.

� Acquired information/knowledge is stored using interneuron connection strengths

(also known as synaptic weights).

The �rst initiative for neural networks was to model animal brains. They are now

used as machine learning tools in various application �elds such as, but not limited to:

(a) System Identi�cation and Control

(b) Medical Diagnosis

(c) Pattern and Sequence Recognition

(d) Finance

(e) Machine Translation

(f) Data Mining

4.2 Properties and Capabilities

A neural network attains its computation capabilities through the massively distrusted

structure and it's ability to both learn and generalize [12]. The generalization capability

is a direct re�ection of the network's ability to produce outputs for inputs that were not

32

Chapter 4 Neural Networks

part of the network's training (learning) available information (see section 4.5 for more

details on learning processes).

Some of the main properties of a neural network can be summarized in the following

points:

� Input-Output Mapping: The network has the capability to provide a reasonable

output, given data that was not used to train the network.

� Adaptivity: A network trained to operate in speci�c operating conditions can be

retrained in order to adapt with changes in these conditions.

� Nonlinearity: This property makes neural networks suitable for many kind of appli-

cations.

� Evidential Response: This property is linked to the con�dence interval of decisions

made by the network.

� Uniformity of Analysis and Design: Neural networks are considered as universal in-

formation processors.

4.3 General Structure of a Neural Network

u1

u2

u3

u4

y

Hidden
Layer

Input
Layer

Output
Layer

Figure 4.1: Neural Network General Structure

As it can be seen from �gure (4.1), the nueral network consists of three layers:

� Input Layer: Input data acquisition (passive node/s)

� Hidden Layer: Information processing unit, made of 1 or more neurons (active

node/s). The neuron will be described in subsection 4.3.1

� Output Layer: Neuron/s output data processing and computations to provide the

network's output (active node/s).

33

Chapter 4 Neural Networks

4.3.1 Neuron Model

A neuron is the core operation element for the neural network as it is the unit respon-

sible for information processing.

u2 w2 Σ
:
Summing
Junction

f

Activation
Function

y

Output

u1 w1

un wn

Weights

Bias
b

.
.
.

.
.
.

Inputs

Figure 4.2: Model of a Neuron

The general structure of a neuron can be seen in �gure (4.2), each neuron consists of:

� Weights w1, ...,wn, which determine the in�uence of each input signal u1...un on the

output y.

� Adder Σ, to sum weighted inputs u1w1, ..., unwn.

� Bias b, which is added to the resultant summation of the weighted inputs. It in-

creases/decreases the summed weighted inputs to the activation function.

� Activation Function f , to limit the output of the neuron to a �nite value as described

in subsection 4.3.2.

The output y of the neuron,

y = f (

ϕ︷ ︸︸ ︷
n∑

i=1

uiwi + b) (4.1)

The notaion ϕ will be used to describe the terms
∑n

i=1 uiwi + b

4.3.2 Activation Function

The activation function f computes the output of the neuron from ϕ as it can be seen

in equation (4.1). The main purpose of the activation function is to introduce nonlinearity

into the network.

Some of the most common activation functions used in neural networks are:

34

Chapter 4 Neural Networks

� Bipolar Function

� Step Function

� Linear Function

� Sigmoid Function

� Tanh Function

� ReLU Function

4.3.2.1 Bipolar Function

We can de�ne the threshold function for the activation function f of the neuron as

follows,

f (ϕ) =


1 if ϕ > 0

0 if ϕ = 0

−1 if ϕ < 0

(4.2)

−5 −2.5 0 2.5 5

−1

−0.5

0

0.5

1

ϕ

f(
ϕ
)

Figure 4.3: Bipolar Activation Function

4.3.2.2 Step Function

We can de�ne the threshold function for the activation function f of the neuron as

follows,

f (ϕ) =

{
1 if ϕ > 0

0 if ϕ < 0
(4.3)

35

Chapter 4 Neural Networks

−5 −2.5 0 2.5 5

0

0.5

1

ϕ

f(
ϕ
)

Figure 4.4: Step Activation Function

4.3.2.3 Linear Function

We can de�ne the equation for the activation function f of the neuron as follows,

f (ϕ) = ϕ (4.4)

−5 −2.5 0 2.5 5

−5

−2.5

0

2.5

5

ϕ

f(
ϕ
)

Figure 4.5: Linear Activation Function

4.3.2.4 Sigmoid Function

This is the most commonly used activation function. We can describe the the activa-

tion function f of the neuron with the following,

f (ϕ) =
1

1 + e−ϕ
(4.5)

36

Chapter 4 Neural Networks

The threshold function for the sigmoid activation function is the same as for bipolar

function described in (4.2).

−5 −2.5 0 2.5 5

0

0.5

1

ϕ

f(
ϕ
)

Figure 4.6: Sigmoid Activation Function

4.3.2.5 Tanh Function

Hyperbolic Tangent Function (Tanh) is similar to the sigmoid function but adds one

extra advantage, the threshold function in (4.2) is not necessary anymore due to the fact

that this function is bounded within the range (-1, 1). The Tanh function is also widely

used in various applications.

The Tanh activation function is described as follows,

f (ϕ) = tanh(ϕ) =
2

1 + e−2ϕ
− 1 (4.6)

−5 −2.5 0 2.5 5

−1

−0.5

0

0.5

1

ϕ

f(
ϕ
)

Figure 4.7: Tanh Activation Function

37

Chapter 4 Neural Networks

4.3.2.6 ReLU Function

Recti�ed Linear Units (ReLU) are widely used in hierarchical learning (deep learning)

networks in the �elds of computer vision and speech recognition.

The activation function f of the neuron is formulated as follows,

f (ϕ) =

{
ϕ if ϕ > 0

0 if ϕ < 0
(4.7)

A smooth approximation for the activation function in equation (4.7) is given by,

f (ϕ) = log(1 + eϕ) (4.8)

−5 −2.5 0 2.5 5

0

2.5

5

ϕ

f(
ϕ
)

Figure 4.8: ReLU Activation Function

4.4 Neural Network Architectures

A neural network is a data processing system that has a number of interconnected

neurons. In general, there are three main architectures for neural networks:

� Single Layer Feedforward Networks

� Multilayer Feedforward Networks

� Recurrent Networks

4.4.1 Single Layer Feedforward Networks

In this architecture, the neural network consists of two layers, the input layer and the

output layer (which is also the hidden layer).

38

Chapter 4 Neural Networks

u1

u2

u3

u4

u5

y1

y2

y3

y4

y5

Output
Layer

Input
Layer

Figure 4.9: Sinlge Layer Feedforward Network

Single layer feedforward networks are commonly used in pattern classi�cation and

linear �ltering problems [13].

4.4.2 Multilayer Feedforward Networks

The neural network in this architecture is formed by three layers, the input layer, the

output layer and one or more hidden layers.

u1

u2

u3

Hidden
Layer 1

Hidden
Layer 2

Hidden
Layer 3

y

Input
Layer

Output
Layer

Figure 4.10: Multilayer Feedforward Network with 3 Hidden Layers

This architecture is the most common and is used to solve many problems such as

system identi�cation, control, optimization, function approximation and robotics.

4.4.3 Recurrent Networks

The recurrent neural network has the same architecture as a feedforward one, but it

distinguishes from it by having at least one feedback loop. The output of a neurons serves

as an input for other neurons.

39

Chapter 4 Neural Networks

Figure 4.11: Recurrent Network General Structure [13]

This architecture has the feature of dynamic processing meaning that it can be de-

ployed to time-variant systems (time-series prediction, system identi�cation and control).

4.5 Neural Network Learning

Learning process (or rule) is the process of improving the neural network's performance

by updating the weights w1...wn and bias b when the network is applied to a speci�c set

of training data [12]. The learning process can be seen as a measure for the network's

performance improvement on future tasks.

Learning processes can be be classi�ed into three categories:

� Supervised Learning

� Unsupervised Learning

� Reinforcement Learning

4.5.1 Supervised Learning

In this learning process, the network has knowledge/information of the environment

which is a sequence of input-output data for the system to be modeled.

Given a sequence of N samples input-output data:

u1y1, u2y2, ..., uN yN

We want to �nd a function f that maps the inputs u1...uN to the outputs y1, ..., yN ,

y = f (u) (4.9)

The most common example for supervised learning process is linear regression [14].

40

Chapter 4 Neural Networks

4.5.2 Unsupervised Learning

In this learning process, the network has only the input data and no knowledge/infor-

mation about the output data. The main aim of this learning process is to learn patterns

in the input to be able to provide an output by minimizing a given cost function.

Unsupervised learning is majorly used in clustering and association problems [15].

4.5.3 Reinforcement Learning

This learning process is similar to the supervised learning process, but here the learn-

ing of an input-output mapping is continuously performed through interaction with the

environment in order to maximize a scalar performance index known as the reinforcement

signal.

Reinforcement learning is widely used in control problems [16] and game theory [17].

41

Chapter 5

Virtual Sensor

5.1 Introduction

In this chapter, we introduce the Virtual Sensor modelling procedure followed in or-

der to obtain a model for the K2 clutch position sensor. The main motivation for this

modelling process is that the position measurement is not present in real-time operation

and hence it has to be estimated by means of a Virtual Sensor.

The K2 clutch position sensor to be modeled is considered as a black-box model, as no

apriori information in regards to the model structure is available. As the Virtual Sesnor

is modelled in two phases, as it will be introduced in this chapter. The �rst phase (CPX

model, section 5.2) has as inputs the current and the pressure and the output is the

clutch position. For the second phase (PX and CFPX models, section 5.3), the input is

the pressure and the output is the position.

As in chapter (3), from preliminarily processing on the available data sets, a dead zone

was found to be present. There are three dead zones involved in this modelling problem,

� Dead zone between the current and the pressure.

� Dead zone between the current and the position.

� Dead zone between the pressure and the position.

The Virtual Sensors ,CPX and PX, are in the form of Moving-Average models (FIR)

and will be modelled using Multilayer Feedforward Neural Networks (for more details, see

4.4.2). This is presented in sections 5.2 and 5.3. In subsection 5.3.4 we model the Virtual

Sensor using Curve Fitting techniques motivated by the curve shape describing the input

pressure and the output position.

The Median Filter is also introduced in this chapter to eliminate the glitch behaviour

that appears on the simulated output of the Virtual Sensor, this can be seen in 5.2.4 for

the CPX Model and in 5.3.4 for the CFPX model.

42

Chapter 5 Virtual Sensor

5.2 Virtual Sensor Modelling - CPX Model

5.2.1 Overview

CPX Model : Neural Network model that has the current, the pressure as inputs

and the position as output

In this section we will introduce the modelling of the CPX model. The structure for

this model can be seen in �gure (5.1) and equation (5.1),

xt

Hidden
Layer

It−1

It−2

Pt−1

Pt−2

Input
Layer

Output
Layer

Figure 5.1: CPX Model Structure

xt = f (It−1, It−2, Pt−1, Pt−2) (5.1)

From �gure (5.1), the description for the three layers is as follows,

� Input Layer: Four inputs, current at time t − 1 (It−1), current at time t − 2 (It−2),

pressure at time t − 1 (Pt−1) and pressure at time t − 2 (Pt−2).

� Hidden Layer: 10 neurons (see 4.3.1 for more details).

43

Chapter 5 Virtual Sensor

� Output Layer: One output, position at time t (xt).

The CPX model structure, shown in equation (5.1) and �gure (5.1), has been selected on

the basis of performance and complexity analysis. In table (5.1), we compare di�erent

structures for the data set [-20°C Step_a] on the basis of the mean squared error (MSE).

It is necessary to point out that sampling time Ts is equal to 2 ms.

Number of
Neurons

Performance
MSE

2 - - 0.098
5 - - 0.029
10 - - 0.016
20 - - 0.016
100 - - 0.022
10 5 - 0.012
10 10 - 0.012
10 10 10 0.011
15 5 15 0.011

Table 5.1: CPX - Performance Comparison for Di�erent Neural Network Structures

As it can be seen from table (5.1), the networks with 2 and 3 hidden layers provide a

slightly better performance in terms of the Mean Squared Error (MSE), but these models

add more complexity.

5.2.2 Problem Formulation

In reference to the model structure presented in subsection 5.2.1, we can now de�ne the

terms involved in this model. To do this we look inside each of the three layers described

in �gure (5.1),

Input Layer: Acquires the four inputs It−1, It−2, Pt−1 and Pt − 2 at each sampling

instant Ts. Output of this layer is the 4 acquired inputs.

Hidden Layer: In each neuron j (∀ j = 1, 2, ..., 10), the inputs are adjusted by the

weights w1 j, ...,w4 j , then their summation (weighted input) is added to the bias bH j

which increases/decreases the input ϕ j to the activation function f . The activation

function is a Hyperbolic Tangent Function (see 4.3.2.4), which was found to be the

most suitable one for this modelling problem. Output of this layer is the vector y

that can be seen in the following formulation,

ϕ j =
[
w1 j w2 j w3 j w4 j

] 
It−1

It−2

Pt−1

Pt−2


+ bH j (5.2)

44

Chapter 5 Virtual Sensor

y j = f (ϕ j) =
2

1 + e−2ϕj
− 1 (5.3)

yT =
[
y1 ... y10

]
(5.4)

Output Layer: Provides the Virtual Sensor's position measurement xt by adjusting

the output vector of the hidden layer y by weights wx1...wx10 and bias bx. The

resultant output xt is then given by,

xt =
[
wx1 ... wx10

] 
y1
...

y10

 + bx (5.5)

5.2.2.1 Modelling Problem Characteristics

Below are some notes in regards to the Virtual Sensor modelling procedure,

� The problem will be modelled using MATLAB'S Neural Network toolbox.

� The data for training the neural network are divided into three sets, 70% for training,

15% for testing and 15% for validation.

� The learning process that will be used is the Supervised Learning process (see 4.5.1

for more details).

� The Supervised Learning training function that will be implemented is the Levenberg-

Marquardt optimization algorithm (for more details, see [18]).

5.2.3 Results

CPX20: Virtual Sensor modelled using data set 20°C Step_a

CPX60: Virtual Sensor modelled using data set 60°C Step_a

CPXm20: Virtual Sensor modelled using data set -20°C Step_a

CPX20H: Virtual Sensor modelled using data set 20°C Step_b

Following the modelling procedure mentioned in subsection 5.2.2, the following �gures

represent the results obtained by simulating the Virtual Sensor CPX20 using three dif-

ferent data sets. The measured output position is represented by ym and the simulated

output position is yn.

45

Chapter 5 Virtual Sensor

0 0.5 1 1.5 2 2.5 3
Sample 105

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 P
os

iti
on

ym

yn

1.8 1.9 2
105

0.5

0.6

0.7

0.8

Figure 5.2: CPX20 Virtual Sensor Validation for Data Set 20°C Step_a

0 1 2 3 4 5 6 7
Sample 105

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 P
os

iti
on

ym

yn

3.6 3.8 4 4.2
105

0.5

0.6

0.7

0.8

Figure 5.3: CPX20 Virtual Sensor Validation for Data Set 60°C Step_a

46

Chapter 5 Virtual Sensor

0 0.5 1 1.5 2 2.5 3 3.5 4
Sample 105

0

0.2

0.4

0.6

0.8

1

1.2

1.4

N
or

m
al

iz
ed

 P
os

iti
on

ym

yn

2 2.1 2.2 2.3
105

0.6
0.7
0.8
0.9

Figure 5.4: CPX20 Virtual Sensor Validation for Data Set -20°C Step_a

As it can be seen from �gure (5.2), the CPX20 Virtual Sensor is able to provide

relatively good tracking for the output when simulating the network using the same data

set used to train the network (only 70% of this data set was used for training). It can be

seen the presence of glitches in the simulated position on the falling edge of the input.

On the other hand, �gures (5.3), (5.4) show that the Virtual Sensor CPX20 is not

able to reproduce the position measurement for the data sets [60°C Step_a] and [-20°C

Step_a], respectively. Several Virtual Sensors were modelled, with di�erent hidden layer

sizes, number of neurons and architectures, yet no single model was found that can model

all the data sets collected at di�erent temperatures. This motivated the fact that we need

to design a Virtual Sensor for each operating temperature. The following �gures (5.5),

(5.6) show the results for each individual Virtual Sensor CPX60 and CPXm20 as well as

the glitch behaviour mentioned above.

47

Chapter 5 Virtual Sensor

0 1 2 3 4 5 6 7
Sample 105

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 P
os

iti
on

ym

yn

3.6 3.8 4 4.2
105

0.5

0.6

0.7

0.8

Figure 5.5: CPX60 Virtual Sensor Validation for Data Set 60°C Step_a

0 0.5 1 1.5 2 2.5 3 3.5 4
Sample 105

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 P
os

iti
on

ym

yn

2.2 2.3 2.4 2.5
105

0.6

0.7

0.8

Figure 5.6: CPXm20 Virtual Sensor Validation for Data Set -20°C Step_a

48

Chapter 5 Virtual Sensor

For the data sets with Hysteresis, the Virtual Sensors were not able to cope up the

hysteresis phenomena in regards to each data set separately (�gure (5.7) below shows the

validation using CPX20 on data set [20°C Step_b]). In �gure (5.8), the validation for the

Virtual Sensor CPX20H can be seen on data set [20°C Step_b].

0 1 2 3 4 5 6
Sample 105

-1

-0.5

0

0.5

1

1.5
N

or
m

al
iz

ed
 P

os
iti

on

ym

yn

Figure 5.7: CPX20 Virtual Sensor Validation for Data Set 20°C Step_b

0 1 2 3 4 5 6
Sample 105

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 P
os

iti
on

ym

yn

3.4 3.6 3.8
105

0.3

0.4

0.5

0.6

Figure 5.8: CPX20H Virtual Sensor Validation for Data Set 20°C Step_b

For the Virtual Sensor CPX20, the sensor was simulated with partial measurements

49

Chapter 5 Virtual Sensor

from the data set with the input current as a Ramp pro�le for validation in addition to

the data set 20°C Step_a. The results are seen in �gure (5.9),

0 0.5 1 1.5 2 2.5 3 3.5
Sample 105

0

0.2

0.4

0.6

0.8

1

1.2

N
or

m
al

iz
ed

 P
os

iti
on

ym

yn

3.3 3.4 3.5 3.6
105

0.7

0.8

0.9

1

Figure 5.9: CPX20 Virtual Sensor Validation for Combined Data Sets at 20°C

5.2.4 Glitch Elimination

Following the results presented in subsection (5.2.3), we will now apply aOne-Dimensional

Median Filter (see [19, 20], for more details) to process the output signal of the CPX Vir-

tual Sensor (section 5.2), improving the overall performance. In the following �gure (5.10),

we can see the structure for the Virtual Sensor followed by the Median Filter,

CPX
Virtual Sensor

It−1

It−2
Pt−1

Pt−2

Median Filter xt

Figure 5.10: CPX Virtual Sensor with Median Filter

The One-Dimensional Median Filter works by replacing every point of a signal with its

median. The median is calculated on the basis of the �lter's order ρ, where depending on

this order the �lter uses ρ neighboring points to compute the median of the measurement.

Because there are glitches (spikes) in the simulated output position on the falling edge

of the input, we need to calculate a suitable order for the �lter. On the basis of several

50

Chapter 5 Virtual Sensor

trails, the order of the Median Filter has been selected as,

ρ f = 50

In the following �gures (5.11), (5.12), (5.13), we can see the results for the CPX Virtual

Sensors modelled in section 5.2 after applying the �lter to the neural network's output

and enforcing the input deadzone.

0 0.5 1 1.5 2 2.5 3 3.5
Sample 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 P
os

iti
on

ym

yn

Figure 5.11: CPX20 with Median Filter Validation for Combined Data Sets at 20°C

0 1 2 3 4 5 6 7 8
Sample 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 P
os

iti
on

ym

yn

Figure 5.12: CPX60 with Median Filter Validation for Combined Data Sets at 60°C

51

Chapter 5 Virtual Sensor

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Sample 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 P
os

iti
on

ym

yn

Figure 5.13: CPXm20 with Median Filter Validation for Combined Data Sets at -20°C

For the data sets with Hysteresis, there was no improvement in the performance, hence

leading to the conclusion that the currently used structures are not suitable to model this

behaviour.

5.2.5 Conclusions

We can conclude this section by stating the following points:

� Virtual Sensors designed at a speci�c operating temperature are not able to repro-

duce the position measurements at other temperatures, hence a Virtual Sensor is

needed for each operating temperature.

� In regards to the simulated position, a glitch was present in the falling edge of the

input. This motivated the need to introduce a Median Filter on the output of the

Virtual Sensor which was able to eliminate the glitch behaviour.

� The CPX20H Virtual Sensor is not able to reproduce the measured position xt .

52

Chapter 5 Virtual Sensor

5.3 Virtual Sensor Modelling - PX Model

5.3.1 Overview

PX Model : Neural Network model that has the pressure as input and the position

as output

In this section we now look at another model structure for the Virtual Sensor, moti-

vated by the curve shape, as seen in �gure (5.14), and with the aim of reducing the model

complexity we now introduce the PX model.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Normalized Pressure

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 P
os

iti
on

Figure 5.14: Pressure-Position Curve Shape for Data Set 20°C Step_a

The structure for this model can be seen in �gure (5.15) and equation (5.6). The three

layers are described as follows,

� Input Layer: One input, pressure at time t (Pt).

� Hidden Layer: 10 neurons (same structure as described in subsection 5.2.1).

� Output Layer: One output, position at time t (xt).

53

Chapter 5 Virtual Sensor

xt

Hidden
Layer

Pt

Input
Layer

Output
Layer

Figure 5.15: PX Model Structure

xt = f (Pt) (5.6)

From �gure (5.15), the three layers are decribed as follows,

� Input Layer: One input, pressure at time t (Pt).

� Hidden Layer: 10 neurons (same structure as described in subsection 5.2.1).

� Output Layer: One output, position at time t (xt).

The PX model structure, described in equation (5.6) and �gure (5.15), has been selected

on the basis of performance analysis. In table (5.2), we compare di�erent structures

for the data set [20°C Step_a] on the basis of the acheived training performance. It is

necessary to point out that sampling time Ts is equal to 2 ms.

54

Chapter 5 Virtual Sensor

Number of
Neurons

Performance
MSE

2 - - 0.06
5 - - 0.04
10 - - 0.039
20 - - 0.039
100 - - 0.038
10 5 - 0.038
10 10 - 0.038
10 10 10 0.037
15 10 15 0.037

Table 5.2: PX - Performance Comparison for Di�erent Neural Network Structures

As it can be seen from table (5.2), the networks with 3 hidden layers provide a slightly

better performance in terms of the Mean Squared Error (MSE), but these models add

more complexity.

5.3.2 Problem Formulation

In reference to the model structure presented in subsection 5.3.1, we can now de�ne the

terms involved in this model. To do this we look inside each of the three layers described

in �gure (5.15),

Input Layer: Acquires the input Pt at each sampling instant Ts. Output of this

layer is the 1 acquired input.

Hidden Layer: In each neuron j (∀ j = 1, 2, ..., 10), the input is adjusted by the

weight w j , then the weighted input is added to the bias b j which increases/decreases

the input ϕ j to the activation function f . The activation function is a Hyperbolic

Tangent Function (see 4.3.2.4), which was found to be the most suitable one for

this modelling problem. Output of this layer is the vector y that can be seen in the

following formulation,

ϕ j = w j Pt + b j (5.7)

y j = f (ϕ j) =
2

1 + e−2ϕj
− 1 (5.8)

yT =
[
y1 ... y10

]
(5.9)

Output Layer: Provides the Virtual Sensor's position measurement xt by adjusting

the output vector of the hidden layer y by weights wx1...wx10 and bias bx. The

55

Chapter 5 Virtual Sensor

resultant output xt is then given by,

xt =
[
wx1 ... wx10

] 
y1
...

y10

 + bx (5.10)

Modelling problem characteristics for the design of the PX Virtual Sensor are the same

as for the CPX model (for more details, see 5.2.2.1).

5.3.3 Results

PX20 : Virtual Sensor modelled using data set 20°C Step_a

PX60 : Virtual Sensor modelled using data set 60°C Step_a

PXm20 : Virtual Sensor modelled using data set -20°C Step_a

We introduce in this subsection the results for the three Virtual Sensors modelled at

di�erent temperatures following the modelling procedure introduced in subsection (5.3.2).

The measured output position is represented by ym and the simulated output position is

yn.

0 0.5 1 1.5 2 2.5 3
Sample 105

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 P
os

iti
on

ym

yn

1.5 1.6 1.7 1.8
105

0.4

0.5

0.6

0.7

Figure 5.16: PX20 Virtual Sensor Validation for Data Set 20°C Step_a

56

Chapter 5 Virtual Sensor

0 1 2 3 4 5 6 7
Sample 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 P
os

iti
on

ym

yn

4.4 4.6 4.8
105

0.5

0.6

0.7

Figure 5.17: PX60 Virtual Sensor Validation for Data Set 60°C Step_a

0 0.5 1 1.5 2 2.5 3 3.5 4
Sample 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 P
os

iti
on

ym

yn

1.9 2 2.1 2.2
105

0.5

0.6

0.7

Figure 5.18: PXm20 Virtual Sensor Validation for Data Set -20°C Step_a

57

Chapter 5 Virtual Sensor

As it can be seen from �gures (5.16), (5.17), (5.18), the Virtual Sensors are able to track

the measured output position xt with some deviations in the low position measurements

and the input dead zone region which is not properly modelled. We model the dead zone

by including an enforcement term in the Virtual Sensor output. The results can be seen

in �gures (5.19), (5.20) and (5.21).

0 0.5 1 1.5 2 2.5 3
Sample 105

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 P
os

iti
on

ym

yn

0 1 2 3
104

0

0.1

0.2

0.3

Figure 5.19: PX20 Virtual Sensor Validation for Data Set 20°C Step_a with enforced
Input Dead Zone

0 1 2 3 4 5 6 7
Sample 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 P
os

iti
on

ym

yn

0 2 4 6
104

0

0.1

0.2

0.3

Figure 5.20: PX60 Virtual Sensor Validation for Data Set 60°C Step_a with enforced
Input Dead Zone

58

Chapter 5 Virtual Sensor

0 0.5 1 1.5 2 2.5 3 3.5 4
Sample 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 P
os

iti
on

ym

yn

0 2 4
104

0

0.1

0.2

0.3

Figure 5.21: PXm20 Virtual Sensor Validation for Data Set -20°C Step_a with enforced
Input Dead Zone

Next we include partial measurements from the data sets with the input current as a

Ramp pro�le for validation. The three Virtual Sensors provide good tracking performance

for the rising edge of the ramp signal as it can be seen in �gures (5.22), (5.23), (5.24),

but it is not able to follow the falling edge of the signal as in �gure (5.25).

0 0.5 1 1.5 2 2.5 3 3.5
Sample 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 P
os

iti
on

ym

yn

3.4 3.5 3.6
105

0.7

0.8

0.9

1

Figure 5.22: PX20 Virtual Sensor Validation for Combined Data Sets at 20°C with
enforced Input Dead Zone

59

Chapter 5 Virtual Sensor

0 1 2 3 4 5 6 7 8
Sample 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 P
os

iti
on

ym

yn

7.2 7.4 7.6 7.8
105

0.7

0.8

0.9

1

Figure 5.23: PX60 Virtual Sensor Validation for Combined Data Sets at 60°C with
enforced Input Dead Zone

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Sample 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 P
os

iti
on

ym

yn

4.2 4.4 4.6
105

0.7

0.8

0.9

1

Figure 5.24: PXm20 Virtual Sensor Validation for Combined Data Sets at -20°C with
enforced Input Dead Zone

60

Chapter 5 Virtual Sensor

0 2 4 6 8 10 12
Sample 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 P
os

iti
on

ym

yn

Figure 5.25: PX20 Virtual Sensor Validation for Ramp Pro�le Data Set at 20°C with
enforced Input Dead Zone

The performance of the CPX20H network, �gure (5.8), was better than the PX20H

network shown in �gure (5.26) below, which implies that the hysteresis behaviour needs

to be modelled with a high order dynamic model.

0 1 2 3 4 5 6
Sample 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 P
os

iti
on

ym

yn

Figure 5.26: PX20H Virtual Sensor Validation for Data Set 20°C Step_b

61

Chapter 5 Virtual Sensor

5.3.4 Neural Networks vs Curve Fitting

CFPX Model : Curve-Fitting model that has the pressure as input and the

position as output

CFPX20 : Virtual Sensor modelled using data set 20°C Step_a and polynomial

order ρ = 20

As it can be seen from subsection 5.3.2, the PX Virtual Sensor is a static model, hence

this motivates the approach of using Curve Fitting techniques to model the PX Virtual

Sensor. The MATLAB Curve Fitting Toolbox will be used to design a �nite and known

order polynomial to �t the input-output data.

A comparison on the basis of the Mean Squared Error (MSE) for di�erent polynomial

structures is presented in table (5.3) for the data set [20°C Step_a] using the MATLAB

Curve Fitting Toolbox. It is necessary to state that the PX20 Virtual Sensor modelled

with the same data set achieved a performance of 0.039 as shown in table (5.2).

Polynomial
Order (ρ)

Performance
MSE

5 0.2458
10 0.0821
20 0.0431
50 0.0420
100 0.0419

Table 5.3: CFPX - Performance Comparison for Di�erent Polynomial Structures

The polynomial f that models the Virtual Sensor using Curve Fitting techniques is

as follows,

xt = f (P) =
m∑

j=1

γ j P
m− j+1
t (5.11)

where γ j ∈ R
m is the j th polynomial f coe�cient.

In �gure (5.27), we can see a graphical comparison between the PX20 model and three

polynomials with orders 5, 10 and 20 applied on data set [20°C Step_a]. It is necessary to

point out that the input dead zone has been enforced on all four models. The measured

output position is represented by ym and the simulated output position is yn.

62

Chapter 5 Virtual Sensor

0 0.5 1 1.5 2 2.5 3
Sample 105

0

0.5

1

N
or

m
al

iz
ed

 P
os

iti
on

2 4 6
Sample 104

0

0.1

0.2

0.3

N
or

m
al

iz
ed

 P
os

iti
on

2.92 2.94 2.96 2.98 3 3.02
Sample 105

0.9

0.95

1

1.05

1.1

N
or

m
al

iz
ed

 P
os

iti
on

ym

yn PX20

yn CFPX (=5)

yn CFPX (=10)

yn CFPX (=20)

Figure 5.27: PX20 vs CFPX Models for Data Set 20°C Step_a

From �gure (5.27), we can see that the performance for the CFPX model, with ρ = 20,

almost matches the PX20, but it introduces glitches on both sides of the signal (rising

and falling) at high values for the position measurement xt . As it can be seen in �gure

(5.28), the glitch has been removed by applying a One Dimensional Median Filter with

order ρ f = 250 (see 5.2.4 for more details).

0 0.5 1 1.5 2 2.5 3
Sample 105

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 P
os

iti
on

ym

yn CFPX (=20)

2.9 3 3.1
105

0.7

0.8

0.9

1

Figure 5.28: CFPX20 with Median Filter Validation for Data Set 20°C Step_a

In �gure (5.29), we can see a comparison between the CPX20, PX20 and CFPX20

63

Chapter 5 Virtual Sensor

Virtual Sensors applied on data set [20°C Step a]. It can be stated that the three

structures provide relatively similar results, except for the low position measurements as

the CPX20 model has an overall better performance.

Figure 5.29: CPX20, PX20, CFPX20 Output Comparison for Data Set 20°C Step_a

In table (5.4), we present a comparison for the three models in �gure (5.29) in terms of

complexity and performance. The performance is on the basis of the Mean Squared Error

(MSE) following the glitch �ltering and the input dead zone enforcement.

Virtual Sensor
Model

Number of
Parameters

Performance
MSE

CPX20 61 0.0156
PX20 31 0.0387

CFPX20 21 0.0491

Table 5.4: Complexity and Performance Comparison for CPX20, PX20, CFPX20
Virtual Sensors

64

Chapter 5 Virtual Sensor

5.3.5 Conclusions

We can conclude this section by stating the following points:

� Virtual Sensors designed at a speci�c operating temperature are able to reproduce

the position measurements at the same temperature. An exception for this is the

Hysteresis behaviour, as it can not be modeled with all the presented structures in

this chapter.

� The One-Dimensional Median Filter has proven it's capability to eliminate the

glitches present in the transient phase of the signal.

� The three Virtual Sensor models, CPX, PX, CFPX, provide similar results in terms

of reproducing the position measurement xt , with a slight better performance for

the CPX models in the low position range.

65

Chapter 6

Conclusions and Future Work

6.1 Conclusions

In this section, we present a summary for the work completed throught his thesis and

highlight the obtained results.

In chapter (3), the system identi�cation process for the Hammerstein system under

the Set-Membership framework was able to model the K2 actuator plant when applying

the data sets with the ramp input current, however, when applying the step input, the

system was not able to reproduce the output pressure. We then moved to the Recursive-

Estimation framework which proved to be suitable for this identi�cation problem as we

managed to estimate a model for the plant at each sampling instant. The relative error

between the measured and simulated pressures is bounded by |2 × 10−14 |.

In Chapter (5), we explored several architectures to model a Virtual Sensor to estimate

the clutch position, as these measurements are not available in the real application. We

used two structures ofMultilayer Feedforward Neural Networks and a Curve Fitting �nite,

known order polynomial to model the virtual sensor. The �rst Neural Network structure is

in the form of a dynamic model with two input delays, and this model provided relatively

good results for the output position after glitch elimination using a Median Filter.

Following that, a static Virtual Sensor, with the pressure at time t as the input and

the position at time t as the output, was designed using two di�erent model structures.

The Neural Network structure and the Curve Fitting, after glitch elimination through a

Median Filter, gave almost the same results.

Comparing the three structures for the Virtual Sensor, the �rst model (CPX model,

as referred to in chapter (5), section 5.2), had a better performance in terms of the Mean

Squared Error (MSE) and measured position tracking.

6.2 Future Work

Starting from the results achieved in this thesis, we need to exploit the possibilty of

introducing a recursive form for the Set-Membership framework.

Furthermore, a generalized structure to model the Virtual Sensor is an area of concern,

as we need to obtain a single model that is capable of taking into account all the operating

temperatures and to reproduce the hysteresis behaviour.

66

Bibliography

[1] Cimmino Va�dis, Constantinos and Francesco. "Fpt's high torque density dual dry

clutch transmission (htd-ddct)", Fiat Powertrain Research and Technology. 1.1

[2] Maurizio Zoppi, Claudio Cervone, Gerardo Tiso, and Francesco Vasca. Software in

the loop model and decoupling control for dual clutch automotive transmissions. In

Systems and Control (ICSC), 2013 3rd International Conference on, pages 349�354.

IEEE, 2013. 1.1.2

[3] Ljung, L. (1999). System identi�cation theory for the user (2nd ed., Prentice Hall

information and system sciences series). Upper Saddle River: Prentice Hall PTR.

2.1, 3.3.2

[4] Söderström, T., & Stoica, P. (1989). System identi�cation (Prentice- Hall Interna-

tional series in systems and control engineering). New York: Prentice- Hall. 2.1

[5] Norton, J. (1985). Identi�cation and Application of Bounded-Parameter Models.

IFAC Proceedings Volumes, 18(5), 1197-1202. 2.1

[6] Cerone, Piga, & Regruto. (2012). Set-Membership Error-in-Variables Identi�cation

Through Convex Relaxation Techniques. Automatic Control, IEEE Transactions on,

57(2), 517-522. 2.2.1.3

[7] Ljung, L. (2001). Black-box Models from Input-output Measurements. 3.1

[8] Cerone V, Piga D, & Regruto D. (2011). Enforcing stability constraints in Set-

membership identi�cation of linear dynamic systems. In: AUTOMATICA, In: AU-

TOMATICA. - ISSN: 0005-1098. 3.2.2.4

[9] Waki, H., Kim, Kojima, Muramatsu, & Sugimoto. (2008). Algorithm 883:

SparsePOP�A Sparse Semide�nite Programming Relaxation of Polynomial Opti-

mization Problems. ACM Transactions on Mathematical Software (TOMS), 35(2),

1-13. 3.2.3

[10] Young, P. (1984). Recursive estimation and time- series analysis an introduction

(Communications and Control Engineering Series). Berlin: Springer. 3.3.1

[11] Van Gerven, M. (2017). Computational Foundations of Natural Intelligence. Frontiers

in Computational Neuroscience, 11, 112. 4.1

[12] Haykin, S. (1999). Neural networks a comprehensive foundation (2nd ed.). Upper

Saddle River: Prentice Hall. 4.1, 4.2, 4.5

67

[13] da Silva I.N., Hernane Spatti D., Andrade Flauzino R., Liboni L.H.B., dos Reis

Alves S.F. (2017) Arti�cial Neural Network Architectures and Training Processes.

In: Arti�cial Neural Networks. Springer, Cham. (document), 4.4.1, 4.11

[14] Murphy, K. (2012). Machine learning a probabilistic perspective (Adaptve computa-

tion and machine learning series). Cambridge (Mass.): MIT Press. 4.5.1

[15] R. Rojas: Neural Networks, Springer-Verlag, Berlin, 1996. 4.5.2

[16] Vichugov, V.N., Tsapko, G.P., & Tsapko, S.G. (2005). Application of reinforcement

learning in control system development. Science and Technology, 2005. KORUS 2005.

Proceedings. The 9th Russian-Korean International Symposium on, 732-733. 4.5.3

[17] Nowé A., Vrancx P., De Hauwere YM. (2012) Game Theory and Multi-agent Rein-

forcement Learning. In: Wiering M., van Otterlo M. (eds) Reinforcement Learning.

Adaptation, Learning, and Optimization, vol 12. Springer, Berlin, Heidelberg. 4.5.3

[18] Gill, P. R.; Murray, W.; and Wright, M. H. "The Levenberg-Marquardt Method."

�4.7.3 in Practical Optimization. London: Academic Press, pp. 136-137, 1981. 5.2.2.1

[19] Pratt, William K. Digital Image Processing. 4th Ed. Hoboken, NJ: John Wiley &

Sons, 2007. 5.2.4

[20] Kendall, M., & Stuart, M. (1977). The advanced theory of statistics (4th ed.). Lon-

don: Gri�n. 5.2.4

68

	1 Introduction
	1.1 Overview of Transmission Systems and DDTC
	1.1.1 C635 DDCT Transmission
	1.1.2 Dry Dual Clutch Unit
	1.1.3 Electro-Hydraulic Actuation System
	1.1.4 C635 DDCT Control Unit

	1.2 Objective
	1.3 Thesis Organization
	1.4 Non-Disclosure Agreement

	2 Set-Membership
	2.1 Overview of System Identification Frameworks
	2.2 Set-Membership Framework
	2.2.1 Problem Formulation in SM Framework
	2.2.1.1 Feasible Parameter Set
	2.2.1.2 Extended Feasible Parameter Set
	2.2.1.3 Parameter Uncertainty Intervals

	3 System Identification
	3.1 Introduction
	3.2 Hammerstein System
	3.2.1 Overview
	3.2.2 Problem Formulation
	3.2.2.1 Feasible Parameter Set
	3.2.2.2 Extended Feasible Parameter Set
	3.2.2.3 Parameter Uncertainty Intervals
	3.2.2.4 Stability
	3.2.2.5 Optimization Problem Formulation
	3.2.2.6 Optimization Problem Characteristics

	3.2.3 Results
	3.2.3.1 System Identification - Step Data Sets

	3.2.4 Conclusions

	3.3 Recursive Model Estimation
	3.3.1 Overview
	3.3.2 Problem Formulation
	3.3.2.1 Stability

	3.3.3 Results
	3.3.4 Conclusions

	4 Neural Networks
	4.1 What is a Neural Network?
	4.2 Properties and Capabilities
	4.3 General Structure of a Neural Network
	4.3.1 Neuron Model
	4.3.2 Activation Function
	4.3.2.1 Bipolar Function
	4.3.2.2 Step Function
	4.3.2.3 Linear Function
	4.3.2.4 Sigmoid Function
	4.3.2.5 Tanh Function
	4.3.2.6 ReLU Function

	4.4 Neural Network Architectures
	4.4.1 Single Layer Feedforward Networks
	4.4.2 Multilayer Feedforward Networks
	4.4.3 Recurrent Networks

	4.5 Neural Network Learning
	4.5.1 Supervised Learning
	4.5.2 Unsupervised Learning
	4.5.3 Reinforcement Learning

	5 Virtual Sensor
	5.1 Introduction
	5.2 Virtual Sensor Modelling - CPX Model
	5.2.1 Overview
	5.2.2 Problem Formulation
	5.2.2.1 Modelling Problem Characteristics

	5.2.3 Results
	5.2.4 Glitch Elimination
	5.2.5 Conclusions

	5.3 Virtual Sensor Modelling - PX Model
	5.3.1 Overview
	5.3.2 Problem Formulation
	5.3.3 Results
	5.3.4 Neural Networks vs Curve Fitting
	5.3.5 Conclusions

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Future Work

	Bibliography

		Politecnico di Torino
	2018-04-04T08:47:38+0000
	Politecnico di Torino
	Diego Regruto Tomalino
	S

