Continuous Improvement in OLSA SpA

Il World Class Manufacturing tra Focused Improvement e Quality Control

Relatore:
Maurizio Schenone

Candidato:
Andrea Audisio 222164

Anno accademico 2017/2018
Sommario

Introduzione
1

1. **L’azienda**
 1.1. Storia
 1.2. Il prodotto
 1.3. Il processo
 1.3.1. Progettazione
 1.3.2. Stampaggio
 1.3.3. Metallizzazione
 1.3.4. Assemblaggio
 1.3.5. Magazzino

2. **WCM - World Class Manufacturing**
 2.1. Origini e sviluppo
 2.2. L’eredità di Ohno
 2.2.1. Muri (無理) – Mura (斑) – Muda (無駄)
 2.2.2. Kaizen (改善) o Continuous Improvement
 2.2.3. Altri
 2.3. Le fondamenta del WCM
 2.3.1. Gli Zeri
 2.3.2. PDCA Wheel
 2.4. I pilastri del WCM
 2.4.1. Safety (SAF)
 2.4.2. Cost Deployment (CD)
 2.4.3. Focused Improvement (FI)
 2.4.4. Autonomous Activities (AM/PM)
 2.4.5. Professional Maintenance (PM)
 2.4.6. Quality Control (QC)
 2.4.7. Logistics & Customer Service (LCS)
 2.4.8. Early Equipment/Product Management (EEM/EPM)
 2.4.9. People Development (PD)
 2.4.10. Environment (EN)
3. Tra Focused Improvement e Quality Control: il kaizen 54
 3.1. Focused Improvement 54
 3.1.1. Principi base 54
 3.1.2. 7 step 56
 3.2. Quality Control 63
 3.2.1. Principi base 63
 3.2.2. QA – Matrix 65
 3.2.3. Capability 68
 3.3. Problem solving: il kaizen 71
 3.3.1. Quick kaizen 72
 3.3.2. Standard kaizen 75
 3.3.3. Major kaizen 79
 3.3.4. Advanced kaizen 85

4. Major Kaizen: fanale posteriore Porsche 991 87
 4.1. Fase preliminare 88
 4.1.1. Scelta dell’argomento 88
 4.1.2. Formazione del team 89
 4.1.3. 7 step planning 91
 4.2. PLAN 91
 4.2.1. 3G 91
 4.2.2. 5W+1H 93
 4.2.3. 4M – Ishigawa 98
 4.2.4. 5Whys 103
 4.3. DO 107
 4.3.1. Incompatibilità tra PMMA e antiurto 107
 4.3.2. Percentuale di umidità troppo alta 108
 4.3.3. Materiale con alta percentuale di polveri di trasporto 111
 4.4. CHECK 112
 4.4.1. Raggiungimento del target 112
 4.4.2. Benefici/costi 113
 4.5. ACT 114
 4.5.1. Aggiornamento tempo di deumidificazione materiale 114
 4.5.2. Creazione checklist pressa 114
 4.5.3. SOP pulizia tramoggia e ciclo cambio stampo 115
5. Conclusioni .. 118
6. Bibliografia .. 120
7. Ringraziamenti .. 122
Introduzione

In questo nuovo mondo, giunto ormai alla rivoluzione industriale 4.0, sempre più veloce e dinamico, in cui stare al passo con i tempi non è una scelta, ma una vera è propria necessità, per garantire la propria sopravvivenza su questo treno veloce diretto verso il futuro che è la società contemporanea, ogni individuo deve sapersi aggiornare continuamente, per non essere lasciato indietro e per essere in qualche modo sempre concorrente in questa sfida per l’evoluzione.

Allo stesso modo, come l’individuo, la singola impresa è costretta a subire questo miglioramento continuo, dettato dalle stesse necessità di non esser colpita dall’obsolescenza dei propri metodi, oltre che dei propri mezzi, in un presente in cui il cliente è sempre più esigente, e in un futuro prossimo in cui sempre maggiormente lo sarà.

Per siffatti bisogni è stata partorita la filosofia del World Class Manufacturing, sinonimo di efficienza e organizzazione, ma soprattutto paradigma di Continuous Improvement, o miglioramento continuo.

La mia esperienza aziendale mi ha visto coinvolto nell’implementazione, all’interno di quello che era un quadro di fabbrica di vecchio stampo, di questo nuovo tipo di mentalità, assistendo al raggiungimento di concreti e positivi risultati, apice di un lungo e impegnato processo di cambiamento aziendale durato anni.

In particolare modo, la presente tesi illustra le mie esperienze concrete di World Class e di miglioramento continuo applicate alla divisione di Qualità in OLSA Spa, all’interno del reparto stampaggio nello stabilimento produttivo di Moncalieri (TO).

E’ stato un percorso importante e ricco di soddisfazioni, e non privo di risultati economicamente e strategicamente decisivi per l’azienda, ai quali sono dedicati gli ultimi capitoli dell’elaborato, come la conclusione di Major Kaizen di qualità o il primo audit WCM.

Nella prima parte della presente tesi invece è presentata la società che mi ha permesso di intraprendere questo percorso, e sono inoltre analizzati in maniera puntuale e approfondita i dettami della disciplina del World Class Manufacturing.
1. L’azienda

1.1. Storia

O.L.S.A., agli albori acronimo di “Officina Lavorazione Stampaggio Accessori”, vede la sua nascita nel lontano 1947 a Rivoli (TO), nella veste di azienda, a conduzione familiare, dedita ad attività manifatturiere e fabbricazione di prodotti in metallo\(^1\) per l’industria automotive.

Nel 1958 l’azienda si trasforma in società in nome collettivo (Snc) con oggetto sociale la “Costruzione di accessori per veicoli di ogni specie e per macchine in genere, e la lavorazione economica di articoli e materiali simili e affini” iniziando, di fatto, a commercializzare sistemi d’illuminazione interni ed esterni per veicoli industriali e agricoli in Italia. L’anno successivo, nel 1959, diverrà una società per azioni (S.p.A.) e rimarrà tale, con qualche piccola variazione in itinere, fino ai giorni nostri.

Dopo quasi dieci anni, nel 1965, OLSA implementa la produzione attraverso lo stampaggio plastico, e può così diventare fornitore di fanali posteriori per le case automobilistiche nazionali. In tale occasione si ha la costruzione di un nuovo stabilimento a Rivoli (TO), in cui è spostata la sede centrale della società, dove ivi rimane fino a oggi.

Passata un’altra decina di anni, nel 1976 l’azienda comincia a esportare i propri prodotti all’estero, incrementando notevolmente il suo fatturato e il suo potere d’investimento. Ciò porterà la società a una crescita notevole nel ventennio successivo, andando ad accrescere il proprio capitale sociale di oltre dieci volte.

Questo successo economico impone perciò nel 1990 una riorganizzazione aziendale, in termini di prodotto e processo: OLSA si specializza pertanto nella produzione di luci interne, piccola fanaleria e fanali posteriori per autoveicoli, e cambia l’acronimo, per motivi di marketing, in “Optical Lighting System Automotive”, il quale tuttora è utilizzato come nome commerciale.

\(^1\) (ISME - Istituto per la memoria e la cultura del lavoro dell'impresa e dei diritti sociali)
L’evoluzione della società non si arresta, anzi è rafforzata nelle politiche di export dalla creazione di un nuovo stabilimento nel 1999 in Brasile, nella città di Diadema, accompagnato due anni più tardi, nel 2001, dalla costruzione dell’impianto di produzione a Moncalieri.

Seguendo un programma d’inarrestabile espansione, sempre più alimentata dal processo d'internazionalizzazione del gruppo Fiat, OLSA “conquista” anche la Polonia con un nuovo stabile nel 2008 a Kostrzyn.

In seguito, nel 2011, s’insedia anche in Messico, nello stabilimento di Querétaro, la cui missione sarà la fornitura di sistemi d’illuminazione in tutta l’area NAFTA (North American Free Trade Agreement). Nello stesso anno inoltre sbarca in Cina in joint venture con il gruppo giapponese Murakami, costituendo a JiaXing, presso Shanghai, la JiaXing OLSA Murakami Corporation (JOMC). L’obiettivo di JOMC è la produzione di sistemi d’illuminazione per autoveicoli per il mercato cinese, giapponese, coreano e, in generale, per tutto il mercato asiatico.

Seguono negli anni successivi, fino ai giorni nostri, la nascita di un ufficio acquisti a Sindelfingen, in Germania, nel 2013 e la costruzione di nuovi stabilimenti in Cina e Messico, assieme allo sviluppo di un R&D Center in Cina e un nuovo magazzino in Polonia.

Arrivata a contare nel 2017 più di 1800 dipendenti in tutto il mondo, di cui più di 500 in Italia, e a fatturare circa 250 milioni di euro l’anno, OLSA insiste a porre come proprio obiettivo il primato nel settore dell’automotive lighting, alimentando sempre più la propria politica di espansione nel mondo, in virtù del medesimo sviluppo dei clienti che essa fornisce, dei quali si fa riferimento nel prossimo capitolo.

Figura 1.1 - Logo OLSA S.p.A.

2 (Mal., 2011)
Figura 1.2 - Cronologia OLSA S.p.A.

1.2. Il prodotto

Come già accennato in precedenza, OLSA è stata alle origini una piccola azienda di stampo familiare, la cui produzione era incentrata su pezzi metallici di ridotte dimensioni per il mercato automotive.

Crescendo essa ha poi iniziato a fornire le case automobilistiche di sistemi d’illuminazione per macchine agricole, ma si può dire che sia stata poi l’introduzione dello stampaggio plastico negli anni ’60 a garantire una vera e propria rivoluzione sul prodotto; rivoluzione che le ha garantito il successo nel corso degli anni.

Da allora fino ad oggi, l’azienda torinese s’impega a mettere sul mercato queste tipologie di articoli:

- Fanali posteriori
- Plafoniere
- Piccola fanaleria (luce targa, fendinebbia, luce porta, ecc.)

La figura 1.4 fornisce un esempio su alcuni dei moltissimi prodotti della gamma OLSA.

Su tutto il ventaglio di prodotti che OLSA può vantare però, quello che detiene un peso maggiore per l’azienda in termini economici, tecnologici e d’immagine è sicuramente il fanale posteriore.

Di complessità maggiore rispetto al semplice catadiottro o alla luce targa, il fanale posteriore richiede uno studio tecnologico e un processo di lavorazione più avanzati rispetto agli altri prodotti OLSA, ed è per questo motivo che gran parte delle risorse sono utilizzate in questo senso. Esso è anche il prodotto d’eccellenza, che contraddistingue l’azienda nel settore automotive e le permette di essere tra i primi fornitori delle più importanti case automobilistiche di oggi, come Volkswagen, BMW e FCA.

Anche nel campo delle plafoniere OLSA si rivela un fornitore d’avanguardia, asservendo anche in questo caso grandi case automobilistiche, sempre più esigenti in termini di qualità. Proprio quest’ultimo aspetto ha contribuito a creare negli anni un’azienda molto attenta sul prodotto che offre. La ricerca continua della qualità percepita dal cliente, infatti, è il cavallo di battaglia di OLSA, che le ha permesso di guadagnarsi negli anni quella buona fetta di mercato che oggi detiene nel settore dell’illuminazione per automotive. L’azienda, infatti, investe molte risorse nel rapporto diretto con il cliente, cercando di garantire in ogni modo un prodotto esente da difetti o imperfezioni, e limitare al minimo il numero di reclami da parte delle case che fornisce. Questa filosofia è comunemente chiamata “Customer satisfaction”, e costituisce uno dei cardini principali attorno al quale ruota la politica aziendale.

Per questo suo diretto confronto con il cliente, e per questa sua funzione di “filtro”, attraverso le cui maglie solamente i prodotti soddisfacenti possono fare breccia, il reparto di qualità, all’interno del quale ho potuto vivere la mia esperienza di stage, si può dire detenga una responsabilità e un’importanza strategica notevoli.

Scendendo nel dettaglio, all’interno dello stabilimento di Moncalieri, oltre a diversi articoli minori quali catadiottri e small lighting, i prodotti di punta sono identificabili nei fanali posteriori di Mini Countryman, Porsche 911, Fiat 500x, Lamborghini Huracán, Maserati Ghibli, Audi Q3, Renault Alpine e BMW X2. Per quanto riguarda le plafoniere invece, OLSA Moncalieri fornisce Maserati Ghibli e Quattroporte, Alfa Romeo Giulia, Mito e Giulietta; si possono infine citare le produzioni di catadiottri, terzi stop, luci targa e luci porta per le case automobilistiche di cui sopra.
OLSA tuttavia non è solamente fornitore di grandi case automobilistiche, ma si occupa bensì anche di prodotti *aftermarket*, la cui distribuzione è appannaggio della consociata **OLSA Parts**. Quest’ultima si occupa della rivendita a terzi e privati di articoli di *automotive lighting*; in particolare, oltre ovviamente ai corrispettivi ricambi delle auto delle case costruttrici cui OLSA è fornitore, come i fanali posteriori, *side marker* o catadiottri, OLSA Parts vanta nel suo catalogo anche ricambi di auto datate ormai non più in commercio, e di prodotti universali come lampade rotanti, fari da lavoro o segnalatori d’ingombri.

In questo modo, il ventaglio d’offerta dell’azienda torinese si estende in maniera indicativa, e garantisce una presenza importante nel settore in cui compete.

La figura 1.6 illustra qualche esempio di prodotto da catalogo di OLSA Parts.
1.3. Il processo

Si è già fatto riferimento allo stampaggio plastico a iniezione come chiave di volta della produzione aziendale; non è però solamente attraverso l’iniezione di polimeri allo stato fluido all’interno di stampi ad alta pressione che è possibile ricavare il prodotto finito. Esso segue, infatti, un percorso lungo e raffinato, dalla fase di progettazione allo stoccaggio in magazzino, oltre che il trasporto al cliente finale.

1.3.1. Progettazione

Il fanale è originariamente concepito nella sede centrale di Rivoli, nel quale i tecnici OLSA, in collaborazione con le case clienti che definiscono le linee guida in termini di design, matematizzano in CAD e modellano i primi prototipi, i quali sono poi sottoposti a una serie di test, come lo shock termico, la fotometria, l’impermeabilità o l’assenza di malfunzionamenti elettrici, al cui superamento corrisponde il benestare per la realizzazione in serie.

Una volta validata la fattibilità dell’articolo, è possibile implementarne la produzione presso lo stabilimento scelto, incaricando il fornitore dello stampo (es. l’astigiana Onni-stamp) della sua manifattura.
La produzione all’interno dello stabilimento di Moncalieri, non dissimile tuttavia dalle altre realtà extranazionali di OLSA, consta di 3 fasi distinte, ad ognuna delle quali è predisposto un reparto dedicato e fisicamente separato dagli altri due:

- **Stampaggio**
- **Metallizzazione**
- **Assemblaggio**

In ausilio a tali reparti sono adibite inoltre due aree di stoccaggio, che andranno progressivamente a ridursi, e idealmente a scomparire, con l’implementazione progressiva di una politica di *just in time* prevista nello sviluppo aziendale di *World Class Manufacturing*:

- **Magazzino materie prime**
- **Magazzino componenti e prodotti finiti**

1.3.2. Stampaggio

Attraverso questo reparto passano obbligatoriamente quasi la totalità degli elementi che compongono il prodotto finito, se non il prodotto finito stesso, come nel caso dei catadiottri; fanno eccezione, però, gli articoli acquisiti da fornitori esterni e non fabbricabili dall’azienda, come per esempio le schede elettroniche per le plafoniere, o le luci, a bulbo o a led, fornite da terzi (quali tra gli altri la multinazionale OSRAM).

Gli elementi cardine del reparto stampaggio sono sicuramente le **presse a iniezione per materiale plastico**; esse sono classificate in base al loro peso, e nello stabilimento di Moncalieri se ne conta un totale di 33, dalle **90** alle **1500 tonnellate**. Le prime, di ridotte dimensioni, sono predisposte per la
produzione di pezzi minuti e di semplicità elevata; passano attraverso queste presse per esempio i catadiottri o piccoli elementi di ridotto interesse estetico, come il corpo della luce targa. La complessità e le dimensioni dei pezzi prodotti aumentano via via che si sale di tonnellaggio, fino ad arrivare alla punta di diamante del reparto, le presse da 1500 tonnellate, alle quali è affidata la produzione degli articoli che richiedono una qualità, e un livello di processo, superiori, come il trasparente esterno di fanale posteriore e plafoniera.

Tutte le macchine sono alimentate dal materiale plastico che è loro inviato direttamente dal magazzino materie prime, situato fuori dal reparto, facendo scorrere i granuli dei quali è composto attraverso tubi flessibili in PVC, ancorati alle travi dello stabile. Il materiale passa, così, dai forni essiccatori presenti nel magazzino materie prime, che hanno la funzione di mantenere la plastica pronta per l’esercizio, cioè a un certo grado di temperatura e umidità, alla tramoggia della pressa, la quale lo preparerà a entrare nella vite di plastificazione ed essere così processato.

Una volta stampato, il pezzo è estratto dallo stampo e poggiato sul nastro trasportatore dal robot KUKA, munito di mano di presa a ventose, e da qui può intraprendere due strade: nel caso esso debba essere metallizzato, è direttamente trasportato a flusso teso dal nastro nel reparto di metallizzazione; nel caso non debba subire tale processo, invece, il nastro lo consegnerà all’addetto macchina, il quale è incaricato di eseguirne il controllo estetico, ove previsto, e di riporlo negli opportuni imballi, che saranno trasportati e stoccati in magazzino, pronti per essere assemblati in un secondo momento o direttamente spediti al compratore.
1.3.3. Metallizzazione

Come accennato, solo alcuni pezzi devono subire, da progetto, un processo denominato “metallizzazione”. Esso prevede il rivestimento delle superfici del pezzo con un sottilissimo film di alluminio, dell’ordine di alcuni micrometri, in grado di creare un effetto, appunto, metallizzato, con conseguente amplificazione del potere di riflessione della luce.

Tale pratica ha una funzione sia estetica, ma soprattutto funzionale; infatti, oggetto di essa sono perlopiù gli elementi interni al fanale posteriore adibiti al controllo dell’illuminamento, e in particolare i riflettori, i quali sono incaricati di disperdere in maniera omogenea i raggi luminosi provenienti dalla lampada e generare un effetto di luce diffusa.

In questo modo, è possibile rispettare i valori fotometrici previsti da progetto, garantendo un fanale dalla luce intensa ma non abbagliante, come si otterrebbe invece nel caso di mancanza di tali accorgimenti.
Il macchinario utilizzato in metallizzazione è denominato in gergo tecnico “campana”. I pezzi grezzi, provenienti dal magazzino, o direttamente dal reparto stampaggio tramite i nastri trasportatori, sono fissati su delle bilancelle predisposte per il loro alloggiamento, le quali sono poi installate all’interno di una giostra rotante contenuta nella campana, una struttura stagna in cui sono applicate condizioni di basso e alto vuoto (10^{-5} Pa).

Queste sono necessarie affinché sia possibile indurre all’interno dell’ambiente uno stato di plasma all’alluminio introdotto, il quale, ruotando la giostra e le bilancelle al suo interno, si deposita sulla superficie dei pezzi in maniera omogenea e definitiva, donando l’effetto brillante e pulito desiderato.

Per garantire lo stato di plasma al metallo, inoltre, è applicata a inizio processo una scarica ionica, in modo da ionizzare le particelle di alluminio nel vuoto ed elettrostaticizzare la superficie dei pezzi, i quali sono preventivamente immersi in atmosfera di alusiv, materiale fissativo disperso anch’essso in forma plasmatica.
I reparti di stampaggio e metallizzazione formano assieme la pre-produzione, ed è in questo settore che la mia attività ha visto nella quasi totalità il proprio decorso. I componenti che ivi sono processati, siano essi solamente stampati o anche metallizzati, sono, come già detto in precedenza, imballati e collocati nel magazzino, in attesa del loro assemblaggio, che avviene in un secondo momento all’interno del reparto dedicato.

1.3.4. Assemblaggio

L’area dedicata al montaggio è suddivisa in sottozona, ognuna delle quali è dedicata a un particolare prodotto finito: si hanno perciò all’interno del reparto la linea per il montaggio del fanale di Fiat 500x, oppure la linea adibita alla plafoniera di Maserati Ghibli; ogni cliente detiene l’esclusiva per una determinata linea di montaggio, ed è proprio questo il reparto tenuto maggiormente sotto controllo dallo stesso, il quale non manca di disporre periodicamente audit di sistema, di processo o di prodotto, oggetto dei quali l’assemblaggio si dimostra essere il più tenuto sotto controllo.
Ciascuna linea del reparto è equipaggiata di macchinari interamente dedicati, che presentano un grado di automazione più o meno spinto, coerentemente con l’entità o la complessità degli assemblati. La manodopera rimane perlopiù necessaria, soprattutto per la movimentazione dei pezzi da una postazione automatica all’altra. Gli imballi, infatti, sono depositati dal carrellista nel buffer situato in prossimità della linea; a tal proposito sono state studiate delle rastrelliere a rulli, per permettere l’accatastamento controllato delle cassette, e favorire così l’operazione di smaltimento non solo in termini di tempo, ma anche di confort per gli operatori. Questi ultimi provvedono a montare ciascun componente nelle postazioni di lavoro ergonomicamente studiate, e, di passaggio in passaggio, completano il prodotto finito, il quale è sottoposto a controllo funzionale ed estetico alla End of line, l’ultima postazione prima che esso venga riposto nell’imballo definitivo e stoccato in magazzino.

1.3.5. Magazzino

In questo reparto sono raccolti sia i prodotti finiti destinati a essere spediti al cliente, sia i componenti intermedi che devono essere assemblati. Sono previsti, naturalmente, per queste due categorie, imballi differenti, dalle scatole di cartone alle cassette di plastica, dal rivestimento in foam dei singoli pezzi ai termoformati costruiti a misura di riflettore; tutti gli imballi sono in ogni modo pallettizzati, e disposti all’interno del magazzino seguendo una precisa mappatura.

L’area di stoccaggio è di stampo classico, con scaffalatura di tipo tradizionale a 4 ripiani, con ogni fronte affacciato sul corridoio di servizio. Non è prevista un’automazione ragguardevole, pertanto la movimentazione è affidata ai carrellisti, muniti di carrello elevatore a forche ricoprenti con operatore.
a bordo, per la disposizione dei pallet sugli scaffali, e di transpallet elettrici con manovratore a bordo per l’asservimento degli altri reparti.

E’ prevista inoltre un’area di controllo arrivi per i prodotti in entrata provenienti da fornitori esterni, e ovviamente un’area di spedizione del prodotto finito al cliente.

![Figura 1.13 – Magazzino componenti e prodotti finiti. Da notare scaffalature tradizionali e diverse tipologie d’imballi.](image)

Come già accennato, scopo della *lean manufacturing*, è anche la minimizzazione delle scorte, ed è per questo motivo che il magazzino è costretto a subire importanti modifiche in un prossimo futuro, in cui l’azienda ha in previsione di alimentare sempre con maggior vigore la strategia di WCM.
2. WCM - World Class Manufacturing

2.1. Origini e sviluppo

“The Toyota production system, however, is not just a production system. I am confident it will reveal its strength as a management system adapted to today’s era of global markets and high-level computerized information systems.”

Taiichi Ohno (Ohno, 1988)

Ciò che oggi conosciamo come WCM, può definirsi come il risultato di una progressiva evoluzione di una filosofia sviluppatisi originariamente nel primo dopoguerra in Giappone, e in seguito evoluto nei decenni successivi. Esso può dirsi, infatti, l’erede dell’antenato TPS, acronimo per Toyota Production System, che come si può dedurre, fu implementato per la prima volta nell’universo Toyota, dall’allora direttore Taiichi Ohno, assieme a Shigeo Shingo ed Eiji Toyoda, nel 1948, e progressivamente aggiornato fino al 1975, sconvolgendo, di fatto, il mondo dell’industria automobilistica, la quale, figlia primogenita di Ford e Taylor, si è vista rinascere con una nuova e autentica rivoluzione industriale.

Alla fine degli anni 40 la Toyota Motor Company era un’entità assolutamente marginale nel già affollato mercato dell’auto dominato dai giganti americani: il numero di vetture prodotte complessivamente nei trent’anni della sua attività industriale non raggiungeva neppure la metà di quella di un solo giorno dallo stabilimento Ford di Rouge (2685 contro 7000).3

Era perciò impensabile all’epoca poter rivaleggiare ad armi pari con colossi di questo calibro, anche vista la particolare situazione economico-politica mondiale di quegli anni che vedeva le industrie giapponesi costrette a svolgere il ruolo di spettatrici, con un’economia devastata dalla guerra che impediva l’afflusso di capitale in nuove tecnologie occidentali, e con una concorrenza estera più che mai inamovibile a concedere terreno sul suolo di casa, e anzi ben disposta alla “conquista” del Giappone.

3 (Ca., 2013)
E’ in questa situazione che la casa del Sol Levante partorì il concetto di Just in Time Production (JIT) prima, e di Total Quality Control (TQC) e Total Productive Maintenance (TPM) poi, con l’obiettivo di innalzare il rendimento della fabbrica a livelli mai visti prima, riducendo al minimo tutto ciò che non creasse reale valore aggiunto e, simultaneamente, non solo mantenere la qualità del prodotto inalterata, ma addirittura migliorarla. Questo sembra essere un obiettivo perlo meno ambizioso, ma è stato proprio il genio di Taiichi Ohno a far sì che grazie a questa nuova cultura la Toyota diventasse, dagli anni 70 fino ad oggi, il produttore automobilistico che tutti gli osservatori economici considerano come il più efficiente e di maggior livello qualitativo del mondo.

Sulla scia del successo giapponese, l’occidente non poteva sicuramente restare a guardare. Fu così che, alimentati dalla crisi economica degli anni 70-80 che contagiò, tra tutti, soprattutto il settore industriale del trentennio post-bellico, progressivamente le idee e i dettami del TPS iniziarono a destare un certo interesse ai capitani d’industria europei e americani, tanto da portarli lentamente a studiarne in maniera metodica le peculiarità e le differenze rispetto ai propri sistemi (è interessante notare che la cosiddetta lean manufacturing, o “produzione snella“ sia la concettualizzazione americana di un fenomeno giapponese che i giapponesi non hanno mai concettualizzato4.) In questo modo prese piede negli anni 80 un movimento da tutti chiamato World Class Manufacturing, e ben portato sotto i riflettori dal lavoro di Richard J. Schonberger, professore di Management all’università del Nebraska e presidente della Schonberger & Associates, una delle più note società di consulenza americane, il quale, attraverso la pubblicazione di diversi libri tra cui l’esemplare “World Class Manufacturing: the lessons of simplicity applied”, e anche attraverso le sue personali attività di consulente alle più grandi imprese del mondo su suolo americano, tra cui Hewlett-Packard e Intel, ha contribuito in maniera significativa a gettare le basi per un modello di riferimento occidentalmente alternativo al sistema di gestione di Ohno.

Naturalmente Schonberger non può dirsi il solo ad aver contributo a ciò che oggi possiamo chiamare WCM. Da rimarcare è anche il lavoro di James P. Womack e Daniel T. Jones, che con i loro libri “The machine that changed the world” e “Lean thinking” hanno affinato negli anni successivi, siamo al 1990, ancor più il concetto di impresa “snella”, sempre volgendo uno sguardo di non celata ammirazione verso i loro antesignani giapponesi.

4 (Womack, et al., 1993)
L’ultima svolta definitiva per l’implementazione della moderna World Class Manufacturing si ha con l’avvento del nuovo millennio, per opera di Fiat, la quale, per riuscire a dare un colpo definitivo ad una crisi che la vedeva nei primissimi anni del 2000 navigare in acque decisamente non buone, è riuscita a costruire un sistema di ricrescita fondato proprio sulla ricerca dell’eccellenza del sistema di gestione WCM, inizialmente denominato FAPS, acronimo per Fiat Automotive Production System; dapprima sperimentandolo sui due stabilimenti pilota di Tychy, in Polonia, e Melfi, ed estendendolo successivamente a tutto il gruppo FGA (Fiat Group Automobiles), destinato nel decennio successivo a trasformarsi, come è noto, in FCA (Fiat Chrysler Automobiles).

Il percorso storico che ha visto il WCM evolversi e diventare il sistema industriale del presente, e del prossimo futuro, ha condizionato grandemente ciò che il World Class Manufacturing è oggi: al suo interno è possibile trovare tutto ciò che la mente di Taichi Ohno, e si può dire anche la filosofia giapponese sui generis, hanno partorito negli anni ’50, con ovviamente un loro adattamento occidentale e un’opportuna rivisitazione in chiave contemporanea del nuovo millennio industriale.
2.2. L’eredità di Ohno

Il moderno WCM è fondato su diversi concetti chiave, tramandati direttamente dal *Toyota Production System*, ma che sono stati concepiti per soddisfare principalmente due sole esigenze, in grado di portare benessere e successo all’azienda:

1. **Riduzione degli sprechi**, di tutto ciò che non porta valore aggiunto;
2. **Raggiungere l’eccellenza di qualità** del prodotto, e quindi la *customer satisfaction*.

Proprio con questi obiettivi in testa, Ohno poté sviluppare quella che in seguito è stata appellata come *lean production*, o “produzione snella”, al cui centro di gravitazione possono essere ascritte la triade giapponese comunemente nota come *muri – mura – muda*, e la filosofia *kaizen*.

2.2.1. Muri (無理) – Mura (斑) – Muda (無駄)

A sentir Womack, *muda* è la sola parola giapponese che occorrerebbe conoscere, giacché significa “spreco”, e in particolare qualsiasi attività umana che assorbe risorse ma che non crea valore: errori che richiedono una rettifica, produzione di qualcosa che nessuno vuole così che i magazzini e i residui crescono, passi procedurali di cui non c’è bisogno, spostamenti di personale e trasporto di merci da un posto all’altro senza motivo, gruppi di persone in attività a valle che se ne stanno senza fare nulla perché un’attività a monte non è stata conclusa nei tempi previsti e beni e servizi che non incontrano il bisogno dei clienti.\(^5\)

In poche parole, nel *lean thinking* è definito *muda*:

- Scorte
- Attese
- Trasporti
- Sovrapproduzione
- Sovrapprocessamento
- Difetti

\(^5\) (Womack, et al., 1997)
La lotta al muda ha fatto sì che il Toyota Production System rivoluzionasse completamente il sistema produttivo, a cominciare dalla gestione dei flussi all’interno dell’azienda, del tutto opposta a come era stata concepita nella produzione di massa dell’epoca. Se famosa è, infatti, la frase di Henry Ford “They can have it any color they want, so long as it’s black” riguardo alla possibilità di scelta da parte dei propri clienti sulle proprie autovetture, essa denota una estrema rigidità del sistema della casa del Michigan, basata sulla logica di tipo push, che imponeva che qualsiasi decisione di approvvigionamento o di attività all’interno del processo produttivo fosse decisa a monte, a prescindere dalla richiesta a valle da parte del cliente. Ciò che contraddistingue invece il TPS è invece la sola produzione di ciò che è venduto e reclamato a valle, ribaltando completamente la freccia dei flussi. Si va così a creare una logica di tipo pull, annientando in questo modo la quasi totalità delle scorte a magazzino (l’unità di misura per la giacenza passa da giorni a minuti) e processando solamente ciò che crea valore. Ohno seppe sviluppare a tal fine un sistema di gestione dei flussi totalmente innovativo per l’epoca, il cosiddetto kanban, o comunemente noto come just in time: l’idea di Ohno fu di convertire un vasto gruppo di fornitori e componentisti in una grande macchina, come lo stabilimento Highland Park di Henry Ford, imponendo che i pezzi fossero prodotti nella fase appena precedente quella necessaria; alcuni container trasportavano i pezzi al momento giusto; quando un container si svuotava, era rimandato indietro, e tale procedura divenne il segnale automatico per dare il via alla fabbricazione di altri pezzi. Questo procedimento, attuato tramite l’utilizzo di cartellini (il termine kanban significa appunto “targa” o “insegna”) apposti sui container da rifornire, ha permesso di abbattere gli eccessi, o sovraccarichi di produzione, chiamati in giapponese muri, e di ridurre anche le incompatibilità, chiamate invece mura, tra i pezzi stoccati delle vecchie produzioni e le nuove. Il kanban così definito, ha saputo segnare la fortuna del TPS delle origini ed è oggi utilizzato nel panorama logistico del World Class Manufacturing, OLSA inclusa, seppur con qualche limitazione.

Muri, mura e muda tuttavia possono essere trovati in qualunque aspetto della realtà aziendale, e non soltanto nella struttura logistica produttiva. Ovunque, infatti, possono essere trovati sovraccarichi, incompatibilità e spreco: i macchinari, gli operatori, le postazioni di lavoro, il sistema di gestione della

6 (Schonberger, 1986)
7 (Womack, et al., 1993)
qualità o il planning di produzione, tutto deve essere rigorosamente studiato ad hoc per la battaglia contro questo “trio” tanto odiato da Ohno, e per raggiungere così la perfezione.

A tal proposito, il WCM ascrive come proprio obiettivo il raggiungimento degli “Zeri”, nient’altro che la concettualizzazione in chiave moderna di quelle che sono da sempre state le peculiarità del lean thinking:

1. Zero infortuni
2. Zero difetti
3. Zero guasti
4. Zero scorte

La capitalizzazione di questi propositi quantomeno ambiziosi può essere raggiunta comunque avendo chiari quali siano i fattori da eliminare, ed è qui che si ha uno stretto legame tra muri – mura – muda e gli zeri del WCM. Ad esempio, per riuscire ad avere zero infortuni occorre che i lavoratori siano posti in sicurezza, condizione che può essere stabilita solamente in presenza di un ambiente a misura di operaio (compatibilità), al quale non deve essere richiesto più lavoro di quanto egli riesca a smaltire (sovraccarico). Nel caso di guasti o difetti invece, occorre siano tassativamente evitati, per ridurre gli sprechi di risorse ovviamente inevitabili in simili circostanze (denaro, risorse, materiali, ecc.), attraverso l’eliminazione d’incompatibilità e sovraccarichi che possono di volta in volta presentarsi.

2.2.2. Kaizen (改善) o Continuous Improvement

Per contrastare attivamente le 3M (muri – mura – muda) i giapponesi fanno fede a una filosofia chiamata kaizen, che non può essere definita come una metodologia, ma un vero e proprio modo di pensare e di interagire con la realtà delle cose, un modo di affrontare, se si vuole, la vita stessa.

Il termine kaizen, formato da kai = “cambiamento”, e zen = “meglio”, indica il miglioramento continuo e sistematico.\(^8\) Esso si basa sul principio chiave che ognuno in azienda debba essere predisposto a contribuire al miglioramento proprio e a quello dell’impresa, attraverso il confronto e le assemblee di gruppo intrattenute ogniqualvolta si è in presenza di una problematica.

\(^8\) (JMAC Toranomaki, 2008)
Non è un caso, infatti, che tale filosofia sia stata sviluppata di pari passo con quello che Ishikawa chiamava **Companywide Quality Control**, definito invece da Feigenbaum e universalmente conosciuta come **Total Quality Control**, e con i **Quality Circles** di Taiichi Ohno. Questi prevedevano una gestione di qualità a 360°, in ogni settore aziendale, dall’operaio addetto macchina al dirigente di divisione. Si pone in questo modo la qualità del prodotto venduto e del processo di lavorazione al centro della realtà aziendale, la quale deve essere volta a far sì che non solamente il cliente finale percepisca un prodotto qualitativamente superiore, cosa ovvia, ma a far sì che gli scarti, i guasti, gli intoppi di varia natura all’interno del processo, insomma alla giapponese, muri – mura – muda, siano abbattuti in tutta la catena aziendale, dalla fabbricazione di un componente fino alle alte sfere dirigenziali.

Il **kaizen** è una procedura standardizzata volta essenzialmente al coinvolgimento di quante più risorse all’interno dell’azienda, umane e non, alla **risoluzione dei problemi**, attraverso una ricerca sistematica delle cause radici che li hanno generati, assicurando che i medesimi non possano ripetersi nel futuro grazie a una reportistica di quanto è avvenuto e grazie alla creazione e all’implementazione di nuove soluzioni standardizzate, che determinano così **un’innovazione continua**, con crescita relativa dell’efficienza dei processi aziendali e del know-how di tutti gli attori. E’ questa la natura stessa del **Continuous Improvement**, e, a esagerare, dell’intero **World Class Manufacturing**, il quale ha ripreso fortemente la metodologia kaizen come pietra angolare dei propri sistemi di gestione, siano essi di stampo logistico, di sicurezza, manutenzione o qualità.

Attraverso il **kaizen**, è possibile ottenere un’innovazione continua e graduale, impossibile da ottenere seguendo un **modus operandi** classico tipico delle aziende estranee a questi concetti. Queste ultime, infatti, solitamente richiedono, per l’innovazione dei propri processi, alte spese in termini di tempo di applicazione e sviluppo, per non parlare degli investimenti su trasformazioni di carattere tecnologico che si è soliti intraprendere. Aziende di questo tipo sono solite a procedere per **grandi salti**, irreversibili, con il rischio di perdere di vista quali siano i reali obiettivi aziendali e coinvolgere poco o niente i lavoratori, i quali non riescono a sentirsi parte di una realtà unica, demotivandosi. Il **Continuous Improvement**, figlio dei principi dettati da Taiichi Ohno, risponde a ciò con un **miglioramento a gradini**, stabile, e portato avanti di volta in volta, senza mai tornare indietro, da

9 (Banks, 1989)
buona parte dei lavoratori, attraverso un sinergico team working, contribuendo a creare un solido organico di persone competenti in più campi e disposti a lavorare per il medesimo obiettivo.

Figura 2.2 – Confronto degli andamenti d’innovazione nel tempo per aziende World Class e non.

In conformità a quanto detto, all’interno di un’azienda World Class, ogniqualvolta si è di fronte a un problema o necessità, è aperto un kaizen, la cui risoluzione segue quella che è definita la “PDCA wheel” o anche ciclo di Deming, un sistema utilizzato fin dagli anni ‘50 in Giappone per il problem solving e per la gestione del Total Quality Control, in cui occorre seguire 4 fasi principali per portare a compimento la corretta risoluzione di un problema e garantire allo stesso tempo il miglioramento continuo del processo. Questo tipo di meccanismo sarà illustrato in maniera approfondita in seguito all’interno del presente elaborato.

Un kaizen è classificato, coerentemente con l’entità del problema stesso, secondo il team che vi partecipa, per numero e specializzazione dei suoi elementi, come illustrato in figura 2.3. Si possono avere perciò Quick kaizen per problemi sporadici semplici e d’immediata risoluzione, che non richiedono specialisti di problem solving, ma che possono essere portati a termine dai tecnici di reparto, passando poi per gli Standard kaizen, che richiedono un gruppo più nutrito per risolvere problemi cronici, e arrivando ai Major kaizen e Advanced kaizen che richiedono un livello di specializzazione, un’organizzazione e un impegno in termini di risorse economiche più importante rispetto agli altri.
In figura 2.3 è rappresentata inoltre l’attribuzione di ciascun tipologia di kaizen secondo gli organi che ne competono, quali *Autonomous Maintenance, Professional Maintenance, Focused Improvement* e *Quality Control*. Queste entità costituiscono i pilastri strutturali del WCM e nel prossimo capitolo ne dà una completa e dettagliata disamina.

2.2.3. Altri

Per completezza, è fornita qui di seguito una tabella con i termini direttamente provenienti dal sistema di gestione giapponese, che sono diventati parte della realtà comune nel settore WCM.

<table>
<thead>
<tr>
<th>Jidoka</th>
<th>自働化</th>
<th>Automazione con tocco umano. Macchine dotate di un sistema che permette loro di essere fermate, e interrompere dunque il processo, dall’operaio in caso di anomalia.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heijunka</td>
<td>平準化</td>
<td>Livellamento di produzione, che avviene a ritmo costante da monte a valle.</td>
</tr>
<tr>
<td>Poka Yoke</td>
<td>ポカヨケ</td>
<td>Antisbaglio “a prova di scimmia” per evitare (yokeru) errori inaspettati.</td>
</tr>
<tr>
<td>Andon</td>
<td>アンドン</td>
<td>Insegna, cartello informativo.</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>3G</td>
<td>Gemba</td>
<td>現場</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Posto di lavoro, in cui nascono i problemi e dove tutto accade. Il gemba walk è fondamentale per capire la realtà delle cose all’interno dell’azienda.</td>
</tr>
<tr>
<td></td>
<td>Genchi</td>
<td>現地現物</td>
</tr>
<tr>
<td></td>
<td>Gembutsu</td>
<td>Va e guarda tu stesso, non fidarti di cosa dicono gli altri.</td>
</tr>
</tbody>
</table>

Tabella 2.1 - Termini di derivazione giapponese frequentemente utilizzati in WCM

2.3. Le fondamenta del WCM

Dopo aver illustrato e approfondito brevemente il legame che intercorre tra l’antesignano TPS e il moderno WCM (brevemente, poiché la letteratura in merito può dirsi sicuramente molto più esaustiva di quanto trattato in questa tesi, il cui oggetto non è certamente il sistema di gestione Toyota) è interessante evidenziarne anche le differenze tra i due, o quantomeno le peculiarità proprie del sistema originato da Fiat.

2.3.1. Gli Zeri

Si è parlato degli Zeri del WCM come una conseguenza occidentale della lotta a muri – mura – muda nel mondo giapponese. Se ciò può essere considerato vero, occorre però fornire un più ampio respiro a quella che può essere definita una delle basi su cui si fonda il World Class Manufacturing.
Essi sono il fine ultimo per il raggiungimento dell’ottimo in campo WCM, e per ognuno di essi è deputato un particolare sistema strategico in azienda, con le proprie singole funzioni e i propri scopi.

Zero difetti

La totale mancanza di difetti è un obiettivo a dir poco irrealizzabile; statisticamente parlando è, infatti, impossibile che non si assista mai al verificarsi di un qualunqu tipo d’imprevisto all’interno dell’arco produttivo. Altra cosa è invece considerare tale ambiziosa utopia come uno stimolo verso l’efficienza dell’intero stabilimento, e del sistema aziendale, più alta possibile.

La massimizzazione del rendimento in termini qualitativi porta inoltre il vantaggio più evidente di ottenere l’immediata soddisfazione del cliente finale, cosa del tutto non scontata quando ci si ritrova a dover fronteggiare uno, due e nel giro di poco tempo, centinaia di reclami per pezzi non conformi consegnati all’acquirente. La *Customer Satisfaction* dev’essere perciò la strada da intraprendere da tutti in azienda, per garantire alla stessa il successo nel mercato sempre più esigente di oggi.

Per questi motivi, il *Total Quality Control* può dirsi la **testa del WCM**, ovverosia l’organo che tiene le redini dell’intera macchina aziendale, o in questo caso, del corpo, volendo usare un’analogia di stampo biologico. Esso affonda le sue radici su 6 punti cardine da seguire nell’applicazione del controllo qualità:
1. Pensare dal punto vista del cliente.
2. Valutare attentamente sempre in base all’osservazione dei fatti.
3. Le procedure sono importanti quanto il risultato.
4. Prestare attenzione alla dispersione rispetto il valore atteso e all’identificazione delle sue cause.
5. Risolvere i problemi attraverso discussioni logiche basate sull’accumulo dei fatti.

Zero sprechi

Lo spreco, il *muda*, è ascrivibile, come già evidenziato in precedenza, a tutte quelle attività che non portano reale valore aggiunto; a esserne coinvolto è quindi anche, e soprattutto, la parte umana del processo produttivo, talvolta protagonista di veri e propri sprechi inutili di energie che potrebbero essere invece investite in qualcosa di veramente utile e, perché no, appagante per l’operaio; allo stesso modo anche *muri* e *mura* possono nascondersi tra le linee di reparto, sotto forma di operazioni non ergonomiche o movimenti irregolari. Per far fronte a ciò è stato sviluppato il **Total Industrial Engineering**, un sistema integrato che ascrive come proprio obiettivo la risoluzione dei problemi all’interno del *workplace system* attraverso il coinvolgimento dell’intero personale e per mezzo di tecniche proprie dell’ingegneria industriale.

Hajime Yamashina, ovviamente giapponese, può dirsi il padre fondatore di questo sistema portante del *World Class Manufacturing*, il quale si avvale di alcuni peculiari strumenti e metodologie mai utilizzate in precedenza, se non di rado o quantomeno non in maniera sistematica, per contrastare *muri*, *mura*, e *muda*. Un esempio può essere l’utilizzo di videocamere per riprendere le azioni che dovranno intraprendere operai o manutentori, in modo da creare una guida video chiara e infallibile, la cosiddetta *SOP*, acronimo per **Standard Operating Procedure**, che servirà ad accrescere le capacità tecniche di ciascuno in maniera standard e accurata, così da scongiurare possibili inconvenienti di qualsivoglia natura, che sia ergonomicà, tecnica o soprattutto legata alla sicurezza.

Zero guasti

Inutile dirlo, a ciascun’avaria cui si può incappare, si ascrive imprescindibilmente una perdita di tempo, ove tale macchina guasta non fosse bypassabile, oltre che di denaro per la riparazione e

Importante approccio sistematico nell’affrontare la TPM è il cosiddetto sistema a 5G (citato in precedenza), anch’esso di derivazione giapponese, che prescrive le 5 azioni fondamentali da intraprendere per evitare guasti inattesi, esposte nella tabella 2.2.

GEMBA	Vai sul posto di lavoro, dove tutti gli eventi accadono. Non fidarti di ciò che ti dicono.
GEMBUTSU	Esamina il fenomeno, cioè cosa è effettivamente successo, cosa puoi ora osservare con i tuoi occhi, senza preconcetti a esso legati.
GENGITSU	Controlla le attrezzature, i materiali, i prodotti e altri oggetti fisici effettivamente coinvolti nell’evento.
GENRI	Riferisciti alla teoria, e ai principi fisici e/o chimici coinvolti nell’evento.
GENSOKU	Segui le procedure standard, con i parametri numerici corrispondenti.

Tabella 2.2 - Le 5G del Total Productive Maintenance

Zero stock

Avere colli fermi in magazzino comporta una spesa indiretta in termini di superficie fisica utilizzata dall’area di stoccaggio, che in un modo o nell’altro è pagata con affitto o acquisto, la quale non solo potrebbe essere eliminata, ma quantomeno utilizzata per altri scopi. Non avere stock inoltre consente maggior flessibilità nel rispondere alle richieste in entrata, ed è per questo motivo che le aziende giapponesi come la Toyota, che fanno del *Just in Time* il loro credo, sono in grado di proporre al cliente un ventaglio di prodotti notevolmente più ampio rispetto a quelle fedeli all’antiquato sistema fordista.
Il *Just in Time*, del quale si è già parlato in precedenza, è dunque un sistema integrato che enfatizza la produzione di ciò che strettamente necessario e il suo trasporto dove è precisamente richiesto quando necessario. Il WCM ha fatto proprie le metodologie caratteristiche del JIT, quali per esempio il *kanban*, e le ha poste sull’altezza della produzione a zero stock.

2.3.2. PDCA Wheel

La ruota o *ciclo di Deming*, anche chiamata *PDCA Wheel* o *ciclo di Shewart*, cui si è accennato prima parlando del *Continuous Improvement*, è il sistema di gestione portante del WCM, poiché fornisce uno standard da seguire basato su 4 fasi principali (*Plan*, *Do*, *Check*, *Act*, da cui l’acronimo PDCA) non solamente in termini di *problem solving*, essendo quindi la struttura principale di ogni *kaizen* aperto in azienda, ma anche in termini di gestione del processo e del prodotto a tutto tondo per ogni singolo ente, o *pillar*, aziendale, come la logistica, la qualità o la sicurezza.

![Figura 2.5 - Il ciclo di Deming, o PDCA Wheel](image)

Si può dire che gli zeri del WCM, limite asintotico raggiungibile solo in maniera utopistica, possono essere avvicinati solamente attraverso un processo di *miglioramento continuo* fondato su una logica, se non propriamente uguale, quantomeno simile a quanto proposto dalla PDCA *Wheel*, cioè un sistema che:

- prevede una *fase reattiva* di ristabilimento delle condizioni ottimali
- permette di affrontare in maniera rigorosa i problemi con la ricerca della *causa radice*
• non lascia nulla al caso e non permette ritardi, grazie ad una pianificazione di ogni attività
• è fondato sul monitoraggio attento di ciò che accade, basandosi sul principio che se non conosci non sei in grado di agire
• fa della creazione di nuovi standard il proprio motore per il miglioramento

E’ questo il cuore del WCM, ed è alla base dei cosiddetti 7 step, cioè una serie di azioni o fasi da seguire in successione per poter arrivare al risultato finale atteso. Esistono per esempio i 7 step del problem solving, che si rifanno fedelmente al modus operandi dettato dal ciclo di Deming, come mostrato in figura 2.6, ed esistono poi i 7 step per ciascuno dei pilastri del WCM, i quali sono presentati in maniera esaustiva nel prossimo capitolo.

Figura 2.6 - I 7 step del Problem Solving
2.4. I pilastri del WCM

In seguito alla messa in luce di quelle che sono le fondamenta del *World Class Manufacturing*, occorre ora concentrarsi sulle colonne che sorgono su di esse, o altrimenti chiamate pilastri, ovvero *pillars*, utilizzando la corrispondente terminologia anglosassone.

Il WCM è sorretto da un totale di 20 pilastri, di cui 10 tecnici e 10 manageriali. La figura 2.7 illustra chiaramente la suddivisione tra le due tipologie.

Mettendo le radici nel sistema di derivazione giapponese visto in precedenza di TIE, TQC, TPM e JIT, i 20 pilastri rappresentano il sistema nervoso dell’azienda *World Class*. Ognuno di essi è adibito a una particolare funzione, come per i dipartimenti comuni a qualsiasi azienda, ma con la differenza fondamentale che all’interno del WCM ogni pilastro è trasversale, cioè coinvolge il personale in maniera omogenea e isotropa, in particolar modo per quanto concerne le responsabilità dei cosiddetti *pillar leader*, ciascuno si alla testa del proprio ente, ma coinvolto in maniera pressoché simile anche negli altri campi non direttamente di propria competenza. Si crea così un sistema in cui, per esempio, il capo della qualità deve badare anche agli aspetti legati alla sicurezza oppure alla manutenzione autonoma, e viceversa, arricchendo molto il bagaglio tecnico di ciascun attore, e creando una formidabile sinergia tra gli enti, volta al raggiungimento dei medesimi obiettivi, cioè gli zeri del WCM visti in precedenza.

Di seguito nel presente elaborato saranno analizzati tuttavia solamente i pilastri tecnici, all’interno dei quali ho potuto lavorare nello stabilimento OLSA di Moncalieri, in particolar modo nei pilastri *Focused Improvement e Quality*. Per quanto riguarda i *pillars* manageriali, invece, che hanno lo stesso peso dei pilastri tecnici, fungono da ausilio a quest’ultimi e guidano il *management* dell’impresa verso il giusto processo decisionale al fine di incrementare i risultati e ottimizzare i processi di miglioramento e integrazione tra i pilastri tecnici.
Politecnico di Torino

Figura 2.7 - I pilastri manageriali del WCM

Figura 2.8 - I pilastri tecnici del WCM
2.4.1. Safety (SAF)

Il primo tra tutti i pilastri per ordine d’importanza è quello della sicurezza, che si occupa di tutelare chi lavora all’interno dell’azienda da infortuni o incidenti che possono intaccare la salute degli stessi.

E’ proprio il motto “safety first”, ovvero “la sicurezza prima di tutto” che occorre seguire quando si tratta di WCM, guardando alla protezione dei lavoratori più da un punto di vista etico piuttosto che meramente legale, questo perché un lavoratore in sicurezza è un lavoratore più sereno e sicuramente più efficiente, che crede nell’azienda che lo tutela.

![Diagram of Safety Pillar Steps](image)

In figura 2.9 sono presentati i 7 step di questo pilastro, che, come già spiegato nel capitolo precedente riguardo le fondamenta del World Class Manufacturing, si basano essenzialmente sulla PDCA Wheel, seguendo una prima fase reattiva, una seconda preventiva, e infine una proattiva.

La definizione iniziale della politica di sicurezza aziendale può dirsi il punto chiave di tutti gli step, poiché stabilisce un chiaro riferimento per l’intera organizzazione. La politica, infatti, definisce l’approccio aziendale al mantenimento e al miglioramento delle condizioni operative e della salute.
dei lavoratori all'interno dell'area di lavoro e alla riduzione continua dei rischi. Ogni azienda World Class deve mirare a eliminare gli incidenti, ed è proprio questo uno dei KPI (acronimo di Key Performance Index) del pilastro Safety.

Una rappresentazione efficace dei KPI di sicurezza di ogni plant trova la propria forma nella cosiddetta “piramide di Heinrich”, rappresentata in figura 2.10, nella quale le classi d’indicatori sono disposte in forma piramidale, dall’evento meno impattante e più frequente, si parla quindi di azioni non sicure che non hanno però ripercussioni fisiche sul lavoratore, ma rappresentano solamente un possibile rischio per lo stesso, agli eventi via via più gravi e meno frequenti, fino agli incidenti fatali.

![Figure 2.10 - Piramide di Heinrich](image)

Come ogni pilastro del WCM, anche questo deve seguire un percorso di Continuous Improvement basato sulla metodologia kaizen, applicata ai settori in cui è opportuno condurre un’analisi dei rischi. I risultati sono organizzati secondo matrici proprie del pilastro, quali la Tabella dell’analisi dei rischi e la S-matrix, veri e propri strumenti di lavoro e interazione, per il raggiungimento di zero infortuni.

Il pillar Safety rappresenta la chiave per il WCM: nel corso dell’audit per l’assegnazione del punteggio per un’azienda World Class Manufacturing è proprio il pilastro della sicurezza a essere valutato per
primo, e in caso di mancato raggiungimento degli standard sufficienti, l’audit è interrotto e gli altri nove pilastri non sono nemmeno passati in esame.

2.4.2. Cost Deployment (CD)

Il Cost Deployment può essere considerato “la bussola che indica la giusta direzione” per il WCM. E’ questo pilastro, infatti, che definisce gli obiettivi per gli altri, e fornisce i target su cui focalizzare le risorse di ciascun pillar. Esso si concentra sul concetto di spreco, definito come un particolare tipo di perdita che occorre nella produzione quando sono usate come input più risorse (manodopera, materie prime, attrezzature, energia) rispetto a quelle strettamente necessarie per produrre l’output richiesto. E’ così che appare evidente la piena sintonia con i dettami della filosofia giapponese, ascrivendo le fonti di spreco a ciò che si è detto essere sorgente di muda per il TPS (sovraproduzione, attese, scarti, stock, ecc.) e considerando la perdita come l’utilizzo di qualsiasi risorsa a cui è associato un costo che non aggiunge valore percepito dal cliente.

Il Cost Deployment si propone di timonare l’azienda, e di conseguenza gli altri pilastri, nelle azioni di Continuous Improvement tramite la riduzione di costi, attraverso:

1. Analisi dei rapporti tra fattori di costo, processi che generano costi e vari tipi di sprechi e perdite.
2. Identificazione dei rapporti tra sprechi e riduzioni delle perdite.
3. Classificazione delle perdite secondo un’analisi dei costi/benefici al fine di stabilire la priorità degli sprechi da attaccare.
4. Selezione di strumenti per eliminare le perdite.
5. Valorizzazione dei benefici attesi.
6. Identificazione delle attività e loro pianificazione.
7. Impatto dei progetti sul bilancio

Il rapporto costi/benefici è un KPI fondamentale per il Cost Deployment, e in cascata per tutti gli altri pilastri, le cui azioni di miglioramento devono essere sempre il risultato di un’attenta analisi dei benefici che si otterrebbero dall’eliminazione del problema, e dei costi con cui le azioni correttive potrebbero impattare sul bilancio.
I 7 *step* del *Cost Deployment* sono basati sulla compilazione di particolari matrici, ognuna di esse con una funzione particolare e denominata con una lettera dell’alfabeto progressivamente crescente al crescere delle fasi di sviluppo:

![Diagram of 7 step Cost Deployment](image-url)

Figura 2.11 - I 7 step del Cost Deployment

![Diagram of matrices](image-url)

Figura 2.12 - Le matrici del Cost Deployment
• Matrice A - sottolinea il legame tra gli sprechi, le perdite e i sotto-processi dell’impianto. Permette di capire dove è esattamente possibile indicare una perdita e il suo impatto economico, all’interno dell’impianto.

• Matrice B - divide le perdite tra causale e conseguente e sottolinea il legame esistente tra il primo e il secondo, processo per processo. L’obiettivo di quest’attività è identificare le cause che generano ogni perdita in ogni processo.

• Matrice C - è il collegamento tra i rifiuti e le perdite e la struttura dei costi dell’impianto. Dopo l’identificazione delle cause di origine, devono essere quantificati e classificati i costi utilizzando la struttura dei costi d’impianto.

• Matrice D - è il percorso sistematico per assegnare priorità alle perdite. A tal proposito è utilizzato l’indice ICE (I= impact, C=cost, E= easyness).

• Matrice E - contiene l’elenco dei progetti stabiliti da tutti i pilastri in modo tale da combattere gli sprechi e le perdite, secondo le priorità della matrice D. È necessaria un’analisi costi-benefici per definire un’implementazione del progetto.

• Matrice F - consente di seguire i risultati dei progetti.

• Matrice G - è la chiusura del percorso: è il collegamento finale tra l’obiettivo di riduzione dei costi (raggiunto e pianificato) e il budget.

2.4.3. Focused Improvement (FI)

Il Focused Improvement è il pilastro tecnico dedicato ad attaccare le perdite più rilevanti, identificate dal Cost Deployment, le quali hanno un impatto notevole sul budget e dove sono previsti savings importanti.10

Nella catena di risoluzione dei problemi, il Cost Deployment provvede a definire le perdite, il Focused Improvement definisce i tools necessari e il livello di conoscenza per attaccarle, e il People Development sceglie i membri del team in grado di utilizzare quei tools.

Questo pilastro metodologico è il “proprietario” di tutti i kaizen in azienda, nonostante essi coinvolgano necessariamente tutti i dipartimenti, o pilastri. Esso tiene le redini dell’approccio focalizzato sulla risoluzione dei problemi e sulla standardizzazione dei risultati: in poche parole, il

10 (CNH Industrial, 2015)
Focused Improvement segue passo-passo il Continuous Improvement di quelli che sono di volta in volta i temi più rilevanti dell’impianto.

Nel capitolo successivo si parlerà in maniera più approfondita di questo pilastro, che mi ha visto personalmente coinvolto tra le sue fila, di come si compongano i vari kaizen e come essi vengano assegnati a seconda del problema. Nella figura seguente invece sono presentati, come per gli altri pilastri, i 7 step del Focused Improvement.

2.4.4. Autonomous Activities (AM/PM)

Autonomous Maintenance (AM)

L’obiettivo di questo pillar è far sì che le attrezzature dell’intero stabilimento siano utilizzate nel modo migliore. Esse, infatti, nonostante siano progettate per essere affidabili e durature, sono spesso oggetto di guasti, difetti o arresti dovuti alla mancanza di condizioni di base solide e di una manutenzione preventiva. Al fine di ripristinare le condizioni di base delle macchine, l’Autonomous Maintenance si avvale di un approccio sistematico che prevede:

- Applicazione standard di pulizia, ispezione, lubrificazione e rifissaggio.
Eliminazione di sorgenti di sporczia e zone di accesso difficili.

Tutte queste attività sono direttamente eseguite dagli operatori di macchina, che impediscono il deterioramento della stessa e insieme incrementano le proprie competenze tecniche relative all’attività intrapresa. In particolare, i responsabili di AM devono occuparsi di:

- Portare le attrezzature allo stato ideale attraverso il restauro e la loro giusta gestione.
- Stabilire gli standard di base e le condizioni necessarie per mantenere le attrezzature in buono stato.
- Evitare il deterioramento delle apparecchiature attraverso un corretto utilizzo e ispezioni quotidiane.

I principali KPI di questo pilastro sono quantificati in tempo, e in particolare le tempistiche di pulizia, d’ispezione, di lubrificazione, di rifissaggio, ecc. Il KPI più importante tuttavia è rappresentato dall’OEE, acronimo di Overall Equipment Effectiveness, che può essere calcolato come:

$$OEE = \frac{A \cdot P \cdot Q}{T_{PP}} \cdot 100$$

A: disponibilità (availability)
P: Performance
Q: Quality

$$\begin{align*}
T_C: \text{tempo ciclo}
N_{gp}: \text{numero pezzi buoni}
T_{PP}: \text{tempo di produzione pianificato}
\end{align*}$$

Nonostante l’espressione sopra riportata sia solamente una di molte (vi sono espressioni basate solamente sul numero di pezzi buoni prodotti rapportati ai pezzi totali, oppure legate alle tempistiche di produzione), si può dire che l’OEE in tutte le forme in cui esso sia rappresentato, fornisce una stima chiara e immediata sulle prestazioni e sull’efficienza della macchina, del reparto, o addirittura dell’intero impianto.

Da sottolineare inoltre è l’utilizzo smodato da parte di questo pillar dei cosiddetti AM Tags: si tratta di etichette che devono essere collegate dagli operatori alla macchina in cui è stata rilevata un’anomalia. È un efficace strumento di gestione visiva, che mette in evidenza visivamente la
La presenza di problemi o aspetti da migliorare. La soluzione per risolvere l’anomalia può essere un semplice ripristino delle condizioni di base o un miglioramento fatto con Quick kaizen.

Come gli altri pilastri, anche AM basa il suo lavoro sui 7 step, rappresentati in figura 2.15.

Figura 2.14 - Esempio di AM Tags utilizzati in OLSA

Figura 2.15 - 7 step del Autonomous Maintenance
Workplace Organization (WO)

Se l’*Autonomous Maintenance* pone la propria attenzione sui macchinari, il *Workplace Organization* focalizza il proprio operato sulla manodopera e sui lavoratori. In particolare, i suoi obiettivi sono:

- Minimizzare il maneggiamento di materiali.
- **Eliminare muri-mura-muda.**
- Creare manodopera competente in più settori.
- Permettere una produzione stabile, evitando i problemi e controllando le anomalie.
- Separare la manodopera dalle macchine.

L’obiettivo principale del WO può dirsi quello di creare un ambiente lavorativo a misura di operatore, e per farlo esso si avvale del principio di suddivisione delle attività, che possono essere classificate secondo 3 grandi categorie, cioè:

- **NVAA (Not Value Added Activities):** tutte le operazioni che non portano reale valore aggiunto all’operatore né tantomeno all’azienda, come ad esempio controllare, aggiustare, parlare, ecc.
- **SVAA (Semi Value Added Activities):** le attività che non portano valore aggiunto, ma non possono essere eliminate, come il picking, caricare, preparare, ecc.
- **VAA (Value Added Activities):** attività che portano reale valore aggiunto all’operatore e all’azienda, come assemblare, tagliare, limare, trovare la soluzione a un problema, ecc.

Il *modus operandi* del WO è strettamente legato all’osservazione: esaminando quali siano i flussi di materiale da una postazione all’altra, il modo in cui esso venga maneggiato e registrando le tempistiche di ciascuna operazione; il tutto è schedato ed analizzato secondo procedure *kaizen*, e le soluzioni sono poi standardizzate attraverso soluzioni tecniche o secondo procedure standardizzate attraverso le *SOP (Standard Operative Procedure)* o *OPL (One Point Lesson)*.

Alla stregua dell’AM, il *Workplace Organization* sfrutta molto l’utilizzo dei *Tags* per la segnalazione chiara ed evidente dei problemi riscontrati in linea o in reparto.
Questo pilastro, inoltre, ricorre a uno strumento chiamato diagramma di Yamazumi, un diagramma a barre utilizzato per mostrare chiaramente i carichi di lavoro suddivisi tra un certo numero di operatori, del quale è fornito un esempio nella figura seguente.

![Diagramma di Yamazumi](image)

Figura 2.16 - Diagramma di Yamazumi

![Diagramma del Workplace Organization](image)

Figura 2.17 - I 7 step del Workplace Organization
2.4.5. Professional Maintenance (PM)

Il *Professionale Maintenance* è il pilastro che tiene le redini della manutenzione dei macchinari all’interno dell’azienda. Esso lavora in stretta sinergia con *l’Autonomous Maintenance*, in modo da annullare, o almeno, limitare i fermi macchina dovuti alla manutenzione, garantendo così una produzione continua ed efficiente.

Figura 2.18 - Tipologie di manutenzione

Questo pilastro fonda il proprio operato su una suddivisione netta delle tipologie di manutenzione che possono essere intraprese in azienda (rappresentata in figura 2.18), che può essere:

- **Breakdown Maintenance (BDM)**: è la manutenzione non pianificata, che è eseguita sulla macchina solo quando si verifica l’arresto imprevisto. Questo tipo di manutenzione può essere scelto per quei componenti per i quali la macchina non si ferma o il costo per la manutenzione preventiva su di essi è minore delle perdite dovute al blocco in tempo (ma l’impatto in termini di sicurezza deve essere nessuno).

- **Time Based Maintenance (TBM)**: La manutenzione è eseguita sulla macchina periodicamente utilizzando cicli di manutenzione con una frequenza basata sul tempo o sull’utilizzo, al fine di
prevenire guasti e interruzioni. Questo tipo di manutenzione non è inizialmente ottimale, poiché il deterioramento delle condizioni di base renderà molto difficile prevedere la frequenza di sostituzione. Tuttavia, una volta ripristinato alle condizioni di base, questo metodo risulta efficace, ed è un’ottima introduzione alla CBM.

- **Condition Based maintenance (CBM):** essa segue la logica per cui la maggior parte delle rotture non avviene istantaneamente, e all'improvviso alcuni sintomi possono essere segnale di un prossimo guasto. Se il sistema è in grado di prendere sotto controllo questi sintomi, la manutenzione su ogni singolo componente può essere effettuata in tempo, prima che si verifichi la rottura. È perciò possibile pianificare attività di manutenzione in base alla vera vita lavorativa della macchina e non sui soli dati statistici. Le attività sono in questo modo più focalizzate e tempestive, aumentando così la disponibilità del sistema.

- **Corrective maintenance (CM):** quando si effettua questa manutenzione, sono intraprese attività di manutenzione anche per migliorare la macchina con modifiche che consentono una maggiore manutenzione e affidabilità. È applicabile per problemi elevati o molto ricorrenti o per debolezza di progettazione. Perciò, non è una tipologia di manutenzione ma un approccio da seguire durante le attività di manutenzione per migliorare la macchina.

![Diagram](image-url)

Figura 2.19 - I 7 step del Professional Maintenance
2.4.6. Quality Control (QC)

L’importanza del settore qualità nell’ambiente aziendale è stato più volte sottolineato nelle pagine che compongono quest’elaborato fino a questo punto; da rimarcare è infatti come sia stato proprio il sistema di qualità il primo a subire una profonda rivoluzione nell’antesignano sistema Toyota, attraverso il concetto chiave di *Total Quality Control*, nel quale questo pilastro del WCM, e non solo, affonda in profondità le proprie radici. La qualità, da allora fino ad oggi, ha assunto totalmente un altro connotato: essa si è, infatti, trasformata da attributo del prodotto venduto a prodotto stesso. L’azienda si ritrova così a “essere” la qualità, a venderla al proprio cliente, a farla percepire in ogni momento all’interno del processo e all’interno di ogni reparto, dalla produzione all’ufficio acquisti. Questo, come già accennato in precedenza, non solamente per raggiungere la *Customer Satisfaction*, ma anche per far scaturire *savings* importanti, in termini di mancati difetti, mancati fermi macchina, meno stock, ecc. Maggior qualità significa maggior controllo e maggior efficienza, che possono portare di conseguenza a un’azienda realmente competitiva nel mercato.

Questo pillar sarà affrontato in maniera approfondita nel capitolo che segue, mentre qui di seguito sono proposti, al solito, i suoi 7 step.

![Figura 2.20-17 step del Quality Control](image-url)
2.4.7. Logistics & Customer Service (LCS)

Il pilastro logistico si occupa della movimentazione del materiale in azienda e fuori, del suo stoccaggio, che dev’essere minimo come ricorda il principio di giapponese memoria del *Just in Time*, e di tutto ciò che è connesso all’organizzazione efficiente dei flussi di materiali, dai fornitori fino al cliente. In particolare i tre obiettivi principali del Pilastro Logistico, strettamente interconnessi tra loro, sono i seguenti:

- Sincronizzare la produzione con le vendite per soddisfare pienamente i clienti (produrre il giusto prodotto, al momento giusto, alla giusta quantità)
- Ridurre al minimo l’inventario per creare un flusso continuo (mantenimento dello *stock* riduce l’efficienza del capitale e nasconde problemi).
- Minimizzare la movimentazione dei materiali (la movimentazione dei materiali aumenta il costo)

Per raggiungere gli obiettivi del pilastro, è essenziale, come più volte accennato in precedenza, andare a identificare le maggiori sorgenti di spreco, ed eliminarle, in modo da cancellare conseguentemente anche i sovraccarichi e le incompatibilità; occorre, in poche parole, eliminare il *muda* come fecero gli antesignani giapponesi del *Toyota Production System*, assieme a muri e mura, attraverso il *Just in Time*. A tale scopo, un lavoro sinergico che coinvolga il pilastro logistico e il *Workplace Organization* è essenziale, in modo da poter aumentare innanzitutto l’efficienza delle postazioni di lavoro.

Il *Logistics* utilizza molti sistemi di derivazione giapponese, tra i quali possono essere citati:

- **Kanban** - è un sistema di segnalazione “*pull*” per attivare il riempimento dei materiali: ogni processo su una linea di produzione chiama o “tira” il numero esatto e il tipo di componenti che il processo richiede, al momento giusto, solo se necessario.
- **Supermarket** - è un luogo di stoccaggio fornito direttamente dal fornitore (interno o esterno) per i contenitori pieni che poi saranno raccolti (interamente) per essere portati alla linea, non "in una sola volta". L’impostazione di un’area *supermarket* è un passo importante per stabilire un flusso di materiale magro per il *kanban*.

• **Mizusumashi** - letteralmente “ragno d’acqua”, è un percorso di trasporto interno operato su un programma prestabilito. Esso include più fermate per fornire materiale a dove è necessario a intervalli di tempo fissi e brevi.

Figura 2.21 - I 7 step del Logistics & Customer Service

2.4.8. **Early Equipment/Product Management (EEM/EPM)**

EEM ed EPM sono entrambi pilastri che si occupano di gestione dei costi, tempi ed efficienza di processo, ma in due tempi differenti. Ecco il motivo per il quale solitamente sono racchiusi entrambi all’interno del medesimo pilastro.

Early Equipment Management (EEM)

La funzione primaria di tale pilastro è l’implementazione di nuovi impianti, seguendo i target prestabiliti in termini di costi, tempistiche e standard qualitativi. In particolare, gli obiettivi dell’Early Equipment Management da raggiungere per i nuovi impianti sono:

- **Sicurezza**
- **Costi minimi** (segue un minor LCC, “Life Cycle Cost”, possibile)
• Qualità richiesta assicurata
• Minor lead time possibile nella loro produzione
• Affidabilità e manutenibilità
• Flessibilità
• Operatività

In conformità a questi requisiti, l’EEM deve scegliere i macchinari più adatti alla situazione aziendale, lavorando assieme agli altri pilastri tecnici per soddisfarli al meglio.

Figura 2.22 - I 7 step del Early Equipment Management

Early Product Management

Con EPM ci si riferisce alla combinazione di tools e processi che permettono la collaborazione tra produzione e ingegneria. Essi sono volti ad assicurare la piena soddisfazione del cliente, attraverso:

- l’assicurazione della qualità desiderata, sia in progetto che in produzione
- la minimizzazione dei costi (o la massimizzazione dei profitti)
• la riduzione dei lead times, attraverso il potenziamento della velocità e dell’efficienza di produzione

Figura 2.23 - I 7 step dell’ Early Product Management

Dopo una prima fase di planning e di raccolta delle informazioni, si definiscono quelli che sono i macro obiettivi in termini commerciale, economico, funzionale e qualitativo. Una volta stabilito il target, se ne valuta la fattibilità e quindi si esegue una seconda Design Review.

Segue dunque la definizione del progetto, facendo inoltre una prima valutazione sulle decisioni make or buy, cioè su quali operazioni devono essere effettuate dallo stabilimento e quali invece bisogna affidarle a fornitori esterni. Le scelte operate portano ad avere una terza revisione del progetto.

Gli step successivi prevedono la realizzazione effettiva del progetto, nella quale, insieme alla supervisione del cliente, si cerca di raggiungere tutti i target scelti in precedenza con continue revisioni del progetto iniziale.

Nel momento in cui si raggiungono nei tempi e nelle modalità previste tutti gli obiettivi, può avviarsi la Start of Production.
2.4.9. People Development (PD)

L’obiettivo utopistico cui questo pilastro si rifà, s’identifica nel “Zero errori umani”. Il *People Development* è legato a tutto ciò che implica le persone in azienda. Attraverso riunioni, sedute di *training* e attività di coinvolgimento, il PD si fa carico di:

- Assicurare, attraverso un sistema di formazione strutturato, le giuste capacità e competenze per ogni *workstation*.
- Sviluppare i lavoratori di manutenzione, e i tecnici esperti, come driver principali delle attività di formazione.
- Monitorare il livello di competenza e conoscenza di tutti i dipendenti per mantenere il *know-how* in continuo progredire.

L’attività del PD è portata avanti in maniera sinergica con gli altri pilastri, coinvolgendo tutte le persone all’interno dell’azienda, per garantire un organico in continua evoluzione dal punto di vista delle *skills*, tecniche e non, e del proprio *know-how*, e parallelamente ponendosi come obiettivi i 2 zeri più importanti per questo pilastro: “*Zero errori umani*” e “*Zero infortuni*”.

Uno dei compiti del *People Development* è la redazione dei *Radar Chart* di ciascun lavoratore: esso è un diagramma di forma circolare, all’interno del quale è inscritto un poligono il cui numero di lati è variabile in relazione a quali caratteristiche o *skills* si vuole rappresentare su di esso; ad ogni vertice del poligono è associata una *skill*, la quale è valutata secondo una scala, e seguendo quest’ultima, il settore circolare è colorato secondo un criterio pesato.

Un altro importante ruolo che ricopre il PD è la motivazione dei lavoratori, che, pur dovendo essere tecnicamente preparati nelle cosiddette *hard skills*, devono essere ricchi anche dal punto di vista delle *soft skills*, quali intraprendenza, altruismo, spirito di gruppo ecc., la cui alimentazione è appannaggio dell’attività del *People Development*, attraverso riunioni, eventi e spazi dedicati.
<table>
<thead>
<tr>
<th>SET UP OPERATOR</th>
<th>Atteso</th>
<th>Attuale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attrezzamento pressa</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Principi di stampaggio</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Conoscenza stampo</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Procedure operative</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Principi di sicurezza</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>pianificazione</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Principi SMED</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Staffaggi</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Allestimento robot</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Costruzione mano di presa</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Allestimento raffreddamento</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Schede stampo</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Schede stampaggio</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Allestim. Postazione</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Figura 2.24 - Esempio di Radar Chart (set up operator reparto stampaggio)

Approccio Preventivo
- Definizione principe e linee guida
- Definizione priorità qualitativa (CD, QA Matrix..)
- Definizione iniziale di un sistema di addestramento - Analisi dei gap formativi
- Analisi degli errori umani - Stratificazione delle perdite (per problema, per area ecc) individuate da CD e QA Matrix
- Impostare un sistema di training per lo sviluppo delle competenze e identificare gli esperti per ogni materia
- Analisi costi benefici delle attività per eliminare gli errori umani e impostazione di sistemi per evitare che si ripetano in futuro
- Lancio di progetti di sviluppo delle competenze
- Definizione di training focalizzato finalizzato a ridurre gli errori umani
- Continuous Learning
- Specification & elective skills enhancement
- Continuous evaluation
- Learning Organization

Approccio Reattivo
- Impostare un sistema interno sistematico per sviluppare le competenze attraverso l’utilizzo degli esperti interni
- Stabilire un sistema per evitare gli errori umani

Figura 2.25 - 17 step del People Development
2.4.10. Environment (EN)

L’ultimo pilastro, ma che ultimo affatto non è in quanto discriminante, assieme al pilastro Safety, dell’intero sistema WCM implementato in un azienda, è quello legato all’energia e all’ambiente, e al rispetto delle norme che lo tutelano: l’Environment/Energy Pillar.

Tale pilastro si occupa di gestire tutto ciò che riguarda l’aspetto energetico e ambientale dell’impianto: l’impatto che quest’ultimo ha sul sistema naturale che lo circonda, e di conseguenza anche il tipo di energia che lo alimenta, assieme al conseguente rispetto delle inerenti normative internazionali e nazionali.

L’Environment è spesso portato avanti dal medesimo team, o comunque una sua buona parte, componente il pilastro Safety. Tale associazione è giustificata dal fatto che gli aspetti di sicurezza, ambientali ed energetici sono strettamente legati il più delle volte, come nel caso di gestione dei materiali pericolosi e tossici o l’utilizzo di combustibili che richiedono lo smaltimento dei prodotti della combustione.

Anche in questo caso, il progetto dell’impianto si rifà a una prima area modello su cui andare a effettuare tutte le considerazioni e gli studi di settore energetico e ambientale, i quali verranno poi allargati per similitudine al resto dell’impianto.

Gli strumenti utilizzati dall’Environment sono quelli comunemente impiegati da tutti gli altri pilastri (Pareto, Kaizen, Piramide di Heinrich, Diagramma di Yamazumi, ecc.) e come per questi ultimi, il lavoro deve essere portato avanti in stretta sinergia: il People Development può per esempio collaborare con il Safety e l’Environment per organizzare alcuni incontri di formazione per sensibilizzare il personale sul tema del risparmio energetico, oppure può essere il Quality Control a dover lavorare con l’Environment per garantire che un certo materiale utilizzato all’interno di un processo produttivo non diventi un problema di natura qualitativa, oltre che di impatto sul sistema.

Per concludere il capitolo, come già visto per gli altri pilastri, sono proposti qui di seguito i 7 step del Environment/Energy Pillar.
Setting out of VAIA
Definition of the Policy
Definition of the Manual

Step 0

Understanding local environment safeguard legislation and regulations and their future trends

Step 1

Take countermeasures against the sources of pollution

Step 2

Inspecting chemicals.
Resource saving.
Energy saving.

Step 3

Set out provisional standards.
Expand “horizontally” the competence generated in Step 2.
Set out an audit system to be performed by the top management.

Step 4

Define a system for the reduction of environmental impact and environmental hazard.
Reduction of environmental impact in the logistics
Pursue a procurement policy with low environment impact (green procurement)

Step 5

Set out an Environment Management System (EMS) in parallel with a supporting system like an environmental accountability system.
Operating system and reporting system.

Step 6

Fully exploit the Environment Management System (EMS) to create a model plant in the environmental field

Step 7

Figura 2.26 - I 7 step dell’Environment/Energy Pillar
3. Tra Focused Improvement e Quality Control: il kaizen

Come già espresso in precedenza, la mia attività di tirocinio è stata intrapresa tra le fila dei pilastri di Focused Improvement e Quality Control, e in particolare ha avuto come progetto chiave la compilazione, la supervisione e la successiva risoluzione dei kaizen aziendali di qualità, che fossero essi di grande entità, quali major kaizen, o di più ridotta mole, come standard o quick kaizen. Tale diversità tra di essi sarà affrontata in questo capitolo in maniera meticolosa, ma prima occorre introdurre i due pilastri attorno ai quali i kaizen gravitano.

3.1. Focused Improvement

3.1.1. Principi base

Nonostante possa apparire un’affermazione iperbolica, è possibile dire che il Focused Improvement sia il pilastro dell’innovazione continua. È vero che anche gli altri pillar affondino le proprie radici nel comune modus operandi del WCM, che del Continuous Improvement fa il proprio motore, ma è pur vero che sia questo pilastro a detenere la leadership e la responsabilità di tutti i kaizen all’interno dell’azienda, e a farsi carico di espandere, e, soprattutto, onorare la metodologia kaizen a tutti gli altri pilastri.

Citando testualmente il manuale CNH sul Focused Improvement, esso lo definisce come “un pilastro tecnico, dedicato ad attaccare le perdite maggiori, identificate dal Cost Deployment, che hanno un impatto significativo sul budget e dove sono previsti savings importanti.”

Ogni azione intrapresa all’interno del WCM, da parte di tutti i pilastri, dovrebbe seguire il seguente flusso di lavoro:

1. Logica
2. Metodo e tools (problem solving, matrici, ecc.)
3. Rigore e ritmo: utilizzo dei KAI (Key Activity Indicator)

11 (CNH Industrial, 2015)
4. Risultati: utilizzo dei **KPI** (*Key Performance Index*)

Nel caso del *Focused Improvement*, i **KPI** da considerare per la valutazione della bontà di un’operazione aziendale sono:

- *Savings* conseguenti alle attività di “approccio focalizzato”, ergo i risultati economici dovuti alle attività portate avanti dal pilastro di *Focused Improvement*
- Costi/benefici medio
- *Saving*/ingegnere

Per quanto riguarda i **KAI**, essi sono numerosi per questo pilastro, e tra di essi spiccano:

- N° di proposte trasformate in *kaizen*
- N° *blue collar* (dipendenti non appartenenti alla dirigenza) coinvolti
- N° *white collar* (dirigenti) coinvolti
- N° *kaizen*/persona
- N° *tools* conosciuti e applicati

Nel piano d’azione aziendale, è previsto dunque che il CD definisca le perdite da attaccare, e che il FI risponda definendo i *tools*, e il livello di conoscenza, necessari ad attaccare tali perdite. A questo punto è necessario rispondere alla domanda di chi sia in grado di soddisfare le richieste avanzate dal *Focused Improvement*, e a farlo ci pensa il *People Development*, che provvede a formare i team che saranno incaricati di utilizzare i *tools* proposti. In parole povere, dopo che il *Cost Deployment* abbia presentato un conto in euro sulle perdite più importanti da attaccare, il FI si chiede: “Quanti e quali *kaizen* occorreranno per risolverle?”; basandosi dunque sui risultati raggiunti in passato, e sulle nuove perdite degli anni precedenti, esso definisce i KAI prima menzionati, e li presenta infine al PD, che li utilizzerà per definire le squadre di lavoro.

Come tutti gli altri pilastri, anche il *Focused Improvement* segue i suoi 7 *step*, come già visto nel capitolo precedente e illustrati nella Figura 2.13, e di seguito saranno affrontati nel dettaglio.
3.1.2. 7 step

Step 1 – Target setting

Per completare il primo step si ha bisogno della **C-matrix** del Cost Deployment di stabilimento, della **QA-matrix** di qualità, della **S-matrix** del pilastro Safety e dei KPI. Questi dati sono utilizzati dal leader del pilastro FI, dalla direzione dell'impianto, dal leader del pilastro CD e dal supporto dell'impianto per ottenere le perdite prioritarie e, quindi, anche le aree su cui attaccare.

Con riferimento a quanto detto, ciascuna perdita identificata può essere classificata in 3 modi:

- **Perdita A** verso lo **Standard Cost**: il processo aziendale è diverso dallo standard e di conseguenza c’è un divario tra il costo effettivo e quello previsto; questo divario è una perdita che è solitamente identificata da persone di produzione (o in genere da operatori), talvolta con l’aiuto di personale.

- **Perdita B** verso il **Target Cost**: nel caso l'attuale processo standard possa essere ottimizzato, il divario tra il processo standard e quello ottenibile, e il conseguente gap di costi, sono una perdita, la cui identificazione è eseguita principalmente da operatori di produzione, talvolta con l’aiuto di personale tecnico e dell’ufficio principale.

- **Perdita C** verso l’**Ideal Cost**: ogni situazione può essere ricondotta a una perfetta che conti zero sprechi, e il divario tra questa situazione ideale, in cui si è impostata una nuova organizzazione (layout, macchine, processi, ecc.), e quella ottimizzata è una perdita. L’identificazione della perdita C è eseguita principalmente da personale tecnico e dell’ufficio principale.

Questa suddivisione, la cui competenza, si ricorda, è del Cost Deployment, tuttavia non è sufficiente, poiché le perdite possono anche essere suddivise in area d’interesse, come:

- Attrezzatura
- Manodopera
- Materiale
- Energia
- Ambiente
- Costi indiretti
Step 2 – Stratificazione delle perdite

Per affrontare le perdite, occorre assegnarle ai pilastri cui competono, e questo è possibile solo con l'identificazione delle loro cause principali. Secondo questo principio, la stratificazione può essere di due tipologie differenti:

- **Secondo i guasti** - per ogni stazione o macchina è richiesto di eseguire un'analisi delle cause radice tramite l’utilizzo dell’**EWO** (*Emergency Work Order*).

- **Secondo le NVAA** - per ogni stazione o macchina è richiesto di eseguire una nuova analisi al fine di identificare il tipo di NVAA (*Not Value Added Activity*) e la causa principale. Esempi di attività che non portano valore aggiunto sono camminare, cercare, aspettare, sollevare ecc.
Step 3 – Selezione del topic

In questa terza fase l’attività principale consiste nel decidere il *topic* del miglioramento. Il tema iniziale è deciso dal team seguendo la *D-Matrix* di *Cost Deployment* e dopo la descrizione del problema e del fenomeno, il tema è convertito in una dichiarazione obiettiva ed è preparata l’*E-Matrix* di *Cost Deployment* in base alla capacità di attacco, alle risorse disponibili e alle conoscenze specialistiche presenti o da sviluppare.

La prioritizzazione delle perdite, e dunque la scelta del *topic*, è agevolata dall’indice *ICE* (*Impact, Cost, Easyness*) presente nella *D-matrix*, che fornisce una visione chiara di quali siano i temi più facilmente trattabili e che hanno un impatto e un costo maggiori; questo grazie al fatto che ad ogni voce della matrice sia assegnato un punteggio da 1 a 5 per ciascuna voce da considerare, tra impatto, costo o facilità. Per ciascuna perdita, nella medesima matrice, sono indicati i responsabili di ciascun pillar e i *tools* necessari per affrontare il problema.
Step 4 – Formazione del team

In questa fase è messo insieme il team, il quale deve avere le giuste competenze sul prodotto e sul processo e anche la giusta conoscenza degli strumenti di problem solving indirizzati a risolvere il problema.

Accanto a questi requisiti dev’esserci un gruppo dinamico e una volontà individuale. Deve essere inoltre scelto un team leader, oltre agli altri supporti organizzativi.

La dimensione della squadra e il background dei membri del team dipendono dalla complessità del problema.

I fattori fondamentali per una squadra di successo sono:

- avere un buon leader
- avere un obiettivo chiaro
- avere tempo e risorse per completare il progetto
Step 5 – Attività di progetto

In questa quinta fase deve essere scelta e utilizzata la tecnica di *Focused Improvement* più appropriata (Quick kaizen, Standard kaizen, Major kaizen, Advanced kaizen, ecc.) per risolvere il problema. Prima di questa fase, infatti, si ha tra le mani solamente un argomento o un problema generale, mentre ora questo deve essere raffinato nei suoi fenomeni, i quali devono essere identificati e descritti.

Una volta completata la descrizione dei fenomeni, la tecnica di risoluzione dei problemi più appropriata deve essere scelta in base al fenomeno identificato.

È necessario poi stabilire le azioni formative necessarie per sviluppare la tecnica di risoluzione dei problemi, che prevede passaggi da seguire per portare a compimento la risoluzione.

In pratica, è questa la fase in cui si va ad attaccare realmente il problema, seguendo le direttive di ciascun *kaizen* (dei quali si parlerà più avanti nel seguente capitolo), organizzando periodicamente incontri per la definizione degli stessi, ed esponendo chiaramente all’interno dello stabilimento i risultati che progressivamente si raggiungono.

Figura 3.4 - Kaizen esibiti nello stabilimento OLSA di Moncalieri (TO)

Step 6 – Analisi costi/benefici

In questa sesta fase è eseguita l’analisi dei costi e dei benefici, e in base al loro rapporto è possibile valutare in maniera positiva o negativa l’utilità del progetto. A questo scopo, è necessario
ovviamente tracciare e valutare costi e benefici, ma se nel primo caso l’operazione è semplice e quasi immediata, per i secondi il discorso cambia. I benefici, infatti, potrebbero essere sia finanziari sia non finanziari; inoltre, abbiamo benefici che sono qualitativi (come il morale, sentirsi sicuri ...) o quantitativi (come i numeri d’incidenti di sicurezza, la riduzione delle camminate, ...). Tutti questi benefici devono essere monitorati e i KPI confrontati con lo stato iniziale descritto nei primi step.

Infine, il successo delle squadre deve essere riconosciuto e premiato, ma soprattutto, i cosiddetti hard savings, ovvero i risparmi più importanti ottenuti dal progetto, devono essere inseriti all’interno della E-matrix e della F-matrix.

Una più corretta distinzione sui savings dev’essere fatta però, in particolare:

- **Hard Savings**: si hanno quando la riduzione dei costi effettiva ottenuta con l’improvement comporta la riduzione di persone, materiali, energia, ecc.

- **Non Hard Savings**: ne esistono 3 tipi, cioè
 - riduzione dei costi: al fine di non avere perdite, come ad esempio la perdita di guasti, occorre intraprendere alcune attività AM e PM che costano denaro. Per giustificare tali spese, si deve valutare il vantaggio calcolando una possibile perdita di denaro quando non tali attività non sono effettuate. Questa possibile perdita può essere definita come elusione dei costi.
 - **soft savings**: nonostante nell’immediato essi non portino un elevato abbattimento delle perdite, sono in grado di portare vantaggi nel futuro, anche se talvolta possono essere nascosti o comunque non chiaramente misurabili.
 - **virtual savings**: sebbene sia stato apportato un miglioramento, il suo risparmio è latente poiché è stato realizzato solo parzialmente ma non nella misura in cui sarebbe stato possibile
Step 7 – Follow up ed espansione orizzontale

E’ essenziale terminare il processo dei 7 step con un sistemico follow-up, cioè una serie di controlli, di carattere periodico, che possono essere manuali o elettronici, tramite ad esempio la E-matrix, attuati tramite una checklist in modo da tenere traccia di quanto è già stato fatto o che ancora lo deve essere.

E’ inoltre essenziale garantire che il problema non si ripresenti e che la soluzione sia sostenuta, finché non ci sarà un’opportunità per un prossimo Continuous Improvement, motivo per il quale la standardizzazione delle soluzioni è rigorosamente applicata in questo step, tramite diverse soluzioni che vanno dalle già citate SOP (Standard Operation Procedure) alle OPL (One Point Lesson).
3.2. Quality Control

3.2.1. Principi base

Si è enfatizzata più volte l’importanza del settore Qualità all’interno dell’azienda, che sia una World Class Manufacturing europea del terzo millennio o di stanza in Giappone a metà del XX secolo: in ogni caso, la qualità è allo stesso tempo il punto iniziale e finale della politica di un’azienda che può considerarsi di successo, e coinvolge imprescindibilmente tutto e tutti.

I fondamentali del QC pillar evidenziano la trasversalità di quest’ultimo, retaggio del Total Quality Control di Taiichi Ohno, e sono suddivisi in 3 punti:

- **Sistema** – a chi compete la qualità in azienda?
 - Tutti
 - In ogni divisione
 - Ad ogni livello di produzione

- **Metodi** – come si agisce nel controllo qualità?
 - Usando la filosofia e l’approccio del QC
 - Utilizzando i metodi del QC, per garantirne gli obiettivi

- **Obiettivi** – perché esiste il QC?
 - Migliore qualità
 - Minori costi
 - Consegne più affidabili
 - Sicurezza costante
 - Morale più alto

Esistono poi fondamentalmente 3 livelli di approccio seguiti dal Quality Control, e, come verrà illustrato in seguito, in tutta la filosofia kaizen, che, come spiegato in precedenza, permea tutto ciò che è WCM; a rigore, perciò, sarebbe scorretto associare questi livelli di approccio solamente a questo pilastro, e il fatto che siano presentati qui non deve rendere il QC il pillar privilegiato ad adoperarli. I 3 livelli di approccio sono dunque:

- **Reattivo**: dopo che un evento ha avuto luogo, sono prese le dovute contromisure.
- **Preventivo**: imparando dal passato, sono attuate contromisure per evitare che problemi simili avvengano in condizioni simili.
- **Proattivo**: Sulla base dell’analisi del rischio teorico, sono adottate contromisure adeguate per evitare che accada un evento grave.

Come pilastro, anche il Quality Control deve lavorare seguendo i 4 punti già citati per il Focused Improvement, quali logica, metodo e tools, KPI e KAI.

Per quanto riguarda i KPI, possono esserne citati alcuni quali:
- **PPM (Parts Per Million)** del cliente
- % scarti interni (€)
- % costi di selezione (€)

I KAI caratteristici del QC invece, tra i molti possibili, possono essere:
- % problemi di Quality Control attaccati
- N° di SOP/OPL
- N° di Quick, Standard, Major o Advanced kaizen

Come il Focused Improvement può dirsi il proprietario dei **kaizen**, e quindi il caposaldo del Continuous Improvement aziendale, il Quality Control è, ovviamente, il detentore e il diretto responsabile della qualità del prodotto che l’azienda vende; non solo, come si è enfatizzato finora, anche della qualità interna all’azienda stessa, dal punto di vista del prodotto e del processo.

Un pezzo difettoso intercettato all’inizio della catena di produzione, infatti, determina una perdita notevolmente minore rispetto a un difetto captato alla EOL (End Of Line), poiché è molto probabile che, andando avanti con le lavorazioni e con gli assemblaggi, quel pezzo incriminato vada a inficiare la qualità del prodotto finito o solo parzialmente. In quel caso, non solo occorre considerare come perdita l’intero prodotto finito, ma, nel caso esso debba essere smontato e rimontato, anche il tempo di processo che si sarebbe potuto spendere per un’attività a reale valore aggiunto.

Facendo un esempio con il caso OLSA, un difetto di stampaggio, come una sbavatura non rimossa, uno sfrido interno, una sfiammatura, o del materiale inquinato, se è identificato sul pezzo grezzo appena stampato non ha che il valore di pochi centesimi di euro. Se quel pezzo tuttavia riesce a
passare agli step successivi di produzione, magari in metallizzazione oppure direttamente in assemblaggio, e non è identificato prontamente, prima che esso sia assemblato con altri componenti, può avere effetti di portata economica notevolmente superiore. Infatti, nel migliore dei casi, il difetto è intercettato prima della EOL, e dunque il fanale deve essere rismontato e riassemblato, con ovvia perdita di tempo e di valore aggiunto delle attività. Se tuttavia il difetto non è identificato e riesce a raggiungere il cliente, il danno economico diventa di portata enorme, rispetto all’entità del problema di origine, poiché porterà a un reclamo cui OLSA dovrà rispondere direttamente, con danni d’immagine e credibilità commerciale.

E’ opportuno specificare che questo pilastro segue un modus operandi caratterizzato da 2 tipi di step particolari: i 7 step del problem solving e i 7 step del Quality Maintenance. Nel primo caso, si ha la risoluzione dei problemi legati alla qualità in termini di materiali, manodopera o metodo attraverso la metodologia kaizen, che sarà illustrata in seguito in maniera dettagliata, e nel secondo si cerca di risolvere unicamente il problema legato al funzionamento della macchina, sempre adoperando la tecnica di derivazione giapponese.

Onde evitare l’appesantimento della trattazione con la descrizione dei 2 tipi di step, che si rifanno alla medesima metodologia kaizen comune a tutto il World Class Manufacturing, è sufficiente rimandare al successivo capitolo relativo al major kaizen per una attenta disamina degli step seguiti e di alcuni tools utilizzati al suo interno.

3.2.2. QA – Matrix

Discorso a parte dev’essere invece fatto per la Quality Assurance Matrix, una matrice contenente tutti i difetti riscontrati dal QC, esterni e interni, allo scopo di avere un database chiaro e sempre consultabile, ma soprattutto la base di partenza da cui poter estrarre i problemi più interessanti da attaccare. E’ sulla QA-matrix, infatti, oltre alle matrici di Cost Deployment citate in precedenza, che si fonda il lavoro del Focused Improvement, il quale nel suo primo step utilizza i dati provenienti dalle suddette matrici per prioritizzare le perdite da azzerare.
La prima parte della matrice esprime, per ciascuna riga associata a ciascun difetto, lo status del problema (chiuso/in corso), in quale stabilimento, quando e per quale cliente si è riscontrato, oltre naturalmente ai codici di progetto, di reclamo e di componente difettoso.

La seconda parte invece presenta la frequenza con cui si presenta il difetto in termini di numero di pezzi di scarto, di PPM interni ed esterni; sono poi espressi il costo e la gravità, espressa secondo i
parametri di estetica, dimensione, e funzionalità, secondo una scala numerica; proseguendo è poi espresso, secondo un punteggio numerico simile, la rilevazione del difetto, seguendo il principio che stabilisce che più un difetto è scoperto a monte del processo di produzione, meno impatto ha sull’azienda; sono dunque riassunti gli indici prima calcolati di frequenza, costo, gravità e rilevazione, i quali andranno a comporre l’indice di priorità secondo la formula:

$$IP = IF \cdot IC \cdot IG \cdot \sum_{i=0}^{n} IR_i$$

I_P: Indice di Priorità
IF: Indice di Frequenza
IC: Indice di Costo
IG: Indice di Gravità
IR_i: Indice di Rilevamento

Completano la seconda parte della matrice l’avanzamento della PDCA wheel riferita a quel particolare kaizen aperto per il difetto considerato, assieme ai tools utilizzati e al nome del responsabile di quel kaizen.

Figura 3.8 - QA Matrix parte 3

Nella terza e ultima parte sono annotati infine i risultati delle attività kaizen sul problema, come l’analisi delle cause radice, le azioni correttive intraprese, la data di conclusione delle attività e il numero di SOP, OPL, Poka Yoke e altre soluzioni di standardizzazione.
3.2.3. Capability

La qualità che questo pillar vuole controllare e migliorare è rappresentato, a livello pratico, da figure che mostrano lunghezza, durezza, percentuale di difetti, e simili. Queste sono chiamate *Quality characteristics*, e su di esse possono essere rappresentati diversi fattori (come per esempio la composizione chimica, i diametri, il numero di lavoratori, ecc.), i quali solitamente sono raccolti secondo una dispersione di dati. E’ necessario perciò definire i parametri di qualità in termini di valore medio e della sua rispettiva tolleranza.

Esistono 2 categorie di valori:

- Indiscreti (o continui) – basati sulle misurazioni (peso di un oggetto, prodotti di una reazione chimica, ecc.)
- Discreti – basati su un conteggio (numero di pezzi difettosi, numero di pezzi prodotti, ecc.)

Se si assume che la caratteristica di qualità segua una distribuzione normale, dove ±3σ include il 99.73% della popolazione, la *Process Capability*, cioè la capacità del processo di soddisfare gli standard qualitativi minimi, è definita come:

\[
\text{Process Capability} = \begin{cases}
\pm 3\sigma \\
\pm 6\sigma
\end{cases}
\]

![Figura 3.9 - Rappresentazione di Process Capability](image-url)
Il rapporto tra tolleranza di una data misura e capability segue 4 casi particolari, rappresentati in Figura 3.10.

![Diagrama di tolleranza e capability con 4 casi](image)

Figura 3.10 - I 4 casi del rapporto tra tolleranza e capability

Mentre l’indice di **Process Capability**, attraverso cui si discrimina l’efficienza di un processo, può essere calcolata come segue:

- **Limiti bilateralmente superiori o inferiori rispetto lo standard** \((u_t > x) \cup (l_t < x)\)

\[
C_p = \frac{(u_t - l_t)}{6\sigma}
\]

- **Limite unilateralmente superiore allo standard** \((u_t > x)\)

\[
C_p = \frac{(u_t - x)}{3\sigma}
\]

- **Limite unilateralmente inferiore allo standard** \((l_t < x)\)
In caso il valor medio x devii dal valore di target, occorre utilizzare, invece dell’indice di capability sopra descritto, un ulteriore indice, definito come:

\[
C_p = \frac{(x - l_t)}{3\sigma}
\]

\[
\left\{
\begin{array}{l}
u_t: \text{limite di tolleranza superiore} \\
l_t: \text{limite di tolleranza inferiore} \\
x: \text{valor medio della distribuzione}
\end{array}
\right.
\]

In caso il valor medio x devii dal valore di target, occorre utilizzare, invece dell’indice di capability sopra descritto, un ulteriore indice, definito come:

\[
C_{pk} = \frac{(1 - k)(u_t - l_t)}{6\sigma}
\]

\[
k = \frac{(u_t + l_t)/2 - \bar{x}}{(u_t - l_t)/2}
\]

$k > 1 \Rightarrow C_{pk} = 0$

k: grado di deviazione

Com’è utilizzato il parametro C_p? In che modo riesce ad esprimere la bontà o al contrario una mancata efficienza di un processo? Nuovamente la statistica interviene, fornendo una tabella di valori sperimentali che hanno sancito la suddivisione dei processi in maniera ragionevole.
<table>
<thead>
<tr>
<th>C_p</th>
<th>Distribuzione/Process Capability</th>
<th>Azione</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 1.67</td>
<td>Molto più che sufficiente</td>
<td>Semplificazione del controllo di processo e riduzione dei costi possono essere considerate.</td>
</tr>
<tr>
<td>≥ 1.33</td>
<td>Sufficientemente alta</td>
<td>Condizione ideale, da mantenere.</td>
</tr>
<tr>
<td>≥ 1.00</td>
<td>Non sufficientemente alta ma adeguata</td>
<td>Controllare il processo correttamente e mantenerlo in uno stato di controllo. I difetti possono verificarsi se $C_p \rightarrow 1.00$. Agire se necessario.</td>
</tr>
<tr>
<td>≥ 0.67</td>
<td>Non sufficiente</td>
<td>Sono stati generati i difetti. Ispezione e processo di screening, controllo e kaizen necessari.</td>
</tr>
<tr>
<td>≤ 0.67</td>
<td>Eccessivamente bassa</td>
<td>Impossibile soddisfare la qualità, che deve essere necessariamente migliorata, e devono essere intraprese azioni di emergenza. Riesamina degli standard.</td>
</tr>
</tbody>
</table>

Tabella 3.1- Valori discriminanti dell’indice di capability

Com’è opportuno notare, in caso il $C_p \ll 1.00$ il processo non è in grado di produrre in maniera conveniente, e occorre aprire un kaizen per la risoluzione del problema.

3.3. Problem solving: Il kaizen

Molto si è parlato in questo elaborato del kaizen, della sua filosofia, di come esso abbia influenzato il World Class Manufacturing e di quali siano i fondamenti principali, che sappiamo essere quelli della PDCA wheel, o ciclo di Deming, già citato in precedenza.

Si deve però precisare un aspetto: se il kaizen, o Plan Do Check Act, è la traccia principale su cui il WCM sorge, basti pensare ai 7 step caratteristici di ogni pillar che riprendono fedelmente la PDCA, discorso a parte va fatto per il kaizen nel problem solving. È’ in quest’ultimo che si può sperimentare
tutta la potenza di questo straordinario strumento, che si ricorda essere di proprietà principale del
Focused Improvement, nonostante ogni pillar ne faccia un uso smodato.

In precedenza si è parlato del lavoro sinergico di Cost Deployment, Focused Improvement e Quality Control nell’individuare il problema prioritario da attaccare, la cui entità si rivela determinante nella scelta successiva, da parte di FI, del tipo di kaizen da assegnargli, poiché esistono 4 diversi tipi di kaizen, ognuno per un dato problema di una certa importanza o priorità.

3.3.1. Quick kaizen

Il Quick kaizen, o kaizen rapido, è utilizzato quando il problema o il fenomeno è al più definito e i dati sono disponibili, anche se non ancora elaborati. Esso è efficace per implementare rapidi miglioramenti, sviluppare idee e suggerimenti, diffondere know-how e soluzioni implementate.

Poiché il Quick Kaizen è uno strumento relativamente facile, è pensato per essere riempito manualmente dagli operatori in officina, o con un po’ di supervisione ove necessario. L’obiettivo è anche quello di utilizzare il maggior numero possibile di schizzi durante il completamento del modulo, poiché gli schizzi forniscono una visione più chiara del problema e della soluzione.

Come si può osservare in Figura 3.11, la composizione del QK è relativamente semplice, poiché segue in maniera pedestre le 4 fasi PDCA, per ognuna delle quali è richiesto, come già detto, un intenso uso di schizzi, fatti a mano dagli operatori o dagli incaricati di redigere il kaizen. Importanti dunque le descrizioni del fenomeno iniziale, delle soluzioni adottate, del checking dei risultati (attraverso diagrammi statistici o caratteristiche di qualità) e della standardizzazione delle soluzioni.

L’unico tool utilizzato in questo kaizen rapido è il 5W+1H per la descrizione del fenomeno iniziale nella fase Plan. Si coglie perciò quest’occasione per approfondirne la tecnica.
5W+1H

Acronimo che racchiude in sé una tecnica investigativa comune a molti altri settori, come quello del giornalismo, per il quale forse è più famosa la “7W”, il 5W+1H è un metodo di svisceramento di un fenomeno, atto a renderlo chiaro e incontrovertibile, non influenzabile da punti di vista soggettivi od opinioni. Ciò che è descritto al suo interno, non può essere frainteso, e grazie a questa sua chiarezza, il fenomeno, ormai non più un mistero per i più di cui se ne occupano, può essere affrontato con rigore e senza, possibilmente, sbagli.

Il 5W+1H dev’essere, come tutti i tools di problem solving, redatto da un team di più persone, le quali indagano sul problema in termini oggettivi di tempo, spazio, luogo, frequenza e caratteristiche fisiche, come mostrato in Tabella 3.2, recante le specifiche domande che si deve formulare.
<table>
<thead>
<tr>
<th>What</th>
<th>When</th>
<th>Where</th>
<th>Who</th>
<th>Which</th>
<th>How</th>
</tr>
</thead>
</table>

Tabella 3.2 - Modello 5W+1H
3.3.2. Standard kaizen

Il SK, o Standard kaizen, è utilizzato per **problemi più complessi** rispetto al Quick kaizen, o cronici, dove comunque la **maggior parte dei dati è già definita** e disponibile.

L'altra grande differenza rispetto al QK è che, se quest'ultimo è solitamente gestito da un operatore con una leggera supervisione, lo SK è sviluppato e supervisionato da un tecnico o un supervisore.

Anche lo Standard kaizen ovviamente è uno strumento PDCA, che ne segue le 4 fasi, ed è efficace per implementare rapidi miglioramenti, in cui i problemi sono in qualche modo più complessi.

L'obiettivo rimane di utilizzare il maggior numero possibile di schizzi durante il completamento del kaizen, poiché essi forniscono una visione più chiara del problema e della soluzione.

Tabella 3.3 - Modello Standard kaizen OLSA
L’assegnazione di uno *Standard kaizen* a un determinato problema avviene per decisione del board aziendale, composto dai già citati FI, QC e CD, oltre che Safety e quanti altri occorrano, che scelgono le problematiche da attaccare in base alle matrici rispettive (QA-matrix, C-matrix, S-matrix).

Questa particolare tipologia di *kaizen*, che si propone di risolvere problemi di natura più complessa, richiede maggiori tools rispetto al *Quick kaizen*, e si differenzia da quest’ultimo per la difficoltà, all’interno della prima fase *PLAN*, della ricerca della causa radice, pratica quasi immediata nel caso del QK una volta che il problema è stato definito.

Ecco che allora si aggiungono al 5W+1H altri tools quali il 5G (già descritto in Tabella 2.2), il 4M-Ishikawa e il 5Why's.

4M-Ishikawa

Il diagramma di Ishikawa, anche detto diagramma “a lisca di pesce”, o più brevemente 4M, è un tool utilizzato per la ricerca della causa radice di un dato problema o fenomeno. Esso ha la forma rappresentata in Figura 3.12, descritta da linee che ricordano appunto la forma di una lisca di pesce.

![4M - ISHIKAWA DIAGRAM](image)

Figura 3.12 - Modello 4M-Ishikawa
All’estremità di ogni spina, che possono essere 4 o, in casi più complessi 6 o 8 (in tali casi ovviamente si parlerà rispettivamente di 6M o 8M), è posta una categoria a cui ascrivere una possibile causa di origine del fenomeno:

- Manodopera (Manpower)
- Macchine (Machines)
- Materiali (Material)
- Metodi (Method)
- Management
- Ambiente (in francese Milieu)
- Manutenzione (Maintenance)
- Misurazioni (Measurements)

Durante il brainstorming tenuto dal team responsabile del kaizen per individuare l’effettiva causa radice scatenante il problema, si scrive a ridosso di ogni lisca qualsiasi idea che sia ritenuta calzante con la causa radice ricercata, facendo attenzione a disporla nella categoria cui appartiene. Se, per esempio, si suppone che la causa per la quale la pressa adibita allo stampaggio plastico produca pezzi con materiale inquinato sia riconducibile a un errore umano, e più precisamente al caricamento manuale del materiale in tramoggia, si riporta tale ipotesi sotto la voce Manpower. Tuttavia, la stessa dinamica potrebbe essere riconducibile non solamente a un errore umano, ma di tipo metodologico, poiché non è prevista una misura di pulizia preliminare della tramoggia prima del caricamento del materiale: in tal caso, l’ipotesi considerata è ascrivibile anche alla categoria Method.

Tutte le ipotesi riportate all’interno del diagramma di Ishikawa saranno poi analizzate in maniera rigorosa e scientifica, una per una, attraverso misurazioni, prove sperimentali, e metodi ingegneristici non confutabili, in maniera da escludere la maggior parte delle ipotesi e potersi così concentrare sulla reale causa radice del fenomeno.

Le ipotesi finali risultanti dalle prove di verifica eseguite sul 4M, sono successivamente riportate all’interno di un ulteriore tool, il 5Whys, il cui obiettivo è di scremare ancor più la pletora di cause radici.
5Whys

Questo tool è identificato in una tabella, del tipo rappresentato in Figura 3.13, all’interno della quale sono riportate le ipotetiche cause radice identificate nel 4M, in seguito a un’opportuna selezione basata sui risultati delle prove scientifico-ingegneristiche che hanno provveduto a confermare o meno la veridicità delle date ipotesi.

<table>
<thead>
<tr>
<th>OLSA</th>
<th>5 WHYS ANALYSIS</th>
<th>Corrective actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pet description</td>
<td>1st Why</td>
<td>Check</td>
</tr>
</tbody>
</table>

Figura 3.13 - Modello 5Whys

Nella prima colonna sono riportate le ipotesi e una loro breve descrizione. Dopodiché, l’algoritmo del 5Whys si rivela tanto semplice quanto efficace: comincia, infatti, una serie di domande e risposte, da affrontare sempre in colloqui di gruppo, nelle quali ci si chiede il perché quella data causa radice sia stata scatenata; a tale domanda segue una risposta che sarà verificata, sempre in modo razionale e ingegneristico, così da permettere una successiva domanda sul perché la “causa della causa” sia stata scatenata. Questa reazione a catena si sussegue per un numero sufficiente di volte, la pratica vuole che i “perché” siano 5, finché la vera causa radice non sia scoperta e, naturalmente, verificata.

Nelle ultime colonne sono riportate infine le indicazioni principali sull’azione correttiva da intraprendere per correggere la causa radice finale: la descrizione, chi è il responsabile per tale attività, quando è previsto si concluda e il suo stato attuale.
In base ai risultati del 5Whys, è formulato un **diagramma di Gantt**, in grado di fornire una visione chiara sull’**Action Plan** da seguire nelle fasi seguenti: il **DO**, in cui s’intraprendono le azioni correttive, e, in contemporanea, il **Check**, in cui si monitorano i risultati delle azioni.

Figura 3.14 - Action Plan rappresentato su un diagramma di Gantt (Programma utilizzato: Gantt Project)

3.3.3. Major kaizen

Il MK è uno strumento avanzato per l’**Improvement** e per la risoluzione di **problemi molto complessi e cronici**, che richiede team più grandi e tempi più lunghi rispetto lo SK e il QK. Il **Major kaizen** ricalca perfettamente i **7 step del problem solving**, e l’attività di gruppo è monitorata da un sistema visivo, una scheda, per ogni **step** del processo di miglioramento; le schede devono facilitare l’involverimento delle persone, la proattività e la diffusione della comprensione dei problemi.

Il capo progetto deve verificare lo stato di avanzamento del progetto, il corretto utilizzo degli strumenti e la diffusione del **know-how**.

Il team composto da 3 a 7 persone solitamente lavora insieme per un periodo fino a 3 mesi per attaccare un problema complesso, in cui sono necessarie un’analisi dettagliata e contromisure diverse per raggiungere l’obiettivo prefissato.

L’assegnazione del **kaizen** a un determinato problema è di competenza di una vera e propria **task force** composta da FI, CD, QC e quanti altri **pillar** necessitino, i quali seguono la QA-matrix, la S-matrix e la C-matrix per avere un criterio secondo cui destinare il MK al fenomeno anomalo.
I 7 step del problem solving coincidono perfettamente con i 7 step del Major kaizen, e ricalcano a loro volta la PDCA wheel già inizialmente descritta; ciascuna delle 4 macro fasi della ruota di Deming ha all’interno di sé uno o più step, in particolare la fase iniziale di Plan, la più delicata e importante, ne prevede molteplici.

Step preliminari

Prima di iniziare la stesura del kaizen, è necessario innanzitutto conoscere quale problema attaccare; operazione questa, come si è più volte ricordato, portata avanti dal Focused Improvement in sinergia con gli altri pilastri.

Dopo l’assegnazione del problema si ha la formazione del team, della quale si occuperà il People Development, naturalmente assieme agli altri pilastri e ai tecnici. Il PD deve poi fornire il radar chart
di ciascun membro del team, cioè un diagramma su cui sono rappresentate le qualità della persona, secondo parametri di conoscenze tecniche, manageriali, tools e altre caratteristiche che possono variare a seconda del problema e dei temi affrontati.

Figura 3.16 - Esempio di radar chart (caso OLSA, major kaizen Lente Aura Porsche)

Una volta definito il team assieme alle sue capacità, si pianifica un diagramma di Gantt sulle tempistiche entro cui si svolgerà ciascuno step, dopodiché si è pronti per cominciare il problem solving.

PLAN - Step 1: Phenomenon Description

Il primo tool da adoperare in questa fase è il 3G, cioè:

1. **Gemba**: vai in officina
2. **Gembutsu**: esamina l’oggetto
3. **Gemjitsu**: verifica fatti e cifre

Una volta verificato personalmente la presenza del fenomeno, il tool che segue è lo **sketching**: come per le altre tipologie di kaizen, si consiglia vivamente di utilizzare uno schizzo per descrivere il difetto generato sul prodotto o componente, al fine di chiarire come questo difetto sia generato durante il processo. Ovviamente, rendere il disegno a matita più formale, attraverso foto o immagini, contribuisce a chiarire le idee ed è una norma che è bene seguire.
Il terzo tool da utilizzare in questa fase è il già citato 5W+1H, che anche qui deve essere accompagnato da dati oggettivi di quanto è affermato al suo interno riguardo al fenomeno.

PLAN – Step 2: System/Process

Nel secondo step si deve studiare il flusso di processo e di sistema, dall’inizio alla fine, senza omettere i particolari più importanti. Ci si deve chieder inoltre quali siano le condizioni operative standard (parametri di processo, strumenti disponibili, ecc.) e quali siano le procedure standard.

Nel caso si riscontrasse una deviazione dallo standard, occorre pianificare attività adeguate al fine di ripristinare le condizioni di base e verificarne l’efficacia.

PLAN – Step 3: Target

La terza fase è la definizione del target cui si vuole arrivare al termine del kaizen e la stima del tempo necessario per raggiungere questo obiettivo.

Nel caso di un alto numero di scarti, un target possibile potrebbe essere rappresentato da una soglia massima di pezzi di scarto tollerabili. Altri esempi possono essere il numero d’infortuni, o di fermi macchina, oppure benefici di tipo economico come la quantità di euro di saving.

L’obiettivo limite per i kaizen di Quality Control deve essere, come più volte detto, zero difetti.

Ovviamente il target deve essere rappresentato in maniera grafica sul cartellone del kaizen sotto l’apposita voce.

PLAN – Step 4: Root Cause Analysis

In questa quarta fase si ricorre ai tools già descritti in precedenza di 4M e 5Whys per l’identificazione della causa radice del problema. Attraverso il brainstorming tra i componenti del team, con il project leader come moderatore, i quali dovranno possedere competenze tecniche miste, si descrive il problema, si annotano le idee su una lavagna a fogli mobili, e si cerca di individuare la causa radice, assieme ad una loro verifica sul campo.

E’ importante notare che prima dell’analisi della causa principale collegata alla macchina (una delle 4M) è necessario ripristinare le condizioni di base.
DO – Step 5: Action and Countermeasures

In questa fase si attuano le soluzioni risolutive trovate nella Root Cause Analysis, e si rappresentano sul kaizen attraverso sketch e rappresentazioni grafiche. Occorre rappresentare anche la pianificazione delle attività, l’Action Plan, attraverso un diagramma di Gantt.

Essenziale, inoltre, confrontare la situazione antecedente con quella successiva le contromisure applicate, attraverso diagrammi statistici chiari e incontrovertibili.

CHECK – Step 6: Results

Il checking dei risultati è un punto chiave dell’intero lavoro del kaizen, ed è ciò che determina o no la sua efficacia reale. Per questa ragione, è necessario anche calcolare il rapporto benefici/costi, il cui valore è molto discriminante in quanto:

\[
\begin{align*}
B/C > 1 & \rightarrow \text{la soluzione adottata CONVIENE} \\
B/C < 1 & \rightarrow \text{la soluzione adottata NON CONVIENE}
\end{align*}
\]

ACT – Step 7: Standardization and future actions

L’ultimo step del problem solving prevede la standardizzazione delle soluzioni. In particolare, se le azioni correttive hanno causato una modifica delle procedure e dei metodi, si ricorre alla già citata SOP, acronimo di Standard Operating Procedure, o alla OPL, acronimo di One Point Lesson.

Nel primo caso, si tratta di una scheda ufficiale che spiega, in maniera grafica, chiara e incontrovertibile, le procedure standard che ogni operatore deve rispettare, poiché tale documento è firmato dagli stessi al momento del briefing di formazione su tale procedura.

L’OPL, invece, è una scheda che definisce non una procedura, ma una situazione corretta, la quale è posta in confronto al caso attuale. Questo tool è un visual aid che immediatamente pone l’operatore a riconoscere come per esempio debba essere mantenuto il proprio carretto porta utensili, oppure come debbano essere sistemati i pallet nell’area riservata, ecc. Anche l’OPL, come la SOP, dev’essere firmata da tutti gli operatori responsabili dell’attività o dell’argomento trattati al suo interno.

La chiave di successo per una OPL consiste nell’essere un foglio di formazione facile da spiegare e capire.
Figura 3.17 - Esempio di SOP (caso OLSA)

Figura 3.18 - Esempio OPL (caso OLSA)
Un’altra soluzione di standardizzazione è rappresentata poi dal **Poka Yoke**, letteralmente tradotto dal giapponese “a prova di scimmia”. Esso è una soluzione, spesso e sovente di natura tecnica, in cui si facilita in maniera esasperata l’attuazione di un processo. Sono esempi di **Poka Yoke** di natura quotidiana le colorazioni dei cavi e le loro rispettive sedi per i prodotti di elettronica come televisori, console e stereo; oppure, uno spinotto antisbaglio di collegamento unico dei circuiti elettronici di uno stampo, il quale sostituisce l’antiquata soluzione di spinotti separati e collegabili soltanto singolarmente; ancora, nel Faidate è molto utilizzato, nelle soluzioni di assemblaggio di prodotti componibili, in cui l’incastro e il montaggio dei pezzi è forzatamente di senso unico. In generale, il Poka Yoke è una qualsiasi sistema che rende l’operatore o l’utilizzatore incapace di sbagliare.

3.3.4. **Advanced kaizen**

Questo è un **tool** molto pesante, usato per attaccare problemi molto complessi e per fornire metodi di miglioramento approfonditi relativi ad esempio la tecnologia di processo.

L’**Advanced kaizen** è utilizzato in un modo meno frequente, gli strumenti utilizzati sono in genere più complessi e sofisticati (ad esempio PPA, DOE, Six Sigma, ecc.).
Un team esperto, composto da 5 a 7 persone, supportato da uno specialista è solito lavorare insieme per un periodo più lungo di 3 mesi per attaccare un problema complesso, in cui sono necessarie analisi dettagliate e contromisure diverse per raggiungere l’obiettivo prefissato.

L’attività del team è monitorata da un sistema visivo, una scheda, per ogni fase del processo di miglioramento, come per il *Major kaizen*; le schede devono facilitare il coinvolgimento delle persone, la proattività e la diffusione della comprensione dei problemi.

Il capo progetto deve verificare lo stato di avanzamento del progetto, il corretto utilizzo degli strumenti e la diffusione del *know-how*.

Il *kaizen* avanzato deve essere usato quando il problema, nonostante l’implementazione degli strumenti di *kaizen* di base, permane, anche se ridotto, ma il target è impostato su zero.

Poiché in OLSA non sono mai stati intrapresi *Advanced kaizen*, non sarà approfondito ulteriormente questo *tool*, il cui utilizzo è appannaggio d’imprese *World Class* di livello elevato.
4. **Major Kaizen: fanale posteriore Porsche 991**

Quest’ultimo capitolo è dedicato all’esperienza di *Focused Improvement* e *Quality Control* che ho avuto modo di vivere “sul campo”, attraverso la gestione di un *Major Kaizen* relativo a un problema di elevati scarti su un prodotto di stampaggio, il trasparente esterno del fanale Porsche 911.

Nonostante non sia l’unico *Major kaizen* che io abbia portato avanti (ve ne sono altri 2 nel reparto stampaggio e 1 in metallizzazione), questo è l’unico ad essere stato portato a termine con successo prima dell’audit WCM di marzo 2017, ed è l’unico che in tale occasione è stato presentato all’auditor.

E’ per questo motivo che ho deciso di portare quest’esperienza all’interno di questo elaborato.

Naturalmente, la struttura seguita per affrontare questo *kaizen* è la stessa descritta nel precedente capitolo per il *Major kaizen*: si compone cioè di **7 step di problem solving** che ricalcano il PLAN, DO, CHECK, ACT del WCM.

![Figura 4.1 - Major kaizen OLSA per trasparente Porsche 911 (foto)](image-url)
4.1. Fase preliminare

4.1.1. Scelta dell’argomento

Come ben sappiamo ormai, l’argomento di un kaizen dev’essere scelto attraverso le matrici proprie dei pillar che gestiscono i kaizen. In questo caso il problema è stato scelto dalla voce della QA-matrix che presentasse un indice di priorità elevato, oltre che un impatto economico maggiore.

Come si può notare dalla Figura 4.2, altri problemi presentavano indici di priorità molto più elevati, e per ognuno di essi era già stato aperto un kaizen. Mancava all’appello solamente la voce riguardante gli **scarti interni per sfiammature/bruciaciture sulla lente sinistra del fanale posteriore Porsche 911**.

![QA Matrix](image)

Figura 4.2 - Riga della QA-matrix relativa al problema da attaccare

Questo problema interessava dunque il **reparto stampaggio**, e aveva una difettosità di **tipo estetico** sul **trasparente esterno** del fanale, il pezzo più delicato sotto questo punto di vista, perché qualsiasi difetto, seppur minimo, è collocato in zona visibile, per cui non tollerabile dal cliente.
4.1.2. Formazione del team

Nominato project manager del kaizen, è stato mio compito, aiutato naturalmente da collaboratori con maggior esperienza di me, scegliere i membri del team, in base alle loro competenze tecniche e organizzative. In tal senso sono stati di ausilio i radar chart, rappresentati nelle figure seguenti, composti ad hoc dal People Development, inerenti ai temi affrontati in questo kaizen.

Oltre a me, a formare il team kaizen, altri 2 colleghi del Quality Control, che mi hanno aiutato nell’utilizzo dei tools e nell’attività di verifica e check.

Essenziali, inoltre, sono state le technical skills dei collaboratori del reparto stampaggio, in particolare: un tecnologo, un chimico dei materiali, un responsabile magazzino materie prime e il caporeparto.

Da aggiungere, infine, sono i pillar leader di Focused Improvement e Professional Maintenance.
E’ interessante notare che non tutti i membri sono stati coinvolti fin da subito (come ad esempio il responsabile del magazzino materie prime), poiché il problema non era ancora ben definito, e non si poteva ancora conoscere fino a che livello si sarebbe scesi per trovare la causa radice del problema.

Figura 4.4 – Radar chart team kaizen (technical members)

Figura 4.5 - Radar chart team kaizen (PM e FI members)
4.1.3. 7 step planning

Prima di cominciare la vera e propria attività di risoluzione del problema, è stato necessario fissare una timeline da seguire per portare a compimento il major kaizen in termini ragionevoli di tempo.

Il diagramma di Gantt abbozzato inizialmente è rappresentato in Figura 4.6, e da esso si può notare l’arco temporale caratteristico per il completamento di un major kaizen: circa 3 mesi. E’ interessante, inoltre, notare come le fasi più dispendiose in termini di tempo siano rappresentate dal PLAN (e in particolare la 5Whys analysis, per la quale ogni causa radice ipotetica deve essere verificata) e dal CHECK, che richiede un periodo sufficientemente lungo anche per via del fatto che la produzione del pezzo su cui si ha il difetto non è programmatà tutte le settimane.

<table>
<thead>
<tr>
<th>MK 7-STEP PLANNING</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLAN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEP 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phenomena Description</td>
<td>40</td>
<td>1</td>
</tr>
<tr>
<td>STEP 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>System</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEP 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEP 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Root Cause Analysis (4M)</td>
<td>41</td>
<td>2</td>
</tr>
<tr>
<td>Root Cause Analysis (5Why)</td>
<td>43</td>
<td>3</td>
</tr>
<tr>
<td>DO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEP 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actions and Countermeasures</td>
<td>44</td>
<td>4</td>
</tr>
<tr>
<td>CHECK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEP 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Results</td>
<td></td>
<td></td>
</tr>
<tr>
<td>STEP 7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard & Future Actions</td>
<td>45</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figura 4.6 - 7 step planning (unità temporale: settimane)

4.2. PLAN

4.2.1. 3G

Giunti a questo punto, si è potuto cominciare la vera e propria attività di kaizen.

Il primo tool utilizzato è stato il 3G: assieme ad altri 2 membri del team kaizen (qualità e materiali), sono andato a verificare sul campo la presenza del difetto, dopo averne verificato l’entità in termini numerici e statistici.

A giudicare dai rapporti giornalieri e settimanali degli scarti, raccolti in un database il cui aggiornamento era a me affidato, il problema era evidente, e si può osservare dalla Figura 4.7: la percentuale di scarti sul totale di pezzi prodotti del pezzo incriminato raggiungeva picchi del 38%
in negativo, e del 17% in positivo, e ciò era causato per la gran parte da sfiammature, che sul diagramma di Pareto presentavano un’incidenza del 62,3% sul totale degli scarti. Questa importante oscillazione di percentuale di difetti denotava un processo fuori controllo, al cui mal funzionamento si rimediava con soluzioni di tamponamento e contenimento dei danni da parte di operatori che dovevano improvvisare soluzioni di emergenza per mandare avanti la produzione, seppur in modo disastroso.

Andando a verificare in gemba (sul luogo effettivo di lavoro), i pezzi si presentavano come in Figura 4.8, con un evidente segno, simile a una graffiatura interna alla lente. Essa è denominata in gergo tecnico sfiammatura, ed è formata dallo stesso tipo di materiale che compone l’intera lente, in questo caso PMMA, acronimo di polimetilmetacrilato, ma formato a temperature diverse e la cui differenza è impressa come una fotografia sulla lente da una serie di righe interne. Ciò è dovuto, in pratica, a un punto freddo, o più in generale a un ostacolo, nei pressi del foro d’iniezione, che innesca un raffreddamento del materiale circostante, che determina le sopracitate righe, o sfiammature. Da che cosa sia dovuta la nascita di questo punto freddo, rimaneva però da capire.
Appurata la veridicità del fenomeno da indagare, si è proceduto con la sua descrizione attraverso i tools descritti precedentemente per questa prima fase.

4.2.2. 5W+1H

Il 5W+1H per questo kaizen è stato portato avanti con molto rigore da quando il problema ha iniziato a verificarsi, cioè molti mesi prima del mio ingresso in OLSA. Grazie a quanto riportato in un documento redatto in quelle prime fasi, è stato possibile descrivere a 360° il fenomeno.

What

La domanda “what” si propone di descrivere che cosa sia successo, e come si presenti il fenomeno.

In risposta a tali domande, in ogni produzione si presentavano difetti di sfiammature di diverse entità sul prodotto 03612020, cioè la lente sinistra fanale posteriore Porsche 911, che producevano una percentuale di scarto molto elevata (come prima evidenziato dai diagrammi).
Per far fronte a questo problema, sono state utilizzate le presse 35 e 41 con differenti robot di presa e diverso tonnellaggio presse (da una 1000 t stampando a 2 figure ad una 1500 t stampando a 4 figure), non ottenendo però risultati positivi.

Il componente deve essere stampato rispettando la scheda parametri digitale impostata con caratteristiche di materia prima definite dal fornitore.

In fase di stampaggio sono solitamente modificati i parametri, uscendo fuori dalle tolleranze imposte, ogni qual volta si presenta una difettosità per cercare di stampare componenti conformi.

When

La seconda domanda cui rispondere è: quando accade il fenomeno.

Esso tuttavia, avveniva in modo casuale, indipendentemente dal turno, e dal periodo dell’anno, principalmente sul PMMA antiurto del rosso della lente. L’antiurto è un additivo per il PMMA introdotto per aumentare la resistenza agli shock termici della lente, che durante i test è sottoposta a sbalzi termici repentinì dell’ordine dei 100 °C, i quali in assenza di tale additivo porterebbero la lente del fanale a rottura.
Le sfiammature, come prima descritto, si formano durante la fase di riempimento dello stampo, cioè durante l’iniezione del PMMA fluido, che incontra un punto freddo di materiale che lo costringe a cedere calore e a raffreddarsi, andando così a formare le linee di sfiammatura.

Where

La terza domanda è, naturalmente, dove avviene il fenomeno, e quali attrezzature coinvolge, o che dovrebbe coinvolgere.

Il fenomeno delle sfiammature occorre sul prodotto all’interno del ciclo produttivo, e si manifesta nella parte opposta al punto d’iniezione, nonostante il punto freddo si trovi in prossimità di quest’ultimo.

La realizzazione di questo prodotto dovrebbe essere fatta su una pressa da 1500 t, data la complessità del pezzo e l’elevata qualità delle superfici visibili, per i quali nemmeno il minimo difetto può essere tollerato, e, infatti, gli è solitamente assegnata la pressa 41, una Engel da 1500 t a 4 figure, oppure, più raramente per il motivo sopracitato, la pressa 35, una Engel da 1000 t a 2 figure.

Figura 4.10 - Pressa 41 Engel da 1500 t a 4 figure
Who

Chi sono le persone coinvolte nel fenomeno?

Lo stampo può essere avviato da:

- Setup Operator (chi monta lo stampo) (8 persone differenti)
- Capoturno (4 persone differenti)
- Tecnologi (2 persone)

Generalmente, però, lo stampaggio è avviato dal capoturno, mentre in caso di problemi sono interpellati i tecnologi, il fornitore dello stampo, il fornitore della materia prima e il fornitore della camera calda.

Which

La domanda “which”, letteralmente “quale”, prende in considerazione la frequenza del fenomeno e del modo in cui esso si manifesta. In particolare, fa riflettere su particolarità sulle tempistiche dell’avvenimento, come a inizio turno, all’inizio di ogni produzione, durante la produzione a regime, e così via.

In questo caso, le sfiammature avevano una casualità estesa a tutte le produzioni, indipendentemente dall’orario, dal turno, dal periodo dell’anno o dalle persone coinvolte. Esso era un problema persistente, nato fin dal principio del progetto.

How

Per ultimo, occorre definire in tutto e per tutto il processo del componente, in modo da mettere alla luce un potenziale difetto nella catena di produzione da attaccare per combattere il problema.

Il processo comincia dalla materia prima (PMMA HT+5% antiurto in grani), contenuta in appositi contenitori octabin in cartone mantenuti a temperatura ambiente, che viene aspirata ed essiccata nel forno principale da 250 kg per 8 ore a 100 °C +/-5 °C (il fornitore suggerisce di essiccare l’antiurto a 80-90 °C fino a raggiungere umidità max di 0.01%). La materia prima è poi mandata, attraverso un reticolo di tubazioni in PVC smistate da un dispositivo Dolphin, nel forno a bordo pressa (forno di mantenimento) che lavora a 90 °C (non a 100 °C per evitare i grumi di materiale).
Dal forno di mantenimento è aspirata in tramoggia deumidificante e in seguito introdotta nella vite di plastificazione.

Il metodo di stampaggio non è del tutto definito, a causa della variabilità di tutti i parametri di stampaggio in seguito alle variazioni di condizioni al contorno che possono occorrere durante il processo (variazioni di umidità e temperatura, giochi, ecc.)

Le persone si accorgono del difetto durante il controllo estetico effettuato a bordo pressa, e a tale pratica sono incaricati gli operatori del controllo qualità.

Si deve inoltre garantire la pulizia delle tramogge da polveri di materiale residuo, e a tal fine è previsto l’insufflaggio di aria compressa nelle stesse dopo ogni cambio materiale.

Nel caso ideale l’umidità del materiale deve essere costante e pari a 0%, ma possono essere tollerate fluttuazioni intorno allo 0.1%.
La vite utilizzata è di tipo universale, mentre potrebbe essere una soluzione adoperare una vite specifica per materiali amorfi.

Lo stampo presenta una camera calda molto complessa, e una soluzione potrebbe essere la riprogettazione dello stampo a due figure con una camera calda più semplice e valutare un doppio punto d’iniezione per ridurre le velocità del flusso.

Definito il problema con il completamento del 5W+1H, riproposto in Figura 4.12, si è passato all’analisi delle cause radice, attraverso il 4M prima, e il 5Whys in seguito.

Figura 4.12 - 5W+1H per kaizen 03612020 (foto)

4.2.3. 4M – Ishigawa

L’analisi delle cause radice è stata tenuta sempre in forma di brainstorming, periodicamente ogni settimana, per avere in un primo momento del materiale su cui compiere le indagini, e in seguito per confrontare i risultati delle verifiche sulle ipotetiche cause.

E’ proposto in Figura 4.13 lo schema a lisca di pesce aggiornato con le ipotetiche cause radice che di volta in volta sono state aggiunte, suddivise secondo le 4 categorie tipiche di questo metodo.
Manpower

Ascrivibili alla manodopera, sono emerse solamente 3 possibilità:

- **Errato controllo da parte dell’Autonomous Maintenance**: essa è risultata una falsa possibilità poiché la pressa, come la maggior parte all’interno dello stabilimento, è soggetta a manutenzione preventiva e *machine ledger* associato.

- **Modifica errata dei parametri macchina**: tale possibilità è stata scartata, data la sistematicità del fenomeno, e la sua totale indipendenza da chi azioni la macchina.

- **Errore umano**: per le stesse ragioni di cui sopra, è stata subito scartata.

Material

Riguardo al materiale, ci si è focalizzati con più vigore, poiché il fenomeno della sfiammatura è, al più delle volte, causata da un’*alterazione delle condizioni ottimali della materia prima*.

Le cause ricercate sono pertanto:
Fluidità del materiale elevata: materiale eccessivamente fluido raggiunge velocità di efflusso elevate con più facilità, e ciò può provocare una sfiammatura.

% di antiurto non conforme: antiurto eccessivo nella miscela di materiale è causa di grani non omogeneamente disolte, e ciò è causa di un possibile ostacolo per l’efflusso del materiale.

% di polveri di trasporto elevata: ciò provoca la presenza di materiale inquinato, che se di ridotte dimensioni, non è visibile come tale, ma lo è la “scia” di materiale che urta contro di esso, e compone la sfiammatura. Quest’ipotesi è stata considerata possibile, poiché sulla stessa pressa si è presentata più volte la difettosità di materiale inquinato, e tale voce in particolare non è trascurabile per la lente Porsche, come evidenziato dalla Figura 4.14.

![MATERIALE INQUINATO](image)

Incompatibilità tra PMMA e antiurto: per lo stesso motivo per cui una percentuale di antiurto elevata può essere causa di sfiammature, può essere l’incompatibilità tra esso e il PMMA.

% di umidità elevata: elevata umidità è causa di raffreddamento locale del materiale, che causa il punto freddo da cui ha origine la sfiammatura.
Machine

Riguardo alle cause legate ai macchinari, molte sono state le proposte, com’è possibile vedere in Figura 4.13, ma esse sono state in seguito smentite, dopo una verifica in *gemba* di quanto ipotizzato. Sono proposte qui di seguito, pertanto, solamente alcune delle possibili cause radice, le quali inizialmente potevano essere plausibili, ma comunque risultate false in seguito:

- **Rottura resistenze termocoppie**: sensori di temperatura usurati portano a un controllo errato della temperatura d’iniezione, e ciò è causa d’immancabili difetti di stampaggio, come le sfiammature. Le resistenze sono però risultate perfettamente operanti.

- **Trafilamento materiale tra ugello e boccola**: esso può determinare lo scaturirsi di materiale non omogeneo all’interno del flusso d’iniezione e determinare così una sfiammatura. Tale possibile causa sarà verificata successivamente con i 5Whys.

- **Malfunzionamento connessioni elettriche**: un cattivo funzionamento di quest’ultime può provocare uno scorretto scambio d’informazioni tra il sistema di controllo e lo stampo, causando un’instabilità dei parametri di stampaggio. Tuttavia, tale ipotesi è stata smentita dalla recente applicazione di connettori ad attacco rapido per lo **SMED**, acronimo di **Single Minute Exchange of Die**, cioè un metodo di cambio stampo rapido, di cui la pressa 41 è una delle macchine pilota (esempio in Figura 4.15)

![Figura 4.15 - SMED: connessioni elettriche ad attacco rapido](image_url)
- **Circuito di alimentazione materiale eccessivamente lungo**: ciò può provocare, in caso di usura del PVC delle tubazioni di apporto del materiale dal magazzino materie prime alla pressa, un inquinamento del materiale stesso, con le dovute conseguenze.

- **Vite universale (non dedicata a materiali amorfi)**: quest’ipotesi è stata scartata. Benché una vite di plastificazione dedicata a materiali amorfi, come il PMMA, lavori sicuramente meglio di una vite universale, adatta, invece, anche a materiali non vетrosi come la poliammide (PA), essa dovrebbe influenzare anche altri tipi di prodotti dello stesso materiale, se la vite fosse la vera causa radice. Tuttavia, sulla stessa pressa è stampato frequentemente un altro prodotto in PMMA, la lente esterna del fanale posteriore Mini, codice 03635020, per il quale non si sono mai manifestati eccessivi KO dovuti a sfiammature, com’è possibile vedere dalla Figura 4.16 (la prima voce di scarto è sempre la sfiammatura, ma il tenore di pezzi scartati è notevolmente sotto il 38% del fanale Porsche).

![Figura 4.16 - Trend scarti e diagramma di Pareto 03635020](image)

Method

Ultima delle 4M, il metodo come possibile categoria di cause radice.
Esse sono state giudicate di poca importanza, in seguito a verifica in gemba, ma sono comunque emerse durante i brainstorming:

- **Mancata pulizia filtri a manica soffianti**: le soffianti sono utilizzate durante il cambio stampo, e in particolare nel passaggio da un tipo di materiale a un altro (per esempio da poliammide a PMMA). Esse depurano le tramogge da eventuali polveri rimaste in seguito al loro svuotamento del vecchio materiale. La pulizia dei filtri è essenziale per garantire l’insufflaggio di aria non contaminata da particelle macroscopiche, ma essa è rigorosamente applicata in maniera periodica.

- **Frequenza pulizia tramoggia**: in conformità a quanto detto sopra, è stato ipotizzato che gli operatori non sempre pulissero la tramoggia durante il cambio di materiale, ma questo è risultato essere, in pratica, falso, nonstante non esistesse niente che normasse tale procedura. prima dell’applicazione definitiva dello SMED.

- **Parametri di stampaggio errati**: la loro correttezza è stata confermata dai tecnologi del team kaizen dopo una attenta supervisione. C’è da dire però, che tali parametri sono soggetti a frequenti modifiche, per far fronte a variazioni casuali delle condizioni al contorno. Tuttavia, la loro variazione è una conseguenza alle sfiammature, e non la causa, poiché ad avvio produzione, i parametri impostati sono corretti.

Completato il diagramma di Ishigawa, si è poi fatta una cernita delle cause radici che più si avvicinavano alla realtà dei fatti, dopo naturalmente un’attenta verifica di ciascuna voce, e dopo essere arrivati alle conclusioni di cui sopra. Tali elementi rimasti, sono stati posti sotto inchiesta attraverso il tool descritto qui di seguito, il 5Whys.

4.2.4. 5Whys

Anche in questo caso, le cause radici sono molteplici, e per ognuna di esse si è dovuto rispondere in maniera consecutiva ai vari “perché”, per tentare di arrivare a una soluzione finale. Il documento ufficiale del 5Whys è proposto in Figura 4.17.
Incompatibilità tra PMMA e antiurto

Questo problema è stato affrontato sotto due punti di vista differenti: il **miscelamento omogeneo** e la **diversa temperatura di essiccazione**.

Per quanto riguarda il primo aspetto, ci si riferisce alla Tabella 4.1, che ne ripercorre lo schema di risoluzione dei 5 perché.

<table>
<thead>
<tr>
<th>PERCHE’?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Incompatibilità tra PMMA e antiurto.</td>
</tr>
<tr>
<td>2 Miscelamento avviene all’interno della vite di plastificazione.</td>
</tr>
<tr>
<td>3 Il fornitore consegna il PMMA HT con 5% di antiurto in granuli.</td>
</tr>
<tr>
<td>4 Non è prevista la consegna del PMMA già estruso con antiurto</td>
</tr>
<tr>
<td>5 Prova con materiale PMMA omogeneo (estruso)</td>
</tr>
</tbody>
</table>

Tabella 4.1 - 5Whys: incompatibilità tra PMMA e antiurto
La diversa temperatura di essiccazione invece, è stata affrontata seguendo lo schema riportato in Tabella 4.2, anch’esso terminatosi con una prova di materiale alternativo.

<table>
<thead>
<tr>
<th>PERCHE’?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>S</td>
</tr>
</tbody>
</table>

Tabella 4.2 - 5Whys: incompatibilità tra le temperature di essiccazione di PMMA e antiurto

Percentuale umidità troppo alta

Come spiegato in precedenza, l’umidità eccessiva è causa di un raffreddamento locale del materiale in prossimità del punto d’iniezione. Ciò porta alla formazione di un punto freddo, che determina una sottrazione di calore al flusso di materiale iniettato. Questo perciò, non avrà più le caratteristiche di omogeneità e isotropia proprie del PMMA originale, e andrà a formare così le sfiammature.

In Tabella 4.3 è proposto lo schema di risoluzione di questo problema attraverso il metodo a cascata dei 5 perché.

<table>
<thead>
<tr>
<th>PERCHE’?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>S</td>
</tr>
</tbody>
</table>

Tabella 4.3 - 5Whys: percentuale di umidità troppo alta
PERCHE’?

1. **Percentuale di umidità troppo alta.**
2. I forni principali non hanno la capacità di essiccare il materiale in 4 ore
3. I dryer non sono efficienti.
4. I dryer sono da aggiornare

 Aggiornamento dryer

Tabella 4.4 - 5Whys: percentuale di umidità troppo alta

Materiale con alta percentuale di polveri di trasporto

La lunghezza del sistema di alimentazione è causa, non solamente per questo prodotto o per questa pressa, di materiale inquinato che finisce prima in tramoggia, poi in vite di plastificazione e infine all’interno del prodotto finale. Le tabelle seguenti forniscono lo schema seguito per la risoluzione.

PERCHE’?

1. **Materiale con alta percentuale di polveri di trasporto.**
2. Frizione del materiale nel miscelamento e nel trasporto.
3. Circuito di alimentazione eccessivamente lungo

 Bypass del sistema di alimentazione attuale

Tabella 4.5 - 5Whys: materiale con alta percentuale di polveri di trasporto

PERCHE’?

1. **Materiale con alta percentuale di polveri di trasporto.**
2. Pulizia tramogge durante il cambio materiale non garantita.
3. Il cambio stampo non è normato da una checklist chiara e ufficiale.

 Creazione checklist e SOP per la pulizia tramogge

Tabella 4.6 - 5Whys: materiale con alta percentuale di polveri di trasporto
4.3. DO

Le soluzioni trovate attraverso le 5Whys sono state di volta in volta attuate, compatibilmente con i tempi necessari e la fattibilità di ognuna.

4.3.1. Incompatibilità tra PMMA e antiurto

In risposta ai risultati del 5Whys relativo al materiale, sono state eseguite le prove con due tipi di PMMA alternativi alla soluzione attuale, le quali se avessero dovuto avere esito positivo, sarebbero state adottate come soluzioni standard.

Sono dunque state eseguite le prove di shock termico sul **PMMA senza antiurto** e sul **PMMA estruso**, quest’ultimo composto da grani, ognuno dei quali è omogeneamente composto da PMMA e antiurto (la soluzione attuale invece prevede la presenza di grani di PMMA e separatamente grani di antiurto).

Figura 4.18 - Test di shock termico sui 2 diversi tipi di PMMA
Purtroppo, l’esito dei test ha dato risultati abbondantemente negativi nel caso del PMMA senza antiurto, e non sufficienti per il PMMA estruso. Tali soluzioni sono state dunque scarlate.

4.3.2. Percentuale di umidità troppo alta

Un’altra soluzione al 5Whys è stato l’aggiornamento dell’impianto di deumidificazione. A tal proposito, è stato installato, durante la WK 49, un nuovo forno a bordo pressa, il forno di mantenimento Moretto da 150 kg, in grado di mantenere il materiale nello stato richiesto di 90 °C, in sostituzione a quello vecchio e obsoleto di capienza minore, ed è stata installata inoltre una nuova tramoggia deumidificante Moretto di ultima generazione, anch’essa in grado di soddisfare le temperature richieste dal processo.

<table>
<thead>
<tr>
<th>MATERIALE</th>
<th>Mano sinistra (pezzi OK/tot)</th>
<th>Mano destra (pezzi OK/tot)</th>
<th>Esito</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMMA no antiurto</td>
<td>28%</td>
<td>38%</td>
<td>🚨🚨</td>
</tr>
<tr>
<td>PMMA estruso</td>
<td>100%</td>
<td>56%</td>
<td>🚨🚨</td>
</tr>
</tbody>
</table>

Tabella 4.7- Risultati test shock termico

Figura 4.19 - Nuovo impianto di deumidificazione Moretto
In Figura 4.20 è possibile avere una chiara visione sulle migliorie apportate da Moretto al nuovo modello di forno di mantenimento: la distribuzione di temperatura è molto più omogenea e la sua stratificazione è opportunamente controllata, così come per il flusso di materiale.

Figura 4.20 - Forno di mantenimento "hopper" vs "OTX"
Nonostante questo upgrade, durante la prima settimana di prova, in cui i tempi di essicamento erano rimasti gli stessi, non si sono potuti apprezzare cambiamenti positivi sul trend degli scarti per sfiammature, come ben visibile in Figura 4.21.

![Figura 4.21 - Trend scarti WK 50 per 03612020](image)

Nota questa invarietà nei risultati, si è perciò pensato che i tempi di essiccazione non fossero sufficienti per garantire un’umidità pari a 0.0% del materiale. Si è perciò aggiornato il 5Whys con la seconda soluzione, quella dimostrasi poi vincente: poiché i dryer del forno principale, anch’essi datati e non più efficienti, non riuscivano a portare il materiale a completa essiccazione in un tempo utile di 8 ore (4 ore di preriscaldco e 4 di essiccazione completa), si è pensato di aumentare il tempo di essiccazione del materiale fino a 30 ore. Il consumo orario di PMMA era pari a 20 kg/h, per cui la capacità di stoccaggio sarebbe dovuta salire fino a 600 kg. Data la capacità di 250 kg per ogni forno principale, si è deciso di provare a utilizzare 3 forni in serie, in aggiunta al forno di mantenimento a bordo presa.

Il risultato ottenuto, esposto nella sezione CHECK, è stato sorprendente: il valore degli scarti, nonostante non fosse completamente pari a zero, era scesa sotto il target del 5%, dopo quasi un anno di produzione con una soglia minima di 20%.

Questa soluzione finale, dopo una fase di CHECK di qualche settimana, ha decretato la chiusura di questo major kaizen, al quale non restava che la fase di standardizzazione dei risultati.
4.3.3. Materiale con alta percentuale di polveri di trasporto

Avendo risolto il problema con la soluzione prima descritta di forni in serie, l’opzione di inquinamento del materiale è passata in secondo piano, questo anche per via dei risultati negativi di una prova eseguita durante la WK 50, prima dell’utilizzo dei forni in serie, atta a dimostrare la veridicità della causa radice legata all’inquinamento.

La prova consisteva nel riempire manualmente il forno a bordo pressa di materiale, in precedenza essiccato nei forni principali, dopo aver accuratamente pulito la tramoggia, in modo tale da escludere qualsiasi influenza dei condotti di alimentazione in PVC, e di monitorare poi gli scarti dovuti a sfiammature.

Come già detto in antepreima, i risultati sono stati comunque insoddisfacenti: le sfiammature continuavano a fare da padrona tra le voci di scarto, e la pressa comunque aveva un tenore di scarti superiore al 20%.

Si è abbandonata perciò questa ipotesi e ci si è concentrati sul fattore umidità, con i conseguenti risultati positivi visti in precedenza.
4.4. CHECK

4.4.1. Raggiungimento del target

Questa penultima fase è stata portata avanti in parallelo alla fase DO, poiché ciascun’azione correttiva intrapresa, venuta alla luce dal PLAN, doveva essere verificata in itinere, a conferma della sua bontà. I grafici mostrati prima sono, infatti, una prova di quanto detto.

Si è già detto prima che l’unica soluzione che abbia portato risultati concreti sia stata l’utilizzo di forni in serie per l’essiccamiento del materiale, il quale, come si può vedere dal grafico riassuntivo proposto in Figura 4.23, ha decretato un impressionante abbassamento del tenore di scarti.

![Grafico scarto totale 03612020](image)

Figura 4.23 - CHECK: trend scarto totale 03612020

Grazie a questa soluzione, si è riusciti a scendere sotto il target previsto di 5% di scarto totale. Il major kaizen poteva dirsi quindi risolto con successo, e per quantificare tale risultato positivo, in questa fase si è redatto il B/C, cioè il rapporto benefici/costi.
4.4.2. Benefici/costi

Il calcolo del rapporto è stato condotto dal team kaizen, con l’aiuto del Cost Deployment, ed è stato eseguito valutando il costo di ciascun pezzo stampato. Esso è stato poi moltiplicato per il numero di scarti per sfiammature avuti in un anno di produzione, ottenendo così il loro valore monetario. Al risultato ottenuto è stato poi sottratto il valore in euro degli scarti per sfiammature che si sarebbe avuto, nello stesso anno, nel caso la percentuale di scarti fosse stata esattamente pari al target del 5% prefissato. In questo modo sono stati ottenuti i benefici del major kaizen.

Nella voce dei costi, invece, è stata introdotta solamente la spesa del nuovo impianto di deumidificazione, nonostante si debba tenere conto, a rigore, anche delle ore spese dai lavoratori del team kaizen nelle sedute di brainstorming.

Nella seguente tabella è riepilogato quanto detto sopra, e da essa si può notare un rapporto benefici/costi molto positivo, pari a 2,5.

| TABELLA B/C |
|-----------------|-----------------|
| Quantità totale scarti per sfiammature in 1 anno | 18339 |
| Costo al pezzo | € 2,16 |
| Valore scarti | € 39.612,24 |
| Quantità target scarti per sfiammature in 1 anno | 5945,45 |
| Valore scarti target | € 12.842,17 |
| Benefici | € 26.770,07 |
| Costo IMPIANTO DI DEUMIDIFICAZIONE | € 10.500,00 |
| B/C | 2,55 |

Tabella 4.8 - Tabella benefici/costi
4.5. ACT

L’ultima sezione del *kaizen* è dedicata alla standardizzazione delle soluzioni al problema originario, in modo tale che non si verifichi in futuro, o quantomeno si possa più facilmente intervenire in caso esso debba ripresentarsi.

4.5.1. Aggiornamento tempo di deumidificazione materiale

La prima standardizzazione, la più importante, è riferita al tempo di deumidificazione del materiale all’interno dei forni principali. Esso è stato prontamente aggiornato dal responsabile del magazzino materie prime all’interno del database aziendale, così da tramandare l’informazione a chi in futuro dovrà ricoprire il ruolo che oggi lui detiene.

In Figura 4.24 è proposto un estratto dal database aggiornato del magazzino materie prime di OLSA.

4.5.2. Creazione checklist pressa

Si è pensato poi, di introdurre un documento ufficiale, una *checklist*, da utilizzare come guida, in caso di presenza di sfiammature, al fine di individuare più rapidamente possibile la causa e poter così intervenire prontamente per la risoluzione del problema.

In questo modo, anche il tecnologo o il capoturno meno esperto in futuro sarà in grado di riconoscere il malfunzionamento della pressa, e di agire repentinamente per evitare che troppi pezzi siano scartati.
Poiché sono emerse altre problematiche durante il *kaizen*, oltre alle sfiammature, come per esempio la *presenza di materiale inquinato* dovuto alla troppo aleatoria pulizia della tramoggia, si è pensato di creare anche in questo caso 2 documenti ufficiali, una *SOP* e una *checklist*, per facilitare il lavoro degli operatori durante il cambio stampo, la parte più critica sotto il punto di vista della preservazione delle condizioni della materia prima.

La *checklist* è stata redatta in simbiosi con il progetto SMED, di cui si è già parlato in precedenza, e si compone di una serie di azioni schedate e suddivise in 2: le azioni che deve intraprendere l’operatore rosso e quelle che invece deve eseguire il blu. In questo modo, gli operatori possono lavorare sul
cambio stampo in parallelo, e ridurne notevolmente i tempi, che è per l’appunto l’obiettivo del \textit{Single Minute Exchange of Die}.

La chiarezza delle operazioni da seguire durante il cambio stampo, porta ad annullare eventuali iniziative personali dell’operatore che possono portare alla formazione di materiale inquinato o degradato (come la pulizia del cilindro in presenza di PMMA o lo spegnimento prematuro dei termoregolatori).

![Figura 4.26 - Checklist cambio stampo pressa 41](image-url)
Affinché la pulizia tramoggia sia eseguita correttamente e senza iniziative dell’operatore che possono intaccare la sterilità della materia prima, è stata poi redatta una SOP (Standard Operative Procedure), comunicativamente molto chiara, la quale è stata esposta agli operatori dal formatore, il capoturno, e poi firmata da ognuno di essi, per così sancire il loro impegno a rispettarla.

Figura 4.27 - SOP frequenza pulizia tramoggia
5. Conclusioni

In data 23 marzo 2017, OLSA è stata oggetto dell’audit per l’acquisizione del titolo di azienda World Class.

Per tale occasione, essa ha investito molti sforzi, economici e in termini di tempo e risorse umane. Era, infatti, da un paio di anni che il motore del WCM si era acceso al suo interno, e questo ha contribuito a cambiare profondamente ogni sistema radicatosi nell’arco di decenni di produzione secondo il vecchio stampo produttivo.

Per questo evento, ciascun pillar ha dovuto presentare il proprio operato di fronte all’auditor, il quale avrebbe poi deciso se assegnare un punto al pilastro che lo meritasse.

L'impianto è valutato per ogni metodologia con un punteggio compreso tra 0 e 5. La valutazione complessiva dell'impianto è sintetizzata in un indicatore chiamato **Index Implementation Methodology (IIM)**, ottenuto come la somma di tutti i livelli raggiunti nell’implementazione di ciascuna metodologia.

![Figura 5.1 - Sistema di classificazione di aziende World Class secondo l’IIM](image)
Il major kaizen sulle sfiamature della lente Porsche 911 è stato presentato ufficialmente come metodologia kaizen del Quality Control, e si può dire abbia contribuito all’ottenimento dei punti per il relativo pilastro, nel quale ho avuto il piacere di militare durante il mio stage.

Complessivamente, OLSA è riuscita a guadagnare 17 punti, ancora lontani dai 50 di una azienda WCM di classe bronzo, ma comunque molto gratificante come ingresso in questo sistema.

E’ stata un’importante conquista da parte di OLSA, che ora può ambire a crescere ulteriormente e con più vigore nel mondo del World Class Manufacturing, e, grazie a esso, nell’industria dell’autoveicolo, in cui sempre più attori decidono di prendere parte vestendo i panni di azienda World Class.

E’ stata però, un’importante conquista anche per me, poiché la gestione di un major kaizen così complesso e strategicamente importante come quello della lente Porsche, ha reso possibile la mia crescita personale e professionale, fornendomi capacità di problem solving che prima non potevo dire di avere, e introducendomi nel mondo del World Class Manufacturing, il presente ma soprattutto il futuro dell’industria 4.0.
6. Bibliografia

CNH Industrial. 2013. AG CNH WCM SPECIAL ACTION. 2013. [Workpaper].

—. 2015. FI Book of Knowledge. 2015. [Workpaper].

—. 2014. QC Book of Knowledge. 2014. [Workpaper].

7. Ringraziamenti

Se sono riuscito ad arrivare fin qui con fatica e sudore, al termine del mio viaggio, è grazie non alle mie sole forze, ma alle persone che mi hanno accompagnato fino a oggi, e che mi sono state vicine anche nei momenti bui, in cui la luce che vedo oggi sembrava così lontana.

Grazie ai miei genitori, sostenitori morali ed economici di questo cammino, che mi han sempre spronato a non mollare, a studiare e a darci dentro fino alla fine, e che addirittura mi hanno premiato in anticipo, come augurio. Senza di loro sicuramente non sarei qui oggi.

Grazie alle mie nonne, e alle loro esagerate preghiere che finalmente si sono avverate.

Grazie a Miky, la sorella maggiore che tutti dovrebbero avere e con cui ho avuto l’onore di condividere questa vita, e a Vale, il mio maestro di chitarra e il mio “cognato” preferito.

Grazie a Lele, compagno di una vita, con il quale non è possibile sentire le centinaia di chilometri che ci separano.

Grazie a Ghibba e Benni, presenti col cuore anche se dall’altra parte del mondo.

Grazie a Ste, e per il suo prendere la vita con il sorriso come faccio io, e a Sara per la sua dolcezza.

Grazie a Beppe, e la sua tranquillità e la sua sicurezza nell’affrontare le situazioni, e ad Eli per la sua spensieratezza che sempre mi trasmette.

Grazie ad Ale, compagno fedele di una vita, sul quale so di poter sempre contare, e ad Ali per la sua gentilezza nel dare i consigli migliori.

Grazie a Moli, il buon vecchio Spark, che so esserci sempre, anche se milanese.

Grazie a Mozza, la mia migliore amica, che mi ha teso la mano nei momenti difficili.

Grazie Jae, che anche se parigina, rimarrà per sempre la mia cara e vecchia Joy.

Grazie ad Alessandro e Alice, amici purtroppo da meno tempo, ma già incredibilmente vicini.

Grazie al mio compagno di scorribande, mio zio Ino, divenuto mio fratello negli ultimi tempi.

Grazie a Simo, il mio pizzaiolo di fiducia, divenuto mio amico fedele nell’ultimo periodo.
Grazie a tutti i miei amici che qui non ho citato, che comunque mi hanno dato un pezzo di loro durante le mie disavventure, come Curlo e Ali, o Mari e Ste, con i quali ci vediamo pochissime volte ahimè.

Infine, grazie a te, Alexia, amore della mia vita. E’ il ringraziamento più difficile da fare, poiché nell’ultimo periodo, quello più importante e conclusivo, non ci sei stata. Non posso però non ringraziarti di quanto mi hai sempre dato, di quanto tu mi sia stata vicina nei momenti bui del mio percorso, e credimi se dico che senza di te, non sarei qui oggi.