

Corso di Laurea Magistrale in Ingegneria Meccanica

Laurea di II Livello

Development of Novel Vision Based Surveillance Algorithm for People

Tracking, Suspicious Object Detection, and Loitering Detection

Supervisor: Prof. Andrea Trivella Candidate: Matteo D’Angelo

Co-Supervisor: Prof. Yukinori Kobayashi

2018

Acknowledgements

I am deeply thankful to my supervisor, Prof. Yukinori Kobayashi, whose support
has always been present and concrete since the beginning of this challenging and
extraordinary experience. Furthermore, I would like to share the credit of my work
with Abhijeet Ravankar, whose help, guidance and cooperation convincingly gave
me the opportunity to discover an unexplored world.

Abstract

Remote camera surveillance systems together with image recognition have gained
much more importance over the last years. Suspicious behaviors, target tracking,
wildfires recognition, traffic controlling and autonomous patrolling on wide areas
are just few fields of application. Furthermore, modern activities and organizations
seek out services and infrastructure that are cost-effective and simple to manage.
In this experimental research, by providing the program with wide used filtering
functions, people tracking, suspicious object recognition and loitering detection
are deeply investigated in order that a highly performing algorithm is formulated.
The groundwork is organized as follows: image fundamentals and mathematical
operations on images, algorithms and methods commonly used in video surveillance,
the formulation proposed, benchmark analysis and conclusions. We suggested a
thorough algorithm able to deal with a broad variety of different scenarios. The
proposed Waterfall algorithm increased the reliability by outdoing the challenges
in the background modeling process. By taking into account the two background
models, abandoned and taken away objects are robustly detected. Additionally,
trespassing detection and loitering detection are successfully achieved. Furthermore,
time thresholds are investigated together with important and relevant statistical tools,
which notably helped us to understand the tendency of the position of the target.
Undoubtedly, future work can be arranged in the interest of enhancing the robustness,
the overall performances and the accuracy of the main functions of the algorithm.

Contents

List of Figures vi

List of Tables ix

1 Introduction 1

1.1 Introduction to People and Object Tracking and Video Surveillance
Industry . 1

1.2 People and Object Detection . 3

1.3 Video Surveillance-integrated Robotic Systems 4

2 Image Fundamentals 6

2.1 Introduction . 6

2.2 Binary Images . 8

2.3 Operations on Images . 8

2.3.1 Normal Histogram Equalization 12

2.3.2 Contrast Limited Adaptive Histogram Equalization 16

2.3.3 The Relevance of Image Filtering in Real-life Applications . 18

2.4 Operations on Binary Images . 18

2.4.1 Segmentation . 19

2.4.2 Thresholding . 19

2.4.3 Morphological Transformations 21

iv Contents

3 The OpenCV Library and Embedded Systems 26

3.1 Introduction . 26

3.2 OpenCV with Python . 27

3.3 Realtime Computer Vision with OpenCV 27

3.3.1 The GPU OpenCV Module 28

3.4 Embedded Systems . 30

3.4.1 Applications . 31

3.4.2 Characteristics . 32

3.4.3 Raspberry Pi . 32

4 Algorithms and Methods for Video Surveillance 34

4.1 Introduction . 34

4.2 Background Modelling . 35

4.2.1 Two Simple Methods for Background Modelling 35

4.3 Other Approaches to Background Modelling 37

4.3.1 Pixel-based Methods . 39

4.3.2 Running Gaussian Average 39

4.3.3 Modified Moving Average 40

4.3.4 Gaussian Mixture Model 42

4.3.5 Adaptative Gaussian Mixture Model 45

4.3.6 A Self-organizing Background Subtraction Method 46

4.3.7 Region-based Methods . 47

4.3.8 Kernel Density Estimator 48

4.3.9 Hybrid Methods . 49

4.4 Challenges in Background Modelling 50

4.5 Moving Object and Pedestrian Detection 51

4.5.1 The Waterfall Algorithm 53

Contents v

4.6 Multiple Moving Object and Pedestrian Detection 57

4.7 Unattended or Abandoned Object Detection 58

4.8 Stolen or Taken Away Object Detection 67

4.9 Trespassing Detection . 70

4.10 Loitering Detection . 72

4.11 Methods for People and Object Tracking 79

4.11.1 Template Matching in OpenCV 81

5 Benchmark Analysis 82

5.1 Introduction . 82

5.2 Python Benchmarking . 83

5.3 Results . 85

5.3.1 Optimization . 88

5.4 Real-time Application . 90

6 Conclusions 92

References 93

List of Figures

1.1 Scheme of a video surveillance system with a static camera 3

2.1 Most popular formats for image resolution 7

2.2 Three different ways of image filtering 9

2.3 Kernel matrix used for common blurring and the one used for Gaus-
sian blurring. 10

2.4 Kernel convolution. The central element is replaced by the result of
the expression. 11

2.5 Normal blurring with the different sizes of the Kernel matrix 11

2.6 Gaussian blurring with the different sizes of the Kernel matrix . . . 12

2.7 Median filter with the different sizes of the Kernel matrix 12

2.8 An example of histogram . 13

2.9 Low-contrast picture and its normal histogram equalized counterpart 14

2.10 Low- and high-contrast comparison with histograms 15

2.11 CLAHE limitation on pixel values 16

2.12 Low-contrast picture and its contrast limited adaptive histogram
equalized (CLAHE) counterpart 17

2.13 The application of different thresholds on the same gray-scale image 20

2.14 Balanced Histogram Threshold. 21

2.15 Erosion image compared to its reference image 22

2.16 Dilation image compared to its reference image 23

List of Figures vii

2.17 Two examples of opening and closing 24

3.1 Block diagram of a general-purpose embedded system. 30

3.2 Raspberry Pi 2 board . 33

4.1 Background images obtained with two basic background modelling
methods . 38

4.2 Comparison among different learning rates α at the same frame with
Running Gaussian average method 41

4.3 Kernel Density Estimator and its relative histogram 49

4.4 Background Subtraction with a fast-update background model . . . 52

4.5 Background subtraction with a fast-update background model after
the process of erosion and dilation 53

4.6 Waterfall algorithm flowchart . 54

4.7 Proximity check criterion . 55

4.8 Drawing two bounding box around a foreground object 56

4.9 Result of the Waterfall algorithm 57

4.10 Drawing a bounding box around a foreground object 58

4.11 Flowchart of object and pedestrian detection 59

4.12 Particular of the flowchart of multiple object/pedestrian detection . . 60

4.13 Drawing two bounding box around two foreground object 61

4.14 Dynamically updating background models 62

4.15 Unattended or abandoned object detection process 64

4.16 Cropped unattended object . 65

4.17 Flowchart of abandoned or unattended object detection 66

4.18 Stolen object detection process . 69

4.19 The process of trespassing detection 71

4.20 Flowchart of trespassing detection 71

viii List of Figures

4.21 Scheme of the two angles θhorizontal and θvertical considered for loi-
tering detection . 74

4.22 Scheme of the two variance thresholds 77

4.23 Different phases of the loitering detection process, with θhorizontal

and θvertical displayed in the upper left corner of the frame 77

4.24 Flowchart of loitering detection . 78

4.25 Template matching comparison . 80

5.1 Implementation from the Terminal of Unix utility time 83

5.2 The processing time of the three main functions which compose the
proposed algorithm . 86

5.3 The comparison of processing time of the core of the algorithm . . . 88

5.4 The processing time of the three main stages of Background modelling 89

5.5 The comparison of processing time of the main stage of Background
modelling . 90

List of Tables

4.1 Background modelling methods 49

5.1 Computer specifications . 84

5.2 Processing times of the subprocesses composing the background
modeling phase . 87

5.3 Processing times of the subprocesses composing the image treatment
phase . 88

5.4 Processing times of the three main functions which compose the
proposed algorithm . 91

Chapter 1

Introduction

1.1 Introduction to People and Object Tracking and
Video Surveillance Industry

Video surveillance systems have become a solid reality in everyday life. The origins
of the first video surveillance systems are traced back to 1940s, with the invention of
closed circuit television (CCTV). Due to military activities, its main early uses was
intended to obtain different types of information from aircrafts and from satellites.
However, with the advent of cheaper video cameras and, more generally, optical
sensors, security systems became widely used items for new building constructions,
powerplants, shops, apartments, subway stations and airports monitoring. Further-
more, modern activities and organizations seek out services and infrastructure that
are cost-effective and simple to manage. Likewise, the request and the importance of
keeping high level of security in running businesses such as production plants have
become a priority, resulting in an increasing trend toward surveillance to:

• Enhance overall safety and security;

• Reduce theft both internally and externally;

• Discourage vandalism and other minor crimes;

• Improve business operations and productivity;

• Improve customer experiences and grow loyalty.

2 Introduction

Consequently, as a matter of fact, video surveillance has become a fast-growing busi-
ness since its invention. The wide variety of possibilities has increased significantly
over the years and their applications are keeping on emerging [1].
In the early years, pedestrians tracking and object recognition have become an-
other relevant field of research and application also due to the recent and current
global trend of terrorist attacks. Therefore, it has become necessary to develop
and search for new and more accurate ways of monitoring wide areas, especially
public and crowded spaces, both for civil purposes and for safety reasons. These
systems are engineered in order to make the accomplishment of a safer and more
precise surveillance possible. Certainly, making such kind of engineering devices
available for any kind of application would make the prevention of terrorist attacks
more straightforward. However, the application mentioned above is not exclusively
intended for protection and public safety. Indeed, more and more areas of appli-
cation have been developed through the years. Traffic controlling, illigal parking
detection, riot controlling, monitoring of endangered species and wild areas, home
nursing, augmented reality, video editing and transportation flow analysis are just
few examples that may be mentioned along with others [2]. On the other hand,
the recurring decrease in labor force, particularly in developed countries, and the
effective reliability of operators while monitoring, are other factors that have to be
taken into account. In fact, the majority of safety cameras are connected to video
recorders which gather thousands of hours of videotape, the majority of which will
never be looked at. Others are connected to closed circuit television monitors where
human operators may be able to extract some frames of the event displayed or may
be fallacious in doing so. In these cases, but not only, tedious and monotonous
works can be easily replaced by automatic surveillance systems, resulting in savings
resources and resulting in the increase of the task performances and accuracy. Even
if this could be accomplished in high-velocity videotapes analysis, where the amount
of time saved would be significant.
Some people say that human privacy could be deeply affected by such invasive video
surveillance systems, and this is unquestionably true. However, a tradeoff analysis
between privacy and security issues is then necessary even if it is a matter of fact
that most of the people would consider a small loss of privacy a welcome price to
pay to achieve an higher level of security [3].
Advanced autonomous surveillance systems requires the application of many func-
tions such as visual surveillance of objects motion and their behaviors, visual and

1.2 People and Object Detection 3

automatic recognition of human body language, segmentation and real-time tracking,
silhouette recognition and identification and, above all of them, image processing
operations. In fact, in order to achieve good results with any type of image and frame
quality, image operations are strongly needed. For instance, real-time tracking is
used to detect one, or more, target object (e.g., suspicious person or object) in con-
secutive frames of the video. The position is then calculated using reference systems
depending on the type of video surveillance system and their relative position to the
observed target.

Fig. 1.1 A simplified scheme of a video surveillance system with a static camera.

1.2 People and Object Detection

People and object detection is a particular branch of the field of video processing in
digital image handling systems. People and object detection is the process of locating
a moving object over time using a camera [4]. Therefore, it is totally understandable
that the frame rate1 of the video plays an important role, in particular for those
application where objects are moving fast relatively to the frame rate. Another issue
can be related to the data contained in the video file that may affect the effectiveness
and the performance of the whole process. Furthermore, another situation that
increases the complexity of the problem is related to orentation changes of the

1fps.

4 Introduction

tracked object over time [4]. With the regard to the last scenario, difficulties arise
when the object (or subject) to be tracked are pedestrians rather than cars or constant-
shape objects. First, humans change shape significantly as they move. Second, they
vary in shape, size, and the colors they wear may cover an impressive range: from
very garish colors to opaque colors. Third, it is likely that tracking a person in a
very crowded space may result in the loss of the path. Moreover, the continous
change in the lighting conditions, how an object reflects lights and produces shadows,
moving shadows from vehicles and clouds are other common factors that have to be
considered. All these problems may seem easy to manage, if considered separately,
but the algorithms that have been developed so far have a limited range of application,
as deeply explained in the further Sections. Therefore, the handling of all these
issues together may be much more difficult than it seems. For instance, because
of the need to operate continously in real time, some algorithms are quite simple,
whereas others are much more complex because they have to guarantee an higher
accuracy. In any case, it is quite uncertain that a human operator could always get
correct anwers, given the visual data that the computer receives [3].

1.3 Video Surveillance-integrated Robotic Systems

All the features previously discussed can be integrated by the advanced use of intelli-
gent robotic systems. Nowadays the importance of such kind of devices is remarkably
increasing due to the necessity to control more autonomous systems. These systems
can be designed to deal with a large amount of different scenarios making it possible
to increment the efficiency and the reliability of specific applications.
In our case, we test our algorithm through different scenarios where both people and
objects are moving inside the videosurveilled area. The aim is to detect suspicious
behaviors and objects to state whether they may be risky and unsafe or not. Once
the video surveillance system declares the existence of an imminent danger, another
scenario, which will need further studies, can be considered: a robot can be sent to
check the area in order to have a deeper understanding of the data collected in the
previous phase; consequently, stronger results could be retrieved. For instance, if
the system is applied to a public square or a subway platform and the warning of an
abandoned object is triggered, a UGV2 robot can be maneuvered in the direction of

2An Unmanned Ground Vehicle is a vehicle which operates without an onboard human presence.

1.3 Video Surveillance-integrated Robotic Systems 5

the suspicious object. Because of the proximity of the robot to the target, more and
different data can be collected. The use of x-ray and thermal cameras, for example,
may help to detect the presence of explosive or hazardous materials which make the
presence of a human operator inconvinient, threatening and critical. Furthermore, the
UGV could be equipped with a mechanical limb to gather other different measures
such as the weight of the target (an abandoned suitcase, a box, a piece of luggage).

Chapter 2

Image Fundamentals

2.1 Introduction

In computer vision or image recognition and processing systems an image is con-
sidered as an array of pixels, minuscule cells which contain information. Thus,
an image, digitally speaking, is a simple numeric representation. Depending on
the quality of the sensor used to acquire the image, a pixel can usually carry 8
bits of useful information or even 9 bits. For instance, older television cameras
typically gave a gray-scale resolution that was accurate only to about one part in
50, corresponding to about 6 bits of useful information per pixel. On the contrary,
modern cameras commonly give less noise and may allow, as mentioned above,
8 or 9 bits of information per pixel. Nonetheless, in some applications, carrying
that big amount of information may not be needed, in particular when the result
will not be visible to the human eye [3]. Likewise, depending on the precision or
on the field of the application, carrying colors along with the image itself may be
useless. Many applications, for example, are only intended to gather information
about the precise shape of the objects inspected rather than their colors. That is the
case of mechanical components inspected on a workbench or through an automatic
system with the use of a conveyor belt. On the other hand, if we are designing an
automatic fruit picker, it will be crucial to check colors. A green apple has the same
shape of a red apple, but it may be necessary to categorize them into different apple
qualities. Thus, the potential of color in helping with many aspects of inspection,
surveillance, control, and a wide variety of other applications including medicine

2.1 Introduction 7

above all the others, is outstanding. Next, it is useful to consider not the potential but
the processing aspect of color. In many cases, good color discrimination is required
to separate two kinds of objects from each other, as demonstrated by the example
above. Generally, this means not to use one or another specific color channel but
subtracting two, or combining three in such a way as spot the differences. The
problem arises because the amount of processes and suboperations in different cases
may vary in an enormous range. For instance, if each pixel is treated identically, the
process load will be very light. On the other hand, if we want to combine data from
the color channels and carry out different operations on the same image at the same
time, this may be far from doable. In contrast with gray-scale images, where the bits
representing the gray-scale are all of the same type and, thus, can be processed as
single entities, color signals are inhomogeneous [3].
The definition of a digital image is therefore related to image processing. An image,
as cited above, represents the amount of pixels through which the image itself is
digitally represented. For instance, an image with a 1280x1024 definition has 1280
pixels on the horizontal edge and 1024 pixels on the vertical edge. A lower quality
image can be represented by a 320x240 rectangular pixel-made shape. Aspect Ratio
(often AR) is the division between the two edges of the images: the width and the
height both measured with the same unit. The most famous standard Aspect Ratios
are the 16:9 International Standard for HD Televisions, the 4:3 International Standard
for the Computer monitors and it used to be the standard for the 35 mm films in the
silent era.

Fig. 2.1 Most popular formats for image resolution with the constant AR of 16:9.

8 Image Fundamentals

Considering Fig. 2.2 we may ask whether it would be better to replace Fig. 2.2b
with Fig. 2.2a, using the three channels for the three main colors (Red, Green and
Blue). Generally, two aspects of color are fundamental for machine vision: the
intrinsic value of color and the additional storage and processing penalty it may
bring. It is tempting to say that the second aspect is of no such great importance if
we consider the cheapness of modern calculator which have both high storage and
high speed. On the other hand, high-resolution images can be gathered at huge data
rates and it could take many years to analyze exaclty all the data stored so far. As
a consequence, if the process of adding colors to a gray-scale image substantially
brings additional storage and processing penalties, its use will have to be justified
[3].

2.2 Binary Images

Among all the types of digital images, binary images, or bi-level images, play a
relevant and significant role. Even though they contain much less information than
their gray-scale counterpart, they are used to shape detection. Binary images are
composed of pixels which can only acquire two different values. Generally, the most
common colors used for binary images are black and white because of their ease
to be distinguished, even though any colors can be used [5]. In fact, binary images
only have one channel (instead of the three channels of RGB images, Red, Green,
Blue) where it is possible to disinguish the brightness intensities that goes from
0 (black) to 255 (white). These 256 values comes from 28. Binary images often
appear in digital image processing as masks or as the result of operations such as
segmentation, dilation, erosion and so on. In Fig. 2.2 the binary image is obtained
setting the threshold to 100. This means that all the pixels below the threshold are
set to the brightest value, thus 255.

2.3 Operations on Images

In image processing there is an immense variety of operations that can be applied on
digital images. Starting from very basic operation, maybe the simplest one is that
of selecting all the pixel of the image and setting them to a specified and constant

2.3 Operations on Images 9

(a)

(b)

(c)

Fig. 2.2 Three different ways of image filtering. (a) Shows the original image, (b) Shows the
gray-scale image, (c) Shows the binary image.

10 Image Fundamentals

value. Practically, this operation can be achieved by implementing a two-dimensional
for-loop since the image can be expressed as a two-dimensional array of the local
pixel intensity value. Another very simple operation is to copy an image to another,
resulting in two identical images at the end. As far as we can see, there are many
easy operations of this type like shifting the image left, right, up, down and so
on. Most practical situations demand more sophisticated operations. Among them,
thresholding is often applied to gray-scale images to convert them to a binary images,
as widely explained in Section 2.4. In the case of more sophisticated operation such
as Gaussian blurring, the definition of the so-called Kernel matrix is fundamental.
The Kernel matrix is used for the operations mentioned in the following sections and
it depends on the operation that has to be achieved [6]. Here are some examples:

K =
1
9

 1 1 1
1 1 1
1 1 1

 K =
1

16

 1 2 1
2 4 2
1 2 1

 (2.1)

Fig. 2.3 Kernel matrix used for common blurring and the one used for Gaussian blurring.

Typically, any kind of image processing operation is accomplished by doing a
convolution between a Kernel matrix and an image. For instance, if we have two
3x3 matrixes, convolution means inverting the Kernel matrix and making an element
by element multiplication summing up the results at the end. The obtained result
will become the central element of the resulting processed image. Clearly, this is
an iterative process, and the image would be composed by a combination of all the
values of the Kernel matrix adopted. In the figure below, we can see the process
of replacing the central element of the resulting element by element multiplication,
where the literal matrix represents the Kernel matrix:

2.3 Operations on Images 11


 a b c

d e f
g h i

∗

 1 2 3
4 5 6
7 8 9


 [2,2] =

(i∗1)+(h∗2)+(g∗3)+(f ∗4)+(e∗5)+(d ∗6)+(c∗7)+(b∗8)+(a∗9).

(2.2)

Fig. 2.4 Kernel convolution. The central element is replaced by the result of the expression.

Beside Fig. 2.3 that shows two different Kernel matrices for two different operation,
another filter that can be used is the median filter. Median filter is very broadly used
in digital image processing because, under certain conditions, it preserves edges
while removing noise. Its main idea is to scroll through each pixel value and replace
each of them with the median value, which can be considered as the middle value
of a general dataset, a data sample, a probability distribution [7]. Specifically, the
dataset is represented by the neighboring pixels in image processing and the median
value is considered among the pixels which are under the Kernel area. The pattern
that neighbor pixels follow is typically called "window" and it is obvious that in one
dimensional arrays the simplest window is just the elements preceding and following
the median pixel. In two or higher-dimensional datasets, a bigger complexity can be
added to the window such as box or cross patterns.

(a) (b) (c)

Fig. 2.5 Normal blurring with the different sizes of the Kernel matrix: (a) 3x3 Kernel, (b)
11x11 Kernel, (c) 25x25 Kernel.

12 Image Fundamentals

(a) (b) (c)

Fig. 2.6 Gaussian blurring with the different sizes of the Kernel matrix: (a) 3x3 Kernel, (b)
11x11 Kernel, (c) 25x25 Kernel.

(a) (b) (c)

Fig. 2.7 Median filter with the different sizes of the Kernel matrix: (a) 3x3 Kernel, (b) 11x11
Kernel, (c) 25x25 Kernel.

2.3.1 Normal Histogram Equalization

Histogram Equalization, among the other practical operation in image processing,
needs to have a specific explanation due to its importance and relevance.
First of all, what is an histogram? It is a graph which gives a broad overall idea about
the pixel values distributed in the considered image. Generally, the x-axis represents
the pixel values ranging from 0 to 255, whereas the the y-axis shows the occurences
of a specific pixel value. By analyzing an image histogram, we can get a fair amount
information about brightness, exposure, contrast, etc. Nowadays, with the use of
digital cameras and other image sensors, all the image processing tools provides
features on histograms.
An example is displayed in Fig. 2.8.
Normal Histogram Equalization procedure is largely applied to those images which
lack of contrast and exposure. The operation exploits the image’s histogram to adjust
those parameters mentioned above, generally enhancing the overall constrast and
remarkably re-setting to good values the exposure of the image. Through these
adjustments, the pixel value intensities, represented by the histogram, can be better

2.3 Operations on Images 13

Fig. 2.8 An example of histogram (source: cambridgeincolour.com).

distributed on the histogram itself, as shown in Fig. 2.9. This allows for areas of
lower local contrast to gain a higher contrast.
This method is really useful when both background and foreground share the same in-
tensity values; hence, they are either dark or bright. For instance, Normal Histogram
Equalization can achieve great results in displaying bones and tissue structures in
x-ray images. Different and various results can be also achieved in the field of
photography, for those pictures with high or low exposure. Furthermore, thermal and
satellite images can be optimized.
One of the major advantage of Normal Histogram Equalization is that the mathemat-
ical implementation is invertible. As a consequence, given the equalized histogram
of a sample picture, the original histogram can be recovered. Additionally, the
implementation is not computationally intensive. Nonetheless, Normal Histogram
Equalization method may often produce unrealistic effects in photographs. For
example, it can also yield to inconvenient effects when applied to images with low
color depth. For example, if applied to 8-bit image displayed in gray-scale, it will
further reduce color depth of the image. Histogram Equalization will work the best

14 Image Fundamentals

(a) (b)

(c) (d)

Fig. 2.9 Low-contrast picture and its normal histogram equalized counterpart. (a) Shows
a gray-scale low-contrast image, (b) Shows the same picture after applying the Normal
Histogram Equalization, (c) Represents the histogram of the low-contrast image. Again, we
can see how the pixel intensity values are remarkably distributed in a very limited part of
the graph, (d) Represents the obtained histogram. Here, it is easy to notice how the pixel
intensity distribution has sharply been distributed in a wider part of the graph.

when applied to images with much higher color depth than the give palette 1 size,
like continuous data or 16-bit gray-scale images [8].
Let us consider a gray-scale image G and let us consider ni the number of recur-
rences of the pixel intensity i. Hence, the probability of finding a pixel pG(i) with
the intensity value of i is:

pG(i) =
ni

n
(2.3)

where i is the number of total gray-scale levels in the image, which is typically 256.
n is the total number of pixel in the image and pG(i) is the value of pixel intensity i’s
histogram, normalized to [0,1].
Let us also define the cumulative distribution function cd fG. Especially in these
kinds of application, the CDF should be named cumulative histogram since it is

1In computer graphics and image processing, a palette is a distinct set of colors.

2.3 Operations on Images 15

(a) (b)

(c) (d)

Fig. 2.10 Low- and high-contrast comparison. (a) Shows a gray-scale low-contrast image,
(b) Shows a gray-scale high-contrast image, (c) Represents the histogram and its cumulative
distribution function of the low-contrast image. We can clearly see how the pixel intensity
values are remarkably distributed in a very limited part of the graph, (d) Represents the
histogram and its cumulative distribution function of the high-contrast image. Here, the pixel
intensity values are sharply distributed in a wider part of the graph.

derived by dividing values in the cumulative histogram by the overall amount of
pixels.

cd fG(i) =
i

∑
k=0

pG(k) (2.4)

After it, our aim is to create a transformation of the form H = T (G) to produce a
new image H. The new image H should have a flat histogram. Consequently, this
image will have a linearized cd fH function like the one shown in Equation 2.5:

cd fH(i) = i ·C (2.5)

16 Image Fundamentals

where C is only a constant. Then:

cd fH(H ′) = cd fH(T (k)) = cd fG(k) (2.6)

where k is again the number of total gray-scale levels in the image, ranging in
[0,255]. It is important to point out that the transformation T maps the level of the
new image H in a normalized range [0,1], since we used the normalized histogram
of the previous image G.
Because of the mathematical invertibility of the Histogram Equalization, we can map
the values back into their original range [0,255] by implementing Equation 2.7:

H ′ = H · (max{G}−min{G})+min{G} (2.7)

2.3.2 Contrast Limited Adaptive Histogram Equalization

The Constrast Limited Adaptive Histogram Equalization (CLAHE) is a particular
case of Adaptive Histogram Equalization (AHE). AHE differs from the Normal
Histogram Equalization since it uses several different histograms deduced from
distinct sections of the same image. Hence, AHE is suitable for improving the local
contrast and enhancing the definitions of edges in each of the specific region of the
image. To achieve this objective, AHE applies the so-called tile.

Fig. 2.11 CLAHE limitation on pixel values.

2.3 Operations on Images 17

Tiles are small blocks belonging to the image that would be equalized as usual.
However, AHE presents a big drawback to be considered. It sometimes overestimates
noise and defects, but not only, in regions where pixel values are considerably
homogeneous. This is where CLAHE plays its important role. Indeed, to avoid the
enhancing of noise in certain sectors, CLAHE puts a limit on the contrast, as shown
in Fig. 2.11. Then, if one of the calculated histogram is above the set limit, those
pixels are clipped and distributed homogeneously on the very base of the general
histogram before re-applying the equalization again. The redistribution procedure
can be repeated recursively until the excess is negligible.
An example is shown in Fig. 2.12.

(a) (b)

(c) (d)

Fig. 2.12 Low-contrast picture and its constrast limited adaptative histogram equalized
(CLAHE) counterpart. (a) Shows a gray-scale low-contrast image, (b) Shows the same
picture after applying the Contrast Limited Adaptive Histogram Equalization, (c) Represents
the histogram of the low-contrast image, (d) Represents the obtained histogram. Compared
to the Normal Histogram Equalization the pixel values are unsymmetrically distributed due
to the inner nature of the method, explained in the Subsection.

18 Image Fundamentals

2.3.3 The Relevance of Image Filtering in Real-life Applications

So far we have analyzed a wide variety of operations on both color and gray-scale
images. Their major aim is to remove background noises, spots and defects. However,
in some real-life applications, such as scrutinizing of high-precision mechanical
components on a production line, those filters may remove fine details such as lines
and small holes, considered as fundamental features. Additionally, it also has been
found that an erroneus filtering may lead to corner clipping and so on. Eventually,
filtering may moderately shift edges, which, in some high-precision applications, as
the one cited above, are vitally important.
Such imprecisions are quite disturbing and mititgate against the variegated and
indiscriminate use of filters [3]. If applied in situations where precise measurements
have to be made on images, particular care must be considered in order not to
dramatically change the nature of the image. Even though it is feasible to make
reasonable corrections to the modified data, it is obviously harder to accomplish
them after the application of filtering processes rather than before. For this reason,
often an alternative way is taken: the edge, shape, and object detection algorithms
integrate partially or totally defect-abolishment processes as an integral part of their
functions [3].
Summing the principles explained in this Subsection, we can state that one of the
preeminent scope of algorithms should be robustness towards defects, noises and
other errors that may affect measurements and the overall validity of the algorithm
itself.

2.4 Operations on Binary Images

The operations which can be made on binary images are reflected on important
mathematical properties that go under the name of Mathematical Morphology. This
field of study has encountered a rapid development over the last twenty years. It
has reached a considerable depth resulting in a consolidated basis for the current
ongoing studies in the branch of the image processing. Mathematical Morphology is
highly important because it provides a firm support for the whole study of shapes
and object tracking. In digital image processing, binary images are typically used
for straight-forward operations due to their ease to be handled. The most common
operations that use mathematical morphology are:

2.4 Operations on Binary Images 19

1. Subtracting;

2. Morphological Transformation:

(a) Dilating;

(b) Erosion;

(c) Opening;

(d) Closing;

3. Thresholding;

4. Segmentation.

Even though thresholding is only the simplest way of image segmentation, still
it can be considered as a different operation. Within the image, for example, the
binary image is captured in order to make the spotting of differences between two
consecutive frames easier. Then, it is possible to work on them using filters and other
functions as the ones mentioned right above.

2.4.1 Segmentation

Image segmentation is based on the process whereby a group of pixels (also know
as super-pixels) are gather together. The target is to create different regions limited
by different boundaries of the same image that share similar characteristics such
as color, intensity and texture. This eventually leds to a simpler understaing of the
image through its demarcation. Segmentation, together with the Edge detection
technique is widely and overall used for medical scopes and face recognition.

2.4.2 Thresholding

Thresholding is the simplest method of image segmentation and it is often applied
to gray-scale images to convert them into binary images. The actual goal of this
method is to higlight the desidered objects with the respect of the given background.
With a correct choice of the threshold value, which is a severe difficulty, the pixels
below the chosen value are commonly set to the brightest pixel value (255), whereas
all the pixels above remains unchanged. As a consequence, clearer and more defined
shapes can be obtained over a black background. Obviously, the pixel values can be
reverted anytime with simple operations, resulting in black-shaped objects over a

20 Image Fundamentals

(a)

(b)

(c)

(d)

Fig. 2.13 The application of different thresholds on the same gray-scale image: (a) Threshold
equal to 10, (b) Threshold equal to 35, (c) Threshold equal to 100, (d) Threshold equal to
200.

2.4 Operations on Binary Images 21

bright white background. Again, this process is mainly intended to detect objects
on a given background and it can be implemented through different and various
algorithms and methods, each of them having a particular efficacy and related
weaknesses. In many industrial applications especially, taking control of the light
and the general environment conditions is pretty easy. In addition, the objects
shapes and variability is quite limited. Hence, Thresholding to be applied in these
scenarios is not problematic. The weaknesses arise when our application has to deal
with dynamic environment conditions, where the light, brightness and other factors
interact significantly with the objects.
Among the various algorithms and thresholding methods, the most frequent is the
histogram analysis of the intensity levels involved in the digital image, also called
Balanced Histogram Thresholding Method (BHT) [9]. This automatic method is

Fig. 2.14 Balanced Histogram Threshold.

based on the assumption that the image is separated in two groups, each of them
with different light conditions: the background and the foreground. Assuming the
background to be at higher intensity levels, therefore brighter, the method tries to
find the optimum intensity level that splits the two groups up. Of course, this method
has several critical points that more complicated algorithms try to solve, among them
the Adaptative Thresholding.

2.4.3 Morphological Transformations

Among the morphological transformations, we can distinguish four main methods
that are conventionally, but not necessarily, applied to binary images. As mentioned
above, any morphological transformation needs the input image frame and the Kernel
matrix which decides the final goal of the operation to apply to the image.

22 Image Fundamentals

(a) (b)

Fig. 2.15 Erosion morphological transformation: (a) Erosion effects, (b) Reference image.

Erosion

As soon as we see the word "erosion", our common sense directly goes to the idea
of morphological erosion, like soil erosion. As the weather agents erode the soil,
the image erosion erodes the outer boundaries of the foreground object. The Kernel
matrix is applied on each pixel of the original binary image and, if all the pixels
included in the kernel is 1, the original pixel remains stable at the value 1 otherwise
it is eroded, thus turned into zero.
As we can notice from the original picture on the right and from the eroded one
on the left, the pixels near the outer boundaries will be discarded. Therefore, the
thickness of the foreground object will decrease depending on the Kernel matrix
dimension. This method is useful for removing background noises such as "pepper"
noise, especially when these points lie very far from a high-density white pixels (in
this case) region.

Dilation

Dilation is a method diametrically opposed to erosion. In this case, the Kernel matrix
still works on every pixel of the image, but if just one pixel included in the Kernel
is 1, the original group of pixels remain inhaltered. Therefore, as we can see from
the example below the dilation method increases the density of foreground pixels.
Specifically, the process of dilation is able to eliminate "salt" noise as a background
noise. Normally, if we need to get rid of background noise, both erosion and dilation

2.4 Operations on Binary Images 23

(a) (b)

Fig. 2.16 Dilation morphological transformation: (a) Dilation effects, (b) Reference image.

are applied. This is because erosion removes background noise, but it also shrinks
our object and sometimes the shrinkage may be too evident.
As we will see, along with opening and closing, also erosion and dilation are strongly
related. They help to join separated parts of the same object to become an unique
part of it.

Cancellation Effects

Considering the application of both erosion and dilation, we may ask whether the
first one cancels the second one and viceversa. As we mentioned above, if an erosion
has been made, the pepper noise will has been removed. If we would like to have
those kind of noise back to our image, we could only cancel the operation because
of the irreversibility of the operation. The same happens with dilation. Therefore, if
we call S the set of pixels, we can write:

erode(dilate(S)) ̸= S (2.8)

dilate(erode(S)) ̸= S (2.9)

More generally, we can state:

erode(dilate(S))⊇ S (2.10)

24 Image Fundamentals

dilate(erode(S))⊆ S (2.11)

Furthermore, we can also write the dilation and erosion operations formally as:

A⊕B (2.12)

A⊖B (2.13)

where respectively A is the image and B is the mask or the Kernel matrix applied on
the image.

Opening and Closing

Opening and closing are complementary operations compared to erosion and dilation.
Basically, opening removes noise from the background image and often opens gaps
as shown on Fig. 2.17a, whereas closing removes small holes in the Foreground
image and often has the effect of closing gaps between near shapes as shown on Fig.
2.17b. In the Subsection 2.4.3, we were interested in the possibility of an erosion
cancelling a dilation and vice versa. Therefore, we have defined these two operations
that express a sort of "degree of cancellation". Opening and closing can be formally

(a) (b)

Fig. 2.17 Two examples of morphological transformation: (a) Opening, (b) Closing. They
are both referred to shape of the examples above.

2.4 Operations on Binary Images 25

defined by the following equations:

A•B = (A⊕B)⊖B (2.14)

A◦B = (A⊖B)⊕B (2.15)

As we can see, these operations are very important especially for practical applica-
tions such as defection tasks. For instance, if we subtract the obtained binary image
to the original image, we can be able to spot and locate the defects we cancelled
through the operations cited above. Closing and opening have the interesting property
to be idempotent. This means that repeating or iterating the same operation more
times has no effects, whereas we know that erosion and dilation can be iterated a
number of times. The propery of being idempotent can be written as follow:

(A•B)•B = A•B (2.16)

(A◦B)◦B = A◦B (2.17)

From a practical point of view, this property is to be expected since any hole or dot
that has been filled or removed cannot be further filled or removed without recreating
it first. Equation 2.18 shows that it is pointless to apply dilation and opening within
the same mask:

(A⊕B)◦B = (A⊕B) (2.18)

Finally, closing an image will increase the areas of the objects, while opening will
make their areas smaller [3].

Chapter 3

The OpenCV Library and Embedded
Systems

3.1 Introduction

OpenCV is a library of programming functions concerning real-time computer vision.
It was originally developed by Intel in 1999 by Gary Bradsky and the first release
came out in 2000. Later on, OpenCV library active development was supported
by Willow Garage, a technology incubator devoted to developing hardware and
open source software for personal robotics applications. The company was probably
best known for its open source software ROS (Robot Operating System), which
has been rapidly and widely becoming a common, standard tool among robotics
researchers and industry, since its initial release in 2010 [10]. The OpenCV library
is cross-platform and free for use, which means that the computer software can
be implemented on multiple computing platforms. In other words, the software is
platform-indipendent [11]. For instance, a cross-platform application can run on
Microsoft Windows, Linux and macOS on either the PowerPC or x86-based Apple
Macintosh systems. Currently OpenCV supports a wide variety of programming
languages like C++ and Python [12]. OpenCV’s major application areas are:

• Face recognition systems;

• Gesture recognition;

• Image segmentation;

• Motion tracking;

3.2 OpenCV with Python 27

• Augmented reality;

• Object identification;

• Mobile robotics.

3.2 OpenCV with Python

OpenCV-Python is the Python API (Application Programming Interface) of OpenCV.
It combines the best qualities of OpenCV C++ API and Python language. Python is
a general purpose programming language which became very popular in a very short
period of time due to its simplicity and code readability. For this reason, Python
philosophy can be correctly summarized by the so-called "The Zen of Python" [13],
which includes aphorisms such as:

• Beautiful is better than ugly;

• Explicit is better than implicit;

• Simple is better than complex;

• Complex is better than complicated;

• Readability counts.

Nevertheless, Python is slower compared to other languages like C or C++,. However,
one of the most important feature of Python is that it can be easily extended with C
and C++. This gives the programmer two main advantages:

1. The code is as fast as the original C or C++ code;

2. Python coding is very straight-forward.

3.3 Realtime Computer Vision with OpenCV

As already mentioned in Section 1.1 and Section 1.2 with a special reference to
video surveillance systems and pedestrian tracking, machine vision is a very rapidly
growing field. Its objective is to understand images, what is happening in front of
a camera through a deep knowledge of the core of the image itself. The process

28 The OpenCV Library and Embedded Systems

of understanding is then applied to multiple fields such as computer and robotic
systems in order to provide people a more informative image. Furthermore, movie
production, photography, augmented reality and video surveillance systems are wide
areas of its application. OpenCV provides, among other tools, means needed to solve
computer-vision problems. It contains a huge amount of low-level image-processing
functions and high-level algorithms such as face detection, pedestrian detection,
feature matching and tracking [14].

3.3.1 The GPU OpenCV Module

In the early years of processors developing, the simplest way to increase a device
performance was to wait for new incoming semiconductor technology to improve,
resulting in an increase in the clock speed of the device1. This could and still can be
achieved employing a single and very fast processor fabricated with the latest material
technologies, for example with optical processing elements [3]. As a consequence,
when the clock speed increased, all applications were getting faster with no need of
modifying them in their inner parts. As transistor got denser and more sophisticated,
they have more current leakages resulting in a lower energy efficiency. Therefore,
one of the nowadays priority has become to improve the energy efficiency of these
systems. One of the proposed solution is to have more transistors per area, thus
denser, as suggested above. In this way, two primary ways of optimizing them to
good use are:

• Parallelization: this method stands on the statement that is better and faster
to create more identical processing units instead of making a single one
processing unit faster and more powerful. Parallel processing involves the use
of N processors working in parallel that give the possibility of increase the
processing sped by a factor N. Thus, to achieve a given processing speed, it is
only necessary to increase the number of parallel processors properly;

• Specialization: this other method suggests to build domain-specific hardware
accelerators that can perform a particular kind of function more efficiently.
Therefore, each distinct kind of function has its own accelerator and just there
that process is fully optimized.

1The clock speed or clock rate is the speed at which a microprocessor executes instructions. It is
generally expressed in Giga Hertz (GHz)

3.3 Realtime Computer Vision with OpenCV 29

This duality is called heterogeneous parallel computing [14]. High-level computer
vision tasks are often composed of a wide variety of peculiar subtasks that can be
faster processed on special-purpose hardwares rather than on the main processor.
That is the case of the so-called GPU, also known as "Graphics Processing Unit". It
is a processor accelerator that can run graphics-related subtasks with more efficiency
than a normal CPU. Every laptop or home computer, together with smartphones and
tablets, is equipped nowadays with this sort of device.
The first GPUs were fixed-function pipelines specialized for accelerated drawing
of shapes on a computer display [14]. Currently, since GPUs are partially pro-
grammable, programmers are able to write special or parts of programs that are run
by the GPU on purpose making graphics accelerators possible to compute tasks for
which they were not originally intended for. Due to this extension of the graphics
accelerators, GPU became an useful tool for image processing and computer vision
operations.
GPUs are still not quite as flexible as the CPUs. However, since they perform par-
allelization much more efficiently, an increasing number of non-graphics functions
and applications are actually being rewritten using the GPUs code languages, which
is different form the more standard CPUs code languages. Nonetheless, a lot of tasks
are not parallelized so easily and straight-forward, because they contains a lot of
processes where the results of later stages are mostly dependant on the results of
earlier stages, resulting in a low efficiency and low velocity of the processes, if made
on GPUs rather than on CPUs [14]. Since many high-level tasks are composed by
both serial and parallel subtasks, the entire task, case by case, could be accelerated
by running some of its steps on the GPU and some others on the CPU. However, this
introduces two source of inefficiency:

• Synchronization: when one subtask depends on the result of another subtask;

• The back and forth movement of the data between the CPU and the GPU
memories.

Finally, regarding the GPU implementation method in OpenCV, this was added in
2010 resulting in a dramatic acceleration performance. In fact, the GPU module
covers a significant part of the library’s functionality and new developments are soon
to be proposed [14].

30 The OpenCV Library and Embedded Systems

3.4 Embedded Systems

An embedded system is a computer system with a specific dedicated function. It is
included within a larger and generally more complex mechanical or electrical system,
often with real-time computing constraints. Nowadays, embedded systems control
many devices in use. As a matter of fact, ninety-eight percent of all microprocessors
are manufactured as components of embedded systems. Embedded systems find
applications where general-purpose computers would be too costly. Nonetheless,
microcontrollers may be programmed to fulfill the same role as a large number of
separate components even if their complexity is higher than a traditional system,
but most of it is included within the microcontroller itself [15, 16]. The main
properties of typically embedded systems when compared with the general-purpose
counterparts are:

• Low power consumption;

• Small size;

• Limited operating ranges;

• Low cost.

MEMORY

SOFTWARE

CPU

APPLICATION SPECIFIC CIRCUITS

Human User
Interface

Sensors

Actuators or
Electrical
Signals

Display

D/A

A/D

Fig. 3.1 Block diagram of a general-purpose embedded system.

3.4 Embedded Systems 31

As a consequence, embedded computers come with limited processing resources
resulting in a much higher difficulty in programming them and in interacting with
them. Modern embedded systems are often based on microcontrollers (CPUs in
addition with a fixed amount of RAM, ROM and other peripherals all embedded on
a single chip. They are designed to perform specific tasks where the relationship of
input and output is defined). However, ordinary microprocessors (it has only the CPU
inside. These microprocessors do not have RAM, ROM, and other peripheral on the
chip. A system designer has to add them externally to make them functional) are also
common, especially in more complex systems. In both case, the unit used may range
from a general purpose type to a specialized one in a certain class of computations.
Sometimes, even custom designed units are necessary for the application to be
as handy as possible. Since embedded systems are dedicated to run very specific
tasks, system designers can move widely to achieve a good reliability and high
performances reducing the size of the unit and its cost. A single microcontroller chip
is generally installed on low-complexity systems, whereas multiple units are taken
into consideration for high-complexity applications where peripherals and networks
may be mounted inside a large enclosure [16].

3.4.1 Applications

Embedded systems range from portable devices such as digital watches, MP3 players,
videogame consoles, digital cameras, GPS receivers and printers to larger stationary
installations like traffic lights, factory controllers, video surveillance systems and
climate applications. Transportation systems from planes to automobiles increasingly
use embedded systems. For instance, brand-new airplanes use inertial guidance
systems and GPS receivers. In addition, brushless DC motors, induction motors and
DC motors use electronic motor controllers. Automobiles use embedded systems to
maximize their efficiency and reduce pollution. Other systems that can benefit from
the use of embedded systems are: Anti-Braking System (ABS), Electronic Stability
Control (ESC/ESP), Traction Control (TCS) and automatic four-wheel drive.
Embedded systems are also found to be very useful and versatile in safety, medical
and life critical applications, as these systems can be easily isolated from being
hacked resulting in an higher reliability. Moreover, for safety systems such as fire
detection systems, embedded systems can be designed to handle high temperature
and continue to operate. In security applications such as video surveillance systems,

32 The OpenCV Library and Embedded Systems

the embedded systems can be self-sufficient and they can be able to deal with
malfunctioning electrical and communication systems [16].

3.4.2 Characteristics

As cited in Section 3.4, embedded systems are designed to accomplish some specific
tasks. Among all the features, the real-time performance constraint is one of the
most relevant. Due to safety and usability reasons, real-time performance has to
be reached. On the contrary, other applications may have low or no performance
requirements resulting in simpler and cheaper systems.
Embedded systems need program instructions to run to accomplish their tasks.
The program instructions are called firmware or sometimes embedded softwares.
Firmware are executable software that is stored within a read-only memory or on
flashmemory chips. They run with limited computer hardware resources such as
little memory, small or non-existent keyboard or screen [15, 16].

Processors

Embedded processors can be divided into two main categories. Ordinary micropro-
cessors have only the CPU inside, as mentioned in Section 3.4. Therefore, there
is the need of integrating the system with peripherals (i.e. USB and multi media
cards such as SD cards) and memory. As a consequence, microprocessors require
more support circuitry than microcontrollers. Microcontrollers is very similar to a
microprocessor, except that it is designed specifically for use in embedded systems.
In fact, they include on-chip peripherals including small amount of RAM and/or
ROM memory, resulting in a lower power consumption, smaller size and cost. Since
the software depends on the end application, many different basic CPU architectures
are used.

3.4.3 Raspberry Pi

Embedded systems can easily be implemented with already made boards such as
Raspberry Pi and Arduino, among the most famous and used. These are single-board
computers with a single microprocessor or multiple microprocessors, memory, inputs
and outputs (I/O). Regarding Raspberry Pi, all models feature a central processing
unit (CPU) and an on-chip graphics processing unit (GPU). Secure Digital (SD)
cards are used to store the operating system and to program memory. Most boards

3.4 Embedded Systems 33

have between one and four USB slots, HDMI and other various video output and a
3.5 mm phono jack for audio.

Fig. 3.2 The Raspberry Pi 2 board

The Raspberry Pi Foundation provides Raspbian, a Debian-based Linux distribution
for download. Other third party operating systems available via the official website
include Ubuntu MATE, Snappy Ubuntu Core, Windows 10 IoT Core, RISC OS and
specialised media center distributions [17]. It promotes Python and Scratch (Scratch
is a visual programming tool allowing the user to create animations and games) as
the main programming language, with support for many other languages such as
Python Games, Sonic Pi (write code to make music) [18].
In our specific case, the board can be installed on a UGV robot in order to extend
the range of action inside the controlled area to make it possible to achieve more on-
ground operations after the video analysis. The robot, as already briefly explained in
Section 1.3, could be considered as an additional tool to make this specific application
even more integrated. Of course, in this case, an object recognition algorithm with
dynamic cameras should be taken into account so that a dynamic point of view can
be exploited.

Chapter 4

Algorithms and Methods for Video
Surveillance

4.1 Introduction

As already introduced in Chapter 1, security surveillance systems have become
a solid part of everyday’s life and a solid business opportunity, resulting in an
increasing number of new methods and suggested solutions. Generally, because
video surveillance systems do not provide the possibility of analize in a complete
and satisfactorily way all the contents they record, they require the presence of
security staff that stands by the monitor. The staff has the task of detecting what is
happening in front of the camera(s) or periodically searches for suspicious behaviors
and similar or dangerous acts [19]. Therefore, it is desiderable but also challenging
to develop surveillance systems that are capable of autonomously detect noticeable
and evidently suspicious events. For instance, a useful application could be the
detection of unattended bags or pieces of luggage in an airport waiting room for
boarding. Of course, an automatic danger alert has to be taken into consideration in
order to not have a strict requirement of the security staff presence. This could lead
to a faster and more efficient integrated security system.
Motion detection and object tracking are two fundamental task that will be deeply
investigated in the further sections. In this Chapter, we define different scenarios that
will be analized:

• Moving object/pedestrian detection: a moving object or a walking pedestrian
is detected in the region of interest;

4.2 Background Modelling 35

• Multiple objects/pedestrians detection: multiple objects or persons detected
inside the surveilled area;

• Unattended or abandoned object detection: an object that is left in the
surveilled area and it is unattended by its owner;

• Stolen or taken away object detection: an object such as a bag that is left by
someone and then picked up by someone else.

• Trespassing: a person or an object that trespasses a sensible or highly surveilled
region of interest of the surveilled environment;

• Loitering detection: a person who suspiciously and repetitivily walks in the
videosurveilled area.

4.2 Background Modelling

Foreground object detection is the first step in computer vision applications. Received
a video data from any source, the aim is to detect and track a single object, multiple
objects, a person or more persons in real-time as a foreground object. Additionally,
event analysis can be implemented. The foreground object(s) dynamically moves
over a background in the camera field and, therefore, can be spotted through different
ways. Among them, an efficient way to obtain the above mentioned foreground
objects is the background modelling that features different methods, developed
over the last decades and still under investigation. Background modelling methods
generally share the same scheme: the first frame captured by the camera is memorized
to build the so-called background model or background image. As we will see in
Section 4.4, the background image is kept updated on a regular basis so as to adapt to
the different luminance conditions and geometry settings [20]. Then, it is compared
with the current frame captured to detect both moving objects in the camera frame
and static objects previously not included in the first frame. In this way, for example,
the detection of unattended bags in a subway station can be achieved along with
persons detection.

4.2.1 Two Simple Methods for Background Modelling

The two simplest methods for foreground object and motion detection to be detected
are the background difference and the frame difference. They both share the scheme

36 Algorithms and Methods for Video Surveillance

described in Section 4.2. However, as we will notice going through the Subsection,
the simplest background difference method just needs to memorize two frames each
iteration, whereas the frame difference method needs at least three frames to be
memorized.

Background Difference

The background difference, also know as background subtraction, is a widely used
method which involves the subtraction of a fixed background frame with an updated
current frame. The fixed background frame is generally the first frame of the video
that can be considered as the "reference frame" which every following frames point
to. The background image or background model may be updated regularly as it
should not contain moving objects or shinings due to changing in the light conditions
(as explained in Section 4.4) in the region of interest. The background frame is then
compared with the second one, the current frame, that keeps on being updated in
loop. By converting these frames into binary images and subtracting them as shown
in Equation 4.1, the presence of new objects and bodies in the recorded zone can be
achieved.

Pt(s) =

1, if d(Cs,t ,Bs)> T

0, otherwise
(4.1)

In Equation 4.1, Pt(s) represents the value of the pixel s at time t and it is often called
the motion mask. d is the subtraction between the current Cs,t frame at time t at pixel
s and the background model Bs at pixel s. It is important to note that the distance d
between the two frames operates, in this case, on gray-scale images as illustrated by
Equation 4.2. Finally, T is the set threshold.

d = |Cs,t −Bs| (4.2)

The weakness of this method relies on the fundamental necessity of the use of static
cameras. Therefore, the application of mobile surveillance systems through mobile
robots would need to be analyzed separately.

4.3 Other Approaches to Background Modelling 37

Frame Difference

The frame difference involves three subtraction operations. Three frames have to
be memorized and updated after every iterations. Naming the frame at the initial
recording time "previous", the following frame "current" and the next one "next", two
subtraction are initially implemented between the current and the previous frame and
between the next and the previous frame again. Their results are then subtracted to
get the relative motion of the target object. The weakness of this method relies on the
way the movement is spotted. In fact, the background is not memorized. Therefore,
if there is no relative movements between two consecutive frames, no difference
will be noticed. For instance, if an object is put beneath a waiting room couch on
purpose, it will be noticed only in one frame difference. Thus, the suspicious object
would be treated as a background element on the consecutive iteration. This could
be fallacious for many daily situations. A clear example is shown in Fig. 4.1. In Fig.
4.1a, we can barely see the contours of the moving object. Due to the slight relative
movement between two consecutive frames, the contours detected and then showed
are almost indiscernible. On the other hand, in Fig. 4.1b, the shape and the nature of
the object is more evident, even though we can easily spot some shadow errors.

4.3 Other Approaches to Background Modelling

Other background modelling approaches can be broadly grouped into:

• Pixel-based;

• Region-based;

• Hybrid methods.

or:

• Parametric methods;

• Nonparametric methods.

With the regard of the latter classification, the main difference is: parametric methods
have a fixed number of parameters, whereas the number of parameters grows with
training data in nonparametric methods. The former ones have the advantage of
often being faster to use, but the drawback of making stronger assumptions about the

38 Algorithms and Methods for Video Surveillance

(a)

(b)

Fig. 4.1 Background images obtained with two basic background modelling methods. (a)
Shows a binary background image obtained through the frame difference method. As we can
see, the contours are almost imperceptible, (b) Shows the same binary background image,
but obtained with the background difference method. Here, the contours are remarkably
more visible.

4.3 Other Approaches to Background Modelling 39

nature of the data distribution. Nonparametric methods, instead, are more versatile,
but often computationally complicated and intricate for large datset [21].
From now on we will use the first classification to group the methods together.

4.3.1 Pixel-based Methods

Pixel-based methods can effectively obtain good results when detecting detailed
shapes of foreground objects. However, they are commonly affected by defects such
as noise, illumination changes and modifications in the background.

4.3.2 Running Gaussian Average

Wren et al. in [22] proposed to model the background at each pixel location with
a Gaussian probability density function (PDF). Often, the background subtraction
problem may result in a PDF-thresholding problem [23]. Therefore, to avoid fitting
the function from the beginning at every instant for each new frame and to deal with
a low updating rate due to the dynamic changes of the background, an easier function
is implemented:

µt,s = αIt,s +(1−α)µt−1,s (4.3)

where It,s is the s pixel’s value at time t and µt,s is the average calculated at pixel s
at time t. α is an empirical weight constant that ranges from 0 to 1. α is generally
chosen taking the updating velocity and the image stability into account. For in-
stance, if α is equal to 1, the average at t = 2 would not take the average at t = 1 into
consideration. Therefore, as α becomes closer to unit, the update velocity increases,
but, on the other hand, the image stability decreases (refer to Figure 4.2). Although
not explicitly stated in [22] as concerned in [20], the other parameter of the Gaussian
probability density function, that is the standard deviation σt,s, can be calculated
similarly.
RGA can be effectively exploited in the OpenCV module in Python by using the
function cv2.accumulateWeighted(). This function sums up every pixel values. It
requires three inputs: the first one is the incoming current frame detected (in this
case It), the second one is the background reference frame and the third one is the
empirical weight constant α .
Since for each pixel only two parameters (σt,s,µt,s) have to be memorized, the Gaus-
sian average features the good advantage of a low memory requirement. However,

40 Algorithms and Methods for Video Surveillance

it may happen to have strict constraint on real-time applications. In this case, the
computational load has to be considered. Indeed, the two parameteres (σt,s,µt,s)

related to each pixel have to be updated with a rate that is less than the frame rate.
Consequently, the computational load decreases but the system may show a slower
response to the changing in the background. Some extensions can be made to this
method with multiple-channel images (R, G, B) rather than using only gray-scale
images, as stated in [23].

4.3.3 Modified Moving Average

A similar approach to the Running Gaussian average is the one proposed by Kamaraj
et al. in [2]. The so-called modified moving average (MMA) is used to compute
the average of a first set of frames for the initial background model generation. For
each pixel (x,y) the corresponding value of the current background model Bt(x,y) is
given by Equation 4.4:

B(x,y) = Bt−1(x,y)+
1
n
(It(x,y)−Bt−1(x,y)) (4.4)

where n is the video frame number in the video sequence, Bt−1(x,y) is the previous
background model, It(x,y) is the incoming current video frame [2]. The model that
will be used for the further analysis, such as detection of stolen objects or pedestrian
tracking, is the calculated average over a fixed number of K frames. After the
previous part, that we can consider as a training part, the obtained background model
B(x,y) is compared to the new incoming frames F(x,y) detected by the static camera.
Here, a simple background difference operation is applied and, if the pixel difference
is greater than a set threshold T , then it becomes a pixel of a moving object in the
region of interest, otherwise is set to zero as a background pixel. The following
operation is represented by Equation 4.5:

Dt(x,y) =

1, if |Ft(x,y)−Bt−1(x,y)|> T

0, otherwise
(4.5)

where Dt(x,y) is the binary image of the subtraction operation. Since T represents a
fixed value for the threshold, it is only suitable and reliable for simple background

4.3 Other Approaches to Background Modelling 41

(a) (b)

(c) (d)

(e) (f)

Fig. 4.2 Comparison among different learning rates α at the same frame (100) with Running
Gaussian average method. (a) α equal to 0.8, (b) α equal to 0.5, (c) α equal to 0.2, (d) α

equal to 0.1, (e) α equal to 0.01, (f) α equal to 0.001. The higher is the learning rate, the
faster the background model is updated. Oftentimes, α is mostly dependent on how the
original scene is affected by gradual changes in illumination, sudden changes in luminance,
if the scene is set up to an outdoor environment, and so on.

42 Algorithms and Methods for Video Surveillance

environments. They should not be affected by any kind of noise, luminance changes,
shinings and so on. Hence, a dynamic threshold is proposed in [2], where the
possible defects of a background enviroment can affect the threshold itself making it
possible to have a clearer background model and an easier moving object detection.
The dynamic threshold thus reflects the overall changes in the region of interest
detected by the static camera. It takes a small value if there is a small change in the
image illumination, whereas it increases accordingly with the presence of noises and
illumination changes. This dynamic threshold is proposed:

∆T = λ
1

m ·n

m

∑
i=1

n

∑
j=1

|F(x,y)−B(x,y)| (4.6)

adding ∆T to Equation 4.5, we obtain:

Dt(x,y) =

1, if |Ft(x,y)−Bt−1(x,y)|> T +∆T

0, otherwise
(4.7)

where nxm is the dimension of each image. λ is called by the authors the inhibitory
coefficient. Its values vary according to the background environment, but a reference
value exists and it is set to 2.

4.3.4 Gaussian Mixture Model

In order to avoid the influence of animated textures caused by waves on the water,
moving branches of trees shaken by the wind, Stauffer and Grimson in [24] proposed
the Gaussian mixture model (GMM) which models every pixels with a mixture of
K Gaussian functions [25]. As stated in [20], the model proposed by Stauffer and
Grimson could be defined not only as a background modelling method, but also as an
image model as it provides a description for both foreground and background pixels.
The probability of observing the input pixel value x at time t being a background
pixel is represented by the following equation:

P(xt) =
K

∑
i=1

ωi,t ·η(xt ,µi,t ,∑
i,t
) (4.8)

4.3 Other Approaches to Background Modelling 43

where η(xt ,µi,t),∑i,t is the i− th Gaussian probability distribution function (PDF),
ωi,t is its weight at time t, µi,t is the mean value of the i− th Gaussian in the mixture
at time t1, K is the number of Gaussian function and ∑i,t is the covariance matrix of
the i− th Gaussian function at time t. Due to computational load reasons, in practical
cases, as per [24], the covariance matrix can be assumed as diagonal and K is set to
be between 3 and 5.
At each iteration, a new pixel xt is checked against the K Gaussian distributions,
until a match is found. If the pixel value is within 2.5 standard deviation of the
distribution, the match is then defined as per Equation 4.9 and the considered pixel
is labeled as in background.

(xt −µi,t)< 2.5 ·σi,t (4.9)

In order to recognize a pixel as a foreground or background pixel, a criterion is
therefore required. Stauffer and Grimson used the following way: first, all the K
distributions are orded based on the ratio between their peak amplitude ωi and their
standard deviation σi. The assumption is that the higher and more close-fitting is the
distribution function, the more is probable that the pixel belongs to the background.
Then, only the R most reliable pixels are chosen as part of the background following
Equation 4.10:

R = argminr(
r

∑
k=1

ωk > τ) (4.10)

where τ is an assigned empiric threshold. If none of the K distribution functions
matches the current pixel value, the least probable distribution function is replaced
with a distribution function centered in xt with its mean value µ which remains the
same, an high variance σ2 and low weight ω .
In [24], these parameters are only updated for matched components as follows:

ωi,t = (1−α)ωi,t−1 +α (4.11)

1In a single Gaussian distribution function µ is the peak value.

44 Algorithms and Methods for Video Surveillance

where α is a user-defined learning rate. The new matched mean value is updated as
per Equation 4.12

µi,t = (1−ρ)µi,t−1 +ρ · xi,t (4.12)

σ
2
t = (1−ρ)σ2

t−1 +ρ(xt −µt)
T (xt −µt) (4.13)

where ρ is a learning value defined by the following equation:

ρ = αη(xt |µk,σk) (4.14)

The Gaussian mixture model has diverse advantages:

• GMM does not have to store a set of parameters in the ingoing process resulting
in saving memory space. It only uses the covariance and the peak value µ to
measure and work on the pixel leading to the possibility of having different
thresholds for each pixel;

• From the previous point, we inherit the absence of a unique global threshold;

• GMM can deal with moving and dynamic backgrounds caused by waving
trees, gradual illumination changes.

However, the Gaussian mixture model also has some drawbacks:

• The number of Gaussian probability distribution function K must be predeter-
mined before inizializing the process. As mentioned in the Subsection 4.3.4
and in [24], K is oftentimes set to 3, 4 or 5;

• GMM with only few Gaussian probability distribution functions cannot ac-
curately model a sudden change in the background. It is stricyly related to
the user-defined learning rate α . For small learning rate, it is hard to detect
sudden changes in the background, whereas for a big learning rate it is very
likely that slowly moving objects are absorbed faster into the background;

• A series of frames have to be run without any moving objects or pedestrians in
order to train the GMM background model;

• The previous step requires a moderate amount of memory.

4.3 Other Approaches to Background Modelling 45

4.3.5 Adaptative Gaussian Mixture Model

Since the Gaussian mixture model uses a fixed number of components, Zivkovic
proposed an improved algorithm as per [26]. The aim of this work is to adaptively
adjust the parameters and the number of components of its predecessor, the GMM.
The proposed algorithm can be applied to the given dataset by choosing automatically
the number of components for each pixel [25]. Given a new dataset xt at time t, the
algorithm updates constantly the weight ωi,x,t , the mean value µi,x,t and the standard
deviation σi,x,t as follows:

ωi,x,t = ωi,x,t +α(oi,x,t −ωi,x,t) (4.15)

µi,x,t = µi,x,t +oi,x,t(α/ωi,x,t)δi,x,t (4.16)

σ
2
i,x,t = σ

2
i,x,t +oi,x,t(α/ωi,x,t)(δ

T
i,x,tδi,x,t −σ

2
i,x,t) (4.17)

where δi,x,t = xt − µi,x,t and α is equal to 1/P. P is a user-defined time adaption
period; thus α defines an exponentially decaying plot which is able to limit the
influence of the previous data. It is important to notice that the new parameters are
related to the above cited new dataset xt , as we can see from the subscript x. For a
new sample dominion oi,x,t is set to 1 for the close components with largest weight
ωi,x,t and the other oi,x,t is set to 0. For instance, a sample is close to a component if
the Mahalanobis distance (Equation 4.18) is less than three.

dm = |Cs,t −µs,t |
−1

∑
s,t
|Cs,t −µs,t |T (4.18)

If the components are sorted to have a descending weight ωi,x,t the Equation 4.10
changes as follows:

R = argminr(
r

∑
k=1

ωk > (1− c f)) (4.19)

where c f is a measure of the maximum portion of the data that can belong to
foreground objects without influencing the background model. For instance, if an
unknown objects come into the region of interest of the camera, it will be treated

46 Algorithms and Methods for Video Surveillance

as a foreground object. However, if the same object remains stationary inside the
same region of interest, the weight ω of the new cluster will increase constantly
because the old background is occluded. Therefore, if the objects remains there
for enough time, its ω will become larger than c f and it will be classified as a part
of the background [25]. It is reasonable to think that the more c f increases and
comes closer to the unit, the faster is to consider a new incoming object as part of
the background environment.

4.3.6 A Self-organizing Background Subtraction Method

In [27], Maddalena and Petrosino proposed a background subtraction model called
SOBS based on self-organization of the pixels belonging to the scene by an artificial
neural networks [25]. For each pixel, the SOBS method builds a map which consists
of a nxn vector of weights. Thus, the model of every pixel can be represented as:

C = (c1,c2, ...cn) (4.20)

which dimensions are n2. The entire set of weight vectors acts as a background
standard. Calling pt a new incoming pixel which belongs to the t − th frame It , if a
best matching weight element cm can be found in the current pixel mode (represented
by Equation 4.20), pt is considered within the background standard. A second case
arises when pt is in the shadow; therefore, it does not belong to the proper object
that has to be detected. In this case pt is still considered within the background
model, but it should be not used to update the corresponding vectors. The last case
is represented by pt to be a foreground pixel. When does it occur to have a best
matching weight element cm for the incoming pixel pt? If the distance from pt is the
smallest among all the weight vectors and the above cited distance is not greater than
a fixed threshold [25]. The last situation is expressed by the following Equation:

d(cm, pt) = mini=1,...,n2d(ci, pt)≤ T (4.21)

4.3 Other Approaches to Background Modelling 47

where n2 is the size of the current pixel model C. The threshold T can distinguish a
background pixel from a foreground pixel by:

T =

ε1, if 0 ≤ t ≤ K

ε2, if t > K
(4.22)

In order to obtain a more accurate background model, ε1 should be greater than ε2

because high values for ε1 make it possible to obtain a background model which
includes pixel intensity variations, within the first K sequence frames. To sum up,
SOBS algorithm initializes each neuron of pixels using the first frame detected by the
video source. Then, it accomplishes self-organization of neurons via the weighted
average method. Furthermore, the current pixel model will be diffused over the
neighboring models Ci after it is updated. If the best match cm is not found, pt will
be classified as a foreground pixel and the background model will not be updated
[25].
The advantages of the SOBS method are a correct adaptation to dynamic backgrounds
and to gradual luminosity changes. Moreover, the algorithm achieves a robust
detection for different types of videos captured by static cameras. On the contrary,
its main disadvantage is the computational time. For each pixel, SOBS builds a
neuronal map which dimensions are n2. Each incoming pixel pt has to be compared
with the weight vector and Equation 4.21 has to be solved, which is time consuming.

4.3.7 Region-based Methods

Differing from pixel-based methods, region-based methods, as the name suggests,
exploit relations among the pixels belonging to a certain region. In this way, region-
based methods successfully segment the images and detect the foreground objects.
In contrast to pixel-based methods, region-based methods can effectively reduce the
effect of errors, noises, illumination changes and so on. Nonetheless, the obtained
shapes of foreground objects detected are less precise and effective compared to the
shapes which can be obtained with a pixel-based method.

48 Algorithms and Methods for Video Surveillance

4.3.8 Kernel Density Estimator

As stated in [20], an approximation of the background probability distribution
function can be given by the histogram of the recent values considered as background
values. An example is shown in Fig. 4.3. There, the six Kernel are the red dashed
function on the right which represents the histogram data on the left, whereas the
Kernel density estimator is the blue solid curve. This kind of approximation may
suffer from substantial disadvantages. Due to the step function nature, the histogram
may provide a rough modelling of the the probability distribution function whose
tails may be fallacious or affected by some errors. In order that such kinds of errors
are avoided, Elgammal et al. in [28] proposed the introduction of the Kernel density
estimation (KDE) on N recent sample of intensity values of the pixel represented by
the vector x1,x2, ...,xN to model the background distribution [25]. The probability of
the intensity of each pixel xt at time t is represented by the formula:

P(xt) =
1
N

N

∑
i=1

d

∏
j=1

1q
2πσ2

j)
e
−1

2
(xt, j xt,i)

2

σ2
t (4.23)

where N is the number of recent samples considered, d is the number of channels
(generally 3 for RGB images). σ represents the Kernel function bandwidth 2 for
each color channel and it is estimated by the Equation 4.24:

σ =
MAD

0.68
√

2
(4.24)

where m is the median absolute deviation (MAD), a measure of statistical dispersion.
The median absolute deviation is calculated over the sample for consecutive values
of the pixel [28]. If P(xt)> T , then the pixel xt will be straightforwardly classified as
a background pixel. The threshold T is a global value over all images. Furthermore,
the algorithm presented in [28] distinguishes between two ways to generate the
background model: a long term model and a short term model to achieve better
update decisions and make the model fastly adapt to changes [25].
One of the main advantage of the KDE method is that it can easily deal with

2The bandwidth of the Kernel is a theoretically or experimentally estimated value which exhibits
a strong influence on the resulting estimate.

4.3 Other Approaches to Background Modelling 49

Fig. 4.3 A Kernel density function and the histogram constructed with the same data (source:
boundless.com).

multimodal and changing backgrounds by quickly including newly observed values
in the pixel model. On the other hand, the main drawback of the KDE method relies
on the fact that it has to keep N frames in memory. Consequently, when N is large,
the computational load and the elapsed time increase.

4.3.9 Hybrid Methods

Hybrid methods are a combination of both region-based methods and pixel-based
methods. They can achieve better background modelling and also deal with sudden
changes of illumination levels and dynamic backgrounds, as stated in [29]. Although

Background modelling methods
Approaches Pixel-based Region-based
Parametric RGA

MMA
GMM
AGMM

Nonparametric SOBS KDE

Table 4.1 Background modelling methods

50 Algorithms and Methods for Video Surveillance

hybrid methods can efficiently retrieve foreground objects from the background,
their computational cost and complexity is considerably high [25].

4.4 Challenges in Background Modelling

All the background modelling algorithms that we have deeply analyzed so far, but not
only them, have to deal with different challenges deriving from the quality and the
nature of the dataset which the system uses. We refer to the most common challenges
clearly defined by Toyama et al. in [30]. As stated in the latter work, the difficult
part of background modelling is not the modelling itself, but the maintenance of a
background model. Indeed, an ideal background maintenance is able to avoid the
following problems:

• Dynamic background objects: a background is composed by a broad variety
of objects. Sometimes, they can be moved. Hence, the moved objects should
not be considered as foreground elements. For instance, moving tree branches
and swinging traffic lights;

• Gradual illumination changes: over the day the illumination level varies widely.
A good background maintenance should take this issue into account and it
should adapt to the gradual changes of the appearance of the environment;

• Sudden light switches: they generally occur in indoor environments when, for
instance, a light is turned on or off. Due to fast moving clouds, they may also
occur in outdoor environments and strongly influence the appearance of the
background;

• Camouflage: some objects may poorly differ from the real appearance of the
background, making a correct classification ardous. This is really important in
surveillance system applications;

• Video noise: there is always some noise in a video signal. Background
maintainance has to deal with such signals. The noise may come from a sensor
noise or bad compression rate by the video source.

• Shadows: foreground objects often cast shadows which appear different from
the modeled background.

4.5 Moving Object and Pedestrian Detection 51

In our work, we try to deeply investigate and further solve these challenges in order
to obtain a robust pedestrian and object detection algorithm.

4.5 Moving Object and Pedestrian Detection

As already cited in Section 4.1, moving object and pedestrian detection is the simplest
application of video surveillance systems. One or multiple static cameras take a
certain dataset defined by an input video, elaborate it, and eventually provide an
output. The output can be represented by the processed video showed on a screen
where the targets are bounded by rectangular blobs which move following the targets.
Generally, most of the surveillance video starts with a certain number of empty
frames during which foreground objects are not present in the region of interest. Due
to this, a background training session can be easily achieved in order to have a solid
and consistent background model in which noise, shadows, illumination changes
can be either partially or totally polished. Based on this, we can further analyze the
moving object detection. Here, we propose again Equation 4.3, with a different α

learning rate:
BGt(x,y) = (1−α f ast)BGt−1 +α f astCt(x,y) (4.25)

where BGt(x,y) is the background frame at time t at a certain pixel location (x,y),
BGt−1 is the previous background at time t −1, Ct(x,y) is the current frame at time
t, and α f ast is the learning rate. The reason why the weight constant is named "alpha
fast" is because the background model is updated quite frequently compared to the
other background model which will be used for further analysis, such as abandoned
object detection (Section 4.7).

Image Processing Once we retrieve the background model, we can obtain the
difference of the background and the current frame by the background subtraction
technique, obtaining a mere and simple pixel difference. However, before applying
the background subtraction, the current color frame and the background are converted
into a gray-scale image. The resulting gray-scale current frame is then filtered using
the Median blurring filter (Fig. 2.7) with a Kernel size of 5x5. Then, the background
subtraction can be accomplished and the obtained pixel difference is filtered again to

52 Algorithms and Methods for Video Surveillance

Fig. 4.4 Binary result of the background subtraction between the fast-update background
model and the current colored frame.

achieve smoother shapes for the foreground object analysis. Finally, the result of the
subtraction is thresholded and the resulting image, shown in Fig. 4.4, is obtained.
A further step inside the image processing phase is made: the obtained result of
thresholding is morphologically treated iterating once the erosion transformaton and
five times the dilation. Because of the high-segmented shape previously obtained, we
want to fill the small areas shown in Fig. 4.4 as much as possibly provided by those
processes (Subsection 2.4.3) in order to merge all the components of the silhoutte
together. The result is displayed in Fig. 4.5. Additionally, antoher final step may
be considered. Due to low contrast and low exposure of our specific dataset, the
obtained binary image is still partially imprecise and does not fully represent the real
silhouette of the object or pedestrian that has to be extracted from the image source.
As a consequence, to make it as smooth as possible, more studies could be made. For
instance, histogram equalization may be applied to make the object extraction more
reliable and efficient. Nevertheless, we consider this obtained difference precise
enough for the purpose of object and pedestrian detection.

4.5 Moving Object and Pedestrian Detection 53

Fig. 4.5 Background subtraction with a fast-update background model after the process of
erosion and dilation.

4.5.1 The Waterfall Algorithm

After the image processing phase, object detection can be achieved. Implementing
the OpenCV function cv2. f indContours() allows us to find all the contours in the
obtained binary image. It follows that if the length of the Python multiple-dimension
list is zero, no contours are found. Consequently, there are no coordinates to show.
Otherwise the algorithm works as follow:

Process 1 When the length of contour list is greater than zero, we first calculate
the area of each contour with the OpenCV function cv2.contourArea(). Our aim
is to apply a lower threshold which discards all the contours with too small areas,
in order to get rid of those contours which could be defined by defects or noise
errors. Successively, the OpenCV function cv2.boundingRect() is applied and the
coordinates of the bounding boxes are obtained. Indeed, it creates a list of coordinates
for each contour detected. More precisely, the function gives four outputs:

• The x coordinate of the upper left corner;

• The y coordinate of the upper left corner;

• The width of the rectangle;

54 Algorithms and Methods for Video Surveillance

Thresholded Binary
Difference

if len(contours) != 0

Coordinates Empty

Get All the
 Coordinates

Process 1

Proximity Checking

Process 2

Get Rid of Multiple
Occurences Process 3

Draw Bounding
Box

Process 4Find Maximum
Coordinates

Fig. 4.6 Waterfall algorithm flowchart.

• The height of the rectangle.

Process 2 Given the coordinates to draw the bounding rectangle around the lin-
eation of the foreground object, we made another step to make it possible for a more
precise detection to happen. Taking the list of all the rectangles obtained in the
previous step into account, we build a list of sets (displayed in Python by the mean
of curly brackets, as per Equation 4.27) checking all the N rectangles against each
other within a set threshold, named delta in Fig. 4.7. Therefore, rectangle 1 will
be compared to rectangle 2 to N. In the same way, rectangle 2 will be compared
to rectangle 3 to N, an so on. Afterwards, the resulting list of sets will contain the
indeces of those rectangles which passed the proximity check, as the example in
Equation 4.27. What happens to the ones that do not pass the proximity test? We
simply consider them as standing-alone shapes. Indeed, it is possible that a certain
shape is too distant from the others to be listed as a standing-alone rectangle. That is
the case of multiple object detection.
In this specific example, following the criterion we created, rectangle 1 intersects
with rectangle 2. At the same time, rectangle 2 is considered in proximity of rectangle
3.

[{1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 , ... ,N}] (4.26)

[{1 ,2}, {2 ,3}, {7}, {4 ,5}, {3 ,6}, {8} , ...] (4.27)

4.5 Moving Object and Pedestrian Detection 55

Process 3 manipulates the list of sets of nearby rectangles in order to get rid of those
shapes with more than one occurence.

delta
delta

PC

1 2

delta
delta

PC

2
1

delta

1

delta

2

PC

delta

2

delta

1

PC

Fig. 4.7 Proximity check criterion.

As we can see in Fig. 4.7, we considered four cases, which cover all the possible
scenarios:

1. The distance between the most right side of the first rectangle, delta included,
and the most left side of the second rectangle;

2. The distance between the most right side of the second rectangle, delta in-
cluded, and the most left side of the first rectangle;

3. The distance between the most bottom side of the first rectangle, delta in-
cluded, and the most upper side of the second rectangle;

56 Algorithms and Methods for Video Surveillance

(a) (b)

Fig. 4.8 The binarized foreground object and its colored counterpart, with a visible rectangle
error. (a) Displays the binarized foreground object through thresholding. We can see some
considerable different contours resulting in different areas detected, (b) Shows two bounding
boxes around the single foreground object, but composed by different contours.

4. The distance between the most bottom side of the second rectangle, delta
included, and the most upper side of the first rectangle;

Process 3 The obtained list of sets cannot be printed as it is, otherwise there would
be several overwritten blobs. Phase 3 takes Equation 4.27 and exploits the Numpy
Array function .isdis joint() to get rid of multiple recurrences. Being only applicable
to sets, this function perfectly fits with the inner nature of them. It returns True if
two sets does not have elements in common, whereas it returns False if the sets share
some elements. Based on this, we can achieve the following result with the regard of
the list of sets represented by Equation 4.27:

[{1 ,2 ,3 ,6}, {7}, {4 ,5}, {8} , ...] (4.28)

Process 4 The last step provides the four coordinates needed to draw the active
blobs around the detected shapes. The new list of arranged sets is scrolled and the
maximum coordinates, together with the width and the height, are found. This pas-
sage is fundamental because it oftentimes avoids to have sides or part of the bounding
boxes crossing the actual shape of the detected object or pedestrian. However, due
to the discrete quality of the datased used and the delta used in Process 2, it rarely
happens that the same shape is bounded by more than one rectangle, as we still
have some frames where the morphological transformations have not been efficient
enough to merge different segments together, as shown in Fig. 4.8a. Insted, in Fig.

4.6 Multiple Moving Object and Pedestrian Detection 57

(a) (b)

(c) (d)

Fig. 4.9 Result of the proposed algorithm to merge the sorrounding blobs. (a), (b) Display
frames 228 and 241 without the algorithm applied, (c), and (d) Show the same frames with
the algorithm applied.

4.9, it is displayed the comparison between the same frames without the Waterfall
algorithm and with it.
The final result is displayed in Fig. 4.10. A simplified flowchart of the explained
algorithm is shown in Fig. 4.11.

4.6 Multiple Moving Object and Pedestrian Detec-
tion

Multiple object and pedestrian detection exploits the same algorithm of a single
object and pedestrian detection, explained in Section 4.5. As already stated, the
only difference concerns how the rectangles are grouped together. In the previous
case, since only one object or pedestrian had to be detected, all the rectangles were
considered as nearby by the Waterfall algorithm. On the other hand, there will be
two or more groups of rectangles in this case, as shown in Fig. 4.13b. The flowchart
shown in Fig. 4.12 is exactly identical to the one in Fig. 4.11, except for the lower

58 Algorithms and Methods for Video Surveillance

(a)

(b)

Fig. 4.10 The binarized foreground object and its colored counterpart. (a) Shows the
foreground object after being thresholded, and after the process of erosion and dilation which
gave the image this particular shape, moving on the black background model obtained with
RGA method, (b) Shows the drawn bounding box aroun the foreground object in the current
color image at frame 147.

part where the multiple bounding boxes are drawn on the current color frame by the
cv2.rectangle() function depending on the number of the sets contained in the list.

4.7 Unattended or Abandoned Object Detection

Unattended or abandoned object detection expects a sharp change in the consideration
of the background model. In fact, no matter how many training frames are provided
to the background model, also strongly depending on the learning rate α , the pixels
belonging to temporary unattended object may be mistaken as part of the background

4.7 Unattended or Abandoned Object Detection 59

Input Video

While
capture.isOpen()

Running Gaussian Average
Background Model

Gray-scale Conversion of
Background and Current

Frame

Application of Median Blurring
to the Current Frame

Background Subtraction

Thresholding(30, 255)

One Erosion, Five Dilations

Waterfall Algorithm Draw Bounding
Box

Image Processing

Number of Frame += 1

End

Fig. 4.11 Flowchart of the simple object and pedestrian detection.

60 Algorithms and Methods for Video Surveillance

Input Video

While
capture.isOpen()

Running Gaussian Average
Background Model

Gray-scale Conversion of
Background and Current

Frame

Application of Median Blurring
to the Current Frame

Background Subtraction

Thresholding(30, 255)

One Erosion, Five Dilations

Waterfall Algorithm

Image Processing

End

for i in range(0,
n_of_rectangles)

Draw Bounding
Box (i)

Number of Frame += 1

Fig. 4.12 Particular of the flowchart of the multiple object/pedestrian detection.

4.7 Unattended or Abandoned Object Detection 61

(a)

(b)

Fig. 4.13 The binarized foreground object and its colored counterpart, with two rectangles.
(a) Shows two foreground objects. Now, the objects are clearly multiple, (b) Shows the
couple of rectangular blobs around the two object in the current color image at frame 377.

or as a part of moving object [31]. Therefore, it is our belief that it is strongly
necessary not to be limited to a single background model, but to build at least two of
them.

Process 1 In our specific case, we consider two background models having dif-
ferent learning rates α f ast and αslow as per Equations 4.29, 4.30. One has a "fast"
weight/learning rate, so that the background model is fastly updated to the changing
environment or to the moving of a pedestrian or an object. The second one has
a "slow" weight/learning rate which allows to have a slowly updated background
model. A wide comparison among different learning rate is clearly shown in Fig.
4.14.

62 Algorithms and Methods for Video Surveillance

(a) (b)

Fig. 4.14 Two dynamically updating background. (a) Displays a "fast-updating" background
model with a learning rate of 0.003 at frame 517, (b) Shows a "slow-updating" background
model with a learning rate of 0.0001 at frame 517.

The aim of providing the algorithm of two background models is not only related to
the necessity of getting rid over time of defects in the reference frames, but also to
provide a solid instrument for the analysis of unattended object detection and taken
away object recognition.

BGt, f ast(x,y) = (1−α f ast)BGt−1, f ast +α f astCt(x,y) (4.29)

BGt,slow(x,y) = (1−αslow)BGt−1,slow +αslowCt(x,y) (4.30)

Having the two background models available, we can easily state whether an object
belongs to the original scene or not. Indeed, if the foreground mask changes rapidly,
it will not affect the background model, whereas if an object is brought into the scene
and left in a static position for more than a certain amount of time, it will merge
gradually into the background and then considered as a new part of the original
scene. How can we achieve this? As mentioned several times, the background
model cannot remain static forever. In that case, for instance, considering our region
of interest, if a couch is added to the waiting room, it will be always labeled as a
moving object and then bounded by an active blob in our algorithm. On the contrary,
if the background model(s) is currently updated, the couch will be described by
the algorithm as part of the scene after a set number of frames, depending on the
learning rate α . A clearer example is shown in Fig. 4.14a, where the backpack is
gradually appearing into the background image. As soon as its shape is fully defined,
it will be a part of the original scene. On the other hand, in Fig. 4.14b, the backpack

4.7 Unattended or Abandoned Object Detection 63

has not appeared yet because of the low learning rate αslow.
Applying two background models has the advantage of being able to be customized
by the user. As a consequence, the update time interval could be chosen depending
on the circumstances and on the environment needs.

Process 2 To detect unattended or abandoned object is necessary to implement
another background subtraction but, this time, between the two background models.
In this way, when an object is brought and left static into the scene (Fig. 4.15a),
it will slowly disappear in the difference between BG f ast(x,y) (the "fast-updating"
background model) and the current frame C(x,y). At the same time, it will slowly
appear in the difference between BG f ast(x,y) and BGslow(x,y) (Fig. 4.15c), since
it has not appeared yet in the difference between BGslow(x,y) (the "slow-updating"
background model) and the current frame C(x,y).

BGdi f f erence,unattended(x,y) = BG f ast(x,y)−BGslow(x,y) (4.31)

Process 3 As shown in Equation 4.32, the more the difference between the
two background models increases with time, the easier is that |BG f ast(x,y)−
BGslow(x,y)| goes beyond the set threshold and then the object is considered as
unattended (as shown in Fig. 4.15b). It is absolutely necessary to clarify that T
in Equation 4.32 is not a time threshold, but a pixel threshold. It represents the
pixel threshold operation for the two background models difference. In other words,
if the cv2. f indContours() function finds contours in the BGdi f f erence,unattended(x,y)
source, it means that |BG f ast(x,y)−BGslow(x,y)| has exceeded the pixel trheshold
T , set to 30 in this specific case. Additionally, once |BG f ast(x,y)−BGslow(x,y)| has
exceeded the pixel threshold, if the cv2. f indContours() function finds contours in
the image source for more than a determined amount of frames, then the object is
considered abandoned. Finally, it is important to remember that the time threshold
beyond which the static object is described as a part of the original scene is only
depending on the user, which is able to define, according to our developed algorithm,
the learning rates of the background models.

64 Algorithms and Methods for Video Surveillance

(a)

(b)

(c)

Fig. 4.15 The process of unattended or abandoned object detection. (a) A backpack is
left unattended in the region of interest at frame 736, (b) After a set amount of frames
(specifically 360 frames, which represents the set time threshold in the proposed algorithm)
the backpack is labeled as part of the original scenario, (c) The binary difference between
the two dynamically updating background models.

4.7 Unattended or Abandoned Object Detection 65

(a) (b)

Fig. 4.16 The object labeled as unattended or abandoned is cropped: (a) With color informa-
tion, (b) In gray-scale.

BGdi f f erence,unattended(x,y) =

1, if |BG f ast(x,y)−BGslow(x,y)|> T

0, otherwise
(4.32)

Process 4 What if a pedestrian stands without moving for a long time? the proposed
algorithm cannot distinguish precisely a pedestrian from a mere object; thus, the
algorithm may confuse the pedestrian with an object, and viceversa. Due to this,
the area threshold, which is represented by two simple boundaries, displayed as
δlower and δupper in the flowchart shown in Fig. 4.17, has to be set according to the
application. More precisely, the area threshold is considered in order not to take
into account neither too small objects (such as an unpolished defect) nor too big
objects (such as a pedestrian, indeed). This leads to the fact that some actual big
(or really small) objects may not be considered in the detection. As a consequence,
a deeper understanding of the application scenario has to be sorted out. To give a
clear example, if the video surveillance system is applied for illegally parked vehicle
detection, it is clear that in such environment the biggest object that can be detected
is a vehicle and not a pedestrian; therefore, the threshold should only have a lower
boundary to get rid of waiting pedestrian to cross the street, etc.

Process 5 In addition, a time threshold is considered. In fact, if the
cv2. f indContours() function finds contours in the BGdi f f erence,unattended(x,y) for

66 Algorithms and Methods for Video Surveillance

Input Video

While
capture.isOpen()

Running Gaussian Average
Background Model with High

?

Application of Median Blurring
to the Current Frame

Background Subtraction
Between the fast-updating

and the slow-updating

Thresholding(30, 255)

One Erosion, Five Dilations

Waterfall Algorithm

Image Processing

Number of Frame += 1

End

Running Gaussian Average
Background Model with Low

?

Gray-scale Conversion of the
Current Frame

if ?_lower < area <
?_upper Abandoned Counter += 1Abandoned Counter = 0

if Abandoned Counter >
t_threshold

Crop The Object

Process 1

Process 2

Process 3

Process 4

Process 5

Process 6

Fig. 4.17 Flowchart of abandoned or unattended object detection.

4.8 Stolen or Taken Away Object Detection 67

few frames, it does not mean that an actual unattended object has been detected.
This process has to be elaborated upon a prolonged time. For instance, if the video
surveillance system is applied in an airport waiting room, where it is likely to find
passengers asleep or motionless, the time threshold to detect an unattended object
may be bigger compared to applying the same system in a subway platform envi-
ronment where it is quite rare to find a motionless person for more than a dozen of
seconds.

Process 6 If the time threshold is reached, around the unattended object a bounding
box is drawn and the object shape is cropped. We considered cropping the image
both with color information and in gray-scale the more suitable way to gather further
information in a successive phase.

4.8 Stolen or Taken Away Object Detection

Stolen or taken away object detection is a really complex and critical issue in the
majority of video surveillance systems. As in Section 4.7, two background models are
implemented in order to have a dynamically changing background which deals with
background challenges (Section 4.4), and moving objects inside the videosurveilled
area.
In this specific scenario, we assume that the involved object is already present inside
the area; hence, the criterion which states whether the object has been stolen/taken
away or not, will be exaclty the same we applied to the abandoned object detection.
Indeed, as proposed again in Equation 4.33, once the object is taken away from the
area in which it was previously static, the difference between the two background
models, |BG f ast(x,y)−BGslow(x,y)|, will gradually shows its absence.

BGdi f f erence,unattended(x,y) = BG f ast(x,y)−BGslow(x,y) (4.33)

The object is then considered as stolen or taken away after a certain time threshold,
again taken into account. In addition, an area threshold can be smartly considered
as done in the previous Section. Consequently, not every static and standing-alone
shapes will be labeled as stolen after the set time threshold. In fact, it is clear that it
is high likely that a bounding box which would encircle a pedestrian is endowed

68 Algorithms and Methods for Video Surveillance

input :Stolen Counter, Fast-updating background model, slow-updating
background model, Current Color Frame

output :Stolen Counter

Time Threshold;

while Videocapture.isOpen() do
get Rectangle coordinates;
apply the Waterfall algorithm;

for each (x,y,w,h) in coordinates do
area = w x h;
if δlower < area < δupper then

Stolen Counter += 1
end
else

Stolen Counter = 0
end

end

if Stolen Counter is Time Threshold then
print(’Stolen or Taken Away Object Detected’)

end
end

Algorithm 1: Stolen Object Detection Pseudocode

with a remarkable larger area than a bounding box that sorrounds an object. A clear
example is displayed in Fig. 4.18.

To make the algorithm more robust and reliable, the use of color channels can be
implemented. Indeed, with color information, we can state more accurately if an
object is stolen or taken away from a background scenario. Given a static object and
its location inside the area, by exploiting color information, we can calculate the
values of each pixel making it possible to know mathematically the color trend within
the image. Consequently, when the object is taken away and the color value trends
change in a certain region of the considered area, we can state, depending on the
resolution of the image, approximately where the object has been stolen. Of course,
even this method has a key drawback: the color differences between the object and
the background scenario have to be quite noticeable mathematically speaking. If the
object is, for instance, a dark gray backpack and it is abandoned on a dark asphalt

4.8 Stolen or Taken Away Object Detection 69

road, it may be quite intricate and problematic to detect whether the object was really
stolen or not only considering the color difference in the trend.

(a) (b)

(c) (d)

(e) (f)

Fig. 4.18 The process of stolen or taken away object detection. (a) The original scene, (b)
The binary difference between the two dynamically updating background models at the same
frame (427) of the original scene, (c) The carboard box is stolen and the "thief" is going
away from the videosurveilled area, (d) The absence of the stolen object is starting to appear
in the difference between the two backgrounds. This process will deeply depend on the
two learning rates α f ast and αslow, and their difference. For instance, if α f ast is dramatically
bigger than αslow, the absence of a taken away object will be noticed almost immediately,
(e) The object is stolen and it is pointed out in the current color image at frame 1470, (f)
The absence of the stolen object is fully defined in the difference between the two updating
backgrounds.

70 Algorithms and Methods for Video Surveillance

4.9 Trespassing Detection

Trespassing detection is a fundamental feature in every video surveillance systems.
The applied system, in fact, can be used in several high-sensibility areas such as
military zones, airports, customs, production plants and so on. In the cited scenarios,
handling an automatic system which is able to autonomously warn in the case of
a trespassing object or pedestrian, is vitally significant. In this way, security staff
does not have to stand in front of the monitors for prolonged periods of time because
a warning alarm can be easily implemented. It can be achieved either visually or
acoustically.
In the proposed algorithm, trespassing detection basically consists in tracking one
or multiple objects inside the videosurveilled area considering the centroids of each
active rectangles. If any of those centroid crosses a specific region, whose actual
counterpart may be represented by a fenced area or a barricade, the warning alert
immediately pops up.
In Fig. 4.20, a single iteration on the videoset is displayed. The core part is composed
by Process 1, Process 2 and Process 3.

Process 1 Right after moving object detection, the single or multiple centroids are
saved in each frame. This is straighforwardly accomplished considering the output
of the function cv2.boundingRect().

Process 2 Then, it is checked if the previously saved centroid(s) crosses the spec-
ified area. In our specific case the area considered corresponds to the 40% of the
entire width of the video frame. This can be seen in Fig. 4.19.

Process 3 If the previous if-statement is true, an alarm is triggered, as displayed in
Fig 4.19b and 4.19c.

Alarm Triggered =

True, if X centroid coordinate ≥VideoWidth ·0.6

False, otherwise
(4.34)

Of course, if the high-sensibility area differs from the one we considered, the
condition to have the alarm triggered will be slightly different. For instance, if we

4.9 Trespassing Detection 71

(a) (b)

(c)

Fig. 4.19 The process of trespassing detection. (a) The single moving object, in this case,
a pedestrian, is outiside the controlled area, which is bounded with a yellow line, (b) The
centroid of the active blob tracking the pedestrian has just surpassed the boundary. The alarm
is triggered and is displayed in the top left corner of the video frame, (c) The centroid is still
inside the controlled area. The alaram is still triggered.

consider a rectangular area not situated on the boundaries of the video frame, we
will have also to consider both the y coordinate of the centroid and the video height.

Input Video

Image Processing
Phase

Single or Multiple
Moving Object

Detection

Draw Bounding
Box

If Centroid(s) crosses
the specified areaGet the Centroid(s)

Trigger Alarm

Process 1 Process 2

Process 3

Fig. 4.20 Flowchart of trespassing detection, considering only one iteration inside the while-
loop.

72 Algorithms and Methods for Video Surveillance

4.10 Loitering Detection

Loitering detection is a crucial part of most of the intelligent video surveillance
systems. This feature can be used in a wide variety of application, in order to provide
a safer environment for people. Indeed, loitering is generally accompanied by
potential danger and suspicious behaviors that may lead to armed robberies, terrorist
attacks, thefts along with the others. Furthermore, automatic loitering detection
in video surveillance systems can help to save human and material resources, by
implementing, as in the previous features we discussed, automated alarm alerts.
In the proposed algorithm, only one pedestrian inside the videosurveilled area is
tracked. However, in Section 4.11, tracking algorithms and methods for multiple
objects and pedestrians are considered. Here, two parameters are believed to be
a fundamental starting point of the algorithm: θhorizontal and θvertical . They are
calculated by the use of simple trigonometry in order to track the changing position
of the target. Then, statistical functions are exploited to make it possible to fully
examine the correlation between the two direction of movement, horizontal and
vertical. Eventually, the parameter of time is studied, too.
In Fig. 4.24 is shown the entire flowchart of the loitering detection function, with a
special regard to the core processes, explained below.

Process 1 After that the image is processed and the Waterfall algorithm is applied,
Process 1 takes care of updating recurrently a frame counter, named Loiter Counter,
every time the list of coordinates is not empty which means, therefore, that the pixel
difference between the current image Ct and the background model Bt is greater than
the set threshold T .

Pt =

1, if |Ct −Bt |> T

0, otherwise
(4.35)

Process 2 Process 2 is represented by the call of the function Weighted Coefficient.
It calculates a coefficient ω to be considered in the updating process of the angles
θhorizontal and θvertical , explained in Process 3. Given a time threshold of a fixed
number of seconds, the ratio f between the Loiter Counter and the time threshold is
obtained. If f is greater than one, the Loiter Counter has overtaken the user-defined
time threshold, which automatically means that the tracked pedestrian has been
walking inside the videosurveilled area for more than the determined amount of

4.10 Loitering Detection 73

seconds. However, if this happens, the alarm is not triggered yet because this is not
the final criterion used to detect loitering. This process is only exploited in order
not to have repetitive dataset to deal with, even after a monotonous-direction walk
of the tracked pedestrian. Moreover, the Weighted Coefficient function makes the
introduction of the time variable possible, leading to a more constrained problem
and to a more precise and reliable detection.
In fact, if f is equal or greater than one, the weight ω linearly increases by a 0.1
factor depending on f .

input :Loiter Counter, fps
output :ω

Time Threshold = Number of seconds x fps;

f = int(Loiter Counter/Time Threshold)

if Loiter Counter < Time Threshold then
ω = 1

end
; /* f == 0 */
else if Loiter Counter ≥ Time Threshold then

ω = 1 + (f · 0.1)
end
; /* f ≥ 1 */

Algorithm 2: Weighted Coefficient Pseudocode

Process 3 Once the weight ω has been calculated, the algorithm proceeds to
elaborate the position of the tracked pedestrian through the two angles. As displayed
in Fig. 4.21, the reference point of both angles is the feet of the pedestrian. However,
as the names suggest, they are attributed to different fixed points, from which the
angles are calculated. In addition, we considered θhorizontal and θvertical to have
both positive and negative values in order to have a solid dataset for the further
statistical calculations. Indeed, if not directly imposed, the arcosine function would
automatically give always a positive value resulting in an incomplete and incorrect
representation of the real position of the pedestrian. Since both positive and negative
values are calculated, the two angles range, without taking ω into account, is
[−90,90].

74 Algorithms and Methods for Video Surveillance

h+ -

v

-

+

Fig. 4.21 Scheme of the two angles θhorizontal and θvertical considered for loitering detection

Two examples are shown below:

θ = [30, 30, 29, 26, 24, 24, 23, 20, . . .] (4.36)

θ = [30, 30, 29, 26, 24, 24, 23, 20, 18 ·1.1, 18 ·1.1, 17 ·1.1, . . .] (4.37)

In Equation 4.36, the Loiter Counter is less than the time threshold; hence, f is equal
to zero. Consequently, ω is one. On the other hand, in Equation 4.37, the weight
coefficient ω is multiplied from the nineth frame, when f becomes 1.

Process 4 Process 4 is based on statistical calculations. They give a robust instru-
ment to assert whether the loitering detection is verified or not. In our opinion, the
most effective and reliable instrument is the variance 3.
Given θhorizontal and θvertical , their variance is calculated as follows:

Var(θ) =
1
N

N

∑
i=1

(θi −θ)2 (4.38)

3The variance measures how far a defined set of values are spread out from their mean value.

4.10 Loitering Detection 75

where the mean is obtained as follows:

θ =
1
N

N

∑
i=1

θi (4.39)

where N is the total number of angle calculated, then corresponding to the total
number of frames elapsed.
It is fundamental to highlight that the variance is not calculated on the list of angles
(example in Equation 4.36) which are regularly updated each frame, but on the set
retrieved from these lists in order that multiple occurences are avoided, as shown in
Equation 4.40.

θ = {30, 29, 26, 24, 23, 20, . . .} (4.40)

As a consequence, even if the pedestrian remains partially static, the variance will
remain stable. This allows to detect loitering also in the scenario of a pedestrian
who enters the controlled area, loiters and takes a seat. Indeed, if we only calculated
the variance on the lists of angles as per Equation 4.36, 4.37, we would exclusively
obtain a constantly decreasing variance, in the scenario previously described.
Additionally, Pearson’s correlation is taken into account:

PCCθh,θv =
Cov(θh,θv)p

Var(θh) ·Var(θv)
(4.41)

where:

Cov(θh,θv) =
1

NK

N

∑
i=1

K

∑
j=1

(θh,i −θh)
2 · (θv, j −θv)

2 (4.42)

In this specific case, N is equal to K.
Pearson’s correlation coefficient measures the linear relationship between two
datasets. Similarly to other correlation coefficients, Pearson’s correlation coeffi-
cient varies between -1 and +1. When it is equal to 0, it implies that there is no
correlation between the two dataset, whereas coefficient equal to -1 or +1 implies an
exact linear relationship [32]. For instance, given two dataset x and y, if the correla-

76 Algorithms and Methods for Video Surveillance

tion is equal to +1, it means that x increases as much as y. On the contrary, negative
correlations imply that as x increases, y decreases of the same amount. Pearson’s
correlation coefficient is then useful to check, frame by frame, which direction the
loitering pedestrian follows, without the necessity of constant monitoring by the
safety staff. This may be advantageous to determine the direction where a criminal
escaped, once the case was committed.

Process 5 Process 5 states whether the tracked subject is loitering or not. Three
conditions are applied, two of which consider the variance of θhorizontal and θvertical .

• The first condition implies a time threshold. If the pedestrian remains inside
the videosurveilled area for more than the user-defined amount of seconds, it
will labeled as loitering. As already partially specified, the time threshold is
controlled depending on the application. It is vitally important to highlight that
the threshold here considered is not the same which we looked over in Process
2; In fact, the time threshold treated in Process 2 only marks a window of time
beyond which the Weight Coefficient changes, whereas the time threshold
in Process 5 examines the amount of time spent by the potential loitering
pedestrian inside the controlled area. Obviously, the time threshold in the
function Weighted Coefficient must be minor than the one investigated in the
main if-statement of Process 5, otherwise the updating process of θhorizontal

and θvertical would not take into account scenarios such as a monotonous-
direction walking or a long permanence of the target inside the videosurveilled
area, which may lead to a decreasing variance;

• The second and the third conditon involve two variances. We measured the
angle variances, which could include the Weight Coefficient depending on
the set threshold in the Weighted Coefficient function, when a pedestrian
crosses the surveilled field once, in each direction indipendently. To set the
two boundary conditions, we multiply Var(θh) and Var(θv) for a factor of
2.0−2.2, as displayed in Fig. 4.22.

Why is it so important to avoid a decreasing variance? Since the two main conditions
of the algorithm rely on this statistical data, if the pedestrian is labeled for loitering
and it suddenly stops its movements, the variance decreases and, after a certain
amount of iterations, it goes below the two threshold. Therefore, if the time threshold
is not yet reached, the pedestrian will not be labeled as loiterer anymore.

4.10 Loitering Detection 77

x
2.0-2.2

Vertical Variance

Horizontal Variance

x
2.0-2.2

Fig. 4.22 Scheme of the two variance thresholds.

(a) (b)

(c) (d)

Fig. 4.23 Different phases of the loitering detection process, with θhorizontal and θvertical
displayed in the upper left corner of the frame. (a), (b) Display frames 136 and 388 when
the pedestrian is walking inside the videosurveilled area, but the alarm is not triggered yet
because either the variances are not beyond the thresholds or the Loiter Counter is below
the time threshold (c), and (d) Show frames 667 and 731 with the alarm triggered. We can
notice that the active blob sorrounding the pedestrian is red and the alarm is displayed in the
lower right corner of the frame.

78 Algorithms and Methods for Video Surveillance

Input Video

While
capture.isOpen()

Image Processing

Waterfall Algorithm

End

If
len(coordinates)

!= 0
Loiter Counter = 0

Loiter Counter += 1

Weight Coefficient

Process 1

Process 2

?_h and ?_v updateProcess 3

Variance (?_h)
Variance(?_v)

Pearson's Correlation
between ?_h and ?_v Process 4

if Loiter Counter > 20 x fps
or

Variance(?_v) > ?_vertical
or

Variance(?_h) > ?_horizontal

Process 5

Trigger Alarm

Number of Frame += 1

Process 6

Draw Bounding Box
around the Loitering

Target

Fig. 4.24 Flowchart of loitering detection.

4.11 Methods for People and Object Tracking 79

Process 6 If one of the previous if-statement condition is true, an alarm is triggered.
An example of the entire process is shown in Fig. 4.23.

4.11 Methods for People and Object Tracking

As aforecited in Section 1.1, 1.2, the objective of people and object tracking, more
commonly referred as video tracking, is to gather information about the target’s
consecutive positions in successive video frames. To achieve people and object
tracking, all the algorithms developed so far analyze the sequential video frames and
give as output the relative movement of the target(s) among the frames [4].
Among the most famous techinques, template matching is one of the simplest, most
accessible and most used. As the name suggests, template matching is a method
for searching and finding the location of an image patch (also referred as template
image) in a larger area [33]. This technique can be straightforwardly adopted both
with gray-scale images and images which feature colors. With the regard to the last
case, it can obviously also exploit color information to retrieve the best matches for
the image structure (entire image) to fit on the mask structure (image template). In
fact, the cross correlation output will be highest at places where the image structure
matches the mask structure the most.
Template matching is generally implemented by comparing a template image, repre-
sented by Timage(xt ,yt), where (xt ,yt) are the coordinates of each pixel in the patch
image, with a region of a frame, Simage(x,y), through different methods of compari-
son. Among them, the sum of absolute difference (SAD) is one of the most typical.
First, the origin of the template image Timage(xt ,yt) is moved over each pixel of
Simage(x,y), as graphically shown in Fig. 4.25. Both pixel at (xt ,yt) location and
pixel at (x,y) location have a given level of intensity, respectively named It and I.
Second, the absolute difference is obtained as follows:

AbsoluteDi f f erencext ,yt ,x,y = |It − I| (4.43)

80 Algorithms and Methods for Video Surveillance

X

Y

Fig. 4.25 Template matching comparison.

Third, the ensemble of the absolute differences looped over the patch image, is
summed up as per Equation 4.44.

SAD(x,y) =
N

∑
i=0

M

∑
j=0

AbsoluteDi f f erence(x+ i,y+ j, i, j) (4.44)

where N is the number of pixel in the x direction and M is the number of pixel in the
y direction, both in the template image Timage(xt ,yt). Fourth, we repeat the operation
of Equation 4.44 over the source image Simage(x,y), as follows:

K

∑
x=0

P

∑
y=0

SAD(x,y) (4.45)

4.11 Methods for People and Object Tracking 81

where K and P denote the rows and the columns of the search image, respectively.
The lowest SAD score gives the estimate for the best position of template within the
search image.
Another mechanism of comparison of the patch image with the source image is often-
times referred as linear spatial filtering (LSF). The linear spatial filtering scheme cal-
culates the sum of products between the coefficients in Simage(x,y) and Timage(xt ,yt)

over the whole area spanned by the template. As opposed to SAD, the position with
the highest score is the best position [34].

4.11.1 Template Matching in OpenCV

In the OpenCV module, template matching is accomplished by calling the function
cv2.matchTemplate(). It requires:

• The image where the search is running, Simage;

• The patch or template image Timage. It must not be greater in dimensions than
the source image;

• The comparison method the user would like to implement.

cv2.matchTemplate() returns a gray-scale image, where each pixel denotes through
its intensity values, thus its brightnees, how much the neighbour of that pixel matches
with the template image. In addition, if the input image has X by Y dimensions
and the template is of size x by y, the output will have X-x+1, Y-y+1 dimensions.
Once the output is obtained, the function cv2.minMaxLoc() finds the exact location
of the maximum or the minimum brightness, depending on the method used [33].
Considering that as the top left corner, we consider the two dimensions of the image
template x and y as width and height of the rectangle.

Chapter 5

Benchmark Analysis

5.1 Introduction

Benchmarking a computer program is meant to assess the relative performance of
the program itself, or of its components in order to find out its bottlenecks, weak
points and strength points. Consequently, different architecture processor layouts
would be compared.
Since computers have become more advanced and complex over the last decades, a
need for a more precise way to analyze different systems arose. Looking through
the system’s specifications was considered not enough representative. For instance,
processing units which run at a higher clock rate does not have automatically more
computational power than a lower frequency processor. A benchmark analysis is de-
signed to emulate a defined type of workload on the system, and this is accomplished
in two different ways:

• Synthetic benchmark: speicifically creates different tests which have a distinct
and precise load on the systems to be tested. Indeed, synthetic benchmark is
more suitable for testing individual components, like CPUs, hard disks and
networking devices;

• Application benchmark: runs real-world programs on the systems. As a result,
it gives a wider understanding of the total performance on the tested system.

As already stated, benchmark analyses are an essential focus on CPU design, giving
processor architects the ability to measure and make tradeoffs during the designing
approach [35]. For example, if a benchmark analysis is applied to evaluate the

5.2 Python Benchmarking 83

performance of an application, one or several weak points may be straightforwardly
highlighted. By a deeper investigation, the key weak points may be pointed out
giving indications where to operate fostering velocity and reliability in the system.
The most common types of benchmarks are:

• Real program;

• Component benchmark or microbenchmark, where small and specific piece of
code are analyzed together with the computer’s basic components. It also may
be used for gather precise information about the system’s hardware parameters,
cache size and memory latency [36];

• Synthetic benchmark;

• Database benchmark, intended to measure the volume of information produced
and the response times of the database;

• Parallel benchmark, used on machines with multiple cores, processors or
systems consisting of multiple machines [35].

5.2 Python Benchmarking

In the Python environment, it is not always the case that every program that has been
written needed a deep and accurate performance analysis. However, Python has been
endowed over the years with several tools which can accomplish wide and reliable
performance analysis.
The quickest and roughest method can be implemented directly from the terminal. It
is the UNIX utility time which gives three outputs as shown in Fig. 5.1, based on the
machine specification displayed in Tab. 5.1.

Fig. 5.1 Implementation from the Terminal of Unix utility time

84 Benchmark Analysis

Computer Specifications
Model MacBook Pro Mid 2012
CPU 2.5 GHz Intel Dual-Core i5 (Turbo Boost up to 3.1 GHz)
Cache 3 MB L3
Memory 8 GB RAM - 1600 MHz

Table 5.1 Computer specifications

What is the main difference between the three times? Let us consider them one by
one:

• Real is the elapsed real time which the program takes from its very start to end
of the call. This time includes also the delays and the time a resource needs to
become available. It does not have to be confused with the CPU time, which
only covers the time during which the processing unit actually works on tasks;

• User is the actual CPU time used in executing processes, outside the kernel;

• Sys is the amount of CPU time spent in the kernel within the process.

In order to have a better understanding of the difference between the user time and
the system time, let us make an example. If we just invoke a program which does
several iterations in loop through an array, the time spent will be accumulated in the
User CPU time. On the other hand, by calling directly a function from a program the
time will be added to the System time. Summing up both the System time and the
User time, the total CPU time is obtained. The latter may be greater or less than the
Real wall clock time. In the first case, the processing cores may be more than one
and then work concurrently. In the second case, the program may spend a certain
amount of seconds waiting and not executing any kinds of operation.
With the regard to our specific algorithm, we used a grain timing benchmark anal-
ysis by simply importing the time module and using the function time.clock().
time.clock() returns the current processing time expressed in seconds. It is important
to highlight that the output of the considered function is completely subject to the
operating system used. Indeed, on Windows operating computers time.clock() re-
turns the total elapsed time (wall clock time) expressed in seconds since the function
has been called, whereas on Unix the same function gives as output the current
processing time, also expressed in seconds. In every single case, however, the result

5.3 Results 85

is deeply depending on different factors, which cannot be controlled by the user. For
robustness of results to be guaranteed, a sequence of timing test should be made.
As a result, considering the average of the obtained results, the truthfulness of the
process is assured.

5.3 Results

The first analysis is held on the three main parts that compose the proposed algorithm.
These parts are:

1. Inside the image processing phase, the background modeling, as described in
Section 4.5. Here, the background model is obtained by running the Gaussian
average method with the two different learning rates, right after a gray-scale
image conversion and the application of a median blurring filter to the current
frame;

2. Still inside the image processing phase, the image treatment phase, also de-
scribed in Section 4.5. This time we work either on the single fast-updating
background or on both of them, depending on the application. Thresholding is
implemented right after background subtraction is accomplished. Eventually,
morphological operations are carried out on the final result.

3. Finally, the Waterfall algorithm is considered. As fully explained in Subsection
4.5.1, given the morphologically treated binary difference, all the coordinates
are retrieved, checked and eventually merged to attain one or multiple bounding
boxes which sorrounds the active foreground objects.

The results are displayed in Fig. 5.2

86 Benchmark Analysis

100 500
Number of Frame

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

El
ap

se
d

Ti
m

e
in

 s
Current Processing Time

Background Modelling
Image Treatment
Waterfall Algorithm

Fig. 5.2 The processing time of the three main functions which compose the proposed
algorithm, for the first 100 and 500 frames.

The red bar charts display process number 1, the green ones display process number
2, and the blue ones represent process number 3.
We can distinctly see that the background modeling is sharply the heaviest phase
from the computational workload point of view. Indeed, the running Gaussian aver-
age (Subsection 4.3.2) is implemented together with matrix conversion to images,
median blurring and gray-scale conversion. All of these processes are quite heavy
because they deal with large amount of information coming from the input videoset.
Due to this, if an optimization has to be conducted, this would surely be the pro-
cess under the spotlights. Secondly, backgorund subtraction, thresholding and the
morphological transformations. They lead to a considerable reduction to almost half
of the processing time. Nonetheless, also in this case, the amount of information
handled is remarkable. In fact, the program is still working on the image entireness
which represents, frame by frame, the dataset. Thirdly, the Waterfall algorithm
processing time is calculated. It is noticeable a moderate reduction of the processing
time due to the fact that the considered phase works with substantially less amount

5.3 Results 87

of pixel information compared to the previous two phases.
To examine a deeper but still quite simple analysis, background modeling phase
and the image treatment are divided into different subprocesses. Afterwards, using
the function time.clock() makes it possible to calculate the processing time of each
subprocess. More precisely, background modeling is separated into four different
subprocesses as shown in Tab. 5.2:

• Gray-scale conversion;

• Application of the median blurring filter;

• Creation of the two updating background models by the running Gaussian
average.

Simultaneously, image treatment is divided into two main suboperations:

• Binary subtraction and thresholding;

• Morphology operation:

– Erosion;

– Dilation.

Processing times in s
Operation Processing time at

frame 100
Processing time at
frame 500

Note

Gray-scale 0.001370 0.001375
Median Blurring 0.000877 0.000891
RGA 1 0.000431 0.000449 Fast-updating back-

ground model
RGA 2 0.000436 0.000447 Slow-updating back-

ground model

Table 5.2 Processing times of the subprocesses composing the background modeling phase

It is important to mention that the operation of dilation is conducted five times,
whereas the counter operation of erosion is only implemented once. Indeed, the
processing time of the latter is remarkably smaller, as displayed in Tab. 5.3. Fur-
thermore, the sum of the each operation is attributable to the entire processing time

88 Benchmark Analysis

Processing times in s
Operation Processing time at

frame 100
Processing time at
frame 500

Note

Binary difference 0.000136 0.000129 720x480 frame reso-
lution

Thresholding 0.000276 0.000272
Erosion 0.000443 0.000449 Iterated once
Dilation 0.000712 0.000734 Iterated five times

Table 5.3 Processing times of the subprocesses composing the image treatment phase

displayed in the tab chart in Fig. 5.2, as expected.
In Fig. 5.3 we can see how, summing up the processing time of the three main
functions which build the proposed algorithm, the total processing time nearly corre-
sponds to the sum. An hypothetic minimal difference could be due to some hidden

100 500
Number of Frame

0.000

0.001

0.002

0.003

0.004

0.005

El
ap

se
d

Ti
m

e
in

 s

Current Processing Time

(a)

100 500
Number of Frame

0.000

0.001

0.002

0.003

0.004

0.005

El
ap

se
d

Ti
m

e
in

 s

Current Processing Time

(b)

Fig. 5.3 The comparison of processing time of the core of the algorithm: (a) Total time
calculated by a single iteration of time.clock() function, (b) Sum of the three main functions.

parameters which cannot be directly controlled by the user. Then, as in this specific
case, a minimum error is accepted.

5.3.1 Optimization

In this section we will describe a simple process of optimization aimed to decrease
the processing time of the heaviest workload phase. The considered phase is the first
of the three described in the previous Section. We used exactly the same approach

5.3 Results 89

described in Section 5.2. The Figure below displays the obtained results when we
divide the background modeling into three distinct stages, as per Tab. 5.2:

1. Gray-scale conversion of the current frame, given the videoset;

2. Application of a median blurring filter with a Kernel matrix sixe of 5X5;

3. Implementation of two running Gaussian average modeling which creates two
background models.

100 500
Number of Frame

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

El
ap

se
d

Ti
m

e
in

 s

Current Processing Time
Gray-scale Conversion
Median Blurring
RGA

Fig. 5.4 The processing time of the three main stages of Background modelling, for the first
100 and 500 frames.

Again, the first stage is considerably the most substantial one with the regard to the
computational process time. The gray-scale conversion considers all the pixel of
the image, processes them and assigns a new value to each of them. In order that
the processing time is reduced, the videoset is modified and it is turned to a low
resolution video 320x240, whereas before was 720x480. The amount of pixel to
process now has moderately decreased. Indeed, the new processing time of the three
main stages of background modelling are:

90 Benchmark Analysis

100 500
Number of Frame

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

El
ap

se
d

Ti
m

e
in

 s

Current Processing Time

(a)

100 500
Number of Frame

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

El
ap

se
d

Ti
m

e
in

 s

Current Processing Time

(b)

Fig. 5.5 The of processing time of the main stage of Background modelling: (a) With
720x480 frame resolution, (b) With 320x240 frame resolution, then optimized.

Fig. 5.5 displays a decline of the processing time by slighlty more than three times,
in average, as a result of the smaller definition of the dataset considered.

5.4 Real-time Application

All the examined measurements were performed on two videoset with different
resolutions. However, the fps1 are both shared and are set to 302.
Let us consider the amount of time, calculated in seconds, of a single frame:

timeone f rame =
1
30

= 0.0333 (5.1)

Let us also consider the sum of the processing time of the core functions of the
algorithm, as per Table 5.4. As we can see, the sum of the elapsed time of the three
main functions is significantly minor than the amount of time for a single frame
to be processed. To be more specific, it approximately represents the 18% of the
total available time, timeone f rame. As a result, considering 30 fps and taking the
machine specifications into account, the algorithm could be successfully run within
this window of time. Due to this, real-time application is accomplished.

1Frames per second.
2Both videos were decoded setting fps to 30, but the actual fps conversion is always accompained

by errors; indeed, 30 represents the peak frame rate of the video decoder.

5.4 Real-time Application 91

Processing times in s

Operation Processing time at frame
100

Processing time at frame
500

Background Modelling 0.00315 0.00313

Image Treatment 0.00165 0.00165

Waterfall Algorithm 0.00090 0.00086

Total 0.0057 0.00564

Table 5.4 Processing times of the three main functions which compose the proposed algorithm

Chapter 6

Conclusions

Going through the examined features of image processing, background modelling,
people detection and object detection, we proposed a complete algorithm able to
deal with a broad variety of different scenarios. The proposed Waterfall algorithm
increased the reliability and performance of both single and multiple pedestrian
tracking by outdoing the challenges in the background modelling process, shown by a
vast amount of previous methods. By taking into account the two background models,
abandoned and taken away objects are robustly detected and successfully labeled;
consequently, further color and position information are gathered. Additionally,
trespassing detection and loitering detection are successfully achieved by comparing
the position of the tracked moving object and the high-sensibility area. Furthermore,
time thresholds are investigated together with important and relevant statistical tools
such as the covariance and the Pearson’s Correlation, which significantly helped us
to understand the trend of the continuously changing position of the target inside
the videosurveilled area. Finally, a benchmark analysis is conducted in order to
interpret the computational load of the proposed algorithm. The aim was to discern
the effectiveness of a real-time application of the video surveillance algorithm, which
showed positive results.
The experiments were performed using several videos personally recorded with a
static camera in the main hall of the engineering faculty at the Hokkaido University.
Undoubtedly, future work can be arranged in the interest of enhancing the robustness,
the overall performances and the accuracy of the main functions of the algorithm.

References

[1] Josh Woodhouse. Enterprise & ip storage used for video surveillance. Technical
report, IHS Markit, 2017.

[2] Michael Kamaraj et al. An improved motion detection and tracking of active
blob for video surveillance. In Computing, Communications and Networking
Technologies (ICCCNT), 2013 Fourth International Conference on, pages 1–7.
IEEE, 2013.

[3] E Roy Davies. Machine vision: theory, algorithms, practicalities. Elsevier,
2004.

[4] Wikipedia. Video tracking, 2017. Visited on: 15-06-2017.

[5] Wikipedia. Binary image, 2017. Visited on: 12-06-2017.

[6] Wikipedia. Kernel (image processing), 2017. Visited on: 13-06-2017.

[7] Wikipedia. Median filter, 2017. Visited on: 21-06-2017.

[8] Wikipedia. Histogram equalization, 2017. Visited on: 26-07-2017.

[9] Wikipedia. Balanced histrogram thresholding, 2017. Visited on: 13-06-2017.

[10] Willow Garage. About willow garage, 2017. Visited on: 23-06-2017.

[11] PCmag. Encyclopedia: definition of cross-platform, 2017. Visited on: 23-06-
2017.

[12] OpenCV. Introduction to opencv-python, 2017. Visited on: 22-06-2017.

[13] Tim Peters. The zen of python. In Pro Python, pages 301–302. Springer, 2010.

[14] Kari Pulli, Anatoly Baksheev, Kirill Kornyakov, and Victor Eruhimov. Real-
time computer vision with opencv. Communications of the ACM, 55(6), 2012.

[15] Michael Barr. Embedded systems glossary. Neutrino Technical Library, 2007.

[16] Wikipedia. Embedded system, 2017. Visited on: 5-07-2017.

[17] Raspberry Pi Foundation. Raspberry pi downloads, 2017. Visited on: 5-07-
2017.

94 References

[18] Raspberry Pi Foundation. Raspberry pi documentation, 2017. Visited on:
5-07-2017.

[19] Waritchana Rakumthong, Natpaphat Phetcharaladakun, Wichuda Wealveer-
akup, and Nawat Kamnoonwatana. Unattended and stolen object detection
based on relocating of existing object. In Student Project Conference (ICT-
ISPC), 2014 Third ICT International. IEEE, 2014.

[20] Massimo Piccardi. Background subtraction techniques: a review. In Systems,
man and cybernetics, 2004 IEEE international conference on, volume 4, pages
3099–3104. IEEE, 2004.

[21] Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press,
2012.

[22] Christopher Richard Wren, Ali Azarbayejani, Trevor Darrell, and Alex Paul
Pentland. Pfinder: Real-time tracking of the human body. IEEE Transactions
on pattern analysis and machine intelligence, 19(7):780–785, 1997.

[23] Yannick Benezeth, Pierre-Marc Jodoin, Bruno Emile, Hélène Laurent, and
Christophe Rosenberger. Review and evaluation of commonly-implemented
background subtraction algorithms. In Pattern Recognition, 2008. ICPR 2008.
19th International Conference on, pages 1–4. IEEE, 2008.

[24] Chris Stauffer and W Eric L Grimson. Adaptive background mixture models for
real-time tracking. In Computer Vision and Pattern Recognition, 1999. IEEE
Computer Society Conference on., volume 2, pages 246–252. IEEE, 1999.

[25] Yong Xu, Jixiang Dong, Bob Zhang, and Daoyun Xu. Background model-
ing methods in video analysis: A review and comparative evaluation. CAAI
Transactions on Intelligence Technology, 1(1):43–60, 2016.

[26] Zoran Zivkovic. Improved adaptive gaussian mixture model for background
subtraction. In Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th
International Conference on, volume 2, pages 28–31. IEEE, 2004.

[27] Lucia Maddalena and Alfredo Petrosino. A self-organizing approach to back-
ground subtraction for visual surveillance applications. IEEE Transactions on
Image Processing, 17(7):1168–1177, 2008.

[28] Ahmed Elgammal, David Harwood, and Larry Davis. Non-parametric model
for background subtraction. Computer Vision—ECCV 2000, pages 751–767,
2000.

[29] Yosuke Nonaka, Atsushi Shimada, Hajime Nagahara, and Rin-ichiro Taniguchi.
Evaluation report of integrated background modeling based on spatio-temporal
features. In Computer Vision and Pattern Recognition Workshops (CVPRW),
2012 IEEE Computer Society Conference on, pages 9–14. IEEE, 2012.

References 95

[30] Kentaro Toyama, John Krumm, Barry Brumitt, and Brian Meyers. Wallflower:
Principles and practice of background maintenance. In Computer Vision, 1999.
The Proceedings of the Seventh IEEE International Conference on, volume 1,
pages 255–261. IEEE, 1999.

[31] Weihua Wang and Zhijing Liu. A new approach for real-time detection of
abandoned and stolen objects. In Electrical and Control Engineering (ICECE),
2010 International Conference on, pages 128–131. IEEE, 2010.

[32] Statsoft. Statistics glossary, 2017. Visited on: 04-08-2017.

[33] OpenCV. Template matching, 2013. Visited on: 29-08-2017.

[34] Wikipedia. Template matching, 2017. Visited on: 29-08-2017.

[35] Wikipedia. Benchmark (computing), 2017. Visited on: 01-08-2017.

[36] Andreas Ehliar and Dake Liu. Benchmarking network processors. In Swedish
System-on-Chip Conference (SSoCC), 2004.

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Introduction to People and Object Tracking and Video Surveillance Industry
	1.2 People and Object Detection
	1.3 Video Surveillance-integrated Robotic Systems

	2 Image Fundamentals
	2.1 Introduction
	2.2 Binary Images
	2.3 Operations on Images
	2.3.1 Normal Histogram Equalization
	2.3.2 Contrast Limited Adaptive Histogram Equalization
	2.3.3 The Relevance of Image Filtering in Real-life Applications

	2.4 Operations on Binary Images
	2.4.1 Segmentation
	2.4.2 Thresholding
	2.4.3 Morphological Transformations

	3 The OpenCV Library and Embedded Systems
	3.1 Introduction
	3.2 OpenCV with Python
	3.3 Realtime Computer Vision with OpenCV
	3.3.1 The GPU OpenCV Module

	3.4 Embedded Systems
	3.4.1 Applications
	3.4.2 Characteristics
	3.4.3 Raspberry Pi

	4 Algorithms and Methods for Video Surveillance
	4.1 Introduction
	4.2 Background Modelling
	4.2.1 Two Simple Methods for Background Modelling

	4.3 Other Approaches to Background Modelling
	4.3.1 Pixel-based Methods
	4.3.2 Running Gaussian Average
	4.3.3 Modified Moving Average
	4.3.4 Gaussian Mixture Model
	4.3.5 Adaptative Gaussian Mixture Model
	4.3.6 A Self-organizing Background Subtraction Method
	4.3.7 Region-based Methods
	4.3.8 Kernel Density Estimator
	4.3.9 Hybrid Methods

	4.4 Challenges in Background Modelling
	4.5 Moving Object and Pedestrian Detection
	4.5.1 The Waterfall Algorithm

	4.6 Multiple Moving Object and Pedestrian Detection
	4.7 Unattended or Abandoned Object Detection
	4.8 Stolen or Taken Away Object Detection
	4.9 Trespassing Detection
	4.10 Loitering Detection
	4.11 Methods for People and Object Tracking
	4.11.1 Template Matching in OpenCV

	5 Benchmark Analysis
	5.1 Introduction
	5.2 Python Benchmarking
	5.3 Results
	5.3.1 Optimization

	5.4 Real-time Application

	6 Conclusions
	References

		Politecnico di Torino
	2018-03-19T08:04:19+0000
	Politecnico di Torino
	Andrea Trivella
	S

