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Abstract

Nowadays hardware devices are becoming even more complex and heteroge-
neous. Many Systems-on-a-Chip are composed by multi-core processors and
several IP interfaces, different kind of memories and analog circuitry which
communicate via many different interface protocols. On a single Integrated
Circuit (IC) there are millions of logic gates shrunk on a smaller area. This
means that delivering a bug-free design is more complicated than the past.
To address these technical challenges, a new effort and more importance
must be invested on verification processes. The proposed methodology de-
scribes a new approach on how to perform functional verification on complex
pipelined microprocessor cores. Functional verification is considered as the
most time consuming tasks in the design cycle since it requires a huge human
and computational effort. This thesis presents a simulation-based methodol-
ogy for the generation of the test set based on an evolutionary algorithm. To
take advantage of the outstanding features of an evolutionary algorithm, this
methodology merges generation of the test set and verification of the gen-
erated programs in a single procedure, so that the correctness of the DUV
(Device Under Verification) is checked during the generation of the opti-
mized set of programs. This allows to explore a bigger space of solutions to
find hidden bugs and rarely-occurring incorrect behaviour. At first glance, it
may seem a time consuming process and to some extent it actually is. How-
ever, thanks to a new discovered fitness function, simulation time has been
sped up of about 20%. Experimental results are reported and described for
RI5CY core, a 32-bits RISC-V ultra low power microprocessor, developed at
ETH University in collaboration with University of Bologna. Actually, this
master thesis has been developed for 3 months at ETH University in Zurich
under the supervision of Professor Luca Benini and 3 months at Politecnico
di Torino under the direction of Professor Ernesto Sanchez. Presented re-
sults show the efficiency of the methodology as well as the improvements
with respect to past approaches.
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Introduction

Functional verification is an important step in the development of today’s
complex digital systems. It is the process of checking if the implementation
of a design matches its specification, by applying stimuli and observing that
the results are correct. The growth of the hardware complexity increases
the importance of this process even more. Today’s devices are made up of
millions of logic gates, multi-core processors and a multitude of interface
IP, memory and other analog circuitry, integrated in a single SoC. For this
reason, delivering a bug free design gets more and more complex. Moreover,
this complexity can lead the functional verification to be a bottleneck in the
design cycle since it can consume 60% of human and computing resources
in a design [1].

This master thesis proposes a new methodology to speed up the process
of verification of a hardware component and to guarantee the correctness of
the specifications. It suggests a new way of generating the set of programs
that are used for verification and a new way of performing verification it-
self. In the past programs were handwritten by specialized engineers and
even if they could appear complete and accurate, they certainly lacked a
large and complete space of solutions. To overcome this shortcoming, this
methodology makes use of an Evolutionary Algorithm to generate the set of
programs used to verify the design. An evolutionary algorithm is quite sim-
ple to set up, and requires no human intervention when running. It not only
provides an effective methodology to try random modifications, but also it
allows merging useful characteristics from different solutions, exploring effi-
ciently the search space. However the main question now is: how to evaluate
the performance of these programs? When is the design simulated enough?
The quality of a test program is a measure of the achieved coverage of the
design. Code coverage metrics belong to a class of high-level metrics used
in hardware verification. They act as heuristic measures for quantifying
the verification completeness and identifying imperfectly exercised design
aspects [2]. These metrics measure how many parts of the code are excited
while running software programs. Code coverage metrics are provided by
an external evaluator and are typically expressed as a percentage of items
covered. Therefore, the key point of this approach is to use an evolutionary
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INTRODUCTION

algorithm to generate pseudo-random assembly programs able to increase
the code coverage of the design under verification.

Later, to verify the correctness of the device, an Instruction Set Simula-
tor (ISS) has been used as a reference. It is a high level model of our device
written in a high level language. Instructions are provided to both the de-
vice under verification (DUV) and this golden model, only after results are
compared by a hardware module. If the value stored in the destination reg-
ister is the same, simulation proceeds, otherwise this module informs about
mismatches which indicate a bug in our hardware component.

A typical functional verification approach consists in generating first of
all the test set and after verifying the correctness of these programs. How-
ever, the methodology proposed in this thesis breaks with this approach:
it combines these two steps into a single one. Generation and verification
phases are joined in a single procedure, so that the correctness of the DUV
(Device Under Verification) is checked during the generation of the opti-
mized set of programs. Even though the goal of the evolutionary algorithm
is still to increase the code coverage, at the same time every single individ-
ual is subjected to verification. Through this approach several bugs have
been discovered. Figure 1 shows the architecture of the method used and
highlights the various blocks that make up the system.

Figure 1: Proposed methodology: Parallel Generation and Verification

At first glance, it may seem a time consuming process and to some ex-
tent it actually is. However, thanks to a new discovered fitness function,
simulation time has been sped up of about 20%. The fitness function is the
feedback of the evolutionary algorithm core, which gives a measure of how
fit the solution is.

Implementation Details
For the sake of completeness, the device under verification is RI5CY core,

the main processing unit of Parallel Ultra Low Power Platforms (PULP) de-
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INTRODUCTION

veloped in collaboration between ETH University and University of Bologna.
PULPino is the single-core System-on-a-Chip belonging to the family of
PULP platforms. It is built for the RISC-V RI5CY and Zero-riscy core and
its architecture is highlighted in figure 2.

Figure 2: PULPino overview [3]

RI5CY core is a 32-bit 4-stage in-order RISC-V processor core, whose
datapath is showed in figure 3. It is a very efficient core for DSP applications
that can be also extended with a private Floating Point Unit.

Figure 3: RI5CY core datapath [4]

RI5CY offers two area-efficient children called Zero-riscy core and Micro-
riscy core, which main features are highlighted in figure 4. Zero-riscy is a
2-stage in-order 32b RISC-V processor core designed to be small and area
efficient. Micro-riscy is even more smaller with only 16 registers and no
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INTRODUCTION

hardware multiplication support.

Figure 4: PULPino processors features [5]

RI5CY and Zero-riscy cores will be described in Background chapter,
while Micro-riscy is not a thesis topic. For more details on Micro-riscy core,
refer to PULP Platform site [6]. Even though this thesis is mainly focused
on RI5CY core, some proof has been made even on Zero-riscy.

Micro Genetic Programming (µGP) is the evolutionary algorithm ex-
ploited for this project. It has been devised in 2002 in the CAD Group at
Politecnico di Torino and subsequently supported by several people. Start-
ing from an initial set of programs, also called individuals, µGP is capable
of iteratively improve and evolve them, according to feedback metrics given
to µGP evolutionary core. So its heuristic algorithm uses the result of the
evaluations, together with other internal information, to explore the search
space and to produce the optimal solutions. Figure 5 shows the architecture
of µGP that will be deepened in Background chapter.

Figure 5: µGP Architecture
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INTRODUCTION

This thesis is organized as follows. Chapter 1 gives background notions
about RISC-V architectures, focusing on RI5CY core and Zero-riscy. It ex-
plains the differences between the RISC-V Base Integer ISA and the RISC-V
Extensions. Chapter 1 also offers a section which describes the concept of an
evolutionary algorithm and of µGP; afterward it makes clear the importance
of functional verification process in hardware design. Chapter 2 describes
the proposed approach, as general as possible, in order to widen the deploy-
ment to many others hardware components. Then, Chapter 3 deepens the
case study, showing the different components and describing the results ob-
tained. Finally, Chapter 4 concludes with suggestions and advice for future
work, stressing on the importance of the functional verification process.
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Chapter 1

Background

The following chapter aims to explain some fundamental and preliminary
concepts concerning the various areas covered by the whole project. Initially
the architecture of RISC-V Instruction Set is described, highlighting the
excellent characteristics of this Instruction Set Architecture (ISA) and the
advantages compared to other solutions. Every RISC-V architecture must
include the RISC-V Base Integer ISA, which instructions are listed in the
following chapter, but several RISC-V extensions are available to improve
performance. The two RISC-V architecture RI5CY core and Zero-riscy core
are described. Subsequently is explained what an evolutionary algorithm is,
its main properties and the one used for the following thesis, µGP (micro
Genetic Programming). Finally, the last part highlights the importance of
the functional verification in hardware design.

1.1 RISC-V Architectures

RISC-V is an ISA (Instruction Set Architecture) originally conceived to
support computer architecture education and research, but now it is an open
standard worldwide distributed. It has been developed at Berkeley into the
EECS Department by a research team who was tired to work with propri-
etaries and complex ISAs. Except for SPARC V8, which is an open IEEE
standard, most owners of commercial ISAs carefully guard their intellectual
property and do not welcome freely available competitive implementations
[7]. RISC-V is a foundation since 2015, made up of more than 100 members.
They have access to and participate in the development of the RISC-V ISA
specifications and related HW/SW ecosystem [7]. The guiding principle for
the creators of RISC-V was, and still is today, to design an ISA suitable for
any computer device, for this reason they aimed at separate a small base
integer ISA with optional standard extensions, to support general-purpose
software development. Moreover, RISC-V ISA offers also the following main
features:
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1. BACKGROUND

• Supports both 32-bit and 64-bit address space.

• Supports variable-length instruction set extensions.

• Facilitate custom ISA extensions.

• Provide efficient hardware support for modern standards, including
the IEEE-754 2008 floating-point standard.

1.1.1 RISC-V Base Integer ISA

The base integer ISA is the simplest group of instructions, mandatory
for every RISC-V implementation. It is restricted to a minimal set of in-
structions sufficient to provide a reasonable target for compilers, assemblers,
linkers and operating systems [7]. In particular, depending on the width of
the integer registers and on the size of the user address space, it is possible
to define two primary base integer variants: RV32I for 32-bit architectures
and RV64I for 64-bits ones. Of course, hardware implementations and op-
erating systems must provide only one of these two Base Integer ISA at a
time.

RV32I is made up of 47 basic instructions, eight of which are dedicated
for system calls and performance counters. Being a load and store archi-
tecture, it executes operations only on registers, and transfers data to and
from memory only through loads and stores. This is a prerogative of RISC
architectures, which greatly reduces the complexity of a system.
RISC-V Base Integer ISA is composed by four groups of instructions:

1. Computational instructions: They operate on integer registers
and optionally take an additional immediate operand, always signed-
extended. These instructions include arithmetic, logic and compar-
isons on both signed and unsigned values. The first set includes ad-
ditions (ADD, ADDI), subtractions (SUB) and bitwise shifts (SLL,
SRL, SRA, SLLI, SRLI, SRAI), while logic instructions performs bit-
wise Boolean operations (AND, OR, XOR, ANDI, ORI, XORI). Com-
parison instructions execute arithmetic magnitude comparison (SLT,
SLTI, SLTU, SLTUI). Then, there are two more special computational
operations in RV32I: the LUI (load upper immediate) and the AUIPC
(add upper immediate). Refer to RISC-V manual for more details.

2. Memory Access Instructions: They allow transfers to and from
memory. There are five instructions that load a value from memory
into an integer register (LW, LH, LHU, LB, LBU) and three that store
a value in a register to memory (SW, SH, SB). All of these instructions
use byte addresses to name memory locations; they form the address by
adding the value in register rs1 to the 12-bit sign-extended immediate.
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1.1 RISC-V Architectures

3. Control Flow Instructions: They are used to conditionally change
the flow of control. In particular, these six instructions perform arith-
metic comparisons between two registers and can transfer control to
anywhere in a range of about 4KB. To form the new address, the sign-
extended 12-bit immediate is added to the current program counter.
BEQ, BLT, BLTU, BNE, BGE, BGEU, all of which belong to this
category.

4. System Instructions: RV32I provides eight system instructions.
The ECALL instruction is used to invoke the operating system to
perform a system call while the EBREAK is used to invoke the de-
bugger. The remaining six instructions are used to read and write the
control and status registers (CSRs). CSRRW is used to overwrite the
content of a particular CSR; CSRRC atomically clears bits in a CSR
and CSRRS sets bits in the CSR rather than clearing them. The re-
maining three instructions, CSRRWI, CSRRCI, and CSRRSI, behave
like their counterparts without the letter I, using an immediate instead
of a register.

On the other hand, RV64I extends RV32I main features supporting other
functionalities. It expands the integer register and the user address space to
64 bits. For more details, refer to RISC-V official manual [7].

1.1.2 RISC-V Extensions ISA

The RISC-V Base Integer ISA is suitable for educational purposes and for
many embedded processors, but, to improve performace for computational
workloads and support multiprocessors, extensions of ISA are needed. Ac-
tually RISC-V implementations support extensive customization. It is pos-
sibile to identify two kind of extensions named standard and non-standard.
Standard extensions should be generally useful and should not conflict with
other standard extensions while non-standard extensions may be highly spe-
cialized, or may conflict with other standard or non-standard extensions [7].
Here below standard RISC-V Extensions are listed:

• "M" Standard Extension for Integer Multiplication and Division.

• "A" Standard Extension for Atomic Instructions.

• "F" Standard Extension for Single-Precision Floating-Point.

• "D" Standard Extension for Double-Precision Floating-Point.

• "Q" Standard Extension for Quad-Precision Floating-Point.

• "L" Standard Extension for Decimal Floating-Point.

• "C" Standard Extension for Compressed Instructions.

9



1. BACKGROUND

• "B" Standard Extension for Bit Manipulation.

• "J" Standard Extension for Dynamically Translated Languages.

• "T" Standard Extension for Transactional Memory.

• "P" Standard Extension for Packed-SIMD Instructions.

• "V" Standard Extension for Vector Operations.

• "N" Standard Extension for User-Level Interrupts.

Many extensions have been already completed and delivered, while others
are proposals for future work.

1.1.3 RI5CY core

RI5CY is a 32-bit 4-stage in-order RISC-V processor core. It was born
from the collaboration between ETH University of Zurich and University
of Bologna, in a research project that has lasted many years and continues
today, aimed at developing ultra low power platforms suitable for energy-
efficient computing. Actually, RI5CY is currently used as the main pro-
cessing core for PULPino and the brand-new PULPissimo. These platforms
are both competitive, state-of-the-art 32-bit processor based on the RISC-V
architecture [6], with a rich set of peripherals and full debug support. The
difference between the two is that PULPissimo has a more advanced archi-
tecture than its more basic brother PULPino [4].

RI5CY core has full support for:

• RV32I Base Integer Instruction Set;

• RV32C Standard Extension for Compressed Instructions;

• RV32M Integer Multiplication and Division Instruction Set Extension;

• RV32F Single Precision Floating Point Extension;

It supports also PULP specific extensions such as:

• Hardware Loops;

• Post-increment Load and Store Instructions;

• ALU and MAC operations;

Figure 1.1 shows the structure and the datapath of the core. The In-
struction Fetch (IF) phase is in charge of providing an instruction every
cycle to the Instruction Decode (ID) stage. This is helped by the presence
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1.1 RISC-V Architectures

of a Prefetcher which takes the instructions from an Instruction Cache or
Instruction Memory. Register file has 31 32-bits wide general purpose reg-
isters, from x0 to x31. Register x0 is hardwired to 0 and can only be read.

RI5CY core can be extended with a private FPU, which is capable of per-
forming all RISC-V floating-point operations that are defined in the RV32F
ISA extensions. Unlike the instructions that belong to the RV32IMCXpulp
ISA, the floating point instructions have a latency (expressed in terms of
clock cycles) greater than one. The FPU consists of three parts [4]:

• A simple FPU of ∼10kGE complexity, which computes FP-ADD, FP-
SUB and FP-casts.

• An iterative FP-DIV/SQRT unit of ∼7 kGE complexity, which com-
putes FP-DIV/SQRT operations.

• An FP-FMA unit which takes care of all fused operations. This unit
is currently only supported through a Synopsys Design Ware instan-
tiation, or a Xilinx block for FPGA targets.

In case the FPU is included, the register file is extended with an additional
register bank of 32 32-bits registers, from f0 to f31, needed to store floating
point operands or results. These registers are stacked on top of the existing
register file and can be accessed concurrently with the limitation that a
maximum of three operands per cycle can be read [4].

Figure 1.1: Block diagram of RI5CY core [4]

1.1.4 Zero-riscy core

Zero-riscy is a 2-stage in-order 32 bit RISC-V processor core designed
to be efficient and smaller than its father RI5CY. It arises from the need to
meet the greater demands of low power and low area.

Zero-riscy is the area-efficient core suitable for PULPino platform. It
can be enabled by setting the flag USE_ZERO_RISCY and including the
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1. BACKGROUND

correct compiler in the configuration file.
By setting parameters like ZERO_RV32M, ZERO_RV32E and RCV in

addition to RV32I Base Integer Instruction Set, which is mandatory in every
RISC-V architecture, is possible to support other three ISA configurations:

• RV32E Base Integer Instruction Set;

• RV32C Standard Extension for Compressed Instructions;

• RV32M Integer Multiplication and Division Instruction Set Extension.

Depending whether RV32E Extension is enabled, Zero-riscy has 32 or 16
32-bits wide registers, where register x0 is hardwired to 0 and can not be
written.

Zero-riscy does not implement all control and status registers specified
in the RISC-V privileged specifications, but is limited to the registers that
were needed for the PULP system [8]. The goal is to keep the footprint of
the core as low as possible and avoid any overhead.

Figure 1.2: Block diagram of Zero-riscy core [8]
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1.2 Evolutionary Algorithm

1.2 Evolutionary Algorithm

An evolutionary algorithm (EA) is an algorithm inspired by the theory
of evolution which claims that "animals and plants have their origin in other
types, and that the distinguishable differences are due to modifications in
successive generations" [9]. It could lay the foundations in the Darwinian
concept of reproduction and the survival of the fittest.

Evolutionary computation is a field of comuputer science in charge of
solving and developing these algorithms. In every evolutionary algorithms,
a single candidate solution is called individual and the set of all candidate
solutions existing at a particular time is called population. It is also im-
portant to highlight that evolution proceeds through discrete steps called
generations.

Although there are many different variants of evolutionary algorithms,
the common idea behind them is the same: given a population of individuals
the environmental pressure causes natural selection (survival of the fittest)
and this causes a rise in the fitness of the population [10]. Over time, the
best individuals will survive and evolve in that environment while the others
will be, according to some parameters, discarded. This process is iterative
and goes on until a solution is found or a limit is reached. Therefore, the
final population will be totally different from the initial random one. It will
be composed of the fittest assembly programs. An evolutionary algorithm is
strongly inspired by biological mechanisms such as reproduction, mutation,
recombination and selection. From this perspective, evolution is often seen
as a process of adaptation and fitness function as an expression of environ-
mental requirements and not as an objective function to be optimized. The
role of a fitness function in an evolutionary algorithm is to define how good
the current solution is, determining the base for selection.

An evolutionary algorithm can evolve applying some operators like re-
combination or mutation. The former is applied to two or more randomly
selected candidates (also called parents) and produces one or more candi-
dates (offspring); the latter is applied to one single candidate and gets one
single child. When the offspring is complete, the evolutionary algorithm
selects the candidates for the next generation according to the fitness pa-
rameters. Notice that the entire process is ruled by two important forces
that put the basis of an evolutionary system: the variation operators and
the selection. The cooperation of the two leads to improving fitness values
in the next populations.

13



1. BACKGROUND

Typically an evolutionary algorithm follows this pseudocode:

INITIALISE population with random candidate solutions;
EVALUATE each candidate
while Terminal condition is satisfied do

SELECT parents;
RECOMBINE pairs of parents;
MUTATE the resultig offspring;
EVALUATE new candidates;
SELECT individuals for the next generation;

end
Algorithm 1: EA algorithm

The algorithm above described can be also represented by the following
flow-chart.

Figure 1.3: The general scheme of an Evolutionary Algorithm as a flow-chart
[10]

Currently, the best known approach tackling the evolution of programs
is Genetic Programming (GP), a branch of evolutionary algorithms strongly
inspired by Darwinian principles and by Mendel’s genetics. At the begin-
ning of 1960’s, J. H. Holland, an American scholar, discovered the similar-
ity between adaptability of system to environment and biological evolution
[11]. Therefore he suggested a computational method called genetic pro-
gramming, which simulates the biologic evolution. From that time, genetic
algorithm has developed very quickly and become the most widely used
evolutionary algorithm [11].
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1.2 Evolutionary Algorithm

1.2.1 Micro Genetic Programming

Micro Genetic Programming (µGP) is an evolutionary algorithm able to
find an optimal solution to hard problems. µGP has been conceived in 2002
in the CAD Group at Politecnico di Torino and subsequently supported by
several people. Although the initial idea was to generate assembly-language
programs for testing different microprocessors, nowadays it has been used for
many other fields such as: creation of test programs for pre and post-silicon
validation; design of bayesian networks; creation of mathematical functions
represented as trees; integer and combinatorial optimization; real-value pa-
rameter optimization; and even creation of corewar warriors [9].

Starting from an initial set of programs, also called individuals, µGP
is capable of iteratively improve and evolve them, according to feedback
metrics given to µGP evolutionary core. So its heuristic algorithm uses the
result of the evaluations, together with other internal information, to ex-
plore the search space and to produce the optimal solution [12].

µGP algorithm can be thought of as composing of three different blocks:
an evolutionary core, an instruction library, and an external evaluator. The
evolutionary core is where the computation and the selection take place,
where the real algorithm lies. The population is the current group of candi-
date solutions managed by evolutionary core; at the beginning it is made up
of random programs. The user can select the initial size of the population
which is always bigger or at least equal to the final one. Then, the instruc-
tion library is used to map individuals to valid assembly language programs
[13]. It can be seen as a library including a highly concise description of
the assembly syntax or parametric fragments of code. When an inidivid-
ual is ready for the evaluation, it is provided to an external evaluator, a
tool provided by the user which includes the RTL model of the device. It
drives the optimization process taking an individual as input and producing
a post-elaboration report as output. Finally, this output is used to pro-
vide the evolutionary core with the necessary feedback, so closing the loop
of the evolution. The post elaboration report is manipulated by a script
which computes the parameters for the fitness function. Its role is to define
how “fit” and how “good” the solution is with respect to the problem in
consideration. The µGP algorithm selects the next generation taking into
account only those individuals complying with this fitness function. Figure
1.4 highlights the general architecture of µGP.

Therefore, the algorithm adopted by µGP is comparable to the one de-
scribed for general evolutionary algorithms. In each generation, starting
from an initial population ν, the algorithm generates λ new individuals, the
so-called offspring. After creating λ new individuals, the algorithm selects
the best µ programs in the new population of λ+ µ for survival. This process
is also called survivor selection mechanism or replacement and, as opposed
to parent selection mechanism which is typically stochastic, it is often de-
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Figure 1.4: µGP Architecture

terministic. The decision is usually based on their fitness values, favouring
those with higher quality, although the concept of age is also frequently
used. When µGP chooses parents for the new population, it randomly se-
lects a given number of individuals and picks the best ones among them via
tournament selection. In each generation, the algorithm generates offspring
by applying different operators (mutation and crossover), fully self-adapting
the strength of operators.

At the end of the survivor selection mechanism, the old population is
discarded and the new one is evaluated by the external evaluator, individ-
ual by individual. Process ends when a termination condition occurs. We
can distinguish two cases. If the problem has a known optimal fitness level,
then reaching this level should be used as a stopping condition. However,
evolutionary elgorithms are stochastic and mostly there are no guarantees
to reach an optimum, hence this condition might never get satisfied and
the algorithm may never stop. Therefore this terminal condition is often
extended with one of the following, that certainly stops µGP.

1. CPU reaches the maximum allowed time.

2. The total number of fitness evaluations reaches a given limit.

3. For a given period of time, the fitness improvement remains under a
threshold value.

4. The population diversity drops under a given threshold.

1.2.2 Internal Individual Representation

A major issue when devising a test program generator for micropro-
cessors is how to represent test programs in a way suitable to allow their
efficient manipulation, while guaranteeing syntactical correctness [14].
Each test program, called individual, is internally represented as a Directed

16
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Acyclic Graph (DAG) and must adhere to restricted rules. A DAG is a
direct graph where there is not the possibility to create cycles or loop. It
consists of many nodes and edges, where each edge is directed from one
node to another one. Each node corresponds to a valid assembly instruc-
tion, where the syntax of the instruction is defined in the instruction library
and the operands are represented by the parameters associated to the node.

µGP allows to organize the DAG as a collection of sub-DAGs of different
type (procedures, traps, main program) called frames. Each node can have
references to any other node in its subgraph or to the beginning of a different
subgraph. A single sub-DAG is build with four kinds of nodes:

1. Prologue and Epilogue: These nodes are mandatory and must al-
ways be present. They represent required operations, such as function
declarations and initializations. The prologue is the first node of the
program and has no parent nodes, while epilogue is the last one and
has no children. They depend both on the processor and on the op-
erating environment and on the frame type, and they may be empty
[14].

2. Sequential Instruction: These nodes represent common arithmeti-
cal or logical instructions. Due to conditional or unconditional branches,
some of them could be unreachable. Unconditional branches are con-
sidered sequential instructions nodes.

3. Conditional Branch: They include all the conditional branches de-
fined for the target assembly language and provided by the instruction
library.

The representation of this DAG structure mimics the syntax of assembly
programs with their jumps or sequential instructions and is highlighted in
the figure 1.5. The assembly program on the right is divided in many sec-
tions, each of them linked to a valid node. For instance, the first gray section
is connected to the first node (the Prologue) of the DAG representation and
its content depends on the current language adopted. The second node (the
red one) points to the XNOR instruction while the green node addresses a
call for a subroutine. It is clear that each node can include one or more
instructions, depending on its instruction library specifications.

Each DAG node contains a pointer to a specific instruction inside the
instruction library. Figure 1.6 shows the internal representation of one as-
sembly instruction, an unsigned sum with three registers (ADDCC reg1,
reg2, reg3). This instruction is mapped by µGP to a sequential instruction
node there the possible values for its parameters are r25, r18, and r10 and are
specified in the instruction library. This bonding is useful to create a kind
of evolving space for that instruction. Actually, the role of the instruction
library is to constrain the limitless variety of possible individuals, making
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Figure 1.5: Structure of an individual

them suited to the intended application. By drawing on this library, µGP is
able to evolve, searching for an individual with the best value of the adopted
metrics.

Figure 1.6: Internal representation of one instruction

1.2.3 Macro

µGP internally represents each node as a macro. A macro is a structure
associated to each machine level instruction made up of two main sections:
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the expression part which defines the syntax of the instructions and the pa-
rameter block, where operand’s values are specified. The expression section
can define not only a single instruction but also a limited sequence of in-
structions, where some of all parameters can change. Figure 1.7, represents
the building block of the macros. The final assembly program is composed
of a proper sequence of macros taken from the instruction library, each ac-
tivated with proper values for its parameters [15]. The choice of the most
suitable parameters value is accomplished by resorting to µGP algorithm.

Figure 1.7: Macro basic stucture

Macros describe the possible values that a specific node can assume.
The expression part contains the text of the macro: it could be fixed or it
can refer to existing parameters through the "ref" attribute. It establishes
what is the current instruction and which are the source and destination
registers. During the evolution, µGP will create and modify values for these
components. On the other hand, the parameters block of the macro defines
the type of the values. There can be integer parameters, string parameters,
intra-section references and inter-section references.

1.2.4 Genetic Operators

µGP is able to generate new individuals by applying genetic operators
to existing solutions. Operators are randomly selected, following the idea
that those producing the best individuals should be activated more often,
but no operator able to generate valid individuals should ever be completely
removed from the process, no matter how bad the fitness of its children is
[16]. The genetic operators applied by µGP, belong to the following classes:

• Standard Mutations: They are also called single-parent operators
because work on one single parent. For instance these operators can
choose randomly a single parameter inside a macro and mutate it to
another possible value, or insert (or remove) a new macro instance
inside a randomly selected subsection. They can repeat the mutation
described more than once, depending on the current value of sigma,
which is defined in population file and determines the strength of the
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genetic operators. A mutation operation is always stochastic: its out-
put (the child) depends on the outcomes of a series of random choices
[10].

• Crossovers: They are also called multiple-parent operators because,
as the name suggests, it merges informations from two parents into
one child or two children. The principle behind is simple: by mating
two individuals with different but desirable features, we can produce
an offspring which combines both of those features [10].

• Scan Mutation: This class of genetic operator selects a variable in
a macro and creates a child individual for each possible value that the
parameter can assume. It must be used carefully since this operator
could produce a huge number of children.
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1.3 Functional Verification

Functional Verification is considered one of the most important step in
hardware’s design cycle. With the advent of even more complex architec-
tures and higher performing devices this process is becoming even hard to
perform. In the past three decades, as Moore’s law has predicted, transistor
density doubled approximately every 18–24 months. Roughly speaking, it
has been maintained that the number of bugs in a new design is linearly
proportional to the number of lines in its structural Register-Transfer Level
(RTL) description [17], and this number is escalating at an increasing pace.
This fact indicates that not only delivering a bugs free design is getting
even more harder, but also that the importance of functional verification is
increasing exponentially. It is considered one of the most critical task in the
design cycle and sometimes it can be a bottleneck in design phases. Accord-
ing to Bose and Abraham, design verification represents about 60% of the
total cost of the development of microprocessors or microprocessor cores. A
research driven by Subhranil Deb, a senior design consultant of Synopsys
India highlights that identifying a bug in the earlier phases of design process
is less costly, as the figure 1.8 points out. Therefore, the need of functional
verification process is strong since the first steps of design.

Figure 1.8: Cost impact of bugs at different phases of execution [18]

Functional Verification is the process of determining that the implemen-
tation of a design accurately represents the developer’s specifications and
descriptions. There are many specifications domains in integrated circuits
(IC) design, like functional, timing, and electrical. Functional domain is
for certain one of the most time consuming tasks in the design cycle. The
description of design is simulated applying pseudo-random or deterministic
stimuli, and checking the correctness of produced results with a reference
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model.

1.3.1 Functional Verification and Formal Verification

Functional Verification is defined a dynamic methodology, also called
simulation-based. It can be considered complementary to a static methodol-
ogy, also known as formal verification, which tries to verify the correctness
of a system by using mathematical proofs.

Formal methods implicitly consider all possible behaviors of the mod-
els representing the system and its specification [19]. They include many
methods like model checking, equivalence checking and theorem proving.
However, the completeness and the accuracy of the system, as well as the
required computation resources, are a noticeable limitation. Static methods
have the big drawback of requiring a huge computational resources, even
for small circuits. For this reason, formal verification is typically adopted
for verifying a design’s single components. Formal methods for complex mi-
croprocessor designs have been targeted by several researchers in the past
but, although results were considerable, all proposed techniques suffer from
severe drawbacks and need considerable human efforts to handle entire de-
signs of today’s processors and advanced microarchitectural features [14].

On the contrary, simulation-based methods do not suffer from the above
constraints, but hey can consider only a limited range of behaviours. For
this reason they will never reach a 100% of confidence of correctness. The
design is verified by applying a pattern set and responses are checked with
expected ones to assure correctness. A dynamic verification approach needs
stimuli, testbench and responses to be created by hand by verification engi-
neers, or exploiting an automatic test programs generation. This class also
can be divided in Intent Verification and Equivalence Verification. More
details on these techniques may be found on [1].

It is well known that the real success of a functional verification approach
relays on the fairness and accuracy of the inizial functional verification plan.
Actually, it is composed of three aspects: coverage measurement, defining
the verification problem, the different metrics to be used and the verification
progress; stimulus generation, providing the required stimulus to thoroughly
exercise the devise obeying to the directives given; and response checking,
describing how to demonstrate the behavior of the device conform the spec-
ifications [2].

1.3.2 Code Coverage Metrics

Code coverage is one of the high level metric used in hardware verification
to evaluate program’s performance. Code coverage metrics are considered as
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heuristic indicators for test program generation, measuring the verification
completeness and identifying inadequately exercised design aspect. Roughly
speaking, they measure the amount of RTL code that is exercised by running
a software program. These metrics are provided by an external evaluator
and are typically represented as percentages per units.

There are many available code coverage metrics but it is not possible
to indicate one single metric as the most reliable [2]. To achieve a high
degree of confidence, a new trend consists in combining them together to
have better results.

Some well-known code coverage metrics are listed below:

1. Statement coverage: It is the most known coverage metric. It mea-
sures the amount of executable statements that are excited during the
simulation run. Even though there are multiple statements on a single
line, statement coverage considers each line individually. Actually in
this example the number of statements is equal to 1.

if RST = ‘0’ then LD <= ‘0’; else LD <= ‘0’; end if;

2. Branch coverage: It counts the amount of boolean expressions and
case statements that affect the control flow of HDL execution. It is
sometimes named decision coverage. In the following example, there-
fore, to reach a 100% of branch coverage, both the explicit condition
(z==0) and the implicit condition (z!=0) must be covered.

if (z == 0) begin . . . end

3. Condition coverage: It is considered as an extension of branch cov-
erage. It considers the logic expressions that affect branch decisions
and reports the true or false outcome of each Boolean subexpression,
separated by logical-and and logical-or if they occur [2]. They mea-
sures the sub-expressions independently of each other.

PROCESS (ina, inb, inc, ind, datin)
BEGIN
if ina = ‘1’ or inb = ‘1’ or inc =’1’ or ind = ‘1’ then
datout <= datin;
ELSE
datout <= ‘1’;
END IF;
END PROCESS;

In this example, the if condition has 4 inputs. Condition coverage
will consider a truth table of 16 inputs and will consider 100% of
coverage only in the case of full row’s coverage. However, ModelSim
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Condition coverage removes unimportant conditions from the display
so avoiding wasting time chasing down irrelevant conditions. This is
sometimes referred to as “sensitized condition coverage” or “focused
condition coverage”. In FEC (Focused condition coverage), an input
is considered covered only when other inputs are in their quiescent
states. This means that the output must be seen in both 0 and 1 state
while the target input is controlling it. If these conditions occur, the
input is said to be fully covered. Then, the final coverage is given
by the ratio between fully covered inputs and total number of inputs.
This indicates that verification effort is greatly reduced.

4. Expression coverage: It is similar to condition coverage but, in-
stead od covering branch decisions, it considers concurrent signal as-
signments. It builds a focused truth table based on the number of
inputs of a signal assignments and uses the same techniques as condi-
tion coverage.

internal <= a or b or c or d

5. Toggle coverage: It reports the number of bits that toggle at least
once from 0 to 1 and at least once from 1 to 0 during the execution
of a program [2]. Indeed it is a very peculiar metric used in all late
stages of the design cycle, and is actually an objective measure of the
activity of a design. The basic toggle coverage has been enhanced
to include two modes of operation: standard and extended. Standard
toggle coverage only counts transitions from low to high and from high
to low. On the contrary, extended toggle coverage counts these two
transitions plus the following four:

X or Z –> 1 or H
X or Z –> 0 or L
1 or H –> X or Z
0 or L –> X or Z

This is particularly useful for examining coverage of tri-state signals
and in general to give a more detailed view of verification effectiveness.

6. FSM State coverage: It counts the amount of states that are cov-
ered during a simulation.

next_state <= IDLE

7. FSM Transition coverage: It is a measure of the amount of tran-
sitions that could occur over all possible transitions.
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RESET <= IDLE

Performing a functional verification process guided by these code coverage
metrics, allows reaching ample design verification reducing the redundant
effort [2]. Code coverage metrics are actively used in industry due to their
low set-up costs and are quite easy to manage.

1.3.3 Stimuli Generation

Stimuli generation for microprocessor cores consists essentially in assem-
bly programs. A common goal is to generate a valid sequence of assembly
instructions which are able to maximize some high level metrics or to em-
phasise incorrect behaviour of the microprocessor core. Even though the
microprocessor verification problem has been investigated for 20 years, mi-
croprocessor verification methodologies are not mature enough to fully au-
tomate the generation of stimuli, yet [2].

This issue lies also in the complexity of today devices. Exploiting func-
tional verification of pipelined microprocessors is a challenging task, as it is
not sufficient to simply check the functionalities of all possible instructions
with all possible operands. Indeed also all possible interactions between in-
structions must be checked, resulting in not trivial task.

As a first verification phase, it is often useful to apply handwritten pro-
grams to check the basic functionality of the core. However, these programs
focus on rarely-occurring corner cases and basic specific functionalities, so
they can only be exploited as a first defence against issues [14]. Further-
more, they require a deep knowledge of both the design architecture and of
the Instruction set.

Nowadays, a solution for these drawbacks is to adopt an automatic
methodology to generate these programs. Over time many authors have sug-
gested automatic procedures to generate this test set. One simple approach
adopted is named VERTIS and consists in generating random verification
programs based only on the ISA of the microprocessor core. It takes as input
the assembly language instruction set of the processor and the operations
performed by the processor in response to each instruction and produces a
functional test [20]. The final program will for certain exploit almost all
the possible operands for each instructions but the final program will be
very large. Random approaches have two main drawbacks: first they are
quite slow and second, having no memory in the past, they may result in an
explosion of lines.

Another proposed mechanism focuses on verification of the branch pre-
diction mechanism only, for exercising the control behavior of complex mi-
croarchitectures. The goal of the technique described in this paper [21] is
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to valide PowerPC604 branch prediction mechanism using a branch target
address cache (BTAC) and a branch history table (BHT). However, this
mechanism requires a deep knowledge in microprocessor architecture and it
is extremely difficult to generalize [21].

It has been noticed that by exploiting an evolutionary algorithm for gen-
erating the test set greatly improves not only simulation time, but also the
size of the final programs. The use of such a mechanical approach may
help dramatically designers and engineers. Instead of running massive ran-
dom simulations and checking the enormous mass of output data, seeking
for differences with the correct model, experts may let the automatic test-
case generator work for a fewdays. At the end, they just need to carefully
examine the small test set produced [14]. Moreover an evolutionary algo-
rithm is able not only to try random modification, but also to merge useful
characteristics from best programs, exploring better the search space.
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Chapter 2

Proposed Approach

The aim of this chapter is to describe the approach used to perform
functional verification on a pipelined microprocessor. This methodology
describes a procedure of automatic test-program generation based on an
evolutionary algorithm, and a substantial improvement from a verification
point of view. All functional verification mechanism requires a set of stimuli
as input and checks responses with expected ones to assure correctness. The
role of the evolutionary algorithm here is to generate these stimuli and test
programs useful for verification purposes. A test program is a valid sequence
of assembly instructions, that is fed to the processor through its normal exe-
cution instruction mechanism: the processor executes it as it would execute
any other “normal” program [13]. The programs produced by the evolution-
ary algorithm are pseudo-random and are able to maximize some defined
high-level metrics.

In hardware verification many metrics can be used, but for the current
project code coverage metrics have been selected. Performing a verifica-
tion process guided by code coverage metrics allows achieving ample design
verification limiting the redundant efforts [2]. Code coverage metrics act as
heuristic indicators to quantify the verification completeness and identify in-
adequately exercised design aspects. As supported by many authors, while
a high coverage figure increases the confidence in the design correctness, it is
not possible to select one single code coverage metric as the most reliable [2].
A current trend is to mix these metrics to obtain better results. Therefore,
the process of program generations is guided by these code coverage metrics.
The purpose of the evolutionary algorithm is to select the best individuals
which are able to increase these metrics parameters.

To verify our pipelined microprocessor, in this project two main phases
could be identified:

• Generation: The evolutionary algorithm generates a set of programs
able to maximize code coverage metrics.
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• Verification: The set of programs generated by the evolutionary al-
gorithm is used to verify the correctness of the model. These programs
are executed in parallel by the model under verification and the golden
model. In case that results differ, an error is raised and the simulation
can stops.

A typical functional verification approach consists in performing these
two phases subsequently: generate the test set and then verify the correct-
ness of the instructions belonging to that complete test set. Figure 2.1
sketches this first methodology.

Figure 2.1: Sequential Generation and Verification phases

The methodology proposed in this thesis breaks with this approach, com-
bining these two steps into a single one. Generation and verification phases
are joined in a single procedure, so that the correctness of the DUV (Device
Under Verification) is checked during the generation of the optimized set of
programs. Figure 2.2 shows the architecture of the method used and high-
lights the various blocks that make up the system.

Figure 2.2: Proposed methodology: Parallel Generation and Verification

Even though the goal of the evolutionary algorithm is still to increase
the code coverage, at the same time every single individual is subjected to
verification. Programs are delivered to both the DUV and the golden model,
which execute them and store results in the specific destination registers. At
this point a Simulation Checker comes into play. It is an hardware module
which compares the results of each instruction produced by the evolution-
ary algorithm with a Golden Model. If these results differ, it issues an error
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warning that confirms the presence of a bug. This information is sent to the
evolutionary algorithm which can decide to stop the simulation or continue
and collect other bugs.

Through this approach it is possible to better explore the research space
revealing the presence of hidden bugs inside the DUV. Actually, by exploit-
ing this methodology, several bugs have been discovered in our pipelined
microprocessor. Consequently, this technique not only tries to increase the
code coverage of the DUV, but, at the same time ensures that the portion
of code covered by the set of programs is correct.

2.1 Fitness Function

Typically approaches tackling evolutionary algorithms appear to be rather
slow and therefore require a non-negligible computational effort. The more
complex the model becomes, the longer the simulation is. The duration
depends also on the internal evaluations that the evolutionary algorithm
makes, on the number of mutations it performs, and on the amount of off-
spring it produces. All these decisions are made based on the fitness param-
eter that it receives as feedback, typically one or more values. Therefore,
choosing the appropriate fitness function is essential. For instance, µGP
evolutionary core accepts an array of values, but the former takes on more
importance than the others: its growth is the primary goal of the algorithm.

The first fitness function was composed by the arithmetic averages, vari-
ances and sums of the values of code coverage metrics obtained by running
an assembly program. Code coverage metrics are represented as percentages
per unit and are provided by an external evaluator. For our purposes, the
following ones have been selected:

• Statement Coverage;

• Branch Coverage;

• FEC1 Condition Coverage;

• FEC Expression Coverage;

• FSM2 State Coverage;

• FSM Transition Coverage.
1FEC is the acronym of Focused Expression Coverage, one metric used by ModelSim to

reduce the dimension of the truth table for both condition and expression. It is described
in the following chapter.

2Finite State Machine.
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To compute the average, the variance and the sum for each of these met-
rics, a script elaborates the code coverage values provided by an external
evaluator. By running an assembly program, this evaluator produces a re-
port in txt format with the percentages of these metrics reached by each unit
of the model (Controller, Alu, Decoder etc.). Figure 2.3 is a sketch of this
report with the values of coverage for the Load and Store unit, the Multiplier
and the Prefetch Buffer. For instance, to compute the arithmetic average
of the statement metric, the percentage of statement coverage reached by
each unit was first added up and then divided by the number of units con-
sidered. The variance of each metric has been computed by following the
(2.1) equation, where X represents the percentage of coverage for a given
unit and E[X] is the arithmetic average of these values. In statistics and
probability theory, variance is the expectation of the squared deviation of a
variable from its mean. It basically gives informations on how far a set of
numbers are spread out from their average value. Finally, the sum is simply
the addition of all the percentages for a given metric.

σ2
x = E[(X − E[X])2] (2.1)

The (2.2) equation represents the first fitness function. It is basically
an array of 18 values: the first 6 elements are the arithmetic average of the
selected metrics, the next 6 the variance and the last 6 elements are the sum
of these. Refer to table 2.1. The first value of the array is a and it is the
first input for the evolutionary algorithm. It will have higher relevance for
the selection process since for µGP its growth has more importance than
the growth of the consecutive parameters. However, it has been observed
that this approach led to a discrepancy in the growth of the entire code
coverage metrics. Statement average (a) grew faster than the others, which
were quite stable over time.

OldFitnessFunction = {a, b, c, d, e, f, g, h, i, l,m, n, o, p, q, r, s, t} ; (2.2)

This methodology proposes a new fitness function with only two feed-
back values for the evolutionary core: as the (2.3) equation points out, the
first one is the result of a weighted average of the various coverage metrics
(t), while the second is a value inversely proportional to the length of the
programs, so that, with the same code coverage, the program with the lower
dimension is chosen. The idea from which this function derives comes from
the observation of the behavior of the code coverage values that emerges
from the simulation of the programs. In particular, it was observed that
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Figure 2.3: An example of post-elaboration report

the growth of the metrics used was not the same during the various simu-
lations. Statement and branch coverage are, to some extent, correlated and
are quite easy to increase. A complete branch coverage implies complete
statement coverage, but the first metric is slightly harder to enhance. On
the contrary, condition and expression coverage are the most complex and
least understood types of code coverage. Their full coverage is really hard to
obtain and their increase is rather slow. The situation is even worse for the
FSM state and transition coverage since they require appropriate proceed-
ings and instructions. The goal of the proposed formula is to achieve the
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Metrics Average Variance Sum

Statement a g o

Branch b h p

FEC Condition c i q

FEC Expression d l r

FSM State e m s

FSM Transition f n t

Table 2.1: Code Coverage Metrics Manipulation

most uniform growth possible for all metrics taking into account the weight
that each metric has during the simulation. Differently from the previous
fitness function, only arithmetic averages are considered now to build the
equation (2.4).

New Fitness Function=
;
t, 1
length

<
(2.3)

Where:

t =

1
a+b

2

2
+ 2c+ 2d+ 3

1
e+f

2

2
4 (2.4)

It has been demonstrated that the proposed fitness function can reduce
the time required to achieve the same code coverage by approximately 20%
with respect to the first one. Details and results are presented in the Case
Study chapter.
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Chapter 3

Case Study

The purpose of this chapter is to deepen the proposed verification method-
ology by going into detail in the various actors of the system. To evaluate the
described approach, RI5CY microprocessor is targeted, a 32-bit processor
core based on RISC-V architectures and extended with a private Floating
Point Unit (FPU). It has been developed at ETH University of Zurich in
collaboration with the University of Bologna. RI5CY core is backbone of
PULP platforms but this methodology has been performed exploiting the
single core SoC named PULPino. RI5CY core’s main features are described
in the Background Chapter. It is written in SystemVerilog language and is
composed of a total of sixty files, twenty five 1 describing the architecture
of RI5CY core and thirty five related to the Floating Point Unit. Excluding
empty rows, it is made up of a total of 16026 lines of code. Refer to table
3.1.

RI5CY CORE FPU TOTAL

Number of files 25 35 60

Number of lines of code 11310 4716 16026

Table 3.1: Details of the device

As described in Proposed Approach Chapter, code coverage metrics are
used to evaluate the performace of this DUV. The complexity of the core
can be represented by the maximum number of lines, branches, conditions,
expressions, states and transitions that must be covered to increase the
confidence in the device. Table 3.2 shows the total number of these metrics
for the entire device.

1The debug unit and the tracer unit are excluded from these experiments.
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Metric Maximum value

Statement 3342

Branch 2082

FEC Expression 610

FEC Condition 176

FSM State 35

FSM Transition 69

Table 3.2: Complexity of the device

The evolutionary algorithm used to generate optimized programs is µGP
(Micro Genetic Programming) and it has been developed in the CAD group
of the Politecnico di Torino. The Instruction Set Simulator (ISS), also named
golden model, is a high level model of the core written in C++. Modelsim
v10.6 by Model Technology is used as external simulator and a set of scripts
have been developed to allow the correct flow of the operations and also to
compute the fitness function for the evolutionary algorithm.

The instruction library for RI5CY core consists of hundreds of macros,
targeting instructions that belong to RV32IMCFXpulp ISAs. For sake of
completeness, Xpulp indicates a set of PULP specific extensions to the
base ISAs which full supports Post-Incrementing load and stores, Multiply-
Accumulate extensions, ALU extensions and Hardware Loops.

The aim of the experimental evaluation is two-fold: on the one hand to
increase as much as possible the code coverage of our device under verifica-
tion; on the other hand to detect incorrect behaviour of the microprocessor.
However at the end it will be clear that these purposes will be mixed in a
single goal.

3.1 Test Set Generation

When addressing the problem of test program generation, the complex-
ity of current microprocessors must be considered: architectural solutions
are pipelined, superscalar, hyperthreaded, emulate several virtual proces-
sors, rely on several memory caching layers, and new features appear every
quarter. Each of these keywords implies a complexity degree in the proces-
sor architecture, and test programs should be able to test all these advanced
features [13]. It makes no sense to test individual instructions, since the
context in which an instruction executes change the processor state and
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modify the execution path taken by the instruction. This observation rules
out exhaustive test programs, since developing and executing all possible se-
quences of instructions is combinatorially unpractical [13]. Following results
are reported for RI5CY core extended with the FPU.

3.1.1 Handwritten programs

Manual generation of test program could be considered as an initial
approach for check some specific behaviour of a microprocessor. These pro-
grams are useful for testing basic functionality that is known to be critical
but can not issue a complete device check. Due to the complexity of today’s
microprocessors, it is impossible for the functional verification purposes, to
rely completely on a test set made up of these handwritten programs. One
class of manually developed test programs is called systematic test programs
that execute an array of similar operations with small variations (e.g., to test
an arithmetic unit with different values of the operands) [13].

Figure 3.1: Code coverage achieved by running an Handwritten Program

It has been demonstrated that the code coverage achieved by running
these programs is quite low. Figure 3.1 shows the value of coverage for each
metric, obtained by running testVecArith program. This testVecArith is
one of many handwritten programs included in the folder riscv_test, which
have been written to test the different features of RI5CY core. In particular
it focuses on vectorial ALU instructions.

The low code coverage proves that handwritten programs can be only
exploited as a first line of protection against bugs, since they focus on ba-
sic functionalities and important but rarely-occurring corner cases. Due
to their low code coverage, they can not be considered a good measure of
confidence for device correctness. Exhaustive or nearly-exhaustive tests are
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often necessary, but the effort required to generate them manually and the
time required to simulate them are practically infeasible [14]. Therefore
automatic test program generators may help generate random or pseudo-
random solution to extend the space of solutions.

3.1.2 Random approach

Subsequently, the best random program yielded by µGP has been se-
lected. Even though µGP is an evolutionary algorithm able to produce an
optimal solution, the first set of programs that produces is totally random.
As described in [2], the random instruction generator exploits the µGP in-
struction library to devise syntactically correct fragments of code and the
µGP external evaluator to simulate them. Differently from an evolutionary
approach, coverage values provided by ModelSim are not used as a feedback
to optimize the candidate programs and the loop is not closed. A random
program is added to the test set whenever it increases at least one coverage
figure. At the end this test set will have a huge size while providing not so
optimal results. Moreover, by running the best random program of the test
set, it has been observed a slightly increase in the code coverage but results
are still unsatisfactory.

Figure 3.2 highlights the increase in the final code coverage of the de-
vice, expecially for statement and expression coverage, while FSM transition
coverage remains stable. A final 52% of average code coverage obtained by
running a random program can not still be considered a significant degree
of confidence.

Figure 3.2: Code coverage achieved by running a Random Program
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3.1.3 Evolutionary algorithm

A totally random approach is not enought to guarantee a fairly high
coverage. An evolutionary algorithm allows to optimize the candidate pro-
grams using the feedback information coming from an external evaluator
which is able to evaluate them with respect to coverage metrics. µGP, the
used evolutionary algorithm, generates a set of correct and valid random
assembly programs for use as an initial seed. Then, its goal is to optimize
these programs to increase the coverage metrics. Differently from a random
approach, the size of the final test set is very small, since at the end of each
simulation, µGP delivers one single best optimized program.

Set up phase

To start a µGP simulation, many files and scripts have been written and
some parameters have been defined. The evolutionary algorithm selects the
assembly instructions from the instruction library, a kind of database which
stores all the macros for the supported ISAs. This initial instruction library,
named constraintRI5CYFPU.xml, was composed by 1613 lines of code 2 and
43 macros. It has been written to support:

1. RV32I Base Integer Instruction Set;

2. RV32C Standard Extension for Compressed Instructions;

3. RV32M Integer Multiplication and Division Instruction Set Extension;

4. RV32F Single Precision Floating Point Extensions;

5. PULP specific extensions: Post-Incrementing load and stores, Multiply-
Accumulate extensions, ALU extensions, Hardware Loops.

The average number of assembly instructions for each individual is de-
fined in constraintRI5CYFPU.xml file and is fixed to 150, with a maximum
of 300 instructions and a minimum of 100.

The population.settings.xml file contains details on the current popula-
tion of programs; by setting few parameters it is also possible to establish the
trend of the simulation. For instance, the maximum number of generation
is set to 100 and the maximum number of steady state generation is fixed to
50. It means that if the best fitness value does not change for 50 consecutive
generations, evolution stops. The size of the inizial random population (ν)
and the maximum size of successive populations (µ) is equal to 30, while
the numbers of genetic operators applied at every step of the evolution (λ)

2Excluding empty rows
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is fixed to 20. At the beginning and at the end of each generation, there
will be exactly µ individuals and µ must be lower or equal to the initial
size of population ν. Besides, note that each genetic operator may create
more than one individual, so the offspring size at each generation is usually
bigger than λ. Therefore, to limit the computational time, the maximum
number of individual that can be evaluated has been fixed to 1200. Note
that by setting these constraints, a standard µGP simulation lasts from 9 to
14 hours. By incresing program’s size, λ, or the amount of individuals which
can be evaluated, simulation time grows rapidly. The other parameters have
been left to standard values.

One more important file is the fitness.sh script which is in charge of clos-
ing the loop of the simulation and creating the fitness function. It receives
a post-elaboration report from ModelSim with the code coverage values for
each unit. Figure 3.3 is one example of report with code coverage percent-
ages for controller unit. The metrics considered are Statement, Branch, FEC
Condition, FEC Expression, FSM State and FSM Transition, and for each
of them, some informations are reported alongside (active, hits, missed and
% covered). If one of these is not active, the respective code coverage value
is 100% but is not considered because that metric actually misses for that
unit. FEC is the acronym of Focused Expression Coverage, one metric used
by ModelSim to reduce the dimension of the truth table for both condition
and expression. FEC is a row based coverage metric which emphasizes the
contribution of each expression input to the expression’s output value [22].
It consider an input fully covered only when other inputs are in their qui-
escent states, meaning that the output must be seen in both 0 and 1 state
while the target input is controlling it. If these conditions occur, the input
is said to be fully covered. Then the final FEC coverage is the ratio between
the fully covered inputs and the total number of inputs.

Figure 3.3: Post-elaboration Report for Controller Unit

These values are manipulated by the script fitness.sh to create the feed-
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back for the evolutionary algorithm µGP: the fitness function. For each code
coverage metric, fitness.sh computes the average, the variance and the sum.
As described in Chapter 2, the first fitness function was an array of these
parameters, where each of them occupied a fixed position.

uGPfeedback = {a, b, c, d, e, f, g, h, i, l,m, n, o, p, q, r, s, t} ; (3.1)

However, it has been observed that this approach led to a discrepancy
in the growth of the all code coverage metrics. Statement average (a) grew
faster than the others, which were quite stable over time. Therefore, to
achieve a uniform growth of the metrics, the following simulations have been
performed with a new fitness function, expressed by the equation (3.2). It
is made up of only two parameters: the first one is the result of a weighted
average of the various coverage metrics, while the second is a value inversely
proportional to the length of the programs, so that, with the same code
coverage, the program with the lower size is chosen.

t =

1
a+b

2

2
+ 2c+ 2d+ 3

1
e+f

2

2
4 (3.2)

uGPfeedback =
;
t,

1
length

<
(3.3)

It is necessary to highlight that the final simulation’s result does not
depend on which fitness has been used. The only thinks that this function
influences is simulation time, but at the end, the code coverage reached
is the same. As figure 3.4 shows, the proposed fitness function saturates
before than the previous one. This graph is the outcome of two different
simulations executed on RI5CY core without the FPU. The blue line on the
graph represents the arithmetic average of the 6 best parameters (a,b,c,d,e,f)
of the first fitness function over time. On the contrary, the red line delineates
the trend of the weighted average (t) of the proposed fitness function over
time. The first simulation, performed with the first fitness, goes on for 19
hours and 33 minutes, while the second simulation, executed with the second
fitness, holds 15 hours and 30 minutes. It is evident that both of them
achieve the same final code coverage with a reduction of about 4 hours.
Moreover, it must be noticed that the red line models a growing monotone
function. Being represented by the first parameter (t) of the second fitness
function it could not decrease over time, at most it can remain stable. On

39



3. CASE STUDY

Figure 3.4: Behaviour of Code Coverage over time

the other hand, this could not be said for the blue line. Actually, it does not
represent only the first element of the fitness function, which is the statement
average (a): it is an arithmetic average of the first 6 elements whose trend is
different over time, some values could increase while others could decrease.
This does not guarantee that their arithmetic average is always growing.

Finally, as shown in graph 3.5 the new fitness is able to equalize the
number of clock cycles required by each generation, flattening the peaks.
Every evolutionary algorithm proceeds through steps called generations, and
for every simulation, the maximum number of generation has been fixed at
100. Each of them requires a no fixed computational time expressed in
clock cycles, since it depends on many factors like the size of the current
population, the amount of genetic operators to apply and so on. By using
this new fitness, the number of clock cycles required is almost equal for every
generation, except for the first 2 and the last 4 ones.

Results

By running a complete µGP simulation, the best optimized program
achieves a final average code coverage of 64%, as figure 3.6 shows. Oddly,
improvements are not so striking. It has been observed that considering
only the ISA of RI5CY core, µGP is not capable of covering specific parts
of the core.
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Figure 3.5: Amount of clock cycles required by generations

Figure 3.6: Code coverage achieved by running the Best µGP Program

3.1.4 Optimization phase

In order to consider the features and the specifications of the micropro-
cessor under verification, two approaches have been exploited: a first phase
called top-down and a second procedure which consists in the optimization
of the instruction library.
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Top-down approach

A Top-down approach consists in splitting the device in smaller and
more critical parts in order to improve the coverage on these units and
then join the best programs in a single test set. Initially µGP simulations
were executed for the entire design: RI5CY extended with the FPU. This
means that the instruction library supported all the instructions belonging
to RV32IMCFXpulp ISA. However, what turned out was that for example,
for every simulations code coverage of the FPU was always under 40%. The
goal of this top-down approach is to recursively detect the tricky and harder
units and focus only on those ones. Figure 3.7 describes the partition of the
device.

Figure 3.7: Top-down approach

At the beginning RI5CY core and Floating Point Unit were divided; then
the crucial units from the code coverage perspective have been selected. The
Floating Point Unit had low coverage on the Floating Point Multiply and
Accumulate unit (FMAC), on the Aligner and on the unit responsible for
division and square root, while the RI5CY’s critical units have been iden-
tified in the Load and Store unit, in the Decoder and in the Arithmetic
Logic Unit (ALU). To address this low coverage issue, the work of µGP has
been centered on each of them, one at a time. For instance, by running
one single simulation only on the Floating Point Multiply and Accumulate
unit (FMAC), code coverage increased from a 7% to a 78% only on that unit.

Instruction Library Optimization

The Instruction Library optimization foresees the writing of specific
pieces of assembly code to cover some corner cases that are hard to obtain
with a random or pseudo-random approach. For instance, there are many if-
else statements dealing with illegals instruction. Handling these instructions
is crucial and necessary for the automatic completion and refinement of ex-
isting test programs. A recent research [13] exploits these illegal instructions
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to create a game, called Core War whose high-level characteristics resem-
ble clearly the arduous microprocessor test program generation problem. In
CoreWar, two or more assembly programs are executed in the same memory
area by a timesharing processor, and the goal of each program is to crash
the others by having them execute illegal instructions [13].

Therefore, the instruction library has been sustained and reinforced by
these assembly illegal instructions. They have been carefully written bit by
bit, by looking at their original format on the RISC-V manual. For instance,
to write an illegal store instruction, the sequence ’111’ in position from bit
12th to 14th has been forced to generate an illegal condition, as it is possible
to see it in figure 3.8.

Figure 3.8: Store Instruction Format [7]

Next, pieces of assembly code have been written to generate an infinite
number, a Not-a-Number (NaN) and other combinations of instructions to
foster hard to cover pieces of code. An example of NaN generation is high-
lighted in table 3.3. The fdiv.s instruction divides the values of two registers
which store a logic zero. Then, this number is stored in register f6 and is
used as a souce register for the next two operations.

Generate a NaN

fcvt.s.w f1, x0;

fcvt.s.w f2, x0;

fdiv.s f6, f2, f1;

fsqrt.s f12, f6;

fnmsub.s f27, f28, f15, f6;

Table 3.3: Sequence of assembly instructions to generate a NaN and force the
other instructions to handle it.

Finally, a specific function has been written to cover a huge part of code
dealing with the sleep state and its transitions. To make the core sleep,
the wait for interrupt (WFI) instruction is called and a timer has been pro-
grammed to wake up it after 2000 clock cycles.

The idea behind this optimization step is not to replace the activity of
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Generate an Infinite Number

fcvt.s.w f1, x0;

li x3, 0x05;

fmv.s.x f5, x3;

fdiv.s f7, f5, f1;

fnmadd.s f2, f3, f4, f7;

Table 3.4: Sequence of assembly instructions to generate an Infinite Number
and force the other instructions to handle it.

the evolutionary algorithm, but to support it to increase the coverage of
the device, taking into consideration the details of the microprocessor core.
By implementing all these optimizations, device’s code coverage increased
until a 85% of average code coverage. It must be noticed that thanks to
the optimization process, condition coverage has almost doubled, since the
number of possibilities and combinations of logical expressions has greatly
increased. Furthermore, the second major improvement affects the FSM
transition coverage: it arose from a 44% up to 69%. The main reason of
this increase is due to the sleep function that covers many more states and
stimulates many transitions, leading to a considerable increase in both the
controller and the interrupt controller’s coverage.

Figure 3.9: Code coverage achieved with Optimizations
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3.1.5 Perturbation Module

Typically a microprocessor core is embedded in a SoC and surrounded
by many peripherals which warn they want to communicate with the core
through interrupts. Indeed it must be considered that peripheral’s perfor-
mance may also affect the speed of the core pipeline, leading to a stalls intro-
duction. Even though a 85% of average code coverage can be still considered
a good result, a verification procedure could be considered complete only if
also interrupt requests and stalls are simulated. To mimic their behaviour,
a hardware module called Perturbation Module 3 has been developed. It is
considered as the verification environment for the PULP cores and can be
instantiated for both RI5CY core and Zero-riscy core, a 2 stage area-efficient
core that implements only RV32-ICM. The perturbation module is able to
manage all the hardware-related events and it is directly connected to the
core. The main role of this module is to generate interrupts as well as stalls
on data and instructions. It is instantiated in the file tb_riscv_core.sv and
includes three components:

• Instruction stalls generator: It can be programmed to introduce
stalls on the instruction memory interface;

• Data stalls generator: It can be programmed to introduce stalls on
the data memory interface;

• Interrupt generator: It can be programmed in order to raise inter-
rupts requests on the core.

Both the instructions and data stalls generators have been developed
starting from a pre-implemented module called random_stalls.sv which was
instantiated in the toplevel file of the platform where the core was used.
However, this module presented some limitations:

• It only introduced a random number of stalls on both instructions and
data;

• Even when the number of stalls was equal to 0, it introduced one extra
cycle;

• The user had to recompile the entire platform when introducing stalls
on the desired feature.

The current stalls generator is able to implement the missing functional-
ities, by basically working with the same mechanism of its predecessor. To
perturb the core’s activity, the user can introduce a fixed or a random num-
ber of stalls. The user can decide to introduce stalls on data and instructions
or only on one of them. It can also choose the maximum number of stalls that

3Realized by Francesco Minervini at ETH University during his master thesis project.

45



3. CASE STUDY

can be produced. All these decisions are taken by calling specific functions
described in the tb_riscv.h library. For instance, the following functions can
be used to set the perturbation module using the random interrupt requests
generation and inserting random stalls on the data interface:
//Functions prototypes
void pert_set_irq_mode ( int mode );
void pert_set_mode (int feature ,int mode );
// Setting modes
pert_set_irq_mode ( PERT_RANDOM );
pert_set_mode ( PERT_DATA , PERT_RANDOM );

If the user does not want to use the stall generator, it simply forwards the
value on the input lines to the output lines, so the execution is the same as
the scenario when the perturbation module is not instantiated. On the other
hand, the interrupts generator can be controlled via specific parameters to
implement one between the following modes:

• Bypass interrupt requests coming from the external event unit directly
to the core, as in the normal execution.

• Introduction of random interrupt requests, randomizing on the number
of cycles which separate two consecutive requests.

• Raising an interrupt request when the current value of the program
counter is equal to a certain threshold value specified by the user.

Through the use of this module it is possible not only to mimic the com-
munication between core and the surrounding hardware modules, but also
to reproduce the presence of bugs. This is a huge benefit for verification
environment which can be aided and facilitated by this hardware module.
Thanks to its insertion, many bugs have been replicated and solved. There-
fore, to increase even more the code coverage of the microprocessor core,
these functionalities have been included in µGP test program generations
by calling these specific functions of the perturbation module’s library. Fi-
nally, by running the final set of best programs, the code coverage of RI5CY
core increased up to a 90.28%. It is important to highlight that this result
has been obtained thanks to these many improvements. The test set in-
cludes the best programs obtained running several times µGP on different
units as well as the funcions call of the perturbation module.

Table 3.5 highlights some important features of the final test set. It
is composed by 15 programs grouped in 5 functions called by the main
program. The total number of bytes has been computed by multiplying the
number of instructions compressed by 2 and then subtracting this number
from the number of total instructions multiplied by 4. It must be considered
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Figure 3.10: Final Code Coverage

TEST SET DETAILS

Number of programs 15

Number of lines of code 5584

Number of bytes 100214

Number of 32-bit instructions 25721

Number of compressed instructions 1335

Execution time 6 minutes

Generation time for each program 8-14 hours

Table 3.5: Final Test Set details

that the generation time for each and every program goes from 8 to 14 hours.
Moreover, the number of lines of code has been computed by removing the
empty rows. To conclude, table 3.6 summarizes the results of the average
code coverage achieved step by step.

3.1.6 Uncovered Regions

The remaining uncovered 10% depends on multiple conditions that never
happen, like FSM transitions related to a RESET state, or special cases of
infinite numbers or NaN which affect the execution of instructions. For in-
stance, the Finite State Machine (FSM) of the multiplier is made up of the
following states: IDLE, STEP0, STEP1, STEP2, FINISH. As it is possible
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TEST SET CODE COVERAGE (%)

Handwritten Program 38

µGP Best Random Program 52

µGP Best Program 64

µGP Best Program + Optimization Step 85
µGP Best Program + Optimization Step
+ Perturbation Module

90

Table 3.6: Code Coverage Enhancement

to notice from the figure 3.11, the transitions between each intermediate
state of the FSM and the IDLE state are never excited since a reset signal
has never been raised to stop the execution of a multiplication.

Figure 3.11: Finite State Machine of the Multiplier Unit

By carring out this careful code coverage analysis, it has been also dis-
covered that two FSM states of the Load and Store unit are unachievable
because the conditions for which it is possible to enter the states are never
realized.

3.1.7 Test Set Generation for Zero-riscy

Preliminary results gathered on Zero-riscy core are provided. First of all,
PULPino has been compiled to support Zero-riscy core instead of RI5CY;
then, a new instruction library supporting only RV32IM instructions has
been provided. Whereas the optimization phase has not been carried out,
with the only ISA µGP algorithm has reached a 56% of final average code
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coverage of Zero-riscy core.

Figure 3.12: Code Coverage achieved for Zero-riscy with the only ISA

As figure 3.12 shows, the two metrics that are under the mean are ex-
pression coverage as well as FSM transition coverage. This means that there
are transitions and combinations of logic expressions that never occur which
need to be excited by ad-hoc sequences of assembly instructions. This 56%
can not be considered a satisfactory result, so it must be raised and enhanced
by implementing a suitable phase of optimization.
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3.2 Verification Phase
During the microprocessor design process, engineers commonly use ex-

tensive simulations to increase confidence on device correctness. However,
reaching a high code coverage of the device under verification is not a valid
measure of correctness but should only be considered as a measure of confi-
dence. Code coverage metrics are used to guide the process of test programs
generation but a one more verification step is required to ensure also correct-
ness. For instance, simulations results may be used to compare a hardware
model aganst higher-level references or instruction set simulator [19].

This methodology uses an Instruction Set Simulator (ISS) to execute
instructions and record results to be checked. An Instruction set simulator
is a tool that runs on a workstation called the host machine, to mimic the
behavior of a target machine. Typically, instruction set simulation allows
the user to examine the internal state of the target machine, such as the
values of processor registers during the execution of each instruction [23].

Besides, as showed in figure 3.13, this methodology introduces also a
simulation checker, named Simchecker 4. It is written in SystemVerilog and
his goal is to verify that the value written in the registers is the same be-
tween the core and the golden model, checking the correctness of results.
In case of mismatches it informs raising an error warning. Simchecker has
been realized to work with the pipelines of both RI5CY core and FPU.

Figure 3.13: A first verification approach

At the beginning, to check the correctness of RI5CY core, the programs
with the highest coverage were selected. Roughly speaking, the set of pro-
grams with the 90.28% of final average code coverage has been picked and
used to identify incorrect DUV behavior. With this methodology, each as-
sembly instruction is executed by both RI5CY core and the ISS and results
are stored in the destination registers. Then, the Simchecker compares them
and points out possible differences.

By exploiting this methodology, unfortunately not even a bug has emerged.
This fact strengthens the idea that a high code coverage is not a measure

4Improved and completed by Francesco Minervini in his master thesis project at ETH
University.

50



3.2 Verification Phase

of correctness. To reach a 90.28% of device’s code coverage, the evolution-
ary algorithm can reject some low-coverage individuals that could contain
a bug. For instance, a program may contain a buggy instruction but it
does not increase the coverage with respect to another program, so in the
process of generation, it is rejected. µGP is not aware of this because its
goal is only to raise the code coverage, without checking the correctness of
the instructions. Accordingly, it must be considered that typically the basic
features have already been verified with handwritten programs and in most
cases they are correct. Problems can arise in very special and difficult to
simulate cases. Exhaustive or nearly-exhaustive tests are often necessary,
but the effort required to generate them manually and the time required to
simulate them are practically infeasible [14]. Shrink computational effort is
the main reason why this methodology exploites an evolutionary algorithm
to generate the set of programs. It is quite simple to set up, and requires
no human intervention when running. An evolutionary algorithm not only
provides an effective methodology to try random modifications, but also it
allows merging useful characteristics from different solutions, exploring effi-
ciently the search space.

The next experimental idea came out inspired by these assumptions,
with the goal of take advantage of these interesting features. To consider
the immense test space carried out by the evolutionary algorithm, instead
of performing generation of programs and verification of instruction’s cor-
rectness sequentially, they have been merged in a single phase.

Figure 3.14: Parallel Generation and Verification

While µGP drives programs generation, every single program is executed
not only on RI5CY core to produce code coverage feedback, but also on the
Golden Model (ISS), as figure 3.14 points out. Then, results are compared
by the Simchecker. If these differ, it issues an error warning that confirms
the presence of a bug. This information can be sent to the evolutionary
algorithm which can decide to stop the simulation or continue and collect
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other bugs.
Through this approach it has been possible to better explore the research

space revealing the presence of hidden bugs inside the DUV. Consequently,
this technique not only tries to increase the code coverage of the processor,
but at the same time ensures that that portion of code covered by the set
of programs is correct.

RTL ISS

p.clipr p.subuRNr
p.extractr p.addRNr
fclass.s pv.srl.sc.b
fsqrt.s p.subRNr
fcvt.s.w pv.sll.sci.b
fcvt.s.wu p.macuR
fcvt.w.s p.machhuR
fcvt.wu.s p.mulhhuR

p.macsR
pv.sra.b
pv.sll.sci.h

Table 3.7: List of Bugs

Table 3.7 lists all the bugs that have been discovered with this method-
ology. It is necessary to highlight that normally, beeing the ISS a golden
model, it must be perfect. However, the available ISS was under develop-
ment and therefore had imperfections, especially on corner cases and on
cases not specified in the datasheet.

3.2.1 Guilty Detection Process

During a normal execution, the SimChecker makes a comparison be-
tween results and exhibits eventual mismatches. If an instruction’s result
is incongruous, it displays an error message on the external evaluator’s in-
terface. How to identify the responsible of the error? As already remarked,
this guilty detection process should not be introduced in a normal hardware
verification mechanism exploiting a golden model since it must not contain
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issues. Anyhow, in this methodology it has been a fundamental step which
required a not-negligible effort and caution.

Let us consider as example one of the PULP specific faulty instructions
which belongs to the set of "General ALU Operations". Its target is to create
a kind of range determined by the second source register to clip the value of
the first source register and store it into a destination register.
p.clipr rD, rs1, rs2

Where the value of the destination register (rD) is computed with the fol-
lowing algorithm:
if rs1 <= -(rs2+1), rD = -(rs2+1),
else if rs1 >=rs2, rD = rs2,
else rD = rs1

Surprisingly, when the Simchecker bumped into this instruction, the follow-
ing error was raised.
p.clipr x6, x17, x17 x6=9b9bff9b x17:64640064 x17:64640064
SIMCHECKER: reg 6; ISS 64640064; RTL 9B9BFF9B

The value of x17 is the result of a random µGP choice and has a hex-
adecimal format. A careful analysis of the instruction specifications makes
clear that the value stored in rs1 is identical to rs2 and therefore rD should
be equal to rs2, but the value stored into the RTL destination register is
0x9B9BFF9B that is totally different from 0x64640064. It is evident that
the correct result is stored into the destination register of the ISS and the
bug is trapped into RI5CY core. After a careful reading of the RTL code,
came out that it was derivable from an overflow issue in the RI5CY Arith-
metic Logic Unit (ALU). However, in many other cases, it has not been
immediate to understand whether issue came from the RTL or ISS. There-
fore, a really meticulous investigation on the instruction specifications and
on the code has been performed. This process named "guilty-detection" has
been repeated for each and every mismatch raised by the SimChecker.

As a conclusion, the power of this methodology actually lies in the ability
to find out problems related to cases that are really difficult to imagine and
so to excite. It’s nice to notice that all these bugs have not been discovered
with the first approach (generation and verification in sequence). As already
remarked, a 90.25% of final average code coverage of RI5CY core is only a
measure of confidence and not a view of correctness. To reach this high
percentage µGP could have discarded programs containing faulty instruc-
tions or incorrect behaviours to encourage a higher code coverage program.
Through this second approach, the correctness of each and every instruction
is checked so actually turns out that with this proposed methodology, a high
code coverage is also a measure of correctness.
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Chapter 4

Conclusions

This thesis describes an efficient methodology on how to perform func-
tional verification on pipelined microprocessors. The approach employs an
automatic test program generator based on an evolutionary algorithm to
produce the set of assembly programs and a new verification method which
enables the full exploitation of the microprocessor functionalities. With the
advent of even more higher performing devices, traditional functional ap-
proaches are not sufficient to guarantee the correctness of the devices. This
methodology exploits µGP, an evolutionary algorithm to optimize and devise
automatically programs written in assembly-like languages. While features
of µGP stem from standard genetic programming, µGP was designed for
generating syntactically correct assembly programs of variable size and fully
exploit the available assembly syntax: different addressing modes, instruc-
tion set asymmetries, subroutines, interrupt calls [13]. µGP is versatile and
suitable for different microprocessors and different goals, as long as their In-
struction Set Architecture is described in the form of an instruction library.
It has already been used in many different fields such as: creation of test
programs for pre- and post-silicon validation; design of bayesian networks;
creation of mathematical functions represented as trees; integer and combi-
natorial optimization; real-value parameter optimization; and even creation
of corewar warriors [9]. The need to use an automatic test program generator
rises from the necessity to cope with the increasing hardware component’s
complexity. Actually, the advances in microelectronics technologies allowed
semiconductor manufacturers to deliver chips with ever-shrinking form fac-
tors and ever-increasing switching frequencies [13]. This requires even more
sophisticated verification mechanisms to best exploit the device’s functional-
ities and catch incorrect behaviours. To have a higher degree of confidence,
it is anymore possible to rely only on manually written programs. They are
useful to check corner cases and specific device functionalities but can not
face the increasing complexity of today’s pipelined microprocessors. There-
fore, the only solution to address these technological changes is to exploit an
automatic generation method and µGP is the one adopted for this project.
It has been demonstrated that the use of an automatic method can dra-
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matically help designers and engineers: Instead of checking massive random
simulations for differences with respect to the correct model, validation ex-
perts can let the automatic test case generator work for the proper time
and even actually examine the test set it produces [19]. However, results
demonstrated that µGP algorithm requires several intermediate optimiza-
tion approaches to improve the quality of test programs, since with the only
Instruction Set it is not able to reach specific part of the device. Of course
these steps demand expert and skilled engineers whose work is to carefully
analyze the code and undertand which part of the design is not excited and
why. The process of test-program generation is guided by coverage mea-
surements. Code coverage metrics are useful to have an estimation of the
verification completeness, providing a measure of confidence in the design
correctness. However, setting a high priority to a single coverage metrics
turned out to be inconvenient for the computational effort required. A new
fitness function capable of weighing these code coverage metrics in a single
formula has been proposed. It has been demonstrated that it can reduce
the time required to achieve the same code coverage by around 20% with re-
spect to the standard linear fitness functions adopted, described in Chapter
2. Computational time is reduced and the test program generation process
is improved.

This methodology not only proposes an automatic simulation-based test
program generation but also improves the verification process by taking
advantage of the excellent features of an evolutionary algorithm. In the
previous chapters it has been demonstrated that by bonding together the
assembly program generator and the instruction set simulator it is possible
to perform in parallel the generation of the programs and the checking of
their correctness. Exploiting the excellent features of an evolutionary algo-
rithm to generate assembly programs, a wider space of design and specific
corner cases are excited and simulated. Therefore, while the goal of µGP
is still to increase the code coverage, the correctness of each instruction is
checked. Differently from the first approach, a high code coverage now is no
more only a degree of confidence, but it becomes a measure of correctness.
Consequently, this proposed methodology not only tries to increase the code
coverage of the processor, but at the same time ensures that that portion of
code covered by the set of programs is correct.

Thanks to this methodology, many bugs have been discovered on both
the RTL model of the core and the instruction set simulator (ISS). Many of
these are caused by the absence of technical specifications on corner cases.
For instance, in the ISS, the behaviour of many instructions was not deter-
mined for operands which stored a zero or a maximum number. This led to
a divergence in the results. Experiments clearly show that using this method
may dramatically help the process of verification of a pipelined micropro-
cessor, since it exploits the exceptional features of an evolutionary algorithm.
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4.1 Future work
The major advantage of this project regards its portability. The approach

proposed can be extended to other RISC-V microprocessors through the use
of a proper instruction library to generate the assembly programs; by dispos-
ing of an instruction set simulator (ISS) to check instruction’s correctness
and including an hardware module (i.e the Simchecker) in charge of compar-
ing the results of the microprocessor and the ISS. With some effort it is also
possible to extend this approach to memories and caches. The problem of
testing embedded memories has become more complex in recent years [24].
A first attempt was made to test the virtual memory of Ariane core, a 64-
bits 6-stage RISC-V CPU developed at ETH University. For this purpose,
a complete µGP environment has been prepared with a proper instruction
library and many scripts. To have a higher visibility of the microprocessor’s
activity, many SoCs like PULPino include also a Debug unit. An interesting
idea could be to extend this methodology to deal with this part of the system
or in general expand the features to support some privileged instructions in
the RISC-V ISA (uret -sret etc..).
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