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Summary

The aim of this master thesis Segmentation of White Matter Tractograms Using
Fuzzy Spatial Relations is the creation and validation of an innovative segmenta-
tion tool, called Fuzzy Tracts, for whole-brain tractograms applications, with the
goal of extracting reproducible white matter fiber bundles using prior knowledge
combined with a spatial fuzzy sets approach and an innovative clustering metric.

The segmentation of anatomically significant fiber bundles is the main strat-
egy to analyze tractograms, which are often composed by hundreds of thousand of
fibers. Different segmentation methodologies have been proposed, each suffering
from a multitude of problems, the most common ones being the consistency of the
results, the time needed for the procedure and strong assumption on inter-subjects
spatial correspondence.

This thesis, after introducing the diffusion imaging methods commonly used,
testing state of the art segmentation methods and highlighting the problems en-
countered, proceeds detailing the algorithm proposed, emphasizing the spatial
fuzzy sets approach and the innovative clustering metric implemented.

Finally, the results are validated on the Uncinate Fasciculus use-case, focusing
on inter-subject reproducibility and anatomical coherence, illustrating the improve-
ments achieved through the use of comparisons over other techniques.
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Chapter 1

Diffusion MRI (dMRI)

Diffusion MRI is an imaging technique that estimates the water particles diffusion
in a tissue (Figure 1.1). Diffusion, also called Brownian motion [13], is the micro-
scopic movement of the particles due to thermal collisions. This thermally-driven
motion, that flows from high density area to low density area, is always present for
temperatures different to the absolute zero and its description, first postulated by
Einstein [24], can be summarize as: xrms =

√
2Dt.

Figure 1.1. Diffusion Weighted Image from the Human Connectome Project dataset.

D is called diffusion coefficient and it is a function of the temperature T, the
viscosity of the tissue η and the radius of the particle: D = k∗T

6∗π∗r∗η .

In the body there is a proportion between the water contained in the cells and in
the extracellular matrix, kept in balance from the Na/K pumps. The extracellular
part usually has more freedom to move in any direction since the water contained
in a cell has a high probability to collide with the cell walls and other molecules.
The displacement of the water within a cell will thus follow the path designed by
the structural disposition of the walls, creating an high level of diffusion anisotropy
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1 – Diffusion MRI (dMRI)

for directional architectures like in the cases of white matter and muscles fibers.

For these types of movements the diffusion coefficient can not be described by
a single values, as it varies depending on the direction, but it assumes the shape
of a tensor (more information at Chapter 1.1).

It is important to point out that what is being seen in the diffusion images is
not the real water diffusion map, since a lot of other body processes are active in
the background (microcirculation, respiratory movement, ...). The measure is bet-
ter defined as the Apparent Diffusion Coefficient (ADC) [10], the coefficient that
keeps into account all the contributes.

To obtain a DWI (Diffusion Weighted Image) the imaging technique exploited
is the MRI, with particular configuration of the gradients [86]. Two gradients, the
first one at 90° and the second one at 180°, are applied in sequence (Figure 1.2).
In this way, the spins of stationary molecules are not affected, since the second
gradient reset it to their natural position, meanwhile the change in the spin of the
water stays noticeable due to its movement to a different position between the two
impulses.

Figure 1.2. Diffusion EPI sequence. In grey the imaging gradients, in color the
diffusion gradients for three directions.

The gradient parameters influence the output images, highlighting or less the
diffusion events. It is possible to express the diffusion based on the gradient energy
and the base intensity (the values of the T2 image) as: S = S0 ∗ e−bD.

Where b, called bvalue, is a measure of the gradient power and timing. Its unit,
s/mm2, represents a time over an area, the opposite of D. Increasing the bvalue
accentuates the weighting towards the diffusion, making the water flow more no-
ticeable, but at the same increasing the noise level. Typical diffusion images are
obtained with bvalues not higher than 3000 s/mm2.
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1.1 – Diffusion Tensor Imaging (DTI)

The direction of the gradient is instead described by the bvectors. Each bvalue
has a bvector associated, the gradient orientation at that instant. The combination
of bvalues and bvectors allows to know the gradient configuration, in all their part,
for each diffusion image obtained.

Diffusion images are mostly used for brain applications, usually combined with
tractography algorithms (Chapter 2), but are not limited to them. In the recent
years the diffusion imaging expanded to pelvis applications [75] and whole-body
imaging [47].

Since the diffusion associated to a gradient configuration express only the dif-
fusion along a particular direction, in order to have a better understanding of
the diffusion phenomena more gradients must be applied, following a predefined
scheme.

1.1 Diffusion Tensor Imaging (DTI)
The Diffusion Tensor Imaging [51] utilizes a gradient scheme to induce the diffusion
in multiple direction and create a diffusion matrix that characterizes the behavior
of the water particles in a 3D structure.

Since what the is sensed is the ADC intensity S , the values D of diffusion can
be extracted applying an inverse formula [86] : D = −ln( S2

S1
)

b2−b1
using a baseline image

S1 (for example the T2).

Filling the smallest tensor configuration with diffusion measures means that
three gradient must be applicate in a cartesian plane :

D=

⎛⎝Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

⎞⎠
The three main eigenvectors are positioned on the diagonal of the tensor and

are equals to each other in the situation of isotropic diffusion. The tensor is sym-
metrical in respect to the main diagonal (Dxy = Dyx, Dxz = Dzx, Dyz = Dzy).

While at least three gradient directions must be implemented, increasing the
number of gradient orientations improves the accuracy of the measures. Modern
DTI application often use 6, 21 or 31 directions [31] to better the accuracy of the
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1 – Diffusion MRI (dMRI)

results and reduce the noise sensitivity.

From the tensor, various indicative diffusion measures can be extracted to more
appropriately define the water behavior and, consequently, the anatomical struc-
ture that originated the coefficients (Figure 1.3).

Figure 1.3. Metric images extracted from the diffusion tensor (MD = mean
diffusivity, FA = fractional anisotroopy, DEC = directional encoded color).

The three principal eigenvectors are used to determine the directions of the wa-
ter diffusion [66]. In particular the one with the highest value gives an information
about the main direction of diffusion, moving along its orientation means following
the trail that the majority of the water molecules pursue.

The other two eigenvector instead detail how the water move along the traversal
planes. Their main, also called radial diffusivity, could be confronted to the main
diffusion to verify the displacement variance.

With a three directions gradient scheme an equal number of diffusion image
are produced. Compressing the different results into one image allows to have a
compact and more comprehensible view [61], the so called trace image express the
final diffusion coefficient as the average of the tensor eigenvalues:

SDW I = 3
√

SxSySz = S0e−b( Dxx+Dyy+Dzz
3 ).

The trace image offers some advantages to the singles DWI since, being the
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1.2 – Constrained Spherical Deconvolution (CSD)

mean of multiple sources it is more robust to noise. The observed homogeneity
and low inter-subject variability [74] constitute a good option for the aid in the
detection of abnormal diffusivity phenomena.

Fractional Anisotropy

One of the most indicative diffusion metric extracted from the DTI is the frac-
tional anisotropy [66]. It is used to estimate the intra-voxel degree of water flow
directionality. The FA is computed with the equation:

FA =
√

3
2

√
(Dxx−M)2+(Dyy−M)2+(Dzz−M)2

Dxx+Dyy+Dzz
.

Where M is the local trace value.

The fractional anisotropy indicates if the local diffusivity follow a preferred di-
rection or if it has a more isotropic behaviour. High values means a more accentuate
anisotropy, expressing a more constrained water flow. The immediate association
between large FA values and myelinated axons presence [46] is emblematic of the
axon population that lies beneath.

Extensive studies have been carried out trying to find a correlation between the
FA values with age [79], sex [81], lesions [107] [9] and other types of markers.

Additionally, the fractional anisotropy tends to be a characteristic parameter
of white matter fiber bundles, making it a useful parameter for the formalization
of their proprieties.

1.2 Constrained Spherical Deconvolution (CSD)
Main drawback of the diffusion tensor approach, that confines its applicability
condition to simple analysis, is the innate limitation to solve the crossing fibers
problem.

Having a typical DWI resolution floating between 1.5 mm and 3 mm, poorly
comparable with the radius of white matter axons (not larger than 20 µm), the
diffusion imaging techniques provide just an estimation on the behavior of the
fibers group that pass through a voxel [69]. Furthermore, if the diffusion tensor is
being used for more advanced tractography tasks, like for segmentation purposes
(Chapter 2), the risk of an error propagation is particularly high [65].
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1 – Diffusion MRI (dMRI)

Various approaches have been proposed to overcome these limitations, trying
to extend the tensor method to support more complex imaging strategies. The
most innovative data acquisitions protocol usually exploits the HARDI (High An-
gular Resolution Diffusion Imaging) scheme [92]. In this sampling configuration
a large quantity of gradients (at least 28) are applied (Figure 1.4), changing the
directions while keeping a constant bvalue. The sampling scheme, build around a
sphere around the brain, also called shell, aims to maximize the angular contrast.
Furthermore, using multiple shells with different gradient intensities it is even pos-
sible to reach a high resolutions without a loss in the useful information provided
by the use of multiple bvalue, for what is called multi-shell multi-value approach.

Figure 1.4. HARDI sampling scheme formed by 126 gradient direction
sampled on a tessellated sphere.

The Constrained Spherical Deconvolution (CSD) [91] exploits and extends the
diffusion tensor approach with a key difference. While the DTI use a discrete num-
ber of directions, the CSD assumes a continuous function, assimilating the HARDI
sampling scheme to an infinite number of gradient orientation.

In the Spherical Deconvolution a fiber response R, produces looking at the DWI
attenuation of a group of coherently-oriented fiber (identified observing where the
fractional anisotropy tends to zero), is computed in function of the elevation angle
θ.

With the assumptions that the response function is the sum of all the response
functions generated by the underlying axon population and that the response func-
tion of every axon of the brain would be the same if oriented in the same direction,
finding the local orientation means deconvolving the local fiber response with the
function R(θ) (Figure 1.5).
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1.2 – Constrained Spherical Deconvolution (CSD)

Figure 1.5. A voxel containing two fibers with different orientation θ1 e θ2 is
represented by the local response function S(θ). Through the deconvolution with
R(θ) it is possible to estimated the fiber population distribution F (θ).

The DWI can be expressed as a convolution between the response function
and the FOD (fiber orientation distribution), represented as lobes, using spheri-
cal coordinates. In order to add a consistency to the mathematical procedure the
introduction of a low-pass filter is necessary to remove the high sensitivity to the
noise that caused spurious, not anatomically relevant, peaks in the responses [90].
This constrain allows to have just one visible peaks oriented in the direction of
the highly probable fiber direction and to obtain values next to zero in every other
part of the support.

CSD methods can estimate the FOD and recognize intravoxel fiber crossing
wherever the angle between the two streamlines is at least 40%, making it one the
most used method for tractograms estimation (Figure 1.6).

Figure 1.6. Fiber orientation distribution obtained with the spherical deconvolu-
tion method for different separation angles and harmonic degrees (lmax)
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1 – Diffusion MRI (dMRI)

1.3 Human Connectome Project (HCP)
The Human Connectome Project is an ongoing research program that aims to sig-
nificantly improve the understanding of the human brain and to define and map
its connectivity network [97].

The primary objective is the creation of an extensive and accurate database,
making it available to the scientific community. With more than 19 active research
studies, spanning from brain mapping, diseases characterization and aging evalua-
tions the HCP consortium provides the largest font of data for brain functionality
related researches.

To achieve the imaging precision searched important customization procedures
have been applied to commercial MRI scanner and specific MRI sequences have
been prepared [96]. The special 3T scanner prepared is finally able to reach gradient
intensities of 300mT/m with an signal-to-noise ratio of around 70%. Additionally,
a 64-channel 7T scanner has been used for imaging procedures on around 200 sub-
jects (Figure 1.7).

Figure 1.7. Summary of the HCP dataset and scanners prepared for the
image acquisitions.

The diffusion pulse sequence, traditionally an EPI, has also been subject of
heavy modifications in order reach high imaging resolutions while reducing the
scanning time. The solution adopted capitalize on a multiplexed EPI train ap-
proach, allowing a whole brain scansion to be carried out in under a second reach-
ing aresolution of 2 mm.
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1.3 – Human Connectome Project (HCP)

The HCP coverage does not stop to diffusion data but also expands to functional
MRI (both resting state and task related), structural MRI, MEG and EEG.

1.3.1 Data
The validation of Fuzzy Tracts is based on diffusion HCP data due to their high
resolution, high SNR and number of subjects involved. The dataset used, that can
be downloaded from https://db.humanconnectome.org/, is formed scanning 1200
young healthy subjects.

The subject population is composed by siblings and not siblings with an age
under of 35. From them the images relative to 100 unrelated subject have been
extracted and used as the final benchmark database. The relative structural and
diffusion are the base of the results presented in this thesis (Figure 1.8).

Figure 1.8. Confront between the diffusion images produced by a conventional
scanner (left) and by the customized HCP machine (right).

The diffusion data present a resolution of 1.25mm isotropic and are obtained
using a multishell approach with bvalues ranging from 50 s/mm2 (used as the b0
image to avoid vascular artifacts) to 3.000 s/mm2. The full specific can be found
in table 1.1

The diffusion acquisition protocol consists of six scans (with three gradient ta-
bles applied first in a right-left direction and after in the left-right encoding) for a
total of circa sixty minutes. Three shell, with bvalues 1000, 2000 and 3000 s/mm2,
have been sampled, alternating with six b0 scans. All the diffusion data have asso-
ciated two structural images: a T1 weighted and a T2 weighted.
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1 – Diffusion MRI (dMRI)

Parameter Value
Sequence Spin − Echo EPI

TR 5520 ms
TE 89.5 ms

Flip angle 78°
Resolution 1,25 mm isotropic

Echo spacing 0.78 ms
Shells 1000, 2000, 3000 s/mm2

Table 1.1. HCP diffusion data acquisition parameters.

The final files folder, with a size of 4 Gb, containes the image files, reconstructed
in NIfTI format with an-hoc prepared algorithm [93], the gradient table divided
in bvectors (for the directions) and bvalues (for the intensities) and a brain mask,
obtained using Freesurfer .

The data are available both raw and processed with a specific HCP artifact-
removing pipeline.

1.3.2 Preprocessing
The extensive HCP processing protocol [32] aims to reduce the artifact effects that
afflict the dataset. These artifacts slightly differs from the standard MRI problems
due to the very unique characteristic of the HCP diffusion images. The usage of
preprocessed data over their raw counterpart is highly suggested since they have
been cleaned by difficult to analyze issues, like gradient non-linearities. Further-
more, the use of a common space for the processed images allows a more accurate
inter-subject analysis for relevant statistical studies.

The pipeline covers both structural data and diffusion data. For the case of
T1w and T2w image the process is split in 3 part: pre, with and post Freesurfer.
A first analysis corrects the spatial distortion, aligns and registers the images to
the MNI space [17]. A segmentation operation is carried out to obtain one cortical
parcellation and a whole-brain labelling. At last, the images are adapted to the
NIfTI file format and a brain mask is produced.

The structural scans, acquired with an isotropic resolution of 0.7 mm, necessi-
tate a downsampling to 1 mm in order to be fit for the Freesurfer recon-all pipeline
[20]. The final parcellation outputs, with resolution of 256x256x256 per 1 mm
isotropic, will contain the automatic segmentation of white matter other than the
cortical and pial surfaces.
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1.3 – Human Connectome Project (HCP)

The diffusion pipeline (Figure 1.9) tries instead to eliminate the artifacts be-
longing to the special protocol used. First the intensities are aligned exploiting
the b0 images information, capturing different T2 images at evenly spread time in-
tervals during the diffusion acquisition it is possible to estimate the intensity drift
[100].

Figure 1.9. Diffusion preprocessing pipeline applied to the HCP raw data.

The eddy currents and gradient non-linearity problems are tackled with the use
of FSL [84] and a Gaussian estimator. After a final registration between the b0
and the T1w is achieved, the data are masked with the structural data brain mask
to reduce the file size.
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Chapter 2

Tractography

The restrains in the diffusion of water molecules due to different types of obsta-
cles, such as cells and membrane cause a change in in the diffusion coefficient
perceived in DWI. In the portions where water has a free diffusion, for example in
cerebrospinal fluid, an high diffusion coefficient will be present and, moreover, the
diffusion tensor associated will carry isotropic proprieties [3].

In the white matter the molecules diffusion along the ax of a fiber will be less
restricted than the in the perpendicular directions. This observation can be ex-
ploited to determine the fibers pathway. Following the trace of the diffusion images
changes, streamlines could be tracked down, starting from a seed point, in all their
lengths due to their relationship with the underlying fiber population [43].

Tractography is the medical imaging operation that reconstructs 3D fibers start-
ing from diffusion data and proprieties (Figure 2.1). Locating the pathway of fiber
systems enable to delineate the connectivity of an anatomical regions with a cer-
tain level of confidence [2], before exclusive to invasive methods.

In the last years this imaging technique saw a boost in importance thanks to
scientific advances that augmented the applicability on routine medical tasks, with
the main utilization being the pre-operative planning for brain procedures [85],
estimation of recovery in functionality after traumatic incidents [39] and brain
connectivity mapping.

Tractography not only offers a new point of view to interpreter pathological
white matter abnormalities, but can also all-around improve the way the anatomy
of the brain is defined [4]. Not limited to the nervous system, it can be comple-
mentary to the standard magnetic resonance exams, especially for type of lesions
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2 – Tractography

Figure 2.1. Whole brain tractogram computed with the deterministic algorithm
SDSTREAM on MRTrix3, starting from HCP data.

particularly difficult to find with standard imaging procedure [98].

Initially based only on the DTI approach, during the years different methods
have been developed with the goal to improve the accuracy of the results with more
and more sophisticated fiber tracking algorithms been presented to the scientific
community.

Tractography at the moment is at its highest peak with a great number of
contributor all around the world ready to push even further this innovative imaging
technique to reach even higher level of confidence and to offer clinicians useful new
decision tools.

2.1 Tracking Algorithms
Fiber tracking algorithm have the goal to trace back all the axons trajectories using
the diffusion imaging data. These algorithms can be classified in two main groups:
deterministic methods and probabilistic methods.

16



2.1 – Tracking Algorithms

A deterministic approach will always result the same output for the same input
data. The most common algorithms use propagation techniques: fibers are re-
constructed connecting adjacent voxels following a selected criteria[65]. This type
of tracking was born with the FACT algorithm (Section 2.1) and it is still used
nowadays.

Deterministic algorithms follow a three step process: initialization, propaga-
tion, termination. The initialization is based on the choice of seed points, from
which fibers will be tracked down. The propagation consist in applying a method
to connect the voxels along the streamlines length. The termination criteria is
necessary to define when a fiber should end.

Most software suites allows to decide where the seed points should be placed,using
random initialization or ROI selection [42]. The decision on the reconstruction al-
gorithm should instead be made with in mind the result wanted and the specific
application the tractogram will be used for. At last, the termination criteria could
be based on diffusivity information (like fractional anisotropy or FOD peaks dis-
tributions), geometries (e.g. considering the curvature of the fiber) or through the
use of masks [82].

Associating just one fiber to each seed point considered, deterministic methods
are unable to find branches and resolve fiber crossing problems. Furthermore, the
lack of a confidence score to a fiber pathway implies that local noise-related dif-
fusion errors could considerably deviate the pathways, making them not coherent
with the anatomical distribution [54]. Finally, the track termination procedure
contemplate the application of thresholds, not always intuitive to set[108].

Probabilistic tracking algorithms, on the other end, try to tackle these issues
considering the possibilities of splitting the fiber pathway during its reconstruction
[6]. Multiple pathway could be found using an estimation of the uncertainty of the
direction [7].

The clinical limitation of the probabilistic algorithms are due to the huge quan-
tity of fiber represented in the tractograms (that makes them really difficult to
interpreter), the slowness of the tracking (that limits the real-time application)
and, even more importantly, the nature of the output [8]. In fact, the output trac-
tograms does not picture the real axonal distribution but it symbolize a volume of
connections probabilities. The inevitable creation of anatomical non-senses induce
the necessity of an accurate analysis, based on prior knowledge, to extract the
relevant information.
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2 – Tractography

FACT

The first tracking algorithm conceived was the FACT (Fiber Assignment by Con-
tinuous Tracking) [64]. This approach showed how it is possible to reconstruct
the path of an axons using the diffusion tensor imaging, the study focused on rat
brains and set the stepping stone for all the following tractography tracking algo-
rithm implementation.

FACT is a deterministic algorithm that can trace down axons in a 3D grid using
the eigenvectors of the diffusion tensor. Due the impossibility of using the frac-
tional anisotropy information the tracking is only based on the largest diffusivity
direction. While a more immediate approach would suggest to link a voxel to the
most adjacent one that faces the same direction of the most prominent eigenvector,
errors and huge discrepancies between the tracking and the ground truth could be
observed since the diffusion direction are limited to eight.

The algorithm introduces a discrete approach using an edge-to-edge propaga-
tion instead of a center-to-center technique (Figure 2.2). Using just the principal
direction it is possible to obtain, with limited resolution, a good approximation of
the trajectory of a white matter fiber. The tracking is concluded when a factor R,
that weights the directions of the neighbor voxels, becomes lower than a threshold.

Figure 2.2. FACT tracking procedure and termination conditions (A: fibers en-
tering in low FA zone. B: sharp turns. C: combined conditions). The green arrows
indicate the voxel main diffusion directions.

SD_STREAM

The SDSTREAM [89] is a deterministic tracking algorithm implemented in the
MRTrix3 software suite that utilizes the FOD computed with the Constrained
Spherical Deconvolution to determine the fiber paths.

18



2.2 – Open Challenges

The local orientation of the fiber is considered as from peak of the FOD, com-
puted using a gradient-descend algorithm. The major problem appears when there
is a presence of small shoulders in the distribution (Figure 2.3). If the tracking,
for just a local point, deviates to a shoulder instead of following the real maximum
peak, the results could lose any anatomical validity. The termination strategy stops
the tracking when a fiber exceed a curvature constrain. This constrain is kept low
in order to allows tracking in the situation of small shoulder in the FOD.

Figure 2.3. Local maximum, represented by bumps in the fiber orientation dis-
tribution, can severely alter the tracking path.

The validation of Fuzzy Tracts has been carried on tractograms obtained with
this algorithm.

2.2 Open Challenges
Ten years have passed since the birth of tractography as we know it and a good
amount of obstacles are still unsolved [40].

Diffusion tensor tractography algorithm tends to use the main direction of dif-
fusion to reconstruct the axons. While this could be considered correct from a
diffusivity point-of-view there is no guarantee that the fiber path delineated has a
meaningful information in the axonal scale. Even more, it is nearly impossible to
distinguish between fibers that merge, or approach, into each other (Figure 2.4).
More sophisticated algorithms based on the Constrained Spherical Deconvolution
(CSD) are able to differentiate them but locally, in the voxel space, the behavior
is not determined [27].

Tractography can not distinguish between axons polarity. Whether a fiber is
afferent or efferent does not modify the diffusion information, making any assump-
tion on the direction a completely blind guess. Furthermore, given that the current
spatial resolution of the diffusion imaging is not compatible with the axonal di-
mension [78] a streamline is the representation of a certain number of real axons,
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2 – Tractography

Figure 2.4. In particular points of the diffusion images up to five fiber bundles can
merge in the space occupied by only two voxels, making them indistinguishable.

thus making assumptions on the polarity of a group of fibers intrinsically wrong
there might be differences in the axons composing it.

False positives, especially in large tractograms, are all over the place [88]. This
is the combination of different, not easy to tackle, problematic. Additionally, it is
not even simple to define what a false positive is, since these type of fibers could
be more correctly described as the probability of a mis-estimation from the trac-
tography algorithm. The most problematic causes are the over representation of
large bundles due to seeding mechanisms, inaccuracy in the white matter / grey
matter interface and resolution issues. Bottlenecks are frequents and often gathers
fibers with totally different paths in the space of a couple of voxels [56], making a
thrust worthy reconstruction nearly impossible.

Although some of this obstacles seem insurmountable due to technological lim-
itations, huge steps have already been made towards more faithful and consistent
tractographies. The most prominent works are relative to the post filtering of trac-
tograms in order to tackle the false positive problems [15] [83]. These approaches
include the incorporation of microstructural proprieties, removing streamlines that
does not represent the diffusion data. In particular since a streamline is the visual
interpretation of a group of axons it must have a volume, it is not independent
by the others of the same functional bundle and the density must be conserved [19].

In conclusion, while at the present time different issues still afflict the tractogra-
phy based analysis, a lot of methods are currently being developed to push forward
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the accuracy of this image modality, the most promising being the inclusion of mi-
crostructures information. Additionally, the correlation to functional MRI data,
the advance in post-processing filters and the continue progress in the understand-
ing of the brain anatomy make the tractography a research worthy topic with a lot
of breakthrough expected in the near future.

2.3 MRTrix3
With so many different diffusion imaging techniques, fiber orientation estimations
options, tractography algorithms, data formats and processing steps introduced in
the scientific literature the necessity of having a software suite that manages all
these aspects is crucial. MRTrix3 [89] proposes to perform these and other opera-
tions wrapping different commands and selections in an intuitive environment.

The suite, downloadable from the creators site http://mrtrix.readthedocs.io/,
is a command line based tools that implements all the above functionalities while
being constantly kept up-to-date with newly introduced algorithms, by a team fully
dedicated to its maintenance in regards to tractography and diffusion imaging in-
novations.

In this work MRTrix3 has been used to perform the fiber tracking on the Hu-
man Connectome Project data (Chapter 1.3). A list of commands based on the
specific needs has been prepared for a serial execution.

Due to the accuracy searched a simple diffusion tensor fitting would not satisfy
the requirements, for this reasons the constrained spherical deconvolution was cho-
sen for the computation of the fiber orientation distribution. The SD_STREAM
(Chapter 2.1) tractography algorithm allows to obtain more consistent inter-subject
results, useful for validation purposes, over other probabilistic approaches. Finally,
a filtering operation was omitted as not considered important for the validation of
Fuzzy Tracts.

It is worth noting that the software works with specific file formats, not sup-
ported by other neuroimaging application. While not problematic for visualization
purposes, since a visualization tool is already implemented in the suite, it forces a
format conversion operation during the development process.

Starting from the DWI, the values associated to the gradients (bvalues and
bvectors files) and a brain mask the process is divided in three parts:

• Response function computation: dwi2response;
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• Fiber orientation distribution extraction: dwi2fod;
• Tracking: tckgen.

The dwi2response function computes the CSD fiber response for a group of
streamlines with the same orientation. It is possible to use more sophisticated
algorithm to demarcate the contribution of the WM, GM and CSF to the response
[21].

From the response and diffusion data the fiber orientation distribution is com-
puted voxel-wise. With multi-shell data it is possible to obtain a more robust
estimation in white matter / grey matter boundaries and in brain parts formed by
the cerebrospinal fluid [41].

Finally, the tracking can be carried out with a selected algorithm (e.g. SD-
STREAM) after selecting the seed sampling method and the fiber-specific param-
eters (length, number, ...).
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Chapter 3

Use Case: Uncinate
Fasciculus (UF)

The presence and organization of white matter fiber bundles, constituted by mul-
tiple axons having similar geometry and function, has been known for year, with
the first accurate, and today still relevant, atlas dating the early 50’ [45].

The advances in the diffusion MRI introduce new ways of defining white matter
structures, for the first time in a non-invasive fashion. Due to resolution problems,
far from being solved, it is still impossible to define the connectivity of the brain
on an axonal scale but, at the same time, the macroscopic organization is clearer
than ever.

Different atlases [1] [68] report the major fiber bundles organization basing
the definitions on diffusion data analysis (Figure 3.1) and the validation on prior
knowledge, obtained from already tested classical method, like ex-vivo dissection.

The new opportunity of having an in-vivo representation of the connectivity
allows an even more specific characterization of the group of fiber composing the
brain, thus making a bundle-based investigation more compelling then a whole-
brain study (Chapter 4). Furthermore, the validation of a tool on large tractograms
would not be a simple and immediate task.

Of the multitude of anatomically known and literature defined bundles the
choice for the validation of Fuzzy Tracts feel onto the Uncinate Fasciculus for two
major reasons: the quantity of articles that it figures in and the rather smooth and
packed spatial geometry (Figure 3.2).
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3 – Use Case: Uncinate Fasciculus (UF)

Figure 3.1. Section of the Mori atlas based on the colored fractional anisotropy map.

Figure 3.2. Uncinate Fasciculus obtained through manual ROI posi-
tioning (Catani technique).

The neurological role of this bundle is still debated with most studies report-
ing a link between a pathological reduced activity of the Uncinate Fasciculus and
memory issues [99], lesions especially creating issues during the retrieval of memo-
ries [58] and names. It has also be proposed the involvement of the bundle in the
language regulation, with deficit observed after the removal of the fibers.

The retrieval of the bundles definitions can follow two main strategies: ex-vivo
dissection and in-vivo imaging. The dissection-based methods allows to distinguish
fiber bundles that do not have well recognizable contours in MRI scans [44].

24



The Uncinate Fasciculus takes its name from it particular shape [23] resembling
an hook. This peculiar characteristic has been validated and considered accurate
by nearly everyone in the neuroimaging community [76] [71].

While the definition about the shape is vastly accepted there are huge discrep-
ancies between interpretations regarding the more detailed anatomy of the bundle.
In particular, dissection techniques produced different results, often reporting con-
flicting definitions about the relative position to the insula [60] [71] and in the
anatomy of the portion that lies in the temporal lobe [59] [73].

The most important contribution from an radiological point of view are given
in form of atlases [16] [102] and refers to the Uncinate Fasciculus as a pack of fiber
that links the temporal pole to the frontal pole arching at the level of the external
capsule.

A clustering of the bundle showed five fiber group [37] that connects slightly
different regions. These regions have been evaluated from dissections studies and
the exact termination of each part mapped.

An added difficulty in the examination of the Uncinate Fasciculus is its prox-
imity to other vast fiber bundles. In particular, the Inferior Fronto-Occipital Fasci-
culus (IFOF) intersects the UF in the external capsule [57] and both of them joins
the claustrocortical fibers under the inferior limiting insular sulcus [76] (Figure 3.3).

Figure 3.3. Fibers with different origins and functions all run close to each
others in the temporal stem. In green the fibers belonging to the UF. In yellow
the fibers belonging to the IFOF.

The characteristic fractional anisotropy is a difficult information to define since
a lot of variations have been observed for different age, sex and pathologic condi-
tions. While there is no evidence of a consistence asymmetry in the FA values for
the two hemispheres [101] [94] it has been noted a significant increase of the FA
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3 – Use Case: Uncinate Fasciculus (UF)

values moving towards the frontal lobe (Figure 3.4).

Figure 3.4. Tipical FA profile in the UF obtained meaning the data from 48 subjects.

The asymmetry has also been evaluated in terms of volume occupied by the
fibers. In this parameter most of the studies give concordant results, a noticeable
amount of asymmetry has been observed with the right hemisphere expressing one
third more fiber than its counterpart. The results stands even for different sex and
in the presence of pathologies [38].
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Chapter 4

Segmentation Methods

Working on whole-brain tractograms is not an easy task due to the huge number
of streamlines that compose them. Not only they are very difficult to interpret
visually but also from a computational point of view operating with millions of
streamlines could quickly chock up the machine virtual memory and CPU.

In order to provide clinicians useful information about the brain behaviour
there is a necessity to divide tractograms into anatomically significant parts. Var-
ious segmentation methods have been developed during the years with the goal to
extract group of fiber with similar proprieties and biological functions.

For functionality recovery estimation and surgical planning the tractogram
analysis usually focuses on the specific type of white matter fibers involved in
the biological processes correlated to the pathology. A segmentation algorithm not
only should provide accurate results but it must be able to adapt to the specific
operation in regards to both functionalities and applicability.

The diversity of the streamline species (commisurals, associations and projec-
tion fibers are all present in a tractogram) adds a supplementary level of complexity
to the problem, especially for larger fiber bundles composed by a variagated pop-
ulation.

Furthermore, the consistency and precision of the results are not parameters
immediate to evaluate since universally accepted bundle definitions have not been
found yet. The analysis of the results can only be done in qualitative way and its
a prerogative of every segmentation algorithm to allow the clinician to perform a
critical interpretation of the output, for an eventual modification or acceptance.
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4 – Segmentation Methods

The segmentation techniques vary greatly between each other for concept, im-
plementation and applicability but three main categories can be identified: manuals
segmentation, clustering algorithms and mixed approaches.

4.1 Manual Segmentation
For this type of segmentation methods the fibers selection is carried out directly
operating on diffusion images, manually selecting the zones (set of voxels) where
the fiber bundle is thought to pass by. This parts, called Region of Interest (ROI),
could be additionally be classified in region of inclusion (highlighting the fiber path)
and region of exclusion (brain parts not crossed by the bundle).

Since the ROI are directly drawn onto the DWI or on the, often more indicative,
FA map, an extensive knowledge of the human brain anatomy must be possessed
by the user as in both cases the streamlines are not directly visible.

While different ROI positioning strategies have already been defined for the
most common fiber bundles [1] [101] (Figure 4.1) the final decision is in the hand
of the operator, making the clinician experience a valuable added factor.

The manual drawing of the ROI, often carried out on external software on PCs
or tablets, consists in the creation of different masks with the use of a pointing
device (mouse or stylus). Due to the human factor introduced this method does
not allow to obtain a consistency in the results even for multiple segmentation of
the same bundle, in the same subject, by the same operator.

There are mainly three types of operation used to exploit the region of inter-
ests approach [102]: AND, CUT, NOT. An AND between two ROI will select all
the fibers that pass through both of them, the CUT, in a similar fashion, is and
AND operation where the streamlines are truncated in the position they cross the
ROI, the NOT operation transforms the region of interest in a region of exclusion
(Figure 4.2).

Instead of a real-time segmentation operation the drawing of the region could
be carried out on a standard brain space in order to form a mask image to be used
for subsequent segmentation [110]. While this approach can speed up the manual
processing the validity of the results is not guaranteed due to potential lack of
correspondence between the subject brain structure and the reference space.

The intrinsic variability tied to the human aspect involved makes the manual
segmentation a low reproducible and of difficult validation technique. Furthermore,
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4.1 – Manual Segmentation

Figure 4.1. ROI position strategy edited by Catani.

it is not possible to adapt an ROI-based approach to statistical studies since the
time-consuming segmentation operation scales really poorly with the number of
subjects.

Ultimately, the pros of using a full manual method (customization and control
over the segmentation process) are counterbalanced by a vast quantity of cons
(time of the procedure and result consistency over all) limiting severely the field
of application of this approach.
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Figure 4.2.
Different region
of interest position
strategies. a) first
ROI b) the AND
eliminates the
fibers that do not
pass through it c)
the NOT eliminates
the fibers that pass
through it d) the
CUT combines the
AND operation
with a truncation.

4.2 Clustering Methods
While manual segmentation methods attempt to divide a tractogram starting from
the delineation of the regions traversed by the fibers, using prior anatomical knowl-
edge and user experience, clustering algorithms exploit the mathematical propri-
eties of the streamlines to aggregate the most similar ones.

The clustering methods usually offer very little interaction with the users, sep-
arating tractograms into fiber groups (clusters) only based on objectives and quan-
titative information. Each cluster should contain streamlines very similar between
each others (minimizing the intra-cluster variability) and well separated from the
other clusters (maximizing he inter-cluster distance). The exact definition of the
concept of similarity is central to every clustering algorithm and must be carefully
designed to fit the algorithm characteristics to the application they need to perform.

One of the most immediate, and commonly used, distance metric is the MDF
function (Figure 4.3). A point-wise distance function (like an Euclidean or an
Hausdorff equation) computes and means the distance contribute for each pair of
point composing two streamlines. The final distance will be considered as the min-
imum between the result obtained from the two fibers as they are and the result in
the situation one of them is flipped, in order to avoid issues related to orientation
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mismatches. This metric requires a downsampling of all the fibers to the same
number of points to have a correspondence along their entire lengths. This basic
metric has been implemented in simple clustering algorithms [30] that aggregates
the fibers when the distance is under a certain threshold while creating a new clus-
ter otherwise.

Figure 4.3. UF fibers colored with their MDF values associated, calculated as the
distance from the bundle centroid.

Similar techniques, also using pairwise distance metrics, can compute the dis-
tance between each fiber of the tractogram and reference fibers obtained through a
manual segmentation with ROI placement [110] or being used in combination with
atlas based approaches [36].

The main drawback distinctive of quick-to-implement metrics is the very lit-
tle quantity of fiber information (diffusion and structural proprieties in articular)
taken into consideration, the necessity of a downsampling operation (reducing the
precision to maintain a pairwise correspondence) and the adaptability to large
dataset, making them a valid choice only when the goal is to perform a qualitative
segmentation of small tractograms.

The diffusion information, usually not taken into consideration by classical
clustering algorithm, could characterize and well distinguish fiber bundles. The
behavior of the fractional anisotropy for example has been shown to be consistent
between different subjects [109].

Clustering techniques differentiate from each other for the use of different met-
rics, for example estimating the curvature and torsion of the streamlines [18] or
their connectivity [14], and different cluster-creation methods [63], often based on
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splitting techniques already introduced in other fields, like the k-means and c-
means algorithms.

The choice on what metric and algorithm fit better to the implementation re-
quired, completely in the hand of the user, could create a lot of confusion and
pitfalls, especially when the decision has to be expressed by someone without an
engineering background. Finally, the impossibility to develop a clustering tech-
nique able to easily adapt to every tractography application introduce the need to
institute a more universal segmentation approach.

4.3 Different Approaches
Due to the intrinsic limitation of both fully manual and fully automated ap-
proaches, hybrid methods are more and more relevant and developed. Trying
to combine multiple sources of information could bring the solidity, so hard sought
by the segmentation algorithm.

The ROI-based segmentation idea could be modified to create an automatized
method, more fit to multiple subject studies, using an atlas of the brain to guide the
ROI positioning [50]. The use of an atlas allows to reduce of the time-consuming
operation of drawing the inclusion and exclusion regions to a one-time operation.
A deep parcellation of the brain assigns to every white-matter portion a label num-
ber, that can be sequentially decoded to a literature defined anatomical area.

In these atlas-based methods the modus operandi tends to be very close to the
one of a fully manual segmentation with the atlas generation being fully hand-made
by an expert. Each subject scans will then be registered to the atlas and the fibers
that pass through the chosen label number will be segmented.

Voxel-based approaches try to assign each voxel to the most probable fiber
bundle they belong to, using models to express the local diffusion proprieties and
tracts connectivity [5] or directly looking at the fiber orientation distributions [104].

Finally, fully hybrid approaches can combine clustering algorithms with atlases
and tissue segmentation methods [53] or use newly defined strategies, like spatial
relations between structures (Chapter 5).

The vastness of segmentation options today available, greatly differing in con-
cept, is an indicator of the importance of the topic and shows the need for a solid
and complete ultimate tool. Fuzzy Tracts tries to fill this aspect with a complete
hybrid approach as described in Chapter 6.
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Chapter 5

White Matter Query
Language (WMQL)

The White Matter Query Language (WMQL) [106] is an atlas-based segmentation
method that introduces a new approach: an human readable segmentation lan-
guage. The users have the ability to define a white matter fiber bundle through
the use of a specific syntax, built using neuroanatomical terms (Figure 5.1).

Figure 5.1. WMQL pipeline.

With the language proposed a bundle can be identified through the use of differ-
ent types of position based definitions [105]. A fiber can be specified as a line that
start from an anatomical area and terminate in another one or it can be described
as a line that pass through a particular zone. Finally, relative spatial relation could
be used to frame the bundle in a bounding box selection.
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The feature that stands out is the concept of the near-to-English segmentation
language proposed. Having a textual reference could impact the way clinicians
defines fiber bundles, standardizing the approach. It also fits very well when the
tool must be used by people without a engineering/mathematical background, like
neuroscientist. Furthermore, this approach allows to easily modify a bundle defi-
nition, formalizing the description to keyword and names the users only concern is
to respect the introduced notation.

The combination of all the spatial position based definition forms the exclu-
sion/inclusion rules, that applied element-wise to all the tractogram fibers produce
the final segmentation.

The application of the algorithm requires three preliminary steps:
• Complete brain labelling (amygdala, putamen, thalamus, ...) in order to

define the reference (atlas-based approach);
• Collection of information about the relative position of the fiber bundle in

respect to the labels (query);
• Fine tuning of the algorithm parameters.

With a query, an atlas and a tractogram, WMQL can be run from the command
line to extract a segmentation in the TrackVis file format [103].

5.1 Queries
The list of definitions, also called query, has to be compiled directly by the user and
it offers the maximum liberty in regards of the customization possibility (Figure
5.2).

A parser has the goal of read the queries and transform the descriptive content
in labels and operators more suited for computational purposes. The queries inter-
prets the use of some keywords and label names. The fiber connectivity is expressed
defining where its starting and ending point lie (e.g. endpoints_in(temporal.side)),
it is important to highlight that this definition does not distinguish between starts
and ends, distinguishing the two requires the use of the operator and. For the
crossing area option no keywords are needed (e.g. temporal.side) but it is possi-
ble to specify the percentage of the fiber points that must pass trough the region.
These keywords and those expressing relative positions are reported in table 5.1.
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Figure 5.2. Terms avaiable for defining WMQL queries and example of
the UF segmentation.

Keywords
and endpoints_in lateral_of
or both_endpoints_in inferior_of

not : in anterior_of superior_of
not posterior_of
only medial_of

Table 5.1. WMQL supported relations for queries definition.

In addition, a last parameter, given directly through the command line, allows
to define the minimum length, in millimeters, the fibers should have to belong to
the bundle.

The difficulty about defining a query is the lack of gold standard definitions.
In fact, as explained in Chapter 3, even for a relatively compact and reproducible
bundle like the Uncinate Fasciculus every author slightly modify the phrasing and
it’s not rare to find discordant definitions.

In the end the delineation of the queries must be modified for each image/atlas
pair to best fit the the results to the application searched. The final query used in
Fuzzy Tracts combines the UF definition from the papers of Catani [16], Wakana
[101] and Leng [52].
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5.2 Limitations
Like every other atlas-based approach (Chapter 4.3) WMQL is very sensitive to
the correspondence between the parcellation file and the image in analysis. The
combination of user defined queries and atlas-image differences diminish greatly,
not only the inter-subject reproducibility, also the level of confidence in subject-
specific studies.

Noticeable discrepancies can be observed between the results obtained with
literature based queries and experimental queries (Figure 5.3, an operator could
doubt the correctness of the definitions and be disoriented by the differences be-
tween the segmentation produced and the expected output. Finally, the quality of
the tractograms can affect the introduction of other errors, the presence of false
positives that have a path similar to the true positives could produce misleading
results.

While the last issue can be fixed adding new definitions a posteriori of an initial
trial segmentation, the atlas and queries induced variability are obstacle not easy
to overcome making the necessity to extend the framework is particularly evident
in situations where the confidence is a key factor, like a pre-chirurgical planning.

Figure 5.3. The inter-subject variability does not allow to have consistent bundle
definitions. The necessity to add custom information to remove the outliers is ev-
ident in the UF segmentation. Top: WMQL default query. Middle: Combination
of Catani and Wakana definition. Bottom: Experimental query.
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Chapter 6

Concept

Fuzzy Tracts, the tractograms segmentation algorithm proposed, has the goal of
accurately segment the majors white matter fiber bundles in an accurate and re-
producible way, keeping an user-centered environment.

The segmentation algorithms proposed in the literature all fail short on pro-
ducing optimal performances and applicability due to the different problems that
affect them.

The ROI approach, being completely user dependant, could output results over-
all not rappresentative of the bundles and highly discordant between operators since
there is no gold standard region of interest/exclusion position strategy. In addition
the method has a really low scalability, the time-consuming operation of manually
delineate subject specific region-of-interest makes it not feasible for vast dataset
applications and statistical analysis [50].

The clustering algorithms, on the other, hand offer little to no interaction with
the users and are often too dependant on the metric selected or the classification
algorithm chosen. Furthermore the metrics are, most of the time, based on diffi-
cult to define parameters and the clustering methods might require additional, not
known a priori and difficult to validate, assumptions [63].

Finally, the atlas based approaches are not able to extract meaningful infor-
mation when the inter subject correspondence hypotheses is void. This methods
offers an high scalability as the strategy can be defined just one time and applied
on each subject of the dataset, making them very useful in statistical analysis, but
less relevant for subject specific studies.
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Excluding the manual ROI segmentation, the other methods could be combined
together in order to find the optimal compromise between results quality, feasibil-
ity, number and coherence of the hypothesis.

Fuzzy Tracts, exploiting the spatial relation definition concept introduced by
WMQL, tries to improve the reproducibility and to produce more consistent out-
puts adding an interactive confidence level thresholding to the process and inte-
grating and extending the already existent framework.

With a new view, an uncertainty factor is modeled defining spatial fuzzy sets.
Assigning a degree of uncertainty to the output segmentation allows to perform a
critical analysis of the results, thus enabling an on-the-fly validation.

The absence of standard definitions, in respect of positions, geometries and dif-
fusion information, limits the possibility of creating a fully automatized tool. The
user must be able to use his experience and prior knowledge to customize and opti-
mize the segmentation result in order to best fit the output to the particular needs.

In conjunction with the fuzzy approach an innovative metric for fiber clustering
is here implemented and tuned. This allows to improve the feeling of control of
the process adding ways to manage the part of the algorithm usually in the hand
of the machine.

Since using just one feature is not adequate to obtain anatomically meaningful
clusters, the metric should include both structural (position, geometry, ...) and
diffusion (anisotropy, diffusivity, ...) information. The choice for the metric fell on
the functional varifold, adding the FA data to the fiber proprieties.

Furthermore, the tool needs to be feasible for the usage in the most common
tractography applications and environments. This implies that it must be practi-
cal and convenient to use also by people with different knowledge background, not
limited to computer science. The computational times must be coherent with the
surgeon request, in case of pre-surgery planning, or with the data scientist needs,
for statistical analysis applications.

The great number of options supported by the tool does not interfere with the
operator experience, the process is all around kept user-friendly reducing the final
decision to the choice of a threshold value. More expert operators will find the
opportunity to use supplementary fine tuning parameters to improve the segmen-
tation, managing every step of the process.

Finally, Fuzzy Tracts inherits by the WMQL the human readable language idea.

42



The queries already defined can still be used in the situation the user wants to use
the WMQL framework in an initial step but if, on the contrary, the segmentation
strategy wants to deploy all the new native functionality, the same queries can be
intuitively adapted to the new configuration file.

All the other tuning options (metrics parameters, thresholding, ...) can also be
easily adjusted in the same settings file, thus avoiding the dispersion of information
in multiple location of the code, keeping a more clean layout.

In this part of the thesis the processes behind the tool will be presented in
their entirety, covering all the aspects from the input to the final segmentation,
detailing the theoretical basis and the practical implementation, and finally per-
forming a critical analysis of the results obtained highlighting the pro and cons of
the software.
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Chapter 7

Spatial Fuzzy Sets

The idea behind a fuzzy set approach is to complete the problem delineation with
information expressed in an natural way and modeled to reflect the human think-
ing. Fuzzy logic tries to implement a conceptualization of the thought processes the
experts create, often composed by vague and ambiguous terms relevant only with
a knowledge of the context, when solving a specific task. Fuzzy logic model the
uncertainty admitting continuous degrees of membership to different sets. While
the crispy logic decisions follows a binary approach, either a condition is true or it
is false, a fuzzy classes makes use of membership function, defined in an assigned
interval, to assign to each element an association score.

The fuzzy approach is divided into two different part: the definition of a rule
and the application to the result. While for the crispy logic the state of the output
(true or false) is equal to the result of the evaluation of the rule in a fuzzy set there
is not a concept of state but more of degree of membership.

The interaction between fuzzy rules are extensions of logical operation AND
(set intersection, also called t-norm) and OR (set union, also called t-conorm),
their conceptual definitions are: how much an element belong to both sets? how
much an element is in wither sets?

A last step of the process is the defuzzification. To obtain meaningful results
the uncertainty must be resolved in order to reach a crispy decision (e.g. fiber is
in bundle or fiber is outlier). The defuzzification aggregates the results in output
from the application of the rules to the dataset. The definition of how to aggregate
these results is key to the modellization of the final output.

The fuzzy sets applications are not limited to the biomedical field, it covers
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topics like management systems, geography, ... [48] and more generally wherever
the crispy approach is not able to solve situation naturally answered by the com-
mon human experience [70].

In image processing the spatial fuzzy sets are the natural extension of the de-
scribed uncertainty framework, for a direct application on 2D and 3D structures.
Maintaining the same process already defined the fuzzy rules are computed directly
on a object and evaluated in all its points.

The class of the spatial fuzzy set methods used in Fuzzy Tracts tries to assign a
degree of uncertainty to the definition of directional relative position, concept often
not well delineated. Fuzzy approaches provide a way to interpret these definitions
and compute their consistency. While topological positions are deeply investigated
not much is done for directional relations due to the difficulty to quantify defini-
tions as ’right of’ and ’left of’, especially in situations like Figure 7.1.

Figure 7.1. While for the case on the left is possible to define the object in respect
to the reference, for the image on the right it is not possible to decide exactly if
the object B is to the right or up to R.

One first approach, introduced in [62], consists in computing the angle θ formed
by the segment that joins two points and the reference ax (equal to one of the four
main direction of a 2D image). In this situation the membership functions are
dependant on θ and defined in [-π,π]. Initially accepting only on the four principal
direction, the extension on multiple direction and 3D cases adds a versatility of use.

A method to increase the directions number from four to eight combines the
precedent direction definitions to form the oblique directions, still remaining lim-
ited in the precision. The extension to a 3D image is possible using a different
way to define the directions, expressing them as the combination of two angles α1
(defined in [0,2π]) and α2 (defined in [-π/2,pi/2]).

In order to obtain a more precise fuzzy representations the relative position
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could be computed with the fuzzy pattern matching approach [22], composed by
two steps: a fuzzy landscape is prepared based on the reference object points, the
target is directly mapped on the fuzzy set.

Let’s consider two object R (reference) and A. The membership function, defin-
ing the degree of direction of A in respect to R, µA(R), can be represented on the
image S in the interval [0,1], where high values means high probability and low
values picture a low probability. The uncertainty of how much A, in all its points,
satisfies the spatial relation in respect to R is then based in function of µA(R)(x)
and µA(x).

The fuzzy pattern matching define probability as:∏R
α1,α2

(A) = supx∈S t[µα(R)(x), µA(x)]

The definition of µA(R) is thus central part of the whole expression. The mem-
bership function definition, being user dependant and specific to the results needed,
must be carefully crafted.

The membership function used by Fuzzy Tracts considers the visibility space
saw by a reference object in the direction specified [11].

For each point in S, the point of R which form the smallest angle β between
the segment that joins them and the direction chosen, is identified. The landscape
in a point P will then be defined as: µA(R)(P ) = f(βmin(P )) where f is a function
defined in [0, π] that can assume values in the range [0,1], for example the following:

µA(R)(P ) = max(0,1 − 2∗βmin(P )
π ).

Furthermore, seeing the problem from another perspective it is possible to in-
dicate µA(R) as a fuzzy dilation of a structural element v (defined on the support).

This brings the notation used by Fuzzy Tracts to:
v(P ) = max[0,1 − 2

π − arccos( O⃗P ∗µ⃗α

||O⃗P ||
)].

Where P is a point of the support and O the origin, in this tools the origin has
been assumed has the center of the image (Figure 7.2). The final dilation algorithm
will then consist on applying:

Dv(µ)(P ) = maxQ∈St[µ(Q), v(P − Q)]).
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7 – Spatial Fuzzy Sets

Due to computation time issues this approach has been chosen even if it brings
an approximation of the results. Another more precise implementation, using a
propagation algorithm [12] is available but not directly wrapped into Fuzzy Tracts.

Figure 7.2. Structuring element centered in the middle of the image for the
definition ’to the right to’.
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Chapter 8

Functional Varifolds (fVar)

Most of the streamlines clustering algorithms, as reported in Chapter 4, fails short
in some key aspect and, even more importantly, do not combine diffusion data with
streamlines geometries. This loss of information originates a low level of specificity
that limits greatly the quality of the results.

The functional varifold, an extension of the weighted currents framework [34],
combines tracts morphology and microstructure information, using the fractional
anisotropy in the similarity measure formulation.

In this approach every fiber is approximated to a line composed by a certain
number of segments and described by their centers and tangents. With this view
a fiber X formed by P segments can be rewritten as:

VX,f (ω) ≈
∑P

p=1 ω(xp, βp, fp)cp.

It is immediate to define the inner product between the streamline X and an-
other one Y (composed by Q segments) using this notation:

⟨V(X,f), V(Y,g)⟩ =
∑P

p=1
∑Q

q=1 kf (fp, gq)kx(xp, yq)kβ(βp, γq)cpdq.

Where f and g are a specific function computed along the fibers points (the
fractional anisotropy in our case). The three kernels that appear in the expression
regulates the sensitivity and the response to each factor.

In the implementation used by Fuzzy Tracts kf and kx are assumed as gaus-
sian kernel and kβ is a Cauchy-Binet kernel, in this way the final expression can
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8 – Functional Varifolds (fVar)

expressed as:

⟨V(X,f), V(Y,g)⟩ =
∑P

p=1
∑Q

q=1 e
− ||fp−gq||2

λ2
m ∗ e

− ||xp−yq||2

λ2
w ∗ ( βT

p ∗γq

cp∗dq
)2 ∗ cp ∗ dq.

This formulation does not require a downsampling of the fibers like most oth-
ers point-to-point correspondence based clustering algorithms do (to have every
streamlines with the same number of points). Furthermore, a reorientation of the
fiber is also not necessary since the metric weights the differences in segments fea-
tures keeping in consideration the distances between them.

The functions f and g are exploited to model the diffusion information given by
the fractional anisotropy map while the other terms consider the differences in the
geometry of the streamline (Figure 8.1). Wanting to add even more structural in-
formation with a new approach the distances between start-points and end-points
are inherited from the weighted currents. This modification forces a preprocessing
consisting on orienting the fibers in the same direction since, if not, it would not
be possible to define what are the points considered as start and those considered
as ends (Chapter 9.4.1).

Figure 8.1. Whole brain clustering using the functional varifolds (left),
the varifold without considering the diffusion information (center) and the
MCP distance (right).
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In the weighted currents framework [35] the new information about the connec-
tivity can be added to the already defined distance metric. Assuming two fibers X
and Y it is possible to specify the inner product as:

⟨CX , CY ⟩ = ka(fa, ta) ∗ kb(fb, tb) ∗
∑N

i

∑M
j [αT

i kg(xi, yi)βj ].

Combining the weighted currents to the varifolds and applying the kernel as
previously described, the final inner product metric implemented in Fuzzy Tracts
between two streamlines X (composed by N points) and Y (composed by M points)
can be expressed as:

⟨CX , CY ⟩ = e
− ||fa−ta||2

λ2
a ∗ e

− ||fb−tb||2

λ2
b ∗

∑N
i

∑N
i [e− ||xi−yi||2

λ2
w ∗ e

−
||F Ai−F Aj ||2

λ2
m ∗ ( αT

i ∗βj

|αi|∗|βj | )2 ∗ |αi| ∗ |βj |].

Where fa and fb are the extremities of the streamline X and ta and tb are the
extremities of the streamline Y . In the parenthesis instead there are the terms
that regulate the distance based on the geometry, x and y are the coordinates of
the center of the segments composing the respective streamlines. The difference
between the FA values are computed in these centers and the last term confront
the difference between the tangent between those segments.

The widths of four kernels must be imposed by the user in function of the
application searched:

• λa: regulates start-points distances contribute (mm);
• λb: regulates end-points distances contribute (mm);
• λw: regulates segment distances contribute (mm);
• λm: regulates FA differences contribute ([0,1]).

The kernels should be chosen with in my mind the anatomical characteristics
of the bundle to segment, since they bring a ’real-world’ information. When a
contribute exceed the kernel width by three times the lines will be considered or-
thogonal for that feature.

Applying the equation to every pair of fibers composing the tractogram pro-
duces an inner product matrix, with dimension KxK (where K is the number of
streamlines), that can be exploited to compute a distance matrix or other mea-
sures, like the cosine similarity.

The matrix, being symmetric in respect to the main diagonal, can be obtained
looping only on the upper half in order to save computational time and hardware
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8 – Functional Varifolds (fVar)

resources.

The kernel widths searched for Fuzzy Tracts are bundle based, values that al-
lows to produce similar results for different subjects are sought. To improve the
consistency it is suggested to impose more relaxed parameter, in particular for
the Uncinate Fasciculus use case the four kernel were tuned to: λa = 5 mm,
λb = 6 mm, λw = 3 mm, λm = 0.05.
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Chapter 9

Implementation

As noted in the tool introduction (Chapter 6), the whole process to obtain the
segmented output fiber bundle is composed by different segmentation methodolo-
gies, an atlas based approach is used for the definition and the computation of the
spatial fuzzy sets, meanwhile a clustering technique, that exploits the functional
varifold metric, anticipates the final thresholding (Figure 9.1).

The procedure can be seen as a succession of different steps, each performed in
series to the previous.

In total five major section of the algorithm can be identified:

1. Fuzzy Sets computation;
2. Initial Segmentation;
3. Fractional Anisotropy extraction;
4. Clustering;
5. Final Segmentation.

The data needed are the tractogram and either the folder containing the diffu-
sion data of the subject or a precomputed FA map. This structure gives the user
the ability to obtain a tractography with the modalities he prefers and further-
more, it is possible to use suites of softwares or stand-alone package that would
be difficult, if not impossible, to wrap in the main code. Finally, it speeds up the
segmentation as the modern tractography algorithms usually require a powerful
machine and a low-level coded algorithm.
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9 – Implementation

Figure 9.1. Fuzzy Tracts Pipeline. From the DWI (a) both a whole brain trac-
togram (b) and an FA map (c) are computed. Through the use of spatial relations
(d) an initial segmentation (e) is performed with WMQL. The same relations are
applied to produce the spatial fuzzy sets (f), in the figure just the amygdala and
putamen are showed. Combining diffusion, connectivy and geometric information
a set of clusters is generated. The fuzzy values are then mapped onto the prototyes
(g) of each cluster and propagated to the other fibers (h). Using a threshold the
user is able to modify the final segmentation (i)

Different options and configuration files are available, for more information it
is best to check the User Guide (Chapter 11).

Before running the code it is mandatory to configure the tool. This is done
editing one configuration file (or two, if the WMQL option is chosen). The file
follows the JSON format [25]. This format has been preferred over others markup
languages, like XML, for its user friendliness, and over other configuration types
of files, like INI, for its more powerful features.

The configuration files must specify: the name of the fiber bundle (it will com-
pose the name of the output file), the spatial relation in respect to the six principal
directions (anterior, posterior, left, right, up, down) using the Freesurfer notation
[28] and the width of the kernel used by the function varifold.

After all the parameters are set, the spatial fuzzy sets are computed for each
bundle defined. There are no limitation on the number of bundles to segment at
the same time or the number of sets defined, as long as they are coherent with the
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9.1 – Fuzzy Sets computation

Freesurfer definitions and the labels used are present in the atlas.

An initial segmentation of the whole brain tractogram is performed either using
the White Matter Query Language [106] or using the sets. The diffusion tensor is
then fitted to the diffusion image and the fractional anisotropy is extracted and
given as input to the functional varifolds. After the distance matrix is computed,
using the fVar, a clustering algorithm (density based or spectral clustering) di-
vides the initial segmentation into small groups of fibers. The fuzzy sets are finally
mapped on the centroids of the clusters and through the use of a threshold the
resulting output can be fine tuned to best fit the user needs.

9.1 Fuzzy Sets computation
The fuzzy sets definitions and computing are central to the whole process. They
are created once for each fiber bundle at the beginning of the pipeline and then
used in every other part of the code.

The input parameter needed for this steps are the atlas, from which a mask
will be extracted, the Freesurfer label legend and the configuration file informa-
tion about the relative positions. Being the feature that makes this segmentation
algorithm stands out from the others, it has been decided that the definition of at
least one spatial relation is mandatory, since, if not, the whole spatial fuzzy sets
approach would be voided.

For each direction is possible to define one or more spatial relations, although
it is better to avoid replicating definitions as that would not add any additional
information and, at the same time, increase the computational time. It is not
mandatory to set the spatial relations in regard to every of the six directions im-
plemented, the user has the option of leaving the field, corresponding to the relation
not defined, to null (special character of the JSON data format).

Initially the directions are transformed from human-readable keywords to sets
of values, indicating the two angles (α1 and α2), that will be used to define the 3D
baseline for the landscape set computation (as explained in Chapter 7). Since the
concept of anterior/posterior, up/down and left/right is not well-defined without a
reference space and since the modern MRI scanners can pick up the data from any
position in respect to the magnet, the angles definition needs to take into account
the orientation of the image they are referred to, in this case the atlas.

The principal space convention are the RAS (Right-Anterior-Superior) space
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convention, also called neurological, and the LAS (Left-Anterior-Superior), called
radiological [87]. In the neurological convention in particular, the orientation could
be associated with the view of the patient from the top of the head, having the
right side of the image showing the right side of the patient.

While most of the softwares use the RAS (right-anterior-superior) space con-
vention, due being the most common one in neurological analysis, there is the need
to obtain the versatility of working with different images. Fuzzy Tracts automati-
cally manages the angles values based on the atlas orientation, allowing every space
convention possible. The angles, in function of the orientation, are listed in 9.1.

L R A P I S
right_of α1 = 0, α1 = π,

α2 = 0 α2 = 0
left_of α1 = π, α1 = 0,

α2 = 0 α2 = 0
anterior_of α1 = −π/2, α1 = π/2,

α2 = 0 α2 = 0
posterior_of α1 = π/2, α1 = −π/2,

α2 = 0 α2 = 0
superior_of α1 = 0, α1 = 0,

α2 = π/2 α2 = −π/2
inferior_of α1 = 0, α1 = 0,

α2 = −π/2 α2 = π/2

Table 9.1. Direction angles in function of definitions and orientations

Once the angles are defined it is possible to obtain the direction of the vector
specifying the direction as:

dirX = cos(α2) ∗ cos(α1)
dirY = cos(α2) ∗ sin(α1)

dirZ = sin(α2)

Using the three vectors computed a first fuzzy set is generated, the fuzzy land-
scape associated to a direction is computed by looking at the angle from which
each voxel is seen from the center of the image and which is the closest from that
specific direction [11].

Centering the landscape to the middle point of the image allows to have an
initial reference set that can be moved around for the processing of the final,
anatomically significant, spatial set of the region configured, following a direct ap-
proach.
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9.1 – Fuzzy Sets computation

The initial fuzzy set is an image, defined in all its domain, having high values
in the voxels right in the line specified by the vector, that decreases moving away
from it, until reaching the exact opposite direction, where the voxels will have the
value 0.

Normalizing the fuzzy value in the interval [0,255] makes it easy to notice that
all the voxels with high values (around 255) are the most certain to be in the direc-
tion chosen for the object, and that this probability decreases with an equal speed
in circles centered around the vectors defined line, forming what could be pictured
as cones of fuzzy values (Figure 9.2).

Figure 9.2. Fuzzy sets obtained in respect to the Amygdala and the
Putamen projected on the UF. Their support widths can create figures
resembling cones of fuzzy values.

Once the fuzzy layout is defined, the anatomical information are introduced.
For each direction, the labels of the regions indicated are extracted. Since the
regions are written in the configuration file in an human readable way they need
to be translated in their Freesurfer respective label number. To do so a legend of
the Freesurfer parcellation files has been created and it is looped over to find the
correspondence.

After extracting all the labels a binary mask is prepared.

The initial fuzzy landscape is projected onto all the mask object points, moving
the apex of the fuzzy cone (in the layout set fixed on the center of the image) to
every object point.

Additionally, varying the support width (which means regulating the speed
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the set decreases the fuzzy probability moving away from the line) the focus of
the fuzzy projection will be increased, reducing of the fuzzy cone apertures. The
widths can be modified with an additional parameter k. For example, assuming
k = π the support is constrained to the bounding box that starts on the farthest
point of the mask from the direction indicated.

To save up computational power and consequently time, the projection is not
moved on every object point of the mask but instead the operation is reduced to
the boundary points. This does not introduce any error as the fuzzy cones cen-
tered on the internal points of the object would be anyway enclosed by the ones
starting from the boundary points, thus not affecting the quality of the final result.

Finding the boundary points of the mask is a procedure composed by a ba-
sic morphological operation and a binary logical instruction. A dilation [95] of
the mask, previously created from the labels, using the smallest 3D structuring
element possible, a 3x3x3 cube, is performed. This operations sets to one the 26-
neighbourhood of every object point, increasing their total number.

Finally, an XOR operation between the original mask and the dilated one final-
ize the extraction of the boundaries. The element-wise XOR keeps only the voxels
that swapped their value (Table 9.2) which implies, since these correspond to the
neighbourhood of the original object, the boundary of the region.

A B A ⊕ B

0 0 0
0 1 1
1 0 1
1 1 0

Table 9.2. XOR Truth Table.

Once every boundary point has the reference fuzzy landscape centered on him,
this multitude of sets is joined into one, forming the final spatial uncertainty mask
relative to the label. The joining operation consists of the element-wise maximum
of all the sets, equivalent to the fuzzy OR operation.

The shift of the fuzzy landscape is a computational demanding operation and
highly costly in terms of processing time. This aspect depends on the size of the
atlas and on the type of the data contained in the fuzzy sets.
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The fastest approach, an array slicing with a memory allocation, has been iden-
tified and extended for the 3D case. In addition the newly created shift function
allows to specify a fill value for the points that would move out of boundary. For
this application the filler has been imposed to 0, as it can be seen as the lowest
fuzzy membership value accepted.

The final shift algorithm is able to move the initial fuzzy landscape to a bound-
ary point each 0.025 s.

To further improve the computational time the whole process has been paral-
lelized. Handling the multi-core approach adds the problem of memory leaking:
since the boundary points could be in the order of tens of thousands and each time
a fuzzy set is moved a new array is created, the memory of the machine could very
quickly start to suffer and return an error.

To manage the memory the solution implemented is the batch computing. In-
stead of obtaining all the fuzzy sets and then merge them together, the data are
processed in sections (batch), at the end of each batch cycle the result is used by the
next one and it continues until all the boundary points have a landscape associated.

The size of every batch should be the maximum possible to make the most out
of the amount of memory available. To do so first some data are extracted:

• Number of processing cores;
• Quantity of free virtual memory;
• Dimensions of a single fuzzy set array_size∗machine_architecture

fuzzy_value_size .

Where array_size is the number of element of a fuzzy set, the machine_architecture
can be 64 or 32 and the fuzzy_value_size depends of the format of the data con-
tained (e.g. float64).

The max number of array possible to be computed at the same time is then:

N = available_memory
set_dimension ∗ security_factor.

Where security_factor, if set just under one, gives a breathing room to the
system, not allowing the complete filling the memory.

The computation is finally spread over all the processing cores found.
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9.2 Initial Segmentation
The real segmentation process is split into two parts. A first operation is imple-
mented to greatly reduce the number of fibers to work with, opposed to a second
part that fine tunes the output.

The initial segmentation has the sole purpose of reducing the number of fibers
adopted for the fVar computation and the fuzzy sets mapping. This is crucial since
the input tractograms are often composed by a very large quantity of streamlines,
reaching even the order of millions, thus making the computational time of the
whole process not fit for clinical applications and generating potential memory
leaks.

In particular, the memory leaks could occur during the construction of the sim-
ilarity matrix based on the functional varifold. Since this structure has dimension
NxN (where N is the number of fibers) and contains float values (that occupies 8
bytes), working with just 20000 fibers can result on a 20 Gb array. This means that
if the input is formed by one million lines and the code has to run on a typical office
PC configuration (that may have up to 32 Gb of RAMs) the initial segmentation
task must eliminate more than the 95% of the tractography streamlines.

This step of the pipeline should greatly reduce the fibers number while being
careful of not eliminating true positives. The accuracy of the segmentation is not
a concern in this phase as that will be tackled in following steps.

The tool provides two options, one slower but more accurate (using WMQL)
and one less demanding, using the already created fuzzy sets, that performs a
sloppier fiber eliminations.

9.2.1 WMQL
The White Matter Query Language, which working methods were explained in
chapter 5, can not be considered accurate enough to be used as a stand-alone
segmentation tool. In particular, the major problems are the low fidelity of the
outputs presented, that often contain easy-to-identify outliers, and consistency is-
sues between subjects, due to the fact that the correspondence paradigm is not
always a valid assumption [72].

Although the noticeable limitations, WMQL is an all-around useful tool. Its
outputs, while not being perfects, are more often than not of easy interpretation
by clinicians.
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Even if a good quantity of outliers is noticeable, the tool makes an overall good
job to keep all the true positives (or at least what could be considered so), as long
as the queries are not too strictly defined. This aspects forms for sure an optimal
starting point for the pipeline and a candidate as an initial segmentation operator.

Using queries with few definitions the results are less anatomically accurate and
do not well represent the bundle, but at the same time, the inter subject variability
is reduced (Figure 9.3). This can be exploited adapting the query definition to the
new goal of reducing the quantity of streamlines as much as possible without losing
the necessary anatomical information.

Figure 9.3. Initial segmentation using WMQL with few definitions. While the
true fibers are segmented a great quantity of outliers is still visible. From left to
right: side view, top view, frontal view.

Due to slight differences between the geometrical position of the same bundle
in different subjects, it is not possible to be certain of not eliminating true positives
using just one very strict query. On the other hand, looser queries might not be
sufficient to exclude a meaningful quantity of fibers.

A compromise between the accuracy and the security of maintaining all the
true positives has to be reached. Being able to define this type of queries involves
have a good understanding about the importance of every single annotation found
in literature.

For example it is possible to statistically choose the definition searching the
ones that are found the most in the scientific literature. This assures that the rep-
resentations are well known to the medical community but it could happen that
particular relations are too strict and produce a deletion of true positives.

An other approach could involve using only the definition found in the most
cited papers, as a guarantee of their correctness, and have an expert validate the
best fitting ones. This is the suggested modus operandi and the one applied in the
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use cases presented.

For the Uncinate Fasciculus istance (Chapter 3) this is done combining defini-
tions appearing in three different highly cited papers, all coming from a radiological
point of view, for a total of six characterizations, listed in 9.3.

Catani [16] • endpoints in (temporal_anterior_section.side)

• crossing orbito_frontal_gyrus.side

Wakana [101] • crossing temporal.side

• crossing frontal.side

Leng [52] • crossing superior_temporal.side

• crossing orbito_frontal_gyrus.side

Table 9.3. UF definition for WMQL initial segentation.

Once the query is prepared the same atlas used for the computation of the
fuzzy sets is be used as input for the WMQL tool. The algorithm will manage the
creation of the command pipe to call the instruction and will proceed to create the
temporary working folder and perform the garbage collection at the end.

It is important to point out that the White Matter Query Language is dis-
tributed independently and it is the user job to configure it. Without a correct
installation this initial segmentation method will not be used.

9.2.2 Sets Intersections
There are situation when using WMQL might not be the optimal choice. Using an
external tool to integrate a functionality means that the dependencies must be sat-
isfied for both WMQL and Fuzzy Tracts, often increasing the number of libraries
needed.

Furthermore the WMQL could have high computational times for large dataset
and not always being clear enough in errors management situations.

As the configuration of the dependencies is not always handy and it is preferable
to have full control on the tool, with a different view, a native initial segmentation
option has been added.
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The included way of performing the segmentation provides a method that ex-
ploits the previously computed fuzzy sets. In this case, the fibers kept are the one
that pass through the intersection (the fuzzy AND operation) of every fuzzy set,
defined for each bundle.

This is done in two steps: first a mask is created performing a logical AND
operation between the different sets (binarized in order to have a logical true wher-
ever a probability is expressed), every fiber is then mapped on the mask image. All
the streamlines that have no points at all positioned in the defined region, found
checking the maximum value of the mapping, are eliminated.

The high aperture of the fuzzy cones support, defined during their computation
(by default π), assures that it is always possible to find an intersection between
sets as long as all the spatial definitions indicated in the configuration file result
coherent with each others (Figure 9.4).

Figure 9.4. The fuzzy sets intersection could be seen as the bounding box (white)
that incorporates all the anatomical label defined. The fibers that have at least
one point inside of it are maintained.

It has been decided to keep every fiber with at least one point in the region
of intersection for two reasons. Firstly the loose threshold ensures that every true
positives are kept and, more importantly, even if it would be possible to perform
a more strict selection, for example imposing the minimum percentage of valid
points of a fiber, that would require the user to decide a new, not easy to be tuned,
parameter.

While this approach scales well for large tractograms in terms of speed, its
inaccuracy put some limitations on its application. Having a initial segmentation
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that does not always reduce the number of streamlines down to a few thousands,
likely to happen with a vast number of initial streamlines, might cause memory
leaks in the following steps.

This methodology is then appropriate in case of medium sized tractograms and
when it is possible to define a lot of spatial relations during the bundle definition
phase.

9.3 FA Extraction
Once the initial segmentation is obtained, the next big step is dividing it into sub-
clusters.

In order to produce more precise fiber clusters it is necessary to utilize different
streamlines characteristics in the metric. One if these is the fractional anisotropy.

To assign a FA value to each fiber of the tractogram (Figure 9.5) is first nec-
essary to compute the fractional anisotropy map from diffusion weighted images.
Since the FA is a metric distinctive of the diffusion tensor (Chapter 1.1), that must
be computed in advance.

Figure 9.5. Mapping of the fractional anisotropy image on the fibers in output
from the initial segmentation algorithm. Each streamline has a number of FA
values associated equal to its number of points.

It is possible both to generate the fractional anisotropy map on-the-fly each
time a segmentation is launched or to pre-compute it. This option is particular
useful during the debug phase or to tune the parameters in a faster way, since some
computational time is saved. In addition, it allows to utilize different tensor fitting
methods: if a more modern and precise tensor fitting operation is introduced to
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the scientific community the associated FA map can be easily used in Fuzzy Tracts.

The tool can use two different methods for the on-the-fly tensor fitting and FA
extraction: using the MRTrix3 interface [89] or the DiPy interface [29].

The first implementation wraps the MRTrix3 (Chapter 2.3) commands associ-
ated to these tasks while the second one works directly in the tool environment.

If MRTrix3 is installed on the PC and the path is configured in the bashrc file
in order to have the instructions available in the command prompt they will be
used. Since, as mentioned before, MRTrix3 splits the whole DWI to FA process
in two phases (DWI to DTI and DTI to FA) it is necessary to define a pipeline
to concatenate the instructions (dwi2tensor and tensor2metric). In addition, the
commands should be wrapped in the Fuzzy Tracts programming language inde-
pendently of MRTrix3.

This is done using Nipype [33]. Not only it allows to create complex pipelines
and to manage them in each of their parts, it also includes the wrapping for the
most used neuro-imaging tools.

A pipeline, also called work-flow, is defined as a sequence of nodes. Each node
wraps a single instruction and it is formed by different fields, with the mandatory
ones being the input file and output file. The concatenation of the nodes consists
of assigning the output file of one node to the input of the next. If necessary, it
is also possible to branch the workflow to create more complex pipelines that are
composed by commands from different softwares.

The nodes that wrap the MRTrix3 commands into the Nipype interface are:
• FitTensor: wraps the instruction dwi2tensor;
• TensorMetrics: wraps the instruction tensor2metric.

FitTensor requires in input, apart from the DWI image, the files containing the
information about the bvalues and bvectors and optionally a brain mask to reduce
the computation field. It produces in output the DTI file.

TensorMetric, on the other hand, allows to perform various operations, such as
the extraction of mean diffusivity and fractional anisotropy. Specifying in input the
DTI file previously created and as a option the string FA, it outputs the fractional
anoisotropy map.

Starting from the nodes a workflow is built. The process takes place in the
temporary folder of the system, that will be removed after the loading in memory
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of the final array, in order to avoid the waste of computational resources by useless
files (garbage collection operation).

The suggestion is to use this approach whenever possible, as the MRTrix3 in-
terface produces solid results, the pipeline is well optimized and the computation
parallelized.

The second approach exploits the DiPy library. It is very similar to the previous
method but has one huge throwback, it works directly in an high-level program-
ming language, thus being particularly slow in the computation.

In this case, first the bvalues and bvectors are loaded and joined together to
form a gradient table, this is used to create the tensor model. The tensor model is
then fit to the diffusion image and the fractional anisotropy extracted.

9.4 Clustering
Having both an initial segmentation of the whole-brain tractogram and the diffu-
sion information, a set of clusters is computed in order to reduce the final step to
work directly with sub-bundle and not with the full quantity of streamlines.

The goal is to reduce the fibers to few prototypes of the clusters, for this aspect
it is very important that the clusters are composed by fibers as similar as possible
from each others (Figure 9.6). In this step the anatomical coherence of the clus-
ters is not important. It doesn’t matter if a cluster corresponds to a set of fibers
with specific anatomical functions as long as the intra-cluster variability is kept low.

Figure 9.6. Left: the initial segmentation of the UF is clusterized using the fVar.
Right: each cluster is pictured with a prototype.

Compact representations of fiber bundles are widely used in order to ease the
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load on the machine that has to perform streamline-based operations, like segmen-
tation and transformations [111].

Usually the clusters are approximated to prototypes, fibers that better por-
tray the characteristics of the set. To obtain them it is possible to execute basic
operations, like selecting the most central line [30], or have a specific metric [67].

9.4.1 Metric

Having a solid metric is necessary to generate consistent cluster. The metric cho-
sen, the functional varifold [35], exploits geometrical information as well as diffusion
information, as discussed in Chapter 8.

In particular the Fuzzy Tracts implementation of the fVar weights four param-
eters for the similarity matrix computation:

• Distances between fiber start points;
• Distances between fiber end points;
• Distances between fiber segments;
• Distances between fiber anisotropies.

For all of these measures it is necessary to specify a kernel width in order to
tune the sensitivity of the metric towards each of them. The kernels bring an
information about the geometry and features of the bundles, thus they should be
tuned with in mind an a prior anatomical knowledge.

Since often it is not possible to know all the information about the specific
bundle the user has the chance of leaving the width of the kernel null. This avoids
to have a random initialization and tuning, not forcing the user to guess values
difficult to decide.

Being the concept of start points and end points not well defined for the fibers
of a tractograms (the tractography algorithms often random initialize the seed
points used to start the tracking), all the streamlines must be reoriented in the
same direction.

For the reorientation, first a random fiber is taken as reference, all the fibers
will be rotated in accordance with this reference direction. To decide if a fiber
needs to be changed, the distance between the fiber and the reference is computed,
the streamline is then flipped and the distance recomputed another time. If the
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difference normal fiber / reference is higher than the difference flipped fiber / ref-
erence then the streamline will be re-orientated.

The distances are computed as the sum of the norm between the first point of
the fiber to the first point of the reference and the norm between the last point of
the fiber to the last point of the reference.

In addition, it is available for the use (and sometimes suggested) the option to
downsample the fibers. Since the functional varifold, when computing the distance
matrix, compares every point of a streamline to every point of another one, reduc-
ing the number of points could result in huge improvements of the computational
time (Table 9.4).

Fiber Points Computational Time (s)
50 7.015
100 13.464
200 38.377
500 211.497

Table 9.4. Computational time needed for the fVar matrix computation for differ-
ent downsampling values. The lower the better. Tested on WMQL segmentation
of the UF (circa 300 streamlines).

There are two ways to downsample a streamline, either setting every fibers with
a selected number of point or reducing the points by a percentage, treating each
line independently. Since the functional varifold does not need a pairwise corre-
spondence between points both methods are applicable.

In the end the choice fell on using a fixed number of point. This allows a pos-
sible future developer to change the metric without having to touch anything else
in the code. If the option is selected without a specific value, all the fibers will be
downsampled to the number of points of the shortest one.

During the application of the fVar two matrix are computed: one containing
the inner products and one containing the distances. Each of them has a dimension
NxN, where N is the number of streamlines.

The distance matrix can be easily obtained from the inner products, as defined
in the fVar approach:

CX − CY =
√

⟨CX , CX⟩ + ⟨CY , CY ⟩ − 2 ∗ ⟨CX , CY ⟩
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Computing the inner product matrix just one time, in the beginning, allows
to save a lot computational time, since all it remains is to extract the data and
perform basic mathematical operations.

Once the clustering algorithm is applied (more details on the next subsection
9.4.2) for every fiber group a prototype is extracted. Again, this operation can be
done working directly with the fVar notation.

In particular, the fiber considered as a prototype is the closest one to the mean
of the cluster, computed following this equation:

Mcl =
∑N

i∈cl
Si

N =
∑N

i∈cl

√
⟨Ci,Ci⟩

N

Where cl is the cluster analyzed, N is the number of streamlines belonging to
that cluster and Si is the ith streamline of cl.

After having associated a prototype to each cluster it is possible to proceed
with the final segmentation.

9.4.2 Clustering Algorithms
Deciding which cluster algorithm to use is not an easy task, it is necessary to define
exactly what are the wanted proprieties of the clusters.

For Fuzzy Tracts the clusters are important for the choice of the prototypes.
The prototype extraction is needed to reduce the number of streamlines on which
the final segmentation will be carried on.

The priority is more on obtaining a low intra-cluster variability than an anatom-
ical coherence. In addition the number of cluster is not a decisive factor, as well as
its population size. Having clusters composed by just two fibers will improve the
final segmentation speed of 50% .

Three different approaches have been tested:
• Hierarchical clustering (Dendrogram);
• Spectral Clustering;
• Density based clustering (DBSCAN).

Since the Dendrogram [77] requires an user action, the decision on where to
cut the tree, it has been excluded by the selection after the first testing phases.
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Fuzzy Tracts enables to perform the clustering operation with either the spectral
clustering or the density based DBSCAN algorithm.

Spectral Clustering

The Spectral Clustering [55] works directly on the inner products matrix, thus
avoiding the extra (even if relatively fast) computation of the distance matrix.

While it requires in input the definition regarding the number of cluster searched,
the algorithm divides the set automatically, without necessitating the user to inter-
preter the ordered tree. It could be considered a more feasible implementation, for
Fuzzy Tracts, of the hierarchical clustering methods, in respect to the Dendogram.

The Spectral Clustering initially creates a graph from the similarity matrix, it
then computes the unnormalized laplacian L of the adjacency matrix and extracts
the first k eigenvectors (where k is the number of cluster imposed). The eigenvec-
tors are sorted in column order and, using a standard k-means algorithm, the row
vectors are classified into k clusters.

The assumption on the number of cluster determines its limitation and in par-
ticular the poor scalability in situations of multiple fiber bundles segmentation.

DBSCAN

The DBSCAN [26] is the option selected by default. It allows to divide the stream-
line set without specifying the number of clusters, very important feature that
makes it more universal, since it can be applied to every bundle without a specific
knowledge about its composition.

This algorithm requires two parameters: ϵ and n. One more of the Spectral
Clustering, but easier to impose. In fact, since the clusters should just be indicative
of a small group of fibers there is no need to modify them based on the wanted
bundle.

Another important factor is the introduction of the concept of noise. Fibers
too distant to the others, in function of the ϵ, could be ’non classified’. This could
be exploited to instantly detect the outliers. It must be noted that the outliers,
found as noise, are not necessarily anatomical outliers. This happens because packs
of not-meaningful streamlines could be clustered together, if they are sufficientely
compact, while coherent streamlines could be found as noise if they are alone in
their trajectory.
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DBSCAN defines three types of points: cores (they have n other points in the ϵ
neighbourhood), reachables (they reside in a core point neighbourhood but are not
cores by themselves) and noise (not reachable by any other point). The clusters
are formed by the union of every core and reachable point that are linked together
(Figure 9.7).

Figure 9.7. DBSCAN point definitions and cluster formation. Red: object point,
Yellow: reachable point, Blue: noise.

This algorithm offers a good robustnees to outliers, does not require an assump-
tion on the number of clusters and it offer a good consistency, being insensitive to
the point positions (it can classify non linearly separable clusters). It is especially
a good choice for packed data, like in the case of streamlines all belonging to a
bundle, as the density is all around similar.

9.5 Final Segmentation
The final segmentation is composed by two actions: the fuzzy mapping and the
thresholding.

The fuzzy mapping is done by joining the information of the fuzzy cones to the
centroids extracted after the clustering. Since the streamlines are composed by a
multitude of points there is the need for the delineation of a method to assign to
each fiber just one fuzzy value.

Initially each centroid is mapped on the first fuzzy cone defined during the ini-
tial phase of the pipeline. The coordinates of the points are converted from real
space (mm) to the the image space (voxels) through an inverse affine transforma-
tion. The value of the voxel with the same coordinate as the point will be assigned
to it, this for all the points of the streamline.
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To reduce the fuzzy information to one value per streamlines, the mean of the
fuzziness of all the point belonging to that line is computed.

The procedure is repeated for every other fuzzy cone. In the end, the centroids
will have a number of fuzzy values associated equal to the number of cones. The
final fuzziness will be taken as their minimum.

The fuzziness is then normalized in the range [0,1] and finally propagated from
a centroid to every other streamlines in the cluster. The outliers, defined as noise
by the DBSCAN algorithm, are associated with the fuzzy value 0.

Having every fiber with a fuzzy value associated allows to perform a final oper-
ation of global thresholding. This is the user final decision and must be based on
the experience and knowledge about the bundle examined.

The thresholding will eliminate from the segmentation all the fiber with a lower
fuzzy score, considered less certain to belong to the bundle (Figure 9.8).

Figure 9.8. The final thresholding fine tunes the segmentation obtained initially
with WMQL or the sets intersection acting on the uncertainty associated to each
fiber. The parameter must be chosen in order to eliminate the outliers without
losing true positives. Threshold values: A=0, B=0.25, C=0.5, D=0.75.
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Chapter 10

Other Features

The core of Fuzzy Tracts is the innovative method introduced, the fuzziness com-
putation and consequent clustering technique take most part of the tool code. A
well-made software has also the necessity to fit in the context it was developed for
and interact with the users in meaningful ways.

The tool should be easy to use even for someone who lacks a background in
computer science, offering an intuitive interface. For this reason there are no pa-
rameters hard coded and everything can be configured by a simple text file that
follows the JSON format.

While more expert users could tune every single input parameter, for novices
and untrained staff, the final decision on the segmentation is made modifying one
single value, the threshold, intuitively positioned directly in the command line and
not in a file.

10.1 File Format Support
A white matter segmentation tool has the necessity to support every major file
format used by the neuroscientific community. The support must cover both the
tractograms and the images (DWI and atlas).

There are currently three main format for tractogram files: TRK [103], TCK
(MRTrix3 file format) and VTK [80]. The first two are associated to particular
softwares, .trk being the file format of TrackVis and .tck belonging to MRTrix3.
These two formats inherit the popularity of the suite they belong to, with time
they became two of the most used in the neuroscience.
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VTK, on the other hand, is a widespread file format not limited to biomedical
applications. It is able to define not only streamlines but also meshes, objects... .
Its popularity derives from its versatility.

It is important to support every of this files to give the user a smooth experi-
ence. In addition the segmentations should contain the newly introduced informa-
tion about the tracts, like the fuzzy score.

In order to keep a consistency between the input files provided by the user
and the segmentation produced, the output tractogram will be saved in the same
format.

For the input images the support is limited to the NIfTI format [49]. This
comes from the necessity to work with the Human Connectome Project dataset
[97] and to have a well detailed header.

The header of the a NIfTI file brings a lot of information. It procures the
orientation of the image, useful when creating the fuzzy sets direction, an affine
matrix for real space to voxels space streamlines transformation and other image
proprieties such as voxel size and resolution.

Finally it is not a difficult task to obtain NIfTI files starting from DICOM
images or img+hdr files, with plenty of converter already available.

10.2 Visualization
The visualization options should serve the user as an on-the-fly validation tool.
It is important to print to video the results between steps for evaluating if the
configuration is done correctly or not.

There are different visualization windows, one after each pipeline node (Figure
10.1). First the initial segmentation is shown, this allows to decide whether or not
all the true positives of the bundle are kept or, in the case of the fuzzy cones initial
segmentation approach, if the spatial relations are well focused on the bundle stem.

After the clustering a specific color is assigned to every group and they are
all printed together, giving the ability to judge the result of both the clustering
algorithm and the metric. If the results are not considered satisfactory it is neces-
sary a more precise tuning of the kernels widths. In addition, in parallel, a figure
highlighting the centroids of the clusters with every other fiber in opacity gives a
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better perspective of the quality of the clustering.

In a final figure is ultimately shown the final segmentation output after the
fuzzy-based thresholding. The fiber that have been segmented are highlighted
and the other streamlines, belonging to the initial segmentation, are put in the
background with a different color. The color scheme maximize the contrast using
opposite colors, with the fiber eliminated in red for an added intuitiveness.

Figure 10.1. Visualization window offered by Fuzzy Tracts. From left to right:
cluster prototypes with fiber in background, fuzzy set mapping, final threshoding
with outliers in background.

10.3 Performance
The performances and the relatives optimization of the tool, especially in compu-
tational time and hardware required, are a huge part of the potential success it
might have.

The main applications of diffusion imaging, and tractography especially, are
pre-surgical planning, statistical analysis and recovery estimation (Chapter 2), it
is then vital to achieve computational time compatible with these tasks. In par-
ticular, the surgical planning requires a fast analysis, with expert desiring to have
a segmentation ready in under ten minutes.

To improve the run-time two options are available: using more powerful hard-
ware or exploiting the hardware supplied at its maximum capacity. Since the first
solution is not always viable due to budget limits or impossibility to host high-
performances machines it is better to make the most out the accessible resources.

In this thesis all the tests have been carried on a tower station with the follow-
ing characteristics:
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CPU Intel® Xeon® E5-1620 0 @ 3.60GHz
RAM 16 Gb
GPU NVIDIA® Quadro 600

Fuzzy Tracts will greatly benefit from an high-end processor and a large quan-
tity of virtual memory.

The most intense tasks are, in weighted order: the fuzzy sets computation, the
functional varifold matrix preparation and the clustering algorithm. In addition,
for the fuzzy sets and the fVar the memory leaks could cause issues since these
operations work on huge arrays in memory.

The solution adopted is the parallel computing. Each cycle is performed in
parallel, at the same time, between all the processor cores available (four with the
cited equipment).

The table 10.1 reports the difference in speed with and without the parallel
computing approach. Both the set definition and the clustering exploit all the
cores accessible through the whole algorithm, meanwhile the fVar has just some
functions parallelized.

Operations Parallelized (s) Non Parallelized (s)
FuzzySets 138.598 496.64

fV ar 35.187 38.475
Clustering 0.002 0.003

Table 10.1. Differences in computational time for three major operations between
the standard implementation and the parallel computing (two fuzzy set definitions,
165 fibers, downsampling to 200 points)

Furthermore, to avoid memory leaks during the fuzzy sets computation an
approach called batch computing has been adopted (Chapter 9.1).
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Chapter 11

User Guide

This concise user guide serves as an introduction to aid first time users and oper-
ators that wants to explore all the possibilities Fuzzy Tracts offers.

Fuzzy Tracts is written in Python 2.7 and can be download from the GitHub
page of the author: https://github.com/aledelmo.

Dependencies

A couple of dependencies are needed to exploit all the functionalities:
• DiPy http://dipy.herokuapp.com/;

– Nibabel http://nipy.org/nibabel/index.html.
∗ NumPy;
∗ SciPy.

• NiPype http://nipype.readthedocs.io/en/latest/index.html;
• VTK https://www.vtk.org/;
• Sklearn http://scikit-learn.org/stable/install.html.

For the installation of the single dependency it is better to refers directly to
the specific library guide. The suggestion is to use an Anaconda environment or
install the package through the use of pip.

Configuration Files

There are two configuration file at the disposal of the user, one mandatory and one
optional.

77



11 – User Guide

In the main folder of Fuzzy Tracts the config.json file has to be used to define
the spatial relations for the computation of the fuzzy sets and to specify the kernel
width for the functional varifold. The definition must be based on the Freesurfer
parcellation definitions (found in the file ./scripts/data/FreeSurfer.txt).

In ./scripts/WMQL it is possible to find the optional configuration file rel-
ative to the White Matter Query Language (WMQL_query.qry). This become
mandatory when the option -w is selected and it must follow the WMQL queries
definition framework.

Data

Fuzzy Tracts is built around the HCP dataset. The folder that contains the diffu-
sion data used for the segmentation needs to be organized in the same way. It is pos-
sible to download subject specific data from: https://db.humanconnectome.org/.

The folder structure follows the pattern:

Subject_ID

T1w

T1w_acpc_dc_restore_1.25.nii.gz

Diffusion

bvals

bvecs

data.nii.gz

nodif_brain_mask.nii

release − notes

Diffusion_preproc

Usage

Launch Fuzzy Tracts as a standard Python script, after moving the to its master
folder:

cd fuzzy_tracts
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$ python fuzzy_tracts.py input_file t <options>

Where input_file is the whole-brain tractogram in tck, trk or vtk and t is the
threshold in the interval [0,1].

Options

The option available are listed in table 11.1.

At least one options between -fa and -f is mandatory, using a precomputed
FA map could be really useful during the debugging and parameters tuning as it
avoids to perform the same operation over and over. Both of this options require
the insertion of a string pointing to the location of the file or folder chosen.

-w –WMQL Initialization using WMQL
-f –File_Folder Name of the files folder

-FA –FA Precomputed FA map
-r –resample Downsampling streamlines
-s –show Use the visualization tools.

Table 11.1. Fuzzy Tracts option table.

Resample expects in input a positive integer number. If the wanted number of
points is not know a priori the option can accept the parameter ’max’ to resample
all the streamlines to number points of the shortest fiber.

Show enables the on-the-fly visualization tools.

Output

The filename of the segmentation produced will report the name ID of the bundle,
as defined in the configuration files, the threshold value and FuzzyTracts. The
output file will assume the same format as the input tractogram.

79



80



Part IV

Results





Chapter 12

Comparisons

In this part of the thesis the segmentation results obtained with Fuzzy Tracts will
be presented in regards to three subjects from the Human Connectome Project
dataset. The fuzzy sets generated during the process were computed using the
more accurate propagation technique, with two definitions formulated (anterior of
Amygdala, inferior of Putamen) and both the kernel width and clustering param-
eter were left untouched for a consistent analysis.

The segmentation methods are qualitatively confronted through the visual val-
idation of their outputs, focusing on the Uncinate Fasciculus segmentation. The
benefits introduced by Fuzzy Tracts are highlighted for both accuracy and consis-
tency.

12.1 Fuzzy Tracts and Manual Segmentation
One of the original goal of the algorithm was to obtain the same fidelity as a man-
ual segmentation method without being as tedious and time-consuming.

The process of drawing the region of interest on the FA map or on the diffusion
image, although being extremely long, allows to have an high level of customization
to the output, making it very user dependent and application focused.

Using the atlas defined by Catani [16] a segmentation has been produced with
the definition of two regions of inclusion, one in the temporal lobe and one in the
frontal lobe (Figure 12.1). The presence of evident outliers in regions not con-
sidered be part of the UF by any reference made necessary the use of a region
of exclusion positioned on the coronal plane, centered in the middle of the brain.
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While this region of interest has not been explicitly formulated in any papers, the
anatomical correctness can be confirmed through a visual analysis of the results
obtained by different authors. While this added ROE solves the problems of the
evident outliers passing over the Corpus Callosum, all the streamlines that deviates
the expected path at the level of the curvature are not eliminated.

Figure 12.1. Top row: segmentation with the placement of two ROI as
defined by Catani. Bottom row: segmentation with an additional ROE on
the coronal plane positioned in the middle of the Corpus Callosum. Circled
in red the suspected outliers.

In the Fuzzy Tract implementation, in particular with the initial segmentation
technique that exploits WMQL, the expression of the false positives is initially
(prior to the threshold application) very similar to the manual segmentation case.

Following the fuzzy cones mapping over the streamlines initially identified (Fig-
ure 12.2), the outlier fibers, that in the previous segmentation required the delin-
eation of a region of exclusion for their removal, are here easily identified. Since the
vast majority of the points composing them is situated behind the Amygdala and
they are not completely inferior of the Putamen, the resulting uncertainty score
associated to these relation assumes a value next to zero (identified in blue in the
picture).
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Figure 12.2. Uncertainty score mapped onto the Uncinate Fasciculus fibers.

The fine tuning of the segmentation, requiring the imposition of a threshold
value, is carefully performed with the goal of not removing the true positives
present. The positions of the anatomical area (completely posterior and slightly
superior to the bundle), defined by the relative spatial relations, creates a smooth
decrease in the uncertainty values, moving from the back of the complex to its
inner portion.

A threshold of 0.5 has been imposed after a consultation with a neurosurgeon.
In the achieved segmentation (Figure 12.3) the paths of all the fibers can be iden-
tified in the scientific literature, with no documented outlier visible. The frontal
/ temporal lobe connection is kept intact as well as the ’hook’ shape, the lateral-
medial bending and the characteristic fan shaped temporal termination.

Figure 12.3. Final segmentation after the threshold application.
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12.2 Fuzzy Tracts and WMQL

In respect to the White Matter Query Language, the tool proposed offers a more
dynamic and precise segmentation, extending the core concepts, like the near-to
English language and the relative relation approach, with the spatial fuzzy sets
integration. The fine tuning thresholding operation allows to noticeably improve
a WMQL initial segmentation in an operator-centered manner.

Main problem of WMQL is the correspondence paradigm, the assumption every
atlas approach is founded on. As already anticipated, differences between the po-
sitions of brain structures are easy to find even in mono-zygotic twins, making the
spatial relation formulations based on atlases (usually created meaning different
brain parcellation or through registration methods) weak and sensible to confor-
mation changes and pathological deformations.

Furthermore, more complex tractogram reconstruction algorithms tend to pro-
duce a number of false positives higher in respect to simple diffusion tensor based
methods. These false positives could assume very twisted paths, often crossing mul-
tiple brain region not biologically associated. The combination of the atlas/subject
differences and the tractogram initial composition could create situations particu-
larly hard for WMQL (Figure 12.4) to segment.

Figure 12.4. Segmentation obtained with WMQL for different tracking algorithms
and atlases. A: FACT and MNI152, B: SDSTREAM and HCP parcellation, C:
FACT and HCP parcellation, D: SDSTREAM and MNI152.

86



12.3 – Inter-Subject Consistency

In this optic Fuzzy Tracts completely compensate the lack of structural corre-
spondence adding a level of confidence to the output. While huge errors in the atlas
could still invalidate the results, an interpretation of the relative position fuzziness
allows to quickly identify the problems and proceed with a new attempt based on
more accurate data.

When the correspondence paradigm is not completely respected but the discrep-
ancies are constrained to small local conformation changes, the ability to manually
intervene with a confidence score completely compensate them, making the tools
less sensible to this type of artifacts.

12.3 Inter-Subject Consistency
In order to evaluate the consistency of the results produce by Fuzzy Tracts it neces-
sary to distinguish between the inter-subject reproduciblity and the inter-operator
reproducibility.

Starting from the latter, the tool shares a lot of similarity in respect to the
manual segmentation methods. Being the output an ad-hoc created segmentation,
with the definition of different parameters all along the algorithm, the analogies
between the results from are limited to the differences between the imposed clus-
tering kernels and threshold value.

On the other hand, using the same options on the same image the result ob-
tained will absolutely not change, making the segmentation deterministic in this
regard. Furthermore, to evaluate the inter-subject variability, indicative of the
solidity of the clustering algorithm and the thresholding operation, the algorithm
has been applied on different HCP subject using the same specifics (Figure 12.5).

For the three subject showed here and in Chapter 13 (Figure 13.1 and 13.2) the
segmentation were computed for three different threshold values (0, 0.5 and 0.75)
without changing the fVar kernel widths. In two cases out of three the confirmed
’best fit’ threshold was identified as 0.5, while in the last case as 0.75. It is then
safely to assume that the solidity of the clustering algorithm is high enough to
support different segmentations without incurring in gross discrepancies from the
attended results.

Additionally, the definition of the fuzzy sets support angle as π, that could be
considered very large, not only allows to have a reliable initial segmentation, but
also increases the reproducibility of the thresholding effect. While tighter projec-
tions could improve security level in regards of removing all the outliers present
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Figure 12.5. Fuzzy Tracts segmentation for three HCP subjects using the same
parameters in every phase of the algorithm.

(Figure 12.6), a looser set enhances the uncertainty resolution, making the fibers
with medium fuzzy values more distinguishable from each others.

Figure 12.6. Fuzzy set support for different apertures, in respect to the spatial
relation ’anterior of Amygdala’. From left to right: π

4 , π
2 , π, 2π
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Chapter 13

Conclusions

Fuzzy Tracts, an innovative tractogram segmentation tool, proposes a new ap-
proach to the white matter fiber bundles identification, shifting to the user the
control on the output quality while remaining easy to set up and feasible for the
use in surgical contexts in both speed and results consistency.

Inheriting from the state of art a near-to-English language format for the spatial
definitions of a fiber bundle, Fuzzy Tracts extends the concept of an anatomically
informed segmentation introducing a spatial fuzzy set approach for a dynamic out-
liers identification.

A clustering approach, that exploits both structural and diffusion proprieties,
combined with an atlas-base segmentation allows to reach high performance re-
ducing the computational resources demand in a significant way without losing the
coherency to the bundle definition.

An user-centered approach allows to perform a customized analysis while elim-
inating the need for tedious manual segmentation operations or the applications of
not controllable clustering algorithms.

The accuracy of the results is dependent on the ability of the user to well define
the fiber bundle in interest via clustering kernel parameters, relative positions and
a final thresholding effect. Having different parameters does not interfere with the
consistency of the results or the difficulty to operate the tool since the weights
of the effects they produce are very different, with the fuzzy-based thresholding
being the most crucial to impose (Figure 13.1). In fact, taking the use-case of the
Uncinate Fasciculus, the tool was tested on a multitude of HCP subjects without
the necessity to change any kernel widths or anatomical position specification.
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The anatomical coherence is based foremost on the relative position definition.
Adding spatial information increases the quality of the initial segmentation, making
the following fine tuning operations easier and potentially more accurate. When
these relations are not available or not validated by multiple sources the tool is
able to work with gross indications, with as little as two definition being sufficient
to obtain the desired results (during the tests carried on the UF only the relation
to the Amygdala and the Putamen were used).

The consistency of the results are one of the focal point of the concept behind
Fuzzy Tracts. The level of customization applicable by the users creates an en-
vironment where no wrong segmentation can be produced. Additionally, different
clinicians confirmed the consistency and quality of the results, for different HCP
subjects, obtained through the use of the same parameters in all the steps of the
algorithm.

Fuzzy Tracts is expected to be used for both statistical studies and subject
specific investigation, with a programmed development that should expand its
applicability through the implementation of a multi-bundle support based on a
dynamic user interface.
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Figure 13.1. Uncinate Fasciculus segmentation obtained with Fuzzy Tracts
for HCP subject 113619.
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Figure 13.2. Uncinate Fasciculus segmentation obtained with Fuzzy Tracts
for HCP subject 105115.
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Chapter 14

Future Work

The preparation of the Fuzzy Tracts segmentation tool is part of the Meta Tracts:
Parsimonious multi-resolution representations for modeling, visualizing and statis-
tically analyzing brain tractograms project, led by prof. Pietro Gori and spread
across three different research labs.

The project, spanning on a three years period, aims to change the tractogram
visualization procedures using a multi-resolution structure, performing the vali-
dation on fiber bundles extracted with automatic segmentation methods, for the
final goal of producing statistical analysis of both healthy and pathological subjects.

In this context Fuzzy Tracts serves as the base from which the final segmen-
tations will be obtained. The further development of the tool is programmed to
tackle the current limits observed and to push forward the multi-bundle segmen-
tation aspects.

The spatial fuzzy sets work will include the wrapping of the more precise prop-
agation method that could replace the current landscape based direct method.
Additionally, the support for the clustering of large tractograms will be introduced
in order to completely get rid of the WMQL initial segmentation approach. Fi-
nally, small performance improvement tricks could be applied to reach an higher
portability of the tool on low-specs machines.

The validation on more white matter fiber bundles will be a central topic,
especially focusing on the Inferior Fronto-Occipital Fasciculus. An extensive bib-
liographic research will be carried out to better define the IFOF and, due to its
spatial proximity to the already tested UF, the ’exchange’ of fibers in the overlap-
ping regions will be observed in function of the threshold selected.

93



94



Part V

Appendices





Appendix A

CoBCoM

In the early developing phases the state of the art segmentation procedures were
deeply investigated. In particular, the research focused on the White Matter Query
Language introduction and applicability.

The occasion to discuss with the WMQL creator. prof. D. Wassermann, coin-
cided with the 2017 CoBCoM (Computational Brain Connectivity Mapping) event,
held in Juan-les-Pins (France) on November.

During this five days conference various cutting-edge brain analysis methods
were presented, covering tractography, connectomes, functional MRI and electro-
physiological imaging techniques (here attached the conference program).

With over 28 talks this conference offered the chance to discuss with one of
founder of the Human Connectome Project (whose data where used for the valida-
tion of Fuzzy Tracts), DiPy developers (library extensively used during the project)
and to other high-regarded researcher in the diffusion imaging field.

The slides of the speakers can be found at the following link:
https://project.inria.fr/cobcom2017/abstracts/

From the multitude of speeches the most interesting ones were found to be:
• M. Descoteaux: Open challenges in tractography: Addressing tractography

biases and tackling the false-positive problem;
• C. Lenglet: Advances in diffusion MRI from the human connectome project;
• A. Leemans: Quality assessment and correction methods for diffusion MRI

data;

97



A – CoBCoM

• R. Verma: Multimodal patho-connectomics;
• D. Wassermann: Computational neuroanatomy of the human brain white

matter and beyond.

An extensive discussion with prof. Wassermann was very elucidating about the
characteristic of the WMQL, its limitations and possible improvements. This en-
counter helped to build the foundation of what successively became Fuzzy Tracts.
It was also the occasion to share the advances in tractogram segmentation methods
with other researcher working on the topic, with a poster session fully dedicated
to the diffusion MRI.
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OHBM

In order to contribute, either with a poster or an oral presentation, to the Organi-
zation for Human Brain Mapping (OHBM) 2018 annual meeting held in Singapore
on June, 17-21 an abstract submission has been prepared. The abstract has been
accepted on date March 1st, 2018

The institution, leader in the field of brain mapping studies, focus its work
in gathering researcher from all around the world to improve the understanding
of the functional and anatomical organization of the brain. The program of the
annual meeting will span from functional and diffusion MRI to electrophysiologi-
cal monitoring method, nuclear medicine and newly introduced imaging techniques.

For more information please follow the link to the main page of the organiza-
tion: https://www.humanbrainmapping.org/

The full abstract can be found attached here.
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Introduction
Clinicians or researchers often want to isolate precise white matter tracts in order to test hypotheses related to a pathology.
Segmenting white matter into reproducible tracts is difficult due to the huge amount of fibers and their vague anatomical
definitions. The most common method, selecting fibers passing through manually delineated ROIs, is time-consuming and
poorly reproducible for tracts with convoluted trajectories [4]. Differently, manually segmented ROIs can be transferred from
training images to test subjects via non-linear deformations [4]. The resulting segmentation might not be accurate when training
and test images do not share the same topology (e.g. due to a tumor). Other methods rely on unsupervised clustering and use
a labeled atlas [5]. With a different perspective, a near-to-English query language (WMQL) allows the user to interactively
define divisional terms, relative clauses and logical operations to segment anatomical tracts [1]. However, the shape of the
resulting tracts can vary among subjects since WMQL is based on simple binary relations and bounding boxes. We propose to
include qualitative anatomical definitions, modeled as fuzzy sets [6], into a semi-automatic segmentation algorithm, and to
automatically compute an “anatomical coherence score” for every fiber of the tractogram.

Methods
Whole brain tracts were computed for 10 subjects from the HCP Project [7] using the SDSTREAM deterministic tracking
algorithm of MRTrix3 [3], and the fractional anisotropy (FA) was extracted from the diffusion tensor. An initial segmentation,
based on an exhaustive list of spatial relations (Fig.1) is performed with WMQL [1]. All anatomical labels are computed using
FreeSurfer. To reduce the computational load and ease the visualization, a clustering step is implemented. Every cluster is then
approximated with a prototype, computed as the fiber closest to the cluster centroid. We propose a new metric, called weighted
functional varifolds, which takes into consideration the geometry, connectivity [4] and FA [8] of a fiber. The parameters were
manually tuned based on experiments and anatomical considerations. Two fibers, with possibly different numbers of points, are
similar only when they follow adjacent paths, their endpoints are close to each other and their FAs, mapped point-wise, are
similar. An “anatomical coherence score” is then assigned to every prototype, based on the satisfaction of spatial relations, with
respect to anatomical structures, defined as fuzzy sets in the image domain, thus coping with their intrinsic imprecision [6].
First, for every fuzzy set, we compute the mean value along the points of the prototypes. Then, we assign to the prototype the
minimum score value, which is propagated to the fibers of the cluster. By thresholding it, clinicians can segment a tract in a fast
and easy way and, notably, adapt the segmentation to a specific task.

Results
The evaluation focused on the Uncinate Fasciculus (Fig.1). The whole-brain tractogram (b) is initially segmented using WMQL
(e) based on an exhaustive list of spatial relations (d). Then, we use the DBSCAN algorithm to separate fibers into clusters.
Two other techniques (hierarchical and spectral) gave comparable results (not shown here). In (g) the prototypes are displayed.
The fuzzy sets (f) are computed from the previous list and mapped onto the fibers (h). The coherence score is normalized
between 0 and 1 (h). The final segmentation output is obtained setting a threshold of 0.5 (i). Fig. 2 shows the effects of the
thresholding for a single subject (a), and the results for three subjects (b) where the threshold of 0.5 has been identified as the
most anatomically accurate and reproducible by a neurosurgeon.
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Conclusions
We presented a new semi-automatic tool for segmentation of white matter tractograms combining shape, connectivity, FA and
anatomical information. The segmentation can be adapted in an intuitive way tuning a single parameter.
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