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Abstract 

This thesis work was born from the need to investigate the stiffness parameters of a robotic 

structure, which are not provided by the manufacturer. 

The robot considered in this work is a light weight robot, the UR5 manipulator, whose 

characteristics are: 

 Reduced weight (18.4 kg); 

 High slenderness links, i.e. length ratio on high diameter; 

 Notably flexible joints; 

As a consequence of these characteristics, it is of fundamental importance to perform a modal 

analysis. In fact, vibrational phenomena can arise in robots with a low stiffness of both joints and 

links, and influence their performance, such as the precision of the movements. Therefore, as 

known, the stiffness analysis is preliminary to the modal analysis. 

According to the hypothesis, the link stiffness has been considered infinite compared to the joint 

stiffness and therefore the aim of this thesis is to develop a simple experimental methodology for 

the identification of joint stiffness. Subsequently the results obtained by the developed method 

were compared with a method already adopted by the scientific community. 

The structure of the thesis is divided into 6 chapters, as follows: 

1. Introduction to the factors that influence stiffness in robotic structures; 

2. Overview of physical and mathematical knowledge on which the study of stiffness is 

based; 

3. State of the art in the methods of stiffness evaluation; 

4. Overview of components used for the evaluation of joint stiffness in the laboratory; 

5. Values of the stiffness in the UR5 joints obtained through the previously adopted 

methodology and the developed methodology; 

6. Conclusions. 
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Introduction 

The Stiffness can be defined as the capacity of a mechanical system to sustain loads 

without excessive changes of its geometry. 

When a force is applied at the endpoint of a manipulator’s arm, the endpoint will deflect by 

an amount which depends on the stiffness of the arm and the force applied. The stiffness of 

the arm’s endpoint is determined by the stiffness of the manipulator’s arm components 

and, more importantly, the positioning accuracy in the presence of disturbance forces and 

loads. 

The stiffness analysis is of primary importance in order to guarantee the proper use of a 

robot and in order to design robotic systems, which  must be suitable for a specific 

application. 

In Robotics the principal works relating to stiffness may be classified according to four 

approach viewpoints: 

1. The first approach deals with the determination of overall stiffness of the robotic 

system. Considering the stiffness of the robotic system such as motors, joints and 

link, the overall stiffness has to be determined. Consequently the stiffness 

evaluation, performance and stability considerations can be deduced;[1][2] 

2. The second type studies the inverse decomposition of a stiffness matrix into 

constituent stiffness parameters that are often assumed to be simple linear springs 

or torsional springs; [3][4] 

3. In the third approach, mathematical properties of the stiffness matrix are examined, 

with the main goal of finding intrinsic properties that are independent of the 

coordinate frame in which the stiffness matrix is expressed; [5][6] 

4. The fourth type deals with the experimental evaluation of the stiffness performance 

of manipulator robotic systems. Different types of experimental tests have been 

proposed and, in some cases, they can be compared with theoretical results. [7][8] 

There are still open problems related to stiffness. For example, the problem of improving 

the stiffness analysis in order to have a better match between theoretical and experimental 

results has not been completely solved. 
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This work was developed in the department of mechanical engineering. in UPC-ETSEIB of 

Barcelona during the Erasmus year (2016-2017), under the supervision of professors Prof. J. 

Martínez and Prof. Mª A. de los Santos. The project was designed during the first semester, 

after the student has acquired the main notions of robotics, and the project, it started in 

February 2017. A special word of thanks to Universitat politécnica de Catalunya and the 

supervisors that have made possible use of the laboratory and the necessary equipment in 

order to develop the project. 

Goal of the project 

The main objective is to develop a simple experimental methodology for the joint stiffness 

identification and its application to a UR5 robot. This objective includes the validation of 

the methodology comparing redundant measurements obtained by using different sensors 

and measurement treatments. Such validation probably implies the use of a kinematic 

model of the robot described with the Jacobian matrix. The development of a dynamic 

model for the robot is out of the scope of this proposal. 
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1 Introduction to industrial manipulators. 

Industrial manipulators are robot with a mechanical arm, wrist and gripper  operating under 

computer control. The task of the robot manipulator is to place an object grasped by the 

gripper into an arbitrary pose . 

The mechanical structure of a robot manipulator  consists of a sequence of rigid bodies 

(links) interconnected by means of articulations (joints). A manipulator is characterized by 

an arm that ensures mobility, and a wrist that confers dexterity.  

The task of the robot wrist is to enable the required orientation of the object grasped by the 

robot gripper, and an end-effector that performs the task required of the robot. The 

fundamental structure of a manipulator is the serial or open kinematic chain. From a 

topological viewpoint, a kinematic chain is termed open when there is only one sequence 

of links connecting the two ends of the chain. Alternatively, a manipulator contains a 

closed kinematic chain when a sequence of links forms a loop. 

A manipulator’s mobility is ensured by the presence of joints. The articulation between 

two consecutive links can be realized by means of either a prismatic or a revolute joint. 

The manipulator considered in this thesis has solely rotary, also called revolute, joints.  

In an open kinematic chain, each prismatic or revolute joint provides the structure with a 

single degree of freedom(DOF). A prismatic joint creates a relative translational motion 

between the two links. Revolute joints are usually preferred to prismatic joints in view of 

their compactness and reliability. On the other hand, in a closed kinematic chain, the 

number of DOFs is less than the number of joints in view of the constraints imposed by the 

loop. 

The degrees of freedom should be properly distributed along the mechanical structure in 

order to have a sufficient number to execute a given task. In the most general case of a task 

consisting of arbitrarily positioning and orienting an object in three-dimensional (3D) 

space, six DOFs are required, three for positioning a point on the object and three for 

orienting the object with the respect to a reference coordinate frame. If more DOFs than 

task variables are available, the manipulator is said to be redundant from a kinematic 
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viewpoint. The workspace represents portion of the environment where the manipulator’s 

end-effector can access. Its shape and volume depend on the manipulator structure as well 

as on the presence of mechanical joint limits. The required task of the arm is to position the 

wrist which is then required to orient the end-effector. The type and sequence of the arm’s 

DOFs, starting from the base joint, allows a classification of manipulators as Cartesian 

(figure 1), cylindrical (figure 2), spherical (figure 3), SCARA (figure 4) and  

anthropomorphic (figure 5). 

According to the latest report by the International Federation of Robotics (IFR), up to 

2005, 59% of installed robot manipulators worldwide has anthropomorphic geometry, 20% 

has Cartesian geometry, 12% has cylindrical geometry, and 8% SCARA geometry. 

 

Figure 1 - Cartesian manipulator and its workspace [9]. 
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Figure 2 - Cylindrical manipulator and its workspace [9] 

 

Figure 3 - Spherical manipulator and its workspace [9]. 
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Figure 4 -  SCARA manipulator and its workspace [9]. 

 

Figure 5 - Anthropomorphic Manipulator and its workspace [9]. 

 

All the previous manipulators have an open kinematic chain. Whenever larger payloads are 

required, the mechanical structure will have higher stiffness to guarantee comparable 

positioning accuracy. In such a case, resorting to a closed kinematic chain is advised. 
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An interesting closed-chain geometry is parallel geometry which has multiple kinematic 

chains connecting the base to the end-effector. The fundamental advantage is seen in the 

high structural stiffness, with respect to open-chain manipulators, and thus the possibility 

to achieve high operational speeds; the drawback is that of having a reduced workspace. 

The manipulator structures presented above are required to position the wrist which is then 

required to orient the manipulator’s end-effector. If arbitrary orientation in 3D space is 

desired, the wrist must possess at least three DOFs provided by revolute joints. Since the 

wrist constitutes the terminal part of the manipulator, it has to be compact; this often 

complicates its mechanical design. Without entering into construction details, the 

realization endowing the wrist with the highest dexterity is one where the three revolute 

axes intersect at a single point. In a case like that, the wrist is called a spherical wrist. The 

key feature of a spherical wrist is the decoupling between position and orientation of the 

end-effector; the arm is entrusted with the task of positioning the above point of 

intersection, whereas the wrist determines the end-effector orientation. 

Realizations where the wrist is not spherical are simpler from a mechanical viewpoint, but 

position and orientation are coupled, and this complicates the coordination between the 

motion of the arm and that of the wrist to perform a given task. The end-effector is 

specified according to the task the robot should execute. For material handling tasks, the 

end-effector consists of a gripper of proper shape and dimensions determined by the object 

to be grasped. For machining and assembly tasks, the end-effector is a tool or a specialized 

device, a welding torch, a spray gun, or a screwdriver. 

The versatility and flexibility of a robot manipulator should not induce the conviction that 

all mechanical structures are equivalent for the execution of a given task. The choice of a 

robot is conditioned by the application which sets constraints on the workspace dimensions 

and shape, the maximum payload, positioning accuracy, and dynamic performance of a 

manipulator. 

1.1 The factors which influence the robot stiffness[10] 

The overall stiffness of a robotic system is determined with the stiffness of all components 

od the system of the robot structures; such as joints and transmissions. In the following 
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sections a description of the main robotics components and their stiffness influence is 

reported: 

1.1.1 Robot structures; 

All robot structures are flexible to a degree, some are substantially more flexible than 

others. Only two structural types, flexible and rigid, are considered here. Rigid structures 

are defined as those for which both the kinematic solution and the control algorithms 

assume all links to be rigid. Most commercially available robot arms are of this type. 

Control of these rigid manipulators assumes that there is no structural deflection, whereas 

in fact, for certain loading conditions, system deflections can be significant and will result 

in decreased accuracy. 

The most important performance characteristics for robot structures are stiffness in 

bending and in torsion. Inadequate structural stiffness can also adversely affect overall 

manipulator precision. The two most common types of structures for robot manipulator’s 

arms are monocoque or shell structures and beam structures. Although the monocoque 

structures have lower weight or higher strength-to-weight ratios, they are more expensive 

and generally more difficult to manufacture. The structure stiffness is affected also by the 

choice of method of manufacturing and the material, typical designs include bolted, welded 

assemblies, and epoxied assembling ies of cast elements. 

Instead the most common materials for robot structures used are aluminum and steel, 

although thermoplastics and glass or carbon-fiber reinforced plastics are beginning to be 

used. 

1.1.2 Robot joints; 

Robotic joints can be categorized generally as either prismatic or revolute joints. Other 

types, such as spherical or universal joints, the latter are generally implemented as 

combinations of the two primary classes. 
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Figure 6- Symbolic representation of joints 

There are two basic types of prismatic or linear motion joints: single-stage and multiple-

stage or telescoping joints. Single-stage joints are made up of a moving surface that slides 

linearly along a fixed a surface. Multiple-stage joints are actually sets of nested or stacked 

single-stage joints (Multiple-stage joints di single stage joints). Single-stage joints feature 

simplicity and high stiffness, whereas the primary advantage of telescoping joints is their 

retracted-state compactness and large extension ratio. Telescoping joints have a lower joint 

inertia for some motions because part of the joint may remain stationary. In prismatic 

joints are employed  the bearings with the primary function to facilitate motion in a single 

direction and to prevent motion in all other directions, both linear and rotational. 

Preventing these unwanted motions poses the more challenging design problem. 

Deformations in the structure can significantly affect bearing surface configuration, which 

affects performance. In severe cases, roller deflection under load may cause binding, which 

precludes motion. For high-precision prismatic joints, ways must be made straight over 

long distances. The required precision grinding on multiple surfaces can be expensive. 

The primary criterion for evaluating prismatic joints is the stiffness-to-weight ratio. 

Achieving a good stiffness-to-weight ratio requires the use of hollow structure for the 

moving elements rather than solid rods. Bearing spacing is extremely important in design 

for stiffness. If spacing is too short, system stiffness will be inadequate to matter how great 

the bearing stiffness. Major causes for failure in prismatic joints are foreign particle 

contamination and Brinelling of the ways caused by excessive ball loading and by shock 

loads. 
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Revolute ( rotary motion) joints are designed to allow pure rotation while minimizing 

radial and axial motions. There are many design issues to be considered when designing a 

revolute joint. The most important measure of the quality of a revolute joint is its stiffness 

or resistance to all undesired motion. Key factors to be considered in design for stiffness 

are bearing shaft, housing and diameters, clearances and tolerances, mounting 

configuration of the bearings, and implementation of proper bearing preloading. Bearing 

size is not always based on load-carrying capacity; rather, the bearing chosen often will be 

smallest one that is stiff enough in both bending and torsion to give desired system 

stiffness that will fit on the shaft. Because joint shafts will frequently be torque-

transmitting members, they must be designed both for bending and torsional stiffness. 

An important factor in maintaining stiffness in a revolute joint is choice of bearing-

mount(support) configuration. The interface between the mount and the structure is as 

important as the interface between the mount and the bearing. The mount and mounting 

arrangement must also be designed to accommodate preloading of the bearings. Axial 

preloading of ball or tapered roller bearings improves system accuracy and stiffness by 

minimizing bearing radial and axial play. Preloads can be achieved through the use of 

selective assembly or spring elements, shim spacers, or threaded collars. 

1.1.3 Transmissions; 

Many types of transmission elements are in use in robot design. The purpose of the 

transmission is to transmit mechanical power from a source to a load. Choice of 

transmission elements depends on power requirements, the nature of the desired motion, 

and the placement of the power source with respect to the joint. The primary 

considerations in transmission design are stiffness, efficiency and cost. 

Today the most common transmission elements in robots are gears, helical gears are also 

used in robot transmissions. They have several specific advantages. Because gear 

reductions are often quite large in robot transmissions, lack of adequate gear tooth contact 

ratio can be a problem. For given gear ratios and gear sizes, helical gears have higher 

contact ratios and as a result produce smoother output. They also tend to be quieter. The 

primary disadvantage to helical gears is that they produce axial gear loads that must be 

constrained to maintain drive stiffness. The limiting factor in gear transmission stiffness is 
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the stiffness of the gear teeth; each tooth acts as an elastic cantilever during the time that it 

is loaded. To maximize stiffness, the largest possible gear diameters should be chosen.  

Another common linear motion transmission  element in robot design is the ball screw. 

Ball screws feature high efficiency, moderate stiffness, and short leads which offer large 

mechanical advantages. Screws can be purchased both in precision (ground) and 

commercial (rolled) grades. Precision ball screws are purchased with ball nuts as matching 

pairs. 

Normally the most common transmission element in revolution joints is the Harmonic 

Drive, a patented unit (USM Corp.). These drives feature in-line parallel shafts and very 

high transmission ratios in compact packages. Static friction in these drives is high, and 

manufacturing tolerances often result in cyclic friction torque variation called cogging. 

Power is often transmitted in robots through torsion shafts or weight-saving torque tubes. 

Transmitting power at high angular velocities also minimizes required shaft diameter, wall 

thickness, and weight.  

Several robot manufacturers use timing belts as transmission elements. They are used 

primarily when low-cost power transmission is required over large distances, or as a simple 

interface between the motor and the first stage of gear reduction. Transmission ratios are 

limited because there is generally a minimum pulley size based on the belt fatigue life. 

Drive stiffness in a belt transmission is a function of the belt material and belt tensioning 

system. Belts containing fine fibers of materials such as Kevlar, which have high stiffness 

modulus to weight ratios, can be driven around smaller pulleys because the Kevlar 

reinforcing bands themselves consist of flexible microscopic fibers. 

A common transmission element in low-cost robots is the stranded cable or flat alloy steel 

band. These elements are easy to configure and repair and relatively efficient. Stiffness in 

cables and bands, as with stiffness in belts, is primarily a function of the choice of material. 
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2 Modeling of industrial Manipulators. 

To address the problem of stiffness, with all the necessary means, in this section gives an 

introduction to the modeling of industrial manipulators, by setting the notations and the 

parameters that are used. 

The axis of rotation of a revolute joint, denoted by 𝑧𝑖, is the interconnection of links 𝑙𝑖 and 

𝑙𝑖+1. The joint variables, denoted by 𝑞𝑖, represent the relative displacement between 

adjacent links. As the joints in this study are revolute, it holds in this special case that 

𝑞𝑖 = 𝜗𝑖, ∀ 𝑖 ∈ {1,… , 𝑛}, where 𝜗𝑖 denotes a relative rotation. Both notations are used 

throughout the thesis. 

 

Figure 7- UR5 Joints[11] 

The specification of the location of every point on the manipulator is called the 

configuration of the robot. The set of all configurations is called the configuration space. 

As the base of manipulators is commonly fixed and the links are assumed to be rigid, the 

configuration is defined by knowing the values of the joint variables. These are often 

gathered into a vector 𝑞 = [𝑞1, … , 𝑞𝑛]𝑇. The joint velocities are then 𝑞̇ = [𝑞̇1, … , 𝑞̇𝑛]
𝑇. The 

following section gives an introduction to the modeling of industrial manipulators. 
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The modeling of manipulators is often simplified to step-by-step procedures. Rigid 

motions and homogeneous transformation are defined to represent the positions and 

orientations of objects and the rotation and translation between assigned coordinate frames. 

A method called the Denavit-Hartenberg (DH) convention was developed to standardize 

the assignment of coordinate frames to joints and links of manipulators and to create 

homogeneous transformation matrices. By using those matrices it is easy to derive the 

forward kinematics. In order to derive the velocity kinematics a Jacobian is defined 

specifically for robotic manipulators, also called the manipulator Jacobian and either the 

Euler-Lagrange equations or the Newton-Euler formulation it is possible to derive the 

dynamic equations for the manipulators. 
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2.1 Rigid motions and homogeneous transformations 

Rigid motions and homogeneous transformations are used to describe the relative positions 

and orientations between the coordinate systems that are assigned to each joint and its 

respective link. Homogeneous transformations combine the operations of rotation and 

translation into a single matrix multiplication which is commonly used to derive the 

forward kinematic equations of rigid manipulators and to perform coordinate 

transformations. Rigid motions are defined to be an ordered pair (t,R) where 𝒕 ∈  ℝ3is a 

translation vector and 𝑹 ∈  𝑆𝑂(3) is a rotation matrix of the Special Orthogonal group of 

order three, where SO(m) is the special orthonormal group of the real matrices with 

orthonormal columns and determinant equal to 1, in the case of spatial rotations it is m=3. 

Rotation matrices can be used to represent the orientation of one coordinate frame with 

respect to another as well as to transform the coordinates of a point from one frame to 

another. Successive rotations such as a rotational transformation of a frame 𝑜𝑖𝑥𝑖𝑦𝑖𝑧𝑖 to a 

frame 𝑜𝑗𝑥𝑗𝑦𝑗𝑧𝑗 and further to frame 𝑜𝑘𝑥𝑘𝑦𝑘𝑧𝑘 can be obtained by 

 𝑹𝑘
𝑖 = 𝑹𝑗

𝑖𝑹𝑘
𝑗  (1) 

where the subscripts indicate from which system of reference the rotation matrix is referred 

and the apexes indicate to which system of reference the rotation matrix is referred. 

Homogeneous transformations simplify the handling of long sequences of rigid motions, as 

it reduces the composition of rigid motions to matrix multiplication. A homogeneous 

transformation matrix 𝑨 ∈  ℝ4𝑥4has the form of 

 𝑨 = [
𝑹 𝒕
0 1

] , 𝑹 ∈  𝑆𝑂(3), 𝒅 ∈ ℝ3 (2) 

Using the fact that R is orthogonal the inverse of the homogeneous transformation matrix 

is simply 

 𝑨−𝟏 = [𝑹
𝑻 −𝑹𝑻𝒕
0 1

] (3) 

To calculate subsequent transformations, the homogeneous transformation matrices must 

be multiplied, according to 
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 𝑻𝑗
𝑖 = 𝑨𝑖+1

𝑖 …𝑨𝑗
𝑗−1 (4) 

The rotational parts are then given by 

 𝑹𝑗
𝑖 = 𝑹𝑖+1

𝑖 …𝑹𝑗
𝑗−1 (5) 

and the translation vectors are given by 

 𝒅𝑗
𝑖 = 𝒅𝑖−1

𝑖 + 𝑹𝑗−1
𝑖 𝒅𝑗

𝑗−1 (6) 

Building upon the definitions of rigid motions and homogeneous transformation, the 

forward kinematics can be calculated, as shown in the next section. 

2.2 Kinematic 

Kinematics is the science of motion that treats the subject without regard to the forces that 

cause it. Within the science of kinematics, one studies the position, the velocity, the 

acceleration, and all higher order derivatives of the position variables. Hence, the study of 

the kinematics of manipulators refers to all the geometrical and time-based properties of 

the motion. In order to deal with the complex geometry of a manipulator, we affix frames 

to the various parts of the mechanism and then describe the relationships between these 

frames. The study of manipulator kinematics involves among other things, how the 

locations of these frames change as the mechanism articulates. The central topic of this 

chapter is a method to compute the position and orientation of the manipulator's end-

effector relative to the base of the manipulator as a function of the joint variables. The DH 

convention and a few other definitions help to assign the coordinate systems in a 

standardized way and are presented in the following section. 

2.2.1 Introduction 

Consider an open-chain manipulator constituted by n+1 links connected by n joints, where 

Link 0 is conventionally fixed to the ground. It is assumed that each joint provides the 

mechanical structure with a single DOF, corresponding to the joint variable. The 

construction of an operating procedure for the computation of direct kinematics is naturally 

derived from the typical open kinematic chain of the manipulator structure. In fact, since 
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each joint connects two consecutive links, it is reasonable to consider first the description 

of kinematic relationship between consecutive links and then to obtain the overall 

description of manipulator kinematics in a recursive fashion. 

 

Figure 8-Coordinate transformations in an open kinematic chain [9] 

To this purpose, it is worth defining a coordinate frame attached to each link, from Link 0 

to Link n. Then, the coordinate transformation describing the position and orientation of 

Frame n with respect to Frame 0 (Figure 8) is given by 

 

 𝑻𝑛
0(𝑞) = 𝑨1

0(𝑞1)𝑨2
1(𝑞2)…𝑨𝑛

𝑛−1(𝑞𝑛)  (7) 

 

As requested, the computation of direct kinematics function is recursive and is obtained in 

a systematic manner by simple products of the homogeneous transformation matrices 

𝑨𝑖
𝑖−1(𝑞𝑖)(𝑓𝑜𝑟 𝑖 = 1, … , 𝑛), each of which is a function of a single joint variable.  

2.2.2 Denavit-Hartenberg Convention 

In order to compute the direct kinematics equation for an open-chain manipulator 

according to the recursive expression in, a systematic, general method is to be derived to 

define the relative position and orientation of two consecutive links; the problem is that to 
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determine two frames attached to the two links and compute the coordinate transformations 

between them. In general, the frames can be arbitrarily chosen as long as they are attached 

to the link they are referred to. Nevertheless, it is convenient to set some rules also for the 

definition of the link frames. 

 

Figure 9- Denavit-Hartenberg kinematic parameters [9] 

With reference to (Figure 9), let Axis i denote the axis of the joint connecting Link i-1 to 

Link i; the so-called Denavit-Hartenberg convention (DH) is adopted to define link Frame 

i: 

 Choose axis zi along the axis of Joint i+1; 

 Locate the origin Oi at the intersection of axis zi with the common normal ( the 

common normal between two lines is the line containing the minimum distance 

segment between the two lines) to axes zi-1 and zi.. Also, locate Oi’ at the 

intersection of the common normal with axis zi-1; 

 Choose axis xi along the common normal to axes zi-1 and zi with direction from 

joint I to joint i+1; 

 Choose axis yi so as to complete a right-handed frame. 
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The Denavit-Hartenberg convention gives a no-unique definition of the link frame in the 

following cases: 

 For frame 0, only the direction of axis z0 is specified; then O0 and x0 can be 

arbitrarily chosen; 

 For frame n, since there is no Joint n+1, zn is not uniquely defined while xn has to 

be normal to axis zn-1. Typically, Joint n is revolute, and thus zn is to be aligned 

with the direction of zn-1. 

 When two consecutive axes are parallel, the common normal between then is not 

uniquely defined; 

 When two consecutive axes intersect, the direction of xi is arbitrary; 

 When Joint I is prismatic, the direction of zi-1 is arbitrary. 

In all such cases, the indeterminacy can be exploited to simplify the procedure; for 

instance, the axes of consecutive frames can be made parallel. Once the link frames have 

been established, the position and orientation of Frame i with respect to Frame i-1 are 

completely specified by the following parameters: 

  ai  distance between 𝑂𝑖′; 

 𝑑𝑖coordinate of 𝑂𝑖′ along zi-1; 

 𝛼𝑖 angle between axes zi-1 and zi about axis xi to be taken positive when rotation is 

made counter-clockwise; 

 𝜃𝑖 angle between axes 𝑥𝑖−1 and 𝑥𝑖 about axis 𝑧𝑖−1 to be taken positive when 

rotation is made counter-clockwise. As all the joints in the UR5 are revolute, 𝜃𝑖 is a 

variable. 

Two of four parameters (ai   and 𝛼𝑖) are always constant and depend only on the geometry 

of connection between consecutive joints established by Link i. Of remaining two 

parameters, only one is variable depending on the type of that joint that connects Link i-1. 

In particular: 

 If joint i is revolute the variable is 𝜃𝑖; 

 If joint i is prismatic the variable is 𝑑𝑖; 

At this point, it is possible to express the coordinate transformation between Frame i and 

Frame i-1 according to following steps: 
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 Choose a frame aligned with Frame i-1; 

 Translate the chosen frame by 𝑑𝑖 along axis 𝑧𝑖−1 and rotate it by 𝜃𝑖 about axis 𝑧𝑖−1; 

this sequence aligns the current frame with Frame 𝑖′ and is described by the 

homogeneous transformation matrix: 

 

 

𝐴𝑖′
𝑖−1 = [

cos 𝜃𝑖 −sin 𝜃𝑖 0 0
sin 𝜃𝑖 cos 𝜃𝑖 0 0
0 0 1 𝑑𝑖
0 0 0 1

] (8) 

 

 Translate the frame aligned with Frame i’ by 𝑎𝑖 along axis 𝑥𝑖′ and rotate it by 

𝛼𝑖about axis𝑥𝑖′; this sequence aligns the current frame with Frame i and is 

described by the homogeneous transformation matrix 

 

 
𝐴𝑖
𝑖′ = [

1 0 0 𝑎𝑖
0 cos 𝛼𝑖 −sin𝛼𝑖 0
0 sin 𝛼𝑖 cos 𝛼𝑖 0
0 0 0 1

] (9) 

 

 The resulting coordinate transformation is obtained by post multiplication of the 

single transformations as 

𝐴𝑖
𝑖−1 = 𝐴𝑖′

𝑖−1𝐴𝑖
𝑖′ = [

cos 𝜃𝑖 −sin 𝜃𝑖 cos 𝛼𝑖 sin 𝜃𝑖  sin 𝛼𝑖 𝑎𝑖 cos 𝜃𝑖
sin 𝜃𝑖 cos 𝜃𝑖 cos 𝛼𝑖 −cos 𝜃𝑖 sin 𝛼𝑖 𝑎𝑖 sin 𝜃𝑖
0 sin 𝛼𝑖 cos 𝛼𝑖 𝑑𝑖
0 0 0 1

]        (10) 

Notice that the transformation matrix from Frame i to Frame i-1 is a function only of the 

joint variable 𝑞𝑖, that is, 𝜃𝑖 for a revolute joint or 𝑑𝑖 for a prismatic joint. 

2.2.3 Differential Kinematics and Statics 

The differential kinematics is gives the relationship between the joint velocities and the 

corresponding end-effector linear and angular velocity. This mapping is described by a 

matrix, termed geometric Jacobian, which depends on the manipulator configuration. 

Alternatively, if the end-effector pose is expressed with reference to a minimal 

representation in the operational space, it is possible to compute the Jacobian matrix via 



Pág. 22   

differentiation of the direct kinematics function with respect to the joint variables. The 

resulting Jacobian, termed analytical Jacobian, in general differs from the geometric one. 

The Jacobian constitutes one of the most important tools for manipulator characterization; 

in fact, it is useful for finding singularities, analyzing redundancy, determining inverse 

kinematics algorithms, describing the mapping between forces applied to the end-effector 

and resulting torques at the joints (statics) and, as will be seen in the following section. 

2.2.3.1 Geometric Jacobian 

Consider an n-DOF manipulator. The direct kinematics equation can be written in the 

form, as seen above: 

 𝑻𝒆(𝑞) = [
𝑹(𝑞) 𝒑(𝑞)
𝟎 1

]   (11) 

the subscript indicate that the matrix is referred to end effector: 

 

Figure 10- End effector reference[9] 

Where 𝒒 = [𝑞1…𝑞𝑛]𝑇 is the vector of joint variables. Both end-effector position and 

orientation vary as q varies. The goal of the differential kinematics is to find the 
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relationship between the joint velocities and the end-effector linear and angular velocities. 

In other words, it is desired to express the end-effector linear velocity 𝒑̇ and angular 

velocity 𝝎 as a function of the joint velocities 𝒒 ̇ . As will be seen afterwards, the sought 

relations are both linear in the joint velocities, 

 𝒑̇ = 𝑱𝑃(𝑞)𝒒̇ (12) 

 𝝎 = 𝑱𝑂(𝑞)𝒒̇ (13) 

In the Equation (12) 𝑱𝑃is the (3×n) matrix relating the contribution of the joint velocities 𝒒 ̇  

to the end-effector linear velocity 𝒑 ̇ ,while in the Equation (13) 𝑱𝑂is the (3×n) matrix 

relating the contribution of the joint velocities 𝒒 ̇  to the end-effector angular velocity 𝝎. In 

compact form, the equation (12) and (13) can be written as 

 𝒗 = [
𝒑 ̇
𝝎
] = 𝑱(𝒒) 𝒒 ̇  (14) 

Which represent the manipulator differential kinematics equation. The (6×n) matrix J is 

the manipulator geometric Jacobian 

 
𝑱 = [

𝑱𝑃
𝑱𝑂
] (15) 

which in general is a function of the joint variables. 

In order to compute the geometric Jacobian, it is worth recalling a number of properties of 

rotation matrices and some important results of rigid body kinematics. 

2.2.3.1.1 Derivate of a Rotation Matrix 

The manipulator direct kinematics equation in (11) describes the end-effector pose, as a 

function of the joint variables, in terms of a position vector and a rotation matrix. Since the 

aim is to characterize the end-effector linear and angular velocities, it is worth considering 

first the derivative of a rotation matrix with respect to time. 
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Consider a time-varying rotation matrix R=R(t).In view of the orthogonality of R, one has 

the relation 

 𝑹(𝑡)𝑹𝑇(𝑡) = 𝑰 (16) 

which, differentiated with respect to time, gives the identity 

 𝑹̇(𝑡)𝑹𝑇(𝑡) + 𝑹(𝑡)𝑹̇𝑇(𝑡) = 𝑶 (17) 

Set 

 𝑺(𝑡) = 𝑹̇(𝑡)𝑹𝑇(𝑡)  (18) 

the (3×3) matrix S is skew-symmetric since 

 𝑺(𝑡) + 𝑺𝑇(𝑡) = 𝑶 (19) 

Postmultiplying both sides of (18) by R(t) gives 

 𝑹̇(𝑡) = 𝑺(𝑡)𝑹(𝑡)  (20) 

that allows the time derivative of 𝑹(𝑡) to be expressed as a function of 𝑹(𝑡) itself. 

Equation (20) relates the rotation matrix R to its derivative by means of the skew-

symmetric operator S and has a meaningful physical interpretation. Consider a constant 

vector p’ and the vector p(t)= 𝑹(𝑡) p’. The time derivative of p(t) is 

 𝒑̇(𝑡) = 𝑹̇(𝑡)𝐩’ (21) 

which, in view of (20), can be written as 

 𝒑̇(𝑡) = 𝑺(𝑡)𝑹(𝑡) 𝐩’ (22) 

If the vector 𝝎(𝑡) denotes the angular velocity of frame 𝑹(𝑡) with respect to the reference 

frame at time t, it is known from mechanics that  

 𝒑̇(𝑡) =  𝝎(𝑡) × 𝑹(𝑡) 𝐩’ (23) 



  Pág. 25 

Therefore, the matrix operator 𝑺(𝑡) describes the vector product between the vector 𝝎 and 

the vector 𝑹(𝑡) 𝐩’. The matrix 𝑺(𝑡) is so that its symmetric elements with respect to the 

main diagonal represent the components of the vector 𝝎(𝑡) = [𝜔𝑥 𝜔𝑦 𝜔𝑧]𝑇 in the form 

 
𝑺 = [

0 −𝜔𝑧 𝜔𝑦
𝜔𝑧 0 −𝜔𝑥
−𝜔𝑦 𝜔𝑥 0

] (24) 

Which justifies the expression 𝑺(𝑡) = 𝑺(𝝎(𝑡)). Hence,(20) can be rewritten as  

 𝑹̇(𝑡) = 𝑺(𝝎)𝑹 (25) 

Furthermore, if R denotes a rotation matrix, it can be shown that the following relation 

holds: 

 𝑹𝑺(𝝎)𝑹𝑇 = 𝑺(𝑹𝝎) (26) 

 

Which will be useful later 

 

Figure 11- Representation of a point P in different coordinate frames [9] 

With reference to (Figure 11), consider the coordinate transformation of a point P from 

Frame 1 to Frame 0; 
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 𝒑0 = 𝒐1
0 + 𝑹1

0𝒑1 (27) 

 

Differentiating (27) with respect to time gives 

 𝒑̇0 = 𝒐̇1
0 + 𝑹1

0𝒑̇1 + 𝑹̇1
0𝒑1 (28) 

utilizing the expression of the derivative of a rotation matrix (20) and specifying the 

dependence on the angular velocity gives 

 𝒑̇0 = 𝒐̇1
0 + 𝑹1

0𝒑̇1 + 𝑺(𝝎1
0)𝑹1

0𝒑1 (29) 

Further, denoting the vector 𝑹10𝒑1by 𝒓10,it is 

 𝒑̇0 = 𝒐̇1
0 + 𝑹1

0𝒑̇1 +𝝎1
0 × 𝒓1

0 (30) 

which is the known form of the velocity composition rule. 

Notice that, if 𝒑1 is fixed in Frame 1, then it is  

 𝒑̇0 = 𝒐̇1
0 +𝝎1

0 × 𝒓1
0 (31) 

Since 𝒑̇1 = 0. 

2.2.3.1.2 Link Velocities 

Consider the generic Link I of a manipulator with an open kinematic chain. According to 

the Denavit-Hartenberg convention adopted in the previous chapter, Link I connects Joints 

i and i+1; Frame I is attached to Link I and has origin along Joint i+1 axis, while Frame i-

1 has origin along Joint i axis (Figure 10). 
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Figure. 7-Characterization of generic Link i of a manipulator [9]. 

Let 𝒑𝑖−1 and 𝒑𝑖 be the position vectors of the origins of Frames i-1 and i, respectively. 

Also, let 𝒓𝑖−1,𝑖𝑖−1  denote the position of the origin of Frame i and with respect to Frame i-1. 

According to the coordinate transformation(25), one can write 

 𝒑𝑖 = 𝒑𝑖−1 + 𝑹𝑖−1𝒓𝑖−1,𝑖
𝑖−1  (31) 

Then, by virtue of (30), it is 

𝒑̇𝑖 = 𝒑̇𝑖−1 + 𝑹𝑖−1𝒓̇𝑖−1,𝑖
𝑖−1 +𝝎𝑖−1 × 𝑹𝑖−1𝒓𝑖−1,𝑖

𝑖−1 = 𝒑̇𝑖−1 + 𝒗𝑖−1,𝑖 +𝝎𝑖−1 × 𝒓𝑖−1,𝑖       (32) 

Which gives the expression of the linear velocity of Link i as a function of the translational 

and rotational velocities of Link i-1. Note that 𝒗𝑖−1,𝑖 denotes the velocity of the origin of 

Frame i with respect to the origin of Frame i-1. Concerning link angular velocity, it is 

worth starting from the rotation composition 

 𝑹𝑖 = 𝑹𝑖−1𝑹𝑖
𝑖−1 (33) 

from (20), its time derivative can be written as 

 𝑺(𝝎𝑖)𝑹𝑖 = 𝑺(𝝎𝑖)𝑹𝑖−1 + 𝑹𝑖−1𝑺(𝝎𝑖−1,𝑖
𝑖−1 )𝑹𝑖

𝑖−1 (34) 

where 𝝎𝑖−1,𝑖
𝑖−1 , denotes the angular velocity of Frame i with respect to Frame i-1 expressed 

in Frame i-1. Considering that R is an orthogonal matrix meaning that 
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 𝑹𝑇𝑹 = 𝑰3 (35) 

where 𝑰3 denotes the (3×3) identity matrix, then the second term on the right-hand side of 

(34) can be rewritten as 

 𝑹𝑖−1𝑺(𝝎𝑖−1,𝑖
𝑖−1 )𝑹𝑖

𝑖−1 = 𝑹𝑖−1𝑺(𝝎𝑖−1,𝑖
𝑖−1 )𝑹𝑖−1

𝑇 𝑹𝑖−1𝑹𝑖
𝑖−1 (36) 

in view of property (26), it is  

 𝑹𝑖−1𝑺(𝝎𝑖−1,𝑖
𝑖−1 )𝑹𝑖

𝑖−1 = 𝑺(𝑹𝑖−1𝝎𝑖−1,𝑖
𝑖−1 )𝑹𝑖 (37) 

Then, (34) becomes  

 𝑺(𝝎𝑖)𝑹𝑖 = 𝑺(𝝎𝑖−1)𝑹𝑖 + 𝑺(𝑹𝑖−1𝝎𝑖−1,𝑖
𝑖−1 )𝑹𝑖 (38) 

 

leading to the result 

 𝝎𝑖 = 𝝎𝑖−1 + 𝑹𝑖−1𝝎𝑖−1,𝑖
𝑖−1 = 𝝎𝑖−1 +𝝎𝑖−1,𝑖  (39) 

Which gives the expression of the angular velocity of Link I as a function of the angular 

velocities of Link i-1 and of Link I with respect to Link i-1. The relations (32),(39) attain 

different expressions depending on the type of Joint i (prismatic or revolute), in the case 

study of this work  will be treated only Revolute Joint, given that the UR5 manipulator is 

composed of revolute Joint. 

Revolute joint 

For the angular velocity it is obviously 

 𝝎𝑖−1,𝑖 = 𝜗̇𝑖𝒛𝑖−1 (40) 

While for the linear velocity it is  

 𝒗𝑖−1,𝑖 = 𝝎𝑖−1,𝑖 × 𝒓𝑖−1,𝑖 (41) 
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due to the rotation of Frame i with respect to Frame i-1 induced by the motion of Joint i. 

Hence, the expressions of angular velocity (39) and linear velocity (32) respectively 

become 

 𝝎𝑖 = 𝝎𝑖−1 + 𝜗̇𝑖𝒛𝑖−1 (42) 

 𝒑̇𝑖 = 𝒑̇𝑖−1 +𝝎𝑖 × 𝒓𝑖−1,𝑖 (43) 

where (39) has been exploited to derive (43). 

2.2.3.1.3 Jacobian computation 

In order to compute the Jacobian, it is convenient to proceed separately for the linear 

velocity and the angular velocity. 

For the contribution to the linear velocity, the time derivative of 𝒑𝒆(𝒒) can be written as  

 

 
𝒑̇𝑒 =∑

𝜕𝒑𝒆
𝜕𝑞𝑖

𝑛

𝑖=1

𝑞̇𝑖 =∑𝑱𝑃𝑖

𝑛

𝑖=1

𝑞̇𝑖 (43) 

This expression shows how 𝒑̇𝑒 can be obtained as the sum of the terms 𝑞̇𝑖𝑱𝑃𝑖. Each term 

represents the contribution of the velocity of single Joint i to the end-effector linear 

velocity when all the other joints are still. 
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Figure. 13- Representation of a vectors needed for the computation of the velocity 
contribution of a revolute joint to the end-effector linear velocity [9]. 

 In the case of revolute Joint (𝑞𝑖 = 𝜗𝑖), observing that the contribution to the linear 

velocity is to be computed with reference to the origin of the end-effector frame (Figure 

13), it is  

 𝑞̇𝑖𝑱𝑃𝑖 = 𝝎𝑖−1,𝑖 × 𝒓𝑖−1,𝑒 = 𝜗̇𝑖𝒛𝑖−1 × (𝒑𝑒 − 𝒑𝑖−1) (44) 

and then  

 𝑱𝑃𝑖 = 𝒛𝑖−1 × (𝒑𝑒 − 𝒑𝑖−1). (45) 

For the contribution to the angular velocity, in view of (39), it is  

 
𝝎𝑒 = 𝝎𝑛 =∑𝝎𝑖−1,𝑖

𝑛

𝑖−1

=∑𝑱𝑂𝑖𝑞̇𝑖,

𝑛

𝑖−1

 (46) 

where (40) has been utilized to characterize the terms 𝑞̇𝑖𝑱𝑂𝑖, and thus in detail, from (40) it 

is  

 𝑞̇𝑖𝑱𝑂𝑖 = 𝜗̇𝑖𝒛𝑖−1 (47) 

and then 

 𝑱𝑂𝑖 = 𝒛𝑖−1 (48) 
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In summary, the Jacobian in (15) can be portioned into the (3× 1) column vectors 𝑱𝑃𝑖 and 

𝑱𝑂𝑖 as  

 
𝑱 = [

𝑱𝑃1  𝑱𝑃𝑛
 …  
𝑱𝑂1  𝑱𝑂𝑛

], (49) 

where  

 
[
𝑱𝑃𝑖
𝑱𝑂𝑖
] = [

𝒛𝑖−1 × (𝒑𝑒 − 𝒑𝑖−1)
𝒛𝑖−1

]  for a 𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑒 joint. (50) 

The expressions in (50) allow Jacobian computation in a simple, systematic way on the 

basis of direct kinematics relations. In fact, the vectors 𝒛𝑖−1, 𝒑𝑒 and 𝒑𝑖−1 are all functions 

of the joint variables. In particular: 

 𝒛𝑖−1is given by the third column of the rotation matrix 𝑹𝑖−10 , 

 𝒛𝑖−1 = 𝑹1
0…𝑹𝑖−1

𝑖−2(𝑞𝑖−1)𝒛0 (51) 

 

where 𝒛0 = [0 0 1]𝑇 allows the selection of the third column. 

 𝒑𝑒 is given by the first three elements of the fourth column of the transformation 

matrix 𝑻𝑒0, by expressing 𝒑̃𝑒 in the (4× 1) homogeneous form  

 𝒑̃𝑒 = 𝑨1
0(𝑞1)…𝑨𝑛

𝑛−1(𝑞𝑛)𝒑̃0 (52) 

 

where 𝒑̃0 = [0 0 0 1]𝑇 allows the selection of the fourth column. 

 𝒑𝑖−1is given by first three elements of the fourth column of the transformation 

matrix 𝑻𝑖−10 , it can be extracted from 

 𝒑̃𝑖−1 = 𝑨1
0(𝑞1)…𝑨𝑖−1

𝑖−2(𝑞𝑖−1)𝒑̃0. (53) 

The above equations can be conveniently used to compute the translational and rotational 

velocities of any point along the manipulator structure, as long as the direct kinematics 

functions relative to that point are known. Finally, notice that the Jacobian matrix depends 

on the frame in which the end-effector velocity is expressed. The above equations allows 
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computation of the geometric Jacobian with respect to the base frame. If it is desired to 

represent the Jacobian in a different Frame u, it is sufficient to know the relative rotation 

𝑹𝑢.The relationship between velocities in the two frames is  

 
[
𝒑̇𝑒
𝑢

𝝎̇𝑒
𝑢] = [

𝑹𝑢 𝑶
𝑶 𝑹𝑢

] [
𝒑̇𝑒
 

𝝎̇𝑒
 ], 

(54) 

Which, substituted in (14) , gives 

 
[
𝒑̇𝑒
𝑢

𝝎̇𝑒
𝑢] = [

𝑹𝑢 𝑶
𝑶 𝑹𝑢

] 𝑱𝒒̇, (55) 

and then  

 𝑱𝑢 = [
𝑹𝑢 𝑶
𝑶 𝑹𝑢

] 𝑱, (56) 

Where 𝑱𝑢 denotes the geometric Jacobian in a Frame u, which has been assumed to be 

time-invariant. 

 
[
𝒑̇𝑒
𝑢

𝝎̇𝑒
𝑢] = 𝑱

𝑢𝒒̇ (57) 

 

2.2.3.2 Statics 

The goal of statics is to determine the relationship between the generalized forces applied 

to the end-effector and the generalized forces applied to the joints – torques for revolute 

joints- with the manipulator at an equilibrium configuration. 

Let 𝝉 denote the (n×1) vector of joint torques and 𝜸 the (r×1) vector of end-effector forces 

where r is the dimension of the operational space of interest. 

The application of the principle of virtual work allows the determination of the required 

relationship. The mechanical manipulators considered are systems with time-invariant, 

holonomic constraints, and thus their configurations depend only on the joint variables q 

and not explicitly on time. This implies that virtual displacements coincide with 

elementary displacements. Consider the elementary works performed by the two force 

systems. As for the joint torques, the elementary work associated with them is  
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 𝑑𝑊𝜏 = 𝝉𝑇𝑑𝒒. (58) 

As for the end-effector forces 𝜸, if the force contributions 𝒇𝑒 are separated by the moment 

contributions 𝝁𝑒, the elementary work associated with them is  

 𝑑𝑊𝛾 = 𝒇𝑒
𝑇𝑑𝒑𝑒 + 𝝁𝑒

𝑇𝝎𝑒𝑑𝑡,  (59) 

where 𝑑𝒑𝑒 is the linear displacement and 𝝎𝑒𝑑𝑡 is the angular displacement. By accounting 

for the differential kinematics relationship in (14),(15), the relation (59) can be rewritten as  

 𝑑𝑊𝛾 = 𝒇𝑒
𝑇𝑱𝑃(𝒒)𝑑𝒒 + 𝝁𝑒

𝑇𝑱𝑂(𝒒)𝑑𝒒 = 𝛾𝒆
𝑇𝑱(𝒒)𝑑𝒒 (60) 

where 𝛾𝑒 = [𝒇𝑒𝑇 𝝁𝑒
𝑇]𝑇 . Since virtual and elementary displacements coincide, the virtual 

works associated with the two force systems are 

 𝑑𝑊𝜏 = 𝝉𝑇𝛿𝒒 (61) 

 

 𝑑𝑊𝛾 = 𝛾𝒆
𝑇𝑱(𝒒)𝛿𝒒, (62) 

 

Where 𝛿 is the usual symbol to indicate virtual quantities. 

According to the principle of virtual work, the manipulator is a static equilibrium if and 

only if  

 𝑑𝑊𝜏 = 𝑑𝑊𝛾              ∀𝛿𝒒, (63) 

the difference between the virtual work of the joint torques and the virtual work of the end-

effector forces must be null for all joint displacements. 

From (62), notice that the virtual work of the end-effector forces is null for any 

displacement in the null space of J. This implies that the joint torques associated with such 

displacements must be null at static equilibrium. Substituting (61),(62) into (63) leads to 

the notable result 
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 𝝉 = 𝑱𝑇(𝑞)𝜸𝑒 (64) 

Stating that the relationship between the end-effector forces and the joint torques is 

established by the transpose of the manipulator geometric Jacobian. 
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3 State of art-Principles of stiffness estimation 

The robot is able to accommodate the forces applied to an endpoint with acceptable 

displacements and, with the appropriate stiffness. In this chapter, we introduce the 

fundamental concepts and properties of a stiffness manipulator arm and we will be 

analyzing all the possible methods, both experimental and theoretical, that allow the 

assessment the stiffness of the joints . 

3.1 Basic methodology 

The theoretical approach appears easily applicable and it leads to reliable results only if the 

degree of freedom of manipulator analyzed is reduced (Degrees of freedom ≤ 2). In fact the 

first example that is listed is a manipulator with 2-Dof. In this case, it is possible to determine 

the displacements of end-effector in addition to joint stiffness, with an eigenvalue problem.  

When number of degrees of freedom increase, the estimation of stiffness joints is becoming 

increasingly difficult, therefore it is necessary to verify the results obtained from the 

theoretical approach with experimental test. 

There are several sources that produce deflections of a manipulators arm. Arm links, for 

example, may deflect when a large force is applied. In particular, when the arm length gets 

longer, as for example in the space shuttle manipulator, the deflection resulting from the 

links compliance is the major source of the endpoint deflection. 

In the majority of today’s industrial robots, however, the major deflection occurs in joints, 

each joint is driven by an individual actuator through a reducer and transmission 

mechanisms. 

When a drive force or torque is transmitted, each member involved may deflect. Also, the 

actuator itself has a limited stiffness determined by its feedback control system, which 

generates the drive torque based on the discrepancy between the reference position and the 

actual measured position. 

As we mentioned earlier, the robot deflection is depends on its link and joint flexibilities, 

although the joint flexibilities are mainly responsible for the global flexibility Accordingly, 

in order to come up with a simple stiffness model of the robot, it is assumed that its link are 
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rigid and its joints are linear elastic torsional springs. The damping is also supposed to be 

negligible for a matter of a model simplicity. The stiffness of the drive system combined 

with the stiffness of the reducer and transmissions can be considered as a spring constant𝑘𝑖 

that relates the deflection at joint i to force or torque transmitted. Namely, 

 𝜏𝑖 = 𝑘𝑖∆𝑞𝑖  (65) 

Where 𝜏𝑖 is the joint torque and ∆𝑞𝑖 is the deflection at joint axis. 

In the following analysis, we assume that the arm links are rigid and we investigated the 

end point stiffness based on the model of the joint stiffness given by (65). 

 

Figure 14- Endpoint compliance and joint servo stiffness [12]. 
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3.1.1 Endpoint compliance analysis 

We derived the endpoint stiffness from the individual joint stiffness. As shown in Figure 

14, we derived the endpoint and moment by the m-dimensional vector 𝐹⃗ and the resultant 

deflection by ∆𝑝, both of them defined  with reference to the base coordinate frame. When 

we neglect gravity and friction at the joints, the endpoint force can be converted to the 

equivalent joint torques according to the theorem, namely, the equation (64). 

Where 𝑱𝑻is the nxm transpose of the manipulator Jacobian, it is referred to end-effector. At 

the individual joints, joint torques 𝝉 (nx1) are related to joint deflections ∆𝒒 by the 

individual stiffness as we modeled in the previous section. For convenience, let us rewrite 

(65) in the vector form: 

 𝝉 = 𝑲∆𝒒 (66) 

Where K is a nxn diagonal matrix given by 

 
𝑲 = [

𝑘1  0
 ⋱  
0  𝑘𝑛

] 
(67) 

The individual joint deflections ∆𝒒 produce the endpoint deflection ∆𝑝 according to 

 ∆𝒑 = 𝑱∆𝒒 (68) 

When the individual joint drive systems are active and the stiffnesses are no-zero, the 

matrix K is invertible. 

Substituting (64) and(66) into (68), we obtain: 

 ∆𝒑 = 𝑪𝜸𝑒 (69) 

Where 

 𝑪 = 𝑱𝑲−𝟏𝑱𝑻 (69.a) 

 

Thus the deflection at the endpoint ∆𝒑 is related to the endpoint force 𝜸𝑒 by the mxm 

matrix C. 
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The matrix C is called the compliance matrix of the arm endpoint. The compliance matrix 

is invertible if the manipulator Jacobian is a square matrix and of full rank: 

 𝜸𝑒 = 𝑪
−𝟏∆𝒑 (70) 

the inverse of the compliance matrix is called the stiffness matrix of the arm endpoint. 

When the manipulator Jacobian is degenerate, the stiffness becomes infinite in at least one 

direction. 

The endpoint compliance matrix and the stiffness matrix consist of the individual joint 

stiffness and manipulator Jacobian. 

Since the Jacobian varies with the arm configuration, the compliance matrix is 

configuration dependent. Also, at a given arm configuration, the magnitude of the endpoint 

deflection varies with the direction of the endpoint force. 

3.1.2 The principal transformation of compliance matrices 

As mentioned in the previous section, the endpoint deflection of a manipulator’s arm 

depend not only on the arm configuration but also on the direction of the applied endpoint 

force. 

In this section, we analyze the maximum and minimum deflections of the arm’s endpoint 

and characterize the compliance matrix. To simplify the analysis we deal with two DOF 

planar manipulator show in figure: 
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Figure 85 – Principal directions of endpoint compliance[12]. 

The endpoint deflection and the endpoint force are represented by the two-dimensional 

vectors ∆𝒑 = [∆𝑥, ∆𝑦]𝑇 and the 𝜸𝑒 = [𝐹𝑥, 𝐹𝑦]
𝑇, respectively. We begin with deriving the 

endpoint compliance matrix from equation (𝑪 = 𝑱𝑲−𝟏𝑱𝑻) namely, 

[
 
 
 
 

(𝑙1𝑠1 + 𝑙2𝑠12)
2

𝑘1
+
𝑙2
2𝑠12
2

𝑘2
−
(𝑙1𝑐1 + 𝑙2𝑐12)(𝑙1𝑠1 + 𝑙2𝑠12)

𝑘1
−
𝑙2
2𝑐12𝑠12
𝑘2

−
(𝑙1𝑐1 + 𝑙2𝑐12)(𝑙1𝑠1 + 𝑙2𝑠12)

𝑘1
−
𝑙2
2𝑐12𝑠12
𝑘2

(𝑙1𝑐1 + 𝑙2𝑐12)
2

𝑘1
+
𝑙2
2𝑐12
2

𝑘2 ]
 
 
 
 

     (71) 

Equations (67) and (69.a) imply that the compliance matrix is always symmetric, and it can 

be verified in equation (71). We search the maximum and minimum deflections and their 

directions when a unit magnitude force is applied to the endpoint for the compliance matrix 

obtained above and for a given arm configuration. From (69) the squared norm of the 

endpoint deflection is given by  

 

 |∆𝒑|2 = ∆𝒑𝑇∆𝒑 = 𝜸𝑒
𝑻𝑪𝑻𝑪𝜸𝑒 = 𝜸𝑒

𝑻𝑪𝟐𝜸𝑒 (72) 
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Where C is symmetric. We evaluate the maximum and minimum deflection under the 

condition on the magnitude of the endpoint force: 

 |𝜸𝑒|
2 = 𝜸𝑒

𝑇𝜸𝑒 = 1 (73) 

To solve this problem, we employ Lagrange multiplier λ to define: 

 𝐿 = 𝜸𝑒
𝑇𝑪2𝜸𝑒 − λ(𝜸𝑒

𝑇𝜸𝑒 − 1) (74) 

The necessary condition for the squared norm of the endpoint deflection to take extreme 

values is given by: 

 𝜕𝐿

𝜕λ
= 0, 𝜸𝑒

𝑇𝜸𝑒 − 1 = 0 
(75) 

Which is identical to (73) and  

 𝜕𝐿

𝜕F
= 0, 𝑪2𝜸𝑒 − λ𝜸𝑒 = 0  

(76) 

From equation (76), it follows that the Lagrange multiplier is the eigenvalue of the squared 

compliance matrix 𝑪2. Thus the problem of finding the maximum and minimum 

deflections is basically an eigenvalue problem. 

Solving the characteristic equation for 𝑪2yields the maximum and minimum eigenvalues 

 λ𝑚𝑎𝑥
λ𝑚𝑖𝑛

=
1

2
[𝑎1 + 𝑎2 ±√(𝑎1 − 𝑎2)2 + 4𝑎2

3] 
(77) 

where  

 𝑪2 = [
𝑎1 𝑎3
𝑎3 𝑎2

] (78) 

Since the individual joint stiffness are positive, both eigenvalues are positive Using the 

eigenvalues and equations (75) and (76), the squared norm of the endpoint deflection is 

given by 

 |∆𝒑|2 = 𝜸𝑒
𝑇𝑪2𝜸𝑒 = 𝜸𝑒

𝑇λ𝜸𝑒 = λ (79) 
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Thus, the maximum and minimum deflections are given by √λ𝑚𝑎𝑥 𝑎𝑛𝑑 √λ𝑚𝑖𝑛, 

respectively. 

The direction in which the maximum or minimum deflection occurs is given by the 

eigenvector corresponding to the maximum or minimum eigenvalue. 

Figure 15 illustrates the directions of eigenvectors. Note that the two directions are 

orthogonal to each other. 

These directions are referred as principal directions. Coordinate axes are defined in the 

principal directions and we consider them as principal axes. The compliance matrix 

becomes diagonal when expressed in the principal coordinates.  

If we consider  𝑒1and 𝑒2 as unit vectors along the principal axes, associated respectively 

with the maximum and minimum eigenvalue; and if E is a 2x2 matrix consisting of  𝑒1and 

𝑒2: 

 𝑬 = [𝑒1 𝑒2] (80) 

The compliance matrix is transformed to the diagonal zed form 𝑪∗in the principal 

coordinates: 

 
𝐶∗ = 𝑬𝑻𝑪𝑬 = [

√λ𝑚𝑎𝑥 0

0 √λ𝑚𝑖𝑛
] 

(81) 

where 𝑬𝑻 = 𝑬−𝟏since E is orthonormal. 

The coordinate transformation of the principal coordinates is referred as the principal 

transformation. When the endpoint force is applied in the principal direction, the deflection 

occurs in the same principal direction and the magnitude of the deflection has extreme 

value. 
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3.2 State-of-art methodology and other methods for stiffness evaluation 

In the previous paragraph, a method for an estimation of stiffness for a manipulator with 

two degrees of freedom was submitted The method presents the principal theoretical basis 

on which methods for stiffness determination are presented. 

In this paragraph some methods of stiffness estimation will be shown, showing an 

explication of issues which emerg when the articulations increase.  

The first method consists of clamping all the joints except one to measure its stiffness and 

repeating the procedure for each joint. For example in the UR5, the clamping of articulations 

is realized using a break, shown in the figure below: 

 

Figure 16- UR5 break[13] 

If the stiffness link are known, to obtain the results of the Cartesian stiffness matrix (CaSM) 

of the robot through its Cartesian workspace, it is enough to execute a number of experiments 

equal to number of joints. CaSM is a matrix defined as follows: 

 𝜸𝑒 = 𝑲𝑋𝛿𝒅 (82) 

In the case of UR5 with only six measurements to obtain the value of Cartesian stiffness 

matrix. 
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However, to block the joints is not an easy task and the stiffness links are not usually known. 

The second method consists of measuring the deflection of the robot caused by some loads 

exerted on its end-effector and evaluating its stiffness throughout its Cartesian workspace by 

through interpolations. This method provides better results, but many configurations have to 

be tested in order to get a good approximation of the CaSM of the robot throughout its 

Cartesian workspace. This two method were presented in [14] 

Below it is shown the method adopted for the evaluation of stiffness joints. In this work the 

robotic-system responses to applied external wrench under static equilibrium is analyzed 

through the CaSM of the robot. It is possible to determine the translation and angular 

deflections of the robot EE when it is subjected to an applied wrench. 

Before beginning, it is given an introduction of stiffness modelling. The formula (64)1 can 

also be expressed as a function of 𝛿𝜽, the n-dimensional vector of variations in the joint 

angles, as follows: 

 𝝉 = 𝑲𝜃𝛿𝜽 (83) 

with 

 

𝑲𝜃 =

[
 
 
 
 
 
𝑘𝜃1 0 0 0 0

0 𝑘𝜃2 0 0 0

0 0 ⋱ 0 0
0 0 0 𝑘𝜃𝑛−1 0

0 0 0 0 𝑘𝜃𝑛]
 
 
 
 
 

 (85) 

The differentiation of (64) with respect to 𝜽 and considering finite increments of time leads 

to the following relationship: 

 𝜕𝝉

𝜕𝜃
= (

𝜕𝑱𝑇

𝜕𝜃
)𝜸𝑒 + 𝑱

𝑇
𝜕𝜸𝑒
𝜕𝒅

𝜕𝒅

𝜕𝜃
 

(86) 

moreover, as defined previously:  
                                                
1 In the Equation 64, it is  shown below., the Jacobian is referred to end-effector: 

𝝉 = 𝑱𝑇(𝑞)𝜸𝑒 
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 𝜸𝑒 = 𝑲𝑋𝛿𝒅 (87) 

where 𝑲𝑋 is the Cartesian stiffness matrix and 𝛿𝒅 the n-dimensional small displacement of 

the robot end-effector . 

From Equations (83) and (87) and also the Equation (14),we obtain the following 

expression:2 

 𝑲𝜃 = 𝑲𝐶 + 𝑱
𝑇𝑲𝑋𝑱 (88) 

with  

 
𝑲𝐶 = [

𝜕𝑱𝑇

𝜕𝜃1
𝜸𝑒

𝜕𝑱𝑇

𝜕𝜃2
𝜸𝑒 ⋯

𝜕𝑱𝑇

𝜕𝜃𝑛−1
𝜸𝑒

𝜕𝑱𝑇

𝜕𝜃𝑛
𝜸𝑒] 

(89) 

being the complementary stiffness matrix 𝑲𝐶 defined in [15] , physically 𝑲𝐶 give us an 

information of variance of Jacobian, that is due to application of load. 

That amounts to 

 𝑲𝑋 = 𝑱
−𝑇(𝑲𝜃 −𝑲𝐶)𝑱

−1 (90) 

By introducing the stiffness modeling, we can see a method proposed for the joint stiffness 

identification, illustrated in the following figure (Figure 17) : 

                                                
2  
Equation 14 𝒗 = [

𝒑 ̇
𝝎
] = 𝑱(𝒒) 𝒒 ̇   

where  the 𝒒 ̇ = [𝜃̇1, … , 𝜃̇𝑛]𝑇 and 𝒗 = [𝜕𝒙
𝝏𝑡
,
𝜕𝒚

𝝏𝑡
,
𝜕𝒛

𝝏𝑡
,
𝜕𝜶

𝝏𝑡
,
𝜕𝜷

𝝏𝑡
,
𝜕𝜸

𝝏𝑡
]𝑻 
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Figure 17 - Procedure for the joint stiffness identification[16]. 

First, the zones of the robot workspace and joint space in which the robot has a good 

dexterity3 are identified. Following simplification allows to choose the configurations in 

the good dexterity zones: 

                                                
3 It is said that a robot has a good dexterity when the workspace zones are easily reachable and avoid self-

collisions with itself. Indeed the robot dexterity changes in the workspace. In the figure below is shown the 
workspace dexterity of a KUKA-DLR LBR arm: 

 Dexterity of KUKA-DLR LBR arm[17] 
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 𝑲𝑋 = 𝑱−𝑇𝑲𝜃𝑱
−1 (91) 

It appears that a good dexterity is required for a good convergence of the procedure. Then, 

the areas in which 𝑲𝐶 is negligible with respect to  𝑲𝜃 are identified as the stiffness model 

of the robot can be simplified in those areas. Once good robot configurations are obtained, 

some of them can be selected in order to perform some tests. 

3.2.1 Optimal robot configurations according to kinematic performance 

From (90), it makes sense that the numerical determination of the joint stiffness values is 

highly sensitive to the conditioning number of J 4; Indeed, matrices with condition 

numbers out of certain restraints are termed ill-conditioned because of this undesired 

behavior. Optimally-conditioned matrices are those with a condition number of unity or 

also near the unit, and are called isotropic. The worst-conditioned are singular matrices, 

with a condition number of infinity. As a consequence, the conditioning number of 

Jacobian matrix is used as a criterion to select appropriate robot configurations for the tests 

and it is used to measure the robot dexterity.  

For knowing the condition number of a matrix is reported a method based on the Frobenius 

norm. The computation of Frobenius norm requires only the inversion of a positive-

definite 6x6 matrix, as can been seen in the footnote [19]5. However, it may happen that 

                                                                                                                                              

blue indicates areas with higher dexterity of the manipulator. For a more detailed discussion of dexterity are given 
the following references [17][18]: 

4  

The conditioning number gives an indication on the accuracy of the results obtained by solving the linear system 
by inversion of the matrix. Values close to 1 of the conditioning number indicate that the array is well 
conditioned. 

5 The condition number 𝑘𝐹(𝑀) of a 𝑚 × 𝑛 matrix M, with 𝑚 ≤ 𝑛, is defined as follows: 

 
𝑘𝐹(𝐌) =

1

𝑚
√𝑡𝑟(𝐌𝑇𝐌)𝑡𝑟[(𝐌𝑇𝐌)−1] (92) 

This provides an analytical expression of the condition number depending on the posture parameters. 
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the terms of matrix J are not homogeneous, because in the matrix different units of 

measurement are present In fact, from Equations (49) and (50) it is apparent that the 

columns of J are not  dimensionally homogeneous, as the unit vectors 𝒛𝑖−1 are 

dimensionless, while vectors 𝒛𝑖−1 × (𝒑𝑒 − 𝒑𝑖−1) have units of length. Therefore, the result 

would be meaningless for the condition number of matrix J. In this case the Jacobian can 

be normalized by means of a normalizing length6, in following a way: 

 

 
𝑱𝑵 = [

1

𝐿
𝑰𝟑𝒙𝟑 𝟎𝟑𝒙𝟑

𝟎𝟑𝒙𝟑 𝑰𝟑𝒙𝟑

] 𝐉 (93) 

where 𝟎𝟑𝒙𝟑 is the 3x3 zero matrix and 𝑰𝟑𝒙𝟑 is the 3x3 identity matrix. 

It is noteworthy here that the condition number is computed only to identify the zones 

where the robot has a good dexterity. It appears that the condition number of the 

normalized Jacobian (𝑱𝑵) depends on the characteristic length L, used to normalization , 

but not the location of the zones. 

 
𝑘𝐹(𝑱𝑵) =

1

𝑚
√𝑡𝑟(𝑱𝑵

𝑇𝑱𝑵)𝑡𝑟 [(𝑱𝑵
𝑇𝑱𝑵)

−1
] (94) 

The choice of appropriate robot configurations for the identification of the joint stiffness 

values is made by choosing the zones of workspace where the value of the inverse 

condition number of 𝑱𝑵 is higher. Therefore, the iso-contours of the inverse condition 

number of 𝑱𝑵 based on the Frobenius norm can be depicted throughout the robot Cartesian 

workspace. An example of isocontours is given below : 

                                                
6 The explanation  of normalizing length and a its geometric interpretation is given in the paragraph 3.2.1.1 
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Figure 98- Iso-contour example 

The higher 𝑘𝐹(𝑱𝑵)−1, the better the dexterity. On the contrary, with lower 𝑘𝐹(𝑱𝑵)−1, the is 

getting closer to the singularities.  

The joint stiffness values are determined from (90); given that we have proposed the 

hypothesis that 𝑲𝐶 is negligible with respect to 𝑲𝜃, the equation (90) is reduced to the 

following equation : 

 𝑲𝑋 ≈ 𝑱
−𝑇𝑲𝜃𝑱

−1 (95) 

From this analysis, it follows from that the robot configurations for which the influence of 

𝑲𝑪 on 𝑲𝑿 are at their maximum are also those for which 𝑘𝐹(𝑱𝑵)−1 is at its minimum, close 

to singularity. 
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2.2.3.3 Normalizing length 

The numerical conditioning of the Jacobian matrix plays a crucial role for investigating the 
kinetostatic performance of a manipulator. 

If in Equations (14) and (64)  𝐉 has a large condition number, it may cause large changes in 
the computed values of 𝝉 and 𝒒. Matrices with condition numbers above a certain 
allowable bound are termed ill-conditioned because of this undesired behavior. Optimally-
conditioned matrices, on the other hand, are those with a condition number of unity, and 
are called isotropic7. The worst-conditioned are singular matrices, with a condition number 
of infinity. As noted above, A measure of the numerical conditioning of matrices is the 
condition number . 

However from Equations (49) and (50) it is apparent that the columns of 𝐉 are not 
dimensionally homogeneous. This dimensional inhomogeneity gives rise to inconsistencies 
when evaluating the condition number under discussion, for it prevents us from ordering 
the singular values of the Jacobian matrix from smallest to largest. We circumvent this 
problem by performing a normalization of the entries of the Jacobian matrix, by dividing 
the firsts three rows of 𝐉 by a normalizing length obtaining 𝑱𝑵. 
 𝑱𝑵𝑱𝑁

𝑻 = 𝜎𝑰𝑚 (96) 

The isotropic condition for the normalized Jacobian matrix is, for instance m=6, then: 
 𝑱𝑵𝑱𝑁

𝑻 = 𝜎𝑰6 (97) 

If 𝑱𝑵 is isotropic the lower-right block in Equation (97) is: 

 
∑𝒛𝑖𝒛𝑖

𝑇 = 𝜎𝑰3

𝑛

1

 (98) 

Upon equating the trace of both sides of the above equation, we obtain 

                                                
7 A matrix is isotropic if all its singular values are identical and nonzero. This is equivalent to saying that, if M is 

isotropic, where M is a generic matrix mxm, then a real number σ exists such that: 

𝑴𝑴𝑻 = 𝜎𝑰𝑚  

where 𝜎 is the common singular value of M and 𝑰𝑚 is the mxm identity matrix 



Pág. 50   

 𝑛 = 3𝜎2 (99) 

Moreover using the upper-left block in Equation (96), solving for L we can obtain: 

 1

𝐿2
∑‖𝒛𝑖 × (𝒑𝑒 − 𝒑𝑖)‖

𝑛

1

= 3𝜎2 (100) 

with the Equation (98), substituting in the (99), we obtain: 

 
𝐿2 =

∑ ‖𝒛𝑖 × (𝒑𝑒 − 𝒑𝑖)‖
𝑛
1

𝑛
 (101) 

In the foregoing expression, we can see a geometric interpretation of the characteristic 
length, L, L is the root-mean squared (RMS) value of the distances of the n joint axes to 
the operation point of the end-effector at the isotropic posture of the manipulator, where a 
manipulator is called isotropic if it can attain a set of configurations in its workspace at 
which the Jacobian matrix is isotropic[20] . 

In this work, the characteristic length L calculates as follows. Firstly the maximum reach 𝑅̅ 
is calculate, which represents the maximum distance of the operation point, end-effector, 
from the first revolute axis, where the invariant frame is placed. Certain simplifications can 
be made, for example, the first joint variable has no influence on this reach, because it 
produces rigid body motions of the overall manipulator, and thus leave the frame-invariant 
condition number unchanged, and therefore, can be locked at an arbitrary value of 0. The 
problem consists in maximizing the distance, as explained above, over the remaining joint 
variables: 

 max
𝜃
‖𝒑𝑒 − 𝒑0‖ (102) 

where: 

 𝜽 = [𝜃𝟐, 𝜃𝟑, … , 𝜃𝒏]
𝑻 (103) 

The maximum reach is 𝑅̅ = max𝜃‖𝒑𝑒 − 𝒑0‖. Besides, for the convexity [21] of the 
Euclidean norm the found maximum is global. In the end, if a reach is denoted by R, then 
the robot characteristic length L is: 

 
𝐿 =

𝑅

𝑅̅
 (104) 
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For instance in the case study of this work, the UR5 reach is 850 mm. 

 
3.2.2 Evaluation of the joint stiffness 

From equation (95) and assuming that 𝑲𝐶 is negligible with respect to 𝑲𝜃 thanks to an 

appropriate robot configuration, the equation (87) can be rewritten as  

 𝜸𝑒 = 𝑱
−𝑇𝑲𝜃𝑱

−1𝛿𝒅 (105) 

Hence, the n-dimensional robot end-effector displacement vector 𝛿𝒅 takes form 

 𝛿𝒅 = 𝑱𝑲𝜃
−1𝑱𝑇𝜸𝑒      (106) 

Let the joint compliances be the components of the n×1 vector x, namely, 

 
𝐱 = [

1
𝑘𝜃𝟏
⁄ 1

𝑘𝜃𝟐
⁄ … 1

𝑘𝜃𝒏−𝟏
⁄ 1

𝑘𝜃𝒏
⁄ ]

𝑇

 (107) 

From equation (106), it turns out that 

 

𝛿𝒅 =

[
 
 
 
 ∑ (𝑥𝑗𝐽1𝑗∑ 𝐽𝑖𝑗𝛾𝑒𝑖

𝑛

𝑖=1
)

𝑛

𝑗=1

⋮

∑ (𝑥𝑗𝐽𝑛𝑗∑ 𝐽𝑖𝑗𝛾𝑒𝑖

𝑛

𝑖=1
)

𝑛

𝑗=1 ]
 
 
 
 

 (108) 

𝑥𝑗begin the jth component of vector x, 𝑥𝑗 = 1 𝑘𝜃𝒋⁄ j = 1, … , n, , and 𝛾𝑒𝑖 being the jth 

component of vector 𝜸𝑒. 

By isolating the components of vector x in equation (108), the joint compliances can be 

expressed with respect to the robot end-effector displacements as follows: 

 𝑨𝒙 = 𝛿𝒅 (109) 

A is a 𝑛 × 𝑛 matrix taking the form 
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𝑨 =

[
 
 
 
 𝐽11∑ 𝐽𝑖1𝛾𝑒𝑖

𝑛

𝑖=1
… 𝐽1𝑛∑ 𝐽𝑖𝑛𝛾𝑒𝑖

𝑛

𝑖=1

⋮ ⋱ ⋮

𝐽𝑛1∑ 𝐽𝑖1𝛾𝑒𝑖

𝑛

𝑖=1
… 𝐽𝑛𝑛∑ 𝐽𝑖𝑛𝛾𝑒𝑖

𝑛

𝑖=1 ]
 
 
 
 

  (110) 

It is noteworthy that a 6-dimensional wrench vector, a 6-dimensional end-effector 

displacement vector and a 𝑛 × 𝑛 A matrix are associated with each test. Let 𝑩𝑖 and 𝒄𝑖 be 

the matrix A and the small displacement screw 𝛿𝒅  corresponding to the ith test, 

respectively. Assuming that n test(s) are used to find x, we obtain: 

 𝑩𝒙 = 𝒄 (111) 

with 

 

𝑩 =

[
 
 
 
 
𝑩1
⋮
𝑩𝑖
⋮
𝑩𝑛]
 
 
 
 

 (112) 

and 

 

𝒄 =

[
 
 
 
 
𝒄1
⋮
𝒄𝑖
⋮
𝒄𝑛]
 
 
 
 

 (113) 

It should be noted that the linear-equation system (111)becomes overdetermined when n>1 

as matrix B is no longer square, but rectangular. In that case, the joint stiffness values are 

obtained by minimizing the Euclidean norm of the approximation error of the 

overdetermined linear-equation system (111), namely, 

 
minimize 𝑒(𝒙) ≡

1

2
‖𝑩𝒙 − 𝒄‖2

2 (114) 

over 𝐱 

the value 𝒙0 of x that minimizes the Euclidean norm of the approximation error e is 
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 𝒙0 = (𝑩𝑇𝑩)−1𝑩𝑇𝒄 (115) 

 

the matrix coefficient c being known as a generalized inverse of B, also known as the left 

Moore-Penrose generalized inverse of B. Therefore, several tests can be considered with 

this approach in order to evaluate the joint stiffness values. Moreover, if all joints are 

stressed substantially at least once among all the tests, their stiffness value will be 

accurately evaluated. 
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3.3  Developed method 

In this section a method to get an estimated of values of stiffness is seen. The word estimate is 
used because with this method many of definitions are not applied, in contrast to state-of-art 
method. The choice of configuration must be done within the dexterity zone. 

The application procedure for this method starts from the equation (57),  reported above: 

 
 

[
𝒑̇𝑒
 

𝝎̇𝑒
 ] = 𝑱 𝒒̇ (116) 

Performing a fundamental hypothesis, it is important to define finite increments and it is 
possible to write the following equation: 

 

{
 
 

 
 
𝛿𝑥
𝛿𝑦
𝛿𝑧
𝛿𝛼
𝛿𝛽
𝛿𝛾}
 
 

 
 

𝑗

= 𝐽𝑗 {
𝛿𝜃1
⋮
𝛿𝜃6

}

𝑗

 (117) 

the subscripts indicates j-th configuration. 

Knowing the vector: 

 [𝛿𝑥 𝛿𝑦 𝛿𝑧 𝛿𝛼 𝛿𝛽 𝛿𝛾]𝑇 (118) 

From the linear system (117) the angles of joints are obtained, imposing a movement to end-
effector. After obtaining the angles, we can obtain the torques of motors although the section 
2.2.3.2, using the equation (64), it reported above: 

 
 𝝉 = 𝑱𝑇(𝑞)𝜸𝑒 (119) 

After having obtained both the angles and the torques, it is sufficient to divide the torques and 
the angles, using the definition reported in the Equation 65: 
 

𝐾𝑖 =
𝜏𝑖
𝛿𝜃1

 (120) 
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As can be seen in the previous explanation, only three definitions were used for obtaining 

the stiffness values  
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4 Laboratory equipment : Manipulator, potentiometer and a 

mass 

The laboratory equipment that is used will be discussed in this section. Laboratory 

equipment consist of the UR5 manipulator, the potentiometer and the payload.  

4.1 The UR5 Manipulator 

The UR5 is a manipulator manufactured by Universal Robots, with six degrees of freedom. 

It is part of lightweight robot category, and its weight is 18.4 kg. In the following table, the 

principal technical details are shown: 

 

 

 

Techinical details UR5 

Repeatability ±0,1 mm 

Payload 5 kg  

Reach 850 mm 

Degrees of freedom 6 rotating joints 

Working range of all joints ±360° 

Maximum speed of all joints ±180°/sec 

Footprint ø149mm 

Materials Aluminium, PP plastics 

Table 1 - Techinical details of UR5 [11]. 
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Figure 19 - UR5 Manipulators [11]. 

The next section gives an overview of components, engaged in the UR5, and the employed 

control methods. 

4.1.1 Components  

In this section are analyzed only the joints components. Given that the links are composed 

of an appropriate section, it ensures a good compromise between the weight and the 

stiffness, and in this work the influence of links to the overall stiffness of UR5 has been 

neglected . 

The principal components that compose the joints are: 

 Brushless Servo Motor; 

 Harmonic drive; 
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 Encoder; 

4.1.1.1 Brushless Servo Motor 

In the joints of UR5 a Brushless motor AC is incorporated. It is preferred to use compered 

to Brushless motor DC, because the characteristic of torque is constant. In fact, given that 

in the AC, winding power is supplied with a sinusoidal current so that the rotating field 

from the three three-phase currents is always offset by 90 ° electric from the rotor magnets 

field and by doing so the torque depends only of the power source. 

 

Figure 20- Characteristic curve Brushless. 

where: 

 𝑀𝑀𝐴𝑋, maximum torque to avoid the motor demagnetization; 

 𝑀0, stagnation torque, it is a temperature function; 

 𝑀𝑁, nominal torque; 

 Tract 1,: saturation limit. 

The main benefits of the use of motor Brushless are: 

 The first significant benefit is the expected life of the engine, since the brushes are 

the "weak point" of an electric motor; 

 The absence of brushes eliminates the main source of electromagnetic noise present 

in other electric motors; 

 The loading gauge is limited in relation to the power that they can deliver and 

above all the torque that these engines can deliver; 
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 Permanent magnets are positioned on the rotor and are made with special materials 

that allow to have a very low rotor inertia, which allows to have extremely precise 

control both in speed and acceleration; 

 Brushless engines always work in optimal performance, due to the fact that they 

don’t have to generate the rotor magnetic field. 

 

Figure 21 – Motors Brushless[22]   

4.1.1.2 Harmonic Drive 

The harmonic drives are particular reducers, which are chosen when compactness and low 

clearance are required. They are composed of three parts: 

 Circular spline:  a steel cylinder with an internally teeth internally; 

 Flex spline: a steel flexible cylinder with a teeth and a flanges for fitting; 

 Wave generator: a thin ball bearing, mounted on an elliptical hub, in so doing we 

obtain a torque converter with good performance. 
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Figure 22- Harmonic Drive[23]. 

The flex spline has two teeth less than the circular spline. The flex spline should be kept in 

deformation from the wave generator. By rotating the wave generator , the engagement 

zone moves along with the major axis of the ellipse. When the wave generator has 

performed 180 degrees, the flex spline lag behind from circular spline of a tooth. Each 

complete revolution of wave generator moves the flex spline, that it is delaying behind of 

two-teeth compared to circular spline. 

The principal benefits of the use of Harmonic drive are: 

 Excellent positioning accuracy and repeatability; 

 High capacity of torque transmission; 

 Low clearance; 

 High gear ratio with a single step: latter may vary from 50:1 to 320:1; 

 Low wear; 

 High torsional stiffness: the Harmonic Drive gearboxes show a high torsional 

rigidity throughout the range of speeds. The curve stiffness characteristic, virtually 

linear, guarantees excellent behavior during operation; 

If d is a total number of teeth of flex spline, the gear ratio is equal to: 
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𝑛 = −

360°

2
𝑑
360°

= −
𝑑

2
 

(121) 

Now, an introduction of an elasticity study is given to see the stiffness importance into the 

coupling motor-gearbox-power consumer. The equations describing the case study are 

three, one for each components: 

 

Figure 103 - Dynamic model of motor- gearbox-power consumer   

motor 𝐽𝑚 𝑞̈𝑚 = 𝜏𝑚 − 𝜏𝑙𝑚 (122) 

 

power consumer      𝐽𝑙𝑞̈𝑙 = 𝑛𝜏𝑚𝑙 − 𝜏𝑙  (123) 

 

gearbox      𝜏𝑙𝑚 = 𝐾𝑒𝑙(𝑞𝑚 − 𝑛𝑞𝑙) + 𝐷𝑒𝑙(𝑞̇𝑚 − 𝑛𝑞̇𝑙)  (124) 

 

where: 

𝐾𝑒𝑙: torsional coefficient (Nm/rad); 

𝐷𝑒𝑙:dumping coefficient (Nms/rad); 

𝜏𝑚: motor torque; 

𝜏𝑙:power consumer torque; 

𝜏𝑙𝑚: gearbox torque 
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4.1.1.3 Encoder 

The operating principle of an absolute encoder is very similar to the incremental encoder,  

in which a rotating disc, with transparent and opaque areas, interrupts a beam of light 

acquired by photoreceptor. 

 

Figure 114 – Encoder [Eltra] 

Compared to incremental encoders, absolute encoders have important functional 

differences. In fact in incremental encoders, the position is determined by the count of the 

number of pulses relative to the zero track, while in the absolute encoders position is 

determined by reading of the exit code. This last one is unique to each of the positions 

inside a lap. As a result, absolute encoders do not lose the real position when the power is 

removed, even in the case of movement, because of the use the Gray code and not the 

binary code as in incremental encoders. 

4.1.1.4 Control Methods 

The UR5 includes a controller platform with a teaching pendant that allows the user to 

program the robot using a graphical user interface. These programming interface 

constraints the options of control to Point-To-Point (PTP) movement in either joint-space 

or task-space. The default PTP movement is that the robot accelerates to the limited 

velocity, stays there for the maximum time allowed and decelerates to a halt when it 

reaches the implemented point in space. This results in a trapezoidal velocity trajectory. 
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Alternatively, the user can specify a blend radius, which gives the robot the freedom to 

deviate from the original path within circle around the programmed point. This allows the 

robot to keep a constant speed and drive through the desired path faster without 

stopping[13].  

 

Figure 125 - Controller UR5 [11] 

An alternative way to control the robot is to write programs in a scripting language called 

URScript, developed by the manufacturer. The programs can be saved directly on the robot 

controller or commands can be sent via a Transmission Control Protocol (TCP) socket to 

the robot. These programs are processed in the native high-level controller. It gives the 

user more options to customize a PTP movement in either joint-space or task-space [24]. 

A third way to control the robot is using the C programmed Application Programming 

Interface (C-API). This enables user coded C-programs to be executed and interact with 

the controller with a cycle time of 8 ms giving access to the low-level functions of the 

robot. More precisely, the Universal Robots servo controller can be controlled by either 

communicating joint velocities or a combination of joint positions, joint velocities and 

joint accelerations. As compared to the ways presented above to control the UR5, this 

method is not constrained by a superimposed velocity or acceleration profile and responds 

to commands quickly with a response delay time of only 12 ms. The preferred control 

method for research purposes is through the C-API as it gives most access to the control 

layers. However, the C-API has to be provided by the manufacturer. This was not the case 
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during the period of this study and it is unknown if access will be granted in the future. 

Therefore, the range of possibilities is currently constrained to the teaching pendant and the 

use of the scripting language URScript. As URScript allows a communication with the 

robot through an external personal computer (PC). 

4.1.2 LX-PA wire potentiometer 

The potentiometer is a transducer of movement based on the variation of resistance due to 

the movement of a mobile cursor. The potentiometer can be used as a voltage divider to 

obtain a manually adjustable output voltage at the slider (wiper) from a fixed input voltage 

applied across the two ends of the potentiometer. The characteristic equations are 

described below: 

 

Eq. of partition 𝑅𝑥
𝑅𝐿
=
𝑥

𝐿
 (125) 

 

Eq. of functioning 
𝑉𝑂 = 𝑅𝑥𝑖 =

𝑅𝑥
𝑅𝐿
𝑉𝑠 = (

1

𝐿
) 𝑉𝑠 ∙ 𝑥 (126) 

 

Eq. of measure 
𝑥 = (

𝐿

𝑉𝑠
)𝑉0 (127) 

 

Transfer function 𝑉𝑂
𝑥
=
𝑉𝑠
𝐿
  (128) 
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Figure 26 – Diagram of operation potentiometer  

The operating principle has been explained with reference to linear potentiometer, but LX-

PA used in this work is an angular potentiometer, where the wire connects the sensor and 

the measuring object in the direction of movement and it decouples the movement in the 

direction perpendicular to the wire (but is requires a correct alignment). 

 

Figure 27 -LX-PA wire potentiometer [SRP Control Systems] 
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5 Evaluation of stiffness 

5.1  UR5 parameters 

The various models that are used to estimate the stiffness of the robotic joints are based on 

the kinematics shown in section 2.2. In this section the kinematic parameters of the UR5 

that they are used to determine the stiffness of the joints are obtained.  

5.1.1 Forward Kinematics 

Figure 24 show an image of the UR5 manipulator with its joints and links. The manipulator 

has seven links 𝑙𝑖: 𝑖 ∈ {0, … ,6} and six revolute joints, 𝑗𝑖: 𝑖 ∈ {1, … ,6}. Each revolute joint 

has one DOF, so the UR5 has a total of six DOF. The first step in order to derive the 

forward kinematics is to find the DH parameters. 

5.1.2 DH Parameters 

The DH parameters for the UR5 are derived according to the DH convention as presented 

in Section 2.2.2. The first step is to make a sketch of the manipulator with its joints and 

links, (see Figure 28); 
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Figure 28 - Sketch of the outer shape of the UR5 including its joints [25]. 

The measurements of the size of the links are given by the manufacturer and were verified 

directly on the manipulator. Next, the coordinate frames 𝑜𝑖𝑥𝑖𝑦𝑖𝑧𝑖, ∀𝑖 ∈ {0,… ,6}, are 

assigned based on the image and by complying with the DH convention. Figure 29 shows 

the assigned coordinate frames. Note that coordinate frame 𝑜2𝑥2𝑦2𝑧2 is not lying on the 

second link as this minimizes the number of non-zero DH parameters and makes the 

subsequent transformation matrices neat. 
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Figure 29 - Sketch of the coordinate frames and Illustration 

of the resulting DH parameters [25]. 

Eventually the DH parameters are extracted using the assigned coordinate frames and the 

rules of the DH convention. They are shown in Figure 29 and summarized in table 2 and 

table 3. 
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Table 2 – Denavit- Hartenberg  parameters. 

Table 3 - Denavit - Hartenberg values 

5.1.3 Transformation Matrices 

By inserting the parameters from Table 3 into Equation (10) the transformation matrices 

𝑻1, … , 𝑻6 are obtained. They are 

 

 
𝑻1 = [𝑹1

0 𝒐1
0

𝟎 1
] = [

cos 𝜃1 0 sin 𝜃1 0
sin 𝜃1 0 − cos 𝜃1 0
0 1 0 89.16
0 0 0 1

] (129.a) 

 

 

𝑻2 = [
𝑹2
1 𝒐2

1

𝟎 1
] = [

cos 𝜃2 −sin 𝜃2 0 −425 cos 𝜃2
sin 𝜃2 cos 𝜃2 0 −425 sin 𝜃2
0 0 1 0
0 0 0 1

] (129.b) 

 

Link i 𝜽𝒊 𝒅𝒊 𝒂𝒊 𝜶𝒊 

1 𝜃1
∗ 𝑑1 0 𝛼1 

2 𝜃2
∗ 0 𝑎2 0 

3 𝜃3
∗ 0 𝑎3 0 

4 𝜃4
∗ 𝑑4 0 𝛼4 

5 𝜃5
∗ 𝑑5 0 𝛼5 

6 𝜃6
∗ 𝑑6 0 0 

Link i 𝒅𝒊 [𝒎𝒎] 𝒂𝒊  [𝒎𝒎] 𝜶𝒊 [𝒓𝒂𝒅] 

1 89.16 0 𝜋
2⁄  

2 0 -425 0 

3 0 -392.25 0 

4 109.15 0 𝜋
2⁄  

5 94.65 0 −𝜋 2⁄  

6 82.3 0 0 
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𝑻3 = [

𝑹3
2 𝒐3

2

𝟎 1
] = [

cos 𝜃3 −sin 𝜃3 0 −392 cos 𝜃2
sin 𝜃3 cos 𝜃3 0 −392 sin 𝜃2
0 0 1 0
0 0 0 1

] (129.c) 

 

 
𝑻4 = [

𝑹4
3 𝒐4

3

𝟎 1
] = [

cos 𝜃4 0 sin 𝜃4 0
sin 𝜃4 0 −cos 𝜃4 0
0 1 0 109.15
0 0 0 1

] (129.d) 

 

 

𝑻5 = [𝑹5
4 𝒐5

4

𝟎 1
] = [

cos 𝜃5 0 − sin 𝜃5 0
sin 𝜃5 0 cos 𝜃5 0
0 −1 0 94.65
0 0 0 1

] (129.e) 

 

 
𝑻6 = [𝑹6

5 𝒐6
5

𝟎 1
] = [

cos 𝜃6 −sin 𝜃6 0 0
sin 𝜃6 cos 𝜃6 0 0
0 0 1 82.3
0 0 0 1

] (129.f) 

 

The forward kinematics are then described by the transformation matrix 𝑻60that describes 

the end effector position and orientation in terms of the base frame 𝑜0𝑥0𝑦0𝑧0 and the joint 

positions 𝜃1, … , 𝜃6. It is obtained by substituting Equations (129) into Equation (7) and 

results in  

 
𝑻6
0 = 𝑻1𝑻2𝑻3𝑻4𝑻5𝑻6 = [𝑹6

0 𝒐6
0

𝟎 1
]  (130) 

The resulting transformation matrix 𝑻60 as well as the matrices in the following sections are 

omitted due to their size. In the following section the velocity kinematics are derived 

including the Jacobians geometric. 

. 
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5.1.4 Velocity Kinematics-Geometric Jacobian 

To calculate the angular part of the geometric Jacobian 𝑱𝑔, namely 𝑱𝑔,𝝎, the axes from 𝑧00 

to 𝑧50 are needed. They are obtained according to Equation (51) and result in 

   𝑧0
0 = 𝒛0 (131.a) 

 

   𝑧1
0 = 𝑹1 

0 𝒛0 (131.b) 

 

       𝑧2
0 = 𝑹2 

0 𝒛0 = 𝑹1 
0𝑹2 

1 𝒛0 (131.c) 

 

      𝑧3
0 = 𝑹3 

0 𝒛0 = 𝑹1 
0𝑹2 

1𝑹3 
2 𝒛0 (131.d) 

 

             𝑧4
0 = 𝑹4 

0 𝒛0 = 𝑹1 
0𝑹2 

1 𝑹3 
2𝑹4 

3 𝒛0  (131.e) 

 

  𝑧5
0 = 𝑹5

0𝒛0 = 𝑹1 
0𝑹2 

1 𝑹3 
2𝑹4 

3𝑹5
4𝒛0 (131.f) 

 

Where 𝒛0 = [0 0 1]𝑇 and where all𝑹𝑖+1𝑖  for 𝑖 ∈ {0,… ,4}, are given in Equations (129). 

The linear part of the Jacobian, namely 𝑱𝑔,𝒗, is obtained as described in Equation (45).The 

geometric Jacobian is then 

 
𝑱𝑔 = [

𝑱𝑔,𝒗
𝑱𝑔,𝝎

] = [
𝒛0 × (𝒑𝑒 − 𝒑0) … 𝒛5 × (𝒑𝑒 − 𝒑5)

𝑧0
0 … 𝑧5

0 ] 
(132) 

Where 𝒑𝑒 ∈ ℝ3 is the vector in the 4𝑡ℎ column of 𝑻60 in Equation (130). 
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5.2 Application of method adopted 

5.2.1 Study of Dexterity 

The study of dexterity is fundamental for the estimation of stiffness to learn about the 

zones where the hypothesis that, 𝑲𝒄 is negligible, is valid. The robot configurations for 

which the influence of 𝑲𝑪 on 𝑲𝑿 is higher when  𝑘𝐹(𝐽𝑁)−1 is minimum, close to 

singularity. 

As seen above, section 3.2.1, the study of dexterity is done using the condition number of 

the Jacobian matrix, based on the Frobenius norm: 

 

 
𝑘𝐹(𝑱𝑵) =

1

𝑚
√𝑡𝑟(𝑱𝑵

𝑇𝑱𝑵)𝑡𝑟 [(𝑱𝑵
𝑇𝑱𝑵)

−1
] 

(133) 

where 𝑱𝑵 is the normalized Jacobian matrix of UR5, because the condition number of 

matrix J is meaningless, due to the fact that its terms are not homogeneous, not having the 

same unit. 

The Jacobian is normalized by means of a normalizing length, latter is calculated as: 

 
𝐿 ≡

𝑅

𝑅̅
 (134) 

where 𝑅̅ = max𝜃{‖𝒑𝑒 − 𝒑0‖}, the maximum reach 𝑅̅ of the UR5 manipulator, which is 

done by maximizing the distance of the operation point, namely end effector, of position 

vector (𝒑𝑒 − 𝒑0) from the first revolute axis. Apparently, the first and the last joint 

variable has no influence on this reach, and hence, can be locked at an arbitrary value, say 

of 0.  
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The value of 𝑅̅ was implemented in MATLAB. The values of joints angles are: 

𝜽𝟏 [𝒅𝒆𝒈] 𝜽𝟐 [𝒅𝒆𝒈] 𝜽𝟑 [𝒅𝒆𝒈] 𝜽𝟒 [𝒅𝒆𝒈] 𝜽𝟓 [𝒅𝒆𝒈] 𝜽𝟔 [𝒅𝒆𝒈] 

𝟎° −90° 0° −90° 0° 0° 

𝑹̅ [𝒎𝒎] 1019.2 mm 

Table 3 

and where R is the maximum reaches R of the actual manipulator, in the case of UR5, 

R=850mm[11]; thus L=0,8488 meter. 

The study of dexterity is carried out for the second and the third revolute joints. They are 

the most influential joints on the translational motions of the end-effector and that the first 

revolute joint does not affect the robot dexterity. Therefore, let 𝜃1 be null and the wrist 

angles 𝜃4, 𝜃5 and 𝜃6 be set to 45° so that the corresponding wrist configuration is far from 

singularities.  

𝜽𝟏 [𝒅𝒆𝒈] 𝜽𝟐 [𝒅𝒆𝒈] 𝜽𝟑 [𝒅𝒆𝒈] 𝜽𝟒 [𝒅𝒆𝒈] 𝜽𝟓 [𝒅𝒆𝒈] 𝜽𝟔 [𝒅𝒆𝒈] 

𝟎° 0° ≤ 𝜃2 ≤ 360° 0° ≤ 𝜃3 ≤ 360 45° 45° 45° 

Table 4 

Below the graphics of dexterity study of UR5 are given : 
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Figure 30 - Contours of the inverse condition number of JN in the joint space 

The figure above shows the inverse condition number of 𝑱𝑵 with the assumptions of table 

4. As we can see from figure, there are zones in the workspace where the 

𝑘𝐹(𝑱𝑵)
−1assumes high values (0.0035-0.005), and where a good dexterity is associated. 

There are, also, zones in the workspace where the 𝑘𝐹(𝑱𝑵)−1assumes low values (0.001-

0.005) , in these areas there are the singularities. 

The choice of configurations will be done in the areas with the best dexterity, in such a 

way that the Jacobian variation is negligible, in so doing, 𝑲𝐶 ≈ 0. The study of dexterity, 

recalled in the figure 28, shows four areas where the 𝑘𝐹(𝑱𝑵)−1assumes  acceptable values. 

For this work the chosen zones are 𝒁1𝑐 and 𝒁2𝑐, where the 𝑘𝐹(𝑱𝑵)−1 is higher. 
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The study of 𝑘𝐹(𝑱𝑵)−1 shows, however, a singularity for third angle joint equals zero, 

instead for second angle joint there are not defined values for the singularity, but it changes 

in the workspace. 

Zone  𝜽𝟐 𝜽𝟑 

𝒁𝟏𝒄 -237° to -152° 100° to 172° 

𝒁𝟐𝒄 -89° to 23°  100° to 172° 

Table 5- The areas with the best dexterity. 
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5.2.2 Evaluation of the joint stiffness values 

Choosing the configurations within the dexterity zones, where the 𝑘𝐹(𝑱𝑵)−1 is maximum 

for the reason presented in the previous sections. The selected configuration are reported in 

the table below: 

  

N. test 𝜽𝟏 [𝒅𝒆𝒈] 𝜽𝟐 [𝒅𝒆𝒈] 𝜽𝟑 [𝒅𝒆𝒈] 𝜽𝟒 [𝒅𝒆𝒈] 𝜽𝟓 [𝒅𝒆𝒈] 𝜽𝟔 [𝒅𝒆𝒈] 

1 0° -237° 119° 45° 0° 71.9° 

2 17° -162° 137° 39° 25° -14.4° 

3 15.5° -177° 149° 45° 25° -17° 

4 0° -183° 139° 45° 25° -51° 

5 13° -199° 143° 37° 0° 17.1° 

6 7° -223° 123° 45° 6° 54.6° 

Table 6- The selected configurations 

 

 

Figure 31- Configuration 1 [26] 
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Figure 32- Configuration 2 [26] 

 

 

Figure 33- Configuration 3 [26] 

 

 

Figure 34 - Configuration 4 [26] 
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Figura 35 - Configuration 5 [26] 

 

Figura 36 - Configuration 6 [26] 

Now, the end effector is loaded with a payload , in this case 𝑭 = 𝑚 ∗ 𝑔 = 18.6718 𝑁, in 

order to facilitate application of force, the cantilever was mounted in the end-effector.  
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Figure 37 - Configuration with the system of loading. 

After placing the weight in the cantilever, through the LX-PA wire potentiometer, the 

displacement was measured . This measurement provides the 𝛿𝒅.  

The measurement was conducted in the following way: 

1. The robot is positioned in the selected configuration; 

2. The wire potentiometer can measure only in one direction. The selected direction 

has components along the X axis and along the Y axis of end effector frame; 

3. The end-effector pose is measured without payload; 

4. The payload is put in the cantilever, and the measures are repeated;  

5. Every measurement is repeated six times for every configuration; 

6. Changing the configuration of wire potentiometer is checked to see if the 

component along with Z axis is negligible compared with X and Y components. 
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The measurement are reported below: 

 

First configuration 
N.test 1 2 3 4 5 6 

Without payload 
[mm] 

0,001 0,010 0,005 -0,002 0,001 -0,010 

With payload 
[mm] 

-0,202 -0,206 -0,220 -0,228 -0,225 -0,225 

deflection 0,203 0,216 0,225 0,226 0,226 0,215 

Table 7 

 

Second configuration 
N.test 1 2 3 4 5 6 

Without payload 
[mm] 

-0.068 -0.068 -0.079 -0.066 -0.074 -0.075 

With payload 
[mm] 

-0,122 -0,122 -0,121 -0,125 -0.124 -0.123 

deflection 0,054 0,054 0,042 0,059 0.05 0.048 

Table 8 

 

Third configuration 
N.test 1 2 3 4 5 6 

Without payload 
[mm] 

0,287 0,276 0,287 0,266 0.28 0.272 

With payload 
[mm] 

0,208 0,207 0.205 0.207 0.209 0.205 

deflection 0,079 0,069 0,082 0,059 0.071 0.067 

Table 9 

 

Fourth configuration 
N.test 1 2 3 4 5 6 

Without payload 
[mm] 

-0.011 -0.032 -0.025 -0.020 -0.029 -0.024 

With payload 
[mm] 

-0.128 -0.132 -0.139 -0.153 -0.152 -0.125 

deflection 0.117 0.100 0.114 0.133 0.123 0.134 

Table 10 
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Fifth configuration 
N.test 1 2 3 4 5 6 

Without payload 
[mm] 

0.094 0.093 0.085 0.084 0.090 0.087 

With payload 
[mm] 

0.069 0.070 0.065 0.068 0.071 0.072 

deflection 0,025 0,023 0,020 0.016 0.019 0.015 

Table 11 

Sixth configuration 
N.test 1 2 3 4 5 6 

Without payload 
[mm] 

0,072 0,057 0,042 0.056 0,054 0.047 

With payload 
[mm] 

-0,133 -0,147 -0,136 -0,136 -0,144 -0,143 

deflection 0,205 0,204 0,178 0,192 0,198 0,190 

Table 12 

The displacement along Z axis is over the resolution of LX-PA for every configuration and 

the displacement in the above tables has component along X and Y, respectively to 45° and 

45°.  

Considering the force applied to end-effector and the frame of the latter, we can obtain the 

vector 𝜸𝑒of external forces and moments exerted on the robot end-effector. In this case is 

follows: 

 𝜸𝑒 = [13.20𝑁 13.20𝑁 0 0 0 9.336 𝑁𝑚] (135) 

As seen in the section( 3.2.2)  the matrix A is obtained knowing the Jacobian and the 

vector 𝜸𝑒, using the equation (110). In the end we can use the equation (114) to determine  

the compliance, and consequently the stiffness: 
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Figure 38 – Results of adopted method 

The variance of the results is due to the incorrect choice of wrist position, to allow the 

measure of end-effector displacement and to allow the application of load in the end-

effector. The wrist was placed, inevitably, in different positions in respect to the table 4..  

To see the importance of dexterity study, which makes possible to choose the corrects 

configurations, where 𝑲𝒄 is negligible, below it is reported a calculation of stiffness 

choosing others configurations out of the zone the dexterity: 

N. test 𝜽𝟏 [𝒅𝒆𝒈] 𝜽𝟐 [𝒅𝒆𝒈] 𝜽𝟑 [𝒅𝒆𝒈] 𝜽𝟒 [𝒅𝒆𝒈] 𝜽𝟓 [𝒅𝒆𝒈] 𝜽𝟔 [𝒅𝒆𝒈] 

1 65° -18° 90° -65° -110° 1.2° 

2 94° -20° -97° -157° -46.98° -224 ° 

3 135° 35° -112° -49° -239° -15° 

4 182° 18° -122° -122° 90.5° -45° 

5 221° -18° -56° -58° -27.8° -41° 
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6 273° -16° 115° -186° -135° -15 

7 67° -173° 128° -19° -40° 131° 

8 109° -131° 62° -37° 41° -95° 

9 86° -10° 56° -132° -47° -43° 

Table 13 

 

Figure 39 - Results outside dexterity zones 

Moreover, to realize the validity of mathematical model and the weight of adopted hypothesis 
is given a figure (Figure 40), where the wrist joint angles have set on 45°, as in the dexterity 
analysis assumed and the end-effector displacements where chosen dimensionally consistent: 
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Figure 40 - Results without simplifying assumptions 

It is apparent that the variations in the obtained joint stiffness values is reasonably small, the 
method for the joint stiffness identification is robust. Moreover, clearly more tests are 
conducted more the results are reliable. 

 

5.3 Application of the developed method 

Following the section 3.3 we can calculate the stiffness of the Joints, but the employed sensor 
(LX-PA wire potentiometer) allows us to measure only a displacement, therefore we 
introduce some hypothesis for allowing the stiffness calculate.  

For the application of developed method are necessary the three displacements and three 
rotations, but with the sensor LX-PA, it is possible to know only the displacements. Through 
a further measurement it is possible to know the rotation along the Z axis. The further 
measurement has taken in the end of cantilever, in so doing is possible to obtain the rotation 
along Z axis knowing the length of cantilever and the end effector displacement .  

Now, under the assumption that the rotations along Y and X are negligible respect to rotation 
along Z due to the robot configurations taken. Finally the joint angle values are obtained. 
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First configuration 
N.test 1 2 3 4 5 6 

Without payload 
[mm] 

0,101 0,110 0,105 0,098 0,101 0,110 

With payload 
[mm] 

-0,402 -0,406 -0,420 -0,428 -0,425 -0,425 

deflection 0,301 0,296 0,315 0,33 0,324 0,315 

Table 14 

Second configuration 
N.test 1 2 3 4 5 6 

Without payload 
[mm] 

-0.168 -0.168 -0.179 -0.166 -0.174 -0.175 

With payload 
[mm] 

-0,522 -0,522 -0,521 -0,525 -0.524 -0.523 

deflection 0,354 0,354 0,342 0,359 0.35 0.348 

Table 15 

Third configuration 
N.test 1 2 3 4 5 6 

Without payload 
[mm] 

0,287 0,276 0,287 0,266 0.28 0.272 

With payload 
[mm] 

0,508 0,507 0.505 0.507 0.509 0.505 

deflection 0,221 0,231 0,218 0,241 0.229 0.233 

Table 16 

Fourth configuration 
N.test 1 2 3 4 5 6 

Without payload 
[mm] 

-0.051 -0.082 -0.075 -0.070 -0.079 -0.074 

With payload 
[mm] 

-0.229 -0.238 -0.246 -0.240 -0.258 -0.245 

deflection 0.178 0.156 0.171 0.17 0.179 0.171 

Table 17 

Fifth configuration 
N.test 1 2 3 4 5 6 

Without payload 
[mm] 

0.194 0.193 0.185 0.184 0.190 0.187 

With payload 
[mm] 

0.380 0.382 0.379 0.372 0.375 0.381 

deflection 0,186 0,189 0,194 0.188 0.185 0.194 

Table 18 
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Sixth configuration 
N.test 1 2 3 4 5 6 

Without payload 
[mm] 

0,093 0,078 0,063 0.078 0,079 0.068 

With payload 
[mm] 

-0,454 -0,444 -0,439 -0,439 -0,448 -0,441 

deflection 0,547 0,522 0,502 0,517 0,527 0,509 

Table 19 

Also in this case, the displacement along Z axis is over the resolution of LX-PA for every 

configuration and the displacement in the above tables has component along X and Y, 

respectively to 45° and 45°.  

Now, applying the procedure exposed in the section 2.2.3.2  is possible to obtain the torque 

that each joints must oppose to maintain the static equilibrium, when in the end- effector is 

applied a force or a torque. 

Through the Equation (64) is obtained the 6-dimensional vector 𝝉, having previously the 

Jacobian and by breaking down the components of vector force with regard to frame of 

end-effector.  

Using the Equation 120, the stiffness of Joints are obtained and they are shown in the 

following graph: 

 

Figure 41 - Results of developed method 
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5.4 Analysis of the results 

In this section are analyzed the results that have been obtained with the state-of-art and the 
developed method. Beginning with the state-of-art method, we can see the importance of 
choice of configurations within of dexterity zone. In fact, by comparing the Figure 38, Figure 
39 and Figure 40 the variation of results is smaller for every joints. In the latter case the 
configurations are not in zones of dexterity. 

However, in the first case (Figure 38), the limit of measurement system did not allow to 
position the wrist far of singularity, therefore also the first case will have a variation of results. 
In fact the figure 40 shows that which would be produced if the configurations were corrects , 
a possible option of measurement system the laser tracker instead potentiometer. 

In the developed method the results present a variation less than the state-of-art method. 
Nevertheless the measuring system (LX-PA) allows to measure the three translations 
(𝛿𝑥, 𝛿𝑦, 𝛿𝑧) and it doesn’t allow to know directly the three rotations (𝛿𝛼, 𝛿𝛽, 𝛿𝛾). With the 
way exposed in the section 5.3 it is possible to know the rotation along Z axis.  

In the figure 41 it is possible to see the results of developed method, the particular result of the 
last stiffness joint value is given by proximity of wrist to singularity configuration. 
Nevertheless the results variation is smaller than the state-of-method, Although these changes 
were goods, caution should be exercised when the Jacobian matrix is ill-conditioned, for this 
reason the configurations should be chosen far to singularity position of robot. 

The comparison  of two method would not lead to any information until the sources of errors 
will not be deleted or minimized. 
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6 Conclusions 

The goal of this project was to know the stiffness values of joint through  both a developed 
method and state-of-art method. The results, which have been obtained with implemented 
method, were compared with an state-of-art method from bibliography. 

Experimental measurements were conducted to estimate the stiffness on each joint, from 
which it is seen the importance of dexterity zone. The dexterity zone in the work space of 
URL5 is detected in a mathematical way, and based on this results, the configuration of 
measures should be selected. 

Having chosen the configurations of the robot in the dexterity zone, a sufficient number of 
tests8 were conducted to apply both the developed method and the state-of-art method,. By the 
variation of results was observed that the employed sensor (LX-PA wire potentiometer) does 
not allow the sufficient accuracy.  

The methods show a discrepancy of values due to the sources errors. Both methods require a 
high number of tests in such a way that the stiffness values will result as accurate as can be. 

However, one fundamental conclusion is that the measurement system is of fundamental 
importance for inspection work, like that conducted in this work 

For future work a proof of results may be conducted by extrapolating a reading of angles from 
the encoder, that should be positioned on each joint. 

  

                                                

8 sufficient number of tests: six tests are chosen in the thesis work, if the tests conducted are 
sufficiently high, it is possible to calculate an average for every stiffness joint value 
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