
POLITECNICO DI TORINO

Corso di Laurea Magistrale in Ingegneria Telematica (Computer and
Communication Networks Engineering)

Master Degree Thesis

Energy-Aware Emulation of
Software Defined Networks

Relatore
prof. Chiasserini Carla Fabiana
Correlatori:
prof. Giaccone Paolo
prof. Casetti Claudio Ettore

Walter Laera
matricola: 208290

A.A. 2017 – 2018

Abstract

The aim of this thesis is the presentation and simulation of an algorithm that,
through a southbound API, provides to the SDN controller the energy consump-
tion of each network device.

Initially, we conducted an analysis of the state of the art of the SDN network
and a research on the frameworks available for measuring/estimating the energy
consumption of the different network devices.

At the end of the research, we have decided to use an analytical model that binds
device’s energy consumption with its ingress rate which can be calculated through
the incoming bytes, of each switch’s interface, provided by SNMP as southbound
protocol. Then we created a virtual network to perform simulations of our algo-
rithm for data collection. The differences between our tests’ results and the energy
consumptions measured in the paper [20] are less than 0.5 watts, which means that
we have an error less than 0.1%.

In our opinion, the method considered in this study has points in favour and,
at the same time, limitations that can be summarized, respectively, in the easy
integration in the current controllers, since they already measure the rate of the
different nodes, and in the fact that the SDN controller should have a database
with all analytical models of each controlled device, this because at the same rate,
each device has a different energy consumption that depends not only by the model
but also by the producer.

From our study carried out, in conclusion, we can assert that this method can
be a good alternative until the devices themselves become able to measure their
energy consumption and provide it to southbound protocols.

ii

Contents

List of Figures iv

List of Tables v

Introduction 1

1 Software Defined Network and Its Southbound Interfaces 3
1.1 Software-Defined Networking (SDN) 3
1.2 Southbound APIs for Monitoring 5

1.2.1 SNMP Simple Network Management Protocol 6

2 Energy Management Relevance and Energy Frameworks 9
2.1 GAL Framework . 10
2.2 KWAPI Framework . 12
2.3 EMAN Framework . 13

2.3.1 SNMP MIB of EMAN Framework 14
2.4 Energy Consumption Models Bound to the Bit Rate 22

3 Software Implementation and Simulation 29
3.1 Simulation Environment . 29
3.2 Creation of SNMP Network and Energy Application 32

3.2.1 SNMP Network with Mininet 32
3.2.2 Energy Application . 34

4 Conclusions 39

A Simulation Algorithms 41
A.1 Network Creation Algorithm . 41
A.2 Energy Consumption Algorithm . 43

Bibliography 47

iii

List of Figures

1.1 Simplified view of an SDN architecture. Reproduced from [21] 4
1.2 OID tree example. 7
1.3 SNMP Communication. 7

2.1 Global energy consumption for network infrastructure and user equip-
ment during operational phase (TWh). Reproduced from [34] 9

2.2 The hierarchical architecture of GAL. Reproduced from [28] 11
2.3 Kwapi architecture. Reproduced from [5] 12
2.4 Periodic interval mode. Reproduced from [32] 17
2.5 Sliding window interval mode. Reproduced from [32] 18
2.6 Total interval mode. Reproduced from [32] 18

3.1 Fat-tree Network implemented. 32
3.2 Snmpwalk answer . 34
3.3 Application diagram. 34
3.4 Interface identification . 35
3.5 Bandwidth of iperf. 36
3.6 Rate of our program. 36
3.7 Energy consumption of edge ethernet switch. Reproduced from [20] . . 37
3.8 Energy consumption of edge ethernet switch from our tests. 38

iv

List of Tables

2.1 eoMeterCapabilitiesTable. Reproduced from [32] 14
2.2 eoPowerTable. Reproduced from [32] 15
2.3 eoPowerStateTable. Reproduced from [32] 16
2.4 Power State Sets. Reproduced from [31] 16
2.5 eoEnergyParametersTable. Reproduced from [32] 17
2.6 eoEnergyTable. Reproduced from [32] 19
2.7 eoACPwrAttributesTable. Reproduced from [32] 19
2.8 eoACPwrAttributesDelPhaseTable. Reproduced from [32] 20
2.9 eoACPwrAttributesWyePhaseTable. Reproduced from [32] 20
2.10 eoTable. Reproduced from [33] . 21
2.11 eoRelationTable. Reproduced from [33] 22
2.12 Summary of measurement results for the different devices. Reproduced

from [20] . 23

3.1 SNMP applications included with Net-SNMP. Reproduced from:"en.
wikipedia.org/wiki/Net-SNMP" . 30

3.2 Energy consumption of the edge switch for a bit rate of 10Gbps . . 38

v

Introduction

The use of IT networks has noticed an exponential growth in the last twenty years.
This because, in a world in which devices that are connected to the network increase
year by year, as well as increasing performances requested by users, therefore, Inter-
net providers are amplifying and upgrading their networks to ensure a high-quality
service. These conditions have made communication networks one of the biggest
consumers of electricity in the world, placing research in front of a new challenge:
reducing the consumption of IT networks.

In the last few years a new network architecture is being developed, the Soft-
ware Defined Network (SDN), which separates the control plane from the data one,
centralising it. In this way, it provides a wider view of the network, allowing bet-
ter traffic management. It was therefore thought that a new decision parameter,
for data routing, could be the energy consumption of the different network nodes
in order to reduce as much as possible the total energy consumption of the network.

The aim of this thesis is the presentation and simulation of an algorithm that,
through a southbound API, provides to the SDN controller the energy consumption
of each network device.

Initially, we conducted an analysis of the state of the art of the SDN network
and a research on the frameworks available for measuring/estimating the energy
consumption of the different network devices. Then we created a virtual network
to perform simulations of the framework chosen for data collection.

The thesis is divided into four chapters: in the next chapter, we show the state
of the art of the SDN network architecture, with more attention on the south-
bound API and presenting the main protocols used. The second chapter presents
the problems of world energy consumption regarding communication networks and
the possible frameworks for real-time collection of energy consumption data from
different network nodes. In the third chapter we present the tools and algorithms
used for the simulations of an SDN network and its energy consumption collec-
tion algorithm. In the fourth and final chapter, we summarize the work done and
comment the results obtained.

1

2

Chapter 1

Software Defined Network
and Its Southbound
Interfaces

In this chapter we will introduce a new network architecture SDN, focusing on
southbound interfaces, in particular on SNMP (Simple Network Management Pro-
tocol).

1.1 Software-Defined Networking (SDN)
IT networks structures have a distributed control with network nodes run transport
protocols. These structures allow that information reaches different places of the
world. IP protocol based networks, even if widely utilized, are complicated and
difficult to handle: to underline the required high-level network policies, network
executives need to configure each network device individually using low-level lan-
guages and in many cases vendor-specific constraining languages. Also, network
conditions have to endure the dynamics of faults and re-adjust to load variations.
In today’s IP networks, automated reconfiguration and response mechanisms are
essentially unavailable.

To keep the increasing elasticity, innovation and growth of networking infras-
tructure the control plane (that determines how to manage network traffic) and
the data plane (that delivers traffic in order to the decisions performed by the
control plane) should not be bundled with the networking devices. Today’s IP net-
works don’t have this feature because they are vertically integrated.

Software-Defined Networking (SDN) is an emerging networking model [21] which
improves the limitations of current network infrastructures. It will break the ver-
tical integration dividing the network’s control logic (the control plane) from the
underlying data plane that forwards the traffic. The control logic is implemented
in a centralized controller (or network operating system) to simplify the policy

3

Walter Laera et al. Energy-Aware Emulation of Software Defined Networks

requirement and network (re)configuration and development. Network switches,
thanks to this division, will become simple forwarding devices.

Figure 1.1. Simplified view of an SDN architecture. Reproduced from [21]

The SDN architecture (fig.1.1) is structured as follows:

• Forwarding device: hardware- or software-based data plane devices that exe-
cute a set of essential actions. These actions are defined by specific instruction
sets (e.g. flow rules) and applied on the incoming packets (e.g. forward to
particular ports, drop, rewrite some header, forward to the controller). The
instruction sets are set by southbound interfaces and are installed in the for-
warding devices by the SDN controllers implementing the southbound proto-
cols.

• Southbound interface: they are used to formalize communication between the
control and data plane elements. In the southbound interface, the APIs (Ap-
plication Programming Interface) define an instruction set for the forwarding
devices. These APIs are communication protocols between forwarding devices
and control plane elements.

• Control plane: its components set up forwarding devices through southbound
API. The control plane is nothing less than the network coordinator. It’s
composed by all control logic lays in the applications and controllers.

• Northbound interface: the network operating system (SDN controller) pro-
vides an API (the northbound interface) to develop the applications. Usually,
this interface abstracts the low-level instruction sets used by southbound in-
terfaces to process forwarding devices.

• Management plane: this plane is the set of applications that leverage the
functions given by the northbound interface to apply network control and

4

1 – Software Defined Network and Its Southbound Interfaces

operation logic. It involves applications such as routing, monitoring, load bal-
ancers, firewalls, and so on. It outlines the policies, which are finally translated
to southbound-specific instructions, that define the function of the forwarding
devices.

1.2 Southbound APIs for Monitoring
Southbound APIs are communication protocols that formalize a communication
language between the control plane and the data plane. They are not only used
to configure but also to monitor the forwarding devices. Gathering information is
essential to manage the network, to make decisions and set the devices in the best
way. Management applications need correct and timely statistics of the network
resources with different aggregation levels. The network overhead for statistics col-
lection should be minimal.

Various protocols (southbound API), used to monitor network devices, are con-
trolled and examined in this thesis. The analysed protocols are the following:

• OpenFlow [11]: it is accepted as the actual interface between control and data
planes. In order to give a global view of the network, Open-Flow provides
different counters: per-flow, per-port, per-queue and per-group.

• SNMP (SimpleNetworkManagementProtocol) [29]: SNMP is a component of
the Internet Protocol Suite as defined by the Internet Engineering Task Force
(IETF). It aims to collect and organize information about controlled devices
on IP networks (section 1.2.1).

• sFlow [16]: this standard tends to provide accurate network measurements
without needs per-flow state of the switches. It employs time-based sampling
for collecting traffic information and provides two forms of sampling: packet
sampling and port counter sampling. sFlow is not generally utilized by the
vendors.

• NetFlow [30]: created by Cisco, provides a procedure to obtain statistics about
individual IP flows in data networks. NetFlow renders information such as
source and destination IP address, port numbers, byte count, etc. It supports
different technologies like multi-cast, IPSec, and MPLS. Although NetFlow is
a proprietary protocol, NetFlow version 9 has been assumed to be a common
and universal standard by the IP Flow Information Export (IPFIX) working
group, so that non-Cisco devices can forward data to NetFlow collectors.

SNMP protocol is chosen because it’s one of the most used protocols in the
network and it can be deployed in a large set of heterogeneous devices. Furthermore,
SNMP southbound is already present in OpenDayLight and ONOS controllers.

5

Walter Laera et al. Energy-Aware Emulation of Software Defined Networks

1.2.1 SNMP Simple Network Management Protocol
SNMP is a standard protocol that handles and organizes information concerning
managed devices on IP networks. Currently, SNMP is mostly used for monitoring
and managing the performance of network devices.

There are three versions of SNMP:

The first version (SNMPv1) was developed by IETF in the ’80s and it still is
the actual network-management protocol in the Internet community, although it is
criticized for the poor security and its complicated code.

The second one (SNMPv2) updates version 1 and adds enhancements in perfor-
mance, security, confidentiality and manager-to-manager communications.

The last version of the protocol (SNMPv3) adds cryptographic security and im-
proves the problems related to the large-scale deployment of SNMP, accounting and
fault management.

A SNMP management system contains:

• several nodes with a SNMP entity, called agents. They manage and collect
information about the devices in which they are installed;

• at least one SNMP entity called manager, which sends commands to the agents
and receives notifications from their;

• a management protocol used to transfer management information between the
SNMP entities.

Agents control devices such as hosts, routers, terminal servers, etc. These de-
vices are monitored and controlled through the access of their own management
information.

Management information can be seen as a collection of managed objects orga-
nized in Management Information Base (MIB). Each MIB module collects similar
objects. They are tree structures and each node of the tree is an object of the MIB
which is identified by an Object IDentifier (OID). The OID consists of a dotted list
of integers (fig.1.2).

The protocol provides three ways to access management information:

The first way of communication is request-response, in which the manager sends
a request to an agent that responds. This interaction is used to retrieve or modify
information regarding the managed device.

The second way of communication is also a request-response, but between two
managers. This type of interaction is used to exchange information from an SNMP

6

1 – Software Defined Network and Its Southbound Interfaces

Figure 1.2. OID tree example.

Reproduced from:
"www.networkmanagementsoftware.com/snmp-tutorial-part-2-rounding-out-the-basics/"

manager to another.

The last way of communication is an unsolicited message from an agent that
has an unexpected situation caused by modifications to management information
related to the device. This interaction can be with or without the acknowledgement
from the manager.

Figure 1.3. SNMP Communication.

Reproduced from: "www.protoconvert.com/TechnicalResourses/Tutorials/SNMP.aspx"

7

Walter Laera et al. Energy-Aware Emulation of Software Defined Networks

The commands used to communicate between SNMP entities (e.g. fig.1.3) are:

• GET: this command is sent by a manager to an agent to retrieve one data
value from a MIB.

• GETBULK: this operation is used to recover lots of data from MIBs. The
manager sends a GETBULK command when requests to the agent more than
one OID, in this way the SNMP traffic is reduced.

• GETNEXT: this command is like GET. The difference is that in this operation
it collects the value of the next OID in the MIB tree.

• SET: the manager uses this command to modify or assign a value to an OID. If
the operation is successful the agent sends back a GET-RESPONSE message,
in the other case the agent sends an error indication with the motivation of
the failure.

• TRAPS: differently from all previous commands, the TRAP message is sent
from agent to manager. It is automatically generated to inform the manager
about an important event.

• INFORM: this message is similar to the TRAP, the difference is that when
an agent sends an INFORM message, the SNMP manager responds with an
acknowledge message.

• RESPONSE: this command is used to respond to the different GET messages
(GET, GETBULK, GETNEXT) or to the SET message.

8

Chapter 2

Energy Management
Relevance and Energy
Frameworks

In this chapter, we will underline the importance of energy consumption of IT
networks, and will present different frameworks that collect data regarding energy
consumption.

As seen in fig. 2.1 global telecommunication networks have a high energy con-
sumption and this is the reason why the information technology (IT) industry is
focusing on the energy performance of the network, in order to lower capital and
recurring costs.

Figure 2.1. Global energy consumption for network infrastructure and user equip-
ment during operational phase (TWh). Reproduced from [34]

Until recently, energy management for networking devices, in wired networks,
has not gained much consideration. Researchers have suggested more than one
strategy to make these devices more energy-aware: link rate adaptation in case of

9

Walter Laera et al. Energy-Aware Emulation of Software Defined Networks

low traffic, sleeping during no traffic periods. Currently, however, there is a poor
understanding of the specific energy savings obtained by choosing these techniques,
and no hardware implementations. One obstacle to innovation in this domain is
the lack of power measurements from live networks and a good perception of how
consumed energy changes under different traffic loads and switch/router configura-
tion settings.

We found four ways to collect their energy consumption data:

• The first is GAL (Green Abstraction Layer) framework (section 2.1).

• The second is KWAPI framework (section 2.2).

• The third is Energy Management (EMAN) framework (section 2.3).

• The last one uses energy consumption models of different devices with a mon-
itoring traffic protocol (cited previously in 1.2) in order to evaluate the energy
consumption of each device. There are different detailed models (section 2.4)
concerning switches and routers, which show the devices’ consumption with
different traffic loads.

We have decided to use the last method to provide devices’ power consumption
data, since other methods need hardware components, implemented or added, to
network devices. In fact, there are still few network devices that can calculate their
own power consumption and it is expensive to apply watt-meters to other devices.

2.1 GAL Framework
Green Abstraction Layer (GAL) [28] provides an interface between the control
framework (local or network) and the low-level physical resource management al-
gorithms, where energy-saving policies are applied.

GAL has been developed to hide the implementation details of energy-saving
methods and helps supply standard interfaces for communication between the hard-
ware and its control framework. It provides a hierarchical representation of the
device’s internal organization, as we can see in figure 2.2, where the tree graph
represents the components at different levels. As said in [28], the goal of the GAL
is to provide:

• a common and simple way to represent the power management capacities
available in heterogeneous data plane hardware;

• a framework for information trade between power-managed data plane objects
and control processes;

• a reference control chain that supports a consistent hierarchical structure of
multiple local and network-wide energy management protocols.

10

2 – Energy Management Relevance and Energy Frameworks

Figure 2.2. The hierarchical architecture of GAL. Reproduced from [28]

Standard Green Interface (GSI), GAL’s northbound interface, allows the man-
agement of energy-sensitive hardware entities. GSI provides a variety of functions
and data types to allow GAL’s interface to work, even if the implementation of
modules that interact with the hardware depends on the devices (e.g. network
elements, network adapters, chips, fans etc.). The main tools offered by the GSI
functions are:

• Discovery: it is employed to retrieve information about: available energy con-
figurations and other information of the entity and a list of manageable com-
ponents within the entity and their relations;

• Provisioning: it allows the setting of an energy configuration of the entity.

• Monitoring: it collects significant parameters of the physical device.

We make an example of GAL functioning in order to understand better how it
works.

When a controller modifies the configuration of a logical link (e.g. the IP layer)
by setting it into sleep mode, a command is sent to the interested device, through a
network protocol. GAL receives the command, defines a highest-level Local Control
Policy (LCP) and the physical resources bound to the logical link (e.g. which
physical port). If there are no more active links, the layer-3 LCP puts the entire

11

Walter Laera et al. Energy-Aware Emulation of Software Defined Networks

line-card to sleep, otherwise, the LCP puts the physical interface into standby mode
and decreases the performance of all the hardware components that process packets
for that port. As we can guess the work of the controller is easier, it only defines
the configuration of a logical link while GAL chooses how to manage each part of
the physical device.

2.2 KWAPI Framework
The KWAPI framework [5] was created to supply power consumption data to the
OpenStack platform.

Figure 2.3. Kwapi architecture. Reproduced from [5]

Its architecture (fig.2.3) is based on two layers. The first one, the layer of drivers,
recovers data from various devices. The second one, the layer of plugins, is respon-
sible for the collection and elaboration of the data. These two layers communicate
through a forwarder or a bus.

A Driver Manager controls the driver layer running the configuration file and,
for each entry found, initializing a thread. Each entry consists of a list of probes,
the type of driver to use and the relevant parameters. All data retrieved from the
drivers are sent, in JSON format, to the forwarder, using ZeroMQ as the transport
layer. ZeroMQ [19] is a high-performance asynchronous messaging library that pro-
vides to the developers the instruments to build their message queuing system in a
distributed and concurrent way.

As said in [5], "the Forwarder operates by using a publish/subscribe pattern,

12

2 – Energy Management Relevance and Energy Frameworks

where the drivers are publishers and the plugins are subscribers." It can work lo-
cally or in a distributed architecture. Locally means that, for example, the drivers
and the plugins are on the same machine, even if this configuration is not recom-
mended. In the distributed architecture, instead, thanks to a gateway machine that
connects isolated networks, a plugin can receive several measurements from remote
drivers using the forwarder.

As said before, the forwarder provides data to the plugin that processes mea-
surements. The plugins are:

• REST API: it permits to an external system to access real-time data.

• RRD: it is a plugin that stores the information received from the drivers in
RRD files. The advantage of such files is that they render efficiently graphs.

• Live plugins: they are based on Flask and RRDtool to give a web interface.

– Flask [2] is a micro web framework. It doesn’t force or presume developers
to use a particular library or instrument. It supports extensions that can
add application characteristics as if they were implemented in Flask itself.

– RRDtool [14] is used for high-performance data logging and graphing sys-
tem for time series data.

• HDF5 plugin [4]: it is used to store detailed metric with Kwapi and allows to
store several months of energy consumption data of numerous probes.

• GANGLIA plugin: it allows communication with GANGLIA server. Ganglia
[3] is a scalable distributed monitoring system for high-performance computing
systems such as clusters and Grids.

2.3 EMAN Framework
Informational RFC [31] was published in September 2014, in which a framework
is defined by providing energy management for devices within, or connected to,
communication networks. The first thing that improves the energy efficiency of
the network is to allow the devices to communicate their energy consumption. The
EMAN framework provides an information model, for electrical equipment (Energy
Object), that helps us to deal with this problem. The information model is struc-
tured in this way:

There is the identification of the Energy Object. The Energy Object has a
Universally Unique Identifier (UUID) that uniquely and persistently identifies it.
Furthermore, it can use a unique human-readable printable name that could be:
textual DNS name, MAC address of the device, interface ifName or a text string.

Then there is the identification regarding the context of Energy Objects. This
category describes how an Energy Object is used, namely, it indicates if the Object

13

Walter Laera et al. Energy-Aware Emulation of Software Defined Networks

is mainly a consumer, producer, meter, distributor or store of energy.

Finally, the power measurement is described. Where its attributes describe
power, energy, and demand measurements.

The IETF has decided to use SNMP protocol to implement this framework and
it can be implemented in other protocols.

2.3.1 SNMP MIB of EMAN Framework
This subsection illustrates SNMP MIBs created to monitor the energy consumption
of devices present in the network.

The Energy Monitoring MIB [32] has the tools to measure and collect the power
consumption data and the Energy Object Context MIB [33] allows to identify and
understand relationships among devices.

2.3.1.1 Energy Monitoring MIB

The Energy Monitoring MIB is composed of two MIB modules: the ENERGY-
OBJECT-MIB that collects power and energy measurements and the POWER-
ATTRIBUTES-MIB that addresses on power quality measurements for Energy
Objects.

ENERGY-OBJECT-MIB: this module is made of five tables.

The first one (tab.2.1) is the eoMeterCapabilitiesTable. It helps us understand
the other tables regarding ENERGY-OBJECT-MIB and POWER-ATTRIBUTES-
MIB, available for each Energy Object.

Entity (OID) Description
eoMeterCapabilitiesEntry(1)
[entPhysicalIndex]

An entry describes the metering capability of an Energy
Object

eoMeterCapability An indication of the energy-monitoring capabilities sup-
ported by this agent

Table 2.1: eoMeterCapabilitiesTable. Reproduced from [32]

The eoPowerTable (tab.2.2) is the second table. It collects the power consump-
tion and indicates the units, sign, measurement accuracy, and related objects of the
Energy Object.

Entity (OID) Description
eoPowerEntry(1) [entPhysi-
calIndex]

An entry describes the power usage of an Energy Object

eoPower(1) It indicates ower measured, positive value if the device con-
sume energy otherwise negative

14

2 – Energy Management Relevance and Energy Frameworks

eoPowerNamePlate(2) It indicates the rated maximum consumption for the fully
populated Energy Object

eoPowerUnitMultiplier(3) The magnitude of watts for the usage value in eoPower and
eoPowerNameplate

eoPowerAccuracy(4) This object indicates a percentage value representing the
assumed accuracy of the usage reported by eoPower

eoPowerMeasurementCaliber
(5)

It specifies how the usage value reported by eoPower was
obtained.

eoPowerCurrentType(6) This object indicates whether the eoPower for the Energy
Object reports alternating current, direct current, or un-
known

eoPowerMeasurementLocal
(7)

It describe whether the measurement is made at the device
itself or from another entity

eoPowerAdminState(8) This object specifies the desired Power State and the Power
State Set for the Energy Object

eoPowerOperState(9) This object specifies the current operational Power State
and the Power State Set for the Energy Object

eoPowerStateEnterReason
(10)

This string object describes the reason for the eoPowerAd-
minState transition

Table 2.2: eoPowerTable. Reproduced from [32]

The value of eoPowerMeasurementCaliber can be:

• Unavailable.

• Unknown: it means that how the usage was determined is unknown. In some
cases, the usage is calculated through other devices, so it is not known whether
the usage reported is actual, estimated, or static.

• Actual: it indicates that the usage was measured through some hardware or
direct physical means.

• Estimated: it means that the usage is an estimation based on the device type,
state, and/or current utilization using some algorithm or heuristic.

• Static: it indicates that the usage is reported by external tables, specifications,
and/or model information.

The third table (tab.2.3) is the eoPowerStateTable. It describes information and
statistics about the supported power states for each Energy Object.

Entity (OID) Description
eoPowerStateEntry(1) [entPhysicalIn-
dex, eoPowerStateIndex]

This entry displays max usage values at every sin-
gle possible Power State supported by the Energy
Object

eoPowerStateIndex(1) The index of the Power State of the Energy Ob-
ject within a Power State Set

eoPowerStateMaxPower(2) The maximum power usage for the power state
indicated in eoPowerStateIndex

15

Walter Laera et al. Energy-Aware Emulation of Software Defined Networks

eoPowerStatePowerUnitMultiplier(3) The magnitude of watts for the usage value in
eoPowerStateMaxPower

eoPowerStateTotalTime(4) The total time, in hundredths of a second, spent
in a particular Power State

eoPowerStateEnterCount(5) The number of time that an entity has visited a
particular Power State since the last reset

Table 2.3: eoPowerStateTable. Reproduced from [32]

The Power State Sets have different standards and implementations. An Energy
Object supports more than one Power State Set implementation at the same time.

At the moment, in the framework, there are three defined Power State Set:

• IEEE1621 [17]. The IEEE1621 Power State Set is composed of three simply
states: on, off, or sleep.

• DMTF [12]. The Distributed Management Task Force (DMTF) standards
organization was based on the CIM (Common Information Model) in order to
define a power profile standard.

• EMAN [31]. The EMAN Power States are defined starting from the Power
States defined in IEEE1621 with the supplement of the Power States defined
in ACPI and DMTF.
The Advanced Configuration and Power Interface (ACPI) specification sup-
plies an open standard that can be used by the operating systems in order to
discover, configure, monitor and power manage of our computer hardware.

Tab. 2.4 lists the EMAN Power States and shows the equivalent Power States
of the other standards.

IEEE1621 DMTF ACPI EMAN
off Off-Hard G3/S5 mechoff
off Off-Soft G2/S5 softoff
off Hibernate G1/S4 hibernate
sleep Sleep-Deep G1/S3 sleep
sleep Sleep-Light G1/S2 standby
sleep Sleep-Light G1/S1 ready
on on G0/S0/P5 lowMinus
on on G0/S0/P4 low
on on G0/S0/P3 mediumMinus
on on G0/S0/P2 medium
on on G0/S0/P1 highMinus
on on G0/S0/P0 high

Table 2.4: Power State Sets. Reproduced from [31]

16

2 – Energy Management Relevance and Energy Frameworks

The fourth table (tab.2.5) is the eoEnergyParametersTable. With this table, the
manager can set up parameters to collect energy measurements.

Entity (OID) Description
eoEnergyParametersEntry(1) [eoEner-
gyParametersIndex]

An entry controls an energy measurement in
eoEnergyTable. An Energy Object can have mul-
tiple eoEnergyParametersIndex

eoEnergyObjectIndex(1) This index identifies the Energy Object
eoEnergyParametersIndex(2) The index of the Energy Parameters setting for

collection of energy measurements for an Energy
Object

eoEnergyParametersIntervalLength(3) It indicates the length of time in hundredths of a
second over which to compute the average eoEn-
ergyConsumed measurement

eoEnergyParametersIntervalNumber
(4)

The number of intervals maintained in the eoEn-
ergyTable

eoEnergyParametersIntervalMode(5) A control object to define the mode of interval
calculation for the computation of the average
eoEnergyConsumed or eoEnergyProvided mea-
surement

eoEnergyParametersIntervalWindow
(6)

The length of the duration window between the
starting time of one sliding window and the next
starting time

eoEnergyParametersSampleRate(7) The sampling rate, in milliseconds, at which the
Energy Object should poll power usage in order
to compute the average eoEnergyConsumed

eoEnergyParametersStorageType(8) This variable indicates the storage type for this
row

eoEnergyParametersStatus(9) It is used to start or stop energy usage logging
Table 2.5: eoEnergyParametersTable. Reproduced from [32]

The eoEnergyParametersIntervalMode entry can have three values that define
three ways for energy measurement collection:

• Period (fig.2.4): With this value the measurements are periodic and non-
overlapped.

Figure 2.4. Periodic interval mode. Reproduced from [32]

Where eoEnergyParametersIntervalLength defines the value of L.

• Sliding windows (fig.2.5): This value indicates that the measurements are
periodic and overlapped.

17

Walter Laera et al. Energy-Aware Emulation of Software Defined Networks

Figure 2.5. Sliding window interval mode. Reproduced from [32]

In this case S2 = S1 + eoEnergyParametersIntervalWindow.

• Total (fig.2.6): It specifies a continuous measurement since the last reset.

Figure 2.6. Total interval mode. Reproduced from [32]

The value of eoEnergyParametersIntervalNumber should be one and eoEner-
gyParametersIntervalLength is not considered.

The fifth table (tab.2.6) is the eoEnergyTable. It supplies a log of the energy
and demand information.

Entity (OID) Description
eoEnergyEntry(1) [eoEner-
gyParametersIndex, eoEner-
gyCollectionStartTime]

An entry describing energy measurements

eoEnergyCollectionStartTime
(1)

This object specifies the start time of the energy measure-
ment sample

eoEnergyConsumed(2) The energy consumed in units of watt-hours for the Energy
Object over the defined interval

eoEnergyProvided(3) The energy produced in units of watt-hours for the Energy
Object over the defined interval

eoEnergyStored(4) The difference of the energy consumed and energy pro-
duced for an Energy Object in units of watt-hours for the
Energy Object over the defined interval

eoEnergyUnitMultiplier(5) The magnitude of watt-hours for the energy field in eoEn-
ergyConsumed, eoEnergyProvided, eoEnergyStored, eoEn-
ergyMaxConsumed, and eoEnergyMaxProduced

eoEnergyAccuracy(6) This object indicates a percentage accuracy of Energy us-
age reporting

eoEnergyMaxConsumed(7) This object is the maximum energy observed in eoEnergy-
Consumed since the monitoring started or was reinitialized

eoEnergyMaxProduced(8) This object is the maximum energy ever observed in eoEn-
ergyEnergyProduced since the monitoring started

18

2 – Energy Management Relevance and Energy Frameworks

eoEnergyDiscontinuityTime
(9)

It specifies the time of the last interruption of total energy
measurement

Table 2.6: eoEnergyTable. Reproduced from [32]

POWER-ATTRIBUTES-MIB: this module is composed of three tables.

The eoACPwrAttributesTable (tab.2.7) is the first table. It informs the manager
about power quality available for each Energy Object.

Entity (OID) Description
eoACPwrAttributesEntry(1) [entPhysi-
calIndex]

This is a sparse extension of the eoPow-
erTable with entries for power attributes
measurements or configuration

eoACPwrAttributesConfiguration (1) Configuration describes the physical config-
urations of the power supply lines: single
phase, three-phase delta or, three-phase Y

eoACPwrAttributesAvgVoltage (2) A measured value for average of the voltage
measured over an integral number of AC cy-
cles

eoACPwrAttributesAvgCurrent (3) A measured value for average of the current
measured over an integral number of AC cy-
cles

eoACPwrAttributesFrequency (4) A measured value for the basic frequency of
the AC circuit

eoACPwrAttributesPowerUnitMultiplier
(5)

The magnitude of watts for the usage
value in eoACPwrAttributesTotalActive-
Power, eoACPwrAttributesTotalReactive-
Power, and eoACPwrAttributesTotalAp-
parentPower measurements

eoACPwrAttributesPowerAccuracy (6) This object indicates a percentage value rep-
resenting the presumed accuracy of active,
reactive, and apparent power usage report-
ing

eoACPwrAttributesTotalActivePower (7) A measured value of the actual power deliv-
ered to or consumed by the load

eoACPwrAttributesTotalReactivePower (8) A measured value of the reactive portion of
the apparent power

eoACPwrAttributesTotalApparentPower
(9)

A measured value of the voltage and current
that determines the apparent power

eoACPwrAttributesTotalPowerFactor (10) A measured value ratio of the real power
flowing to the load versus the apparent
power

eoACPwrAttributesThdCurrent (11) A calculated value for the current total har-
monic distortion

eoACPwrAttributesThdVoltage (12) A calculated value for the voltage total har-
monic distortion

Table 2.7: eoACPwrAttributesTable. Reproduced from [32]

The second table, eoACPwrAttributesDelPhaseTable (tab.2.8), is used to set up
the parameters of energy and demand measurement collection.

19

Walter Laera et al. Energy-Aware Emulation of Software Defined Networks

Entity (OID) Description
eoACPwrAttributesDelPhaseEntry(1) [entPhysi-
calIndex, eoACPwrAttributesDelPhaseIndex]

An entry describes power mea-
surements of a phase in a DEL
three-phase power

eoACPwrAttributesDelPhaseIndex (1) A phase angle typically corre-
sponding to 0, 120, 240

eoACPwrAttributesDelPhaseToNextPhaseVoltage
(2)

A measured value of phase to next
phase voltages

eoACPwrAttributesDelThdPhaseToNextPhaseVoltage
(3)

A calculated value for the volt-
age total harmonic distortion for
phase to next phase

Table 2.8: eoACPwrAttributesDelPhaseTable. Reproduced from
[32]

The last table (tab.2.9) is the eoACPwrAttributesWyePhaseTable. It is used
to indicate information and statistics about the supported Power States for each
Energy Object.

Entity (OID) Description
eoACPwrAttributesWyePhaseEntry(1) [entPhysi-
calIndex, eoACPwrAttributesWyePhaseIndex]

This table describes measure-
ments of a phase in a WYE three-
phase power system. Three en-
tries are required for each sup-
ported entPhysicalIndex entry

eoACPwrAttributesWyePhaseIndex (1) A phase angle typically corre-
sponding to 0, 120, 240

eoACPwrAttributesWyePhaseToNeutralVoltage (2) A measured value of phase to neu-
tral voltage

eoACPwrAttributesWyeCurrent (3) A measured value of phase cur-
rents

eoACPwrAttributesWyeActivePower (4) A measured value of the actual
power delivered to or consumed by
the load

eoACPwrAttributesWyeReactivePower (5) A measured value of the reactive
portion of the apparent power

eoACPwrAttributesWyeApparentPower (6) A measured value of the voltage
and current determines the appar-
ent power

eoACPwrAttributesWyePowerFactor (7) A measured value ratio of the real
power flowing to the load versus
the apparent power for this phase

eoACPwrAttributesWyeThdCurrent (9) A calculated value for the volt-
age total harmonic distortion for
phase to phase

eoACPwrAttributesWyeThdPhaseToNeutralVoltage
(10)

A calculated value of the voltage
total harmonic distortion (THD)
for phase to neutral

Table 2.9: eoACPwrAttributesWyePhaseTable. Reproduced from
[32]

20

2 – Energy Management Relevance and Energy Frameworks

2.3.1.2 Energy Object Context MIB

The Energy Object Context MIB module is used to identify the Energy Objects and
to understand the context in which they work and understanding the relationships
between Energy Objects too. This MIB is composed of two tables: eoTable and
eoRelationTable.

The first one, eoTable (tab.2.10), has as its main aim the connection of this
MIB module with the other MIBs present in the agent. The eoTable is essential to
identify and understand the context of the Energy Object.

Entity (OID) Description
eoEntry(1) [entPhysicalIn-
dex]

An entry describes the attributes of an Energy Object

eoEthPortIndex(1) This variable uniquely identifies the power Ethernet port
to which a Power over Ethernet device is connected

eoEthPortGrpIndex(2) This variable uniquely identifies the group containing the
port to which a power over Ethernet device PSE is con-
nected

eoLldpPortNumber(3) This variable uniquely identifies the port component as
defined by the lldpLocPortNum in the LLDP-MIB and
LLDP-MED-MIB

eoMgmtMacAddress(4) It specifies a Media Access Control address of the Energy
Object

eoMgmtAddressType(5) It specifies the eoMgmtAddress type (IPv4 or IPv6)
eoMgmtAddress(6) It specifies the management address as an IPv4 address or

IPv6 address of Energy Object
eoMgmtDNSName(7) This object specifies a DNS name of the eoMgmtAddress
eoDomainName(8) It specifies the name of an Energy Management Domain

for the Energy Object
eoRoleDescription(9) It specifies an administratively assigned name to indicate

the purpose an Energy Object serves in the network
eoKeywords(10) It specifies a list of keywords that can be used to group

Energy Objects for reporting or searching
eoImportance(11) It specifies a ranking of how important the Energy Object

is compared with other Energy Objects in the same Energy
Management Domain

eoPowerCategory(12) This object describes the Energy Object category, which
indicates the expected behaviour or physical property of
the Energy Object

eoAlternateKey(13) It specifies an alternate key string that can be used to
identify the Energy Object

eoPowerInterfaceType(14) This object describes the Power Interface for an Energy
Object

Table 2.10: eoTable. Reproduced from [33]

The eoRelationTable table (tab.2.11) explains in a simple way the relationships
with other Energy Objects.

21

Walter Laera et al. Energy-Aware Emulation of Software Defined Networks

Entity (OID) Description
eoRelationEntry(1) [entPhysicalIndex,
eoRelationIndex]

An entry in this table specifies the Energy rela-
tionship between Energy objects

eoRelationIndex(1) It is an arbitrary index to identify the Energy
Object related to another Energy Object

eoRelationID(2) This object specifies the Universally Unique
Identifier (UUID) of the peer (other) Energy Ob-
ject

eoRelationship(3) This object describes the relations between En-
ergy Objects

eoRelationStatus(4) The status controls and reflects the creation and
activation status of a row in this table to specify
energy relationship between Energy Objects

eoRelationStorageType(5) This variable indicates the storage type for this
row

Table 2.11: eoRelationTable. Reproduced from [33]

2.4 Energy Consumption Models Bound to the
Bit Rate

In this section, we are going to list the different models that we have found in
the available literature. These studies bind the energy consumption of different
network nodes and their bit rate.

Model 1 In the paper [23] the authors examine the consumption of energy in
function of the used protocol and the dimensions of the L2 frames (64, 256, 512,
1518 bytes).
Analysing the tests results, it is found that the consumption of each interface
Pint(p, s, c) depends on the link utilization p, the size of the packets s and the
overhead of the routing protocol c. The last term c can be ignored. So the energy
consumption of each interface results to be:

Pint(p, s) = P (header processing) + P (packet transferring)
= EHP · (packets per second) + EP T · (bits per second)

=
(
EHP · p ·R

s

)
+ (EP T · p ·R)

= p ·R ·
(
EHP

s
· EP T

) (2.1)

Where, EHP [Joule] is the energy consumed for the packet header processing,
EP T [Joule/bit] is the energy required to transfer a bit and R is the maximum
capacity of the link.

Model 2 The authors of the paper [20], in order to study their analytical model,
change the packets dimensions (100, 500, 1000, 1500 bytes) and the link utilization.

22

2 – Energy Management Relevance and Energy Frameworks

The network devices used for the test are an enterprise switch, an edge switch, a
metro router and an edge router. Their resulting model is the following:

P = Pidle + Ep ·Rpkt + ES&F ·Rbyte

= Pidle + Einc,byte ·Rbyte

(2.2)

Where Einc,byte is the incremental energy per-byte, defined as:

Einc,byte = Ep

L
+ ES&F (2.3)

Ep is the per-packet processing energy consumption, ES&F is the per-byte store
and forward energy consumption and L is the packets dimension in bytes.

Clearly, in a network with generic traffic, we can’t know the size of each received
packet, so, we are using the expectation E[L], and the previous formula becomes:

E[P] = Pidle +Rbyte ·
(
Ep

E[L] + ES&F

)
(2.4)

In order to evaluate E[L] the authors use two packet length distributions: one
uniform between [64-1518] bytes with E[L] equal to 791 byte, and one trimodal in
64, 576, 1518 bytes with E[L] equal to 944 byte. In both cases, we have an error
of the estimated value respect to the measured one of 0.2%.

The result values that we can use in tests with generic traffic are listed in the
table 2.12.

Device Pidle (W) Ep nJ/pkt ES&F nJ/byte
Enterprice Ethernet Switch 36.2 40 0.28

Edge Ethernet Switch 631 1571 9.4
Metro IP Router 352 1375 14.4
Edge IP Router 576 1707 10.2
Table 2.12: Summary of measurement results for the dif-
ferent devices. Reproduced from [20]

Model 3 The following paper [27] shows a test bench that can be used to compare
the energy characteristics of the different network devices. In order to prove the
validity of the test bench, the authors create an energy consumption model (2.5).

Pswitch = Pchessis +Nlinecard · Plinecard+
configs∑

i=0
Nportconfigsi

· Pconfigsi
· utilizFactor

(2.5)

23

Walter Laera et al. Energy-Aware Emulation of Software Defined Networks

Plinecard represents the power consumed by the linecard when all ports are turned
off, and Nlinecard is the real number of linecards presents within the switch. The
variable configs is the number of configurations for the port line rate. Pconfigsi

is the power for a port running at maximum rate and utiliznFactor is the scal-
ing factor that represents the utilization of each port, which can be between 0 and 1.

During the tests the authors noted some interesting behaviours in common for
edge switches, core and edge routers:

• the port capacity affects considerably energy consumption, particularly with
a high number of ports;

• when the traffic throughput for each port is set, the packets dimension impacts
on general consumption;

• the number of TCAM inputs doesn’t affect general consumption;

• the firmware update of the devices reduces energy consumption.

Model 4 The authors of the paper [24] study the power consumption of two
standard router to obtain a general analytical model that can be used to optimize
the network consumption in a framework. The model obtained is the following:

PC(X) = CC(x0) +
N∑

i=0
(TP (xi0, xi1) + LCC(xi1)) (2.6)

Where the energy consumption PC depends on vector X that defines the type of
chassis, the installed linecards, the configuration and the traffic profile of the device.
Indeed the function CC(x) indicates the energy consumption of a particular type
of chassis, N is the number of active linecards, TP (x) is a scalar parameter that
represents the router traffic utilization and, at the end, LCC(x) corresponds to the
energy cost of linecard turned on in a specific configuration.

Model 5 In this paper [22] the authors evaluate an energy model with two type
of OpenFlow switches, a hardware switch (NEC PF 5240) and a software switch
(Open vSwitch running on a server). The general model used is shown below:

Pswitch = Pbase + Pconfig + Pprotocol + POF (2.7)

Pbase is the energy consumption of the switch with no traffic load and Pconfig is
obtained in this way:

Pconfig =
Nactive_P orts∑

i

si · Pport (2.8)

Where Pport is the power consumption of the port at full load and si is the rela-
tive utilization of the port’s configured speed, which can be between 0 and 1.

24

2 – Energy Management Relevance and Energy Frameworks

Pcontrol (2.7) is the energy consumption caused by the control traffic. It is equal
to:

Pcontrol = rP acket_In · EP acket_In + rF low_Mod · EF low_Mod (2.9)

rP acket_In represents the rate of outgoing Packet_In messages, EP acket_In their
energy consumption, whereas rF low_Mod is the rate of Flow_Mod packets.

The energy consumption POF , produced from the OpenFlow traffic is calculated
as follows:

POF =
Nflows∑

i

rpacketts(i)·
Nmatches∑

j

µmatch(i, j) · ematch(j)+

Nactions∑
k

µaction(i, k) · eaction(k)
 (2.10)

Nflows is the number of active flows and rpacket(i) is the corresponding packet
rate. For each packet processed there are a number of matches and possible ac-
tions. The binary matrix µmatch(i, j) represents the active matches and ematch(j) is
the energy consumed by a single match j. In the same way µaction(k, i) is the binary
matrix of the possible actions and eaction(k) is the energy consumption caused by
action k.

After the tests the authors simplify the POF equation, which becomes:

POF =
Nflows∑

i

rpacketts(i)·
(

max
j

[µmatch(i, j) · ematch(j)]+

max
k

[µaction(i, k) · eaction(k)]
) (2.11)

With these approximations, there is an error less than 1% for the hardware switch
and lower than 8% for the software switch respect to the measurements done.

Model 6 In this paper [26] the authors study a way to reduce the latency and the
energy consumption of the OpenFlow switches, due to the lookup of the TCAM,
using per-port packet prediction circuitry. They studied and compared two per-
packet consumption models, one without prediction (2.12) and one with prediction
(2.17).

Model without prediction. The power consumption model of the switch with-
out prediction is:

Epkt = Erx + Elookup + Exref + Etx (2.12)

25

Walter Laera et al. Energy-Aware Emulation of Software Defined Networks

Erx indicates the energy necessary for: the reception of the packet from the link,
the extraction and elaboration of the fields necessary for the construction of a flow-
key and saving the packet inside the input memory. Erx is obtained in the following
way:

Erx = pkt_size · (EMAC + Ebuf_wr) (2.13)

EMAC is the per-bit energy required for MAC and Serializer/Deserializer (SerDes),
while Ebuf_wr is the energy needed to write the packet in memory.

Elookup, in 2.12, represents the energy consumption needed to search the for-
warding instruction of the packet inside the TCAM, which is equal to:

Elookup =ET CAM_search + Pin · Edata_rd+
(1 − Pin) · (ET CAM_wr + Edata_wr)

(2.14)

Pin is the probability to find the flow-key in the TCAM. ET CAM_search and
ET CAM_wr are the energy necessary to search and update the TCAM. Edata_rd

and Edata_wr are the energy consumed to read and write associated TCAM flow
memory and forwarding instructions.

Exfer, in 2.12, indicates the energy required to read the packet from the inbound
memory, all the steps needed to initiate a transfer of the packet across the switch
fabric, and write the packet into the outbound memory. Exref is equal to:

Exfer = pkt_size · (Ebuf_rd + Efab + Ebuf_wr) (2.15)

Ebuf_rd and Ebuf_wr represent the per-bit energy to write and read the buffer.
Efab is the energy consumed by the crossbar fabric chip.

Etx, in 2.12, is the energy required to read the packet from the outbound buffer
and send it on the link. It is equal to:

Etx = pkt_size · (EMAC + Ebuf_rd) (2.16)

Model with prediction. The power consumption model of the switch with pre-
diction is:

Epkt = Erx + Epredict + Exref + Etx (2.17)

Epredict represents the energy consumed by the prediction phase. It is given by
the following formula:

Epredict =Phit · Ecache_hit + Pincorrect · Ecache_incorrect+
Pmiss · Ecache_miss

(2.18)

26

2 – Energy Management Relevance and Energy Frameworks

Phit, Pincorrect and Pmiss are the probability that an entry in prediction cache is
correctly found, incorrectly found or missing. Indeed Ecache_hit, Ecache_incorrect and
Ecache_miss are the energy necessary to search and maintain the prediction cache
when one of these events occur. They are calculated as follows:

Ecache_hit = E[S] · Ecache_search + Ecache_rd (2.19)

Ecache_incorrect =E[S] · Ecache_search + Ecache_rd + Exfer_min+
Etx_min + Elookup + Ecache_wr

(2.20)

Ecache_miss = E[S] · Ecache_search + Elookup + Ecache_wr (2.21)

E[S] is the per-packet expected number of searches in the prediction cache.
Ecache_search is the energy needed to search the signature CAM. Ecache_rd is the
energy necessary to read the associated flow-key and forwarding RAM. Exfer_min is
the energy required to transfer the beginning of the packet across the switch fabric
and into the output memory. Etx_min is the energy required to transmit an initial
fragment of the packet on the output link before being aborted. Ecache_wr is the
energy needed to update the prediction cache.

Model 7 Its distinctive feature is that the energy consumption of the switch is
bound to the wake-up and sleep time of the device [25].

P = Pbase + Pdynamic

Nport∑
i=1

min(1, D · pi) (2.22)

Pbase is the energy consumption when there is no traffic. Pdynamic is the difference
between Pbase and the energy consumption of the switch at maximum load divided
by the number of ports. D is the increment of energy consumption in function of
the increment of the traffic per-port pi. It’s defined as:

D =
Lmax∑

L=Lmin

p(L) ·
Ts + Tw + L

R
L
R

 (2.23)

L is the packet size in bits, p(L) is the probability that the packet size is L and
R is the link speed. Tw is the time necessary to wake up the port and Ts is the
time required to put the port in Low Power Idle mode (LPI).

27

28

Chapter 3

Software Implementation
and Simulation

In this chapter we will introduce the software needed for our simulations, then we
will explain how to install and set them in order to function correctly. Later, we will
show: the virtual network on which we performed our tests and how to implement
it and then our algorithm necessary to collect the devices’ incoming bytes and, from
them, calculate the energy consumption of our virtual network devices.

3.1 Simulation Environment
In order to create the simulation environment we need the following software:

• VirtualBox [18] is a software application that allows creating a virtual en-
vironment in which it is possible to install, as a guest, additional operating
systems;

• Mininet [7] is an SDN emulator. It allows to develop and simulate computer
networks and distributed systems inside your laptop in order to test your own
applications and systems;

• Net-SNMP [9] is a software set for using and deploying the SNMP protocol.
It provides us different applications as shown in the tab. 3.1.

Application Description
encode keychange produce the KeyChange string for SNMPv3
snmptranslate translate MIB OID names between numeric and textual

forms
snmpget communicates with a network entity using SNMP GET

requests
snmpgetnext communicates with a network entity using SNMP GET-

NEXT requests
snmpbulkget communicates with a network entity using SNMP GET-

BULK requests

29

Walter Laera et al. Energy-Aware Emulation of Software Defined Networks

snmpwalk retrieve a subtree of management values using SNMP
GETNEXT requests

snmpbulkwalk retrieve a subtree of management values using SNMP
GETBULK requests

snmpset communicates with a network entity using SNMP SET re-
quests

snmptrap sends SNMP TRAP or INFORM notification messages
snmpd a SNMP agent that responds to SNMP requests for a given

host
snmptrapd a SNMP daemon that listens for SNMP TRAPs or IN-

FORMs and logs or acts upon them
snmptest communicates with a network entity using SNMP requests
mib2c a MIB conversion utility that can translate MIB structures

into other forms, such as C-code
tkmib a perl/Tk interactive graphical MIB browser for SNMP

Table 3.1: SNMP applications included with Net-SNMP. Repro-
duced from:"en. wikipedia.org/wiki/Net-SNMP"

With VirtualBox is possible to create a virtual machine and install on it a Linux
operating system (in this case we used Ubuntu 14.04 LTS 32 bit).

Then we run the virtual machine with Ubuntu and we update, the OS, writing
by the terminal:

sudo apt-get update

Then, we install mininet executing this command line:

sudo apt-get install mininet

or these:

git clone git://github.com/mininet/mininet
cd mininet/util
sudo ./install.sh -nfv

Where the options used above are needed to install the following:

• Mininet dependencies and core files (n);

• OpenFlow (f);

• Open vSwitch (v);

The next step is to install the SNMP agent, that allows us to know different
statistics of the mininet’s virtual devices. To install it we execute these commands:

sudo apt-get install snmp

30

3 – Software Implementation and Simulation

sudo apt-get install snmpd

We have to configure the agent, in order to do that, we enter in the /etc/snmp
directory and rename the existing snmpd.conf file (eg. snmpd.conf.org), then, cre-
ate a new snmpd.conf file in which we write:

rocomunity public
syslocation "pc"
syscontact s208290@studenti.polito.it

These rows define the system information. Up to now it is necessary to define
only these information for our simulations but with the snmpd.conf file [6] we can
modify: the behaviour of the agent, the authentication parameters, the access con-
trol, etc.

In order that the agent uses the snmpd.conf file and collects the information of
all the devices, we have to modify /etc/default/snmpd file as follows:

from

snmpd options (use syslog, close stdin/out/err)
SNMPDOPTS=’-Lsd -Lf /dev/null -u snmp -I -smux -p /var/run/snmpd.pid 127.0.0.1’

to

snmpd options (use syslog, close stdin/out/err)
#SNMPDOPTS=’-Lsd -Lf /dev/null -u snmp -I -smux -p /var/run/snmpd.pid 127.0.0.1’
SNMPDOPTS=’-Lsd -Lf /dev/null -u snmp -I -smux -p /var/run/snmpd.pid -c

/etc/snmp/snmpd.conf’

At the end, we restart the agent using this command:

/etc/init.d/snmpd restart

Now we test the agent to verify if it works, we send an SNMP request through
the terminal (eg. snmpwalk -v 2c -c public 127.0.0.1 -Oe) and if all the pre-
vious steps are performed correctly the answer is shown below.

SNMPv2-MIB::sysDescr.0 = STRING: Linux a-Virtualbox 3.19.0-25-generic...
SNMPv2-MIB::sysObjectID.0 = OID: NET-SNMP-MIB::netSnmpAgentOIDs.10
DISMAN-EVENT-MIB::sysUpTimeInstance = Timeticks: (864) 0:00:08.69
SNMPv2-MIB::sysContact.0 = STRING: s208290@studenti.polito.it
SNMPv2-MIB::sysName.0 = STRING: a-VirtualBox
SNMPv2-MIB::sysLocation.0 = STRING: "pc"
SNMPv2-MIB::sysORLastChange.0 = Timeticks: (2) 0:00:00.02
SNMPv2-MIB::sysORID.1 = OID: SNMP-MPD-MIB::snmpMPDCompliance
SNMPv2-MIB::sysORID.2 = OID: SNMP-USER-BASED-SM-MIB::usmMIBCompliance
SNMPv2-MIB::sysORID.3 = OID: SNMPv2-MIB::snmpMIB
SNMPv2-MIB::sysORID.5 = OID: TCP-MIB::tcpMIB

31

Walter Laera et al. Energy-Aware Emulation of Software Defined Networks

SNMPv2-MIB::sysORID.6 = OID: IP-MIB::ip
SNMPv2-MIB::sysORID.7 = OID: UDP-MIB::udpMIB

The last tool needed is a python library, provided by net-SNMP, which allows
interacting with our SNMP agent [10]. This library is useful because it returns the
agent’s information in form of lists that are more easy to manage. In this way,
we can easily create an algorithm that sends periodic requests to the agent and
elaborates all its answers. The library is installed by using this command line:

sudo apt-get install python-netsnmp

3.2 Creation of SNMP Network and Energy Ap-
plication

3.2.1 SNMP Network with Mininet
Mininet provides python API in order to create any network [8]. For our simula-
tions, we create the wired network in fig. 3.1.

h1 h2 h3 h4 h5 h6 h7 h8

s11 s12 s13 s14

s21 s22 s23 s24

s31 s32

Figure 3.1. Fat-tree Network implemented.

It is composed of eight hosts, ten switches and a controller.

Mininet provides different controllers [1]. Two of them are implemented and
start when the mininet network starts. The other two are remote and run indepen-
dently from mininet. Besides we can use any remote controller, for example, Onos
or OpenDaylight.

The implemented controllers are OpenFlow controller and Open vSwitch con-
troller. The second one cannot control more than 16 switches.

The remote controllers are POX controller and Ryu controller. They can be in-
stalled when we install mininet, adding to the command ./install.sh the options:

32

3 – Software Implementation and Simulation

-p to install the POX controller [13];
-y to install the Ryu controller [15].

They are both open source and python-based controllers.

After the instructions to create and start the network, we add:

1. ovs-vsctl set Bridge s11 stp_enable = true

This command enables spanning tree algorithm and it must be executed by
all switches. This command is mandatory in complex networks managed by
OpenFlow or Open vSwitch controller, in order to avoid loops.

2. s11.cmd(’/usr/sbin/snmpd -Lsd -Lf /dev/null -u snmp -I -smux -p
/var/run/snmpd.pid -c /etc/snmp/snmpd.conf’)

By using this command the agent starts to collect information about the
switch.

There are three ways to ask information about the switch (eg. 1.3.6.1.2.1.2.2.1.2
is ifDesc object):

• by ubuntu terminal:

snmpwalk -v 2c -c public IPswitch 1.3.6.1.2.1.2.2.1.2

• in the python script:

c0.cmd(’snmpwalk -v 2c -c public IPswitch 1.3.6.1.2.1.2.2.1.2’)

with this instruction the controller c0 sends an SNMP request;

• from mininet command-line interface (CLI):

sh snmpwalk -v 2c -c public IPswitch 1.3.6.1.2.1.2.2.1.2
c0 snmpwalk -v 2c -c public IPswitch 1.3.6.1.2.1.2.2.1.2

the first string results being the same as the first way of asking information
(ubuntu terminal), the second string results being the same as the second way
of asking information (python script).

In all the cases mentioned above the answer is in fig. 3.2.

33

Walter Laera et al. Energy-Aware Emulation of Software Defined Networks

IF-MIB::ifDescr.1 = STRING: lo
IF-MIB::ifDescr.2 = STRING: eth0
IF-MIB::ifDescr.3 = STRING: s11-eth1
IF-MIB::ifDescr.4 = STRING: s11-eth2
IF-MIB::ifDescr.5 = STRING: s12-eth1
IF-MIB::ifDescr.6 = STRING: s12-eth2
IF-MIB::ifDescr.7 = STRING: s11-eth3
IF-MIB::ifDescr.8 = STRING: s12-eth3

Figure 3.2. Snmpwalk answer

3.2.2 Energy Application
Our aim is to calculate the energy consumption of every switch in the network, in
order to obtain it, we use SNMP that counts the number of incoming bytes from
every interface (ifHCInOctets). In this way, we can calculate the incoming rate
of the switch. By using an energy model 2.4 we are able to evaluate the energy
consumption of each network device.

snmpwalk message

interfaces identification

snmpwalk message

rate calculation

energy consumption calculation

Figure 3.3. Application diagram.

At the beginning of our script we open a session:

stringsession = netsnmp.Session(DestHost=’127.0.0.1’, Version=2,
Community=’public’)

34

3 – Software Implementation and Simulation

As we can see, in the string is defined: the IP address of the receiver, the SNMP
version used and the community (defined in snmpd.conf). After that, we send a
snmpwalk request to the agent with object ifDescr, in this way we can identify all
the interfaces of the switches and their position in the answer’s list (fig. 3.4).

for i in range(0, l):
if resp[l] == ’s11-eth1’:

interfs11[0] = l
elif resp[l] == ’s11-eth2’:

interfs11[1] = l
elif resp[l] == ’s11-eth3’:

interfs11[2] = l
elif resp[l] == ’s11-eth4’:

interfs11[3] = l
elif resp[l] == ’s12-eth1’:

interfs12[0] = l

Figure 3.4. Interface identification

We have to do this because, as we can see in fig. 3.2, there are other interfaces
that are useless (eg. lo, eth0).

Now, following the diagram in fig. 3.3, we ask the agent the number of bytes
received by all interfaces. Therefore we create an infinite cycle in which every 20
seconds the application sends a snmpwalk request to the agent and calculates the
ingress rate (3.1) and energy consumption (3.2).

We calculate the ingress rate in [bit/s] of each switch as shown in equation 3.1.

Rs11 =
Ninterf∑

i

∆ifHCInOctetsi · 8
∆t (3.1)

In order to verify our results, we use a traffic simulator (iperf). Iperf simulates a
client/server communication and calculates the bandwidth. In order to use iperf,
we have to declare a host (e.g. h1) as UDP server with this command:

h1 iperf -s -u &

and another host (e.g. h4) as a client with:

h4 iperf -c h1 -t 60 -b 600m

Where, -t is used to define the duration of the test in seconds and -b is used to
set the bandwidth of UDP traffic, in this example 600 Mbit/sec.

35

Walter Laera et al. Energy-Aware Emulation of Software Defined Networks

As we can see in fig. 3.5 and in the last column of the fig. 3.6 our program
gives us acceptable results considering the fact that it has different measurement
intervals compared with iperf.

Client connecting to 10.0.0.1, UDP port 5001
Sending 1470 byte datagrams
UDP wondow size: 208 KByte (default)

[3] local 10.0.0.4 port 44062 connected with 10.0.0.1 port 5001
[ID] Interval Transfer Bandwidth
[3] 0.0-60.0 sec 4.23 GBytes 606 Mbits/sec
[3] Sent 3092006 datagrams
[3] Server Report:
[3] 0.0-60.0 sec 4.23 GBytes 605 Mbits/sec 0.003 ms 5043/3092005 (0.16%)
[3] 0.0-60.0 sec 183 datagrams received out-of-order

Figure 3.5. Bandwidth of iperf.

rate of s11 interfaces [0, 0, 0, 0]
rate of s11 interfaces [22, 0, 37, 508308266]
rate of s11 interfaces [22, 0, 288, 624086546]
rate of s11 interfaces [0, 0, 0, 623585282]
rate of s11 interfaces [22, 0, 0, 624099787]

Figure 3.6. Rate of our program.

The program is written ad-hoc for the network shown above (fig. 3.1), so we
can make some considerations that cannot be used in a real network. For example,
by knowing the name of interfaces we can easily identify them (fig. 3.4). Another
approximation is the interval of time that we use to calculate the rate, in a real
network we have to consider the RTT time.

To evaluate the energy consumption of the switches from s11 to s14 we use the
model 2.4:

E[P] = Pidle +Rbit ·
(
Ep

E[L] + ES&F

)/
8 (3.2)

with Pidle = 631 W , Ep = 1571 nJ/pkt and ES&F = 9.4 nJ/byte, which are the
parameters’ values of the edge ethernet switch, as we can see in tab. 2.12.

The authors of the paper [20] measure the power consumption with different
packet dimensions (100, 500, 1000, 1500 bytes) to develop the energy model of the

36

3 – Software Implementation and Simulation

edge ethernet switch, as we can see in the figure 3.7.

In order to verify our results, we run different tests with different packets sizes
(100, 500, 1000, 1500 bytes). We do the tests using iperf with the option -M in the
client instruction, as shown below.

h4 iperf -c h1 -t 60 -M 500

This option allows setting TCP maximum segment size (MTU - 40 bytes), in
this example 500 bytes.

Figure 3.7. Energy consumption of edge ethernet switch. Reproduced from [20]

Results of our tests are shown in figure 3.8. Comparing the two graphs we
can see that in both cases when the packets size increases the straight lines’ slope
decrease. In particular, when traffic’s packets size is 100 bytes, we can see that the
switch’s energy consumption increases quickly up to exceed 660 watts, with a bit
rate of 10Gbps. Instead, with the same bit rate, when the traffic’s packets size is
500, 1000 or 1500 bytes the energy consumption of the switch is around 645 watts.

Tab. 3.2 reports the energy consumptions of the edge switch for a bit rate of
10Gbps. In the first column there are the results obtained from the paper [20], and
in the second column there, are the results of our simulations.

37

Walter Laera et al. Energy-Aware Emulation of Software Defined Networks

Figure 3.8. Energy consumption of edge ethernet switch from our tests.

packets dimensions [Bytes] paper’s results [Watts] tests’ results [Watts]
100 661.9 662.38
500 646.8 646.68
1000 644.5 644.71
1500 644.2 644.06
Table 3.2: Energy consumption of the edge switch for a
bit rate of 10Gbps

The differences between our tests’ results and the energy consumptions measured
in [20] are less than 0.5 watts, which means that we have an error less than 0.1%,
so our results can be considered acceptable.

38

Chapter 4

Conclusions

In this study, we tried to present and simulate an algorithm that, through a south-
bound API, provides to the SDN controller the energy consumption data of each
managed network device. To achieve this goal we started by analysing the state of
the art of the SDN network then we researched frameworks available for measur-
ing/estimating the energy consumption of the different network devices.

At the end of the research, we decided to use for our simulations, the SNMP
protocol as the southbound API for the collection of the devices’ incoming bytes.
From these, we obtained the incoming rate and, finally, we were able to estimate
the energy consumption of the device through an analytical model [20] that binds
the incoming rate and its energy consumption.

In our opinion, the method considered in this study has points in favour and,
at the same time, limitations that can be summarized, respectively, in the easy
integration in the current controllers, since they already measure the rate of the
different nodes (however to reach a good estimate of energy consumption it is es-
sential to accurately measure the rate of devices and to have or create an accurate
model), but the fact that the SDN controller should have a database with all an-
alytical models of each controlled device, can be a limitation, this because at the
same rate, each device has a different energy consumption that depends not only
by the model but also by the producer.

From our study carried out, in conclusion, we can assert that this method is a
good alternative until the devices themselves become able to measure their energy
consumption and provide it to southbound protocols.

We could, in future, consider extending the use of this method for the estimation
of the energy consumption regarding wireless devices and integrate it with remote
controllers such as ONOS and OpenDayLight.

39

40

Appendix A

Simulation Algorithms

A.1 Network Creation Algorithm

#!/usr/bin/python

from mininet.net import Mininet
from mininet.node import Controller
from mininet.cli import CLI
from mininet.link import Intf
from mininet.log import setLogLevel, info
import os

#in this function we creat the network
def simulateNetwork():

net = Mininet(topo=None)

info(’*** Adding controller\n’)
c0 = net.addController(name=’c0’)

info(’*** Add switches\n’)
s11 = net.addSwitch(’s11’)
s12 = net.addSwitch(’s12’)
s13 = net.addSwitch(’s13’)
s14 = net.addSwitch(’s14’)

s21 = net.addSwitch(’s21’)
s22 = net.addSwitch(’s22’)
s23 = net.addSwitch(’s23’)
s24 = net.addSwitch(’s24’)

s31 = net.addSwitch(’s31’)
s32 = net.addSwitch(’s32’)

41

Walter Laera et al. Energy-Aware Emulation of Software Defined Networks

info(’*** Add hosts\n’)
h1 = net.addHost(’h1’)
h2 = net.addHost(’h2’)
h3 = net.addHost(’h3’)
h4 = net.addHost(’h4’)
h5 = net.addHost(’h5’)
h6 = net.addHost(’h6’)
h7 = net.addHost(’h7’)
h8 = net.addHost(’h8’)

we report only an example for each network level
info(’*** Add links\n’)

link between host and first level swithes
net.addLink(h1, s11)
net.addLink(h2, s11)

link between first and second level switches
net.addLink(s21, s11)
net.addLink(s22, s11)
net.addLink(s21, s12)
net.addLink(s22, s12)

link between second and third level switches
net.addLink(s31, s21)
net.addLink(s31, s23)
net.addLink(s31, s22)
net.addLink(s31, s24)

info(’*** Starting network\n’)
net.start()

enableSTP()

info(’*** Starting SNMP agent in h1\n’)
s11.cmd(’/usr/sbin/snmpd -Lsd -Lf /dev/null -u snmp -I -smux

-p /var/run/snmpd.pid -c /etc/snmp/snmpd.conf’)

CLI(net)

net.stop()

in this function we enable the spanning tree algorithm for all switches
def enableSTP():

42

A – Simulation Algorithms

for x in range(1,5):
cmd = "ovs-vsctl set Bridge %s stp_enable=true" % ("s1" + str(x))
os.system(cmd)
print cmd
cmd = "ovs-vsctl set Bridge %s stp_enable=true" % ("s2" + str(x))
os.system(cmd)
print cmd

for x in range(1, 3):
cmd = "ovs-vsctl set Bridge %s stp_enable=true" % ("s3" + str(x))
os.system(cmd)
print cmd

#with this function we start the application
if __name__ == ’__main__’:

setLogLevel(’info’)
simulateNetwork()

A.2 Energy Consumption Algorithm
#!/usr/bin/python

import netsnmp
import time
import string
import matplotlib.pyplot as plt

session = netsnmp.Session(DestHost=’127.0.0.1’, Version=2, Community=’public’)

#set the IOD into SNMP request
interfaces = netsnmp.VarList(netsnmp.Varbind(’.1.3.6.1.2.1.2.2.1.2’,))
#send the SNMPWALK request and save the answer list in resp
resp = session.walk(interfaces)

l = len(resp)

interfs11 = [0, 0, 0, 0]
we save the interface position of s11 switch in the answer list
for i in range(0, l):

if resp[i] == ’s11-eth1’:
interfs11[0] = i

elif resp[i] == ’s11-eth2’:
interfs11[1] = i

elif resp[i] == ’s11-eth3’:

43

Walter Laera et al. Energy-Aware Emulation of Software Defined Networks

interfs11[2] = i
elif resp[i] == ’s11-eth4’:

interfs11[3] = i

tlinks11 = [0, 0, 0, 0]

rates11 = [0, 0, 0, 0]

t1 = 0
a = 0
Pidle = 631
Ep = 1571*10**-9
Esf = 9.4*10**-9
pktDim=1500

#start the cycle to collect incoming byte of each interface and calculate
#the incoming rate and energy consumption
while a<5 :

Trates11 = 0

Traffic = netsnmp.VarList(netsnmp.Varbind(’.1.3.6.1.2.1.31.1.1.1.6’,))

res = session.walk(Traffic)

t2 = int(time.time())

for i in range(0, 4):

if(a>0):
#in this equation we calculate the incoming rate [bits/s]
of each interface
rates11[i] = ((int(res[interfs11[i]])*8) - tlinks11[i]) / (t2 - t1)

#here we calculate the total incoming rate of switch s11
Trates11 = Trates11 + (rates11[i])

tlinks11[i] = int(res[interfs11[i]])*8

if (tlinks11[i]<0):
print(’input error’)
break

#this equation calculate the energy consumption of switch s11
P11 = Pidle + Trates11* (((Ep/ pktDim)+Esf)/8)

44

A – Simulation Algorithms

print (Trates11)
print (P11)

t1=t2

time.sleep(15)
a= a + 1

45

46

Bibliography

[1] Automating controller startup. "http://mininet.org/blog/2013/06/03/
automating-controller-startup/".

[2] Flask. "http://flask.pocoo.org/docs/0.10/".
[3] Ganglia. "http://ganglia.info/".
[4] The hdf goup. "https://www.hdfgroup.org/".
[5] Kwapi-g5k framework. "http://kwapi-g5k.readthedocs.org/en/latest/architecture.html".
[6] Manpage of snmpd.conf net-snmp. "http://www.net-

snmp.org/docs/man/snmpd.conf.html".
[7] Mininet. "http://mininet.org/".
[8] Mininet python api reference manual. "http://mininet.org/api/".
[9] Net-snmp. "http://www.net-snmp.org/".
[10] Net-snmp library. "https://github.com/haad/net-snmp/tree/master/python".
[11] Openflow switch specification. "https://www.opennetworking.org/images/

stories/downloads/sdn-resources/onf-specifications/openflow/openflow-
switch-v1.5.1.pdf".

[12] Power state management profile. "http://www.dmtf.org/sites/default/files/
standards/documents/DSP1027_2.0.0.pdf".

[13] Pox wiki. "https://github.com/noxrepo/pox".
[14] Rrdtool. "http://oss.oetiker.ch/rrdtool/index.en.html".
[15] Ryu sdn framework. "http://osrg.github.io/ryu/".
[16] sflow. "http://sflow.org/about/index.php".
[17] Standard for user interface elements in power control of electronic devices em-

ployed in office/consumer environments.
[18] Virtualbox. "https://www.virtualbox.org/".
[19] Zeromq. "http://zeromq.org/".
[20] Robert W. A. Ayre Arun Vishwanath, Kerry Hinton and Rodney S.Tucker.

Modeling energy consumption in high-capacity routers and switches.
[21] IEEE Fernando M. V. Ramos Member IEEE Paulo Verissimo Fellow-IEEE

Christian Esteve Rothenberg Member IEEE Siamak Azodolmolky Senior Mem-
ber IEEE Diego Kreutz, Member and IEEE Steve Uhlig, Member. Software-
defined networking: A comprehensive survey.

[22] David Hausheer Fabian Kaup, Sergej Melnikowitsch. Measuring and modeling
the power consumption of openflow switches.

[23] Hong-Shik PARK Jaewon AHN. Measurement and modeling the power con-
sumption of router interface.

47

Walter Laera et al. Energy-Aware Emulation of Software Defined Networks

[24] Paul Barford Cristian Estan David Tsiang Steve Wright Joseph Chabarek,
Joel Sommers. "power awareness in network design and routing".

[25] Z. Zhao J. A. Maestro A. Vishwanath A. Sanchez-Macian P. Reviriego,
V. Sivaraman and C. Russell. An energy consumption model for energy ef-
ficient ethernet switches.

[26] Matthew Farrens Paul T. Congdon, Prasant Mohapatra and Venkatesh Akella.
Simultaneously reducing latency and power consumption in openflow switches.

[27] Sujata Banerjee Priya Mahadevan, Puneet Sharma and Parthasarathy Ran-
ganathan. A power benchmarking framework for network devices.

[28] Franco Davoli Lorenzo Di Gregorio Pasquale Donadio Leonardo Fialho-Martin
Collier Alfio Lombardo Diego Reforgiato Recupero Tivadar Szemethy Raf-
faele Bolla, Roberto Bruschi. The green abstraction layer: A standard power
management interface for next-generation network devices.

[29] RFC-3411. An architecture for describing simple network management proto-
col (snmp) management frameworks. "http://www.ietf.org/rfc/rfc3411.txt".

[30] RFC-3954. Cisco systems netflow services export version 9.
"http://www.ietf.org/rfc/rfc3954.txt".

[31] RFC-7326. Energy management framework.
"http://www.ietf.org/rfc/rfc7326.txt".

[32] RFC-7460. Monitoring and control mib for power and energy.
"http://www.ietf.org/rfc/rfc7460.txt".

[33] RFC-7461. Energy object context mib. "http://www.ietf.org/rfc/rfc7461.txt".
[34] David Schnaufer. Energy efficiency in the telecommunications net-

work. "https://www.rfglobalnet.com/doc/energy-efficiency-in-the-
telecommunications-network-0001".

48

	List of Figures
	List of Tables
	Introduction
	Software Defined Network and Its Southbound Interfaces
	Software-Defined Networking (SDN)
	Southbound APIs for Monitoring
	SNMP Simple Network Management Protocol

	Energy Management Relevance and Energy Frameworks
	GAL Framework
	KWAPI Framework
	EMAN Framework
	SNMP MIB of EMAN Framework

	Energy Consumption Models Bound to the Bit Rate

	Software Implementation and Simulation
	Simulation Environment
	Creation of SNMP Network and Energy Application
	SNMP Network with Mininet
	Energy Application

	Conclusions
	Simulation Algorithms
	Network Creation Algorithm
	Energy Consumption Algorithm

	Bibliography

		Politecnico di Torino
	2018-03-27T13:57:10+0000
	Politecnico di Torino
	Claudio Ettore Casetti
	S

