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Abstract

The gait dysfunction in the Parkinson’s disease(PD) could be improved through

the spinal cord spatio-temporal stimulation at the lumbar level[5].

The spatio-temporal pattern of stimulation, coincident to motoneurons acti-

vation during gait cycle, could be provided by the detection of motor states

related to lower-limb locomotion.

Here, the thesis project presents a comparative study on the discriminant

analysis rLDA, QDA and RDA for the detection of locomotion related flexor-

extensor events by electromyography (EMG) signal. Intramuscolar EMG sig-

nals, recorded from the lower-limb of a non-humane primates first in healthy

condition and then affected by PD, are processed to built the detection.

The detection performance of three decoders are compared in terms of normal-

ized mutual information in different tasks: (i) intra-day stability, to analyze

the short-term behavior of EMG signal decoder by identifying gait events at

different stages of PD; (ii) inter-days stability, to evaluate the longer-term be-

havior of the decoders by testing the performance over PD progression; (iii)

stability over time, to estimate the decoders capability to preserve a constant

trend the locomotion related events.

The resulting comparison returned rLDA as best candidate to detect the mo-

tor intentions in reasonable computational time. Moreover, the offline results

have been backed up by the online simulation of rLDA for the real-time motor

states detection.



Introduction

In the last two decades, several studies were focused on the alleviation of lo-

comotion deficits using neuromodulation in animals with Parkinsons disease

(PD) and spinal cord injury (SCI)[6–11]. PD and SCI cause an alteration or

a rupture of communication pathway between the supraspinal and spinal neu-

ral network resulting in gait disorders. Therefore, the common aim of these

researches is to restore the gait cycle creating an alternative communication

way that translates the locomotor intention into muscular activation.

Different therapeutic approaches on humans have been performed[10, 12–

14] but the benefits observed for the axial symptoms are limited. However,

Capogrosso et al.[5] have shown a substantial system that may overcome the

issues of the other studies. This study proposes a method to restore gait on

non-human primates with spinal cord injury by brain-spine interface. Signal

recorded from the motor cortex was used to train a decoder to predict the

animal locomotor intentions. The decoded information was therefore used to

modulate the neural afferent information involved during gait by spinal cord

stimulation(SCS).

In this scenario, the presented master project is focused on the detection

of locomotion events from electromyography signal of non-human primate af-

fected by PD.
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The detection of gait events by Machine Learning techniques, could represent

a valid means able to predict the locomotor intentions of the animal. An exact

classification of different gait phases could be essential to anable the indica-

tions for carrying out the spatio-temporal neuromodulation and improve the

motor control in Parkinsonians.

In rehabilitation framework, therefore, the proposed detecting method could be

an alternative solution to the invasive motor cortex decoder. Moreover, EMG

based decoder could be also the key to bypass the influence of the alteration

of motor cortex plasticity in PD[15] over the recorded signals.



Chapter 1

Parkinson’s Disease

Parkinson’s disease (PD) is a neurodegenerative disorder that effects more than

ten million people all over the world[16]. It is the most common extrapyramidal1

brain disease, characterized by a chronic and progressive clinical course.

The PD pathological characteristic is the continuous death of neurons in the

substantia nigra pars compacta, located in the antero-superior part of the mid-

brain, figure(1.1).

Figure 1.1: Simplified scheme of the neural structure in the basal ganglia involved in PD(on the

left).Comparison between the substantia nigra in a healthy and PD affected individual(on the right)[1].

1The extrapyramidal system is a part of the motor system and it is responsible of body

coordination. Its operating depends on dopamine neurotransmitter[17].
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Dopaminergic neurons in the substantia nigra are the main source of neuro-

transmitter dopamine, that is responsible for relaying messages that control

and plan body movements. The dopaminergic neurons death determinates an

important dopamine deficiency, affecting the balance between direct, indirect,

and hyper direct pathways among parts of brain. This altered communication

influences the control of muscles and therefore locomotion.

1.1 Etiology

The exact cause of these neurons’ death is still unknown, but many epidemiol-

ogy studies[18, 19] have shown that a combination of genetic and environmental

factors could be the cause. Unfortunately, how these two causes interact varies

from person to person.

Regarding genetic factors, the directly disease inheriting is rare, in fact,

only about 10 -15 % of all cases are thought to family history (monogenetic)

while the other 85-90 % of cases are classified as sporadic (or occasional)[20].

Nevertheless, it is important to point out that even if a genetic mutation

is present, increasing the risk of developing Parkinson, the chances of this

happening are very low.

Conserning environment factors, they are connected especially to exposure

to pesticides (e.g.Paraquat)[21], heavy metals (e.g iron, zinc, copper)[22] and

hydrocarbon-solvents (e.g trichlorethylene)[23] used in industrial processes.

However, a direct link between the exposure to the environmental factors and

the development of the disease is still unclear.
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1.2 Symptomatology

The disease affects all ethnic groups and both sexes, even if there is a small

superior percentage in male sex[24]. The average age in which PD is more

frequent is around 60 years, but about 5% of patients may present a premature

onset between 21 and 40 years[25]. The effects are different from patient to

patient and the symptoms can change from day to day.

The most common PD symptoms are:

• Resting tremor: most of the patients have a tremor and involuntary

rhythmical movement, when they are at rest. It is usually a hand tremor,

feet or jaw tremor, more evident on one side. It is caused by a rapid and

repeated contraction and relaxation of muscles. Tremor may be symptom

of disease onset, and often does not evolve over the years;

• Muscle rigidity: it is an involuntary increase in muscle tone that often

starts on one side of the body. It usually effects the limbs, the neck and

the trunk;

• Bradykinesia, Akinesia and Hypokinesia: bradykinesia is a slowness in

carrying out or a difficulty in initiating spontaneous movements. Bradyki-

nesia could affect one limb, one side of the body, or the whole body.

Akinesia is referred to a loss of movement, for example, rarer eye blinks

or lack of facial expression. Hypokinesia means a reduced movement,

such as soft voice or (hypophonia)a small handwriting (micrographia);

• Balance problems: it is a symptom that involves ”the body axis”, it is

due to a reduction in the rectification reflexes. The subject is not able

to spontaneously correct any imbalances, increasing fall risk.

Balance disorders do not respond to dopaminergic therapy so, phys-
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iokinesitherapy becomes an important practice for the control of the

disorder[26–28];

• Gait disorder: it consists of a reduction in the arms movement, a fixed

posture in flexion and a shorter step. The patient sometimes tends to

drag his feet on the floor and to pick up the pace to avoid falling. In

this pathological condition, called ”festination”, the walk becomes like a

short run.

Moreover, episodes of ”freezing” may affect locomotion. This phenomenon

may result in impossibility to start walking, to change the direction or

when the patient must cross narrow passages (like a door or a corridor).

In addiction to physical disorders, cognitive disorders, such as loss of smell

sense and vision problems or/and non-motor symptoms, such as tiredness,

depression and pain, may appear.

1.3 Diagnosis

Nowadays various types of scans allow to examine the anatomy and function-

ality of the brain. Magnetic resonance imaging (MRI )[2] is a non-invasive

imaging technique, which uses radio-frequency electromagnetic waves to vi-

sualize soft tissue such as brain. In PD context, MRI exam could allow to

visualize, on axial imaging, a loss of the normal swallow tail in the substantia

nigra, as shown in figure(1.2).

Other imaging techniques are Single-Photon Emission Computed Tomogra-

phy(SPECT )[29] and Positron Emission Tomography(PET )[30].These two tech-

niques belong to the nuclear medicine functional imaging technique that is used

for the evaluation of presynaptic dopaminergic deficits.

In recent years, the new functional tomography method DaTSCAN is taking



Parkinson’s Disease 12

off. It is a scintigraphy technique, which consists in the injection of a particular

tracer, ioflupane, into the vein to acquire with SPECT devices brain scans.

Figure 1.2: MRI images : substantia nigra of a PD patient (on the left) , substancia nigra of a non

PD patient (on the right)[2].

DaTSCAN promotes the detection of nerve cells that release dopamine. This

functional tomography can show a possible alteration of dopamine levels in

the basal ganglia. The examination with DaTSCAN cannot be considered

conclusive in the diagnosis of Parkinson, but undoubtedly a good neurological

examination that can lead to a very accurate diagnosis[31].

Figure 1.3: DaTSCAN of healthy subject on the left,DaTSCAN of Parkinsonian subject on the

right[3].
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1.3.1 Clinical evaluation

Different rating scales are used in Parkinson’s[16], some of them are related

to motor symptoms, such as Hoehn and Yahr Scale or Schwab and England

Scale, other to non-motor symptoms, such as NMS Survey Scale.

Often, more than one scale is used to give a broader picture of symptoms.

Thought Parkinsons rating scales it is possible to assess the symptoms of the

condition. These rating scales provide information on the patient’s quality of

life.

Nowadays, the most used criteria is the MDS-UPDRS scale (Unified Parkin-

son’s Disease Rating Scale, promoted by the Movement Disorder Society ),a

revision of UPDRS scale. In MDS-UPDRS scale, different elements of several

scales, included non-motor symptom scales, are combined to produce a com-

prehensive tool to monitor the course of Parkinson’s, in terms of the degree of

disability.

According to the MDS-UPDRS[32] the evaluation state consists of four

parts:

Part I: clinical evaluation about the mental state, on the basis of information

about the behaviour and the mood given by patients;

Part II: self-assessment of daily activities (talking, swallowing, dressing, sali-

vating, walking ...);

Part III: clinical evaluation of motor capacity;

Part IV: prognostic evaluation;

Any responses of MDS-UPDRS questionnaire is evaluated by a subscale

divided in 5 values[32]: 0 = normal, 1 = slight, 2 = mild, 3 = moderate, and

4 = severe.
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1.4 Therapy

At the moment there is no cure for Parkinson’s, however medication can sup-

port the affected subjects reducing the effect of some symptoms . A wide range

of medications is available.

The active substance at the base of most medication is the levodopa, which

is made into dopamine in the body. Treatment with levodopa increases the

quantity of dopamine in the body and so reduces PD’s signs.

Other medications are mainly enzyme inhibitors, e.g. MAOB that block the

dopamine destruction in the brain by particular enzymes[33].

In most current medicines, levodopa is associated with peripheral decarboxy-

lases inhibitors[16]: benserazide allows more of the levodopa to get into your

brain, before it is changed into dopamine; carbidopa is added to reduce the

undesirable effects of levodopa (nausea, vomit, arrhythmias, mental disorders

and dyskinesias).

However, the long-term efficacy of levodopa decreases, causing ”dopa resistant”

motor and ”dopa resistant” non-motor symptoms; the first ones are linked to

motor fluctuations, dyskinesias and freezing episodes, the second ones to mood

and cognitive impairment[13].

To minimize such problems, in the last few years, different approaches are

evaluated for the replacement of levodopa therapy.

Some researches begin to take into account the chronic electrical stimulation of

subcortical brain structures as an additional treatment option for PD-patient.

Initially, direct electrical stimulation of the subthalamic nucleus, also known

as deep brain stimulation (DBS), seems to have some promising therapeutic

effects. However it has shown its limits: DBS is an invasive procedure with

a 4% risk of intracranial hemorrhage[34]. Moreover, its response is variable,

the possibility of DBS surgery is limited to 14% of Parkinson patients[35], and

DBS has not prolonged effects on axial motor signs(AMS)(speech, postural
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instability and gait)[10].

In this context, a low-frequency stimulation of the pedunculopontine nuclei(PPN)

has proposed to improve axial and postural symptoms, but results are still

heterogeneous[14].

In the last 10 years, the researchers’ attention is addressed to electrical stim-

ulation of the spinal cord(SCS) to improve the postural instability and gait

disturbance (PIGD)[36] and to have a better control of pain [37]. This alter-

native approach for symptomatic treatment of PD results less invasive than

the other methods.



Chapter 2

State of the Art

Parkinson disease alters communications between supraspinal centres and spinal

circuits responsible for lower limb locomotion, leading to gait disorders. How-

ever, neural networks on the spinal cord remain intact and able to reproduce

a rhythmic activity if properly driven. Recently, spinal cord stimulation(SCS)

has showed abilities to access surviving circuits and reduce locomotion deficits.

This electrical stimulation strategy may be a solution to improve locomotion

and axial symptoms in PD subjects, for which deep brain stimulation(DBS)

and levodopa therapy alone are inconclusive[13, 14, 34, 35].

The first implementation of SCS for the treatment of movement disorders is

described by Gildenberg in 1978[38]. Gildenberg used high-frequency dorsal

column stimulator at the C1-C2 level to treat the spasmodic torticolli, but

the discouraging results made his proposed therapy unpopular. However, af-

ter two decades SCS approach became the object of several studies [5, 9, 39].

The researchers showed how SCS could be used to alleviate motor disorders

on animals with different pathologies.

One of the first study is led, in 2009, by Fuentes et al.[7]. Their analysis showed

how, on Parkinsonian rats, high-frequency stimulation at the upper thoracic

level can partially restore rats locomotion; in particular, this stimulation pro-
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tocol reduced akinesia and bradykinesia problems.

Fuentes findings drove many researchers to deepen neuromodulation approach

for alleviating motor symptoms of levodopa-resistant PD gait disorders.

In 2014, Santana et al.[8] showed a stimulation at high thoracic level (T3-T4)

on male marmosets. An important reduction of motor deficits in particular

in freezing, hypokinesia, and bradykinesia is observed. Nevertheless, during

these studies, researches applied a continuous stimulation, under the assump-

tion of an increase of the excitatory level of the neural network, regardless of

the on-going movement.

Two years later, Wenger et al.[6], introduced the spatiotemporal neuromod-

ulation therapy to improve the lower-limb motor control in rats after spinal

cord injury(SCI). The new spatiotemporal SCS protocol considers that the

hindlimb movements imply the activation of spatially motoneurons following

precise temporal sequences, that are modulated through the proprioceptive

feedback circuits. According to this hypothesis, electrical neuromodulation

of lumbar segments has to reproduce specific spatiotemporal patterns of mo-

toneuron activation identified by the respective extensor or flexor hot spots.

These new stimulation concepts improve gait quality, in terms of endurance

and locomotion, and weight-bearing capacity, in several rodents affect by SCI.

Recently, Capogrosso et al.[5] used spatiotemporal SCS to restore lower-limb

voluntary control on non-human primates with SCI.

The aim was to re-establish the lost communication between the brain and the

spinal circuits, taking into account the motor intention of the animal to syn-

chronize the SCS. This brain-spine interface is developed decoding the flexor-

extensor motor states from leg motor cortex activity to trigger SCS. The brain

controlled stimulation results to be efficient, in terms of the quantity and qual-

ity of foot steps.



Chapter 3

Materials and Methods

The following chapter describes the different steps for the building and the

validation of the decoder, starting from the dataset construction.

Firstly, the target events are achieved by tracking from the video the frames

corresponding to the start and the end of the gait stance phase2. Then, the

EMG data collection is obtained through the elaboration of the EMG record-

ings.

Hence, the whole dataset is split in Training set, to build and validate the

decoder and in Test set, to examine the decoder efficiency first offline and then

online.

The last section describes the figures of merit used to estimate the decoder

performance and the evaluation method of the events detection.

2The gait cycle is characterized by two different phases:(i)Stance phase, during which the

foot is in contact with the ground;(ii)Swig phase, in which the foot is not in contact with

the ground[40].
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3.1 Data acquisition

3.1.1 Subjects

During the gait cycle analysis, one male rhesus monkey (Macaca Mulatta) are

taken into account (M1).

The monkey, starting from a healthy condition, receive a gradually administra-

tion of 1-methyl-4-phenyl- 1,2,3,6-tetrahydropyridine (MPTP), a neurotoxin

that targets specifically dopaminergic neurons that are involved in Parkinsons

disease. Progression of the PD is daily assessed based on a mobility scale, also

keeping track of the body weight of the animal (tab.3.1).

Days rif MPTP injection(mg/Kg) Weights(Kg) PD Score

23-11-2013 baseline No 6.7 0

24-11-2013 baseline No 6.7 0

09-01-2014 P25 1.38 6.9 2

16-01-2014 P32 1.36 6.8 2

30-01-2014 P46 1.32 6.6 6

06-02-2014 P53 1.32 6.6 6

21-04-2014 P129 STOP 6.6 6

23-04-2014 P131 STOP 6.6 6

Table 3.1: Control parameters of monkey M1.

3.1.2 Experimental Set-Up

The data recordings, acquired from monkey walking on a treadmill, are col-

lected in order to develop the gait events decoder. Two kind of data are

recorded: intramuscular EMG signals for muscles activity recording and video

signal to keep track of the monkey’s kinematics.
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The intramuscular EMG signals are recorded using eight bipolar electrodes im-

planted in flexor and extensor muscles of the right leg,fig(3.1). Each muscular

signal is pre-amplified and sent to a recording station (BlackRock R© Microsys-

tems) with a sampling frequency of 2 kHz.

Monkey locomotion is recorded by using SIMI R©(Simi Reality Motion Systems,

Germany) motion tracking system with a sampling frequency of 100 Hz.

During monkey training, the following muscles are recorded: gluteus medius

(GLU), iliopsoas (IPS), rectus femoris (RF), semitendinosus (ST), gastrocne-

mius medialis (GM), tibialis anterior (TA), extensor digitorum longus (EDL),

and flexor hal- lucis longus (FHL).

Figure 3.1: Hind-limb muscles in witch are implanted EMG electrodes [4].

3.2 Data construction

3.2.1 Target events construction

Before proceeding with the gait analysis, a recording archive has been created

in which videos and correspondent EMG recordings are ordered by date.

The target events, useful to test the decoder, are extracted from the video in

two different foot state: foot-off gait events(FO) and foot-strike gait events(FS).The

defined targets are just related to the right leg only of the monkey.
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By using MATLAB R© software(Matlab R2016a, The Math Works inc.), target

events collection is done pulling frames from the video matched with two-time

instants: one, when monkeys foot gets off the ground (FO), the other when

monkeys foot hits the ground (FS).

The frames range of not-gait cycle is tracked. In this way, the times when

the monkey is climbing on the mirror or is involving in other activities, are

marked.

3.2.2 Data pre-processing

The movement artifacts, mainly due to possible large movement of the monkey,

are identified by setting a double threshold, as shown in figure (3.2), before

processing the data.

In order to remove the noise, the samples exceeding the threshold values are

not considered.

Figure 3.2: Raw EMG signal with threshold.For clarity, only one EMG channel is represented (channel

1).

On the other hand, the resulting raw EMG samples within the double-threshold

identify ”good-epoch” (GE) of different lengths, as shown in figure(3.3).
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Moreover, periods in which the monkey has not a regular cycle gait are not

considered in the analysis. Finally, in order to have useful raw data windows,

among all GE, only those with more than 2000 samples and with at least one

gait events(FS or FO) are considered.

Figure 3.3: Good Epochs are bounded by two successive blue lines and two successive red lines. For

clarity, only one EMG channel is represented (channel 1)

The considered GE are then processed according to the following steps fig(3.4)

to obtain the EMG signal linear envelope:

1. To remove movement artifacts, the raw data are band-pass filtered in a

frequency range 50-450 Hz by using a 4th order (slope -80dB/dec) zero-

phase Butterworth filter; this filter has the flattest band-pass zone. This

filter has the flattest band-pass zone, that allows a low attenuation in

the bandwidth.

2. To facilitate the interpretation, a linear envelope is implemented: first,

the full-wave is rectified, then a 4th order(slope-80dB/dec), zero-phase

low-pass Butterworth filter with a cut-off frequency of 10 Hz is computed.

3. The linear envelope is finally normalized for each channel to uniform the

different patterns.
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Figure 3.4: Pre-processing of raw EMG data to reduce movement artifacts: raw EMG data is filtered

with a BP and rectified(pictures 1 to 3). In the forth graph, data is low-passed filtered and normalized

between [0,1]. For clarity, only one EMG channel is represented (channel 1)
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3.2.3 Data segmentation

The model selection is effectuated dividing the dataset into two parts: 70%

Training set, 30% Test set. The Training data is used to build the initial

detection model, while, the Test set is used to the final assessment of the

model accuracy.

To make the model more general and less tied to the idiosyncrasies of Training

set, the cross-validation is implemented. The Training set is split in two equal

parts, each used first as a Training set and then as a Test set. Among the

several models obtained with the cross-validation, the model resulting to have

the highest performance is chosen as classifier. The classifier is then tested on

the last 30% of the dataset to evaluate performance. The whole segmentation

process is shown in fig.(3.6A), reported at the end of section 3.8.

3.2.4 Features extraction

The pre-processed data are elaborated as extract useful information to opti-

mize the decoder implementation. Starting from the EMG processed signals a

set of characterizing features are defined.

Training Set

Since, videos and EMG recordings have different sampling rates (100 Hz for

videos, 2000 Hz for EMG signals), the FO and FS targets are synchronized.

This step allows to trigger the time instant of the tracked events to the corre-

sponding instant of muscular activation.

For each manual tracked event, FO and FS, a window (t1,. . . ,tn) of a fixed

number of previous samples is considered. In this window, the EMG ampli-

tudes of five equidistant time points are extracted, fig.(3.6B), reported at the

end of section 3.8.
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The equidistant time points t1,. . . ,tn are defined in this way :

1. t1 is the time of the first feature associated with the FO/FS event;

2. n is the number of time points;

3. (tn-t1) is the length of the fixed window.

Therefore, computing the same extraction method on each EMG channel,

the feature vector contains a number of ntime−points* nchannel features for each

FO/FS event.

The number of time points(n) and the length of the window(tn-t1) are two

control parameters for the decoder. Even though these parameters are fixed

at the beginning of the model building, they could change during the valida-

tion process as to improve the performance and to select the most performing

model.

Test Set

As above, a sliding window is used on each GE testing data to extract relevant

features from EMG signals. In this case, the upper boundary of the window

matches the end of the GE, while the lower boundary corresponds to the sam-

ple following an interval equal in length to the fixed window (t1,. . . ,tn) defined

for the Training set.

By shifting the window, the instances related to a number of equidistant time

points s1,. . . ,sn are individuated , where s1 is the time corresponding to the

last sample of the considered GE, n is the number of time points and sn-s1

is the temporal distance between the first and the last feature. The whole

process is explained in detail in fig.(3.6C), reported at the end of section 3.8.
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3.3 Decoder Building

The detection of gait cycle events is achieved by using Machine Learning tech-

niques implemented on MATLAB software. In particular, a supervised learning

technique is adopted, considering that the input features and the output labels

are defined.

In this study, different discriminant models are implemented rLDA, QDA and

RDA. These three classification models are based on the Bayes’ rule, accord-

ing to which events populations are known a priori and new observations are

classified into one of the known populations based on the extracted features.

Therefore, the event probability is based on prior knowledge of conditions re-

lated to the event, in this way:

(3.1) Pr(G = k|X = x) =
fk(x)πk∑K
l=1 fl(x)πl

.

where:

• fk(x) is the class-conditional density of X, the feature vector, in class

G=k ;

• πk be the prior probability of class k, with
∑K

k=1 πk =1,

where πk=
#ofSamplesInClassk

#OfSamples
;

In discriminant analysis the class-conditional density follows a Gaussian dis-

tribution fk(x):

(3.2) fk(x) =
1

2π
p
2 |
∑

k|
1
2

e(− 1
2

(x−µk)T
∑−1
k (x−µk)).

where p is the feature vector dimension,
∑

k is the covariance matrix and µk

is the class mean.

According to Bayes’rule, to obtain the decision boundaries δk(x), the (3.1) must

be maximized. Hence for each considered model, δk(x) is achieved making
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the product of the prior and the density of the Gaussian distribution fk(x)

maximum.

(3.3) G(x) = argmaxPr(G = k|X = x)

The discriminant analysis is chosen because the classification performance

is similar to more complex classification algorithms such as MLP NN and

SVM. Moreover, LDA is also efficient in computational terms in real-time

implementation[41, 42].

3.3.1 rLDA

Linear Discriminant Analysis (LDA)[43] is a linear classification method, so

the decision boundaries δk(x) is a linear combination of features that best

separates the classes.

In LDA, the classes have a common covariance matrix, so
∑

k =
∑
∀k.

The result of mathematical operations of (3.3), considering the homogeneous

covariance matrices, defines the linear discriminant functions as:

(3.4) δk(x) = xT
−1∑

µk −
1

2
µTk

−1∑
µk + logπk.

where

µk =
∑

gi=k
xi
Nk

and
∑

=
∑K

k=1

∑
gi=k

(xi−µk)(xi−µk)T

N−K ;

In this study, for the detection of gait events, the implemented LDA model

is based on linear discriminant functions in which the covariance matrix
∑

depends on a control parameter α ∈ [0,1]:

(3.5)
∑

(α) = (1− α)
∑

+ασ2I

Assuming that FO/FS class priors are equals, the prior probability, logπk, is

neglected.
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Moreover, since the covariance matrix
∑

defined in (3.4) is substituted by
∑

in (3.5), it is necessary to ensure that
∑

is not singular, to allow to make it

invertible. For this reason, when the
∑

is singular the regular coefficient α is

equal to Cholesky factor (α = 10−6).From this prospective, the implemented

LDA takes the name of rLDA, where ”r” means regularized.

3.3.2 QDA

Quadratic discriminant analysis(QDA)[43] is a classification problem, where

the covariance matrix is not identical for each classes but it is different for

every k. Hence, for QDA the decision boundary is determined by a quadratic

function:

(3.6) δk(x) = −1

2
log|

∑
k

| − 1

2
(x− µk)T

−1∑
k

(x− µk) + logπk.

3.3.3 RDA

Regularized discriminant analysis(RDA)[43] is an intermediate between LDA

and QDA, developed by J. Friedman. RDA shrinks the different class covari-

ances of QDA toward the common covariance as in LDA, through two different

control parameters α and γ, both ∈ [0,1].

The regularized covariance matrices have the form :

(3.7)
∑
k

(γ) = (γ)
∑

+(1− γ)
∑

.

Replacing
∑

in (3.7) with
∑

(α) of (3.6), a general family of covariances
∑

(α, γ) is obtained.

So:

(3.8)
∑
k

(α, γ) = (γ)
∑
k

+(1− γ)(
∑

(1− α)
∑

+ασ2I).

In an extreme case, if α = 1 and γ = 1 , then the second term in (3.8) is zero

and a QDA is obtained. If α = 0 and γ = 0 an LDA is realized.
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In summary, rLDA, QDA and RDA algorithms return classification rules to

define the estimated the class to which gait events belong. Therefore, in order

to achieve the classification rule the Gaussian distribution parameters need to

be estimated from the Training data extracted earlier.

Once these parameters have been defined, the linear discriminant function

δk can be determined. Hence, according to the discriminant functions, it’s

possible to choose for each Test sample a class. In particular, the detected event

may be classified in the FO or FS class with a certain probability; otherwise

the testing sample is predicted in the ”non-event” class. In order to decide the

estimated class, the event must exceed a minimum probability value of 85%.

Furthermore, two or more estimated events of the same class FO/FS detected

within a time interval of 500 ms are not considered. The latter choice is done

to ensure a natural succession of gait steps.

3.4 Model Validation

In a second step, the decoder building, be it rLDA, QDA or RDA, is validated

through cross-validation. The cross-validation technique is implemented to

improve the performance model making it more general and less tied to the

Trainig set. As already mentioned, whole EMG Dataset, built to implement

the detection algorithm, is split into two groups: the Training set, used to

build and validate the initial model, and the Test set, used to estimate the

figures of merit of the model.

During the cross-validation, the Training data is used in this way: the orig-

inal samples, belonging to Training set, are partitioned into two equal sized

subsamples. In the first step, one subsample group is retained as the Test

set to estimate the decoder performance, and the remaining group is used as

Training data; in the second step, the subsample group are inverted.
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In the cross-validation, control parameters have been changed to estimate the

best classifier model. The validation is implemented for each classifiers (rLDA,

QDA, RDA), therefore, depending on the type of classifier, the control param-

eters change.

1. rLDA

To find the optimal model, in the linear discriminant analysis, the fol-

lowing parameters are changed:

• tn-t1, the length of the window that slides along the Training set

by varying the distance between the samples, of which the EMG

amplitudes are defined as features. The window length can assume

two different values : 500 ms(1000 samples), or 300 ms(600 sample);

• n, the number of features taken in account can change from 5 to

3. In other words, the number of equidistant samples, of which the

EMG amplitudes are defined as features, change;

• α, the regularized coefficient can change between [0,1], so the rLDA

can move toward LDA model, or QDA model, by changing its ma-

trix covariance value.

2. QDA

In the quadratic discriminant analysis any regularized coefficient is de-

fined, considering that QDA, for its decision boundary, takes in account

only the inter class covariance matrix, different for each class k.

While the following parameters change:

• tn-t1, the sliding window length changes in 300ms, or 500 ms;

• n, the number of features, in the chosen window, can be 5 or 3;

3. RDA

For RDA, more control parameters change, in fact, in addition to the



Materials and Methods 31

length of the window(tn-t1) and the number of equidistant points(n) to

be considered as features, there are two variables coefficients of regular-

ization:

• α and γ both ∈ [0,1];

3.5 Figures of Merit

The accuracy of the decoder is described by measuring how well it performs in

terms of mutual information Cxy, a metric incorporating both sensitivity and

specificity of the detector[44].

The value of the Cxy is chosen to estimate the correlation between the times

of real events and a the times of detected events, in this way:

(3.9) I(X, Y ) =
∑
X

∑
Y

p(x, y)log2
p(x, y)

p(x)p(y)

where X and Y contain respectively all possible states of the real and de-

tected events, while x and y are specific states from X and Y ; p(x,y) is the

joint probability, p(x) and p(y) are the probabilities of specific states, p(x)=∑
k RealEvents and p(y)=

∑
kDetectedEvents.

The maximum value of the mutual information is obtained when detected

event times correspond to real event times. In this case, the mutual informa-

tion value, CXY , is normalized:

(3.10) CXY =
I(X, Y )

H(X)

where H(X) is the entropy of real event times:

(3.11) H(X) = −
∑
X

p(x)log2(p(x))

The CXY value is chosen as the model selection criteria in the validation model.
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3.6 Detection Accuracy

The detection probability of the FO and FS events is estimated considering

a ∆t temporal tolerance. The ∆t represents the time gap that could occur

between the instant times of an estimated event and the instant times of a

real event. Any detection within the tolerance window ∆t is counted as a

true positive detection. The time samples, not identified as FO/FS events, are

defined as ”non-event”, in fig(3.5).

Figure 3.5: The detection probability of events is related to the rising tolerance intervals. Estimated

events out of the tolerance interval is considered as not-event detected(green star); detected event within

the tolerance interval is estimated as detected event(red star).

Since, the decoder is able to detect the event with a certain delay, it was

useful to evaluate the performance, CXY , according to the temporal accuracy

of detection. For each model, 15 CXY values are obtained corresponding to

the same number of tolerance values ranging from 25 to 200 ms.

3.7 Statistical Analysis

On first assessment, the decoder performance is estimated in terms of the Cxy

value at various tolerance interval. The estimation of the values are reported

as mean and 95% confidence interval (CI).

To define the CI and obtain the Cxy mean value, the dataset is firstly parti-
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tioned in N sessions. Afterwards, the decoder is trained on N-1/N sessions,

and tested on the remaining one. This process is repeated for all N sessions.

In this way a population of N values of CXY is obtained for each implemented

decoder methods.

For estimating the mean with 95%CI, a t-interval is considered, since the con-

sidered population is small and their variance is unknown.

The formula for a t-interval is:

(3.12) x̄± t(n−1;
2

)
α√
n

where t(n−1;α
2

) is a critical value of t-distribution, α is the population standard

deviation and n is the number of values belonging to the considered population.

The t(n−1;α
2

) value depends on the number of values(n) through the use of

”degrees of freedom” defined as df=n-1. Its value is looked up on a table.

3.8 Online Model

In order to dynamically test the decoder, an online model is implemented. It

is generally known that the online performances of decoder are worse than its

offline performances. Hence, online testing can be considered as a practical

way of to identify the performance of decoders.

The real-time simulation is implemented on rLDA model because of its efficient

in computational terms[42].

According to online model, EMG data is available in a sequential order and

are tested at each step and not on the entire recording. The decoder operates

periodically at 10 ms intervals, when Black Rock system provides the data.

EMG test data is rescaled in [0,1] range, according EMG training data.

In this case, the features extraction (see fig.(3.6C)) is realized taking into

account a period of 500 ms, stored into a buffer, prior to the event to be

classified.
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Moreover, the class of the detected event is decided by setting a threshold equal

to 85%. Then, to ensure the physiological time of the gait steps, the detected

consecutive events of the same class a 500 ms apart are not considered.
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Figure 3.6: Flow of the detection algorithm.

A) Method used to partition the dataset into two independent sets: 70%Train-

ing set to built and validate the model, 30% Test set to estimate the model

accuracy. B)Features extraction in Training set. For each target event a win-

dow of a fixed number(tn-t1) of samples is individuated(blue window). EMG

amplitudes corresponding to n equidistant points(red,violet,blue) are taken as
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features. The same number of features are considered for each channel and

use for decoder building(rLDA/QDA/RDA).

A control parameters set σ are considered in order to take into account the

decoders characteristic coefficients. C) Features extraction in Test set. In each

GE (green window), a number of points equal to n is marked. The points (red,

blu, purple) are individuated by a sliding window Sn-S1 along the GE. Hence,

the EMG amplitudes related to these marked points are considered as features.

The rLDA/QDA/RDA algorithm implementation returns for each sample a

probability values of belonging to each of the three classes(FO/FS/non-event).

To decide the estimated class, the event must exceed a threshold λ. On the

right the performance evaluation rule is described as a binar combination re-

lated to tolerance interval.



Chapter 4

Results and Discussions

In the following chapter, the performance for rLDA/QDA/RDA decoders are

illustrated.

The first assessment is carried out on the recordings of healthy monkey M1,

comparing the offline decoders performance in terms of the normalized mutual

information CXY at different tolerance interval.

At a later stage, the decoders stability over Parkinson disease progression is

evaluated: firstly, evaluating the intra-day decoders performance and then

the inter-days decoders performance. The intra-day performance allows to

evaluate the decoder model efficiency corresponding to different PD score.

Indeed, the decoder is trained and tested on dataset belonging to the same

day and by evaluating its performance at one PD score. On the other hand,

inter-days performance are achieved by training and testing the decoders on

different dataset. This modus operandi enables to evaluate the built decoders

over the PD progression by analyzing the long-term behaviour of the EMG

decoders.

Furthermore, it was considered appropriate to estimate the stability of the

decoders over time.

The last aim is to evaluate the offline decoder performance by implementing
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an on-line simulation.

4.1 Decoder Performance

4.1.1 Offline decoder performance

The evaluation criteria used to compare the gait decoder is the normalized mu-

tual information CXY , a metric that incorporates both sensitivity and speci-

ficity.

In the figure(4.1) below, the trend of the mean values CXY for different tol-

erance levels, using a confidence interval fixed at 95%, is illustrated. Overall

Figure 4.1: Cxy comparison among rLDA, QDA, RDA for different values of tolerance. Each result is

reported as mean and 95%CI(vertical lines)

rLDA, QDA and RDA show the worst performances for tolerance ranges less

than 75 ms. Moreover, the CXY values estimated for these tolerance intervals

values are characterized by a great variance compared to the values of CXY

obtained for higher tolerances ranges, fig(4.2).

It is evident that results related to QDA for lower tolerance ranges reflect a

large discrepancy between the values obtained in the CI evaluation. On the
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other hand, the statistic analysis in rLDA and RDA confirms that survey re-

sults are reliable.

Figure 4.2: Variance of mean Cxy values in rLDA, QDA and RDA for tolerance ranges below 75 ms(on

the left). Variance values of each decoders in correspondence of tolerance intervals larger than 75 ms(on the

right).

It is clear that, rLDA, QDA and RDA decoders return higher value of CXY

in correspondence to greater tolerance. However, it is inconvenient to detect

event using wider tolerance range since it would mean a lost of time resolution.

Therefore, a tolerance interval limit equal to 200ms has been chosen, that rep-

resents a value corresponding to about one-quarter gait cycle of the healthy

monkey.

In order to have a complete perspective on the performance, the mean compu-

tation time for decoders building is evaluated. In particular, the computational

times are related to the validation phase, in which the rLDA models are con-

structed by chancing four control parameters, those of the QDA are defined by

replacing two control parameters and finally the RDA models are built by vary-

ing five parameters of control (Materials and Methods section 3.4). It is clear

that the RDA decoder takes longer computation times, as the number of built

models are increased by one factor. In the context of brain-spine interface, the

decoder could be used to modulate the information involved during gait and

trigger the spinal cord stimulation. Hence, in the evaluation of the decoder

performance, from here on out, a tolerance interval has been chosen equal to
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Figure 4.3: Mean values of computational time in rLDA, QDA and RDA related to the offline decoder

models built in fig.(4.1).

75ms; this could be a good compromise, between the desired performances and

the temporal accuracy in the detection.

4.1.2 Online decoder performance

The implementation of the online model can be considered as a further test to

quantify the decoder performance.

The results are implemented only for rLDA decoder, which has shown good

attitudes in the offline model[42].

The performance of the online decoder is compared with those obtained from

the implementation of the offline decoder. The first assessment is realized com-

paring the figure of merit(Cxy) chosen for the statistical analysis. Figure(4.4)

shows a decrease equal to 30.7% of performance in online model comparing to

offline implementation.

Moreover,the comparison is made on the FO and FS classes, comparing the

mean values of true positive rate(TPR)3 on five detector models, each one built

3True Positive Rate (TPR) is defined as the number of true positive detections (NTP )

divided by the number of real events equal to the sum of true positive detections and false

negative detections (NFN )
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Figure 4.4: Performance statistical measures of Cxy in online model (on the left) and in offline model

(on the right).

and tested on datasets of the same day. Two dataset related to the healthy

monkey and three in which the monkey has different PD score values are cho-

sen as to test the performance of the classifier during PD progression. The

variability of the resulting TPR is taken into account by using the standard

deviation parameter.

The results achieved show that the performance of the online decoder is lower

than those of the offline classifier. In detail in fig(4.5), the decrease in perfor-

mance is about 25.8% for the TPR related to FS class and 7.6% for the FO

class.

Figure 4.5: Performance statistical measures of TPR in online model and in offline model(FO on the

left, FS on the right). Vertical lines report the standard deviation values.
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4.2 Decoder Stability

4.2.1 Decoder Stability intra-day

In figure (4.7) below are set out the performance of rLDA/QDA/RDA decoders

during the PD progress of M1. To compare the decoders ability to detect gait

events at different PD score, the evaluation criterion used is the CXY value. In

the graph (4.7), at each points correspond a CXY values obtained by processing

data recorded in the same day. In particular, eight intra-day dataset are taken

into account to validate the decoders performance over PD progression ((4.6)):

two related to M1 in healthy condition, and six related to M1 condition after

MPTP injections (grey line). In addition, for each examined day, the rela-

Figure 4.6: Summary table related to the injection of MPTP in M1: temporal distance of the dataset

taken into account from the beginning of the injections (grey line); PD score value; indications on the

neurotoxin daily initiation.

tive PD Score of M1 is reported. The results achieved show clearly that RDA

(green line) decoder has detected the gait events at best. The CXY values has

not undergone significant fluctuations in 150 days interval corresponding to
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PD. Hence, RDA has given a demonstration of good performance and adap-

tation in gait events detection in M1 both in healthy conditions and in severe

PD conditions. On the other side, QDA (blue line) decoder has not match

Figure 4.7: Decoder performance on intra-day data during PD progression. Pink line follows the rLDA

evolution in 151 days interval, while blue and green lines are respectively related to development QDA and

RDA over the disease in the same time interval. Grey line marks the beginning of MPTP injection. The

black crosses indicate the monkey’s PD score.

the expected trendline. The QDA shows its better performances mainly, in

correspondence of the days before MPTP injection. Only in one case, during

PD progression, QDA has shown good value of CXY , but it is not statistically

significant.

rLDA (pink line) performance has shown a trend similar to that of RDA within

the first 35 days from the MPTP injection. Then, CXY values are decreased

holding good performance.

There appear to be an unstable CXY region across the time between 40-50

days after neurotoxin injection, common to all decoders performance. This

significant decrease may not be related to the monkey PD score. It could de-

pend on the time gap between the time of injection and the time in which M1

is trained. In this region where all the classifiers have shown the worst perfor-
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mance, the monkey has a PD score of six after having received the injection

MPTP. However, the decoder performances, 151 days after the first injection,

have shown an increased even if the PD score of M1 is remained constant. This

result could be due to the fact that, in the last two days assessed, the injection

of MPTP is stopped (see fig.(4.5)), thus the gait cycle of the monkey may no

longer be influenced by the immediate effects of neurotoxin injection.

4.2.2 Decoder Stability inter-days

The graphs in fig(4.8) show the performances of rLDA/QDA/RDA decoders

related to eight different intra-day dataset. The considered models follow the

chronological progress of PD in M1 (see fig.(4.5)). The aim of this assessment

is to test the detection capacity of classifiers built on a fixed model during the

whole window of observation of the course of the PD under consideration.

The graphs report on each row the CXY values calibrated on one daily ses-

sion and tested on other sessions. The CXY values correspond to detecting

tolerance of 75 ms. Thus, for each calibration session it is possible to evaluate

the correspondent decoder attitude to detect the gait events in EMG signals

recorded in different PD stages of M1.

Figure 4.8: Decoder performance on inter-days data during PD progression.

Comparing the results obtained, it can be clearly seen that the rLDA classifier

yields better performance than the QDA and RDA classifiers.



Results and Discussions 45

QDA decoder shows the worst longer-term behavior, no built model has proved

its capability of detecting significantly gait events in monkey affected by PD.

These results could be related to the specialization of the decision boundaries

in QDA model on the Training set.

Both rLDA and RDA show significant results. The best achievements, by

testing the decoder stability over PD, can be observed in correspondence of

first two lines (baseline). Indeed the results, obtained by testing the baseline

sessions relating to the healthy monkey, shown significant CXY values, espe-

cially in rLDA. Here again, an unstable CXY region (P47-P53) has appeared

across corresponding to the time between 40-50 days. P47 and P53 sessions

are referred to two injection days in which monkey shows PD score equal to

six(see fig.(4.5)).

4.2.3 Decoder Stability over time

Moreover, the same CXY values, used to validate the built model stability inter-

days over PD, are fitted as shown in fig.(4.9). The CXY values are plotted in

function of the time distance between the session to calibrate the decoder and

the session to validate it.

Therefore, it is possible to estimate the stability of the decoder over time.

The rLDA chart demonstrates the decoder temporal robustness in 151 days

interval, in which the decoder trend remain constant.

As achieved with the previous results, QDA shows the lowest performance in

events detection. Moreover, the decoder ability to detect gait events decreases

dramatically within few days.

The last result is related to the stability of RDA decoder, which does not show

a relevant trend decrease.
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Figure 4.9: Stability over time of rLDA/QDA/RDA decoders represented as linear regression(blue

line) and 95% confidence interval(blue rectangle)



Chapter 5

Conclusion

In this thesis has been implemented a decoder able to detect the flexor-extensor

motor states starting from the EMG activity of a non-human primate’s lower

limb. The ultimate goal is to create an instrument able to detect the locomo-

tion related events (FO and FS) as to support the subject by using an electrical

spinal cord stimulation.

Machine learning discriminant analysis based techniques have been used. In-

deed, three different classifiers have been implemented: rLDA, QDA and RDA.

The initial set of measured EMG data is pre-processed in order to remove the

movement artifacts and ensure a useful features extraction. The discriminant

analysis based algorithms have been tested on the dataset, comparing their

performances in terms of normalized mutual information (CXY ).

The resulting performances of the rLDA, QDA and RDA decoders indicate

that QDA shows the worst performance both in the intra-day and in the inter-

days models. Hence, the QDA based decoder is not able to track muscular

patterns and identify gait events as well.

Overall, rLDA and RDA yielded essentially the same performance. rLDA has

proved to be more flexible during the inter-days events detection testing mode.

On the other hand, RDA has shown better performance in detecting events
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during the intra-day testing models. Both decoders have shown constant trend

over time.

Besides, RDA has the drawback that an higher number of control parameters

need to be estimated during the validation phases, as to increase the compu-

tation time of the algorithm.

In first analysis, therefore, the rLDA is the best candidate for detecting loco-

motion events, the difference between the decoded and intended locomotion

events is not noticeable both in intra-day and in inter-day testing.

A further test to estimate the rLDA performance is implemented by an on-line

simulation. The online testing performance of the rLDA decoder has show

good detection capabilities. The estimated Cxy value decrease, even if not

negligible, allow a detection of true positive events over 70%.

The next step would be to evaluate the robustness of the decoders by test-

ing the classifiers performances on more monkeys. In this way the results may

be validated and may be asserted to be successful even when applied on dif-

ferent EMG recordings.

Since the ultimate goal of the decoder is to detect the events as to trigger the

matching electrical spinal cord stimulation, it is needed to verify the decoder

performance also combining the electrical stimulation at lumbar level. In fact,

it is necessary to evaluate the influence of electrical stimulation on the EMG

signal and on the events detection. In the first analysis, the stimulation should

not have considerable effects on the detector, since the additive effect in ampli-

tude of the stimulation is constant and is modulated during the pre-processing

phase. In view of future applications, the evaluation of online decoder perfor-

mance is necessary to ensure sufficient detection of the locomotion events and

decrease the errors in movement decoding.
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