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Abstract 

 

This work offers a methodological framework to analyze the efficiency of the Italian airport 

system. An SFA analysis is performed on 23 airports for the period 2006-2015. Alternative 

model specifications are used to assess the robustness of the conclusions. Strong evidence 

of the existence of a significant level of inefficiency in the industry is found. Small and large 

airports are found to have substantially different cost structures, and therefore should be 

studied separately. Ownership structure does not seem to play a major role as a cost driver. 
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1 Introduction 

 

 

The last decades have seen a sharp increase in air traffic of both passengers and cargo. This, 

together with the privatization of airports and of air companies, changed the market into a 

very competitive one. Nowadays, a strong airport industry is fundamental to connect a 

country both internally and externally, and even more so for its economic development. This 

leads many stakeholders, particularly policymakers, to watch the economic performance of 

airports with great interest. In order to guide these stakeholders in their decisions, it is 

important to be aware of the cost structure and the efficiency of the airport sector. 

 

Our work wants to contribute to current literature with a representative view of the state of 

the efficiency of the Italian airport industry. While previous works have mostly used non-

parametric methods for this purpose, we have used a stochastic frontier model to estimate a 

long term cost function which we then used to evaluate the efficiency of 23 Italian airports, 

observed over the 10 years going from 2006 to 2015.  

 

The work is structured as follows: 

Section 2 describes the characteristics of the Italian airport system; 

Section 3 provides a review of current literature; 

Section 4 introduces the methodology used in this work; 

Section 5 discusses the obtained results; 

Section 6 presents our conclusions.  
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2 The Italian airport system 

 

 

2.1 Deregulation and privatization in the European airway industry 

 

In the last couple of decades, the airport industry in Europe has undergone great changes. 

Up until the late ‘80s, it was characterized by public ownership of airports and carriers. 

Flagship carriers were allowed to travel between countries which shared bilateral 

agreements, which restricted air service between two countries to a single carrier from each 

country per route. The late ‘80s and the ‘90s signaled a period of privatization and 

deregulation, started by the complete privatization of British Airways, in 1987, and 

following the deregulation in the United States, begun in 1978 with the Airline Deregulation 

Act. This process was marked by a series of directives introduced by the European Union:  

• In 1987, 1990 and 1992, three legislative packages were introduced with the aim of 

replacing the bilateral agreements system, lowering barriers to market access and 

allowing free pricing; 

• Council Directive 96/67/EC, which liberalized ground-handling services (e.g. 

passenger and baggage handling, fueling, cleaning of aircrafts); 

• Directive 2009/12/EC, which created a framework for airport charges, requiring 

consistency with costs, transparency, non-discriminating-treatment of different 

airlines, and delegating to member states the task to set up independent supervisory 

authorities.  

At the beginning of the deregulation process, the flagship carriers’ response was to obstruct 

market entry of new contenders via lobbying. This practice wasn’t very effective, because it 

could not stop the entry of already existing carriers that operated in different geographic 

areas. A second strategy was that of dumping, which in the United States had brought a 

lowering in the number of contenders. In Europe this strategy proved to be less effective, 

since flagship carriers received public subsidies, which prevented market exit. Even merges 

and acquisitions didn’t play such an important role as in the United States, as carriers mostly 

followed the route of commercial agreements and alliances. 
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The liberalization process lead to the market entry of new carriers, the emergence of the low 

cost business model, the development of new airports in the whole continent, and the 

diffusion of point to point connections as an alternative to the hub and spoke model. These 

changes also had important consequences to the airport operators’ business model. Prior to 

privatization, airports were publicly owned, and the operators could shift the cost of 

inefficiencies to the flagship carrier, again publicly owned. The final customer, paying for 

the ticket, ended up bearing the cost of the inefficiencies of the whole system. Liberalization 

increased the competition downstream, which put pressure on airport operators to lower their 

charges since carriers had become more price sensitive. Also, the different business model 

of low cost carriers (LCC), which sought cheaper regional airports and avoided the largest 

hubs, pushed local authorities toward competing for their presence, which would in turn 

boost the local economy.  

The shift of airport ownership from completely public to partially or totally private, and the 

increased market competition, created an incentive to be more efficient in order to lower 

charges and attract more carriers, and thus passengers. Commercial activities kept gaining 

an increasing relevance in the business model of airport operators, contributing by 2014 to 

41% of total revenue.1 

In Italy, prior to liberalization, the market was characterized by a monopoly of the flagship 

carrier Alitalia. The deregulation process allowed the entry of new European companies, 

which filled the regional niches left unoccupied up to that point. These companies were 

mostly low cost operators, which by 2015 generated 48.38% of passenger traffic. The effects 

of the liberalization were similar to what happened in the rest of the European Union, with 

a large increase in the number of routes available and a sharp decrease in average price. 

 

  

                                                
1 European Commission. Annual Analyses of the EU Air Transport Market 2016. 
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2.2 The Italian airport industry 

 

The airport system is responsible for the creation of 4.1% of the European Union’s GDP. 

Italy places a little under the average, with a contribution of 3.6%.2 Aside from their 

economical relevance, airport infrastructures are an important factor of interconnectivity. 

This is especially significant in a country characterized by having an irregular geography 

and a vast insular area. Italy is the 5th country in Europe by number of airports open to 

commercial traffic, with 44 infrastructures. Nevertheless, it presents a peculiarity in the 

number of medium-smalls airports, which is unusually high in the European landscape. This 

leads to a high concentration, with the 5 largest airports comprising 55.6% of total passenger 

traffic and 54% of aircraft movements in 2015.3 The reason behind the high number of 

medium-small airports is to be found on the one hand in the presence of various economic 

and touristic focal points, on the other hand in the absence of adequate ground infrastructures 

and their uneven distribution.  

 

Figure 1- Passenger and cargo traffic in Italy 

 

Source: Elaboration of Eurostat data. 

                                                
2 CDP, Cassa Depositi e Prestiti. (2015). Il sistema aeroportuale italiano. 
3 This and the following national traffic data is publicly available from ENAC (Italian Civil Aviation 

Authority) at www.enac.gov.it.  



11 

 

In 2015, passenger traffic in Italian airports reached 157 million, the 5th highest in the 

European Union after the United Kingdom, Germany, Spain and France.4 Of this number, 

62.4% is international traffic, 74.8% of which is intra-EU. The ten years going from 2006 

to 2015 registered an increase in traffic, although a reduction occurred during the years 2008 

and 2009 due to the financial crisis, and a light contraction was registered in 2011 and 2012 

as well. Nevertheless, the compound annual growth rate (CAGR) at which passenger traffic 

grew was of 2.9%, above that of 2.4% of the EU. 

 

Figure 2 - Passenger traffic in the most populous EU countries 

 

Source: Elaboration of Eurostat data5. 

 

If compared with the other EU countries, cargo traffic in Italy is quite underdeveloped. In 

2015, Italy was 6th with 916 thousand tonnes of goods, while Germany moved more than 

4.5 million tonnes and the UK 2.4 million tonnes.6 The lesser importance that air cargo 

traffic assumes for the country is reflected by the growth rate, with a CAGR over the 

observation period of 0.91%, while that of the EU was 1.80%.  

 

                                                
4 Data on EU countries is publicly available from EUROSTAT at www.ec.europa.eu/eurostat/. 
5 Due to the different measuring methods, data from Eurostat cannot be confronted directly with data taken 

from ENAC. 
6 All numbers include goods and mail. 
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Figure 3 - Cargo traffic in the most populous EU countries 

 

Source: Elaboration of Eurostat data. 

 

 

Figure 4 - A comparison of passenger and cargo growth in Italy and in the EU  
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Source: Elaboration of Eurostat data. 

 

The 27 airports included in our analysis represent 98.77% of national passenger traffic, 

98.21% of aircraft movements and 99.28% of cargo traffic, therefore we can reasonably 

assume that they are a good approximation of the whole Italian airport system. From now 

on, all that will be said will be in regard to these 27 airports, which will be generally referred 

to as ‘the airports’ or ‘the Italian airport system’. The two airports of the city of Rome, 

Fiumicino and Ciampino, being managed by the same group, have been considered as a 

single system in the analysis. The same is true for the two airports of the city of Milan, 

Malpensa and Linate. This was necessary because the data collected could not be separated 

at the single airport level, and also to make this analysis comparable with previous ones, 

which used the same grouping. 

 

The airports have been grouped in four categories, according to their size and following the 

EU classification: 

Large Community Airport (LCA), with over 10 million passengers per year; 

National Airports (NAA), between 5 and 10 million passengers per year; 

Large Regional Airports (LRA), between 1 and 5 million passengers per year; 

Small Regional Airports (SRA), fewer than 1 million passengers per year. 
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 Table 1 - Airport grouping by size class 

Airport IATA Code Class 

Bergamo BGY LCA 

Milan Linate and Malpensa LINMXP LCA 

Rome Fiumicino and Ciampino FCOCIA LCA 

Bologna BLQ NAA 

Catania CTA NAA 

Napoli NAP NAA 

Venice VCE NAA 

Alghero AHO LRA 

Bari BRI LRA 

Brindisi BDS LRA 

Cagliari CAG LRA 

Florence FLR LRA 

Genova GOA LRA 

Lamezia SUF LRA 

Olbia OLB LRA 

Palermo PMO LRA 

Pisa PSA LRA 

Torino TRN LRA 

Trapani TPS LRA 

Treviso TFS LRA 

Verona VRN LRA 

Ancona AOI SRA 

Brescia VBS SRA 

Lampedusa LMP SRA 

Pantelleria PNL SRA 

Pescara PSR SRA 

Trieste TRS SRA 

 

Source: Elaboration of ENAC data.  
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The data of 2015 shows how 73% of passenger traffic was generated by airports that had 

more than 5 million passengers per year (NAA and higher). Traffic distribution for the year 

2015 is as follows: 

The 3 LCA airports registered 84.4 million passengers, accounting for 54.5% of national 

traffic; 

The 4 NAA airports registered 28.7 million passengers, accounting for 18.5% of national 

traffic; 

The 14 LRA airports registered 39.7 million passengers, accounting for 25.6% of national 

traffic; 

The 6 SRA airports registered 2.2 million passengers, accounting for 1.4% of national 

traffic. 

 

Figure 5 - Distribution of passengers by airport size class in 2015 

 

Source: Elaboration of ENAC data. 

 

Just like in the rest of Europe, passenger traffic in Italy was greatly influenced by the entry 

of LCC and the diffusion of high-speed rail. The years following the liberalization process 

witnessed an increasing penetration of low cost operators, their market share going up from 

21% in 2003 to 48.38% in 2015. These carriers favored regional airports, which granted 
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lower costs and a lower competition from the flagship carrier Alitalia. These are the airports 

that saw the biggest increase in passenger traffic during the years going from 2006 to 2015. 

Figure 6 shows how LRA and NAA airports’ growth was above the average with a CAGR 

of 3.9% and 3.3% respectively, LCA airports lagged behind with a CAGR of 1.7% and SRA 

registered the smallest increase in traffic, only 0.6%. The CAGR of the industry was 2.5%. 

 

Figure 6 - Evolution of passenger traffic by airport size class 

 

Source: Elaboration of ENAC data. 

 

The data on cargo traffic reveals how 96% of volume is attributable to LCA and NAA 

airports. Cargo distribution for the year 2015 is as follows:  

The 3 LCA airports moved 808.6 thousand tons of cargo, accounting for 86.6% of total 

volume. The airport system of Milan Linate and Malpensa alone accounted for 526.9 

thousand tons, 56.4% of national volume; 

The 4 NAA airports moved 88.2 thousand tons of cargo, accounting for 9.4% of total 

volume; 

The 14 LRA airports moved 17.7 thousand tons of cargo, accounting for 1.9% of total 

volume; 

The 6 SRA airports moved 19.8 thousand tons of cargo, accounting for 2.1% of total volume. 
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Figure 7 - Distribution of cargo traffic by airport size class in 2015 

 

Source: Elaboration of ENAC data. 

 

Over the observation period, from 2006 to 2015, the volume of air cargo traffic grew at a 

CAGR of 0.24%. Figure 8 shows how only NAA airports registered a significant increase 

in volume, with a CAGR of 6.1%. LCA airports recorded a very small growth, with a CAGR 

of 0.4%. SRA and LRA airports were in the negative, with a CAGR respectively of -4.7% 

and -11.1%. 
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Figure 8- Evolution of cargo traffic by airport size class 

 

Source: Elaboration of ENAC data. 
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2.3 Price regulation in Italy  

 

Aeronautical charges paid by airline companies are mainly of two types: landing fees for the 

use the airplanes make of the airfield, and charges for the use the passengers make of the 

terminal building. The sum charged as landing fee is usually based on the plane’s maximum 

take-off weight, while the sum charged for using the terminal building depends on the flight 

being domestic, intra-EU or extra-EU.7 

 

Up until the year 2000, aeronautical charges were periodically updated by the Ministry of 

Transportation (Ministero dei Trasporti, MIT). These charges, being sorts of taxes paid for 

the use of state-owned infrastructures, were identical for every airport, regardless of its size 

and the actual costs it sustained. From then, the regulatory framework was changed many 

times. Starting from 2009, some airports subscribed with the Italian Civil Aviation Authority 

(Ente nazionale per l’aviazione civile, ENAC) an agreement, called ‘programme contract’, 

which planned capital expenditures and adjusted charges to costs actually sustained. The 

airports which did not sign this agreement got their charges adjusted for inflation, but not to 

actual costs. The intervention of the Transport Regulation Authority (Autorità di regolazione 

dei Trasporti, ART) put some order to existing regulation. The Delibera ART n. 64/2014 

introduced a differentiation in regulation according to airport traffic, lowering its impact the 

lesser the passenger volume. The ART identified three size classes: over 5 million 

passengers per year, between 3 and 5 million passengers per year, and under 3 million 

passengers per year. The reason behind this differentiated approach was to protect 

consumers in cases where actual market power existed, without overcomplicating 

procedures for airport operators and reducing costs related to regulation in cases where 

market power did not arise.  

 

The framework by the ART is applied to all airport operators, and its effect was added to 

previous regulation put in place by ENAC. The only exception lies for the operators of 

Rome, Milan and Venice, which are still regulated by their respective programme contracts. 

In these cases, charges are decided by the airport operator following the pricing models 

                                                
7 Bel and Fageda (2009) 
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provided by ART, while the level of investments are established in the programme contract. 

The coexistence of two regulatory bodies is an exception in the European landscape.  

 

A recurring theme in the field of airport price regulation has been whether a single till or a 

dual till approach should be used in setting aeronautical charges. The debate centers on how 

regulation of aeronautical services (e.g. aircraft take-off, landing, gangway, provision of 

terminal services to passengers and airlines) should deal with airports’ revenues from 

commercial services (e.g. earnings from car parking or the rent of retail spaces). Under a 

single till approach, profit from an airport’s non-aeronautical activities are subtracted from 

the revenue requirement for aeronautical services before determining the level of 

aeronautical charges. Under a dual till approach, the regulator omits entirely non-

aeronautical activities from its calculation. Therefore, under single-till regulation, 

commercial revenues cover a portion of the airport’s overall fixed costs, so that the single 

till price-cap for aeronautical services is reduced accordingly. The single till approach 

mimics the dynamics of a competitive market better than dual till, forcing airports that do 

not have a substantial market power to respond to competitive pressures by subsidizing 

aeronautical activities with non-aeronautical profits, leading to more economically efficient 

outcomes.8 

 

In Italy, a dual till approach was introduced by the ART: The Delibera ART n. 64/2014 

established that non-aeronautical activities must not be considered when determining 

aeronautical charges. Therefore, under a dual till approach, revenues from aeronautical 

activities are defined as the sum of the return on capital invested9, depreciation costs and 

operating costs. 

  

                                                
8 See Czerny (2006), Bilotkach et al. (2012) and Elliott (2015). This picture may change when talking about 

congested airports, but a single till regulation might remain advantageous. 
9 Calculated as weighted average cost (WACC) times the regulatory asset base (RAB). 
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2.4 The ownership structure of Italian airports 

 

Historically, the airport sector has been characterized by a prevalence of public capital in 

the ownership structure of management companies. This was due to the strategic importance 

of the airport as a national asset and its contribution to the economic development of a 

region; the fact that small-sized airports often are structurally unprofitable but essential for 

the life of small communities; the capital intensive nature of the business and its long 

payback time. Nevertheless, in the last twenty years, policymakers have incentivized the 

entrance of private capital in the airport industry, consistent with European guidelines.  

In Italy, this process started in 1997 with the privatization of Napoli Capodichino, and it was 

more recently fueled by the need for public authorities to find resources following the 

financial crisis. In 2011, the municipality of Milan sold 30% of its shares of SEA – the 

company which manages Milan Linate and Malpensa – to the private equity fund F2i. In 

2013, Atlantia became the majority shareholder of Aeroporti di Roma – which manages 

Rome Fiumicino and Ciampino - owning 95.9% of its shares. As of 2016, 14% of Italian 

airports are fully public, while most of the rest have mixed public-private ownership.10  

Finding the required resources to finance interventions in this sector requires particular 

attention in order to allow an appropriate allocation of public resources and of private 

capital, keeping in mind the opportunity costs related to public contribution. 

 

Another important development, happening in parallel to the privatization process, has been 

the commercialization of the airport industry. The increase in the competitiveness of the 

market forced airports to become leaner, to push themselves in the strife for traffic growth 

and route development, to boost efficiency and service quality, and to find the best way to 

finance investments. As a consequence, even fully public airports are becoming 

‘corporatized’, that is, structured as independent commercial entities. 78% of fully public 

European airports fall under this category.11  

From the analysis of the ownership structure of Italian airports, it emerges how private 

stakeholders are showing a growing interest in investing in the national airport sector. It is 

interesting to notice how the presence of private capital decreases as the airport size class 

decreases. LCA and NAA airports are the ones registering a higher penetration of private 

                                                
10 Airports Council International. The Ownership of Europe’s Airports 2016. 
11 See note 10. 
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capital. On the other hand, SRA airports register a negative trend, with an increase in public 

intervention during recent years, probably due to the effects of the economic crisis.  

 

Table 2 - The ownership structure of  Italian airports in 2015 

Airport IATA Code Size Class % Public Ownership12 

Alghero AHO LRA 100.0% 

Ancona AOI SRA 98.9% 

Bari BRI LRA 100.0% 

Bergamo BGY LCA 40.3% 

Bologna BLQ NAA 86.1% 

Brescia VBS SRA 57.0% 

Brindisi BDS LRA 100.0% 

Cagliari CAG LRA 95.2% 

Catania CTA NAA 100.0% 

Florence FLR LRA 32.0% 

Genova GOA LRA 85.0% 

Lamezia SUF LRA 68.0% 

Lampedusa LMP SRA 100.0% 

Milan Linate and Malpensa LINMXP LCA 55.7% 

Napoli NAP NAA 25.0% 

Olbia OLB LRA 20.0% 

Palermo PMO LRA 98.6% 

Pantelleria PNL SRA 12.7% 

Pescara PSR SRA 100.0% 

Pisa PSA LRA 32.0% 

Rome Fiumicino and Ciampino FCOCIA LCA 4.1% 

Torino TRN LRA 23.0% 

Trapani TPS LRA 61.3% 

Treviso TFS LRA 8.3% 

Trieste TRS SRA 100.0% 

Venice VCE NAA 10.0% 

Verona VRN LRA 57.0% 

Source: Elaboration on AIDA data.  

                                                
12 In the analysis, Chambers of Commerce were considered as public authorities, following Europe Airports 

Council International (2016). 
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3 Literature review 

 

 

The present chapter offers a review of recent work on airport efficiency. A brief comment 

on each paper follows, underlining the methodology used and some of the insights drawn 

by the authors. In studying previous works, specific attention has been paid to the parameters 

used in the specification of the econometric model. The methodology, inputs and outputs 

used in each paper are summed up in the following table, which was used as a reference in 

the specification of our model.  

 

Pels et al. (2001) worked with a sample of 34 European airports observed from 1995 to 1997, 

and used data envelopment analysis (DEA) to determine technical efficiency scores, which 

were then compared with measures obtained by means of a stochastic production frontier. 

Their study concluded that most European airports operated under increasing returns to 

scale. Their follow-up study, Pels et al. (2003), which again used DEA and stochastic 

frontier analysis (SFA), found that airports on average operate under constant return to scale 

for aircraft movements and increasing return to scale for passengers, and that a negative 

correlation exists between airport size and its return to scale. Following Starkie (2001), they 

suggested that, for many large airport, scale economies may not be the source of market 

power. 

Martín-Cejas (2005) estimated the technical efficiency of 31 Spanish airports with data from 

1997, discovering a much higher return to scale for cargo rather than passengers. Craig et 

al. (2005) used a symmetric generalized McFadden (SGM) cost function with a sample of 

52 USA airports observed from 1972 to 1992, investigating the effect of governmental 

structure on technical and allocative efficiency and the rate of technical change. The authors 

found that single purpose authorities have a significant cost advantage over city operated 

airports, and present substantial higher level of technical efficiency.  

Oum et al. (2008) applied a stochastic frontier analysis with a sample made up of an 

unbalanced panel of 109 airports around the world, with data ranging from 2001 to 2004. 

The cost frontier model was specified in a translog form and estimated using a Bayesian 

approach. The aim of the work was to study the effect of the ownership model on the 
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efficiency, the results indicated that a full private or full public ownership is associated to 

lower costs.  

Barros (2008a) used a random parameters frontier model to estimate the technical efficiency 

of a sample of 27 UK airports during the years 2000-2005, focusing on heterogeneity among 

airports. In a subsequent study, Barros (2008b) applied a stochastic cost frontier method to 

a sample of 12 Portuguese airports observed from 1990 to 2000, including a time trend to 

account for and disentangle technical change over a long time period. 

Martín and Román (2009) used a Markov Chain Monte Carlo (MCMC) simulation to 

estimate a stochastic frontier analysis model to evaluate the efficiency of Spanish airports, 

from a sample of 37 airports observed in the period going from 1991 to 1997. Their 

conclusion was that large airports are more efficient than smaller ones, and that the presence 

of important economies of scale made the constant pricing scheme adopted in Spain not 

suitable from an economic point of view. 

Abrate and Erbetta (2010) used a parametric input distance function to evaluate the 

efficiency of a sample of 26 Italian airports observed over a six-year period (2000-2005). 

Their approach allowed to obtain parameter estimations without having to rely on the 

hypothesis of cost minimization and without the requirement of input price data, which are 

a limit of traditional cost function estimation. The aim of the work was to quantify the 

possible synergies between the aeronautical, handling and commercial operations, reporting 

evidence toward outsourcing of handling operations as a valid managerial strategy. 

Curi et al. (2010) and Curi et al. (2011) applied DEA with the Simar and Wilson’s two-stage 

bootstrapping to investigate efficiency determinants. In their first study, a dataset made up 

of 36 Italian airports with data ranging from 2001 to 2003 was used. In the second one, 18 

Italian airports were observed over the period going from 2000 to 2004. Among their 

findings, they reported that public airports are more efficient than mixed ownership or 

completely private ones, and that Italian airports are generally characterized by low levels 

of efficiency. 
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Table 3 - Summary of studies on airport benchmarking 

Authors Data Methodology Inputs Outputs 

Pels et al. (2001) 34 European airports; 

1995-1997 

DEA, Stochastic 

production frontier 

Air Transport Movements (ATM) 

model: number of runways 

(length in DEA), number of 

aircraft parking positions at 

terminal, remote aircraft parking 

position, total airport area (DEA 

only) 

Air Passenger Movements (APM) 

model: number of baggage claim 

units, number of aircraft parking 

positions at terminal, remote 

aircraft parking position, number 

of check-in desks (DEA only), 

terminal size (DEA only) 

ATM model: total number of 

aircraft movements 

APM model: total number of 

passengers 

Pels et al. (2003) 34 European airports; 

1995-1997 

DEA, Stochastic 

production frontier 

Air Transport Movements (ATM) 

model: number of runways, 

number of aircraft parking 

positions at terminal, remote 

aircraft parking position, total 

airport area 

Air Passenger Movements (APM) 

model: predicted value of ATM 

(actual value in DEA), number of 

baggage claim units, number of 

ATM model: total number of 

aircraft movements 

APM model: total number of 

passengers 
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Authors Data Methodology Inputs Outputs 

aircraft parking positions at 

terminal, number of check-in 

desks, terminal size 

Martín-Cejas 

(2005) 

31 Spanish airports; 1997 Stochastic (long run) 

cost function 

Price of labor, price of capital Number of passengers, 

amount of cargo 

Craig et al. (2005) 52 US airports; 1970-

1992 (unbalanced panel) 

SGM shadow (long 

run) cost function 

Price of labor, price of capital, 

price of materials 

Number of flights 

Oum et al. (2008) 109 airports in Asia, 

Australia-New Zealand, 

Europe, North America; 

2001-2004 (unbalanced 

panel) 

Stochastic (short run) 

cost frontier 

Price of labor, price of soft cost 

input (purchasing power parity as 

proxy), number of runways (fixed 

input), passenger terminal area 

(fixed input)  

Number of passengers, 

number of aircraft 

movements, non-aeronautical 

revenues 

Barros (2008a) 27 UK airports; 2000-

2005 

Stochastic 

heterogeneous (long 

run) cost frontier (with 

random parameters 

associated to outputs) 

Price of labor, price of capital-

premises, price of capital-

investment 

Number of passengers, 

number of aircraft 

movements 

Barros (2008b) 13 Portuguese airports; 

1990-2000 

Stochastic (long run) 

total cost frontier, with 

trend allowing for 

technical change 

Price of labor, price of capital Sales to planes, sales to 

passengers, non-aeronautical 

fees 

Martín, Román 

(2009) 

37 Spanish airports; 

1991-1997 

Stochastic (long run) 

cost frontier 

Price of labor, price of capital, 

price of materials 

Number of aircraft 

movements, work load units 

(WLU, which is equivalent to 

one passenger or 100kg of 

cargo) 
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Authors Data Methodology Inputs Outputs 

Curi et al. (2010) 36 Italian airports; 2001-

2003 

DEA and two stage- 

bootstrapping 

Labor costs, capital costs, price of 

other inputs 

Number of passengers, 

number of  aircraft 

movements, tons of cargo, 

aeronautical revenues, 

handling receipts, 

commercial revenues 

Abrate, Erbetta 

(2010) 

26 Italian airports; 2000-

2005 

Parametric input 

distance function 

Labor costs, soft costs, apron area 

dedicated to aircraft parking, total 

airport surface 

Number of passengers, 

handling revenues, 

commercial revenues 

Curi et al. (2011) 18 Italian airports; 2000-

2004 

DEA and two-stage 

bootstrapping 

Physical model: number of 

employees, number of runways, 

apron size 

Financial model: labor costs, 

other costs, airport area. 

Physical model: number of 

passengers, number of 

aircraft movements, tons of 

cargo 

Financial model: aeronautical 

revenues, non-aeronautical 

revenues 
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4 Methodology 

 

 

4.1 Efficiency analysis 

 

The concept of efficiency is quite broad and it encompasses different aspects. What we refer 

to in this work as economic efficiency, following Fabbri et al. (1996), is the joint effect of 

two factors: technical and allocative efficiency. Technical efficiency can be described as the 

use of the minimum amount of inputs to produce a given amount of output (input-oriented 

efficiency) or, conversely, the production of the maximum output given the inputs (output-

oriented efficiency). Allocative efficiency measures a firm’s success in choosing the input 

mix which grants the minimum cost. From now on, when generally talking of efficiency, we 

will refer to the product of these two factors.13 For this definition to be meaningful, a way 

to measure efficiency is needed. In the economic literature, the study of the efficiency of a 

decision making unit (DMU, which in our case is represented by the single airport) has been 

undertaken using three main approaches: total factor productivity (TFP), data envelopment 

analysis (DEA) and stochastic frontier analysis (SFA). 

 

TFP is the most straightforward, as it uses a simple ratio of output over input to measure the 

performance of the DMU. When multi-output and/or multi-input DMUs are considered, a 

weighted average must be taken, generally using price information as basis for calculating 

weights. Due to its very simplistic approach, this method is lacking in explanatory power. 

Another limit is the impossibility to decouple inefficiency into different types, which 

requires the use of more advanced techniques.  

The other two approaches, DEA and SFA, require the construction of a cost or production 

frontier, and have a considerably higher data requirement than TFP. Following Farrell 

(1957), efficiency estimation is treated as a comparative assessment of the performances of 

different DMUs. These methodologies are based on the estimation of a best-practice frontier, 

against which actual performances are evaluated.  

                                                
13 See Farrell (1957) or Färe et al. (1985) for an in-depth analysis.  
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DEA is by far the most common method used in airport benchmarking. Being a non-

parametric method, it uses linear programming for constructing best-practice frontiers. This 

offers the great advantage of not needing the specification of a functional form, which would 

require establishing in advance a fixed number of parameters to explain the structure of the 

production set. This allows for a very flexible approach that can be easily generalized. 

Another reason behind its common use is the fact that it does not require to assume a specific 

behavior from actors, like cost minimization. A big drawback of this method is the fact that 

it does not account for randomness: The distance of the DMU’s performance from the 

frontier is entirely treated as inefficiency.14 This makes it by nature a descriptive 

methodology, not an inferential one. 

 

SFA overcomes some of the limitations of DEA, but in doing so it requires a larger set of 

assumptions to be made. This paragraph gives an overview of parametric techniques in 

general, to give the reader an intuitive idea of how they work. The SFA method and our 

model in particular will be discussed in detail in the next subchapter.  

The parametric approach is based on building functional connections between the output set 

and the input prices on one side, and the production costs of each DMU on the other. The 

method works in two stages. In the first stage, a production or cost function is estimated, 

defining an average relationship between observed input and output data. In the second 

stage, the frontier is built by transposition of the function drawn in the first stage. This 

requires a translation resulting in all observation being located above the function. The 

construction of an economic efficiency frontier by translation generates residuals all with 

positive sign (the opposite is true for production frontiers). Inefficiency can then be 

measured as the distance of the DMU’s performance, represented as a point above the 

frontier, from the frontier itself. Such a measure of inefficiency reflects the deterministic 

nature of this type of frontier. It is possible however to adopt a stochastic approach, which 

takes into account the fact that the selected parameters cannot fully explain this shift from 

the optimum. In this case, residuals are treated as random variables. Each observation will 

be represented as a point whose distance from the frontier depends not only on inefficiency, 

but also on a noise term. Hence, parametric models may use either a general deterministic 

approach or a stochastic one. In the first instance, all observations will be placed on the 

                                                
14 See Barros and Dieke (2008) and Curi et al. (2011) for an example on how authors have tackled this 

limitation. 
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frontier or above it. In the second instance, observations can be located above or below the 

deterministic frontier, according to the value of the noise term. 

It is important to keep in mind that a best-practice frontier built from a sample cannot be 

interpreted as the best-practice frontier of the whole industry: If the sample contains only 

inefficient DMUs, the estimated frontier will be quite different from the actual industry’s 

frontier. Its reliability does not go beyond the selected sample of DMUs. 

 

In our analysis, we chose to use an SFA approach. The main advantage this method offers 

is its flexibility, which allows to deal with factors exogenous to management’s control, 

errors in data collection, and it lessens problems deriving from an incomplete specification 

of the model. Furthermore, knowing the cost structure of a DMU allows for the study of 

scale and scope economies. A last reason was that it has been adopted less frequently than 

DEA, so that it felt like a more useful addition to the literature.  
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4.2 SFA in detail 

 

SFA was introduced by the pioneering works of Aigner et al. (1977) and Meeusen and Van 

den Boreck (1977).  The stochastic frontier approach is based on the idea that no DMU can 

perform better than the best-practice frontier, and that deviations from it represent 

inefficiencies. The method is based on the specification of a regression model having a 

composite residual made of two terms: a noise term, which captures measurement errors and 

specification errors, and a one-sided disturbance term, which represents inefficiency. Both 

production and cost frontiers have been employed, the former representing the maximum 

amount of output that can be obtained by using a set of inputs, the latter representing the 

minimum cost sustained to produce a set of outputs given the prices of the inputs needed in 

the production. We distinguish between cross-sectional data models, were the dataset is 

made up of observations of different DMUs at a given time, and panel data models, where 

the observations are taken over multiple time periods for the same DMUs. Stochastic frontier 

models are generally estimated by maximum likelihood-based approaches, with the main 

objective being making inference about the inefficiency term and the frontier parameters. 

 

The production cost of DMU i at time t can be expressed as: 

 

��� =  C��	
, �	

���� 

��� = ��� + �� 

� = 1, … , � 

� = 1, … , � 

 

where ��� is a scalar representing the total cost, �	
 is a vector of outputs, �	
 is a vector of 

input prices, ��� is the noise term, and ��� is the inefficiency term. The model can be written 

as: 

��� =  � +  �	
� � + �	
� � + ��� 

��� = ��� + �� 

��� ∼ ��0, "#$
 

�� ∼ % 
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where ���, �	
 and �	
 are now expressed as logarithms, � and � are vectors of parameters 

to be estimated. ��� and ��  are assumed to be independent of each other and identically 

distributed throughout observations. Regarding the distribution of the inefficiency term, 

which is required in order for the model to be estimable, the most common ones used in 

literature are the half-normal, the exponential, the truncated normal and the gamma 

distributions.  

 

The model is usually fit by using maximum likelihood methods, but ordinary least squares 

or generalized method of moments can both be used, although they are generally inefficient. 

Stochastic frontier analysis is based on a sequential approach. In the first step, the estimates 

of the parameters of the model &' are evaluated through the maximization of the log-

likelihood function ℓ�&
, with & = ��, ��, ��, "#$, ")$
′.15 In the second step, point estimates 

of inefficiency can be determined by evaluating the mean or the mode of the conditional 

distribution +���,�-��
, with �-�� = ln ��� − � − ln�	
� � − ln�	
� �. The derivation of the 

likelihood function requires to assume ���  and �� to be independent. In general, numerical-

based or simulation-based techniques are required to calculate it. The second step is needed 

because estimating the model parameters allows to obtain the residuals 12, but it does not let 

us decouple the noise term from the inefficiency term. In order to do this, we use the mean 

or the mode of the conditional distribution of 3 given 1.16 After obtaining the point estimates 

of 3, we can derive estimates of the economic efficiency as  

 

Eff = exp �−37
 

 

with 37 being either 8�3,12
 or 9�3,12
. 

 

Although panel data for a sufficient timeframe can often be hard to obtain, they offer a 

substantial advantage over the use of cross-sectional data. First, they allow to relax strong 

distributional assumptions for the 3 term when repeated observations on a sample of DMUs 

are available. In addition, while with cross-sectional data the inefficiency cannot be 

estimated consistently since the variance of 8�3,12
 or 9�3,12
 does not go to zero as the 

                                                
15 As pointed by Fabbri et al. (1996), other parametrizations have been used in the literature, e.g. & =
:�, ��, ;�, "2, =>�

 with "$ =   "#$ +  ")$ and = =  ") "#? . 
16 See Jondrow et al. (1982) for an in-depth analysis. 
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number of DMUs in the sample increases, with panel data observations are taken over 

multiple time periods for the same DMUs, leading to consistent estimations of ��  as � →
∞.17  

 

The model specification we gave treats the 3 term as a random variable, and is therefore 

referred to as a random-effect model. Panel data allows also to specify fixed-effect models.  

Fixed-effects models treat ��  as non-random, making it instead a DMU-specific intercept 

parameter to be estimated along with � and �. The model can be written as: 

 

��� =  �� +  �	
� � + �	
� � + ��� 

�� = α + �� 

 

with �� ≥ 0. While the same assumptions as before apply to ��, no distributional assumption 

is required for ��, which can also be correlated to the error term and the regressors. The 

estimation of the inefficiency term is performed as follows: 

 

α7 =  max� �2� 

�2� = α7 − �2� 

 

This implies that at least one DMU is assumed to be perfectly efficient, and the performances 

of the other DMUs are measured relative to the efficient ones. Fixed-effects models apply 

the within transformation, meaning that all data is expressed as deviation from the DMU’s 

mean. This entails that all time-invariant effects are eliminated.  

Fixed-effect models have the advantage of simplicity and of not relying on distributional 

assumptions for the ��. However, as pointed out by Kumbhakar and Lovell (2000), the 

inefficiency term in these models captures the effects of all phenomena that vary across 

DMUs, but do not vary with time for each DMU (e.g. regulatory environment).  

 

Stochastic frontier models can be further differentiated according to the hypothesis 

regarding the inefficiency term being either time-invariant or time-variant. In the previous 

formulation, we have expressed the �� term as being time-invariant. Such assumption should 

always be questioned. Although empirical analysis shows that indeed there are cases where 

                                                
17 See Kumbhakar and Lovell (2000) for an in-depth analysis 
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the efficiency does not vary with time, this should not be taken as a given, especially when 

the length of the time period is substantial. Among the time-invariant models, the ones 

proposed by Pitt and Lee (1981) and Battese and Coelli (1988) have seen a wide usage in 

the literature. These models mainly differ with regard to the assumption on the distribution 

of 3. The first one assumes 3 to follow a half normal distribution, while the second one 

assumes a truncated normal distribution. In both cases, the parameters are estimated through 

maximum likelihood. Different models have been proposed to express the inefficiency term 

as time-varying. Kumbhakar (1990) defines the time dependency of the inefficiency term as 

 

��� = 1
1 + exp �=� +  F�$
 × �� 

��� ∼ �H�0, ")$
 

 

His model requires the estimation of two parameters only, and it easily allows to test the 

hypothesis of time-invariant inefficiency by setting = = F = 0. Battese and Coelli (1992) 

proposed a similar model, called ‘time decay’, where the inefficiency term takes the form of 

 

��� = exp [−J�� − �
]  × �� 

��� ∼ �H�μ, ")$
 

 

Both these specifications represent the temporal pattern of ��� as being DMU-invariant. 

Although other authors proposed formulation where each DMU has its own temporal pattern 

of inefficiency, these require the estimation of a large number of parameters. Cornwell et al. 

(1990) proposed a time-varying fixed-effects model with DMU-specific slope parameters as  

 

��� = M� + N�� + =��$ 

 

which is more flexible than the previous two, but requires the estimation of � x 3 

parameters. What these models have in common is that the intercept of the curve � is the 

same across DMUs. As Belotti et al. (2013) pointed out, if time-invariant unobservable 

factors exist, their effect would be captured by the inefficiency term, thus leading to biased 

estimations of 3. To address this problem, Greene (2005) proposed a time-varying model 

where � depends on the DMU, as follows: 

 



35 

 

ln ��� =  �� +  ln�	
� � + ln�	
� � +  ��� 

 

This specification allows to decouple DMU-specific time-invariant unobserved 

heterogeneity from the time-varying inefficiency term. However, part of the time-invariant 

unobserved heterogeneity should be considered inefficiency, so that whether disentangling 

these two terms is appropriate should be questioned. In our analysis, these methods will be 

tested and commented, in order to choose the most appropriate specification according to 

our scope and data. 

 

Finally, SFA requires the selection of a functional form by which to approximate the cost 

frontier. In the literature, the most common choice has been the translog, which we can 

express as: 

 

ln �P�� =  � + Q RS ln TS��
S

+ Q US ln VS��
S

+  1
2 Q Q FSW ln TS�� ln TW��

WS

+ Q Q XSW ln TS�� ln VW��
WS

+  1
2 Q Q YSW ln VS�� ln VW��

WS
+ ��� + ���  

 

It represents a second order approximation of an unknown cost frontier, obtained through a 

Taylor series expansion of the logarithmic transformation about a vector Z.18 The 

independent variables are expressed as deviations from the expansion vector Z. Since 

generally the mean is used as the approximation point, this results in the following 

normalization: ln T�� − ln T[, ln V�� − ln V\ . In the approximation point, the translog function 

is a perfect representation of the unknown cost frontier. As we move away from Z, some 

approximation errors may appear.  

 

The cost function has to be: non-decreasing, continuous, linearly homogeneous and concave 

with respect to input prices, and non-decreasing with respect to outputs. These regularity 

conditions need to be checked after the model has been estimated, with the exception of the 

homogeneity condition, which can be imposed a priori as: 

 

                                                
18 See Christensen et al. (1973) for details. 
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Q US
S

= 1 

] YSWW = 0, ] XSWW = 0, ∀ _ 

 

The translog functional form offers many advantages: Compared to other flexible functional 

forms, it requires the estimation of fewer parameters; differently than traditional functional 

forms like Cobb-Douglas, the translog allows for economies of scale to change with the 

amount of output. 

The downside of using a translog functional form is that the number of parameters to be 

estimated explodes as the number of considered output measures or input prices increases. 

This in turn limits the number of degrees of freedom and may lead to multicollinearity.  
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4.3 Model specification 

 

Our dataset contains balanced panel data on 23 Italian airports, observed from 2006 to 2015. 

Financial data were collected from balance sheets published by airport operators on their 

websites or obtained from the database AIDA, while data about traffic comes from ENAC 

and Assaeroporti websites.19 Although chapter 2 presented traffic data, size classification 

and ownership structure of 27 airports, some of them were excluded from the efficiency 

analysis due to inconsistency of data or lack thereof. The airports of Bari and Brindisi were 

dropped from the dataset because the financial statements of Aeroporti di Puglia, the 

operator of the two airports as well as the ones of Foggia and Taranto, did not disaggregate 

costs and revenues at the single airport level. The same happened with the airports of Brescia 

and Verona. Further studies could try to include the whole airport system in the sample.  

In order to be able to confront financial data relative to different years, all the monetary 

variables were expressed in 2006 prices by using the annual consumer price indices 

published by the Italian National Institute of Statistics (ISTAT). 

 

There is no consensus in airport literature about the appropriate cost model to be used for 

efficiency benchmarking, therefore our choice was guided by previous authors’ choices, a 

production process rationale, econometric reasons, but also trial and error. The estimation 

of the cost model requires the definition of three types of variables: outputs, input prices, 

and control variables. The adequate specification of a multiproduct cost function poses a 

delicate problem in the definition of relevant outputs. Indeed, it requires a trade-off between 

the inclusion of the highest number of factors that could possibly describe the supply side, 

and the need to limit output measures so that the model can properly be estimated. Following 

Pels et al. (2003) and Abrate and Erbetta (2010), at first we had chosen to describe airport 

activities as separated into aeronautical, handling and commercial. Lack of data forced us to 

use a simpler differentiation into aviation and non-aviation activities. 

The most common measures of aviation activities in the literature are passengers number, 

aircraft movements number, and volume of cargo. Cargo traffic has very low relevance for 

most Italian airports, with the exception of Milan and Rome. Therefore, we opted to combine 

                                                
19 AIDA is a database containing financial data on Italian companies. ENAC website can be reached at 

www.enac.gov.it. Assaeroporti is the Italian association of airport management companies. Its website can be 

reached at www.assaeroporti.com.  
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two output measures, number of passengers and cargo volume, into a single aggregate 

measure: work load unit (WLU), defined as one passenger or 100kg of cargo.20 Since no 

physical output measure could be used as a proxy of non-aviation activities, revenues from 

non-aeronautical services (to which we refer to also as commercial revenues) were also 

included. 

 

Regarding the choice of inputs, they were divided in three categories: labor, capital, and 

‘others’. The price of labor was calculated as the ratio of total labor expenses over the 

number of workers. As noted by Fabbri et al. (1996), this is not ideal, since the full-time 

equivalent (FTE) employees would be a more accurate measure than the number of workers. 

This is especially true since the airport sector is characterized by a large use of part-time 

workers. Another problem could occur if the average salary is not representative of the cost 

of the standard employee of the firm, due to the presence of outliers. However, the lack of 

more data forced us to calculate labor price as previously stated. The price of capital is 

typically problematic to evaluate. Again, lack of detailed data on the actual cost of capital 

made us opt for the sum of depreciations and financial costs to be used as a proxy. These 

were divided by total terminal area, a purely technical factor, to determine price of capital. 

The term ‘others’ is a non-labor-non-capital input price. It was calculated as the sum of 

expenditures for materials, services and the use of third parties’ assets, divided by the 

number of aircraft movements. 

 

Aside from outputs and input prices, some variables were added to check for airport 

characteristics that may influence the inefficiency estimation: the number of runways and 

the terminal area; a dummy variable that controls for the effect of ownership form, which 

assumes the value 1 in case of a majority public ownership; the international passenger 

traffic over total traffic ratio. It is to be noted that the only data available with regard to 

number of runways and terminal area was relative to the year 2014. These terms were 

therefore considered as fixed, although such an assumption has to be accepted skeptically 

with a timeframe of 10 years.  

 

An important assumption that comes with this econometric approach is that of cost 

minimization by relevant actors. Albeit the majority of Italian airports is mostly publicly 

                                                
20 A similar solution has been adopted by Martín and Román (2009). 
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owned, and thus could potentially pursue goals different from the minimization of total 

costs, the fact that they are structured as independent commercial entities makes this 

hypothesis less likely. Nevertheless, such an assumption leaves much room for debate, and 

it is important to be aware of the fact that is implicit in our analysis. 
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Table 4 - Summary statistics21 

 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 

Output measures 

Number of WLUs 

(millions) 

5.384  

(9.921) 

5.885  

(10.743) 

5.735  

(10.197) 

5.582 

 (9.540) 

5.944  

(10.196) 

6.276  

(10.609) 

6.200  

(10.309) 

6.150  

(10.159) 

6.446  

(10.715) 

6.759 

(11.271) 

Commercial revenues  

(millions €) 

26.424 

(61.351) 

28.315 

(64.701) 

28.071 

(62.758) 

26.923 

(59.276) 

27.310 

(61.746) 

27.276 

(61.110) 

24.194 

(49.194) 

23.457 

(47.910) 

23.030 

(47.248) 

23.869 

(48.943) 

Aircraft movements  

(thousands) 

56.955 

(97.080) 

61.185 

(101.728) 

58.311 

(95.611) 

54.846 

(85.562) 

56.567 

(89.816) 

57.143 

(90.410) 

55.566 

985.775) 

52.953 

(82.100) 

53.416 

(84.176) 

53.750 

(84.769) 

Inputs' prices 

Price of labor 

(thousands €) 

44.055 

(9.109) 

45.007 

(7.467) 

44.072 

(6.832) 

45.024 

(7.793) 

45.204 

(7.376) 

46.183  

(6.539) 

44.621 

(7.407) 

44.807 

(7.964) 

44.225 

(8.904) 

44.977 

(8.055) 

Price of capital  

(thousands €) 

20.186 

(26.076) 

22.474 

(25.137) 

21.014 

(23.209) 

18.619 

(20.420) 

17.697 

(19.656) 

18.145 

(19.788) 

19.013 

(19.310) 

18.252 

(15.930) 

18.277 

(15.758) 

19.261 

(16.642) 

Price of other inputs 

(thousands €) 

0.448  

(0.180) 

0.463 

(0.180) 

0.472  

(0.165) 

0.491  

(0.165) 

0.512  

(0.210) 

0.576  

(0.259) 

0.567  

(0.228) 

0.580  

(0.218) 

0.583  

(0.264) 

0.609  

(0.276) 

Airport characteristics 

Number of runways 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48 1.48 

Terminal area (m2) 54913 54913 54913 54913 54913 54913 54913 54913 54913 54913 

Airport characteristics in % 

International passengers 44.6% 45.4% 47.5% 46.7% 45.5% 45.8% 46.0% 47.4% 47.6% 47.5% 

Majority public 65% 65% 65% 65% 70% 65% 61% 61% 57% 57% 

                                                
21 The first number in each cell is the mean, the one between brackets is the standard error.  
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Table 5 - List of airports and main characteristics in 2015 

Airport IATA Class size Total costs WLUs Commercial revenues Runways Terminal 

(m2) 

Int. traffic  

 (%) 

P. own. 

(%)    ΔΔΔΔ 2006-2015 (%) ΔΔΔΔ 2006-2015 (%) ΔΔΔΔ 2006-2015 (%)  

Alghero AHO LRA €14,412,526 7.8%    1,676,622  56.0% €3,349,341 72.1% 1            17,000  32.6% 100% 

Ancona AOI SRA €12,817,205 -22.4%       585,793  11.8% €704,386 -88.4% 1            15,450  61.1% 99% 

Bergamo BGY LCA €83,950,805 52.0%  11,514,488  73.9% €27,718,025 69.9% 2            34,150  69.5% 40% 

Bologna BLQ NAA €52,760,549 35.7%    7,166,219  73.2% €28,859,330 41.4% 1            44,000  75.2% 86% 

Cagliari CAG LRA €25,845,744 -5.0%    3,748,592  49.2% €4,899,405 14.3% 1            41,025  19.9% 95% 

Catania CTA NAA €47,002,550 -2.5%    7,090,302  29.9% €9,038,156 23.5% 1            43,110  30.0% 100% 

Florence FLR LRA €36,324,715 53.0%    2,366,054  55.4% €7,125,393 18.4% 1              7,550  83.7% 32% 

Genova GOA LRA €19,218,660 8.1%    1,356,353  24.9% €6,716,863 -6.1% 1            12,550  42.8% 85% 

Lamezia SUF LRA €20,916,179 54.1%    2,346,186  72.0% €4,302,543 52.5% 1            15,700  18.1% 68% 

Lampedusa LMP SRA €1,799,270 58.7%       184,973  -6.2% €435,577 46.3% 1              1,300  0% 100% 

Milan LINMXP LCA €453,978,148 47.1%  33,352,591  -6.8% €186,486,864 -9.2% 4           364,765  73.1% 56% 

Napoli NAP NAA €56,111,346 95.0%    6,203,397  21.5% €20,123,759 44.1% 1            30,700  60.6% 25% 

Olbia OLB LRA €21,322,076 -18.2%    2,215,196  24.9% €7,914,234 -9.0% 1            43,800  43.7% 20% 

Palermo PMO LRA €50,044,390 48.7%    4,907,025  14.2% €10,003,370 -1.9% 2            35,400  20.4% 99% 

Pantelleria PNL SRA €1,238,239 -4.7%       131,274  -14.3% €268,264 3.3% 1              1,600  0% 13% 

Pescara PSR SRA €8,787,852 24.3%       600,071  66.0% €1,223,312 14.5% 1            11,150  53.7% 100% 

Pisa PSA LRA €60,903,611 71.3%    4,878,574  56.6% €14,479,279 13.6% 2            48,942  69.7% 32% 

Rome FCOCIA LCA €665,425,791 35.8%  47,665,051  30.4% €165,501,529 -28.9% 5           339,150  72.2% 4% 

Torino TRN LRA €39,564,109 -6.7%    3,666,602  12.8% €14,478,224 -30.8% 1            58,150  49.0% 23% 

Trapani TPS LRA €14,285,811 290.1%    1,586,288  404.3% €1,898,256 482.7% 1              9,500  24.6% 61% 

Treviso TFS LRA €18,700,975 37.8%    2,358,222  54.8% €3,311,895 86.1% 1            11,500  67.5% 8% 

Trieste TRS SRA €13,627,824 15.2%       740,419  10.5% €1,939,943 9.3% 1            23,505  37.8% 100% 

Venice VCE NAA €77,462,770 26.3%    9,110,975  41.5% €28,202,640 11.8% 2            53,000  86.0% 10% 

        
 

    
Average 

  
€78,108,745 36.1%      6,758,751  25.5% €23,868,721 -9.7% 1.5                54,913  64.0% 59.0% 
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5 Results 

 

 

In performing our analysis, we used the statistical software STATA. The software allows 

for quick model estimations, therefore it was possible to run the analysis using different 

specifications with regard to variable selection, functional form and the inefficiency term. 

In doing so, both models that treated inefficiency as time invariant and models with time-

varying inefficiency were used. All models make use of random effects, since the measures 

of terminal size and number of runways would otherwise be discarded if fixed-effects were 

used.  

 

A limitation that emerged right away was the difficulty of estimating the cost frontier. In 

fact, the high correlation between parameters and the size of the dataset required to do a lot 

of tweaking, as the estimating methods often did not converge when some relevant variables 

were included. This forced us to make some compromises, starting from the functional form, 

which was changed to a Cobb-Douglas because the high number of parameters needed to 

estimate a translog function was problematic. The cost frontier can therefore be expressed 

as: 

 

ln �P�� =  � + Q RS ln TS��
S

+ Q US ln VS��
S

+ Q FS ln aS��
S

+ Q bS�S
S

+ ��� + ���  

 

with � being a vector of outputs, � a vector of input prices, c a vector of fixed capital 

inputs, �S a time dummy variable, ��� and ��� the noise and inefficiency terms. 

 

Another problem was caused by the high correlation among the output measures: WLUs, 

aircraft movements and commercial revenues. When aircraft movements and WLUs were 

both included, the model behaved erratically. Many studies used both the number of 

passengers and of aircraft movements to describe respectively landside and airside activities. 

However, as noted by Abrate and Erbetta (2010), these studies generally use DEA or TFP, 

which are less sensitive to collinearity problems. Similarly to their experience, the high 
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Pearson’s correlation of these two variables (0.99), forced us to pick one of them.22 In their 

study, the dropped variable had been the aircraft movements. We reached the same 

conclusion after some testing, since WLU was the measure that behaved more consistently 

(some of the models would not converge when aircraft movements were included).  

 

All data has been centered to improve numerical stability. Since variables are expressed as 

logarithms, the estimated coefficients can be interpreted as elasticities.  

The variable names are to be interpreted as follows: 

 

wlu Work load units 

cr Commercial revenues 

pl Price of labor 

pc Price of capital 

po Price of other inputs 

run Number of runways 

term Terminal area 

shareint Percentage of international passengers 

dpublic A dummy variable indicating majorly public ownership 

year A variable checking for the time effect, with 2006 as reference year. 

 

  

                                                
22 This is coherent with the findings of Abrate and Erbetta (2010), which reported a correlation of 0.98. 
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5.1 Time-varying and time-invariant models 

 

In order to start with the smallest set of assumptions, we begun the analysis using time-

varying inefficiency specifications. The frontier was estimated according to the Battese and 

Coelli (1992) and Khumb (1990) models.23 From now on, we will refer to them as BC92 

and Khumb90. The first model assumes the inefficiency term to be distributed following a 

truncated normal distribution, while Kumb90 specification uses a half normal. Table 5 

shows the estimated coefficients with their respective standard errors.  

 

Table 6 - Estimation of time-varying models 

 BC92 

tc 

Kumb90 

tc  

 Coefficient Std. Err. Coefficient Std. Err. 

Frontier     

wlu 0.206*** (0.0384) 0.260*** (0.0372) 

cr 0.0832*** (0.0192) 0.0738*** (0.0188) 

pl 0.397*** (0.0218) 0.390*** (0.0216) 

pc 0.189*** (0.0138) 0.188*** (0.0136) 

po 0.414*** (0.0194) 0.422*** (0.0196) 

run 0.110** (0.0419) 0.139*** (0.0342) 

term 0.500*** (0.0614) 0.426*** (0.0572) 

dpublic -0.0513* (0.0212) -0.0395* (0.0198) 

shareint -0.232** (0.0713) -0.193** (0.0668) 

year=2007 -0.0929*** (0.0228) 0.00155 (0.0201) 

year=2008 -0.235*** (0.0320) -0.0412 (0.0221) 

year=2009 -0.356*** (0.0444) -0.0596* (0.0245) 

year=2010 -0.491*** (0.0602) -0.0859** (0.0271) 

year=2011 -0.643*** (0.0785) -0.117*** (0.0298) 

year=2012 -0.787*** (0.0987) -0.125*** (0.0308) 

year=2013 -0.982*** (0.121) -0.171*** (0.0306) 

year=2014 -1.154*** (0.147) -0.177*** (0.0309) 

year=2015 -1.331*** (0.176) -0.178*** (0.0317) 

Constant -2.326*** (0.158) -0.366*** (0.0707) 

J -0.0523 (0.0261)   

�   -0.124 (0.129) 

�$   -0.0308 (0.0273) 

") 0.348  0.524  

"# 0.0638  0.0637  

Observations 230  230  

Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 

                                                
23 Refer to the previous chapter to see how the time variance was expressed in the two models. 
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Looking at the estimates, the coefficients of outputs and input prices have the expected sign. 

Both models find all outputs, input prices and not-time-related control variables to be 

statistically significant. The two specifications lead to estimated coefficients that are similar 

in the case of input prices, but differ considerably in the case of the wlu term and the constant 

term. Another big difference can be found in the estimated coefficients of the year variables. 

Overall, the correlation among the inefficiency terms of the two models is 0.727, which 

implies that an airport which appears to be inefficient in a model is similarly characterized 

in the other. 

 

The analysis was also performed using Greene (2005) and Cornwell et al. (1990) 

specifications. Greene’s specification lead to unreliable results, uncorrelated with those 

obtained from the other models. All DMUs were reported as being almost completely 

efficient, due to the way the model defines the 3 term. Cornwell’s model on the other hand 

required estimating too many parameters, which is the reason why we had to avoid using 

the translog functional form in the first place. These estimates are not reported, as they are 

not relevant. 

 

As the previous table shows, the two time-invariance hypothesis, de ∶ g = h = 0 and       

de ∶  J = 0, cannot be rejected at the 5% level. This seems to suggest that the economic 

inefficiency in the Italian airport system is time invariant.24 To test this hypothesis out, two 

time-invariant models were used: the Battese and Coelli (1988) and the Pitt and Lee (1981) 

specifications. From now on, we will refer to them as BC88 and PL81. Both models make 

use of maximum likelihood estimators. While the first one assumes the inefficiency term to 

follow a truncated normal, the second assumes a half normal distribution. The results are 

shown in Table 6. 

  

                                                
24 Such a conclusion is valid only for the timeframe taken into account in the study. 
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Table 7 - Estimation of time-invariant models 

 PL81 

tc 

BC88 

tc  

 Coefficient Std. Err. Coefficient Std. Err. 

Frontier     

wlu 0.176*** (0.0473) 0.155*** (0.0461) 

cr 0.107*** (0.0226) 0.113*** (0.0229) 

pl 0.423*** (0.0260) 0.409*** (0.0260) 

pc 0.205*** (0.0157) 0.208*** (0.0155) 

po 0.372*** (0.0212) 0.382*** (0.0214) 

run 0.270*** (0.0320) 0.262*** (0.0520) 

term 0.306*** (0.0554) 0.280*** (0.0539) 

dpublic -0.0376 (0.0248) -0.0429 (0.0252) 

shareint -0.458*** (0.0963) -0.307** (0.107) 

year=2007 0.0295 (0.0229) 0.0296 (0.0229) 

year=2008 0.0211 (0.0232) 0.0172 (0.0233) 

year=2009 0.0378 (0.0235) 0.0357 (0.0234) 

year=2010 0.0417 (0.0243) 0.0430 (0.0242) 

year=2011 0.0443 (0.0251) 0.0452 (0.0250) 

year=2012 0.0607* (0.0255) 0.0606* (0.0254) 

year=2013 0.0369 (0.0259) 0.0346 (0.0258) 

year=2014 0.0442 (0.0266) 0.0422 (0.0265) 

year=2015 0.0522 (0.0275) 0.0509 (0.0274) 

Constant -0.631*** (0.0875) -0.824*** (0.172) 

") 0.328  0.176  

"#  0.0765  0.0764  

Observations 230  230  

Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 

 

Coefficient estimates of outputs and input prices are all significant and have the expected 

signs. The two models give similar estimates, with the exception of shareint and the constant 

term. All year dummy variables are not statistically significant, aside from the one for the 

year 2012. The same is true for dpublic. These two are the most evident differences with the 

time-varying models, although the coefficient estimates are quite different overall. The 

exception is the input prices estimation, which leads to similar results in the four 

specifications. The signal to noise ratio ")/"# is neither too large nor too small in the four 

models taken into account. This is a good sign, as a preponderance of one of the two terms 

can lead to numerical maximization problems. The 3 terms of the PL81 and BC88 models 

are strongly correlated, with a value of 0.959. The two models lead to similar results, which 

are reported in Table 7. 
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Table 8 – A comparison of the efficiency estimates of PL81 and BC88 models 

Airport IATA PL81 BC88 

Alghero AHO 67.3% 60.8% 

Ancona AOI 75.6% 72.3% 

Bergamo BGY 64.5% 58.7% 

Bologna BLQ 59.7% 54.3% 

Cagliari CAG 94.6% 79.9% 

Catania CTA 84.2% 70.5% 

Florence FLR 46.7% 46.1% 

Genova GOA 66.3% 60.7% 

Lamezia SUF 69.9% 61.0% 

Lampedusa LMP 89.3% 82.1% 

Milan LINMXP 74.7% 61.3% 

Napoli NAP 64.8% 57.8% 

Olbia OLB 96.7% 85.6% 

Palermo PMO 85.2% 71.2% 

Pantelleria PNL 71.0% 65.6% 

Pescara PSR 98.3% 96.1% 

Pisa PSA 73.0% 66.3% 

Rome FCOCIA 96.0% 78.3% 

Torino TRN 89.2% 77.9% 

Trapani TPS 74.4% 66.7% 

Treviso TFS 68.0% 66.1% 

Trieste TRS 94.4% 85.5% 

Venice VCE 76.2% 68.9% 

 

The efficiency scores estimated with the BC88 model tend to be lower than their PL81 

counterpart, though their order does not change substantially. We chose PL81 as the 

reference model since we felt that its more conservative estimates of the inefficiency term 

were a safer choice, and lead to less drastic conclusions. We remind that in these models all 

time-invariant unobserved heterogeneity is considered as inefficiency. An incomplete model 

specification may therefore be the reason behind some unexpectedly low scores, like in the 

case of Florence airport. 
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5.2 Time-invariant model with PCA 

 

As previously stated, a recurrent problem in the analysis was caused by the multicollinearity 

of the regressors. The following table reports the correlation among the variables we used. 

 

Table 9 - Correlation among regressors 

 wlu mov cr pl pc po run term dpublic shareint 

wlu 1          

mov 0.976 1         

cr 0.958 0.969 1        

pl 0.617 0.608 0.654 1       

pc 0.851 0.851 0.853 0.698 1      

po 0.425 0.331 0.408 0.490 0.468 1     

run 0.709 0.754 0.719 0.292 0.456 0.199 1    

term 0.907 0.905 0.897 0.619 0.791 0.534 0.699 1   

dpublic -0.120 -0.150 -0.158 0.0845 -0.125 0.0605 -0.145 -0.025 1  

shareint 0.502 0.498 0.552 0.485 0.605 0.550 0.355 0.474 -0.265 1 

 

We can see how WLUs, aircraft movements, commercial revenues, terminal area and price 

of capital are strongly correlated. Collinearity between predictors may cause coefficient 

estimates to respond erratically to small changes in the model or the data. In our analysis, 

this lead to the choice of dropping the mov variable. Although a sensible choice, it still 

determines a loss in explanatory power. As a way to tackle this problem, a principal 

component analysis (PCA) was performed. PCA is a procedure aimed at reducing data 

dimensionality by a suitable linear transformation. Given the initial variables jS , _ = 1, … , k, 

we seek a set of orthogonal linear combinations  

 

lW = ] mWSjS
n
S , o = 1, … , p < k 

 

that account for most of the observed variability. lW are called principal components. The 

transformation is defined in a way that the first principal component accounts for the largest 

variability observed in the dataset, and each following one has the largest variance possible 

under the constraint of being independent from the others.25  

                                                
25 See Brandimarte (2011) for an in-depth analysis. 
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No study that we are aware of has combined PCA with SFA, although some examples of 

PCA with DEA were found. Nevertheless, it is quite common to use PCA with regression 

analysis to aggregate variables and improve stability. 

A drawback of PCA is the loss of economic significance of the new regressors. In fact, being 

a linear combination of the initial variables, they are not easily interpretable. Therefore, to 

avoid generating components which aggregated too different measures, we opted to apply 

PCA only to output measures and a fixed input one. That is: WLUs, aircraft movements, 

commercial revenues, and terminal area. Although highly correlated, we did not include the 

price of capital. Since variables have the same order of magnitude, standardization was not 

required.  

 

Table 10 - PCA results 

Component Eigenvalue Difference Proportion Cumulative 

Comp1 3.80698 3.67867 0.9517 0.9517 

Comp2 0.128304 0.0851683 0.0321 0.9838 

Comp3 0.0431356 0.0215517 0.0108 0.9946 

Comp4 0.0215839 . 0.0054 1.0000 

 

Variable Comp1 Comp2 Comp3 Comp4 Unexplained 

wlu 0.5047 -0.2384 -0.6194 0.5521 0 

mov 0.5059 -0.2876 -0.1834 -0.7923 0 

cr 0.5023 -0.3161 0.7620 0.2591 0 

term 0.4868 0.8721 0.0464 -0.0164 0 

 

Table 9 shows the results of the principal component analysis. The first two principal 

components found explain 98.38% of the dataset variability. We can estimate the model 

with these alone, as the loss of information in excluding the other two is minimal. The 

estimation was again performed using the Pitt and Lee model. The results are shown in Table 

10. 
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Table 11 - Estimation with PCA generated regressors 

 PL_PCA 

tc  

 Coefficient Std. Err. 

Frontier   

comp1 0.420*** (0.0180) 

comp2 0.111* (0.0535) 

pl 0.411*** (0.0238) 

pc 0.194*** (0.0145) 

po 0.395*** (0.0197) 

run 0.232*** (0.0252) 

dpublic -0.0372 (0.0228) 

shareint -0.413*** (0.0737) 

year=2007 0.0215 (0.0217) 

year=2008 0.0165 (0.0220) 

year=2009 0.0341 (0.0219) 

year=2010 0.0393 (0.0222) 

year=2011 0.0439* (0.0224) 

year=2012 0.0586** (0.0227) 

year=2013 0.0399 (0.0226) 

year=2014 0.0513* (0.0226) 

year=2015 0.0596** (0.0228) 

Constant -1.106*** (0.0579) 

") 0.264  

"#  0.0726  

Observations 230  

Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 

 

Clearly, the output measures and the term variable are now excluded from the model, so 

their coefficients cannot be estimated. The two regressors comp1 and comp2 have no clear 

economic meaning. Nevertheless, being the principal components linearly uncorrelated, the 

estimation of the remaining coefficients and of the inefficiency term is more precise. The 

first thing to be noted is that the estimation of the prices of inputs are very similar to PL81. 

The dummy variable dpublic is again nonsignificant, while some time dummy variables are 

now statistically significant (it was only the one for year 2012 in PL81). With sharint having 

a similar value, the only substantial difference lays in the estimate of the constant term. 
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Table 12 - Correlation of inefficiency estimates. 

 upl81 uplpca ubc88 ubc92 ukumb90 

upl81 1     

uplpca 0.984 1    

ubc88 0.959 0.948 1   

ubc92 0.366 0.349 0.323 1  

ukumb90 0.644 0.616 0.564 0.727 1 

 

Table 11 shows how the Pitt and Lee with and without principal components and the BC88 

models result in strongly correlated inefficiency estimates. This finding bolster the idea that 

the models are well specified.  

 

Table 13 - A comparison of the efficiency estimates of PL81 and PL_PCA models 

Airport IATA PL81 PL_PCA 

Alghero AHO 67.3% 68.9% 

Ancona AOI 75.6% 79.6% 

Bergamo BGY 64.5% 71.4% 

Bologna BLQ 59.7% 66.9% 

Cagliari CAG 94.6% 96.9% 

Catania CTA 84.2% 91.0% 

Florence FLR 46.7% 55.8% 

Genova GOA 66.3% 71.2% 

Lamezia SUF 69.9% 72.0% 

Lampedusa LMP 89.3% 94.5% 

Milan LINMXP 74.7% 76.1% 

Napoli NAP 64.8% 72.4% 

Olbia OLB 96.7% 96.2% 

Palermo PMO 85.2% 89.5% 

Pantelleria PNL 71.0% 77.6% 

Pescara PSR 98.3% 98.5% 

Pisa PSA 73.0% 75.5% 

Rome FCOCIA 96.0% 96.4% 

Torino TRN 89.2% 93.6% 

Trapani TPS 74.4% 76.7% 

Treviso TFS 68.0% 72.7% 

Trieste TRS 94.4% 94.5% 

Venice VCE 76.2% 83.4% 

 

We can see how the efficiency estimates do not change substantially in the two models, save 

for a few exceptions (e.g. Florence, which gains +9%). This translates in an ordering that is 

extremely similar for the two specifications. These facts, together with the high correlation 
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indices of the 3 term for PL81, BC88 and PT_PCA and the similar coefficient estimates 

make us confident on the robustness of the model. 
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5.3 Dealing with outliers 

 

Table 14 - Excerpt of summary statistics of the dataset for the year 2015 

Airport Class size Total costs WLUs Commercial revenues Terminal area 

Rome LCA €665,425,790.91 47665051 €165,501,529.44 339150 

Milan LCA €453,978,147.92 33352591 €186,486,863.61 364765 

Bergamo LCA €83,950,805.43 11514488 €27,718,024.69 34150 

Venice NAA €77,462,769.75 9110975 €28,202,639.85 53000 

Pisa LRA €60,903,610.76 4878574 €14,479,279.28 48942 

Napoli NAA €56,111,345.86 6203397 €20,123,758.64 30700 

Bologna NAA €52,760,548.92 7166219 €28,859,330.12 44000 

Trieste SRA €13,627,824.47 740419 €1,939,942.70 23505 

Ancona SRA €12,817,204.73 585793 €704,385.88 15450 

Pescara SRA €8,787,852.21 600071 €1,223,311.84 11150 

Lampedusa SRA €1,799,270.35 184973 €435,576.68 1300 

Pantelleria SRA €1,238,238.65 131274 €268,263.52 1600 

 

Table 13 presents some relevant statistics regarding the airports that compose our dataset. 

Observations were sorted by WLU, and only the top 7 and last 5 of the dataset for year 2015 

are reported. What is immediately striking is the enormous difference between the top and 

bottom observations. Although this reflects the heterogeneous nature of the Italian airport 

system, it begs the question if some of these observations should in fact be treated as outliers. 

We therefore estimated three frontiers excluding some of these airports from the dataset: 

Rome and Milan (NRM model), Pantelleria and Lampedusa (NPL model), and all four 

airports (NRMPL model). The findings are shown in Table 14. 
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Table 15 - Estimation excluding outliers 

 NRM 

tc 

NPL 

tc 

NRMPL 

tc  

 Coefficient Std. Err. Coefficient Std. Err. Coefficient Std. Err. 

Frontier       

wlu 0.165** (0.0512) 0.414*** (0.0428) 0.431*** (0.0448) 

cr 0.104*** (0.0239) 0.0392* (0.0191) 0.0291 (0.0195) 

pl 0.427*** (0.0269) 0.354*** (0.0244) 0.357*** (0.0251) 

pc 0.204*** (0.0164) 0.170*** (0.0137) 0.163*** (0.0142) 

po 0.368*** (0.0226) 0.476*** (0.0208) 0.479*** (0.0221) 

run 0.425*** (0.0850) 0.243*** (0.0354) 0.299*** (0.0537) 

term 0.319*** (0.0584) 0.178** (0.0598) 0.183** (0.0616) 

dpublic -0.0425 (0.0260) -0.0444* (0.0201) -0.0439* (0.0201) 

shareint -0.420*** (0.0984) -0.392*** (0.0830) -0.360*** (0.0818) 

year=2007 0.0317 (0.0244) 0.0151 (0.0184) 0.0153 (0.0193) 

year=2008 0.0233 (0.0247) 0.00125 (0.0187) 0.00203 (0.0196) 

year=2009 0.0437 (0.0250) -0.0167 (0.0191) -0.0175 (0.0202) 

year=2010 0.0482 (0.0260) -0.0289 (0.0202) -0.0305 (0.0214) 

year=2011 0.0498 (0.0269) -0.0570** (0.0218) -0.0618** (0.0230) 

year=2012 0.0730** (0.0273) -0.0489* (0.0222) -0.0471* (0.0236) 

year=2013 0.0498 (0.0276) -0.0715** (0.0227) -0.0668** (0.0240) 

year=2014 0.0537 (0.0283) -0.0859*** (0.0236) -0.0842*** (0.0247) 

year=2015 0.0569 (0.0292) -0.0814** (0.0248) -0.0838** (0.0258) 

Constant -0.827*** (0.158) -0.497*** (0.0728) -0.569*** (0.0926) 

") 0.330  0.283  0.287  

"#  0.0778  0.0584  0.0583  

Observations 210  210  190  

Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 

 

We can see how the estimated coefficients do not change substantially when excluding 

Rome and Milan from the analysis. On the other hand, the exclusion of Pantelleria and 

Lampedusa airports leads to completely different estimates. The elasticity of cost with 

respect to wlu increases considerably, going from 0.176 to 0.414. The opposite happens for 

cr, which from 0.107 goes to 0.039. Estimates of prices of inputs are less strongly affected, 

but still noticeably different. Although only at the 5% level, dpublic becomes significant. 

This is also the case for the time dummy variables from 2011 onwards, which also register 

a change in sign from positive to negative, which is the expected relation with costs as it 

implies an increased efficiency as time goes on. The third frontier, NRMPL, does not differ 

much from the second. However, a significant difference lies in the estimated coefficient of 

cr, which becomes nonsignificant. We will return to this on the next subchapter. 
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Table 16 - A comparison of the efficiency estimates with and without outliers 

Airport IATA PL81 NPL 

Alghero AHO 67.3% 74.7% 

Ancona AOI 75.6% 67.0% 

Bergamo BGY 64.5% 80.4% 

Bologna BLQ 59.7% 61.9% 

Cagliari CAG 94.6% 98.0% 

Catania CTA 84.2% 93.1% 

Florence FLR 46.7% 51.9% 

Genova GOA 66.3% 64.5% 

Lamezia SUF 69.9% 77.2% 

Milan LINMXP 74.7% 74.9% 

Napoli NAP 64.8% 71.3% 

Olbia OLB 96.7% 90.9% 

Palermo PMO 85.2% 91.9% 

Pescara PSR 98.3% 98.3% 

Pisa PSA 73.0% 77.0% 

Rome FCOCIA 96.0% 96.8% 

Torino TRN 89.2% 81.2% 

Trapani TPS 74.4% 80.7% 

Treviso TFS 68.0% 84.9% 

Trieste TRS 94.4% 86.7% 

Venice VCE 76.2% 81.5% 

 

As Table 15 shows, some airports report a substantial change in their efficiency estimate 

when excluding the airports of Pantelleria and Lampedusa, and an overall increase in 

average efficiency is registered, from 77.4% to 80.2%. The big effect that dropping these 

two DMUs has on the estimated frontier, and the small relevance the two insular airports 

have in relative terms (together, they account for 0.17% of the dataset total costs and 0.20% 

of WLUs) made us deem appropriate to exclude Pantelleria and Lampedusa airports from 

the dataset. 

 

From the results of the analysis, returns to scale (RTS) can be calculated as: 

 

r�s =  1
] t�

tT�
T���

=  1
] J��
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with J� being the elasticity of cost with respect to output T�. In our case, this would lead to 

an estimated RTS of 2.21. This number is extremely high, and does not seem reasonable 

from an economic point of view. An explanation to this comes from the chosen functional 

form. In fact, a downside of the Cobb-Douglas functional form is that the estimated returns 

to scale do not change with the volume of output. This therefore leads to inaccurate results, 

so that we leave it to future studies that make use of a flexible functional form to better 

examine returns to scale for the Italian airports. 
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5.4 Subgroup analysis 

 

Although not as dramatic as the effect caused by the exclusion of Pantelleria and 

Lampedusa, the omission of Rome and Milan in the NPLRM model did lead to the influence 

of commercial revenues on costs to become statistically nonsignificant. This is an interesting 

finding; however, the exclusion of the airports of Rome and Milan from the dataset would 

be too drastic a measure, as they account for 62% of the dataset total costs and 52% of 

WLUs. On the other hand, this could imply that it is not appropriate to try to calculate a 

single cost function for all the airports since they differ greatly. 

To assess if substantial differences exist between large airports and small ones, a frontier 

analysis was performed dividing the dataset into two subgroups: The first one composed by 

airports having more than 5 million passengers per year (LCA and NAA class sizes), the 

second one made up of the remaining others (LRA and SRA). We therefore estimated two 

separate frontiers, whose results are shown in Table 16. 

 

Table 17 - Estimation within subgroups26 

 Large Airports Small Airports 

 tc tc 

 Coefficient Std. Err. Coefficient Std. Err. 

Frontier     

wlu 0.396*** (0.0782) 0.400*** (0.0536) 

cr 0.164** (0.0601) 0.0422 (0.0219) 

pl 0.205*** (0.0514) 0.383*** (0.0292) 

pc 0.175*** (0.0276) 0.161*** (0.0168) 

po 0.620*** (0.0433) 0.456*** (0.0252) 

run -0.0397 (0.0779) 0.296*** (0.0693) 

term 0.400*** (0.117) 0.165* (0.0748) 

dpublic -0.0893* (0.0351) -0.0463 (0.0249) 

shareint -0.0300 (0.0972) -0.469*** (0.104) 

year=2007 -0.00423 (0.0254) 0.0188 (0.0239) 

year=2008 -0.0472 (0.0275) 0.00827 (0.0242) 

year=2009 -0.0923** (0.0282) 0.00700 (0.0250) 

year=2010 -0.0997** (0.0304) -0.00724 (0.0265) 

year=2011 -0.136*** (0.0336) -0.0361 (0.0284) 

year=2012 -0.145*** (0.0329) -0.0200 (0.0292) 

year=2013 -0.199*** (0.0358) -0.0360 (0.0295) 

year=2014 -0.207*** (0.0400) -0.0600* (0.0301) 

                                                
26 The analysis was also repeated with the inclusion of Pantelleria and Lampedusa to the small airport 

subgroup, but this led to unreliable coefficients estimation. We chose not to present for simplicity’s sake. 



58 

 

year=2015 -0.206*** (0.0458) -0.0662* (0.0317) 

Constant 0.105 (0.134) -0.574*** (0.120) 

") 0.0880  0.294  

"#  0.0441  0.0613  

Observations 70  140  

Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 

 

In both cases, the output coefficients imply positive marginal costs, and total costs increase 

with input prices. The two estimations suggest that there are some relevant differences in 

the cost structure of large and small airports. In the small airports subgroup, cr becomes 

statistically nonsignificant. This is the first important divergence between the two models, 

and it is understandable from an economic viewpoint since commercial revenues are 

strongly dependent on the number of passengers that an airport attracts. The low number of 

passengers causes non-aviation activities to become not relevant. On the other hand, the 

elasticity of cost with respect to cr for the large airports subgroup increases considerably, 

from 0.039 of the pooled data to 0.164. 

Another important difference is given by the estimates of input prices, which change 

completely. While in the case of small airports they are quite similar to the pooled estimates, 

for large airports the price of labor has a much lower impact on costs, and the coefficient of 

the price of other inputs registers instead a 30% increase. 

In the case of large airports, the ownership structure becomes statistically significant, 

although only at the 5% level. Finally, it is important to notice how the time dummy 

variables behave in the two models. If for small airports they are mostly nonsignificant, large 

airports have decreasing costs in relation to time which become statistically significant 

starting from the year 2009. This should come as no surprise: From 2009 the airports that 

had signed a programme contract with ENAC got their charges adjusted to actual costs 

sustained, while the other airport operators’ charges were adjusted only to inflation.27 The 

operators that signed these contracts mostly belonged to LCA and NAA class sizes. 

 

 

 

 

 

                                                
27 Refer to Keller and Galli (2014). 
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Table 18 - A comparison of the efficiency estimates using pooled data and vs subgroups 

Airport class Average efficiency Correlation 

of u  Pooled Subgroup  

Large airports  

(LCA and NAA) 
0.743 0.933 0.871 

Small airports 

(LRA and SRA) 
0.786 0.772 0.960 

 

As Table 17 shows, differences in efficiency across groups are greater when we estimate 

two frontiers. With pooled data, the mean level of efficiency is 0.743 for large airports and 

0.786 for small ones. When separate frontiers are derived, the mean level of efficiency is 

0.933 and 0.722, respectively. Pooled data therefore tends to underestimate considerably the 

efficiency levels of larger airports. However, as pointed out by Zuckerman et al. (1994), 

when efficiency is measured based on separate frontiers, the results cannot be compared 

across groups, since each subgroup uses its own frontier as reference point. 

In both cases, the 3 term is strongly correlated with the pooled result. This implies that an 

airport which appears to be inefficient relative to other airports based on the pooled frontier 

will be similarly characterized by a group-specific frontier.  

 

Although the use of different frontiers offers new insights, it could be argued that the 

division in two subgroups is quite arbitrary, and that estimating four frontiers, one for each 

class size, would have been a better choice. Such a conclusion may well be true, since the 

differences between SRA and LRA or LCA and NAA are considerable. However, a 

limitation is again imposed by the size of the dataset. In the last estimation, the large airport 

subgroup had only 70 observations, which is sufficient but on the low side to estimate 20 

parameters. Dividing the dataset into further subgroups would cause the estimation to be 

unfeasible (e.g. a LCA subgroup would have only 30 observations). 
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6 Conclusions 

 

 

In this work we have provided a methodological framework for the evaluation of the 

economic efficiency of Italian airports. Our analysis was based on a stochastic Cobb-

Douglas cost frontier model, with a dataset of 23 Italian airports for the period 2006-2015. 

We found strong evidence that there is a significant margin of improvement for airport 

operators, since the average efficiency is roughly 80%. This finding is consistent with 

previous studies, like the one by Abrate and Erbetta (2010), although relative to a different 

timeframe. We identified the main drivers of economic efficiency in the industry to be 

number of WLUs, price of labor and of other inputs, and the percentage of international 

passenger traffic. 

The estimation of two separated cost frontiers showed how large and small airports have a 

substantially different cost structure. LCA and NAA airports have a much lower elasticity 

of cost with respect to labor price, and commercial revenues and terminal size have a much 

stronger impact on cost. 

Percentage of international passenger traffic appears to be a main driver of cost reduction 

for small airports, while it does not seem to be relevant for large airports.  

Interestingly, in the case of large airports, a cost reduction effect associated with majorly 

public ownership was found, albeit small. The literature is quite murky in this regard, since 

different authors have reported both negative and positive effects of public ownership of 

airports with regard to economic efficiency. Given the really small impact, this finding 

suggests that the competitive environment pushes airport operators to operate efficiently, 

regardless of the ownership structure. Although the time period of the analysis was of 10 

years, only large airports showed a significant increase in efficiency in relation to time. For 

small airports, technical change did not contribute to a reduction of costs. 

No statistically significant relation was found between costs and percentage of low cost 

passenger traffic, although such a connection was expected since the presence of low cost 

carriers is usually associated with an increase in competitive pressure, which leads to a 

higher economic efficiency. 
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The sample size and the difficulty of finding relevant data were the main difficulties 

encountered in our work. Further research, performed with a larger dataset, could try to 

address the limitations faced in the present analysis.  
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