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Abstract

Companies developing integrated circuits are expected to enhance their products’ perfor-
mance at every new release, while reducing size and power consumption. The demand for
more elaborate and diverse functionality, together with a reduced time-to-market, irreme-
diably raises costs and increases the probability of bugs. Even high-performance ASICs
are not immune: the complexity of the design flow implies significant non-recurring engi-
neering and production costs. Similar challenges affect the FPGA design flow, where the
allocation of programmable logic requires considerable engineering effort. Moreover, due
to the limited visibility of internal operations, isolating and back-tracing malfunctions
are open challenges. Ericsson AB is exploring novel approaches to deal with this complex
ecosystem.

This thesis investigates the feasibility and the benefits of a flexible design approach,
by developing and characterizing a Proof-of-Concept (PoC) transceiver handler for high-
speed link applications. The flexibility lies in the software-based controller, exploited
to handle the reset and dynamic reconfiguration of a transceiver physical layer (PHY).
The objective of the software implementation is to simplify error detection and on-the-fly
modification compared to a traditional HW-based controller. The firmware, running on
a Nios II soft-core processor, drives the control signals while monitoring the transceiver’s
status. Unexpected synchronization losses are handled by a dedicated Interrupt Service
Routine.

The correct HW/SW interaction has been tested through simulation, whereas the
software profiling proves that the timing requirements are met (only 167µs are spent on
the reset sequence). Finally, the PoC has been benchmarked against an analogous system
with a traditional HW-based controller, to evaluate the drawbacks of the introduction of
a soft-core processor (in terms of logic utilization and power consumption).

Despite the promising engineering effort reduction, further research is required to
scale up the system and move from the PoC stage towards product release.

Keywords: Proof-of-Concept; FPGA; Nios II; embedded processing; PHY
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Chapter 1

Introduction

Nowadays, the demand for electronic devices is increasing (even if at a reduced rate) [1]
and consequently new challenges arise [2]. Indeed, the trend is to realize more efficient
products characterized by a reduced area, whose complex functionality addresses various
fields (automotive, medical, communications, Internet of Things, and so on). Moreover,
with the advent of the so-called “Post-Moore” area, the cost and the size are no longer
the unique parameters to keep into account: low power consumption, variety of functions,
introduction of new materials and technological process are instead the key factors [3] [4].

Companies developing Integrated Circuit (IC)s, in order to deal with this complex
ecosystem, have to adopt new approaches: a possible way is to increase degree of flexibility
of the products. One company which is investigating flexible solutions to address these
challenges is Ericsson AB. This thesis project was proposed as a contribution to the
evaluation of the feasibility and the benefits of such approach.

1.1 Problem Statement

Traditionally, ASIC were designed in order to fulfill these requirements, in addition to
high-performance and low power consumption. The ICs design is tailored according
to different costumer needs. However, because of the increasing demand for enhanced
performance it is necessarily to deal with higher complexity which irremediably leads to
higher costs. Apart from the extremely high Non-Recurring Engineering (NRE) costs
related to the ASIC design, the complexity of the design itself leads to highly probable
bugs. This complexity lies in the sequence of intermediate steps of the design flow. These
steps can be grouped into two macro-phases: front-end (logical design) and back-end
(physical design) [5]. ASICs lack of flexibility by definition, since the design is hardened
in the silicon. Additionally, with the traditional ASIC implementation, the visibility
of what is happening within the circuit during regular operations is limited and it is
challenging to trace eventual errors. One company that has experienced this problem is
Ericsson AB. An unexpected behavior was found in one of their ASIC, internally designed
to implement the proprietary xIO-s protocol (for detailed information refer to Case of
study: Ericsson’s ASIC section). Despite the conspicuous amount of resources invested
in the debug phase (in terms of time and human resources), isolating and solving the
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1 – Introduction

problem was extremely problematic. The bug was located within the traditional Final
State Machine (FSM) developed through Register Transfer Level (RTL) design to handle
an high-speed link. The bug was triggered by a rare combination of corner cases, and the
final fix was to directly bypass the FSM. Consequently, all the required operations were
performed by external Digital Signal Processor (DSP)s (by running SW) at the cost of
reduced performance. The former in extremis solution would not have been necessarily
in case of more versatile system. This study case, convinced Ericsson AB to investigate
novel approaches able to overcome these drawbacks.

However, their concern is not limited to the ASIC domain. A similar analysis is also
valid for Field-Programmable Gate Array (FPGA) whose purpose is no longer bounded
to prototype development. Besides FPGAs flexibility and reusability, the performance
gap with ASICs is also significantly reduced. However, the complexity is an issue even
with programmable logic: a deep optimization of the logic resources is required in order to
meet the desired performance. This implies to perform a subdivision of the Programmable
Logic (PL) within the FPGA at design-time. Further modifications are not trivial and
resource consuming. Nevertheless, another problem that Ericsson AB aims to solve is
error detection and tracing to the root cause. Indeed, tracing errors is extremely de-
manding and, at the state-of-the-art, it requires a second or third order analysis of the
log information provided by their system. Consequently, the verification effort and cost
is increasing as well [6].

Although the Ericsson AB firsthand experience was presented, it is highly probable
that the whole IC industry may experiment analogous situations. In other words, the
real problem is to find a flexible solution which, despite the unavoidable performance
degradation, is still able to meet the requirements.

An emerging solution is the usage of reconfigurable architectures which exploit FPGA
[7]. The main idea is to dynamically configure the programmable logic of the FPGA in
order to significantly increase the HW flexibility. On the other hand, the reconfigura-
tion introduces an initial overhead which affects the performance. Moreover, an internal
subdivision of the logic is required (re-configurable and static modules) hence the com-
plexity increases as well. Until further researches will improve this promising technique,
the problem will still be alive.

1.2 Objectives

As previously mentioned, this problem may involve many IC companies operating in
various fields, thus, a general and portable solution is desirable. However, as a master
thesis, the scope is narrowed to target high-speed link applications. Starting from the
Ericsson AB case of study, the FSM responsible for the high-speed link handling should
be implemented through SW running on a soft-core processor synthesizeable on PL.

Indeed, the purpose of the thesis is to propose a more flexible system architecture
without significantly compromising the performance. Hopefully, this conceptual approach
may be valid for other IC-design areas. More specifically, the flexibility is given by a SW
implementation of the system controller. The embedded controller should handle the re-
set and partial reconfiguration of the physical layer of a transceiver. Hence, the generality

2



1 – Introduction

lies in the design and development of the firmware: by changing it, in theory, any FSM
can be substituted.

Because of the experimental nature of this thesis, the main goal is to realize and
characterize a PoC of the previously mentioned system. The development targets the
Intel Arria 10 System-on-Chip (SoC)1, which is selected in order to simplify and speed-
up the design process itself [8]. The PoC’s characterization should enlighten pros and
cons of the proposed HW/SW partition in order to determine possible area of applications
and to suggest future work. This main goal can be split into intermediate tasks:

• Development flow standardization to perform system design comprehensive of
HW/SW partition:

– Hardware Description Language (HDL) description of the HW portion of the
system (by also including the embedded micro-controller) which models the
system’s data path.

– Development of the firmware to be downloaded into the micro-controller. The
double aim is to check the status signals from the PHY and to drive the
command signals to the PHY in order to control it. Basically, the firmware
should model a FSM able to reset the PHY within few ms. Additionally, the
reconfiguration feature of the PHY should be enabled by performing a sequence
of atomic read-modify-write operation to write the reconfiguration registers.

• Functional simulation of the developed system to test the correct behavior both in
operative mode and in corner cases such as loss of synchronization.

• System compilation and synthesis for the targeted device which is then programmed
via micro-blaze USB connection.

• System characterization in terms of logic resource utilization, power consumption
and software profiling.

• System benchmarking against a system with a traditional HW-based reset con-
troller.

A PoC, able to satisfy such requirements, may be a starting point for future researches:
a HW supervisor with trace-back capability and able to monitor ASICs and/or FPGAs
interfaces realtime would be desirable.

1A SoC consists of the integration of one or more core (processor and/or DSP), a memory system,
peripherals and external interfaces on the same chip.

3



1 – Introduction

1.3 Outline

The report contents are organized into six chapters. Chapter 2 gives a brief overview of
the IC state-of-the-art, presents a concrete case of application and described the funda-
mental concepts the thesis is based on, by also including an analysis of related work.

Afterwards, Chapter 3 describes the methodologies and tools used for the PoC design,
development and final characterization. A detailed description of the target SoC and soft-
core processor is also provided.

The system implementation is fully covered by Chapter 4 where separate subsections
are reserved for the HW and SW architecture description, with a particular attention on
the design choices.

After that, Chapter 5 collects the results of the functional simulation, PoC benchmark
and characterization.

To conclude the report, Chapter 6 evaluates the results in order to determine the
accomplishments of this thesis. Finally, based on this analysis, suggestions for improve-
ments and future works are pointed out.

4



Chapter 2

Background and Literature Study

This chapter presents the fundamental knowledge this thesis is based on, starting from
an overview of the IC trend. This overview is useful to contextualize this thesis, whose
investigation starts from a case of study proposed by Ericsson AB. Afterwards, an anal-
ysis of the related works is carried out, by focusing on flexible and reconfigurable system
controllers.

2.1 State-of-the-art of Integrated Circuits

Starting from the 1980s, thanks to the miniaturization process, the area scaling allowed
more and more transistors to be integrated on a single chip according to Moore’s pre-
diction. The direct consequence was a significant enhancement of ICs functionality. The
increased number of transistors per unit area led to dense ICs, customized for a specific
purpose, and able to satisfy extremely high performance. In parallel, the digital design
flow and system modeling considerably improved.

A description of the IC industry’s evolution can be found in the introduction of
the 2015 executive report of the International Technology Roadmap for Semiconductor
(ITRS) [9]. This evolution comprehends different phases and the peak of the IC industry
growth was reached during the 90s with an average pace of 17%/year. During this
phase, ASICs production played a key role in the industrial revenues. Indeed, application
specific IC were able to meet the required performance at a limited size due to their
density of integration. Nevertheless, ASIC production has always been profitable only
for a large scale of application because of the NRE costs related to both design and
verification process [10]. Production costs are also recognizable [11]. Moreover, higher
NRE combined with shorter Time-To-Market (TTM) increased the productivity gap [12].
This gap represents the divergence between the technological development (determined
by the progress of technology) achievable on paper, and the actual one which is limited by
the available resources (time and money). For what concern the design phase, such gap
is still under control, whereas it is no longer negligible for the verification process [13].
Hence, additional effort should be primarily spent on the optimization of the verification

5



2 – Background and Literature Study

process itself to reduce both time and human resources.
The traditional design flow, introduced by Gajski and Kuhn [5], is divided into two

phases called front-end and back-end respectively. The front-end design starts with the
RTL definition, followed by the functional verification, the correspondent synthesis, till
the gate level verification. Therefore, it can be considered as the logical design. On the
other hand, the physical design (back-end) is then implemented through placement and
routing, post layout verification and final mask generation. Because of the complexity and
the related costs, the trend has always been to use FPGA for the preliminary investigation
phase and for prototyping [14]. The benefit is that “FPGA based implementations provide
the flexibility of re-programming and quick delivery of the product to the market.” [15].
However, this traditional division between FPGA and ASIC is not entirely valid at the
moment. Indeed, the performance and the time spent on design and verification of large
size FPGAs are comparable to ASICs one. The intrinsecally flexible FPGAs are becoming
attractive also for small-end applications [16].

Moving towards SoC production is another emergent approach to deal with high com-
plexity, short TTM and the overall cost explosion. An SoC-based design is characterized
by the instantiation and connections of commercialized Intellectual Property (IP)s [9].
These IPs may be directly used as black boxes, or they may also be customized, through
HDL code, with respect to the design’s requirements [17]. The major advantage, of this
technique, is the high-level approach of the system’s design: the key is which functional
blocks need to be implemented and not how (implementation details). Conversely, the
main drawbacks are as follows:

• The system design approach requires a global optimization which may differ from
locally optimized solutions. Moreover, the prediction of the individual choices’
impact on the overhall system is not straigthforward [18]. Thus, the HW/SW
partition plays a key role [12], especially for the control unit.

• The high level usage of the IPs as black boxes may shield the monitoring of the
system activity [19] and, consequently, it may affect the debugging and the testing
processes [20].

Within this complex ecosystem, the analysis of an optimal HW/SW partition plays
a key role. The idea of a software-based controller was triggered by a malfunctioning
experienced by Ericsson in one of their ASICs, as detailed in the following section.

2.2 Case of study: Ericsson’s ASIC

Different types of radio system (LTE, WCDMA, GSM) can be represented as a continuous
stream of IQ data, whose information can be extracted from the carrier. The ASIC
under interest is composed of many serial links to implement Ericsson’s proprietary xIO-
s protocol. The latter is a frame based protocol used to provide multiple services such as
the transportation of network timing, IQ data and packet data. Such protocol is based on
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basic frames, hyper frames and radio frames, and it exploits the 8B/10B encoding [22].
Basically, the xIO-s protocol is similar to the Common Public Radio Interface (CPRI) 1

where the lines carry both IQB data and IQ control data.
In order to provide the described protocol, each serial line is connected to the ASIC’s

core block through a SerDes. A SerDes configuration handler is also needed. A simplified
block diagram with one serial link is illustrated in Figure 2.1.

Main

core

SerDes

serial link

ASIC

AvMM2AHB

RBI

Interface

I2C to FIFO

Interface

RBI I2C

Configuration

handler

Figure 2.1: Simplified block diagram showing only one of the SerDes and the correspond-
ing configuration handler within the ASIC.

The core blocks and the SerDes are configured independently. For what concern
the core blocks, the configuration is performed through ring bus mails, whereas for the
SerDes there is also the possibility to access the internal registers via Inter-Integrated
Circuit (I2C). Thus, the configuration handler should support internal register interface
(read and write) both via Ring Bus Interface (RBI) and I2C. Moreover, in order to com-
municate to the SerDes’ registers, an Av-MM to Advanced High-performance Bus (AHB)
bridge is required. With this system, the SerDes power-up, reset and reconfiguration are
performed. Finally, for a proper handling, it is also necessary to take care of the Clock

1CPRI provides a standard framework to allow the communication between the Radio Equipment (RE)
and the Radio Equipment Control (REC). The definition of the CPRI specifications [21] has been achieved
through the cooperation of Ericsson, Huawei, NEC, Alcatel and Nokia.
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Domain Crossing (CDC), since the SerDes’ clock is asynchronous with respect to the
system’s clock.

During the regular activity the frequency of sending/receiving data depends on the
serial link configuration which establishes the division factor (2X, 1X, or 0.5X) for the
reference frequency (491.52 MHz). A reset is needed whenever one of the following
conditions appear:

• The link does not perform the clock data recovery successfully.

• The main core is not able to find the frame synchronization on the link (for example
due to cross talk or corrupted data).

• The synchronization is somehow lost.

In order to monitor the correct behaviour, dedicated status signals (supported by
hardware) are kept into account:

• Loss Of Signal (LOS): an alarm is activated if the Bit Error Rate (BER) overcome
the accepted threshold value.

• Loss Of Frame (LOF): an alarm is activated if the frame synchronization is lost.

• Loss Of Network Timing (LON): an alarm is activated if the timing synchronization
is lost.

The LOS and LOF need to be inactive in order to properly receive packets, elsewhere
a re-synchronization is required. Instead, in case of LON alarm there is no need for an
HW re-synchronization and only a bad-timing indication is generated.

Therefore, the introduction of a controller able to monitor LOS, LOF and LON and
to eventually perform a re-synchronization is required. This task is performed by a
traditional FSM, whose simplified transition diagram is shown in Figure 2.2. At first, a
power-up reset sequence is performed and the CDR is enabled. Frame synchronization is
achieved through the following states (according to the protocol) and, in case of loss, the
system is restarted.

An accurate debug revealed that the FSM needed to be reviewed with a consequent
system re-designed since it was affected by unexpected behaviours. The bug localization
and analysis required a great effort in terms of both time and human resources. It was
problematic to reproduce such corner case because, even with an induced failure of the
SW interface, it was affecting only 6% of the tests. Hence, a huge amount of trials
was necessary to properly debug. Finally, the adopted solution was to bypass the FSM
and to directly handle the SerDes through the SW interface. This example leads to
an interesting consideration: if the system had been flexible enough to allow localized
modifications within the FSM, many resources would have been saved, and the complete
re-design would have been avoided.
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RESET

WAIT

ACK

CDR

EN

RESTART ADAPT

REQ

LOS
ADAPT

ACK

WAIT

FRAME

SYNCH

FLUSH

Figure 2.2: SerDes reset FSM simplified state transition diagram.

The key idea to overcome the problem is to realize a PoC able to target this appli-
cation, but where the FSM is implemented through SW, so that, it is easily changeable.
The PoC will be realized on FPGA where a transceiver (physical layer) reset and partial
re-configuration will be handled at a SW level to model the SerDes management. In fact,
the transceiver’s PMA main component is a SerDes where the Serializer is part of the
transmitter, whereas the Deserializer is part of the receiver.

2.3 Transceiver PHY

2.3.1 Introduction

A mean of communication characterized by a single entity port can be defined as a link.
A link can be composed of a variable number of transceiver channels. A transceiver com-
prehends different components, in particular, the PHY is the circuitry which implements
the physical layer functions of the Open System Interconnection (OSI) Reference model.
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The former standardization was created in the 1980s to allow the communication between
two generic systems obeying such standard. According to the OSI model, the network-
ing components of every device (both HW and SW) can be represented as a seven layer
structure as shown in Figure 2.3.

Layer 7: Application

Layer 6: Presentation

Layer 5: Session

Layer 4: Transport

Layer 3: Network

Layer 2: Data-Link

Layer 1: Physical

Application

System Software

Hardware

Figure 2.3: OSI seven layers model block diagram (inspired by [24]).

Specifically, the hardware components are represented by the physical layer (layer
1). “The Physical Layer provides the mechanical, electrical, functional, and procedural
standards to access the physical medium.”, as directly stated by Day and Zimmermann
[23]. The information to be transmitted is elaborated from the application layer down
to the physical layer, and then, it is sent to the receiving network device over a trans-
mission medium. Conversely, on the receiver side, the information collected at layer 1 is
then unpacked to reach upper layers. Thus, the physical layer is directly connected to
the communication medium in order to handle the voltage signal (low and high levels
represent logical 1 and 0), both in transmission and reception [24]. An example of data
transmission between two devices is shown in Figure 2.4, where the interaction between
data link and physical layer is clearly illustrated.

By focusing on the physical layer architecture, it is composed of two main building
blocks: TX and RX, which are both "mixed-signal circuits in nature" [25]. Indeed, the TX
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Device 1 Device 2

Layer 2: Data-Link

Layer 1: Physical

10011

Layer 2: Data-Link

Layer 1: Physical

10011

Transmission

Medium

Figure 2.4: Data flow diagram between two network devices. The focus is on the lower
levels of the OSI model: the data link layer (binary digits) and the physical layer (voltage
level). The diagram is inspired by [24].

receives a stream of parallel data and converts it into an high-speed serial signal, which
then reaches the RX side. The RX, in order to perform the reverse operation, needs to
recover not only the data, but also the clock information. The conversion is internally
performed by a serializer (in transmission), so that, from the input digital stream it is
possible to obtain the high-speed analog signal.

An ethernet model can be taken as reference to clarify the link’s architecture. The
main components are the PMA and the Physical Coding Sublayer (PCS). Moreover, as it
is shown in the block diagram2 of Figure 2.5, the Physical Medium Dependent (PMD) is
used as interface between the PMA and the physical ethernet cable through the Medium-
Dependent Interface (MDI).

2.3.2 PMA

As previously introduced, the PMA is the analog front end of the transceiver, where the
TX is responsible for the data serialization, whereas the RX takes care of data deserial-
ization and clock recovery.

A termination circuit is a common requirement for both sides (TX and RX). This
termination component is, generally, used to reduce the reflection phenomena that can
affect the channel. It can also be used to identify whether the receiver is ready to accept
the data stream. For example, this evaluation system is used in the PCIe case. Different
types of termination are determined by the voltage level it is tied to. Typical examples
are the power supply or ground; however, it is also possible to use a different DC-voltage,
whose level is in between these two. In case of DC-coupled links, the termination type

2The presented system model is valid for devices with at least 100 Mbps data rate, such as Fast
Ethernet and Gigabit Ethernet systems [26].
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Device

Processor

Interface

MAC/MAC

Control

MDI

Cable

Ethernet

PHY

PMD

PMA PCS

TX TX

RX RX

Figure 2.5: Simplified ethernet block diagram (inspired by [26]).

should be the same at both sides, whereas in case of AC-coupling RX and TX are allowed
to have different termination types. In theory, both passive resistors and active transistors
are valid components for the termination circuit, but because of the high-speed, the
transistor’s dependence of VDS may cause unacceptable non-linearities. Thus, in most of
the cases a resistor in series with a transistor is chosen as termination circuit. Finally,
in order to preserve the resistance value even in case of variations (regarding the power
supply, the temperature or the silicon process itself), a calibration circuit is also added.

Transmitter

A transmitter serializer and a transmitter buffer are the main components of the PMA’s
transmitter. They create the high-speed serial data and guarantee the correct voltage
swing between the differential output pins (TXP and TXN). The serializer is respon-
sible for the parallel-to-serial conversion, whereas the transmitter buffer performs both
Feed-Forward Equalization (FFE) and line driving. The size of the data stream may
vary according to the protocol: PCIe specifications define, for example, 8-bit or 10-bit
stream of data. Additionally, Electrical Static Discharge (ESD) components may be used.
These ESD are nothing but protecting diodes to shield the devices connected to the pad.
However, in certain high-speed applications, the parasitic capacitance introduced by the
ESD is no longer negligible, and it directly affects the link performance. A typical block
diagram is presented in Figure 2.6.

For what concern the serializer architecture, many choices are available in relation
to the number of taps. Moreover, the serializer requires a higher-frequence and a lower-
frequence clock to perform the parallel-to-serial conversion and, typically, they are both
given as input reference from an external clock generation block. A reference architecture
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PMA TX

Dn

Dn-1

D1

D0D0

Parallel data
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Parallel clk

Serial clk

Transmitter buffer

Dn D0

Serial data

Receiver

Detect

On-chip

Termination

ESD

ESD

TXP

TXN

Programmable pre-emphasis and

Differential output voltage

Figure 2.6: Typical PMA transmitter block diagram (inspired by [25]).

is described in [27], where a 8-bit wide input data stream is serialized by the architecture
shown in Figure 1 of the same paper. The serialization is split into a chain of steps:
firstly an 8:2 multiplexer separates the data stream into odd and even, which represents
the input data of a 4-tap Finite Impulse Response (FIR) filter. This filter is made of four
shift registers and 2:1 multiplexers, and it is also responsible for the FFE, with the aim
to minimize the Inter-Symbolic Interference (ISI). In practice, the equalization consists
of the output swing adjustment to preserve the integrity of the signal. In general, 2-tap
FFE is sufficient for channels with high signal integrity, conversely for high-loss channels
3-tap or 4-tap FFE is required. With the data stream already split, the equalization
can be processed at half rate. After this step, the equalized data flow through the 2:1
multiplexers to finally generate the serial output at full-rate. The output signal from the
2:1 multiplexers has to drive the input load of the line driver, and it may be large. Thus,
it is important to include a programmable pre-driver able to adapt with respect to the
high-speed specifications.

Receiver

The PMA receiver, in order to perform clock and data recovery, and equalization, acts as
a mirror of the transceiver side, whose main components are, precisely, a receiver buffer
and a receiver deserializer. Figure 2.7 shows the typical PMA receiver block diagram.
The former system comprehends both digital and analog circuits. In particular, the
Variable Gain Amplifier (VGA), On-Chip Termination (OCT), power management and
CDR belong to the digital portion, whereas the Continuous Time Linear Equalization
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(CTLE) and Decision Feedback Equalization (DFE) belong to the analog part.

PMA RX

Dn

Dn-1

D1

D0D0

Parallel

data

Des

Reconstructed clk

Receiver buffer

Dn D0

Serial data

On-chip

Termination

CDRVGA

RXP

RXN

DFE

ParallelSerial

CTLE

Figure 2.7: Typical PMA receiver block diagram (inspired by [25]).

With a continuous increasing in the data rate the ISI phenomena is no longer negligi-
ble, thus, many researches were carried out regarding the system’s equalization. Within
the PMA, the equalization is performed by the CTLE and DFE units.

For what concern the CTLE, the Cherry-Hooper [28] is one of the most used topol-
ogy, due to its high bandwidth. Anyway, many other architectures were investigated,
especially for adaptive equalizer [28], [29], [30], [31]. In practice, the CTLE recovers from
signal attenuation due to the channel by supplying a frequency, whose peak is close to
the Nyquist frequency. In other words, the high-frequency component of the input sig-
nal is amplified by the equalizer circuit, so that the low-pass behaviour of the physical
medium is compensated. If the CTLE supports DC gain circuitry, the amplification is
constantly applied through the whole spectrum, conversely in case of AC gain circuitry,
the amplification mainly affects the high-frequency spectrum. The unbalanced content of
the high-frequency components of the CTLE output waveform is well-analysed in Figure
4.23 of [25]. Finally, this compensation results in a wider aperture of the receiver eye
diagram.

The DFE is also widely studied in literature, and a detailed description is provided
by Bottacchi [32]. To give a conceptual introduction, the DFE is used to minimize, and
possibly cancel, the post-cursor ISI: the previously received bits are re-used in order to
create a weighted value to be added, or subtracted. With this strategy, the DFE is able
to selectively amplify the high-frequency components, while keeping the noise component
untouched. As a consequence, the Signal to Noise Ratio (SNR) is significantly improved.
According to the DFE architecture, a fixed number of taps is present: an example is the
4-tap architecture [33].
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According to this architecture, the DFE’s main components are: adder, data sampler
and Digital to Analog Converter (DAC)s. The sample of the incoming data (indicated
as xn), re-scaled by the VGA (g factor), is added (or subtracted) to the DACs output,
so that the result (indicated as yn) can be processed by the data sampler. The decision
(indicated as dn) represented as a +1 or -1 is then looped back to the DACs. Finally, the
DACs receive the DFE coefficients (indicated as ci), so that, through the DACs output
the residual effect of the current bit can be compensated. Such behaviour may be modeled
by the following transfer function:

yn = g · xn +
4∑

i=1
ci · dn−1

As previously mentioned, the CDR covers the most critical tasks of the receiver: data
and clock recovery. Hence, it contributes to an increasing in the eye-diagram aperture,
with a consequent improvement in the incoming signal tracking. Specifically, in pres-
ence of jitter, the CDR expands the timing margins by optimally settling the sampling
edge of the clock. Among all the available CDR’s architectures, the essential component,
in charge of recovery, is the Phase-Locked Loop (PLL). The block diagram of a typi-
cal CDR’s architecture is shown in Figure 2.8 where the key role is played by a phase
comparator, usually referred as Phase Detector (PD), a low-pass filter and a controlled
oscillator, which is, generally, a VCO.

On-chip

Termination

(PD)

Rx Data

Phase

Detector

Slicer latch

To Deserializer

Pre-align
Low-pass

Filter

VCO

Recovered symbol Clk

Line Amplifier

2

Figure 2.8: Typical CDR block diagram inspired by [34]. A current controlled oscillator
may be used as an alternative to VCO.

The relative phase error is evaluated, by the phase detector, as the difference between
the input reference frequency and the VCO. Such phase error (which can be identified
with θ) is then filtered out by the low-pass filter, and it is ultimately looped back as VCO’s
input. Indeed, the function of the VCO is to convert the received value into outputs in
fase and in quadrature with the input reference. “the quadrature edge is targeted to
align with the center of the data eye for sampling the symbol values” [34]. The basic
parameters for the PLL characterization are the lock-in and capture ranges. The lock
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range corresponds to the ∆θ = 0 condition, that is to say the interval in which the input
reference can be optimally tracked. On the other hand, the capture range identifies the
transition between lock and unlocked states.

The CDR’s performance principally depends on the PD’s architecture. Indeed, there
are two different categories of PD:

• Linear phase detector: the relationship between the input and the phase error is
modeled by a linear transfer function.

• Binary phase detector: only the phase error’s sign is extracted as useful information.
Hence, this behaviour is modeled by a step function.

Binary phase detector are widely used in CDR architectures and, within such category,
the architectures proposed by Alexander [35] and Mueller-Muller [36] are remarkable. The
Alexander topology establishes whether the clock edge is early or late with respect to the
data edge, based on three samples (Si) taken by consecutive clock edges (falling and
rising). Thus, by aligning clock and data edge, the remaining edge can be settled in the
middle of the data, in order to increase the timing margin. The corrective actions to be
taken are described by Razavi [37], and they can be modeled by the following equations:

Early: S1 ⊕ S2 = 0 & S2 ⊕ S3 = 1 => Clk freq reduction

Late: S1 ⊕ S2 = 1 & S2 ⊕ S3 = 0 => Clk freq increment

Others: S1 ⊕ S2 = S2 ⊕ S3 => No Clk adjustment

A different approach, which benefits systems with a reduced power consumption, is
exploit in the Mueller-Muller PD. Indeed, in this case, the output error can be evaluated
at half-rate since the information related to both current and previous data is exploited.
The former behaviour can be modeled by the following equation:

Dtn = Dn · Dn−1(θn − θn−1)

by identifying D as the sampled data (current n, and previous n-1), and θ as the phase
error. Basically, if there is no change in the phase error in both cases, there is no need
for updates; conversely, whenever the sign of the error phase is modified, a phase error
information is evaluated based on the previous and current data.

2.3.3 PCS

The PCS acts as an interface between the Media Access Layer (MAC) and the PMA,
hence its main function is to encode/decode the parallel data stream from/to the MAC
sub-layer. Additional data manipulation, such as scrambling and descrambling, may be
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performed by the PCS too. Alike the PMA, the PCS can be split into transceiver and
receiver side, which can be considered mirrored. Moreover, the system architecture varies
according to the implemented protocol such as: fast Ethernet, Gigabit Ethernet or PCIe.
For what concern Ethernet protocol, many studies can be found in literature with respect
to different data rate, for example [38] targets 40-Gbps Ethernet, whereas [39] accurately
targets both 40-Gbps and 100-Gbps Ethernet. Instead, [40] describes a typical PCS
architecture for PCIe. The latter is shown in the block diagram of Figure 2.9.
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TX_DATA_K

RX_DATA

RX_DATA_K

Power

Management

Receiver

Status
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Controller
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Dec

PRBS
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Checker

Buffer
Comma
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To PMA

From PMA

TX

RX

Elastic

PCLK

Status

Commands

Figure 2.9: Typical PCS block diagram comprehensive of transmitter and receiver (in-
spired by [40]).

The PHY/MAC interface, according to the PCIe protocol, comprehends not only the
transmitted and received data information, but also status and command signals, and
finally, a synchronization signal indicated as PCLK.

• The PCLK frequency is modified so that the signaling rate can be adjusted while
preserving the data path parallelism.

• The command signals handle the de-emphasis, voltage swing level, and voltage value
across the PHY.

• The status signals report the condition of the power management (to track transi-
tions), receiver detection, data rate (to track changes), and eventual errors in the
received data.

Within the PCS, the main building blocks provide the following functionality:
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• Phase adjustment: it is nothing but a FIFO which compensates for phase difference
that may arise between the internal transmitter low-speed clock, and the external
clock (MAC clock).

• Reset Controller: it is an internal FSM able to perform the reset of both the analog
and digital portions of the PHY. After the power-up, as soon as the calibration
is completed with the lock acquisition, a TX analog reset is asserted. It follows
the assertion of a TX digital reset and, whenever the CDR locks to the receiving
data, a RX digital reset is performed. At this point, the power-up reset sequence
is completed, and finally a RX reset signal is asserted another time to empty the
previously received data. Lastly, the system jumps into operative mode state.

• 8B/10B Encoder/Decoder: both the encoder (at the transmitter side) and the de-
coder (at the receiver side) exploit the 8B/10B transmission code, implemented by
IBM in the 1980s [22]. Nowadays, this transmission code is still widely used in order
to translate 8-bit into 10-bit (encoder), thus achieving DC balance, and automati-
cally performed error check through disparity detection. Different architectures are
available in literature and, in particular, in the reference system [40], an M-codec
and a P-codec implementations are exhaustively described and compared, in terms
of area and dynamic power consumption.

• Comma Detector: it aligns the received de-serialized data at the PMA interface.

• Elastic Buffer: it provides a frequency compensation similar to the one performed
by the phase adjustment. In particular, the difference between the local and the
recovered clock needs to be kept under a certain threshold, for example ±600 ppm
for the implementation proposed in [40].

Clk

out
D D D D DDD Q Q Q Q Q Q Q

Figure 2.10: Typical PRBS7 implementation with XORed LFSR’s architecture (inspired
by [40]).

• Pseudo-Random Binary Sequence (PRBS) generator and checker: they are used
to verify and characterize high-speed links. Indeed, they are typically activated in
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case of loopback configuration, in order to test the correct data transfer between
the transmitter (PRBS generator) and the receiver (PRBS checker). Additionally,
the actual data rate reached during operative mode is measured. In this way, the
test can be directly performed without developing the upper levels of the protocol
stack. Moreover, the random sequence acts as a wide set of stimuli for the system,
so that it is easier to locate corner case bugs. The term pseudo-random specifies
that, although the produced sequence models a random stream of data (indepen-
dent from any other element), it is, in fact, deterministic. The pattern is generated
by a Linear Feedback Shift Register (LFSR). LFSRs have a broad range of ap-
plications and, above all, they are widely used in Cryptography and Bulit-In Self
Test (BIST). Hence, a lot of researches involving LFSR’s architectures and opti-
mization were carried out. [41] presents a detailed analysis of the state-of-the-art
of LFSR, where the key metric is the power consumption. The traditional LFSR’s
XOR configuration (PRBS7) is presented in the block diagram of Figure 2.10.
Basically, feedback paths are originated from some of the registers’ output which are
referred as taps. Such taps are then exclusively XORed together before closing the
loop, in order to generate the pseudo-random sequence. The taps’ choice determines
the polynomial equation the random sequence is originated from. Frequently, the
PRBS are identified with the degree of the polynomial they are originated from, for
example:

PRBS7: G(x) = 1 + x6 + x7

PRBS9: G(x) = 1 + x5 + x9

For what concern the PRBS7 example, the output sequence length is m = 2N − 1,
where N is the number of bits of the shift-register (N = 7, m = 127). This
implies that, after every 127 binary bits, the sequence will start over by repeating
itself. Hence, it is possible to forecast the next pattern from the previous one. The
PRBS checker is based on this mechanism: starting from the received pattern, it
determines the next sequence as the reference to compare with the actual sequence
that will be received later on.

2.4 Related work

The topic of HW/SW system’s co-partition was widely investigated to increase perfor-
mance, flexibility and re-usability of the whole system. Besides, this thesis benefits from
the analysis of relevant work. Specifically, few researches, proposing innovative imple-
mentation of the system’s controller, are considered.

2.4.1 Partially Reconfigurable Microprogrammed Controllers

The interesting concept, introduced in [42], is the implementation of a partially recon-
figured controller in FPGA. The main advantage of this realization is the considerably
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reduction in prototyping time. Indeed, apart from the controller implementation, an in-
novative prototyping flow is introduced. The traditional logic controller implemented in
FPGA is here sub-divided: an addressing module (AM) is responsible for the microin-
structions address, and a control memory (CM) stores the address information. This
microprogrammed controller decomposition is exemplified by the block diagram of Fig-
ure 2.11, where an input stimulus X is applied to the AM which produces an excitation
functions (T) that serves as input data for the counter (CT). The CT’s goal is to to
provide the address (A) to the CM, so that the desired microinstruction (Y) is extracted
from the memory itself.

AM CT

X
T

CM
A

Y

y
0

Figure 2.11: Typical structure of a microprogrammed controller (inspired by [42]).

Therefore, with this configuration, the designer is free to choose how to implement
the memory block in order to save FPGA logic resources. Nevertheless, the proposed
solution, considerably benefits from the application of partial reconfiguration to the CM.
The concept of partial reconfiguration has been studied since the 1980s [43], [44] and
nowadays, thanks to novel researches and the toolchain improvements, it has become
mature3. Since only the content memory requires a replacement, the difference-based
partial reconfiguration proposed by Xilinx [45], is recommended. Only the difference
between the actual design and the new one is stored within the partial bit-stream, whose
size is considerably reduced. The initial overhead (in terms of configuration time and size)
of the main bit-stream creation in the implementation step still remains. On the other
hand, the modification of the memory content, by relaying on the previously prepared
differential bit-stream, is very fast. Despite the limited range of applications (design
with minimal modifications), it is still relevant because it represents a fully-hardware
implementation of a more flexible controller.

2.4.2 Parallel Logic Controllers

An even more interesting approach is the combination of partial reconfiguration concepts
and HW/SW architectures [46]. This research is focused on customizable logic controllers,
where various functionalities are defined in SW running on a Processing System (PS) and
then physically realized in HW through PL implementation. The controller’s model is
based on Parallel Hierarchical FSM (PHFSM) mapped into reconfigurable logic, whose

3For the interest reader, a good overview of the reconfigurable SoC FPGA trends is presented in [7]
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communication is controlled by SW through high-performance interface composed of
General Purpose Port (GPP) and High Performance Port (HPP) 4.

A parallel controller is defined as "one of the processing elements that gets input from
the controlled system and generates output that ensure the desired functionality" [46].
Based on that, the dual-core APSoC implementation emphasizes those aspects:

• Usage of modular, hierarchical and parallel HW resources (PL), based on HFSM,
Communicating FSM (CFSM), and PHFSM, whose behaviour can be modified by
the SW running on the PS. In particular, hierarchical FSM, alike for the procedure
handling in SW, are based on modules calling the one to each other according to the
Hierarchical Graph Scheme (HGS), so that the control algorithm is modeled step-
by-step. A more detailed description of the state transition, with the modules’ call,
is presented in [47], and [48], whereas, an example of HFSM usage for controlling
purpose is reported in [49]. On the other hand, parallel FSMs allow more than one
module to be executed in parallel, with the same mechanism of hierarchical call
and return, which requires a stack memory (implemented in the PL). Figure 2.12
displays a simplified model of execution for both HFSM (on the left), and PFSM
(on the right).
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HFSM module

HFSM module

Called
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call

return

State
HFSM

HFSM module

HFSM module

Module

call

call

return

return

Parallel

Execution

Figure 2.12: Examples of execution of HFSM on the rigth and PFSM on the left (inspired
by [46]).

The described FSM modules are handled by the PS SW which acts as high-level
controller able to request a run-time reconfiguration. The SW checks the operation

4The implementation targets All-Programmable SoC (APSoC) and in particular the Zynq-7000 so that
the technical terminology introduce by Xilinx in [50] is used.
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of the lower-level modules by periodic signal monitoring, and by interrupt. This
way of proceeding is similar to the one adopted in this thesis, where both interrupt
and polling mechanism are used in order to monitor the controlled sub-system.
Conversely, in this case the control unit is partitioned into two layer: PS with the
SW and PL with the HW by leading to higher system complexity. Finally, after
the check, the PS may conclude whether the controlled devices require an improved
management algorithm and, a consequent modules’ update through reconfiguration.

Host PC
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PL

Modules

SW SW SW

OCM

Master

Slave

Reconfigurable parallel

logical controller

Master

AXI portsstatus 
signals

Interruptsignals
control

Mem data

FSMs configuration

Data generation for

Verification

Experimental setup

Figure 2.13: Hardware/Software architecture. The communication with the host PC
serves as experimental setup (inspired by [46]).

• SW handled reconfiguration of the control circuit FSM according to the models
and methods introduced by Sklyarov [48]. The reconfiguration models may be
either static (bit-stream uploaded into the PL) or dynamic (at run-time when the
bit-stream is loaded).

• Co-partitioned SW/HW architecture as shown in the simplified block diagram of
Figure 2.13. The usage of a customized interface (GPP, HPP, signal transfer
through registers), allows a separate and independent development of HW and
SW, in order to speed up the system design. Moreover, the HPP interface is also
used for the FSMs reconfiguration and the correspondent information are extracted
from the On-Chip Memory (OCM) filled in from the host PC. Thus, the PS acts
as a master by copying the data from the PC to the OCM (the slave). Afterwords,
once the data are locally stored, the relocation into the PL occurs in a burst mode
with the sequence of init, read, load, done [46].
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Chapter 3

Design Methodologies and
Preliminar Analysis

This chapter gives a brief introduction of the methodologies and the tools used to design,
implement and characterize the PoC. In particular, the Intel Arria 10 board is described,
by focusing on the architecture, available IPs, and Nios II soft-core processor, whose
design flow is also introduced.

3.1 System-On-Chip for prototyping: Arria 10

Among all the possible prototyping technques, underlined within the state-of-the-art
analysis, the choice of a SoC implementation cuts down the design time and complexity.
For what concern the design flow, it is considerably simplified by the toolchain provided
together with the target SoC board. For this reason the Intel Arria 10 SoC (TMSC 20-nm
process technology) is used as target development board [8].

3.1.1 Introduction

A minimal block diagram of the Arria 10 architecture is shown in Figure 3.1. This board
is addressed as SoC FPGA by Intel because of its hybrid nature. Indeed, it is composed
of two main parts with the correspondent development toolchain:

• Hard Processor System (HPS) (20-nm, second generation). It consists of a dual-core
ARM Cortex-A9 MPCore processor [51], integrated with a set of peripherals and a
multiport memory controller. This integration with the FPGA, and the hard IPs, on
the same SoC, allows the HPS to control the logic configuration while running soft-
ware applications. The SW development for the HPS is simplified and optimized by
the Embedded Design Suite (EDS) which comprehends: hardware libraries for the
HW low-level access, Eclipse Integration Development Environment (IDE) based
on ARM DS-5 for the software development, and additional configuration tools.

• FPGA fabric PL. The Logic Core is free to operate independently from the HPS
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Figure 3.1: Intel Arria 10 block diagram.

but, in case of required communication, the high-performance system interconnect
is exploited. This interconnection system is based on the ARM AMBA AXI1 bus
bridges. The logic fabric allows to tailor the design by exploiting off-the-shelf Intel’s
IPs or by implementing custom ones. In particular, the Quartus tool is used for
system design (through HDL), compilation, synthesis, timing analysis and power
estimation. More specifically, Quartus System Integration Tool (Qsys) is used at
design time to instantiate and connect IPs through Av-MM interfaces.

This duality combines the PL’s flexibility with cost minimization (size reduction),
and power consumption cut down, due to separate frequency management (between HPS
and FPGA). Additionally, the system reliability is improved by separating the HPS
boot process from the logic configuration. Finally, it is possible to choose between bare-
metal or Operating System (OS) supervised applications (Wind River VxWorks, Micrium
µC/OS-II, µC/OS-III, open-source).

1The Arm Ltd. Advanced Microcontroller Bus Architecture (AMBA) has been widely used as a
standard for IPs connection within SoCs [52]. Advanced eXtensible Interface (AXI) represents a AMBA
interface able to connect order of 100 master-slave within a SoC.
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3.1.2 Nios II soft-core processor

Besides the HPS, Arria 10 also supports the instantiation and configuration of a soft-
core2 processor, within the fabric logic, which is named Nios II. This processor may be
preferred in case of limited complexity, where there is no need for the HPS’ resources.

Introduction

The key point, that distinguish Nios II from any other off-the-shelf microcontroller, is
the possibility to customize it (similarly to a generic IP) to meet various requirements.
This shaping is not limited to the internal hardware components, but it may also be
extended to the Instruction Set Architecture (ISA). By adapting the set of instructions
to the SW/HW partitioning, the optimal trade-off between performance, size and power
consumption can be reached.
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Figure 3.2: Nios II block diagram.

As it can be seen from the block diagram of Figure 3.2, the necessary hardware
(colored in blue) is minimal, whereas various additional blocks may contribute to the
customization. Alternatively, this functional units may be emulated via software; for

2Soft indicates the processor flexibility. Indeed it can be configured on a system-by-system basis to
target any Altera FPGA family.
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example, if complex mathematical computations are not required it may be convenient
to perform division operations in SW.

Nios II range of applications is broad, ranging from high-speed image acquisition [54]
to multi-functional signal generator [55], embedded web server [56], or Radio-Frequency
Identification (RFID) reader [57]. Nevertheless, it represents an optimal solution for
prototyping: a preliminary design can be easily synthesized and analyzed in a reduced
amount of time while leaving room for further step-by-step refinements.

Technical details

Nios II is a 32-bit RISC3 processor core, which acts as a general-purpose microcontroller
by including peripherals and internal memories. The technical details are described in
[53], whereas the main components are as follows:

• 32-bit datapath, ISA, and address space. It is classified as an Harvard architecture
since separated instruction and data buses are supported.

• 32-bit internal registers: general purpose ones plus optional set of shadow registers
(up to a total of 63)4.

• 32 level-sensitive Interrupt Request (IRQ) inputs plus External Interrupt Controller
(EIC), which is an external interface able to reduce interrupt latency. The precise
exception management is carried out by a basic, nonvectored controller. Precise
means that, whenever the exception occurs, before handling it, all the previous
instructions need to be committed and no later instruction execution has the right
to start.

• Aritmetic Logic Unit (ALU) able to perform arithmetic, relational, logical, shift
and rotate operations on the general purpose registers. In case of unimplemented
instructions (not defined in hardware), an exception is raised, so that, such func-
tionalities can be performed in software instead. Additionally, the ALU is directly
connected to the programmable logic by letting room for customized instructions.

• On-chip peripherals and interfaces, used to manage external memories. The or-
ganization is configurable and may vary from system to system. Both instruction
and data cache may be internally added, whereas tightly-coupled instruction and
data memory port may connect Nios II to on-chip memory, outside the core, in case
of performance-critical applications, where the key requirement is low-latency. In
other words, they may perform as cache memories but without dealing with cache
load, invalidate, and flush overhead. Additionally, Av-MM master ports may be
used as interconnection standard. The address map of both memories and periph-
erals is not fixed and has to be defined at design time.

3A description of a RISC architecture and a comparison with CISC may be found in [58] and [59].
4Shadow registers are accessed by the OS’ kernel to faster up context switching.

26



3 – Design Methodologies and Preliminar Analysis

• Optional dedicated single-precision floating point instructions (double precision op-
erations may be performed through software emulation).

• JTAG connector which is used to start and stop the processor for debugging pur-
pose.

• Optional Memory Management Unit (MMU) with TLB or Memory Protection Unit
(MPU). The MMU takes care of the virtual (4 GB of address space) to physical
address mapping (4 GB of memory) by supporting system paging (the size of both
page and frame is 4 KB). The translation process is accelerated by an hardware
Translation Lookaside Buffer (TLB). In case of MMU instantiation it is enabled
by default and the caches (data and instruction) are virtyally-indexed, physically-
tagged. The MPU guarantee an higher degree of memory protection by dividing
the memory area in different regions (up to 32 for instruction and 32 for data).
Moreover, read and write permissions are required to access specific regions. It is
important to consider that MMU and MPU are mutually exclusive.

3.2 PoC’s Design Flow

The PoC’s development is carried out through a sequence of steps which, starting from
the design lead to the synthesis and board programming. The process deeply relies on
Intel’s guideline and toolchain, since they allow to independently carry on the hardware
and firmware development. Consequently, the overall design time is considerably reduced.
In a nutshell, the flow (shown in Figure 3.3) comprehends the following steps:

• Creation of a Quartus project with detailed information about the target board.

• System design with the integration of the building blocks through Qsys. The Quar-
tus Prime system integration tool is responsible for the hardware definition (IPs
features selection), and consequent generation. The following set of files are gener-
ated during the process:

– An HDL (both VHDL5 and Verilog are supported) hardware description of
the system, comprehensive of both Nios II and additional IPs.

– A file with .sopcinfo extension with an hardware description of the system,
which is readable by the Software Build Tool (SBT). In this way, the software
can be transparently written to precisely target such hardware platform.

– An optional HDL testbench for functional simulation of the generated system.
This testbench generation process sets up simulation libraries and .tcl scripts
for simulation tools of different vendors (Cadence, Mentor Graphics, Synopsys
and Aldec).

5 Very High Speed Integrated Circuit HDL (VHDL).
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• Firmware development, on top of the HW architecture (described by the .sopcinfo
file), through the Nios II SBT for Eclipse, or an alternative software development
environment based on GNU C/C++. In both cases, it is possible to start the SW
development while the underlying hardware still need to be completed. Out of
compilation, the .elf file is used by the Quartus Programmer to physically upload
the code into the board. Consequently, a real-time debugging of the firmware
running on board can be performed. Generally, to allow such functionality, a JTAG
debug unit is inserted within the Nios II subsystem to perform read/write operation
through the SBT’s console.

• Quartus project compilation and synthesis of the project. This step produces a set
of reports with detailed information about the logic utilization (in ALMs), timing
analysis and placement of the target device. Finally, the synthesizable .sof file is
uploaded onto the board by the Quartus programmer via micro-blaze Universal
Serial Bus (USB) connection.
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Figure 3.3: PoC design flow to target the Arria 10 board with the Nios II soft-core
processor.
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3.3 PoC’s characterization

Logic utilization (in ALMs), power consumption (static and dynamic), and software per-
formance are evaluated in order to characterize the PoC. As previously mentioned, the
logic resource information is directly provided within the compilation reports. Instead,
the power consumption estimation is based on two different techniques: Early Power
Estimation (EPE) and PowerPlay Power Analyzer The correspondence accuracy,6 after
the power models, is:

• PowerPlay Power Analyzer: ±20% from silicon (by using an input file with the
toggle rate evaluated during simulation).

• EPE spreadsheet: ±20% from the Power Analyzer and ±30% from silicon (in 90%
of the tested designs).

Additionally, the estimation accuracy is affected by many parameters:

• Toggle rate. As already mentioned the toggle rate may have a huge impact on
the final estimation. A possible way to increase the accuracy is to separate the
system sub-blocks and separately perform the resource usage and toggle activity
evaluation. If the same sub-blocks have been already in use for other designs it is
suggested to rely on that information.

• Airflow. The effect of the fan across the FPGA needs to be included within the
thermal model. Consequently, thermal simulations are required in order to evaluate
the accuracy of such model.

• Temperature. Since the temperature has a huge influence on the final evaluation,
it is fundamental to consider the temperature of the air around the device (which
is generally higher than the ambient outside the system).

For what concern the power estimation, it is dived into static7 and dynamic contri-
bution (Table 3.1), whereas the possible signal behaviours are defined as follows [60]:

• Toggle rate: it is the average amount of the transition of the signal values (0 to
1 or vice-versa) within the time unit. Thus, the unit of measurement is properly
transitions/s. Quartus models full rail-to-rail switching.

• Static probability: it is the window of time, within the device operation, where the
signal has logic value ’1’. When dealing with small technologies node (under 90 nm)
the state-dependent leakage may significantly contribute to the static power.

6This is true for "the majority of the designs" as stated by Intel in the Power Analysis section of the
Quartus user guide [60].

7The I/O DC bias power and transceiver DC bias power are exceptionally accounted for in the I/O
and transceiver sections instead of being computed as PL’s leakage.
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Power Estimation Description Signal Activity

Static Leakage thermal power dissipated by the PL Static probability

Dynamic Portion of the total power due to signal activity Toggle rate

Table 3.1: Total power consumption contribution with the related signal activity.

For what concern the software performance, it minimally affects the dynamic power
consumption: the firmware only determines the signal activity of the control and status
signals to be driven from/to the Nios II.

3.3.1 Early Power Estimator (EPE)

The Excel-based EPE performs a thermal analysis based on the input parameters: device
family and serial number, logic utilization and reference temperature (it can be either the
junction temperature or the range of ambient temperature). The main features (detailed
in the EPE user guide [61]) are:

• Early stage power estimation: it may be performed at a brainstorming phase since
the rough power evaluation is based on of the hypothetical logic usage. This helps
the designers, at the very first step, to evaluate whether their approach is going
to meet the power consumption’s constraints. Moreover, the power supply, volt-
age regulators, heat sink, and cooling system can be designed based on this first
estimation.

• Early stage thermal analysis.

• Intermediate stage power estimation: as long as the design evolves it is recommend-
able to update the EPE estimation.

• Late stage power estimation: after compilation, it is possible to export a .csv file
with accurate information, so that it can be used as input file for the EPE spread-
sheet in order to increase the estimation’s accuracy.

3.3.2 Quartus PowerPlay Power Analyzer

The PowerPlay Analyzer performs an accurate estimation based on the fitter information,
operative conditions and signal activities (from the .vcd file extracted from simulation),
as illustrated in Figure 3.4.

The usage of the Power analyzer is fundamental in the late stage of the design to
check whether the power budge is met. However, a high-accurate estimation requires:

• Accurate power models of device circuitry.
• Accurate knowledge of the device operating conditions.
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Figure 3.4: PowerPlay Power Analyzer high-level flow (inspired by [60]).

• Accurate toggle rate data on each signal. This can be achieved by using a modular
design (every sub-modules activity is evaluated) or a complete design simulation
approach (the signal activities for every hierarchical level are collected within a
unique output file). In both cases, data collected under various simulation condi-
tions (used to exhaustively stimulate the design) may be evaluated in parallel to
contribute to a more accurate the power estimation.

• Glitch filtering. The Power Analyzer interprets a glitch as "two signal transitions
so closely spaced in time that the pulse, or glitch, occurs faster than the logic and
routing circuitry can respond" [60]. Therefore, glitch filtering avoids the compu-
tation of non-physical signal activities and the consequent overestimation of the
dynamic power consumption.

Besides the output’s report summary, many detailed parameters are specified such as
the operating condition used, the thermal power dissipated by block, the thermal power
dissipation by hierarchy, the signal activities and the current drawn from voltage supplies.
A summary of the PowerPlay features in comparison with the EPE ones is presented in
Table 3.2.

3.3.3 Software profiling

The profiling serves to measure the performance of Nios II subsystem, to identify bottle-
necks and to propose firmware improvements. This analysis is unavoidable for complex
systems, especially in case of multithreading applications which deeply rely on context
switching. Many profiling techniques are available: GNU profiler, Intel performance
counter and high-resolution counters.

The major requirement for the thesis is to complete the transceiver’s reset sequence
within few ms, and, possibly to recover from synchronization loss even faster. In other
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Characteristic EPE PowerPlay Analyzer

Design phase Any time (the accuracy varies) Post-fit

Accuracy 30% from silicon 20% from silicon

Input • Resource usage estimates • Post-fir design
• Clock requirements • Clock requirements
• Operation conditions • Default signal activity
• Fixed toggle rate • Operation conditions

• Simulation results
• Signal activity

per node (or entity)

Output • Total thermal power • Total thermal power
dissipation • Static contribution

• Static contribution • Dynamic contribution
• Dynamic contribution • Thermal I/O power
• Off-chip power dissipation • Thermal power by
• Current drawn from design hierarchy

voltage supplies • Thermal power
by block type

• Thermal power dissipation
by clock domain

• Off-chip power dissipation
• Device supply currents

Table 3.2: Comparison between the EPE and the PowerPlay Power Analyzer (inspired
by [60]).

words, a precise time of execution is the key metric. Consequently, the ideal profiling
technique would be non-intrusive and with high-resolution. The high-resolution counter
was selected due to its limited resource utilization, and its light implementation of the
performance measurement functions. The high resolution is embedded in the 64-bit
counter with 1 µs tick counting. A detailed description, together with the performance
evaluation, is reserved to the Analysis and Results Chapter.
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Chapter 4

System design and development

This chapter meticulously describes the PoC’s implementation. The description begins
with the analysis of the hardware components and their interconnections. The bare-metal
application is then built on top of such system due to the HAL contribution. Afterwards,
the software architecture is presented, with a particular attention on exception handling.
A reference for hardware and software development of a Nios II-based system is [62].

4.1 Hardware design

The PoC’s HW architecture designed and synthesized on Arria 10 is shown in Figure 4.1.
Conceptually, the system can be divided into two units:

• System handler: composed of the Nios II soft-core processor and its peripherals
(OCM, JTAG UART1, Timer and PIO2). The Nios II (economy version) was con-
figured with the minimum functionality: OCM for both the reset vector and the
exception vector memory, JTAG debug module, without chache.

• Transceiver: composed of the Intel Transceiver Native PHY and the external PLL
for the reference clock.

The system clocking requires separate sources for the presented units:

• Input reference clock of 50 MHz for the system handler (Nios processor and periph-
erals). Specifically, the Arria 10 CLK_50M_FPGA reference signal was used.

• Input reference clock of 125 MHz for the transceiver. The former clock is used
as reference for both the external PLL and the transceiver CDR. Specifically, the
Arria 10 CLK_ENET_FPGA_P reference signal was used.

1UART contains serial lines for data communication. It is frequently used together with RS-232
interface for embedded system’s application.

2PIO refers to the Intel IP notation but is alike the GPP introduced in the Background and Literature
Study chapter.
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Figure 4.1: Conceptual block diagram of the HW architecture.

Finally, the communication between such units is handled by the Av-MM interface.
The following sections give an overview of the mentioned block units and their intercon-
nection.

4.1.1 Nios II’s peripherals

The Nios II soft-core processor can be interconnected to I/O peripherals within the same
system, hereinafter called Nios subsystem. The designer can directly use the set of pe-
ripheral within Intel’s libraries or customized ones. In the former case, a wrapper is
needed to adapt the IP’s HDL description to the Av-MM standard.

For what concern the Intel peripherals, many configuration parameters are available,
for example enable/disable interrupts or size selection. Additional device drivers3 are

3This term generally indicates a collection of SW routines coded to access the I/O cores. A more
detailed description of the so-called HAL is provided within the Software Design section.
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provided to facilitate the communication with the higher level of abstraction (software C
code).

Nios II processor utilizes a memory-mapped scheme, so that any generic I/O core
is identified as a collection of registers. Basically, the access mechanism consists of
write/read operations to/from the set of registers mapping the addressed peripheral.

The following sections give detailed analysis of the Nios II subsystem’s peripherals.

On-chip memory (OCM), SRAM

The available OCM provides memory space for both instruction and data. Moreover, it
can be deeply customized through the following configuration parameters:

• Memory type: Random Access Memory (RAM) or Read-Only Memory (ROM).

• Size: expressed by the data width (from 8-bit up to 1024-bit) and the total memory
size (in bytes).

• Read latency: set to 1 or 2 according to the Av-MM read protocol.

• Additional protection on read request and ECC parameters.

• Memory initialization: it can be automatically performed by Qsys when assigning a
base address or manually specified by inserting the folder path of the initialization
file. This can be used for the HW/SW system simulation but also to include the
memory initialization within the .sof file (synthesizable code).

The memory requires a reset and a clock signal as input parameters, and it acts as a
Av-MM slave. Therefore, a master needs to be connected to this interface: in the specific
case Nios II serves as master. The memory size is computed as the minimum value able
to allocate the firmware (comprehensive of libraries and drivers).

For the proposed system an SRAM of 4 KB with 1 cycle of read latency and manual
initialization was chosen. No additional protection was used.

JTAG UART

The Intel JTAG UART exploits a JTAG controller for serial communication instead of
using a RS-232 interface. This IP is treated as any other serial port for character exchange
between a host PC and the PL. A Conceptual block diagram is illustrated in Figure 4.2.

The FIFO internal buffer width and the interrupt threshold may be customized at
design-time. These buffers are used to enhance the read/write performance, and they can
be directly synthesized into registers (instead of memory blocks) for a deep optimization.

The register map can be divided into data and control registers. The data field,
precisely contains the byte to be exchanged. Conversely, the control register monitors
the interrupt requests and the available space within the buffers.

The implemented JTAG UART has a buffer depth of 32 bytes and an IRQ threshold
set to 8. Finally, the IRQ priority was set to 1, where the range varies from 0 (highest
priority) up to 2 (lowest priority).
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Figure 4.2: Conceptual block diagram of the JTAG UART (inspired by [62]).

Interval Timer Core configured as system clock

From the HW perspective, the internal timer core is based on a count-down timer which,
starting from a specified value, keeps on counting until it reaches 0. This defined the so-
called timeout period which has to be a multiple of the timer frequency. After the timeout
period, a correspondent bit is set and an IRQ is raised. A simplified block diagram is
illustrated in Figure 4.3, whereas a summary of the configuration parameters is reported
in Table 4.1.
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Figure 4.3: Conceptual block diagram of the Interval Timer Core.

The register map allows the user to directly access 32-bit registers which are internally
based on 16-bits registers. Among the whole set of registers (summarized in Table 4.2),
the key role is played by the status and control registers.

Additionally, a customized functionality can be selected through SW configuration:
• System clock timer: it is generally used in application which requires a scheduler.

Indeed, it is configured in free-running mode by default, so that the counter is
stopped in case of IRQ. After reaching 0, the counter reloads the value speci-
fied within the timeout register. As a final result, the time is measured in clock
ticks (similarly to a periodic heartbeat). The tick resolution depends on the clock
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Parameter Value Description
Timeout period time units or # of clock Set the initial value of

the timeout period register
Counter size 32 or 64 bits # of clock Set the timer’s width
Preset HW • Simple periodic IRQ IRQ are periodically generated
configurations • Watchdog Reset in case of malfunction

• Full-featured Variable period and start/stop
handled by an embedded processor

Register options • Writable period Enable to access the count-down period
• Readable snapshot Enable to read the current count value
• Start/Stop Enable to access the start/stop bits

of the control registers
Output signals • Timeout pulse Enable to output the timeout_pulse

signal (1 high pulse after timeout)
• Reset on timeout Enable to output the resetrequest

signal (reset the system after timeout)

Table 4.1: Internal timer core configuration parameters.

Offset Register Activity

0 Status Check the timeout (to bit) and the running state (run bit)

1 Control • ito -> interrupt enabled

• cont -> running mode

• start -> start counter (bit to 1)

• stop -> stop counter (bit to 1)

2 Periodl Timeout period bits [15 ÷ 0]

3 Periodh Timeout period bits [31 ÷ 16]

4 Snapl Counter snapshot bits [15 ÷ 0]

5 Snaph Conter snapshot bits [31 ÷ 16]

Table 4.2: Internal timer core register mapping (inspired by [62]).
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frequency and it can be set by software.
• Timestamp driver: this configuration guarantee high-resolution time measurements.

Basically, by sampling the monolitically increasing counter, in the crucial point of
the code, an accurate time information is extracted.

In conclusion, the designed system exploits an internal core timer configured as system
clock driver with:

• Counter size of 32-bits.
• Preset configuration: full-featured.
• Register option: readable snapshot enabled.

General Purpose I/O

A PIO core basically serves as interface between the Av-MM interconnection and the
actual general-purpose I/O port. The latter does not necessarily reside on board, but
it may also be an off-chip external device connected to the FPGA. A functional block
diagram is shown in Figure 4.4, whereas the configuration parameters are summarized
by Table 4.3.

Register files

interrupt mask

edge capture

data (input)

PIO

Control
Logic

IRQ

Data

Av-MM
slave

interface

Address &

Control

IRQ
data (output)

direction

Bidirectional

Figure 4.4: Conceptual block diagram of a PIO (inspired by [62]).

To read/write different registers the correspondent offset parameter needs to be spec-
ified, as reported in Table 4.4. Note that, despite both input and output registers share
the same offset they work independently.

The designed system makes use of two PIOs: one to read the status signals from the
transceiver (and PLL), and the other to drive the control signals in order to reset the
transceiver. They are configured as follows:

• PIO status signals:
– Width: 8-bit.
– Direction: input.
– Edge Capture: FALLING.
– Interrupt: LEVEL, with IRQ priority set to 2.
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Parameter Value Description
Width 1 ÷ 32 Specify the number of bits
Direction • Bidirectional Select one tristate bidirectional bus

• Input Only enable input capture
• Output Only drive the output
• InOut (both) Capture input and drive output

simultaneously onto separate
unidirectional buses

Edge Capture • OFF Disable input capture
• FALLING Capture input on falling edge
• RISING Capture input on rising edge
• BOTH Capture input on both edges

Interrupt • OFF Disable interrupt
• LEVEL IRQ triggered by input level
• EDGE IRQ triggered by input capture

Table 4.3: PIO configuration parameters.

Offset Register Activity

0 Data Read input data or write output data

1 Direction Set the PIO direction

2 Interrupt mask Enable the IRQ by setting the correspondent bits to 1

3 Edge capture Check the detected edge (bit to 1) and clear (set the bit to 1)

4 Out-set Set the output bits (by writing 1)

5 Out-clear Clear the output bits (by writing 1)

Table 4.4: PIO register mapping (inspired by [62]).

• PIO control signals:

– Width: 8-bit.
– Direction: output.
– Edge Capture: OFF.
– Interrupt: OFF.
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4.1.2 Avalon-MM Interface

Avalon interfaces achieve two main goals:
• Increase the communication performance within a complex system. A traditional

centralized resource (such as a bus) becomes a bottleneck as soon as the data
transfer within the system increases. Conversely, Avalon interfaces allows the in-
ternal communication through interconnect fabric according to the standardized
timing properties. The interconnection automatically comes together with arbitra-
tion functionality, in order to avoid contentions (typical of centralized resources).

• Simplify the design of complex systems. Generally, an increase in complexity is
followed by an increased number of interconnected sub-blocks communicating the
one to each other. Indeed, most of the time is spent in the design of customized in-
terfaces to suit various requirements of each sub-block. Conversely, with the Avalon
interface a master-slave interconnection between different sub-blocks is automati-
cally optimized.

Nios II-e

IRQ

SRAM
controller

IRQ 0

JTAG
UARTrefclk data

instruction M

M

arbiter

mux

refclk

refclk

S

S

Figure 4.5: Conceptual block diagram of an Av-MM interconnect with a master (Nios
II) and two slaves (JTAG UART and SRAM controller). Both data and instruction are
connected to the SRAM controller, thus an arbiter is provided. The mux allows the
master to select one slave at a time. The picture is inspired by [62].

The focus is on the Memory-Mapped (Av-MM) one. It handles address-based read-
/write communication between a master, which initiates a transaction, and one or more
slave(s) that respond(s) to this request. Typically, microprocessors, memories, UARTs
and timers are connected through Av-MM. A conceptual block diagram with a Nios II
(master), a JTAG UART and a SRAM controller (slaves) is illustrated in Figure 4.5.

Avalon-MM slave interface signals

The standardization defines a set of interface signals; the major ones are as follows:
• Read: single bit signal which is asserted to denote an on-going read transfer.
• Write: single bit signal which is asserted to denote an on-going write transfer.
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• Address: specify the memory location to be accessed within the slave address space.
The address width can be selected within the range (1 ÷ 32) bits.

• Readdata: value provided by the slave as result of a read operation. The width
varies between (8 ÷ 1024) bits (power of 2 values).

• Writedata: value provided to the slave during a write operation.

Avalon-MM slave interface properties and timing

The Av-MM slave interface delineates plenty of properties related to the read/write op-
eration timing. Based on that, all the transactions are synchronous with the reference
clock. These are the fundamental properties:

• Read/Write WaitTime: introduce a variable number of wait state(s) to prolong the
read/write signal. This feature is very useful in case of slow slave sub-blocks.

• Setup/Hold Time: after asserting/deasserting the address and data, it is the time
to wait before the consequent read/write signal assertion/deassertion.

• ReadLatency: time required to have the data available after the read signal’s as-
sertion.

• Waitrequest: alternative to fixed wait-states (as previously described). The slave
exploits the waitrequest signal to stall the transfer (read/write operation) until it
is ready. Keeping waitrequest asserted for N clock cycles is alike setting read/write
WaitTime to N.

Different scenarios of read/write transactions are illustrated by the timing diagram of
Figure 4.6 (no wait-state) and 4.7 (readWaitTime = 1, writeWaitTime = 2). Note that,
zero wait-states implies to immediately generate the response in the same clock cycle of
the request and this may decrease the frequency.

No wait-state: readWaitTime = 0; writeWaitTime = 0; 

0 1 2 3 4 5 6 7 8

clk

read

write

address add0 add1

readdata data0

writedata data1

Figure 4.6: Timing diagram of Av-MM read followed by a write transactions with no
wait-states.
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readWaitTime = 1; writeWaitTime = 2;

0 1 2 3 4 5 6 7 8 9

clk

read

write

address add0 add1

readdata data0

writedata data1

Figure 4.7: Timing diagram of Av-MM read followed by a write transactions with fixed
wait-states.

4.1.3 Transmitter PLL: fractional PLL

The clocking generation and distribution is vital for the correct behaviour of high-speed
links. In this regard, the transmitter and receiver have distinct contribution:

• At the RX side the channel’s PLL is used as CDR to provide the recovered clock
and data signals.

• At the TX side an external PLL is used to enhance design’s flexibility and trans-
parency. Precisely, two different clock signals need to be generated:

– High-speed serial clock for the PMA’s serializer.
– Low-speed parallel clock for both PMA and PCS.

Note that, in case of non-bounded4 channel configuration (as in the designed sys-
tem), only the serial clock generated by the external PLL is driven to the transceiver.
Conversely, the parallel clock is internally generated, for example a possible solution
is a direct connection:

tx_clkout –> tx_coreclkin
For every group of three channels (they can be grouped into three or six), an external

PLL can be selected. Generally the Auxiliary Transmit (ATX) PLL is chosen due to
its high jitter performance. Instead, fPLL is recommended for relatively low data rate:
(1 ÷ 12.5) Gbps. Since the designed transceiver data rate is within such interval (1.25
Gbps) a fPLL was utilized. An fPLL is similar to the CDR’s architecture previously
described, as it is clear in the block diagram of Figure 4.8.

The fPLL is a quite complex IP which leaves room for a deep customization. For the
proposed design, the default configuration5 was chosen:

• fPLL mode: transceiver.

4A bounded channel is preferred when there are high constraints on the clock skew. With the former
configuration the skew between multiple transceiver channels is reduced.

5Refer to [63] for the complete list of parameters and the correspondent explanation.
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Figure 4.8: Conceptual block diagram of a fPLL, inspired by [63].

• Protocol mode: basic.
• Desired reference clock frequency: 125.0 MHz.
• Number of PLL reference clock: 1.
• Bandwidth: high.
• Operation mode: direct.
• Output frequency: 625.0 MHz.
• Dynamic reconfiguration: disabled.
For what concern the input reference clock many options are available (refer to Figure

4.8). Typically, a dedicated FPGA reference clock pin is used. However, the main
requirement is to have a stable and free-running clock signal at power-up to complete a
proper calibration.

4.1.4 Transceiver Native PHY

As introduced in the Background and Literature Study, the transceiver PHY is mainly
composed of PMA and PCS. The Transceiver Native PHY supports both PMA and PCS
under the assumption that it is then connected to a MAC IP (the Low Latency Ethernet
10G MAC for example) or to data generator and analyzer directly implemented in the
PL. Moreover, it supports many protocols such as: PCIe, various Gigabit Ethernet,
CPRI and many others. Finally, if no protocol is specified, the key role is played by the
selected data rate and by the transceiver architecture.

The transceiver also required the interconnection with an external PLL (the previously
described fPLL) and an external reset controller so that, at the end, it can be viewed as a
self-sustained system. The reset controller IP provided by Intel is the natural choice since
it is already optimized for such application. Conversely in our case, the Nios subsystem
provides the functionality of the reset controller. Intel proposes a dedicated design flow
[63]:

• Native PHY IP Core configuration.
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• Generation of the transceiver system (Native PHY, reset controller, external PLL)
and of the transceiver reconfiguration interface (optional).

• Connection to a MAC IP or data generator and analyzer (implemented in the PL).

• Compilation of the design and verify the functionality through simulation.

Alike the fPLL, many transceiver’s parameters are configurable. The layout of the
selected configuration (default) is as follows:

• Transceiver configuration rules: basic/custom (Standard PCS).

• Transceiver mode: TX/RX Duplex.

• Data rate: 1 channel at 1250 Mbps.

• TX bonding mode: not bonded.

• Internal loopback: enable rx_seriallpbken port.

• Standard PMA/PCS interface width: 10 bits.

• Dynamic reconfiguration: enabled.

PMA architecture

The PMA functionality detailed in the Background and Literature Study chapter is here
reflected by the Intel PMA architecture. Hence, this subsection is meant to underline the
differences.

At first, it is noticeable that the Intel architecture allows to perform a serial loopback
(and a reverse loopback) between the TX’s serializer and RX’s CDR (refer to the dot-line
connection in Figure 4.1).

Another peculiarity is the Av-MM interface, which is used to modify the configura-
tion post-instantiation. This feature specifically targets the VGA, CTLE and DFE which
cannot be automatically configured. Interestingly, the DFE supports 11 taps which guar-
antee ISI removal from the sequence of bits (from the current bit till the next 11). The
supported modes are listed below:

• Disabled Mode: tap values are set to 0.

• Manual Mode: tap values are manually set (and eventually modified through Av-MM
registers).

• Adaption Enabled Mode: tap values are optimized by the Adaptive Parametric
Tuning Engine.

Table 4.5 gives a final overview of receiver equalization modes:
The PMA comprehends a channel PLL configured as CDR, whose block diagram is

illustrated in Figure 4.9. The key component is the LTR/LTD Controller which handles
the lock modes:
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Receiver Equalization Modes
CTLE adaption mode Manual, Triggered (PCIe Gen3 only)
DFE adaption mode Adaption enabled, Manual, Disabled

# of fixed taps 3, 7, 11

Table 4.5: Summary of receiver equalization modes (based on Table 251 of [63]).
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Figure 4.9: Conceptual block diagram of a the Native PHY PMA CDR, inspired by [63].

• Lock-to-Reference Mode (LTR): the CDR tracks the input reference clock (indicated
as refclk in Figure 4.9. The PD is inactive since the charge pump is controlled by
the phase frequency detector instead. The latter tunes the VCO so that, when the
lock condition is achieved, the rx_is_lockedtoref signal is asserted.

• Lock-to-Data Mode (LTD): the CDR tracks the input serial data instead of the
reference clock. In this mode the PD is used. The PD controls the charge pump
(and the VCO as a cascade) with respect to the phase difference. The time required
to reach the lock condition depends of the amount of incoming data and the required
PPM of phase difference. The rx_is_lockedtodata is asserted to indicate the lock
acquisition.

By default the lock mode handling is automatically performed by passing from LTR
to LTD during regular operation. However, if a quicker CDR lock time is required a
manual lock mode handling can be performed. This manual control is done through two
additional input ports: rx_set_locktoref and rx_set_lockedtodata.

To conclude, a list of the chosen configuration parameters is reported:

• PMA supply voltage for the transceiver: 0.9 V.
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• PMA configuration rules: basic.
• CDR reference clock frequency: 125 MHz.
• PPM detector threshold: ±1000 PPM.
• PMA CTLE mode: manual.
• PMA DFE mode: disabled.
• PMA output ports: enable rx_is_lockedtodata.
• PMA output ports: enable rx_is_lockedtoref.
• PMA output ports: enable PRBS verifier control and status ports.

PCS architecture

The transceiver Native PHY PCS architecture is very similar to the one described in the
Background and Literature Study. Thus, hereinafter only the difference between the two
architectures are analyzed. Firstly, here the reset controller is external.

Secondly, the notation is slightly different. The Phase Adjustment block at the TX
side (refer to Figure 2.9) is here denoted as TX FIFO. Similarly, the Elastic Buffer
task here is performed by the RX FIFO. The RX Phase Adjustment is replaced by the
combination of a rate Match FIFO and a Word Aligner blocks.

Note that, in case of external data generator and checker, the RX is not able to
distinguish the starting point of the received sequence of bits. Hence, with the 8B/10B
transmission code, the special sequence (k28.5) is sent for synchronization. In the designed
system things get more complicated since no 8B/10B encoder/decoder is used. Therefore,
a synchronization FSM is needed. With this aim the optional rx_bitslip port is enabled
and used: an edge causes the slip of a single bit. The FSM repetitively slips a bit of the
sequence (by driving a rx_bitslip edge) until synchronization is reached. This problem is
directly avoided while testing with the internal PRBS generator and checker.

The final difference regards the PRBS generator and checking handling. The Native
PHY internally has an Av-MM-based dynamic reconfiguration interface to handle it. This
interface can be optionally enabled and it requires an Av-MM master to communicate
with. This clearly shows the advantage of the Nios usage: the reset controller IP would
have required the instantiation of an additional master block. A detailed description of
how to enable and customize the PRBS generator and checker is provided later on within
the Software design section. A summary of the PCS configuration parameters follows:

• PCS FIFO mode: low latency for both FIFO TX and RX.
• PCS byte serializer mode: disabled both in TX and RX.
• PCS 8B/10B Encoder/Decoder: disabled.
• PCS rate match FIFO: disabled.
• PCS Word aligner mode: bitslip with external port for word synchronization in RX.
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4.2 Hardware/Software interaction via HAL

A set of SW routines called drivers is usually developed to access the underlying HW
through a higher-level code, typically in C programming language. Moreover, a set of
predesigned libraries is recommended to automatically define the system configuration
parameters, such as the base address of each module, and the signal types, like alt_u8
for unsigned char. A great advantage of the Intel design flow is, precisely, that a basic
set of drivers and libraries is already integrated within the HAL framework. The HAL
serves as a coherent and transparent interface that allows to program in a flexible way
without developing different drivers for every specific target device. This considerably
cuts off the firmware development time.

4.2.1 HAL overview and software hierarchy

The HAL can be classified as an intermediate paradigm in between desktop-like embedded
system and barebone embedded system. A comparison is interesting from both the software
hierarchy and initialization process perspective. To start with the software hierarchy, a
comparison is illustrated by the simplified hierarchies of Figure 4.10.
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Figure 4.10: Software hierarchy comparison: (a) desktop-like embedded system, (b) HAL-
based system, (c) barebone embedded system. The picture is inspired by [62].

Hence, the HAL represents a compromise between the complexity of a completely
mediated HW access via OS (desktop) and a fully direct application-hardware interaction
(barebone). It provides similar desktop-fashion functionality without requiring an OS.
As shown in Figure 4.10, (b) the software hierarchy is made of:

• Device drivers: simple routines to access the I/O resources.
• Application Programming Interface (API): set of utility functions such as timing

management, interrupt handling or Unix compatible functions.
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• C standard library: ANSI C library functions.

Depending on the I/O device and the design requirements, it is possible to use API and
C standard libraries or, to perform direct read/write access to bypass the HAL. Indeed,
the HAL usage is not mandatory and it is not recommended in case of devices with
HW-specific features (non-generic devices). In other words, non-generic devices (such as
PIO cores) do not include a mapping to the HAL. Noteworthy examples of device classes
compliant with the HAL’s model are: character-mode (JTAG UART), timer and flash
memory devices. To summarize, an HAL-compliant device driver comprehends:

• A collection of macros to read/write I/O registers (mandatory).
• Status variables to monitor the device’s current state.
• A collection of initialization routines.
• Interrupt Service Routine (ISR) and functions to manage hardware interrupt pro-

cessing.
• BSP configuration components integration.

4.2.2 HAL initialization process

For the initialization process which comprehends HW setup (such as cache flushing, stack
configuration, drivers initialization and interrupts enabling) several paradigms are avail-
able. In desktop-like systems the OS takes care of the run-time environment preparation
and of the program execution scheduling and coordination. As a consequence, the ap-
plication program is free to start using the libraries and I/O services. Conversely, in a
barebone system a start-up code is required to initialize the processor and I/O devices,
to set-up the interrupt service and, finally, to coordinate all the operations. Once again,
the HAL paradigm lies in between. This means that the environment cannot be dynam-
ically prepared (as with the OS), and that pre-defined initialization routines are firstly
executed to perform the set-up tasks. Basically, if all the devices are HAL-compliant, the
application program can assume that all the resources and libraries are available without
manually performing any initialization task. A summarized list of the initialization steps
follows (refer to [62] for the full list):

• Flushing the caches, configuring the stack pointer and the global pointer registers.
• Copying the data to the selected memory module (such as the OCM).
• Programming the interrupt controller and enabling interrupts.
• Initializing the drivers via alt_sys_init() function call.
• Preparing the C standard I/O channels.
• Calling main() and, ultimately, calling exit().

4.2.3 BSP file structure

Within the HAL environment, a run-time SW, specifically targeted for the Nios II may
be provided by the Board Support Package, identified as BSP. At firmware development
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time, BSP libraries are integrated with user application files to create a bootable image.
The BSP libraries comprehend drivers, HAL API code and headers and the compiled
object files. Precisely, the drivers configuration is performed through BSP; for example
the character mode device is specified and the interval timer core is customized as system
timer or as timestamp timer. It is also possible to select a reduced set of C standard
libraries in order to considerably reduce the memory size.

4.2.4 I/O access methods and design choices

Based on the mentioned overview, different methods to access I/O devices can be distin-
guished:

1. via standard library functions.

2. via HAL-compliant functions.

3. via customized device drivers.

4. via direct low-level read/write operations (not recommendable).

The main advantages of methods 1 and 2 is the development of robust, transparent
and flexible firmware with no need for manual initialization. Method 3 targets non-
compliant HAL devices, since it generally guarantees good performance (optimized code
with respect to the device specification) at a price of the initial set-up development. This
solution can be optimal in case of small systems with a reduced amount of devices with
a limited complexity so that the development time is still acceptable.

Consequently, the design implementation was chosen as follows:

• JTAG UART access via method 2. The natural choice would be to associate the
JTAG UART to the stdout and stdin stream flows by exploiting the high-level
C standard stdio libraries. This would allow the usage of the printf() and
scanf() functions. As a drawback a considerable amount of memory is required.
The reduced set of drivers provided by the HAL, includes the sys/alt_stdio.h
libraries which features alt_printf and alt_putstr functions. These functions
support limited write on console functionality but with a much smaller memory
size with respect to the standard C solution. Moreover, the JTAG UART is au-
tomatically initialized by the ALTERA_AVALON_JTAG_UART_INIT(JTAG_BASE,
jtag_name) belonging to the alt_sys_init function.

• Timer configuration and access via method 3. In most of the cases involving a
timer core, it is advisable to use the HAL framework. However, for this spe-
cific design, customized drivers were developed to reach a resolution of 5µs, re-
quired to perform a correct reset sequence. Such resolution is not guaranteed by
the usage of the HAL usleep(unsigned int t) function. Specifically, the
set_timer_prd(alt_u32 timer_base, alt_u32 prd) function was imple-
mented to handle the initial configuration.
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• PIO communication via method 3. In this case, the design choice coincides with the
recommended one, since PIOs are categorized as non-compliant HAL devices. To
perform read/write operations pio_read(base) and pio_write(base, data)
driver routines were developed. Finally, a init_pio() function was developed to
perform the set-up tasks.

• Transceiver dynamic reconfiguration via method 3. In this case, since the re-
configuration was used only for enabling the PRBS generator and checker a cus-
tomized routine rd_mod_wr(base, address, rd_mask, wr_mask) was de-
veloped within the gpio_macros.h file. The latter routine is used to perfom an
atomic read-modify-write operation, as required by [63].
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4.3 Software design
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Figure 4.11: Software execution flow of the main() code.
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The C-based execution flow, for the transceiver handling, is exemplified in Figure
4.11. The objectives of the code are as follows:

• System reset at power-up.

• Dynamic reconfiguration of the transceiver (limited to the PRBS generator and
checker).

• Status register readback with synchronization loss detection.

• Synchronization loss recovery via ISR.

The firmware is based on low-level drivers developed for the PIO and the timer in
addition to a main source file implementing high-level functions. A graphic scheme is
illustrated in Figure 4.12, whereas the main function’s description is summarized in Table
4.6.

nios_phy_cntrl_sw_main.c

void pwup_rst_sequence()

static void ISR_RST(void* context, alt_u32 id)

void init_pio()

void wait_5n_us(int us)

void timer_set_prd(alt_u32 timer_base, alt_u32 prd)

gpio_macros.h
prototype definition

pio_read(base)

pio_write(base, data)

pio_clear_capt_bit(base, mask)

pio_read_capt_bit(base)

pio_inter_en(base, data)

timer_driver.h

timer_read_tick(base)

timer_clear_tick(base)

set_prd_low(timer_base, low)

set_prd_high(timer_base, high)

prototype definition

start_timer(timer_base, value)

rd_mod_wr(base, address, rd_mask, wr_mask) 

Figure 4.12: Software organization of the functions which are called in the main source
file and the developed drivers’ routines.

52



4 – System design and development

Function Prototype Description

void pwup_rst_sequence() Read/write operations from/to PIOs for
the power-up reset sequence and to the
PHY’s dynamic interface for reconfiguration

static void ISR_RST( Recover from synchronization loss
void* context, alt_u32 id) by performing a TX or RX reset

void timer_set_prd( Set the timeout period to prd and
alt_u32 timer_base, alt_u32 prd) select the timer’s mode (free-running)

void wait_5n_us(int us) Increment ntick counter until the inserted
value in µs (resolution: 5µs)

void init_pio() Enable input capture and register
the ISR_RST (alt_irq_register())

Table 4.6: Brief description of the functions in the main source file.

4.3.1 Reset and dynamic reconfiguration

This section explains how to perform the transceiver reset and dynamic reconfiguration by
using the Nios II subsystem as embedded controller. Firstly, the timing requirements are
analyzed in Power-up reset sequence according to the Intel documentation [63]. Secondly,
the peripherals’ handling is detailed, with a particular interest in the PIO (PIO handling)
and the timer core (Timer handling). Similarly, it is explained how to interact with the
PHY’s reconfiguration interface. Note that the dynamic reconfiguration is confined to the
PRBS generator and checker (Transceiver dynamic reconfiguration interface handling).

Power-up reset sequence

The Transceiver Native PHY comprehends a set of input signals whose assertion, in a rigid
timing sequence, correctly performs the reset. The timing diagram of the full transceiver
reset sequence, as stated in [63], is illustrated in Figure 4.13. Noteworthy input signals
are:

• tx_analogreset: in charge of the PMA reset (TX side).

• tx_digitalreset: in charge of the PCS reset (TX side).

• rx_analogreset: in charge of the PMA reset (RX side).

• rx_digitalreset: in charge of the PCS reset (RX side).
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• pll_powerdown: input signal of the external PLL. It is in charge of the fPLL
reset.

Minimun intervals: Treq = 70 �s; Ttx_digital = 70 �s; Tltd = 4 �s

Device Power Up
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Figure 4.13: Timing diagram of the transceiver’s reset sequence, according to [63]. Note
that the listed intervals state the minimum time to be waited for correct behaviour.

The output status signals used to check the synchronization (LTD/LTR) are:
• *_cal_busy

6 output signals of both the fPLL and the transceiver which are de-
asserted at calibration completion. It is strictly required to wait until the calibration
is completed to start driving the reset sequence.

• pll_locked: output signal of the external PLL. It is asserted as soon as the lock
is acquired by the fPLL.

• rx_is_lockedtodata: asserted as soon as the CDR switches from LTR to LTD
mode. As a consequence, data synchronization is guaranteed.

PIO handling

The reset sequence is performed by the Nios II which drives the control signals and reads
back the correspondent status signals. The PIOs act as intermediate layer between the
controller and the transceiver. Hence, asserting a control signal implies to write the value
’1’ to the mapped bit within the PIO control registers. Similarly, monitoring a status
signal requires the reading of the mapped bit within the PIO status registers. When a set

6The * symbol is used as short notation for: pll_cal_busy, tx_cal_busy and rx_cal_busy.
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of signals needs to be driven/monitored, masks are applied to complete the correspondent
write/read operation.

Let’s imagine to sample the signal’s level as high or low at a certain instant of time.
Now this set of values can be mapped into a binary sequence corresponding to the content
of the PIO registers. The mapping assumes that a high-level is associated to a logical ’1’
whereas a low-level is associated to a logical ’0’. This means that, to reproduce the reset
sequence (Figure 4.13), it is sufficient to write the correspondent binary sequence (to the
PIO control) at every time instants the reset sequence was divided into. To better clarify,
a small portion of the reset sequence (shown in Figure 4.14) is driven by the simplified
C code in Listing 4.1.

PIO_cntrl(4) <-> pll_powerdown

PIO_cntrl(3) <-> tx_analogreset

PIO_cntrl(2) <-> tx_digitalreset

PIO_cntrl(1) <-> rx_analogreset

PIO_cntrl(0) <-> rx_digitalreset

t t1 2

tmin 70 µs

mapping at t  : [cntrl(4),cntrl(3),...,cntrl(0)] t  : [1,1,1,1,1] t  : [0,0,1,1,1]1 2i

Figure 4.14: Fraction of the reset sequence with the mapping to the PIO registers.

Listing 4.1 Extract of the C code to perform the reset sequence.

1 #inc lude " system . h " //System co n f i gu r a t i o n , base r e g i s t e r s
d e f i n i t i o n

2 #inc lude " gpio_macros . h " //PIO handl ing
3 #inc lude " timer_drv . h " //Timer handl ing
4

5 #d e f i n e ASS_RST 0x1F
6 #d e f i n e DEAS_TXANALOGRST 0x07
7

8 i n t main ( )
9 {

10 pio_write (CNTRL_SIG_BASE, ASS_RST) ; // Assert r e s e t
11 wait_5n_us (15) ; //Wait f o r 75 us
12 pio_write (CNTRL_SIG_BASE, DEAS_TXANALOGRST) ; // Deassert

tx_ana logreset
13 } // pll_powerdown
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Timer handling

An interval timer core was used in the system clock configuration. Its usage is funda-
mental to correctly temporize the writing operations (to the PIO) by interposing a wait
function in between. The key idea is to increment a counter (ntick) within a loop until
the desired value (input parameter) is reached. This is achieved by checking the timer’s
status register: if the tick was reached then this field is cleaned and the ntick is incre-
mented by one unit. In order to set the minimum interval of time (tick) to 5µs, with
the system running at 50MHz, 250 clocks are required: 5µs = 20ns · 250. Therefore, at
initialization phase the timeout period is set to 5µs by the following function call:

timer_set_prd(TIMER_SYS_CLK_BASE, 250)

where TIMER_SYS_CLK_BASE value is specified within the included system.h file.
The wait function is shown by Listing 4.2 and it is called in line 11 of Listing 4.1.

Listing 4.2 wait_5n_us(int us) function

1 i n t n t i ck = 0 ;
2 whi le ( n t i ck < us ) // wait f o r mu l t ip l e o f 5 us
3 {
4 i f ( t imer_read_tick (TIMER_SYS_CLK_BASE) == 1)
5 {
6 t imer_c lear_t ick (TIMER_SYS_CLK_BASE) ;
7 nt i ck++;
8 }
9 }

Transceiver dynamic reconfiguration interface handling

Each channel was provided with a separate Av-MM-based reconfiguration interface to
allow a concurrent interaction. This lets the channel free to dynamically adapt in case
of changing requirements. In this thesis, the communication with the reconfiguration in-
terface was limited to enable and configure the PCS’s PRBS generator and checker. The
access to the transceiver’s programmable space via Av-MM requires read/write operation
which are compliant with the Av-MM specifications. Furthermore, all writes transactions
need to be read-modify-write or, in other words, atomic. This prevents accidental modifi-
cations of two or more features sharing the same reconfiguration address (with interleaved
bits).

The PRBS9 configuration was chosen by considering the 10-bit width PCS/PMA
interface and the data rate below 3Gbps. To enable this configuration, a precise sequence
of steps so-called direct reconfiguration flow [63] is followed:

1. Assert the digital reset.

2. Assert the analog reset. This step is required in case of reconfiguration of data rate,
protocol mode, or PRBS generator/checker enabling/disabling.

56



4 – System design and development

3. Perform a sequence of read-modify-write operations to the specific address to force
a defined bit configuration.

4. Deassert the digital reset.
5. Deassert the analog reset.

An additional 3b step may be added to perform re-calibration. This is necessary in
case of data rate or protocol mode modification. This general flow allows the transceiver
to be modified at any time during regular operation at the expense of an additional reset.
Since the requirement is to enable and continuously use the PRBS, the best option is
to directly exploit the reconfiguration window at start-up. The reconfiguration window
is the interval of time, within a reset sequence, in which it is allowed to perform the
reconfiguration. For example, in the extract 4.1, the reconfiguration code should be
inserted between line 10 and line 12.

A read-write-operation selectively forces (based on the specified masks) some bits
(within the input address’ location) to the desired value, by keeping all the rest untouched.
This is done by forcing the logical ’1’s while reading (via bitwise AND against a rd_mask)
and the logical ’0’s while writing (via bitwise OR against a wr_mask) as implemented in
the following routine:

#define rd_mod_wr(base, address, rd_mask, wr_mask) IOWR(base,
address, ( IORD(base, address) & rd_mask) | wr_mask );

where IORD and IOWR are implemented in the HAL’s io.h source file. Listing
4.3 presents an extract of code to enable the PRBS9 generator according to [63] bit
sequences.7

Listing 4.3 Reconfiguration window -> Enable PRBS generator 10bit mode

1 rd_mod_wr(TRANS_BASE, 0x006 , 0x30 , 0x4C) ; // 1) address 0x006 ,
b i t s "01−−1100"

2 rd_mod_wr(TRANS_BASE, 0x007 , 0x0F , 0x20 ) ; // 2) address 0x007 ,
b i t s "0010−−−−"

3 rd_mod_wr(TRANS_BASE, 0x008 , 0x8C , 0x00 ) ; // 3) address 0x008 ,
b i t s "−000−−−−"

4 rd_mod_wr(TRANS_BASE, 0x110 , 0xF8 , 0x04 ) ; // 4) address 0x110 ,
b i t s "−−−−−100"

4.3.2 Synchronization loss recovery via ISR

During the transceiver regular operation, a synchronization loss may occur. This may
dramatically affects the system’s performance and reliability, thus the system should be
able to recover as fast as possible to minimize the impact. Nevertheless, if the system

7The symbol - is used to indicate the bit(s) to preserve.
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recovers fast enough, the impact is almost negligible. In order to have a reactive response,
the loss recovery was handled through interrupt. Specifically, whenever the affected
signals experience a falling edge, the correspondent ISR is executed to perform a selective
reset. Selective because the loss is usually confined to the receiver side (falling edge on
rx_is_lockedtodata) or to the transmitter side (falling edge on pll_lock). In the
first case, only the RX is reset whereas when it comes to the TX loss, only the digital
portion (and the fPLL) needs to be reset. An introduction of the Nios’ exception handling
system follows.

Nios II exception handling

Any event disrupting the regular flow of execution can be identified as exception and
needs to be handled. Nios II’s exception handler consists of a set of SW routines to
serve exceptions, and to eventually let the ISR takes control. There is a single exception
handler whose code resides at the so-called exception address location. Because of the
non-vectored controller, the exception handler has to discriminate the type of exception
associated to the given address. Besides the different types of exception, the hardware-
based ones play a key role in the designed system. Indeed, an HW interrupt is triggered
by an HW IRQ PIO-based (falling edge of the status signals). Hardware interrupts are
generally managed by dedicated ISR. To summarize, Nios II reacts to interrupts in the
following way:

• Keep the information of the actual system’s configuration by saving the status
register in eastatus.

• Set ienable to disable HW IRQs with lower or equal priority (it can be defined
by SW).

• Save the information of the next instruction to be executed post-interrupt.
• Serve exception.

The registered ISRs are then collected together in a lookup table and they are iden-
tified by a unique IRQ ID (assigned in the system.h file according to the HW design).
The HAL API assists in the design, registration and maintenance of the ISRs. To exploit
these functions, every ISR has to match the following prototype (the one expected by the
IRQ register function):

void isr(void* context, alt_u32 id)

where id is the unique IRQ identifier and context is a pointer to information useful
for the specific ISR it is associated to. Such ISR is registered by calling the following
HAL function:

int alt_irq_register(alt_u32 id,
void* context,
void (*isr)(void*, alt_u32));
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where isr points to the function to be executed to serve the IRQ identified by id.
A successful registration automatically enables the interrupt on return from the register
function itself. Later on, alt_irq_enable() and alt_irq_disable() may be used
to easily enable/disable interrupt based on the id information. Rarely, the enable/disable
process is required for all the interrupt and also in that case HAL provides ad-hoc func-
tions (alt_irq_enable_all() and alt_irq_disable_all()). If a system heavily
relies on interrupt, it is worth monitoring latency, response time and recovery time. The
latency is the interval of time between the interrupt generation and the execution of the
first instruction at the exception address. The response time is the interval of time be-
tween the interrupt generation and the execution of the first ISR instruction. Finally, the
recovery time is the required time to switch from the execution of the last instruction to
the regular operation.

PIO edge capture handling via ISR

As already explained, at design time, the PIO can be configured with additional features:
edge capture and IRQ. The first feature is translated into an additional edge capture
register where, in case of condition met (rising, falling or generic edge), the correspondent
bit is set to ’1’. Conversely, by including the IRQ, an additional circuit to serve such
interrupt request is added. From the HAL perspective, the additional information is
automatically included within the system.h file, as in the following example targeting
the PIO status (called STATUS_SIG):

• #define STATUS_SIG_BIT_CLEANING_REGISTER 1

• #define STATUS_SIG_CAPTURE 1

• #define STATUS_SIG_EDGE_TYPE "FALLING"

• #define STATUS_SIG_IRQ 2

• #define STATUS_SIG_IRQ_TYPE "EDGE"

The combination of edge capture and IRQ was widely used to handle the transceiver.
The idea is to recover from a synchronization loss through an ISR whose IRQ is triggered
by a falling edge captured by the PIO status. Note that only pll_locked (mapped to
PIO_status(0)) and rx_is_lockedtodata (mapped to PIO_status(2)) should
trigger an IRQ. Thus, a specific routine was developed within the gpio_macros.h to se-
lectively enable the interrupt on the PIO signal specified by the input mask:
pio_inter_en(base, mask).

However, another issue is present: the PIO status has a unique IRQ as a whole. This
implies that only one ISR can be registered with such id. As a consequence, the unique
ISR has to handle both types of synchronization loss: at TX and RX side. This intro-
duces an initial overhead since the ISR has to check the edge capture register to recognize
the affected signal. Alternatively, an HW modification is required: additional PIOs need
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to be implemented to develop separated ISRs. However, this is no longer sustainable for
complex systems (for example where a battery of links is under control) because of the
explosion of the resource utilization.

For this thesis, the ISR’s overhead is irrelevant, thus no additional HW were imple-
mented. To summarize, the code was developed according to the following steps:

• The ISR (ISR_RST) was developed.

• During and after power-up reset the edge capture register was cleaned by the
pio_clear_capt_bit(base, mask) routine. The input mask selectively tar-
gets PIO_status(0) and PIO_status(2).

• A PIO status initialization was perform to enable interrupt and to register the ISR
by calling alt_irq_register.

The ISR_RST simply checks for the edge capture register, by isolating the inter-
ested bits, and consequently performs a reduced reset sequence. Listing 4.4 illustrates
the ISR_RST’s flow, with the detailed code for the RX reset sequence. The correspon-
dent timing diagram is illustrated in Figure 4.15. Noteworthy is the dependence be-
tween the falling edge on the rx_is_lockedtodata and the rising edge of the asso-
ciated IRQ. Similarly, the TX reset sequence is implemented by asserting/deasserting
tx_digitalreset and pll_powerdown signals, according to the timing diagram of
Figure 4.16.

Minimun intervals: Treq = 70 �s; Tltd = 4 �s

Power-Up Reset

calibration

rx_is_lockedtodata

rx_analogreset

rx_digitalreset

irq [PIO_id]

Treq

Tltd

c l

a b

g k

h x

d e

Figure 4.15: Timing diagram of the RX reset sequence.
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Minimun intervals: Treq = 70 �s

pll_powerdown

tx_digitalreset

Power-Up Reset

calibration

pll_locked

irq [PIO_id]

Treq
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Figure 4.16: Timing diagram of the TX reset sequence.

Listing 4.4 Extract of static void ISR_RST(void* context, alt_u32 id)

1 alt_u8 status_capt ;
2 status_capt = pio_read_capt_bit (STATUS_SIG_BASE) ;
3 status_capt &= 0x05 ; //Only p l l_ locked and rx_is_lockedtodata
4

5 i f ( status_capt == lock_i s_ lo s t ) // == 0x01 ?
6 {
7 // Perform TX r e s e t sequence
8 }
9 e l s e

10 i f ( status_capt == lockedtodata_i s_los t ) // == 0x04 ?
11 { // Perform RX r e s e t sequence
12 pio_write (CNTRL_SIG_BASE, 0x03 ) ; // Assert rx r e s e t
13 wait_5n_us (15) ;
14 pio_write (CNTRL_SIG_BASE, 0x01 ) ; // Deassert analog r e s e t
15 do{ status_read = pio_read (STATUS_SIG_BASE) ; } //Wait f o r LTD
16 whi le ( ( status_read & 0x04 ) != 0x04 ) ;
17 wait_5n_us (1 ) ;
18 pio_write (CNTRL_SIG_BASE, 0x00 ) ; // Deasser t d i g i t a l r e s e t
19 pio_clear_capt_bit (STATUS_SIG_BASE, lockedtodata_i s_los t ) ; //

Clear capture r e g i s t e r
20 }
21 pio_inter_en (STATUS_SIG_BASE, 0x05 ) ; // Enable IRQ
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Chapter 5

Analysis and Results

The analysis starts from the functional verification through simulation. In this phase,
the regular operation and deviation from the expected behavior are simulated. It follows
the system synthesis and implementation on the target board with consequent performance
evaluation in terms of logic resource utilization, power consumption and software profiling.
Finally, the proposed system is benchmarked against an alternative solution with an HW-
based system handler.

5.1 Functional simulation

A set of libraries was generated by Qsys for simulation purpose (simulator compliant
model of the system). Those libraries, together with the customized top-level testbench,
were compiled, elaborated and finally simulated. A memory initialization file (with the
compiled firmware) mapped to the OCM allows to test the HW/SW interactions. In order
for such test to be effective, the memory initialization file should be included within the
simulation directory.

The simulation was structured in a systematic way based on various steps which stim-
ulates the same architecture with different signals. In order to feature a debug mode, the
implemented system (refer to Figure 4.1) was slightly modified: additional multiplexers
and AND gate were introduced. The resulting block diagram is illustrated in Figure 5.1.

The debug mode is used to reset the transceiver independently from the Nios II, by
manually driven external signals. Additional external signals are then forced in regular
mode (with debug mode off) to emulate the transceiver’s loss of synchronization. In this
way the Nios II ability to react via ISR is checked.

The progressive set of tests is summarized as follows:

1. Test the transceiver behavior after a manually performed reset. Manually means
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Nios II-e

fPLL

Native PHY 

reconfig
interfaceAv-MM

IRQ

PIO

status

control

PIO

refclk

Figure 5.1: Simplified block diagram of the top-level testbench. The Nios II-e system
handler comprehends the processor, JTAG UART, OCM and timer, whose interconnec-
tion through Av-MM are the same as in the designed system. The debug mode value is
assigned as a parameter. When PRBS generator and checker are disabled, an external
data generator and checker are used.

that the signal are driven within the top-level testbench by directly define the logical
values over time. This first step aims to check the high-speed link functionality
independently from the controller’s interference.

2. Switch off debug mode to give the control to the Nios II. In this mode, the transceiver
is sensitive to the PIO signals instead of the external ones. Therefore, the Nios cor-
rect warm up via pwup_rst_sequence function call is monitored.

3. Test the system ability to recover from an unexpected behavior by emulating a
synchronization loss at the receiver side (falling edge on the externally driven
ext_lockedtodata) or at the transmitter side (falling edge on the externally
driven ext_pll_locked). This step plays a key role in the debugging of the
ISR_RST.
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4. Enable the PCS’s built-in PRBS generator and checker and perform step 2) and 3)
again with this configuration.

During the simulation of the transceiver’s regular mode of operation there would be
no reason to experience a synchronization loss. Hence, such unexpected behavior was
induced by manually acting on the external signals connected to the PIO status. In order
to preserve the regular operations, the following connections were performed:

PIO_status(0) <= pll_locked AND ext_pll_locked
PIO_status(2) <= rx_is_lockedtodata AND ext_lockedtodata

To simulate the regular operating mode ext_pll_locked and ext_lockedtodata
are fixed to ’1’ so that the PIO status listens to the fPLL and the transceiver. Conversely,
to induce a synchronization loss a falling edge is manually driven to the external signals
to trigger the PIO status IRQ and, to consequently execute the ISR_RST. In order to
simplify the debug process, it is convenient to include the Nios II IRQ associated to the
PIO status, to the set of waveforms checked during simulation.

The verification process is successful if the same simulation waveform are obtained
in case 1) 3) and 4) and if such waveforms are compliant to the specifications [63]. The
same should happen in case of an induced loss of synchronization in both 3) and 4).

5.2 Synthesis and performance evaluation

The verified system was compiled, synthesized, programmed onto the Arria 10 SoC board
and, finally, characterized in terms of logic utilization, power consumption and software
profiling (refer to PoC’s characterization). The same procedure was carried out for the
benchmark system. The key difference is that the system handler functionality is imple-
mented in HW by the Intel Transceiver PHY Reset Controller IP. The reset controller
interface is targeted to be connected to the transceiver Native PHY.

5.2.1 PoC’s benchmark against a traditional HW-based controller

The aim of this benchmarking is to evaluate the performance drawback of the SW im-
plementation of the system’s controller (hereinafter called NiosII controller). The Intel
Transceiver PHY Reset Controller IP is used as traditional HW-based controller. This IP
is specifically designed to reset transceiver native PHY by monitoring the PLL lock activ-
ity. The complete system, hereinafter called HW controller, is realized through the direct
connection of the reset controller to the transceiver. In order to perform this comparison,
external data generator and checker have been used to provide/check data to/from the
transceiver in both cases.

The first metric to be compared is the resource utilization. The post-compilation data
are collected in Table 5.1. As expected, the introduction of a soft-core processor leads
to an increase of logic utilization, registers and memory usage. In particular, the data
shows an increment in logic utilization of approximately 18 times. The impact depends
on the system’s requirements and on the total amount of available programmable logic.
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Resource HW controller NiosII controller

Logic utilization (ALM) 51 / 251,680 (< 1%) 955 / 251,680 (< 1%)

Total registers 99 1684

Total pins 12 / 812 (1%) 10 / 812 (1%)

Total block memory bits 0 / 43,642,880 (0%) 43,008 / 43,642,880 (< 1%)

Total HSSI RX channels 1 / 48 (2%) 1 / 48 (2%)

Total HSSI TX channels 1 / 48 (2%) 1 / 48 (2%)

Total PLLs 2 / 96 (2%) 2 / 96 (2%)

Table 5.1: Comparison of the logic utilization between the Intel-based system (HW con-
troller) and the proposed SW-based solution (NiosII controller). The data are collected
from the Quartus reports.

Secondly, the power consumption was compared. The comparison is based on both the
EPE (Table 5.2) and the PowerPlay Analyzer (Table 5.3) estimations1. An increment
in the logic utilization, generally implies an increase in the static power consumption,
since this power contribution evaluates the leakage of the system. Conversely, the static
power consumption of the HW controller and the NiosII controller is almost the same.
This result is proven in case of both EPE and PowerPlay analyzer. Probably, this is
due to the tool resolution: the logic utilization increment is negligible, thus, the power
estimation is not enough accurate to reveal the correspondent increment in static power
consumption. In conclusion, due to the limited complexity of the proposed system, the
impact on the power consumption is so small that it cannot be reveal through the available
tool. As a consequence, it is not possible to generalize this result.

Based on the collected data, and, by limiting the analysis on the specific case of study,
the conclusion is that it is worthy to pay for the additional flexibility provided by the
SW introduction.

1For more details about the EPE and PowerPlay power estimation methods, refer to Design Method-
ologies and Preliminar Analysis Chapter.

2The routing thermal dynamic power contribution has been included within the dynamic contribution.
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Power contribution (W) HW controller NiosII controller

Logic 1.38 · 10−4 8.35 · 10−5

Clock 4.82 · 10−4 1.73 · 10−4

PLL 0.116 0.116

I/O 3.60 · 10−4 4.73 · 10−5

Transceiver (XCVR) 0.247 0.247

Static power 1.485 1.485

Total thermal power 1.850 1.849

Table 5.2: EPE thermal power estimation: comparison between the Intel-based system
(HW controller) and the proposed SW-based solution (NiosII controller).

PoC power contribution (W) HW controller NiosII controller

standby dynamic standby dynamic

Clock2 0.00 9.44 · 10−3 0.00 5.78 · 10−3

PLL 7.88 · 10−3 0.103 7.88 · 10−3 0.103

Register cell2 0.00 1.10 · 10−4 0.00 1.10 · 10−4

I/O Analog 8.00 · 10−5 2.70 · 10−4 5.00 · 10−5 0.00

I/O Digital 1.10 · 10−4 2.0 · 10−5 9.00 · 10−5 0.00

Transceiver (XCVR) 0.188 0.158 0.188 0.153

Static power 1.534 1.533

Total thermal power 1.890 1.880

Table 5.3: PowerPlay Analyzer thermal power estimation: comparison between the Intel-
based system (HW controller) and the proposed SW-based solution (NiosII controller);
under an Ambient Temperature of 25 ◦C, and a Junction temperature of 28.4 ◦C. The
data are collected from the Thermal Power Dissipation by Block Type report, in order to
have a detailed comparison.

PoC’s performance evaluation

In conclusion, additional measurements were carried out for the PoC with the internal
PRBS generator and checker enabled. The resource utilization information is collected in
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Table 5.4, whereas the thermal power consumption is summarized in Table 5.5. Never-
theless, it is interesting to notice that, the value obtained with the EPE are close to the
more accurate ones provided by the PowerPlay Analyzer. This would suggest that it is
beneficial to perform an EPE estimation (at least at the beginning of the design process).

Resource PoC

Logic utilization (ALM) 1,084 / 251,680 (< 1%)

Total registers 1976

Total pins 9 / 812 (1%)

Total block memory bits 43,008 / 43,642,880 (< 1%)

Total HSSI RX channels 1 / 48 (2%)

Total HSSI TX channels 1 / 48 (2%)

Total PLLs 2 / 96 (2%)

Table 5.4: Resource utilization of the PoC. The data are collected from the Quartus
reports.

PoC power contribution (W) EPE PowerPlay

standby dynamic

Clock3 1.73 · 10−4 0.00 5.47 · 10−3

PLL 0.116 5.47 · 10−3 0.103

I/O 3.77 · 10−5 1.30 · 10−4 0.00

Transceiver (XCVR) 0.247 0.188 0.153

Static power 1.485 1.533

Total thermal power 1.849 1.880

Table 5.5: PoC’s thermal power estimation through EPE and PowerPlay Analyzer. The
PowerPlay report specify the thermal power consumption (static and dynamic) for each
block under an Ambient Temperature of 25 ◦C, and a Junction temperature of 28.4 ◦C.
In this table such information has been summarized to have a comparison with the EPE
estimation.

3The routing thermal dynamic power contribution has been included within the dynamic contribution.
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5.2.2 PoC’s software profiling

The PoC’s characterization is enriched by SW profiling. The performance evaluation
was performed by an additional high-resolution timer (interval timer core configured as
timestamp timer), through alt_timestamp() function call at the top and the bot-
tom of the code under analysis. The timer management is simplified by the HAL’s
alt_timestamp.h, which also contains an initialization function and the
alt_timestamp() itself. Unfortunately this driver requires additional memory: the
OCM size was increased to 8 KB. Two different measurements were carried out: time
interval of the power-up reset and time spent within the ISR_RST. This was done by
associating a couple of variable (start_time and stop_time) to each measurement.
Finally, the computed intervals (end_time - start_time) were printed to console (due
to the JTAG UART configured as stdout):

• power-up reset sequence : 167µs

• recover from data synchronization loss (RX reset) : 207µs

• recover from lock synchronization loss (TX reset) : 268µs

These data are inevitably affected by the timer’s overhead: the timestamp() func-
tion call requires many clock cycles to be performed. However, by considering the order of
magnitude of hundreds of µs, it is reasonable to consider such contribution as negligible.

For what concern the power-up reset, the measured value is considerably below the
threshold of ms, and, it is also close to the optimum value4 of approximately 165µs.

Conversely, for what concern the ISR_RST, despite the results are still acceptable,
there is room for further studies and improvements. Indeed, the approximate optimum
would be: 155µs for the TX reset and 90µs for the RX reset, where the included switching
time between LTR and LTD was hypothetically set to 10µs.

To sums up, this analysis not only proves that the proposed firmware fulfills the timing
requirements (with a minimum amount of resource utilization), but it also identifies the
starting point for future improvements.

4This value was computed based on the delays manually introduce, via wait_5n_us() to reproduce
the timing sequence. Note that the time required to switch from LTR to LTD is supposed to be 10µs.
This estimation may not be accurate since it is affected by different factors.

68



Chapter 6

Conclusion

The continuously increasing demand for minimally-sized, highly complex, and low-power
electronic devices, implies a shorter TTM, while raising the probability of error-prone
systems. An additional degree of flexibility has a double benefit: simplification of bugs
localization, and consequent correction; on the other hand the possibility of tailoring the
functionalities to meet slightly modified requirements.

The abstraction of the system’s controller, through SW implementation, represents
a possible contribution to flexibility. This approach, proposed by Ericsson AB to ad-
dress high-speed links’ applications, was investigated in the master thesis by developing
and characterizing a PoC, whose peculiarity is a software-based controller. Indeed, the
firmware, running on a Nios II soft-core processor, substitutes a traditional HW-based
FSM to control the reset and dynamic reconfiguration of a transceiver PHY. In details,
Nios II is in charge of driving the control signals, while monitoring the transceiver’s
status. Additionally, a dedicated ISR allows the system to recover from unexpected
synchronization losses.

A top-level testbench was written to perform a functional simulation of the PoC. In
this phase, the correct interaction between the firmware and the underlying HW was
proven. Afterwards, the effectiveness of the transceiver’s reset and the consequent op-
erative mode were tested. Finally, the system’s ability to recover from malfunctioning
(caused by manually induced loss of synchronization) was checked. Additionally, through
software profiling, the Nios II performance were evaluated, and the obtained result, clearly
underlines that the timing requirements are met.

Finally, the PoC was benchmarked against a system with a traditional HW-based
controller (Intel Transceiver PHY Reset Controller IP). The logic utilization data show
that, the introduction of a soft-core processor increments the resource utilization of ap-
proximately 18 times. In this case, the complexity of the system is reduced respect to the
capability of the Intel Arria 10. However, it is advisable to evaluate the impact of such
increment for more complex systems. For what concern the power consumption, no direct
conclusion can be drawn: the results would suggest that the adopted techniques are not
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6 – Conclusion

accurate enough to differentiate between the two solutions. Thus, it is reasonable to as-
sume that only a considerable increment in the static power consumption (correspondent
to an increment in the logic utilization), would have been revealed.

The developed PoC successfully demonstrates the benefits of a SW-based controller
implementation in terms of reduced engineering effort required to design, perform modi-
fication (there is no need to re-synthesize) and debug. On-the-fly modifications are also
simplified: the transceiver can be dynamically reconfigured through software read-modify-
write operations. On the other hand, the clear limitation is the reduced complexity of
the proposed system. Consequently, this promising approach requires more researches in
order to evaluate the impact of a scaling-up.

6.1 Future Work

The overcome the PoC’s limitations, and move towards the release of newer FPGA/ASIC,
additional explorations are suggested:

• The PoC may be improved by the introduction of an external flash memory, con-
taining the hardware description information (.sof file), and the developed firmware
(.elf file). In this way, there would be a direct boot from flash, without relying on
a host PC. A connection with the host PC would be limited to a debug purpose.

• Besides monitoring the system conditions, the controller should desirably perform
error traceback, so that it would act as HW supervisor. More specifically, the
supervisor should be able to localize the errors, and to analyze error flag traces in
order to identify the root cause. This approach would simplify the debug process,
and consequently, cut down the correspondent time and cost.

• An examination of possible alternatives for the embedded controller would be ben-
eficial. The starting point may be the comparison with the fast version of the Nios
II, which should improve the performance such as the interrupt latency, at a price
of additional logic utilization. Noteworthy would also be the exploitation of the
SoC’s functionalities through a HPS-based solution.

• To intensely experience the benefits of flexibility the system complexity has to
increase. For example, it would be interesting to adapt the firmware in order to
control various transceivers. This scaling-up needs to be investigated in terms of
both HW and SW, so that an optimal partitioning may be reached. Moreover, with
the additional complexity, further questioning arise: whether an OS-supervised
implementation would be advantageous, for example. Nevertheless, the feasibility
is limited by the logic utilization and power consumption constraints, and therefore,
an accurate measurement is required for such key metrics.
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