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ABSTRACT 

 
  The aim of this study is, in its first part, the description of the dynamic behavior of metal 
plates, with the computation of natural frequencies and mode shapes; the problem has 
been approached with different methods, each of them highlighting a particular 
perspective. 
The main points of part I are: 

• The presentation of the theoretical background of the vibrating plate, to 
understand the phenomenon, the main physical quantities involved, and the 
mathematical equations ruling vibrations. 

• An analytical computation, through equations previously demonstrated, of 
natural frequencies and mode shapes for a set of different cases. 

• A Finite Elements study, both for confirming the previous point, and to 
provide results for cases that are too complex for the closed-form solution. 

• The detailed description of the design, building and set up procedure of the 
laboratory test rig to verify the model, and the discussion of the obtained 
results. 

• The definition of a didactic experience, to be conducted by students in the 
DEXPILAB laboratories, with the relative operative procedure and safety 
norms. 

  A practical application of this first study has been carried out in the second part of the 
thesis, where it has been used to design, and build, the top soundboard of a string 
instrument, a guitar, providing it with the desired acoustic properties.  
In particular, this second part consists of: 

• A description of the physics of the instrument, highlighting the link between the 
way it is designed and built, and the dynamic properties that one should achieve. 

• The modelling, through FEM, of the instrument soundboard to understand the 
importance of the reinforcement ribs pattern in the dynamic behavior. 

• The practical construction of a braced soundboard, tuned step by step with a 
specific technique, and simultaneously analyzed with laboratory measurements. 
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ABSTRACT 
 
  Lo scopo di questo studio, nella sua prima parte, è la descrizione del comportamento 
dinamico di piastre metalliche, con il calcolo delle frequenze naturali e delle forme 
modali; il problema è stato affrontato con diversi metodi, ciascuno per sottolinearne un 
particolare aspetto. 
I punti principali della prima parte sono: 

• La presentazione dell’aspetto teorico della vibrazione delle piastre, per 
comprendere il fenomeno, le equazioni che lo governano e le principali grandezze 
fisiche coinvolte. 

• Il calcolo analitico, attraverso le equazioni dimostrate precedentemente, delle 
frequenze naturali e delle forme modali per diversi casi. 

• Un’analisi agli elementi finiti, sia per confermare il punto precedente, sia per 
fornire risultati per i casi troppo complessi per una soluzione analitica in forma 
chiusa. 

• La descrizione dettagliata della progettazione, costruzione e configurazione di un 
banco sperimentale per verificare il modello, e discutere i risultati ottenuti. 

• La definizione di un’esperienza didattica per gli studenti, da svolgere nei laboratori 
DEXPILAB del Politecnico, con la relativa procedura operativa e norme di 
sicurezza. 

  Un’applicazione pratica è stata sviluppata nella seconda parte della tesi, per progettare e 
costruire la tavola armonica di uno strumento a corde, in particolare una chitarra acustica, 
garantendo le proprietà acustiche desiderate.  
In particolare, la seconda parte consiste di: 

• La descrizione della fisica dello strumento, sottolineando il legame tra ciascun 
componente e le proprietà dinamiche e acustiche complessive. 

• La modellazione FEM della tavola armonica dello strumento, per comprendere 
l’importanza della catenatura di rinforzo nel comportamento dinamico. 

• La costruzione pratica di una tavola armonica rinforzata, accordata con una 
tecnica specifica, e contemporaneamente analizzata con misure di laboratorio. 
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PART I 

1 PLATE VIBRATIONS 
1.1  PLATE EIGENPROBLEM [1] 

In the study of plates, the following assumption will be made: 

1. thickness is small compared to the edges, less than 1/10 of the minimum one, and 
constant. 

2. Homogeneous, isotropic, linearly elastic material. 
3. Rotary inertia and shear deformation are neglected, flexural deformation is small 

compared to thickness, and midsurface in undeformed condition remains such during 
deformation; this is the so-called Kirchhoff plate, as opposed to Mindlin plate, in 
which shear is not neglected, due to higher thickness. 

4. In-plane load is zero, unlike membranes, in which this load acts like a restoring force, 
while material elasticity is not considered. 

The description of the physical model with related pictures and equations are taken from 
Genta G, Vibration of structures and machines. 
 If we consider a portion of plate with edges dx, dy and thickness h (Fig. 1.1a), forces and 
moments it undergoes are represented (Fig. 1.1b): 

parallel to y axis 

o Shear forces (per unit length)  𝐹𝑦 
o Bending moment (per unit length) 𝑀𝑦 
o Twisting moment (per unit length) 𝑀𝑦𝑥 

parallel to x axis: 

o Shear forces (per unit length) 𝐹𝑥 
o Bending moment (per unit length) 𝑀𝑥 
o Twisting moment (per unit length) 𝑀𝑥𝑦 

 

Figure1.1 (a) - plate element, system of reference; (b) - forces and moments acting on the plate element 
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Balancing forces and moments, and considering an external force distribution 𝑓𝑧(𝑥, 𝑦, 𝑡) the 
translational and rotational equilibrium equations are obtained 

{
 
 

 
 𝜌ℎ

𝑑2𝑢𝑧

𝑑𝑡2
𝑑𝑥𝑑𝑦 =

𝐹𝑥

𝜕𝑥
𝑑𝑥𝑑𝑦 +

𝐹𝑦 

𝜕𝑦
𝑑𝑥𝑑𝑦 + 𝑓𝑧𝑑𝑥𝑑𝑦

𝜕𝑀𝑥𝑦

𝜕𝑥
+
𝜕𝑀𝑥

𝜕𝑦
+ 𝜕𝐹𝑥 = 0

𝜕𝑀𝑦

𝜕𝑥
+
𝜕𝑀𝑥𝑦

𝜕𝑦
− 𝜕𝐹𝑦 = 0

(1.1) 

From previous equilibrium equations, it follows: 

𝜌ℎ
𝑑2𝑢𝑧

𝑑𝑡2
=

𝜕2𝑀𝑦

𝜕𝑥2
+
𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
−
𝜕2𝑀𝑥

𝜕𝑦2
+ 𝑓𝑧   (1.2) 

The relationship between moments and deformation can be expressed as follows. The bending 
moment 𝑀𝑦 is obviously linked to curvature in xz plane but a contribution of the yz plane 
deformation is present, too: unlike in beams, where the cross section in the analyzed plane xz 
would be free to contract on the direction perpendicular to the plane yz, due to Poisson effect, 
here in plates this motion is prevented by adjacent material, creating a 𝑀𝑥 moment acting in 
yz plane. Therefore, if we define the bending stiffness of the plate as 𝐵 = 𝐸ℎ3

12(1−𝜈2)
  and 

approximate curvatures with second derivatives of displacements  𝜕
2𝑢𝑧

𝜕𝑥2
 and 𝜕

2𝑢𝑧

𝜕𝑦2
 , moments 

expressions are: 

{
 
 

 
 𝑀𝑦 = −𝐵 (

𝜕2𝑢𝑧

𝜕𝑥2
+ 𝜈

𝜕2𝑢𝑧

𝜕𝑦2
)

𝑀𝑥 = 𝐵 (
𝜕2𝑢𝑧

𝜕𝑦2
+ 𝜈

𝜕2𝑢𝑧

𝜕𝑥2
)

𝑀𝑥𝑦 = −𝐵(1 − 𝜈)
𝜕2𝑢𝑧

𝜕𝑥𝜕𝑦

          (1.3) 

Equation of motion (1.2), with these moments expressions (1.3), becomes 

𝜌ℎ

𝐵

𝜕2𝑢𝑧

𝜕𝑡2
+
𝜕4𝑢𝑧

𝜕𝑥4
+ 2

𝜕4𝑢𝑧

𝜕𝑥2𝜕𝑦2
+
𝜕4𝑢𝑧

𝜕𝑦4
=

𝑓𝑧

𝐵
     (1.4) 

Since we are interested in the eigenvalue problem, we will consider the homogeneous 
equation of motion neglecting external force distribution 𝑓𝑧. 

Assuming solution as the product of a harmonic function 𝜂(𝑡), and one of space alone 𝑞(𝑥, 𝑦) 

𝑢𝑧(𝑥, 𝑦, 𝑡) = 𝑞(𝑥, 𝑦)𝜂(𝑡)     (1.5) 

and assuming the time function 𝜂(𝑡) is harmonic, the equation of motion (1.4) finally gives 
the eigenproblem equation, a 4th order, partial derivative differential equation. 

𝜔2
𝜌ℎ

𝐵
𝑞(𝑥, 𝑦) +

𝜕4𝑞(𝑥,𝑦)

𝜕𝑥4
+ 2

𝜕4𝑞(𝑥,𝑦)

𝜕𝑥2𝜕𝑦2
+
𝜕4𝑞(𝑥,𝑦)

𝜕𝑦4
= 0       (1.6) 
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1.2 NATURAL FREQUENCIES AND MODE SHAPES [2] 

 The analytical part of this study will often resort to picture, formulas and tables from Blevins, 
Robert D., Formulas for natural frequencies and mode shapes. 
 Given i and j, integer numbers of flexural halfwaves in x and y directions respectively, the 
deformation can be expressed, according to the expansion theorem, as the sum of modal 
deformations: 

𝑢 = ∑ ∑ 𝐴𝑖𝑗𝑞𝑖𝑗sin (2𝜋𝑓𝑖𝑗𝑡 + 𝜙𝑖𝑗)𝑗𝑖         (1.7) 

So, for any i and j for which a vibration mode exists, we can define: 

1. Amplitude 𝐴𝑖𝑗 
2. Mode shape 𝑞𝑖𝑗 
3. Natural frequency 𝑓𝑖𝑗 
4. Phase angle 𝜙𝑖𝑗 

Natural frequencies 

The exact natural frequencies of the plate are given by the expression 

𝑓𝑖𝑗 =
𝜆𝑖𝑗
2

2𝜋𝑎2
[

𝐸ℎ3

12𝛾(1−𝜈2)
]
1/2

         (1.8) 

where 𝜆𝑖𝑗 parameter depends on mode indices i and j, plate geometry and aspect ratio, 
boundary conditions, and weekly on Poisson ratio ν. 

𝜆𝑖𝑗 = 𝜆𝑖𝑗 (
𝑎

𝑏
, 𝑏. 𝑐.  , ν)         (1.9) 

Tables with 𝜆𝑖𝑗 values will be used later on for computations. 
  An approximated closed form solution for frequencies exists, too, obtained using Rayleigh 
energy method and assuming beam mode shapes: 

𝑓𝑖𝑗 =
𝜋

2
[
𝐺1
4

𝑎4
+
𝐺2
4

𝑏4
+
2𝐽1𝐽2+2𝜈(𝐻1𝐻2−𝐽1𝐽2)

𝑎2𝑏2
]
1/2

[
𝐸ℎ3

12𝛾(1−𝜈2)
]
1/2

  (1.10) 

where coefficients G, H and J for each couple of edges (index 1 when referring to sides of 
length b, index 2 for sides of length a) are tabulated as function of B.C. and mode indexes i 
and j. The error made using this approximation is below 5%, but with clamped or supported 
edges, it is much lower since the beam mode shapes are very accurate for these types of 
boundary condition (see paragraph below). 

 

Mode shapes 

Since a general analytical form for mode shapes of a plate with generic boundary condition 
doesn’t exist, an approximation involving a series of beam mode shapes, 𝑞̃𝑚 and 𝑞̃𝑛, is used: 

𝑞𝑖𝑗(𝑥, 𝑦) =  ∑ ∑ 𝑞̃𝑚(𝑥)𝑞̃𝑛(𝑦)𝑛𝑚     (1.11) 
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For boundary conditions with certain patterns, the first term alone   

𝑞𝑖𝑗(𝑥, 𝑦) ≈  𝑞̃𝑚(𝑥)𝑞̃𝑛(𝑦)        (1.12) 

is sufficient to approximate the mode shapes; some peculiar cases are: 

1. If the plate has two opposite free edges, there will be a mode in which  𝑞̃𝑛 ≈ 1, i.e. the 
half wave in that direction is basically flat. 

2. If two opposite edges are simply supported, the beam mode shape in this direction will 
be exactly 𝑞̃𝑛(𝑥) = 𝑠𝑖𝑛 (

𝑖𝜋𝑥

𝑎
), resulting in the plate mode shape  

𝑞𝑖𝑗(𝑥, 𝑦) = 𝑠𝑖𝑛 (
𝑖𝜋𝑥

𝑎
) 𝑞̃𝑚(𝑦)        (1.13) 

3. Similarly, if all the four edges are simply supported, the mode shape is 
𝑞𝑖𝑗 = 𝑠𝑖𝑛 (

𝑖𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

𝑖𝜋𝑦

𝑏
)         (1.14) 

  As the boundary conditions become less regular, for example if there is not even a couple of 
opposite supported edges, the expression (1.12) is no longer enough to describe the mode 
shapes, and a higher order expansion of (1.11) is needed. A typical example is the completely 
free plate, where the deformations along directions x and y intermingle in more complex 
patterns; an example is provided below (Fig. 1.2), further considerations about the completely 
free vibrating plate will follow. 

 

                                   Figure 1.2 - Some mode shapes at high frequencies of a completely free square plate.  
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Other considerations 

𝜆𝑖𝑗 parameter depends on ν only if there is at least one free edge, anyway dependence is weak.  

Table 1.1 - 𝜆𝑖𝑗  𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒 𝑜𝑛 𝜈 for different aspect ratios. 

 

  Rotary inertia and shear deformation have been neglected in this plate model; if they are 
taken into account, and it is necessary to describe accurately thicker plates (like in the Mindlin 
model), natural frequencies are lowered since, considering these additional stresses, the body 
acts as more deformable. 
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1.3 ANALYTICAL MODEL  

  On the basis of the theoretical model described above, natural frequencies and modal shapes 
have been computed analytically, implementing a procedure on MATLAB. The computation 
has been carried out for three different boundary condition constraint configurations (Fig 1.3) 

1.  plate simply supported on all four edges (‘SSSS’ configuration); 
2.  plate with a couple of clamped opposite edges, and the other couple free (‘FCFC’ 

configuration); 
3.  completely free plate (‘FFFF configuration). 

Analytical computation, and FE analysis later on, will be done on a 1,25 mm thick, 300 mm x 
300 mm aluminum plate. Plates of different materials and dimension have been considered in 
the experimental part, and their choice will be discussed and motivated in chapter 3. 

 

Figure 1.3 – The three B.C. configurations analyzed. 
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1.3.1 SIMPLY SUPPORTED PLATE 

Natural frequencies 

  Exact natural frequencies can be computed using equation (1.8), where the λ parameter can 

be found on tables once boundary conditions and aspect ratio are fixed; the parameter is 
provided only for first six modes (Tab 1.2). 

Table 1.2 – parameter for six modes, for different aspect ratios. 

 

  Since we would like to know more than only six frequencies, the approximated formula 
(1.10) should be resorted to; parameters G, H and J depend on boundary conditions on pair of 
opposite edges, and can be computed using tables according to the current configuration (case 
4 on table X.Y below) for both edges pairs: 
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Table 1.3  

              

Exact and approximated natural frequencies, with their relative error, is summarized in the 
Table 1.4: 

Table 1.4  

F exact [Hz] F approx [Hz] Relative error 

67,46 67,45 -0,004% 

168,64 168,63 -0,004% 

168,64 168,63 -0,004% 

269,83 269,82 -0,004% 

337,28 337,27 -0,004% 

337,28 337,27 -0,004% 

- 438,45 - 

- 438,45 - 

- 573,36 - 

- 573,36 - 

- 607,08 - 

As expected, the error between approximated and exact values is almost negligible for this 
kind of boundary condition, since the assumed beam shapes, from which the parameters G, H, 
J are obtained, are exact for this B.C. configuration. 
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Mode shapes 

  As mentioned before, the regularity of B.C. allows an easy computation, resulting in mode 
shapes that are, in x direction and y direction, simply those of a beam supported on both sides; 
mathematically, eigenvectors  are exactly those predicted by (1.14), i.e.  

𝑞𝑖𝑗 = 𝑠𝑖𝑛 (
𝑖𝜋𝑥

𝑎
) 𝑠𝑖𝑛 (

𝑖𝜋𝑦

𝑏
)  (1.14) 

Mode shapes for modes i, j from 1 to 3 are pictured below (Fig 1.4); the number of halfwaves 
in x and y directions can easily be spotted. 

 

Figure 1.4  



10 
 

The beam mode shapes are even more evident if we look at the plate from a direction parallel 
to one of the edges: in the Figure 1.5 a) below for mode (3,2) there are three halfwaves along 
x direction and two along y direction, while Fig 1.5 b) shows beam mode shapes for the 
pinned-pinned case. 

 

 

Figure 1.5 a) 

 

Figure1.5 b) 
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1.3.2 CLAMPED-FREE PLATE 

Natural frequencies 

  Resorting again to equation (1.8), and finding the λ parameter on the specific table (Tab 1.5) 
for this boundary conditions and the usual aspect ratio, the first six frequencies can be 
computed. 

Table1.5  

 

For the approximated formula, parameters now discriminate between 𝐺1, 𝐻1, 𝐽1 for the 
clamped-clamped opposite edges (case 6 on the table 1.3), and 𝐺2, 𝐻2, 𝐽2 for the free-free pair 
edges (case 1). 
Both exact and approximated frequencies are reported: 

Table1.6 

F exact [Hz] F approx [Hz] Relative error 

77,13 76,49 -0,821% 

90,66 90,36 -0,333% 

149,20 149,72 0,349% 

210,06 210,79 0,350% 

230,84 230,36 -0,204% 

273,04 270,19 -1,043% 

- 300,45 - 

- 384,90 - 

- 413,15 - 

- 416,72 - 

- 420,13 - 

the error between approximated and exact values is still very low, but anyway two orders of 
magnitude higher than in the SSSS configuration, because, given the lower regularity of the 
boundary condition, the beam mode shapes are now less accurate. 
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Mode shapes 

  Mode shapes can still be found using (1.12), but the functions 𝑞̃𝑚(𝑥) and 𝑞̃𝑛(𝑦) now are not 
simple sines, and can be find on beam mode shapes tables (Tab X.Y); 

𝑞𝑖𝑗(𝑥, 𝑦) ≈  𝑞̃𝑚(𝑥)𝑞̃𝑛(𝑦)  (1.7) 

 

Table1.7 

 

 



13 
 

 Different mode shapes are pictured below (Fig 1.6); beam mode shapes for the clamped-
clamped beam in x direction, and for the free-free one in y direction, can still be noticed 
easily; Fig 1.7 shows the beam modes for free-free and clamped-clamped B.C. 

 

Fig 1.6 a) – Mode shapes 1, 4 and 8.  As in 1.2, If the plate has two opposite free edges there is a mode in which  𝑞̃𝑛 ≈ 1, i.e. 
the half wave in that direction is basically flat. Halfwaves numbers in the clamped-clamped direction can be seen easily.  

                 

Figure 1.6 b) – Second and third mode shapes. Beam mode shapes with one halfwave along clamped-clamped direction combine 
with beam mode shapes along the free-free direction, with one and two halfwaves (respectively left and right). 

 

Figure 1.6 c) – Mode shapes 6 and 11, with still one halfwave along clamped-clamped direction, and three or four (respectively left 
and right) along the free-free direction 
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Figure 1.6 d) – Shapes 7 and 12.  As mode indexes increases, shapes become more complex but still they simply come from beam 
shapes overlapping. 

 

 

Figure1.7 – Beam mode shapes for the current boundary conditions; they can be recognized in plate mode shapes above. 
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1.3.3 FREE PLATE 

Natural frequencies 

The λ parameter for the FFFF configuration is on the proper table (Tab 1.8): 

Table 1.8 

 

 

For the approximated formula, parameters G, H and J can be found on the usual table (case 1 
for both edges couples). Results are shown below. 

Table 1.9 

F ex [Hz] F approx [Hz] Relative error 

46,10 47,47 2,985% 

67,63 76,49 13,111% 

83,48 76,49 -8,372% 

119,67 123,09 2,853% 

119,67 123,09 2,853% 

210,26 210,79 0,252% 

- 210,79 - 

- 226,36 - 

- 254,69 - 

- 254,69 - 

- 369,24 - 

The error in now considerably higher because these boundary conditions do not allow an 
accurate analytical description. 
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A comparison between the tree boundary conditions highlights, as we expected, lower 
frequencies as the plate becomes less constrained. 

Table 1.10 

SSSS [Hz] FCFC [Hz] FFFF [Hz] 

67,45 76,49 47,47 

168,63 90,36 76,49 

168,63 149,72 76,49 

269,82 210,79 123,09 

337,27 230,36 123,09 

337,27 270,19 210,79 

438,45 300,45 210,79 

438,45 384,90 226,36 

573,36 413,15 254,69 

573,36 416,72 254,69 

607,08 420,13 369,24 

 

Mode shapes 

The plate behavior is no longer a simple superimposition of beam modes, as they start to 
interact with each other in a more complex way; if computed as it has been done with other 
cases, i.e. with (1.12) and using the free-free beam mode shapes, many modes cannot be 
described, as a comparison with experimental results can show (Fig 1.8). Since the analytical 
instruments cannot solve this problem, it will be treated using finite elements and then 
through the experimental test. 

 

 

Figure 1.8 – First six modes, experimentally obtained.  
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2 FINITE ELEMENTS SIMULATION 
 

  Continuum systems can be studied analytically only in a few simple cases, when the 
geometry and boundary conditions are simple enough; as the problem becomes more 
complex, the only feasible approach becomes discretization i.e. its reduction to a finite, yet 
possibly very high, number of degree of freedom system. Different techniques of 
discretization have been developed, just to mention some of them: 

• Assumed-modes methods, where mode shapes are assumed to be finite in number and 
approximated with arbitrary shapes (Rayleigh). 

• Lumped parameters methods, in which both continuum mass and stiffness are replaced 
by a set of point masses, with inertial properties alone, and elastic ‘fields’ that only 

have stiffness properties. 

  The increasingly high computation power of modern computers made these methods outdated, in 
favor of finite elements method (FEM), the most used discretization method nowadays. The 
continuum body is divided into many small deformable solids, called elements, and their 
deformation is approximated with assumed shape functions, while the displacement of its vertices, 
the nodes, acts as degree of freedom. The discretization will result in a system of ordinary 
differential equations, which, although large, can be solved more easily than the partial derivative 
differential equation of the original continuum model. 
 
  Even if the plate in our analysis is one of those very simple structure that could be studied 
analytically (as we did before, for both the simply supported and clamped cases), the presence of a 
less predictable boundary condition like in the completely free configuration, or the addition of 
concentrated accelerometers masses, create a system that is no longer under the strict hypothesis of 
the theoretical model, and therefore can only be studied using a finite elements simulation. 
  In particular, the software SOLIDWORKS SIMULATION has been used at this purpose; all the 
three configurations of the plate have been implemented:  

• the SSSS and FCFC plates will be now studied with the added mass, to observe how 
frequency and mode shapes are affected; 

•  the mode shapes of the FFFF plate, for which the analytical study was too complex because 
of boundary conditions, will now be computed; the configuration with added accelerometers 
mass will be treated, as well. 
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2.1  SIMPLY SUPPORTED PLATE 
 
 
  The plate has been modeled according to correct dimensions and thickness (Fig 2.1); the mesh, 
with automatic choice of tetrahedral elements, has been created and slightly refined to achieve a 
better precision. 
Distributed accelerometers masses have been added, in particular two masses of 6 grams each, on a 
7,5 mm diameter circular area; one accelerometer is near a vertex, the other at the midpoint of an 
edge. 
 
 

 
Figure 2.1 – Model and mesh detail. 

 
Proper constraints have been added (Fig 2.2), to model the simply supported boundary conditions; 
each edge of the lower surface has been constrained imposing null vertical displacement. 
 

 
Figure 2.2 – SSSS boundary conditions. 
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First, the simulation without the added masses has been run, to check its exactness through 
frequencies and mode shapes, known from the analytical computation; finally, masses have been 
reintroduced; both frequencies and mode shapes for these tree cases are compared below: 
 

Table 2.1 – Natural frequencies comparison; frequencies are in [Hz], error and shift are expressed in percentage. 

SSSS 

Mode 
Order 

Analytical 
(MATLAB) 

Simulation (SW) Relative error 
Simulation, 

added massess 
Change due to 

added mass 

1 67,5 67,5 0,05% 67,4 -0,18% 

2 168,6 168,8 0,12% 167,7 -0,68% 

3 168,6 168,9 0,18% 168,8 -0,05% 

4 269,8 270,8 0,37% 270,5 -0,12% 

5 337,3 338,0 0,22% 332,4 -1,68% 

6 337,3 338,1 0,24% 337,7 -0,12% 

7 438,4 440,6 0,48% 436,2 -0,99% 

8 438,4 441,3 0,66% 440,3 -0,24% 

9 573,4 575,0 0,29% 557,3 -3,09% 

10 573,4 575,3 0,34% 574,4 -0,16% 

11 607,1 612,7 0,92% 603,6 -1,49% 

12 674,5 679,3 0,71% 673,0 -0,92% 

13 674,5 679,4 0,72% 679,2 -0,02% 

14 843,2 852,0 1,05% 802,0 -5,87% 

15 843,2 854,6 1,36% 845,6 -1,06% 

 
Some considerations can be drawn from the differences between the two configurations: 

• The simulation error for frequencies is below 1%, proving that this boundary condition 
allows a precisely predictable behavior of the plate; mode shapes are those found 
analytically (Fig 2.3). 

 
           Figure 2.3 – Mode shape 2,2.  
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• The added masses, even if small compared to the plate mass, lightly lower the natural 
frequency of the system; moreover, mode shapes change, losing their symmetry because of 
the masses position; some of them change slightly (Fig 2.4), other significantly (Fig 2.5), in 
particular mode shapes for which accelerometers are not on nodal lines. 
 

 
             Figure 2.4 – Mode shape 3,3 is slightly affected from additional masses; nodal lines become less defined and symmetric. 

 
 

 
Fig 2.5–Mode shape 3,1 changes more: there are still three areas moving in counter-phase, but their shape changed  

because of the mass distribution. 
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2.2 CLAMPED-FREE PLATE 
 
  The two short edges have been constrained in each direction, to simulate the clamped boundary 
condition, while there are no constraints on the other couple of edges (Fig 2.6).  
 
 

 
Figure 2.6 – FCFC Boundary condition. 

 
 
The frequencies and mode shapes are compared below: 
 

Table 2.2 - Natural frequencies comparison; frequencies are in [Hz], error and shift are expressed in percentage. 

FCFC 

Mode Order 
Analytical 
(MATLAB) 

Simulation 
(SW) 

Relative error 
Simulation, 

added masses 
Change due to 

added mass 

1 76,5 75,9 -0,78% 73,1 -3,63% 

2 90,4 90,0 -0,39% 86,2 -4,28% 

3 149,7 148,6 -0,73% 143,8 -3,25% 

4 210,8 209,5 -0,59% 209,4 -0,07% 

5 230,4 229,7 -0,30% 229,4 -0,13% 

6 270,2 272,7 0,93% 267,6 -1,86% 

7 300,4 299,7 -0,26% 299,3 -0,12% 

  384,9         

  413,2         

8 416,7 411,7 -1,21% 397,7 -3,39% 

9 420,1 426,4 1,48% 426,2 -0,04% 

10 435,0 434,2 -0,20% 421,8 -2,85% 

11   468,4   466,4 -0,42% 

12 512,4 512,5 0,02% 501,1 -2,22% 

13 629,6 618,5 -1,78% 618,1 -0,06% 

14 630,5 646,9 2,61% 636,3 -1,64% 
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• It is important to notice that some of the frequencies predicted by the analytical computation 
are not found in the simulation, and vice versa. 

• At the frequencies predicted by both methods, the accuracy of the simulation is still very 
good but slightly lower compared to SSSS case, due to less strict constraints. 

 
           Figure 2.7 – One of the mode shapes already computed analytically 

• For the same reason, the shift in frequencies due to the added masses is higher. 
• Accelerometer 1 is near a fixed edge, so its influence in mode shapes is almost null; 

accelerometer 2 mass affects mainly mode shapes that do not have a node in that point. 
 

 
 

Figure 2.8 – Unaffected mode shape. 

 

Figure 2.9 – Mode shape only slightly modified, since both accelerometers are above nodal lines. 
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• Other mode shapes are strongly affected by the masses: for example, the two distinct mode 
shapes in figure 2.10 present a different number of halfwaves along free-free direction; 
when masses are added, two new mode shapes (Fig 2.11) substitute them, having a structure 
resembling a mix of the first two. 
 

 
Figure 2.10 

 
Figure 2.11 
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2.3 FREE PLATE 
 
The plate is now totally free, no constraints have been added; the frequency comparison is: 
 

Table 2.3 - Natural frequencies comparison; frequencies are in [Hz], error and shift are expressed in percentage. 

FFFF 

Mode 
Order 

Analytical 
(MATLAB) 

Simulation (SW) Relative error 
Simulation, 

added massess 
Change due to 

added mass 

1 47,5 45,1 -4,97% 43,3 -4,09% 

2 76,5 65,8 -13,97% 63,8 -3,11% 

3 76,5 83,4 9,07% 80,5 -3,48% 

4 123,1 117,7 -4,34% 110,2 -6,44% 

5 123,1 117,8 -4,29% 116,4 -1,17% 

6 210,8 208,4 -1,12% 199,4 -4,34% 

7 210,8 208,5 -1,10% 208,0 -0,24% 

8 226,4 217,3 -3,99% 211,7 -2,58% 

9 254,7 235,2 -7,65% 235,1 -0,04% 

10 254,7 265,1 4,09% 258,6 -2,44% 

11 369,2 362,4 -1,85% 348,6 -3,82% 

12 369,2 363,7 -1,50% 361,1 -0,72% 

13 413,2 399,0 -3,44% 396,2 -0,70% 

14 413,2 419,4 1,50% 412,5 -1,63% 

15 453,6 451,3 -0,52% 437,7 -3,01% 

 
The FE simulation allows to find mode shapes that we were unable to compute in the analytical 
part; some modes are shown in Fig 2.12. 

• Frequency are predicted way less accurately, as the increased error shows. 
• Some mode shapes still highlight trigonometric function standing waves (figure 6 and 9 in 

the following page), other seems to have a polar symmetry (figure 3 and 8), while other 
shapes clearly do not follow basic functions, and become more and more complex and less 
predictable as frequencies increases. 
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Figure 2.12 – Nine mode shapes, ordered progressively. 
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3 PLATE SPECIMEN CHARACTERISTICS  

3.1 PRELIMINARY CONSIDERATIONS 

  The need to build a model for the laboratory experience, gives some limitations as far 
materials, dimensions and frequency range is concerned:  

o Material should be common to find, not brittle not to be dangerous during the test. 
o The combination of material, stiffness, edge dimensions should provide a specimen 

that is not too heavy for the shaker, but still stiff enough not to bend under its own 
weight: small deflections are not only a hypothesis of the theoretical model, but also a 
practical need since sand used to highlight nodal lines (see chapter 4) would fall off. 

o Natural frequencies of the plate that we want to compute, should fall into a range with 
an upper limit not too high, to guarantee acoustic comfort during the experience; of 
course, this range should be smaller than the one we can reach with the shaker, too. 

  To roughly estimate the specimen dimension, static and dynamic behavior, the weight, the 
value of the 20𝑡ℎ frequency of interest, and the maximum vertical displacement under self-
weight have been computed, the formers with MATLAB while the latter through FEM 
simulation, for a variety of geometrical configuration, different reasonable thicknesses and 
common materials: 

Table 3.1 – Materials data. 

  Steel Aluminum PMMA 

Density[Kg/m3] 7800 2700 1190 

E [Gpa] 210 69 2,7 

 

Results are summarized in Tab 3.2. 

Table 3.2 

 

Thickness [mm] Steel Aluminum PMMA Thickness [mm] Steel Aluminum PMMA Thickness [mm] Steel Aluminum PMMA

1 0,468 0,162 0,071 1 0,28 0,28 3,77 1 890 880 267

1,5 0,702 0,243 0,107 1,5 0,12 0,12 1,70 1,5 1340 1315 400

2 0,936 0,324 0,143 2 0,07 0,07 0,96 2 1790 1740 540

3 1,404 0,486 0,214 3 0,03 0,03 0,43 3 2680 2630 800

Thickness [mm] Steel Aluminum PMMA Thickness [mm] Steel Aluminum PMMA Thickness [mm] Steel Aluminum PMMA

1 0,312 0,108 0,048 1 0,09 0,09 1,23 1 1360 1320 400

1,5 0,468 0,162 0,071 1,5 0,04 0,04 0,56 1,5 2000 190 600

2 0,624 0,216 0,095 2 0,02 0,02 0,32 2 2700 2640 800

3 0,936 0,324 0,143 3 0,01 0,01 0,14 3 4000 3950 1190

Thickness [mm] Steel Aluminum PMMA Thickness [mm] Steel Aluminum PMMA Thickness [mm] Steel Aluminum PMMA

1 0,488 0,169 0,074 1 0,21 0,21 3,02 1 870 850 250

1,5 0,731 0,253 0,112 1,5 0,09 0,09 1,37 1,5 1300 1260 380

2 0,975 0,338 0,149 2 0,05 0,05 0,77 2 1740 1700 500

3 1,463 0,506 0,223 3 0,02 0,02 0,35 3 2610 2500 760

Squared 250x250

Squared 200x200

Rectangular 200x300

mass [kg]

mass [kg]

mass [kg] max vertical displacement [mm] 20th  frequency FFFF [Hz]

max vertical displacement [mm] 20th  frequency FFFF [Hz]

max vertical displacement [mm] 20th  frequency FFFF [Hz]
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Weights above 750 grams, deflections above 1 mm, and frequency above 2000 Hz have been 
highlighted, because they should be avoided. Since aluminum and steel have similar 
frequencies and displacements, the former has been chosen for its lower density, to avoid a 
heavy specimen to be mounted on the shaker; PMMA has been considered too, to compare 
the behavior of two different materials. About thickness, a compromise between weight, 
maximum deformation and stiffness can be reached using 1.5 mm aluminum plates, and 2 mm 
PMMA plates. 

 

3.2 DENSITY AND YOUNG MODULUS ESTIMATION  

  Both materials were purchased in a hardware store, aluminum having a 1,25 mm thickness 
and PMMA a 1.8 mm thickness, and different dimension. Since a technical data sheet was not 
available, both density and elastic modulus had to be computed or estimated. 
Because Plexiglass proved to be less stable and predictable already in preliminary tests, only 
aluminum will be considered from this point on.  
  Density can be easily obtained dividing the weight of one of the plates, obtained by a 
precision scale in the laboratory, by its volume.  

𝜌𝐴𝑙 =
𝑚

𝑉
=

0,233  𝑘𝑔

0,270 𝑚 ∗ 0,270 𝑚 ∗ 0,00125 𝑚
= 2555

𝑘𝑔

𝑚3
 

Young modulus has been estimated using natural frequencies: once the frequencies are known 
from the experimental part, several simulations have been run with variable E value; the 
closest value is the one which minimize the error between actual and simulated frequencies, 
i.e. 60 GPa, as can be seen from tables and graphic below. 

Table 3.3 

Actual Frequency   FEM Frequency 

  E [GPa] 68 66 64 62 60 58 56 

555   588 579 571 562 553 543 534 

695   727 716 705 694 683 671 659 

715   770 758 747 735 723 711 699 

755   814 802 790 777 765 752 739 

1008   1024 1009 994 978 962 946 930 

1132   1190 1172 1154 1136 1118 1099 1079 

         Actual Frequency   FEM Frequency Error 

  E [GPa] 68 66 64 62 60 58 56 

555   5,9% 4,3% 2,9% 1,3% -0,4% -2,2% -3,8% 

695   4,6% 3,0% 1,4% -0,1% -1,7% -3,5% -5,2% 

715   7,7% 6,0% 4,5% 2,8% 1,1% -0,6% -2,2% 

755   7,8% 6,2% 4,6% 2,9% 1,3% -0,4% -2,1% 

1008   1,6% 0,1% -1,4% -3,0% -4,6% -6,2% -7,7% 

1132   5,1% 3,5% 1,9% 0,4% -1,2% -2,9% -4,7% 

         

 

Mean 
abs 

Error 4,681% 3,317% 2,395% 1,492% 1,476% 2,234% 3,677% 
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Figure 3.1 

Finding a dynamic property resorting to vibration analysis is a commonly used technique, for 
example when looking for a new material property (together with more traditional methods 
like tensile test), or to find the stiffness of a component that is too complex to be analytically 
studied. 
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4 LABORATORY EXPERIENCES 
4.1 EQUIPMENT AND MAIN PROCEDURE [3] 

  An experimental test rig has been realized, to practically demonstrate the vibration phenomenon, 
reproduce and measure it. The used equipment is: 

● Polymethyl methacrylate (PMMA, commonly Plexiglass) and aluminum plates, of different 
dimensions, rectangular 200x300 mm, and squared with 200, 250, 270, 300 mm edge. (Fig 
4.1) 

● TIRA TV50018 shaker and its power amplifier (Fig 4.2) 
● OROS OR38 multichannel analyzer, and a notebook running its NVgate software (Fig 4.3) 
● Two high frequency accelerometers (Fig 4.4) 
● Wavetek frequency generator (Fig 4.5) 
● A laser sensor Keyence LK-G3000 (Fig 4.6) with a support structure (Fig 4.7) 
● Safety headphones. 

 

 

                                                           Figure 4.1                                                                                  Figure 4.2 

 

                                         Figure 4.3                                                                                           Figure 4.4 
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Figure 4.5 

 

Figure 4.6 

 

The complete setup is illustrated in Fig (4.7) 

 

Figure 4.7 
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The test rig operates in the following way: 

● The exciting signal is generated by the frequency generator and adjusted manually; in 
alternative the analyzer is used, if a sine sweep or random signal with a given frequency 
content are needed. 

● The exciting signal is driven through the amplifier, and then finally reaches the shaker, 
where the specimen under investigation is fixed through a M4 screw and nut. 

● Accelerometers are attached to the plate with wax, and their wires are connected to the 
analyzer input ports. 

● If the laser sensor is used instead, the laser head is fixed to the adjustable structure and 
suspended at a given distance from the measuring point; the head is connected to its control 
unit, and finally plugged into the analyzer input port as well. 

● The acquisition software allows data processing, and their exportation as MATLAB file for 
further analysis and considerations. 

 

Helpful advices about signal analysis and experimental measurements have been provided from 
Fasana A., Marchesiello S., Meccanica delle vibrazioni, and from Professor Fasana himself. 
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4.2 LABORATORY TESTS 

  All laboratory experiences have been executed on aluminum plates, which showed much smaller 
deflections and a better stability, compared to PMMA.  
Moreover, only the totally free configuration has been considered, since both the supported and the 
clamped constraints are difficult to be realized with sufficient accuracy on multiple edges of such 
length; since the FFFF plate is the only one without a complete analytical description, FEM 
simulation will be used to predict the experimental results and make comparison between them. 
Different tests have been made in laboratory: 

1. Chladni figures experiment, i.e. highlighting nodal lines of mode shapes using sand or other 
powdered materials. 

2. Measurements of acceleration, to compute the power spectral density (PSD) of the 
specimen. 

3. Measurements of displacement with the laser sensor, to compare the spectrum with the one 
obtained with accelerometers.  

 

4.2.1 CHLADNI PLATES EXPERIENCE 

  Ernst Chladni (1756-1827), a German physicist, is mostly known for his experiment on vibrating 
plates: spreading some powdered material, such as flour or salt, on a plate clamped in its center, and 
then exciting it with a violin bow, different resonance frequencies and relative mode shapes are 
excited, together with a distinct and strong sound, depending on the point where the excitation is 
applied, and how fast; since every mode shape has its own nodal lines, i.e. points that are not 
displaced and separate two areas of the plate moving in counter-phase, the powder is carried away 
from moving areas, and settles on nodal lines, that can now be visualized (Fig 4.8). The experiment 
was repeated for different plate shapes, dimensions, thicknesses, materials, highlighting the 
dependence of frequencies and mode shapes from these variables. 

 

 

Figure 4.8 -  Reproduction of the original Chladni layout. 

 

https://it.wikipedia.org/wiki/1756
https://it.wikipedia.org/wiki/1827
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  The importance of this experiment is not in the vibration field alone, but also in the discovery of 
the link, not clear by that time, between sound and vibration; Chladni himself build musical 
instrument based on his discoveries, and still nowadays acoustic instruments with a soundboard are 
designed using these knowledges and procedures (Fig 4.9), as will be explored in Part II. 

 

Figure 4.9 

A more ‘technical’ version of this experience has been realized in the laboratory, substituting the 

violin bow with the more accurate electrodynamic shaker. 

Squared aluminum plate, 300 x 300 mm  

  Comparing the totally free plate shapes and frequencies, obtained from the FEM simulation, with 
experimental results, leaded to some incongruences: the real model was stiffer, with higher 
frequencies; some numerical shapes were similar to the real ones, but not exactly the same in nodal 
line position (Fig 4.10 A), other shapes were expected but could not be found in practice (Fig 4.10 
B), while on the contrary unexpected patterns were encountered (Fig 4.10 C) 

 

 

Figure 4.10 A 
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Figure 4.10 B                                                   Figure 4.10 C 

  After some considerations, since mode shapes presenting a nodal area near the center were not 
easily visible (like shape in Fig 4.10 B ) and all the frequencies were higher than the expected, it 
was clear that the problem should have been attributed to constraint: the central point, initially only 
considered as the point where force was exerted, was re-modelled as a proper clamping, the plate 
being constrained on the circular ring surfaces under the head of the screw on the upper side, and 
below the nut on the lower side (Fig 4.11). 

 

Figure 4.11 – constraint on one of the sides. 

  

 Frequencies and mode shapes expected from FE simulation, and their experimental visualization, 
are reported below (Fig 4.12-4.20). The frequency generator was used to progressively scan through 
frequencies, carefully listening to the increase in acoustic intensity to spot resonances, as most of 
them were not immediately evident just looking at the motions of the powdered material. Amplitude 
of vibration was adjusted manually at each frequency to create clear nodal lines, especially for 
mode shapes in which these lines pass through or near the center. 
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Figure 4.12 – 185 Hz 

 

 

Figure 4.13 – 330 Hz 

 

 

Figure 4.14 – 385 Hz 
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Figure 4.15 – 480 Hz 

 

 

Figure 4.16 – 780 Hz 

 

 

Figure 4.17 – 948 Hz 
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Figure 4.18 – 1048 Hz 

 

 

Figure 4.19 – 1693 Hz 

 

 

Figure 4.20 – 1865 Hz 
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The FE simulation proved to be accurate enough, with a lower error for higher frequency modes, 
and an average absolute error below 3% on the range of interest. 

Table 4.1 

Actual Frequency [Hz] FEM Frequency [Hz] FEM Frequency error 

223 218 -2,24% 

330 294 -10,91% 

385 383 -0,52% 

480 472 -1,67% 

658 670 1,82% 

700 700 0,00% 

780 767 -1,67% 

818 850 3,91% 

948 958 1,05% 

1048 1056 0,76% 

1090 1112 2,02% 

1280 1312 2,50% 

1370 1382 0,88% 

1376 1391 1,09% 

1693 1728 2,07% 

 
Mean Absolute Error 2,21% 

 

A couple of resonant frequencies, especially in the lower part of the range, are less precisely 
predicted by the simulation; this is probably due only to constraint simulation, and computing the 
mean error without taking them into account, it decreases even more, to about 1,5%. 

 The first two mode shapes expected from simulation, with two nodal lines cutting through the 
center of the plate (Fig 4.21 on the left), and in general those which have complex nodal lines in the 
inner part of the plate, could not be highlighted, since the central excitation makes it difficult for 
salt grains to settle nearby the center; to excite this modes, force should be exerted on the periphery 
of the plate, like in the original experiment when a violin bow was used ( Fig 4.20 on the right).  

 

Fig 4.21 - On the left, first and second mode shapes obtained with FEM; on the right, the second one experimentally  
obtained using a violin bow. 
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4.2.2 PSD COMPUTATION - ACCELEROMETERS MEASUREMENTS 

  Two accelerometers, both with a mass of 2,4 grams, have been positioned on the specimen as 
illustrated in the drawing (Fig 4.22) The one near the midpoint will be referred to as ‘Track 2’ 

accelerometer, while the one near the vertex as ‘Track 3’ accelerometer, from the corresponding 
input port number on the analyzer. 

 

Figure 4.22 – Accelerometers positions. 

The system is now excited (through the analyzer) in different ways, using linear and logarithmic 
sine sweep, and random noise, both with a frequency range from 20 to 2500 Hz to obtain a signal 
that, once processed through Fourier analysis, provides a Power Spectral Density spanning on the 
whole frequency range of interest.  
  Different measurements have been taken, changing the duration of the measurement itself; the 
following measurements have been selected among the other since they highlighted a clearer 
spectrum: 

• Linear sine sweep, frequency range from 20 to 2500 Hz with 10 Hz/s speed, duration 248 s. 
• Random noise, with a frequency content from 20 to 2000 Hz, duration 120 s. 

Figures 4.23 and 4.24 show the PSD computed from these measurements (type of excitation and 
frequency range are specified for each image); blue curve refers to accelerometer nearby the edge’s 

middle point, while the red one refers to the accelerometer closer to the vertex. 

 

Figure 4.23 – PSD on the whole range of interest (from accelerometer on Track 2) showing main resonances and anti-resonances. 
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Figure 4.24 – PSD of both accelerometers signals superimposed. 

 

Some considerations can be drawn from the analysis of the PSD: 

1. The two accelerometers show different amplitudes; if, at a given frequency, the point they 
are placed in is above or near a nodal line, the signal will be very low, while if a peak is near 
the output will be higher. The point in using more than one accelerometer is actually 
describing the behavior of the specimen, as function of the frequency, with higher accuracy 
and differentiating between its points. Resonance and anti-resonance frequencies that would 
not be clearly seen with only one sensor, can be highlighted more easily (Fig 4.25)  
 

 

Figure 4.25 – Examples of the benefits in using more sensors: At 1797 Hz accelerometer on track 2 and 3 are on a peak and a 
node, respectively. At 1850 Hz resonance, both accelerometers have high response. Finally, the resonance and following 

anti-resonance at about 1920 Hz is slightly visible on the red graph, but very clear on the blue one. 
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2. A number of resonances can be spotted very clearly, and show a much higher amplitude in a 
wider frequency range compared to other resonances, that instead are less evident and occur 
only a very narrow frequency range (Fig 4.26). The first ones correspond to mode shapes 
that, during the Chladni experiment, produce a very distinct and clear shape, with a 
particularly strong increase in the sound; the second give mode shapes that are difficult to 
highlight using sand, because with a minimum change in frequency adjustment the shape 
would fade away or collapse into the closest, more stable resonance.        

 

Figure 4.26 – Resonance peaks at 776 and 1039 Hz are more evident compared to smaller and narrower peaks in between. 

3. Among the resonances mentioned in point 2), some are particularly close to each other, 
sometimes barely recognizable as separated; these frequencies often belong to ‘twin’ mode 

shapes, i.e. mode shapes that are identical but rotated of 90 degrees, and should theoretically 
appear at the very same frequency, the excitation position being determinant for which one 
actually occurs (as we have seen in 4.2.1). Because the plate’s edges are not identical in 
length, and because the central constrain, even if accurate, is not perfectly centered, these 
modes either show at very close frequencies or do not appear at all. In the example provided 
below, an enlargement of the spectrum shows the two very close peaks (Fig 4.27), then both 
the FEM distinct shapes and the experimental ones are provided (Fig 4.28). 
 

 

Figure 4.27 – Two very close natural frequencies at about 660 Hz. 
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Figure 4.28 – Predicted mode shapes and the experimentally obtained pattern. 
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4.2.3 PSD COMPUTATION - LASER MEASUREMENTS 

  Laser sensors can be used to measure displacement or velocity when accelerometers are not 
suitable, for example if the surface can’t be reached easily, or it is too hot causing the wax to melt, 
or if the specimen to be tested is so light that even the small accelerometers masses would modify 
its dynamic properties; the comparison between the results of this point and the previous one, shows 
that we are in this situation.  
The laser head has been mounted on a structure and pointed towards the desired point (Fig 4.29). 

 

Figure 4.29 – Laser head support structure. 

 Measurements have been taken with the same exciting signals (random noise and sine sweep), and 
for the same duration as before.  

 

Figure 4.30 – PSD on the whole range of interest. Excitation is a sine sweep. 
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1) A significantly weaker signal can be noticed, as laser sensor measures displacement, that is 
lower than acceleration by a factor 𝜔2(the difference is more evident with increasing 
frequency). In the last part of the spectrum, only resonances stand out clearly because of the 
too low signal to noise ratio. 
 

 

Figure 4.31 – Amplitude of signal decreasing significantly with frequency. It is particularly evident with random noise excitation. 

 

2) Since the plate is not loaded with additional accelerometers masses, its resonant frequencies 
are higher, as can be seen from the comparison below (Fig 4.32 A and B). Even if the added 
masses are only 2,4 grams each, a small but non-negligible change is induced, being the 
plate itself very light. 
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Figure 4.32 A 

 

Figure 4.32 B 
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3) Damping factor for a given mode can be estimated using the -N dB method; according to 
this method, the loss factor β is: 
 

𝛽 =
1

2

1

√𝑛 − 1

(Ω2 + Ω1)

𝜔𝑛

(Ω2 − Ω1)

𝜔𝑛
 

where N is: 
 𝑁 = 20 log10 √𝑛 

Since damping for a 1,25 mm thin aluminum plate is very low, resonant peaks in the 
spectrum are narrow, so to identify clearly points 1 and 2 we need to move downwards from 
peak of more than 3 dB (as it is usually done in more damped systems); in the following 
images (Fig 4.33), the points at -15 dB from the peak are highlighted; they are not at the 
very same amplitude because of the spectrum resolution. 
 

 

 

Figure 4.33 

 
From computations, we have: 
 

𝛽 =
1

2

1

√32 − 1

(1052 + 1045)

1048

(1052 − 1045)

1048
= 0,0012 [−] 

a very low value, as expected. It should be underlined however, that this is an estimation, 
since the -N dB method is accurate for values of damping neither too high, nor too small.  
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5 PROCEDURE FOR STUDENTS EXPERIENCE 
A procedure with detailed operative instructions and safety measures has been obtained from the 
previous analysis, to guide students to replicate in the laboratory some of the results.  

 

WARNING  

Moving objects and fragile instrumentations are present in the test rig, then it is advisable to pay 
attention during the laboratory experience and carefully follow the provided instructions. 

Preliminary operations 

1. Make sure all the instruments are turned off, and check the status of their knobs and 
potentiometers, in particular: 

• Frequency generator: amplitude and frequency knobs should be set to zero, 
frequency range switch should be on the ’200 Hz’ position;  

• Shaker’s power amplifier: both current and voltage knobs should be set to zero. 
 

2. Turn on the frequency generator using the switch, set amplitude to a minimum value, set 
frequency at a low value (30-40 Hz). 

3. Turn on the amplifier using the power button. 

Chladni experiment – Visualization of mode shapes 

1. Place the shaker, with the plate already bolted on it, above the square plastic base, which 
will gather the powdered material falling off the vibrating plate during the experiment. 

2. Sprinkle some grains of salt or sand over the plate, trying to cover it homogenously. This 
operation must be repeated from time to time since material will progressively fall down 
with vibrations. 

3. Turn the voltage knob a few degrees past the position that produces a click sound. The 
shaker is powered and the plate starts vibrating at the frequency selected through the 
frequency generator. 

4. Use the frequency knob on the generator to slowly move at the desired frequencies (see 
Table 5.1); when the frequency reaches the maximum value for the current range, the 
following range must be selected (to go beyond ‘200’ choose ‘2k’, to pass ‘2k’ choose 

‘20k’), making sure to set to zero both the voltage knob on the amplifier and the frequency 

knob on the generator, to avoid a sudden jump in the frequency of the excitation that could 
damage the shaker’s internal spring system. 
When approaching the suggested resonance frequencies, gently adjust the exciting 
frequency not to surpass the resonance. A further hint to recognize the resonance is to 
carefully listen to the increasing sound emitted by the plate. Once the plate is in resonance, it 
is suggested to adjust the voltage knob on the generator increasing the power if nodal lines 
are not clear enough, or decreasing the power if nodal lines are already evident, to avoid the 
sand jumping away from the plate. 
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Laser head positioning 

1. GENTLY clean the plate from residual sand or dust using a cloth, without exerting 
pressure. 

2. Place the structure supporting the laser head above the plate, paying attention not to hit the 
specimen; the plastic base can be left in position. 

Laser vibrometer calibration (to be left to the supervisor) 

WARNING:  do not point the laser beam towards eyes. 

1. Adjust the relative position of the structure and the plate, or slide the head along the 
horizontal beam, to aim the laser head towards the desired point. 

2. Switch on the current generator to power the laser head; the control unit display will turn on, 
and the head will project a red dot on the plate. Since the laser head should be at a given 
distance from the target surface, adjust the vertical position of the horizontal beam (using 
screw and nut on the sides) until the control unit will display the displacement measure; if 
the head if too close or too far, the display will show ‘FFFFF’ or a fixed number. 

3. Once the distance is set, press the ‘zero’ button on the control unit, and hit gently the plate to 
see if the measure on the display changes. 

Considerations - signal amplitude and nodal lines  

1. Once the laser head is working, the acquired signal can be visualized on the analyzer 
software; exciting the system with a sine sweep in a frequency range with several 
resonances (use the known resonances from table 5.1), it can be seen how the signal’s 

waveform noticeably increases as one goes past a resonant frequency. 
2. At any resonant frequency, pointing the laser head in different points of the plate, by simply 

sliding it on the horizontal rail (without moving the support structure), highlights how 
different amplitude of motion is; if a mode shape previously identified with the Chladni 
experience is selected, it can easily be observed that nodal lines have an almost null 
displacement compared to other areas.  

Power spectral density  

1. Define the excitation properties (sine sweep or random noise, frequency range, duration). 
2. Run the measurement paying attention not to move the plate, nor the laser holder or the 

table. 
3. Save and export the measured data as MATLAB file. 
4. Run the provided script to load the measured file, processing it to compute and visualize the 

power spectral density. 
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TABLE 5.1 – MODE SHAPES AND NATURAL FREQUENCIES 

 

 

                                                            185-190 Hz                                                                     330-335 Hz 

 

                                                               385-390 Hz                                                                    480 Hz 

 

                                                               780 Hz                                                                                  948 Hz 
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                                                                   1048 Hz                                                                        1693 Hz 

 

 

1865 Hz 
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PART II 
The aim of this part is linking part I with a practical application, the design and manufacturing of 

the soundboard of a string instrument, namely an acoustic guitar. 
After an introduction explaining the key role of the soundboard in the quality of the instrument 
sound, the change in the behavior of this component is analyzed using FEM simulation, with 
progressively increasing complexity of the model to mimic the manufacturing process. 
Finally, results from several measurements taken in an anechoic chamber are compared, to describe 
the evolution of the soundboard acoustic properties. 

 

1 GUITAR ANATOMY AND PHYSICS [4] 
A brief description of the most important parts of the instrument is reported; Rossing, Thomas D., 
The science of string instruments provided useful information on the topic.  

1.1 STRINGS  

Guitar strings follow the taut string models, ruled by the following wave equation: 

𝜕2𝑦

𝜕𝑡2
=

𝑇

µ

𝜕2𝑦

𝜕𝑥2
                  (1.1) 

where T is the applied tension, µ is the linear density, and the x axis is parallel to the string. Once 
the string is plucked, waves propagates in both direction with speed 𝑐 =  √𝑇/µ and, when they 
reach the ends, are reflected; the interaction between the two waves creates a standing wave, which 
can be described by the superposition of normal modes: 

𝑌 = ∑(𝐶𝑛 𝑠𝑖𝑛𝜔𝑛𝑡 + 𝜙𝑛)𝑠𝑖𝑛𝑘𝑛𝑥

𝑛

     (1.2) 

where C and ϕ are the amplitude and phase of the 𝑛𝑡ℎ mode, and 𝑘𝑛 = 𝜔𝑛/𝐶 is the wave number. 
The actual motion of the string is a combination of mode shapes (Fig 1.1), and it depends on the 
point the string is plucked, too: for example, since even harmonic have a node at the center of the 
string, if it is plucked in the midpoint only the odd numbered harmonics contribute to the motion. 
 

 

Figure 1.1 – Mode shapes from 1 to 7.  
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Strings frequencies depends on their gauge, material, length, applied tension; the fundamental 
frequencies of each string in standard tuning is reported below. 

Table 1.1 –String fundamental frequencies in standard tuning. 

String 
Fundamental 

Frequency[Hz] 
Pitch 

Notation 

1 329.63 E4 

2 246.94 B3 

3 196.00 G3 

4 146.83 D3 

5 110.00 A2 

6 82.41  E2 

Since strings are very thin, the sound pressure produced is low and the sound produced is barely 
audible, therefore some kind of amplification is required. 

 

1.2 COUPLED RESONATORS 
  In acoustic instruments, amplification is provided by a soundbox, and in particular by its top part, 
the soundboard, to which strings are connected through the so-called bridge (Fig 1.2); string 
vibration is so transmitted to the soundboard, that has a much larger surface than the string, moving 
more air and emitting a louder sound. It is worth underlining that it is not a proper amplification 
since, unlike electric string instruments, the system is supplied with energy only when strings are 
plucked. 
 

 

Figure 1.2 – Detail of a guitar bridge; the upper profile of the saddle, in white in the picture, plays an important 
role, affecting the direction of the vibration component to be transmitted to the soundboard. 

The price to pay to obtain this kind of amplification, is that the decay time of the string-soundboard 
system is shorter than that of the string alone, as energy is transmitted (and dissipated) more 
efficiently thanks to the soundboard, producing a vibration with higher intensity; in fact, guitar 
players say that acoustic instruments have a lower ‘sustain’ than their electric, solid-body 
equivalent, where the lack of a sound box allows the string to vibrate for a longer time, while 
amplification is obtained with electric power. 
  Moreover, the soundbox acts as a Helmholtz resonator (Fig 1.3), making the volume of air inside 
the hollow cavity resonate with the soundboard, in particular at its lower frequencies; its operating 
principle is based on the small pressure variation caused by the initial exciting force: the consequent 
increase in air pressure will make air exit through the soundhole, leaving an inside pressure lower 
than the outside one, thus inverting the direction of air, now entering the soundhole. The process 
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repeats, progressively damping out and causing the typical, slightly ‘wobbling’ sound, at low 
frequencies. 

 

 

Figure 1.3 – 1 d.o.f. equivalent model of a Helmoltz resonator: the air cavity volume is modeled as a 
spring, the fluid in the neck as the mass; the natural frequency as function of geometry is also given 

(notice it is not dependent from the shape of the cavity). 

 
  As first approximation, a guitar can therefore be described as system of coupled resonator, i.e. 
soundboard and air cavity (2 d.o.f. model) or the formers plus the back plate (3 d.o.f plate), as the 
schemes in Fig 1.4 and 1.5 explain. 

 

Figure 1.4– Schematic of the connections between guitar parts acting as resonators. 

 

Figure 1.5 – 2 d.o.f. equivalent system, with the plate 𝑚𝑝 and the air cavity 𝑚ℎ masses. 

 On the right, the 3 d.o.f. model, with the additional back mass 𝑚𝑏. 
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The air cavity has an almost fixed volume, so Helmholtz frequency is not adjustable in the design 
process, and anyway it is relevant only at low frequencies; the back plate as well is considered of 
minor importance in the middle and treble bandwidth, since it mainly resonates with soundboard 
lower frequencies, and air cavity ones, creating the low frequency mode shapes of the instrument 
(Fig 1.6). 
 

 

Figure 1.6 – Low frequency modes of the coupled top-air cavity-back system. 

The middle-high frequency range, therefore, depends almost only on the soundboard properties, 
which will be discussed more deeply. 
 

1.3 SOUNDBOARD 
  Since the soundboard has its own dynamic properties, its coupling with strings will amplify some 
frequencies more than others. The soundboard will affect not only the intensity of the sound but 
also its spectrum, giving what is called a timbre, i.e. that sound property that makes a note of the 
same intensity and pitch perceived as different if played by two different instruments. 
At this point, it is easy to understand that the soundboard is the critical component of a guitar, the 
one which differentiates a good sounding instrument from a poorly made one, providing it its 
peculiar sound. Tonewoods, wood types with particular acoustic qualities like spruce or cedar, are 
used to build the soundboard, that should be thick enough to withstand the string tension, still 
having good dynamic properties; a good result is usually achieved by using 2-3 mm thick sound 
boards, strengthened with wooden ribs on the inner side, to increase their stiffness without resorting 
to thicker wood plates, that would make the instrument not responsive; such a soundboard is 
referred to as ‘braced’. 
  A first choice in selecting the range of frequency to be highlighted by the soundboard, is to select a 
body shape (Fig1.7); without providing too many details, a small waist parlor guitar (B profile in 
figure) has a better high frequencies tone than a large and wide dreadnought one (E profile), which 
instead is the most common and versatile body shape, with a solid low-middle response. 
 

 

Figure 1.7- guitar body shapes: A. Range, B. Parlor, C. Grand Concert, D. Auditorium, E. Dreadnought, F. Jumbo. 
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Considering that both the thickness and the profile shape are fixed, the only way to change the 
soundboard natural frequencies, to make it accomplish its resonator function, is to adjust braces 
characteristics: layout, section shape and dimension, longitudinal profile.  
 

1.4  SOUNDBOARD BRACING 
1.4.1 LAYOUT 
  Wooden struts can be arranged in several patterns, the most common are the ‘X’ and ladder, but 
many others like double X and asymmetrical ones are possible (Fig 1.8). 

 

 

  

Figure 1.8 – From top-left to bottom-right: ladder, ‘X’, double ‘X’, and an asymmetrical pattern. 

It can be noticed that more complex (‘X’ and asymmetrical ones) bracing patters are designed in 
order to provide larger, less stiff areas on the bass side of the bridge (right side of images above) 
and in the bottom part of the soundboard, when lower frequency modes are more prominent, while 
smaller and stiffer areas are defined on the treble side of the bridge (left side in previous images), 
and more generally along the narrow regions beside the soundhole, where higher frequency shapes 
are dominant. 
Patterns provides additional stiffness especially along the horizontal direction, to compensate the 
fact that soundboard wood grains are instead oriented vertically; thicker struts have this structural 
function, while smaller ones are more oriented towards tone control, as it will be explained below.  
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1.4.2 SECTION SHAPE AND DIMENSIONS 
  As mentioned before, soundboard is braced to increase its flexural stiffness and avoid a dangerous 
deflection under the action of the high string tension; nevertheless, sufficient stiffness should be 
reached by adding the least quantity of wood, i.e. without adding too much mass to the system, thus 
reducing its responsiveness and worsening its dynamic behavior. 
To achieve this scope, wooden struts should have a cross section with a high bending resistance 
module and the minimum area. So, not only they are slender, but often they are also shaved along 
their upper edges (Fig 1.9). Reducing the height and smoothing the edges of the struts using a chisel 
is exactly the way used by luthiers to tune the soundboard. 

 

Figure 1.9 – The cross section on the right has a slightly lower bending resistance module, compensated by a much lower area. 

 

1.4.3 LONGITUDINAL PROFILE 
  The principle of increasing stiffness while adding the minimum amount of mass is also present in 
the design of the longitudinal profile: a straight bracing would generally be too heavy, resulting in a 
‘overbuilt’ guitar, while removing some mass to create the so-called scalloped profile would 
provide almost the same stiffness where the profile is high, still leaving a very light and responsive 
structure where the profile is lowered. Generally speaking, struts are left untouched in their part 
closer to the longitudinal axis of the soundboard, while they are lightened towards the periphery (it 
is a necessity for a correct joining with the sides the instrument, too); moreover, in between these 
two ends, a more complex profile can be developed (Fig 1.10). 
 

 

Figure 1.10 – Straight and scalloped braced soundboards; the difference in wood quantity is evident. 
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2 FEM SIMULATIONS 
 

  The aim of this chapter is to show the change in the dynamic behavior of a blank guitar 
soundboard after adding of bracing structure, and the following refinement when wood from the 
struts is progressively removed using the rationale explained so far. 
The FEM models have been developed with accurate dimensions, taken from a real dreadnought 
guitar (Fig 2.1). 

 

Figure 2.1 – Soundboard detailed dimensions. 

A bracing pattern has been defined in every geometrical parameter (Fig 2.2); it is a simplified X 
bracing, actually used in practice, consisting of: 

• A transversal cross brace, 15x15 mm cross section; it is larger than other parts, since it has 
basically a structural function. 

• Two 10x20 mm struts, the actual ‘X’ brace; this adds stiffness in both directions, and along 
almost the entire length of the instrument.  

• A tone bar in the lower part, 5x20 mm; the angle is different from the X brace, to create 
asymmetrical areas in the central part of the soundboard, for the reasons explained before. 

• Two small finger bars, 5x20 mm, in lateral position; they will be lightened to a very reduced 
thickness, having the only purpose to obtain more uniform mode shapes. 
 

 

Figure 2.2 
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As geometrical features can be easily activated, deactivated or modified in the FEM model, this 
possibility has been used to obtain the mode shapes and natural frequencies for a set of different 
layouts, representing the various stages in the manufacturing of the soundboard: 

1. Blank soundboard (Fig 2.3 A). 
2. Soundboard with cross and X braces (Fig 2.3 B). 
3. Fully braced soundboard, unrefined (Fig 2.4 A). 
4. Braced, with lightened cross brace and X brace (Fig 2.4 B). 
5. Braced, with lightened cross brace and X brace, scalloped tone bar (Fig 2.5 A). 
6. Braced, completely finished with scalloped finger bars (Fig 2.5 B). 

 

Figure 2.3 A and B 

 

Figure 2.4 A and B 

 

 

Figure 2.5 A and B 

A comparison of both mode shapes and natural frequencies along this series of states can be 
performed. 
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2.1 MODE SHAPES 

2.1.1 FROM BLANK TO BRACED SOUNDBOARD  

Free mode shapes  

  The free soundboard shows mode shapes (Fig 2.6) resembling those of the plate seen in Part I, but 
of course they are even more complex because of the particular shape of the profile, and the 
presence of the 10 centimeters soundhole. 

 

Figure 2.6 A and B 

 

Figure 2.6 C and D 

The blank soundboard is noticeably stiffened by adding the braces, which are much thicker and 
almost evenly disposed along the surface; as a consequence, even if mode shapes are still 
recognizable, their nodal lines now follow almost exactly the struts, thus defining different areas 
vibrating in phase or in counter phase (Fig 2.7-2.8). 

 

Figure 2.7 A and B – To be compared with 2.6 B and C to notice the shift of nodal lines. 
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Figure 2.8 – An example of how the braces determine a mode shape. 

The further addition of the diagonal tone bar creates asymmetry, while finger bars stiffen even more 
the sides (Fig 2.9). 

 

Figure 2.9 – To be compared with 2.7 B to notice the asymmetry. 

Fixed mode shapes  

  When the soundboard is glued to the soundbox sides, it is constrained on its periphery; even if the 
constraint is not exactly a support nor a clamping, it has been modeled here as the latter.  
The effects of the bracing on mode shapes are even more evident with this boundary condition. 
Mode shapes for blank and partially braced top are reported below (Fig 2.10-2.12): modes shift 
downwards where the biggest area is described by the bracing pattern, and their nodal lines do not 
cross the struts in most of the cases. 

 

Figure 2.10 – Monopole in blank and braced case. 
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Figure 2.11 – Dipole in blank and braced case. 

 

Figure 2.12 – The upper part of the soundboard does not vibrate as easily as in the blank configuration, because the thick cross 
brace and the smaller width make this part particularly stiff. Mode shape follows perfectly the areas delimited by the bracing. 

As the diagonal tone bar is added, the lower area is split into two smaller ones, with most of the 
mode shapes changing accordingly (Fig 2.13). 

 

 

Figure 2.13 – Dipole and tripole follow the new layout. 
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The same happens to the two lateral parts, even if less evidently (Fig 2.14) because of their higher 
stiffness, due to finger braces and small extension. 

 

Figure 2.14 

These points highlight the very essence of the bracing: the mode shapes are actually ‘modelled’ in 

the desired way, imposing a certain vibrational, and therefore acoustical, behavior. 

 

2.1.2 MATERIAL REMOVAL 

Free mode shapes 

  As material is removed from all the struts, nodal areas reduce, and mode shapes become more 
distinct (Fig 2.15). 

 

Figure 2.15 – An example of how the material removal from bracing creates a more responsive behavior. 
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Fixed mode shapes 

  The importance of lightening the bracing is much more evident in the constrained configuration. 
The first step consists in lightening cross and X brace (Fig 2.16), that are particularly stiff for 
structural reasons. 

  

Figure 2.16 – Some mode shapes, barely visible before because of the excessive stiffness, are now clearer; a higher participation of 
the part above the sound hole can be seen, too. 

 

In the next step, the ends and the central part of the tone bar are shaved, creating the so-called 
‘scalloped’ profile. The effects are very relevant, considering that the tone bar is one of the thinnest 
components of the bracing: besides having clearer mode shapes thanks to the general lightening of 
the bar, the material removal from its center reallocates the mass distribution, concentrating in the 
two ‘peaks’, each of them positioned at about one third of the length from the closest end. As a 
consequence, mode shapes’ areas in the two-bottom part can now cross the tone bar (Fig 2.18-2.20). 

 
Figure 2.18– Untouched tone bar on left figures, scalloped profile on right ones: removing mass from the middle of the tone bar 
moves, for certain modes, the maximum displacement areas towards the center of the soundboard, where the string sinusoidal 

force is exerted through the bridge. 
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Figure 2.19 – Mode shape with nodal lines orthogonal to the tone bar; the unshaved mass near the right end acts as a peak, as the 
red color shows. 

  

Figure 2.20 – Another example of how the nodal lines can now cut through the tone bar (scalloped tone bar on the right). 

 

The further material removal from finger bars affects almost only the two lateral areas, which can 
respond more freely (Fig 2.21). 

 

Figure 2.21– Higher displacement of side areas can be seen in the lightened finger braces case, on the right. 

 

This part of the simulation highlights the very essence of the bracing: reinforcing the top, paying 
attention to every parameter of the pattern (geometric layout, struts thickness, final profile to be 
obtained) in order to get at the same time a light and responsive top, with a number of detailed 
mode shapes, essential to achieve the desired, complex sound spectrum. 
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2.2 NATURAL FREQUENCIES 

  For the reasons explained in chapter 1.4.2, the soundboard natural frequencies should match a 
particular spectrum, to create a responsive guitar. Precise guidelines about this target are difficult to 
find, as guitar makers often have their own design criteria, to provide guitars their ‘brand’ sound, 

that usually do not share. In general, however, the tuning process of the soundboard, often referred 
to as ‘voicing’, follows these steps: 

• The soundboard is reinforced with bracing. 
• As the braced top is definitively too stiff to have good dynamic properties, wood is removed 

from every component of the bracing, to noticeably lower natural frequencies.  
• A subtler refinement is done, removing small amount of material especially from tone bar 

and finger braces. 
• The last step is repeated, and after each passage some frequencies, in particular the 

fundamental one, are checked trough ‘tap tuning’, i.e. tapping the top with a finger in 

specific points and listen carefully to the obtained sound. 

The FEM model, with its six steps (Fig 2.3-2.5) simulating the addition of the bracing and the 
following material removal, used to analyze the mode shapes variation, is now resorted to in order 
to follow the evolution of natural frequency throughout the process. 
Natural frequencies for each state defined before is summarized in tables (Tab 2.1 for free 
soundboard, Tab 2.2 for fixed case). 
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Table 2.1 – Results for free soundboard. The relative shifts are referred to the previous column. The average of relative shifts is 
reported at the end of the column. 

 Blank soundboard Cross and X brace Fully braced 

Mode Frequency [Hz] Frequency [Hz] Relative shift Frequency [Hz] Relative shift 

1 30,5 94,5 210% 96,8 2% 

2 72,9 133,5 83% 142,2 6% 

3 104,4 180,9 73% 190,8 5% 

4 145,1 192,2 32% 211,5 10% 

5 203,1 331,3 63% 345,5 4% 

6 223,6 357,0 60% 365,8 2% 

7 245,7 362,6 48% 436,6 20% 

8 267,0 473,3 77% 487,1 3% 

9 379,0 482,4 27% 518,0 7% 

10 386,3 575,6 49% 660,0 15% 

11 418,4 665,5 59% 670,5 1% 

12 460,2 668,6 45% 688,5 3% 

13 535,9 679,3 27% 827,4 22% 

14 539,4 818,2 52% 843,8 3% 

15 574,7 831,1 45% 904,4 9% 

16 655,3 929,0 42% 949,1 2% 

17 715,0 985,1 38% 1.012,9 3% 

18 745,4 1.002,0 34% 1.051,2 5% 

19 770,0 1.055,3 37% 1.089,4 3% 

   58% 
 

7% 

 

 

Cross and X lightened 
Cross and X bar 

lightened, Tone bar 
scalloped 

Cross and X bar 
lightened, Tone and 
finger bars scalloped 

Rounded edges 

Mode 
Frequency 

[Hz] 
Relative 

shift 
Frequency 

[Hz] 
Relative 

shift 
Frequency 

[Hz] 
Relative 

shift 
Frequency 

[Hz] 
Relative 

shift 

1 89,4 -7,7% 89,1 -0,3% 89,6 0,6% 89,7 0,1% 

2 130,0 -8,6% 121,1 -6,9% 120,6 -0,4% 119,3 -1,1% 

3 183,4 -3,9% 171,8 -6,3% 173,6 1,0% 170,0 -2,0% 

4 199,9 -5,5% 186,5 -6,7% 184,9 -0,9% 184,8 0,0% 

5 325,0 -5,9% 299,3 -7,9% 298,8 -0,1% 297,6 -0,4% 

6 361,1 -1,3% 336,6 -6,8% 340,0 1,0% 338,5 -0,4% 

7 412,3 -5,6% 359,1 -12,9% 356,4 -0,8% 351,5 -1,4% 

8 475,9 -2,3% 466,6 -2,0% 468,5 0,4% 467,8 -0,1% 

9 512,8 -1,0% 486,8 -5,1% 487,6 0,2% 481,4 -1,3% 

10 614,5 -6,9% 603,3 -1,8% 571,9 -5,2% 569,8 -0,4% 

11 650,9 -2,9% 609,1 -6,4% 608,6 -0,1% 604,7 -0,6% 

12 670,6 -2,6% 646,3 -3,6% 647,4 0,2% 639,9 -1,2% 

13 810,4 -2,1% 662,9 -18,2% 666,1 0,5% 660,8 -0,8% 

14 822,2 -2,6% 819,7 -0,3% 818,6 -0,1% 797,7 -2,6% 

15 842,7 -6,8% 841,1 -0,2% 838,1 -0,4% 836,1 -0,2% 

16 936,3 -1,4% 877,1 -6,3% 877,3 0,0% 871,4 -0,7% 

17 962,1 -5,0% 962,3 0,0% 929,9 -3,4% 926,6 -0,4% 

18 986,5 -6,2% 969,4 -1,7% 974,6 0,5% 949,4 -2,6% 

19 1.037,6 -4,8% 1.034,2 -0,3% 1.030,9 -0,3% 1.025,5 -0,5% 

 
 -4,4% 

 
-4,9% 

 
-0,4% 

 
-0,9% 



69 
 

 

Table 2.2 – Results for soundboard with clamped periphery. 

 
Blank soundboard Cross and X brace Fully braced 

Mode Frequency [Hz] Frequency [Hz] Relative shift Frequency [Hz] Relative shift 

1 227,6 447,3 97% 558,1 25% 

2 383,6 683,5 78% 854,4 25% 

3 500,3 833,6 67% 974,1 17% 

4 563,0 1009,2 79% 1183,3 17% 

5 705,2 1176,8 67% 1420,2 21% 

6 768,0 1318,7 72% 1485,6 13% 

7 852,1 1448,0 70% 1818,2 26% 

8 881,7 1727,6 96% 2016,3 17% 

9 1108,7 1755,5 58% 2063,4 18% 

   
76% 

 
20% 

 

 
C + X scalloped C+X+T scalloped C+X+T+F scalloped Rounded edges 

Mode 
Frequency 

[Hz] 
Relative 

shift 
Frequency 

[Hz] 
Relative 

shift 
Frequency 

[Hz] 
Relative 

shift 
Frequency 

[Hz] 
Relative 

shift 

1 490,8 -12% 404,2 -18% 392,3 -2,9% 389,5 -0,7% 

2 769,6 -10% 681,2 -11% 650,7 -4,5% 646,6 -0,6% 

3 842,9 -13% 829,2 -2% 825,0 -0,5% 816,2 -1,1% 

4 1090,2 -8% 835,2 -23% 833,8 -0,2% 819,9 -1,7% 

5 1231,8 -13% 1173,7 -5% 1159,5 -1,2% 1154,3 -0,4% 

6 1280,1 -14% 1226,9 -4% 1202,7 -2,0% 1196,8 -0,5% 

7 1617,4 -11% 1363,2 -16% 1331,7 -2,3% 1322,4 -0,7% 

8 1625,2 -19% 1577,4 -3% 1542,6 -2,2% 1540,0 -0,2% 

9 1902,6 -8% 1620,9 -15% 1620,7 0,0% 1605,1 -1,0% 

  
-12% 

 
-11% 

 
-2% 

 
-1% 

 

  Before discussing these results, it should be remembered that wood is orthotropic, with properties 
changing with a number of parameters; the engineered woods have even different characteristics.  
So, being difficult to find accurate data to correctly simulate wood behavior, a sample material 
(Balsa wood) has been chosen among those in the software library, being the one with a Young 
modulus closest to the average value found for birch plywood that will be used in experimental part.  
That said, the focus will be on the relative shift more than on the mere frequencies.  

• As we can see, blank soundboard frequencies are strongly increased with the bracing, thus 
allowing their reduction through the following material removal. The cross and X braces 
have a higher contribution in the stiffening, because of their position and thickness. 

• The negative shifts in frequencies caused by the lightening of cross and x brace, are almost 
equal to the one due to tone bar scalloping; this proves the importance of the latter, that can 
cause such an important change, despite its small dimension. Besides, the area where it is 
positioned seems to be, looking at modal shapes obtained in part 2.1, of major importance. 

• Finger bars only show a limited influence on frequencies. 
• A further, subtle refinement can be achieved rounding the edges; this is the actual way 

luthiers follow for the very last adjustments.   



70 
 

2.3 CONSIDERATIONS 

  FEM simulation proved to be an ideal tool, because it allows to uncouple the effects of single 
bracing component, thus understanding how each element contributes to the final result, and how a 
change in geometry could affect the vibrational behavior. 
The reason behind each strut of the X bracing layout has been explored, discovering the complex 
behavior that the soundboard assumes after the addition of this relatively simple pattern, which 
possibly is the most common in acoustic guitars for that reason. 

  The analysis of mode shapes before and after the material removal helps to understand in detail the 
meaning behind the ‘voicing’ process, which is considered one of the most important, demanding 
more than the others the mastery of the luthier: removing the right amount of wood from a given 
spot, allows to modify the mode shapes and frequencies in a very progressive way, to soften the 
excessive stiffness of the bracing. The relationship between the amount and position of the wood to 
be removed, and mode shape and natural frequencies that are consequently modified, has been 
explained for each step of the simulated manufacturing process, but of course a detailed description 
is very difficult to be find, even if expert artisans claim to have found their own empirical way.  
  As this simulation has shown, the material removal has a significant impact on the vibrational 
behavior, and certainly adds further complexity to the soundboard sound; indeed, scalloped braced 
guitars are considered the state of the art of acoustic guitar. 
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3 EXPERIMENTAL MEASUREMENTS  
3.1 BLANK SOUNDBOARD 

3.1.1 EXPERIMENTAL LAYOUT AND CONSIDERATIONS 

  A soundboard made of birch plywood has been built with the dimensions of a real acoustic guitar, 
cutting it from a panel and then refining its profile.  

 

Figure 3.1 – Blank soundboard. 

Constraining the soundboard in a given point would have prevented some of the mode shapes from 
being measured so, to avoid using different constraints, the soundboard has been suspended with a 
wire instead, with the following advantages:  

• the specimen is actually in a free condition, being the constraint due to the wire negligible. 
• No holes are needed, and the specimen remains untouched, which makes sense for a 

component of a musical instrument. 
• Excitation in different points is easily realizable with an instrumented hammer (Fig 3.2). 

Accelerometers are not suitable for measuring the system response in this case, both because 
of damping induced by their wires, and because the weight they add to the system, which is 
lighter than part I aluminum plate, resulting in an even more noticeable change in the 
dynamic properties. Since the system is free, free body motion occur when it is excited, 
making not feasible the use of the laser head as well (its camera would not be able to follow 
the laser dot). Therefore, the system’s output has been acquired indirectly, with a 

intensimetric probe (Fig 3.2). 

 

Figure 3.2 a) – Intensimetric probe and instrumented hammer. 
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To be sure of avoiding nodal lines, the soundboard has been excited on several points (Fig 3.3): a 
central point near the position of the bridge (C37), two lateral points beside it (L37, L39), and two 
points at the top and at the bottom (C28 and C13, respectively). 

 

Figure 3.2 b) – Set of reference points on the blank soundboard. 

Tests have been run in the anechoic chamber of the Department of Energy, Politecnico di Torino 
(Fig 3.4 a and b), to prevent the probe from measuring the environmental acoustic response, that 
would have altered the measured spectrum. 

 

 

Figure 3.3 a) – The experimental setup in the anechoic chamber. 
 Thanks to Prof. Arianna Astolfi for having kindly allowed the use of the chamber. 
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Figure 3.3 b) – An example of the hammering and measuring during the tests. 

 

Unlike Part I laboratory experience, where the power spectral density has been computed since only 
the output response of the system (measured by accelerometers) was available, the measurements of 
both input (through the instrumented hammer, connected to input port 1 in the OROS analyzer) and 
output (through the two probe microphones, connected to input ports 2 and 3) allowed the 
computation of the transfer function estimate. 

  Finally, it is important to remember that wood is an orthotropic material, with mechanical 
properties strongly changing along longitudinal, radial, tangential directions, with reference to fiber 
and annual rings orientation; besides, wood type, aging time, moisture content, cut direction from 
which it has been obtained, even the presence of knots, have a noticeable influence on its properties. 
When the so-called engineered woods (plywood, laminated board, etc.) are used, even 
manufacturing parameters must be taken into account, for example the number of layers, and their 
relative orientation. For that reason, Young’s modulus for the used plywood couldn’t be estimated, 

and a direct comparison between FEM and measured frequencies cannot be performed.  
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3.1.2 TRANSFER FUNCTION 

 A measure has been taken for each of the points in Fig 3.3, with the following procedure: 

• Auto scale of the probe output with some repeated hits with the hammer. 
• A 60 seconds measurement of the sound pressure level, hammering the given point. 
• The computation of the system’s transfer function from the exported input and output 

signals, through MATLAB. 

The TF for central point ‘C37’ is reported below (Fig 3.4), with a data tip for the clearest 
resonances. 

 

Figure 3.4 – TF of blank soundboard, excited in central point C37. 
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A number of natural frequencies can be easily seen, and other minor ones can be spotted in between 
them; anti-resonances frequencies are evident, too. There are a couple of frequency ranges in which 
the response is flatter, without clear resonances, for example 200-250 Hz and 500-700 Hz. 

  The previous transfer function plot is now compared (Fig 3.5) with the one obtained exciting the 
system in the point beside it, ‘L37’, and the one on the top of the soundhole ‘C28’. 

 

Figure 3.5 – Superimposition of TF of blank soundboard, excited in central point C37, L37 on the side and C28 above the soundhole. 

As in part I, measuring the output in more than one point gives helpful information: main 
resonances are confirmed (54, 151, 760 Hz), while minor ones we couldn’t be sure of, or ranges that 
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appeared flat, are now clarified by the presence of anti-resonances for side and top points response 
(for example 181, 361 Hz and the 600-700 Hz range). 

A further comparison is done between the usual central point ‘C37’, and the more peripherical 

‘L39’ and ’C13’, respectively on the side and at the bottom of the board (Fig 3.6). 

 

Figure 3.6 – Superimposition of TF of blank soundboard, excited in central point C37, L39 on the side, and C13 in the lower part. 

 

The TF is much less clear, probably because hitting these points with the hammer caused the 
soundboard to swing and rotate, making necessary to stop it repeatedly during the measure to bring 
it back to its initial position, thus affecting the response. Moreover, a lower magnitude can be 
noticed, because these areas fall on nodal lines more likely than central ones (see Fig 2.6).  
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3.2 BRACED SUNDBOARD 

  Wooden struts with dimensions and thicknesses specified before, have been cut at the proper 
length and glued to the top, on which the bracing had been drawn, in several steps.  

 

Figure 3.7 – Bracing pattern reported on the soundboard; a phase of the gluing. 

   

Figure 3.8 – The final braced top; the struts are protruding on the outside and already partially lightened on the inside only to ease 
the successive shaping with the chisel. 

 

The soundboard, noticeably heavier and stiffer, has been tested in the anechoic chamber following 
the same procedure described for the blank top; this time, however, the higher complexity of the 
object (a different sound for each area described by the bracing could be perceived even by hear) 
required a higher number of measurement points, namely twelve (Fig 3.9), to fully describe its 
characteristics. 
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Figure 3.9 – Set of points taken as reference in the excitation of the braced soundboard. 

 

The response of point 1 (Fig 3.10) will be taken as a reference, because of its central position, 
where the bridge should exert the string force. 

 

Figure 3.10 – TF of the braced soundboard, excited in central point 1. 
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Besides the usual presence of resonance and anti-resonances, it is useful to compare the transfer 
function of the braced soundboard with the blank one, in the analogous central point (Fig 3.11). 

 
Figure 3.11 – Comparison between blank and braced soundboard TF, both excited in a central point. 

 

From the comparison, we can notice that: 

• Braced top response is generally higher than blank’s one. 
• Natural frequencies are higher, for example the range 50-200 Hz in which the blank 

soundboard has 5 resonances, is quite flat in the braced soundboard, with the first clear 
resonance at 200 Hz. 
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• The new transfer function, especially below 1200 Hz, has more distinct resonant 
frequencies, usually well separated by an anti-resonance; on the contrary, the blank top often 
has some less defined natural frequencies, or flat ranges with low response. 

• Despite the strong geometric difference between the two boards, the response is rather 
similar in the range 1700-2000 Hz, aside from difference in magnitude; this is probably due 
to the fact that high frequency modes involve the movement of peripheric areas, smaller 
than the areas enclosed by the bracing branches, so less affected by them.  

 

  A comparison between the response of different points of the braced soundboard can now be 
proposed. The two areas delimited by the tone bar are rather large, so we expect the response to 
change within them; comparison between the TF of point 1, 2 and 3 is reported in Fig 3.12. Even if 
most of the resonances are visible in all the responses, the behavior between 500 and 1000 Hz 
becomes quite different, taking into account that these points are only a few centimeters apart. 
Points 4,5 and 6 show a similar trend. 

 

Figure 3.12 – TF of braced soundboard excited in point 1,2 and 3. 
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  Comparing point 1 and 5 (Fig 3.13), both almost on the vertical axis on the soundboard, we can 
notice a much higher and evenly spaced response from point 5, almost in the whole range of 
interest, thus confirming the importance of larger areas of the soundboard in the sound emission. 

 

Figure 3.13 – Superimposition of TF of braced soundboard excited in point 1 and 5, both on the middle axis but at different heights. 

  A final comparison can be done between point 5 in the bottom part, point 7 in one of the lateral 
areas, and point 12 above the cross bar (Fig 3.14). 

 

Figure 3.14 - Superimposition of TF of braced soundboard excited in central point 5, 7 on the side, and 12 above the soundhole. 

Point 7 response integrates the lower response of point 5 above 1000 Hz, proving again the 
importance to have differently sized areas. Moreover, the top part of the soundboard, represented by 
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point 12, does not participate with more resonances nor with higher magnitude, confirming the 
minor importance of the area above the soundhole. 

  A second evidence that side areas are now more important, can be observed by looking at Fig 3.15, 
where transfer functions of side point L37 of the blank soundboard, and of side point 7 from braced 
one have been superimposed. We can easily see how the lateral point in braced case shows more 
resonances, without the flat areas that the blank soundboard has, besides of course having a higher 
magnitude in response. 

 

Figure 3.15 – Comparison of TF of the blank and braced soundboard, excited in lateral point L37 and 7 respectively. 

 

 

 

 

 

 

 

 

 

 

 



83 
 

3.3 LIGHTENED AND SCALLOPED BRACED SOUNDBOARD 

  Material has been progressively removed using a chisel and sandpaper, reaching the result 
represented in Fig 3.16. Since the soundboard is made of plywood, it is much stiffer than a wooden 
one and with bracing increasing its stiffness even more, it became evident, by simply tapping it, that 
a noticeable quantity of wood should have been removed. 

 

Figure 3.16 – A detail of the scalloped bracing. 

  It is important to say that the previous measurements, on the blank and braced soundboard, were 
comparable also as far as amplitude is concerned, because they have been taken in the same 
measuring session; as the intensimetric probe has not been calibrated, these last measurements may 
not be perfectly comparable with previous ones, since they have been taken in a separate session, so 
with different environmental condition and surely with a different distance between the probe and 
the soundboard. 
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  The different frequency content for different points can still be noticed: figure 3.17 compares 
points 1 and 5, while figure 3.18 adds the response of lateral point 9. Bottom point 5 and lateral 
point 9 confirm their higher contribution in low and high frequency range, respectively.  

 

Figure 3.17 – Superimposition of TF of scalloped soundboard, excited in points 1 and 5. 

 

Figure 3.18 - Superimposition of TF of scalloped soundboard, excited in points 1, 5 and 9. 
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A comparison between the straight braced top and the scalloped one must be done too, to see how 
resonance frequencies changed; figures 3.19 A B and C compare the two soundboard responses in 
three different points. 

 

Figure 3.19 A – Comparison between braced and scalloped soundboard, both excited in point 1. 

 

Figure 3.19 B - Comparison between braced and scalloped soundboard, both excited in point 5. 

 

Figure 3.19 C - Comparison between braced and scalloped soundboard, both excited in point 8. 
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Two important conclusions can be drawn: 

• Natural frequencies have shifted downwards, because stiffness of the plate has been strongly 
reduced. This is particularly evident for the fundamental frequency, as the process is mainly 
aimed to ‘restore’ a good response at lower frequencies, that the addition of the bracing 

weakened. 
• Response in the straight bracing case is rather even, with resonance frequencies spread 

almost regularly in the whole frequency range (this is particularly evident in Fig 3.19 B and 
C), most of them only 70-80 Hz apart from the previous and subsequent ones. On the 
contrary, the scalloped bracing rearranged the natural frequencies spacing them apart, thus 
reintroducing some of the flat response areas that could be seen in the blank top behavior 
(range 250-350 Hz or 400-500 Hz in previous figures). The logic behind this is probably the 
following: to act as resonator, the soundboard should have a lively response in some given 
ranges of the spectrum more than in others, to emphasize only certain frequencies of the 
string vibrations; if, instead, the soundboard has a number of resonances almost in every 
frequency range, the very concept of resonator, i.e. something that strengthen some 
frequencies while removing others, stops making sense. 
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3.4 FINAL RESULTS AND CONSIDERATIONS 

The evolution of the response through the three stages is summarized in figure 3.20. 

 

Figure 3.20 A – The tree transfer functions in the whole frequency range. 

 

 

Figure 3.20 B – A detail of the lower range. 
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The frequencies of the most evident resonance peaks for the three cases are reported in Table 3.1. 

Table 3.1 – Natural frequencies in [Hz]. 

Blank Braced Scalloped 

54 285 200 

74 333 214 

122 386 389 

151 429 628 

176 486 713 

424 555 772 

456 722 843 

761 829 898 

891 932 949 

975 1022 991 

1116 1058 1151 

1296 1388 1258 

 

  These final results can be used to recap the whole process and repeat conclusions we have reached. 
Blank soundboard had several natural frequencies in the low range (we can count five of them 
below 200 Hz in Tab 3.1), some flatter areas and then other noticeable peaks; this very flexible 
piece of plywood became much stiffer and heavier as bracing struts were applied, with a number of 
new resonances, almost evenly spaced (see Tab 3.1 or the TF detail in 3.20 B), in the range below 
800 Hz, penalizing the low band as the first resonance occurs at 285 Hz.  
  Because the lack of the middle-bass response in the sound of a guitar (especially a dreadnought 
type) would create an incomplete, shallow sound, the fully braced soundboard must be enlightened 
and scalloped: the behavior under the 1000 Hz is strongly affected, as a glance at Fig 3.20 B can 
easily show.  
  Even though the upper part (above 1200 Hz) of the three transfer functions is not superimposable, 
the effect of the addiction of the bracing and the following material removal is almost absent in this 
range, the explanation being that higher mode shapes are characterized by smaller areas, that are not 
affected by the regions delimited by the bracing pattern. 
 
  The practical difficulty of removing wood using the chisel, after a reduced thickness was achieved, 
acted as limiting factor, stopping the process with a fundamental frequency approximately tuned at 
200 Hz, i.e. a 𝐺#3 note; an expert artisan working with proper tools, and a less fibrous, higher 
quality wood, would have allowed a further and certainly more accurate material removal, with a 
fundamental at around 100-110 Hz (i.e. a 𝐺2 , more than an octave below). Besides, it must be 
remembered that plywood is much stiffer than a plate of fine tonewood, this being another strong 
factor preventing the achievement of low resonant frequencies. 
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4 CONCLUSIONS AND POSSIBLE APPLICATIONS 
  This part of the thesis showed how much the bracing addition and the successive voicing process 
has a substantial impact on the soundboard response, and this leads to some consideration about 
guitars manufacturing. 
 
 
Laminated and solid soundboards manufacturing 
 
  A guitar with a plywood top is typically a very cheap, entry-level product, so the complex and 
time-demanding tuning process of the soundboard is not executed; a bracing structure is however 
required, and often the combination of high stiffness of the plywood and the thick, straight bracing, 
create a poorly sounding instrument, with very low soundboard response and a ‘boxy’ sound.  
A simple cure to this problem can be a more accurate design of the bracing, instead of its 
subsequent refinement piece by piece: 

• because the laminated wood is already rather strong, struts can be much thinner and lighter 
than they usually are, avoiding ‘overbuilding’ the product only to be on the safe side; 
obviously, the structural resistance must be guaranteed in any case.  

• If a scalloped predetermined profile is designed with modern tools (for example extensive 
FEM simulations, like those used in chapter 2), good compromise results can be achieved 
for mass-produced soundboards, taking into account also the fact that laminated wood 
mechanical properties are less variable than solid wood ones. 

• The previous consideration, combined with the cost constraints for products of this level, 
oriented towards quantities and robustness, make the voicing process neither suitable nor 
reasonable. 

 
  It is rather unanimous that an acoustic guitar worth its name should have a solid tonewood 
soundboard, because, as explained in Chapter 1, the tonal quality of the material itself is 
fundamental for the roles that this component has in the instrument. The other side of the coin is the 
lower mechanical properties and their variability from one piece of wood to another, which makes 
the voicing of the soundboard so important. 
  Although a solid top with straight bracing would probably still sound way better than a laminated 
one, not scalloping and voicing it would be a waste of such a fine material, losing the chance to 
bring its acoustic qualities to life. So, if a proper design of bracing structure is enough for laminated 
soundboards, for solid ones it should be matched with the creation of scalloped profiles and the 
tuning of each soundboard.  
Still, an advanced design of bracing pattern, comprehensive of geometric and dimensional detailed 
definition, would represent a huge advantage in the manufacturing of this instruments: the more the 
bracing characteristics are optimized, the less material should be removed in the tuning phase, thus 
speeding up the process, combining time and results with increased efficiency. 
 
  As it became evident, the industrial production of a musical instrument that, by its nature, needs a 
handcraft attention for each particular specimen, can achieve excellent results only if modern 
technologies, artisan knowledges, and industrial engineering solutions are cleverly combined. 
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An automation hypothesis  
 
  The problem of voicing a guitar soundboard is typically solved by luthiers with their own 
empirical methods, often changing from case to case, and with the only help of their experience. 
Their results are examples of the highest craftmanship and excellent sounding musical instruments, 
according to many, not even comparable with any mass-produced guitar, even if it is a high range 
one. This statement is probably confirmed by the results of this study: the variability of wood 
mechanical properties, the number of geometric parameters to control, the need of great precision 
and the general complexity of the process, creates a problem that seems only solvable by a highly 
experienced and skilled artisan. 

  Despite these difficulties, in my opinion a complete and systematic study of the phenomenon may 
lead to its full comprehension, and possibly to the automation of the whole process, if each stage is 
designed with extreme attention. At that point, handmade guitars would still be the state of the art, 
and probably remain every player’s dream, but factory-made ones would earn a huge improvement 
in sound quality that would certainly not remain unnoticed to the market, as the difference in price 
between an artisan instrument and a mass-produced one is so high, that the latter will certainly 
remain the only choice for most buyers.  

  In this second part of thesis, the effects of the bracing and the problem of soundboard tuning have 
been approached with scientific methods, as FEM simulation and transfer function analysis, trying 
to reach a more general knowledge of how the bracing geometry and material removal affect the 
dynamics of the soundboard. 
These tools are certainly more powerful than human senses, and unlike them, they provide an 
objective, clear and repeatable results. The material removal process as well, however skilled the 
luthier performing it may be, is still not as repeatable as a CNC machine code.  
In an ideal automated process, once the natural frequencies of the soundboard are obtained, an 
algorithm should identify them and decide where to remove material in order to change them, 
guiding a CNC milling machine to do so. Of course, the only relatively simple steps would be the 
frequencies measurements and the CNC operations, while the algorithm in between them should 
have the considerable duty to substitute, or anyway emulate, the luthier’s knowledge, with 

difficulties that can be easily imagined. 

  If such a project should become feasible in the future, guitars could be manufactured industrially 
and still produce a sound close to the warm, vibrating and lively one that is now a prerogative of 
handcrafted instruments. 
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