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Introduction 
 
The thesis is devoted to the study of the dynamics of structures such as turbine bladed disks 
for aeronautic applications. The subject will be explored through the chapters in order to 
understand what are the dynamic characteristics of such structures and how they interact with 
the outer environment and the various excitation sources, so to evidence the critical 
interaction conditions that can lead to instability problems and failure. As a matter of fact, the 
blades, which are the most critical components of the turbine system, can vibrate in resonance 
conditions and this can reduce the fatigue life of the component. Then, a preliminary study of 
the dynamics is of primary importance since the investigation of fractures and components 
life in general is very difficult to be conducted once the turbine is installed for the application. 
The vibrations of bladed disks are strongly influenced by the working conditions of the 
system, such as rotational speed of the turbine rotor and nature of the excitation sources. 
Another issue which can remarkably affect the vibrations of the blades is represented by the 
problem of the mistuning. This term is commonly used in literature to indicate the lack of 
symmetry of the bladed disk due to the uncertainty on the mechanical properties of the disk 
structure. The mistuning phenomenon and its effect on the vibrations are widely explored in 
the thesis and a method of mistuning identification is provided in order to forecast the 
behavior of the bladed disk during the application. The final part of the thesis is dedicated to 
the effect of friction interactions with special devices or between the parts of the bladed disk 
itself, which are often purposely designed in order to add damping to the structure. This leads 
the study of the dynamics in the non-linear field. For this reason other analytical methods are 
used to analyze the vibrations as well as to evaluate the benefits in terms of damping of the 
vibration with respect to the situation in which only the material damping is considered. The 
aforementioned topics are organized in the chapters of this thesis in order to maintain 
continuity among them: In Chapter 1 the dynamic characteristics of a structure such as the 
bladed disk are explored defining the important concept of nodal diameter which has a 
primary role in the disk dynamics. Then, a modal analysis is conducted on the structure which 
is modeled by adopting a lumped parameters approach, so to evidence the main properties of 
the mode shapes of such systems. A parallel study is also performed on the system by 
exploiting the property of cyclic symmetry of the bladed disk. This important property helps 
the designer in the study of the whole structure by reducing a lot the complexity of the model. 
Chapter 2 is dedicated to study of the forced response of the structure. This brings to the 
definition of the external excitation force and the Engine Order (EO). The forced response is 
computed both for the full system model and by exploiting the cyclic symmetry of the disk. In 
Chapter 3 the mistuning phenomenon is studied. In particular, what is the nature of mistuning 
and what it depends on, how it affects the forced response of the blades and which are the 
main issues that occur. In the second part of this chapter a method of mistuning identification 
is proposed in order to quantify the amount of mistuning starting from the Frequency 
Response Function (FRF) of the tested structure. The identification makes use of the FRF 
Decoupling Method in order to investigate the mechanical properties of the joints, which 
connect the blades to the disk, representing one of the major cause of mistuning because of 
the uncertainty linked to their dynamic behavior. Chapter 4 analyzes the forced response of 
the bladed disk in presence of sliding friction between parts of the disk itself or with external 
devices. As it was mentioned before, friction behaves as a damping agent, so it contributes to 
reduce the response amplitude of the blades in resonance condition. In more detail, three 
different situations are analyzed. In the first case a blade-to-ground damper, which acts 
between the blade and a external fixed reference is incorporated in the model, in order to 
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simulate the action of some particular devices that can be provided in the design of the bladed 
disk. A second case assumes to have sliding friction in the joints connecting the blades to the 
disk. The last case, more restrictive than the previous cases, considers a sliding friction 
between adjacent blades, if the constructional design of the blades allows such a situation, as 
for shrouded blades.  
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Chapter 1 
 
Dynamics of a Bladed Disk 
 
1.1   Nodal diameter of a circular structure 
 
A bladed disk is a turbo-machine component which consists of a disk and the blades attached 
onto the disk body. These structures are characterized by a cyclic symmetry. As a 
consequence, they show particular dynamic characteristics which play a primary role in the 
vibrations of such components. These characteristics can be studied, as a first approach, by 
assuming the bladed disk to represent a circular membrane. Of course, this is a reductive 
hypothesis because a bladed disk is a tridimensional structure, so it shows a dynamic behavior 
that is much more complex than the one showed by a membrane. However, this assumption is 
enough to understand the dynamic behavior from the general point of view and it represents a 
good starting point for the discussion. 
 
 

                                
Figure 1.1. Representation of a bladed disk 

 
 
The main feature of interest is represented by the so called nodal diameter. The nodal 
diameter is a locus of points called nodes, which doesn’t move at a specific frequency.    
There are more than one nodal diameters and each of them corresponds to a particular value 
of frequency. The number of nodal diameters is strictly connected to the number of sectors in 
which a bladed disk can be subdivided in such a way to satisfy the property a cyclic 
symmetry.  
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For this reason a sector is identified with a blade and a correspondent slice of disk body, 
where the blade is attached, so to form a closed circular structure made of substructures 
identical with each other (figure 1.2). In this way the number of sectors   coincides with the 
number of blades. 
 

 
Figure 1.2. Representation of a disk sector 

 
Once the number of sectors has been defined, a relation between the number of nodal 
diameters ,   , and the and number of sectors ,   , can be defined. 

-        
 

 
      if    is even. 

-        
   

 
  if   is odd. 

The nodal diameters have particular implications on the mode shapes. Before going deeply in 
detail of the modal analysis, a modeling method has to be adopted.  
 
 

1.2   Modeling of the structure 
 
The method used for the dynamic study of the bladed disk follows a lumped parameters 
approach. The model is constituted by two equivalent masses    and    , respectively the 
mass of disk sector and the mass of the blade , and three stiffness elements    ,    and    , 
where the first two stiffness elements are connected to the disk and the last one is connected 
to the blade. The lumped parameters are disposed in such a way to build an equivalent model 
of the structure (Figure 1.3). Since the number of sectors is  , as a consequence the number 
of degrees of freedom of the lumped parameters model is 2 . Being     the physical 
displacement coordinates vector of dimension      ,     and     respectively the mass 
matrix and stiffness matrix of dimension       (they are derived in Appendix 1), the 
equations of motion can be written in the matrix form (1.1). 
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Figure 1.3. Lumped parameters model 

 

 
                                                                                                                         (1.1a)   
                                                                                                                                     (1.1b) 
 where 

-         , degrees of freedom of the disk. 
-             , degrees of freedom of the blades. 

No external forces are applied at this stage in order to perform the modal analysis of the 
system. It is well known that this set of linear time-invariant differential equations admits 
solutions of the type (1.2), where       is the amplitude response vector,   is the rotational  
frequency (or simply the frequency) and    is the phase. 
 
                  ;      with                                                                               (1.2) 
 
By taking the first and the second derivative in the time domain of the displacement 
coordinates    , respectively speed and acceleration , it is possible to substitute into in the 
equation (1.1a) obtaining (1.3), (the cosine is in general different from zero so it can be 
omitted in the equation). 
 
                                                                                                                        (1.3) 
 
The non trivial solution is the case of interest of such a equation, then the characteristic 
equation which represents the eigenvalues  problem is ready to be solved (1.4). 
 

                                                                                                                          (1.4) 
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The equation (1.4) allows to find the eigenvalues of the system,   
 . They correspond to the 

square of the natural frequencies    , where the subscript   goes from   to    , and they are 
usually plot in the Fre-ND diagram. In that diagram the natural frequencies are grouped into 
families which describe the different behaviors that can be flexural rather than torsional, 
according to the complexity of the model, and are plotted against nodal diameter number. 
Now the eigenvectors       , which represent the mode shapes of the structure, can be easily 
computed by substituting the eigenvalues in (1.3). The eigenvectors of a cyclically symmetric 
system show peculiar features. They are divided into two categories, depending on the nodal 
diameter. The nodal diameters   and  

 
 are connected to the stationary mode shapes , by 

which all the sectors vibrate with the same amplitude and phase. The other nodal diameters 
are linked to the rotating mode shapes. These modes are grouped in couples for each natural 
frequency and they are orthogonal with each other. They can be described by harmonic 
functions of the type          or         , where their period depends on the nodal diameter 
 . The Fre-ND diagram of the system is showed in figure 1.4. Since the model consists of    
degrees of freedom , two families of natural frequency can be seen in the diagram. In figures 
1.5, 1.6 and 1.7 three examples of eigenvectors are reported. In detail, figure 1.5 shows the 
eigenvectors associated to the nodal diameter 0 and  

 
 , while figure 1.6 and 1.7 show those 

associated to nodal diameters 1 and 5. Note that the rotating eigenvectors have been split into 
two separate plots in order to distinguish between the degrees of freedom (dofs) of the disk 
and the degrees of freedom of the blades. 
 
 

 
Figure 1.4. Fre-ND diagram 
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           Figure 1.5a. Stationary modes, n=0                   Figure 1.5b. Stationary modes, n=N/2 
 
 

           
Figure 1.6a. Rotating modes, n=1, disk dofs        Figure 1.6b. Rotating modes, n=1, blade dofs 
 
 

  

 Figure 1.7a. Rotating modes, n=5, disk dofs       Figure 1.7b. Rotating modes, n=5, blade dofs 
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In order to better visualize the mode shapes, in figure 1.8, 1.9 and 1.10 some graphical 
representations of eigenvectors are showed in a 3D view of the disk which appears deformed 
according to the specific eigenvectors. These results are obtained by means of a proper CAD 
system (SOLIDWORKS). The three cases of eigenvectors reported in the figures coincide 
with the cases in figures 1.5, 1.6 and 1.7, respectively for nodal diameters  0, 1 and 5. A color 
scale is useful to evidence the deformation of the structure from no deformed areas (dark 
blue) to highly deformed areas (red). 
 
 
 
 

 
Figure 1.8. 3D view of mode shapes, nodal diameter n=0. 

 

 

 

 

Figure 1.9. 3D view of mode shapes, nodal diameter n=1. 
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Figure 1.10. 3D view of mode shapes, nodal diameter n=5. 
 

 

 

1.3    Cyclic symmetry study 
 
A bladed disk satisfies the property of cyclic symmetry and this can be exploited for the study 
of the dynamics, reducing a lot the efforts to compute it. In this paragraph the subject is 
developed and a new model which satisfies the cyclic symmetry property is built, so to be 
able to study the dynamics of the system by focusing on a single sector. Then, it proceeds by 
considering the lumped parameters model of the sector. Among the various solution, here one 
is adopted and the representation of the equivalent model is showed in figure 1.11. Referring 
to the full model (showed in figure 1.3), a sector model is defined in order to respect the 
cyclic symmetry. For this reason half of the masses of the disk have been considered and only 
one blade is included in the sector. 

. 
Figure 1.11. Lumped parameters model of the sector. 
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At this stage, the definition of a new set of physical coordinates is needed in order to write the 
equations of motion. Now, the model is constituted by three degrees of freedom only. It has to 
be noted that if the number of sector   is very large, a remarkable reduction of the problem 
can be obtained by means of this property. The new set of displacement coordinates is: 
 

                        
                                                                                                       (1.5) 

 
where 

-     , sector left hand side dof. 
-    , dof associated to the blade. 
-      , sector right hand side dof. 

 

Once the new coordinates     have been defined, the mass matrix      and the stiffness  
matrix      of the system can be built (the detailed procedure to derive these matrices is 
reported in Appendix 2) and the new set of equations of motion in the matrix form is written 
in equation (1.6). For easiness in the writing process the parenthesis to identify vectors and 
matrices are omitted in the equations of motion. 
 

                                                                                                                               (1.6) 
 
Still no information on the other sectors are introduced in the equations, at this stage. Then, a 
relation between the degrees of freedom which constitute the left and the right boundaries of 
the sector has to be defined. As a matter of fact, the mode shapes can be expressed by means 
of harmonic functions and their periods depends on the nodal diameter. A proper choice, for 
example, is to expressed the right hand side dof as a function of the left hand side dof through 
the introduction of a phase   (1.7). The phase is the variable dependent on the nodal diameter. 
Through this condition the degrees of freedom of the system are reduced from three to two, 
since one dof is immediately defined from the other one. As a consequence, the new set of 
coordinates      (1.8a) can be related the old     multiplying it by a proper transformation 
matrix     , which contains the phase information (1.8b).  
 

                                                                                                                                  (1.7) 
 

               
 
                                                                                                                (1.8a) 

 
                                                                                                                                  (1.8b) 

where         
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Substituting (1.8b) into (1.6) and multiplying both sides of the equation by the transpose 
transformation matrix       a new set of equations is obtained, where the new mass matrix 
   

   and stiffness matrix       , with dimension    , are functions of the phase  , as showed 
in the equations (1.9). 
 

  
           

                                                                                                               (1.9) 
 

where:            
                                                                       

 

The phase   can assume both positive and negative values of the inter-blade phase angle    
(1.10). For each nodal diameter, a couple of eigenvectors can be computed by performing 
modal analysis of the system (1.9) and they are collected in the modal matrix            so to 
obtain  

 
   modal matrices of this type ( if only positive values of inter-blade phase angle 

are considered ). 
 

       
  

 
   ;      with           

 

 
    and    even  number                                (1.10) 

 

A comparison between the eigenvectors obtained by studying the full system with    degrees 
of freedom and the eigenvectors obtained by means of the cyclic symmetry can be conducted 
if the last mentioned eigenvectors are expanded. The expansion is made by multiplying each 
modal matrix         , with dimension     , by a proper expansion matrix     ] (1.11), 
with dimension      , so to get the eigenvectors in the same dimension of those obtained in 
the full system study. For each nodal diameter a couple of expanded eigenvectors are 
computed , whether they are stationary or rotating modes.  
 

                                                                                                                            (1.11) 

 

        

 
       
 

    with index            

 

The eigenvectors contained in the expanded modal matrix [    ] are complex. It is 
experimentally verified that they have a phase angle with respect to the full study 
eigenvectors and they differs in amplitude of a factor equal to   . In figure 1.12a and figure 
1.12b a 3D view of the eigenvectors (nodal diameters 1 and 5) put into comparison describes 
better such a concept.  
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Figure 1.12a. Comparison between full study eigenvectors and expanded eigenvectors, nodal diameter 1. 

 

 

 

 

 
Figure 1.12b. Comparison between full study eigenvectors and expanded eigenvectors, nodal diameter 5 
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Chapter 2 
 
Forced Response  
 
2.1 Forced response of the bladed disk 
 
In turbo-machine system, the blades represent usually the most critical components. It is 
observed from investigations that failures occur because of fatigue. This suggests that the 
blades vibrate at their resonance frequency with high vibration amplitude and this reduces the 
component life. Since the resonance conditions are not always avoidable, it is worth to make 
efforts to study the forced response and resonance of the blades deeply in detail. The external 
excitation , for a turbo-machine bladed disk in exam, is given by the interaction between the 
exhaust gases coming from the combustor of the engine. The gas fluxes reach the turbine 
stage through nozzles which are disposed circumferentially in the direction of the blades. The 
fact that the turbine rotates makes the excitation force a rotating force in the turbine reference 
frame (figure 2.1). The excitation frequencies for which resonance occurs are multiple of the 
rotational speed of the disk. In literature, this concept is described by a quantity called Engine 
Order (EO) (2.1). The Engine Order expresses the ratio between the excitation frequency and 
the rotational frequency of the disk. The excitation force can be assumed to be an harmonic 
force. This is not definitely true because the interaction between the gas fluxes and the blades 
is more impulsive but a Fourier series study can be operated so to deal with harmonic 
functions. 
 

 
Figure 2.1. Representation of the excitation force. 
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                                                                                                                                  (2.1) 

where   is the excitation frequency and   is the rotational frequency of the disk. 

                                                                                                                                    (2.2a) 

                                                                                                                              (2.2b) 
 
The Engine Order , defined in this way, is meant to excite in resonance condition a mode 
associated to a specific nodal diameter. The equations (2.2) describe the relation between EO 
and nodal diameter  . So, a mode with nodal diameter   can be excited by an EO having the 
same value but also by an EO equal to    . The cause for this last relation (2.2b) is linked 
with the aliasing phenomenon. This phenomenon is very well known in various engineering 
fields. In this particular case , the rotation of the bladed disk, considering that the blades do 
not constitute a continuum in space but they are equally spaced along the circumference of the 
disk, causes a sampling effect of the harmonic force. When the EO is higher than  

 
 the 

sampling of the forcing signal is not “correct”. It means that the disk is not able to see such a 
excitation force but it sees a force with a lower excitation frequency. Then, each blade 
undergoes the same excitation force in terms of amplitude but with a phase lag which depends 
on the position of the blade. The excitation force vector     acting on the blades, in the 
rotating reference frame, fixed to the disk, can be written (equation 2.3) as an harmonic 
function with excitation frequency   and amplitude         . The vector         is a complex 
vector  (2.4), because it introduces into the expression the inter-blade phase angle together 
with the information of the position of the blade. 
 

            
                                                                                                                         (2.3) 

 

             
                                                                                                                       (2.4) 

 
where  

-     , amplitude vector of the forcing function (     . 

-  , inter-blade phase angle (  
  

 
   

  

 
   ). 

-  , position number of the blade (         ). 

In order to evaluate the forced response of the system a damping matrix has to be considered 
in the equations of motion system (2.5). For simplicity damping is assumed to be a 
proportional viscous damping. This assumption allows to build the damping matrix by fixing 
a value of modal damping ratio    for each mode. Since the modal masses and the modal 
stiffness are known from the modal analysis, a modal damping matrix can be derived. As a 
consequence, the damping matrix     can be computed by pre-multiplying the modal 
damping matrix      by the inverse of the transpose modal matrix,          , and post-
multiplying      by the inverse of the modal matrix        , (2.6). 
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                                                                                                                   (2.5) 
 
                     

                                                                                                    (2.6a) 
 

                                                                                                                       (2.6b)  

 
The differential equations system admits solutions of the type (2.7). Substituting (2.7) into 
(2.5) and taking the first and the second derivative of (2.7) it is possible to derive the 
expression of the response amplitude      in the frequency domain as the product of the 
inverse of the dynamic stiffness matrix       

  
 and the force vector         (2.8). 

          
     with                                                                                                  (2.7) 

 

           
  
                                                                                                                (2.8a) 

 

                                                                                                             (2.8b) 

 
Two main facts emerge from the computation of the forced response. The resonance 
frequency changes as the EO changes and also the amplitude changes with EO. The trend of 
the resonance frequencies can be observed in the Campbell diagram. This diagrams collects 
the resonance frequencies as functions of the rotational speed of the disk and the EO. The 
figure 2.2 and the figure 2.3 show respectively the Campbell diagram and the forced response 
of the blades for different values of EO. This results have been obtained by considering a 
unitary amplitude external force (force applied to the blades dofs only), a modal damping 
ratio of 0.1% for a bladed disk with 146 blades. In the Campbell diagram the aliasing 
phenomenon can be clearly highlighted, in fact, as the EO gets higher than  

 
 ( E80, E90, 

E100) the resonance frequencies start to decrease. 
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Figure 2.2a. Campbell diagram. 

 
 

 
Figure 2.2b. Enlargement of the Campbell diagram in the high EO zone. 
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Figure 2.3. Forced response of the blade at different EO. 

 
 
 

2.2 Forced response by means of cyclic symmetry 
 
The forced response of the system can be also computed by exploiting the cyclic symmetry 
property. As it was already explained in Chapter 1, the method allows to reduce remarkably 
the number of degrees of freedom. The choice of the sector model leads to a system having 
three degrees of freedom only. The excitation force, as in the full system analysis, is applied 
to the degree of freedom of the blade. The EO enters the equations by means of the phase  , 
through which the continuity relation between the left hand side dof and the right end side dof 
is established. By recalling the equation of motion in cyclic symmetry (1.9), a damping 
matrix, obtained in the same way of the damping matrix in the full system analysis, is 
introduced into the equation (2.9). 
 

  
           

          
              

                                                                           (2.9) 

 

Being                
 
 , the amplitude force vector is             

 . The forced response 
can be computed through the inversion of the dynamic stiffness matrix , as in the case of the 
full system study. In figure 2.4 the forced response of the blade computed in the full-system 
model and the one computed by means of the cyclic symmetry are put in comparison. They 
can be perfectly overlapped. 
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Figure 2.4. Full-System and Cyclic Symmetry Response put in comparison (EO=10). 
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Chapter 3 
 
Mistuning analysis 
 
The mistuning phenomenon affects largely the vibrations of a bladed disk and it makes the 
design more difficult, since it is not easy to control or predict a priori and it can lead to very 
different vibration responses in terms of amplitude and resonance frequency. It is based on the 
fact that the bladed disk is not perfectly symmetric due to uncertainties in the mechanical 
properties of parts which constitute the whole structure. The aim of this chapter is to analyze 
the mistuning phenomenon by studying the causes that generate it and deriving  the responses 
associated to a mistuned bladed disk. 

 
3.1  Brief history of mistuning studies 
 
The mistuning study began in the 1960s when researches like Tobias and Arnolds [1] , 
Whitehead [2] and Ewins [3] started to analyze, in their works, the physics of the mistuning 
phenomenon and they laid the foundations for the next studies. They tried to study the 
vibration of a mistuned bladed disk  by giving solutions to avoid the negative effect of such a 
phenomenon. It is possible to distinguish between two groups of studies: a first group is based 
on the structural analysis through the study of the forced response of a mistuned bladed disk, 
among which [1],[2] and [3]; the second group (among the first studies can be cited [4],[5] 
and [6] ) focused the attention on the aerodynamics aspects for turbo-machine applications, 
which lead to instability problems like flutter. Despite these efforts in the understanding of the 
subject, through methodologies which got increasingly sophisticated,  the main problems 
linked to mistuning remained unsolved until the 1990s when different approaches had been 
adopted in order to better understand the mistuning phenomenon. In fact, new approaches 
were followed in the early studies which involve the use of lumped parameters model with 
few degrees of freedom. Also statistical methods have been adopted. After 1990s, 
contemporary studies led to the definition of a new method called “Reduced Order Models” 
(ROMs) which is based on a realistic finite element model. Among the several researches 
which were conducted on ROMs, those by Petrov et al. [7] , Yang and Griffin [8] and Feiner 
and Griffin [9] are cited as representative of the study field. Other contemporary studies, like 
Griffin[10], Wang [11] and Petrov and Ewins [12],  provide modeling with incorporated 
friction dampers to reduce as much as possible the amplitude vibration in resonance 
conditions. 
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3.2 Nature of the mistuning phenomenon 
 
The term “mistuning” refers to the hypothesis that the bladed disk is not perfectly symmetric. 
This situation is due to the fact that there are tolerances on the geometry and the design in 
general of the bladed disk which affect the production process of the parts and cause the lack 
of cyclic symmetry of the structure. The mistuning can be also generated by a different 
behavior of the blades, which are jointed to the disk, and the uncertainty linked to the joints 
can influence the stiffness of the blades, then the behavior of the whole structure. Here, the 
attempt is to generate a condition of mistuning, to be applied to the lumped parameters model 
in exam, and compute the forced response of the blades. Of course, this can be applied only to 
the full system because of the lack of symmetry of the structure. The cause of mistuning is not 
known in general. However, here such a condition has to be generated by properly modifying 
the mechanical properties that are available in the model. This can be done by acting on the 
masses of the blades    or on the stiffness of blades   . Then, a normal distribution of errors 
around the nominal value of the property has to be generated, with a known standard 
deviation and mean value equal to zero. Since the mistuning problem is connected with 
random errors, it is a good choice to create more than one set of random errors and study all 
of them separately. Here, five different sets or pattern of mistuning have been considered. 
The figures 3.1 and 3.2 show the probability density function of the first pattern, respectively 
applied to the masses    (nominal value        = 0.5 kg ) and to the stiffness    ( nominal 
value       = 9.5 E6 N/m ).  

 

 
Figure 3.1. Probability density function of the pattern 1 on the masses   . 
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Figure 3.2. Probability density function of the pattern 1 on the stiffness   . 

 
In order to understand well how mistuning affects the forced response of the system it is 
necessary to consider different level of mistuning. Here the blade masses are supposed to be 
mistuned, maintaining the stiffness at the nominal value. Then, a good choice is to act on each 
pattern by amplifying the mistuning level. This results into an amplification of the standard 
deviation of a specific pattern. Practically, this is done by considering a set of mistuning 
amplification coefficient     which multiplies the error  between the i-th blade mass      of 
the mistuned bladed disk, according to a certain pattern of mistuning, and the nominal value 
of that mass in the tuned bladed disk case,       .This is expressed in the equations (3.1). 

 

    
                                                                                                                   (3.1a) 

 

                                                                                                                        (3.1b) 

 

So, the masses of the blades     
  are derived by the application of the amplification 

coefficient    to the error between the i-th mass of a specific pattern and the nominal value. 
Since the procedure does not modify the original pattern but it only amplifies the magnitude 
of mistuning, the parameter which gives the information of this magnitude is the standard 
deviation    which is derived by the multiplication of the standard deviation of the mistuning 
pattern    times the amplification coefficient (3.2). This is possible since the amplification of 
mistuning does not modify the mean value of the pattern which is kept equal to the nominal 
value       . 
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                                                                                                                                     (3.2) 

 
The forced response is computed for different mistuning magnitudes characterized by 
different standard deviations, once a specific pattern has been applied. The standard 
deviations applied to the system are reported in table 3.1, while the figures 3.3 show the   
blade masses of pattern 1 computed for each value of standard deviation. 

 

Standard deviation σp (kg) 

ap 0,01 0,1 0,5 1 2 3 5 10 

σp (kg) 0,00013 0,0013 0,0065 0,013 0,026 0,039 0,065 0,13 

 
Table 3.1. Standard deviations of the blade mass  

 

 
Figure 3.3a. Mass distribution for    = 0.01. 

 

 
Figure 3.3b. Mass distribution for    = 0.1. 
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Figure 3.3c. Mass distribution for    = 0.5. 

 

 
Figure 3.3d. Mass distribution for    = 1. 

 

 
Figure 3.3e. Mass distribution for    = 2 
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. 

 
Figure 3.3f. Mass distribution for    = 3. 

 

 
Figure 3.3g. Mass distribution for    = 5. 

 

 
Figure 3.3h. Mass distribution for    = 10. 
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3.3 Effects of mistuning on the forced response 
 
Once the masses have been defined for each level of mistuning, they can be applied to the 
models in order to build the new mass and stiffness matrix of the mistuned bladed disk,      
and     , and the forced response can be computed. The most significant result of the forced 
response is that the blades do not vibrate in the same way, differently from the case of a tuned 
bladed disk. Some blades can vibrate with an amplitude which is considerably higher with 
respect to the tuned case. This represents a very critical issue at the design stage because 
mistuning is something that cannot be known a priori but it affects a lot the response. The aim 
of the computation is to understand the behavior of the mistuned structure and to explore the 
response of all the blades at different levels of mistuning. In figures 3.4 are reported some 
example of blade responses derived for different amplification coefficients (   going from 
0.01 to 3). The responses are computed by assuming a unitary amplitude of the external force 
and EO equal to 5. From these figures it is easy to see that the mistuning level influences 
remarkably the forced response in different ways from one blade to another one. Some of 
them undergo a large increase in the amplitude (figure 3.4d) when the amount of the 
mistuning increases. Others do not show any considerable change (figure 3.4a) or can also 
decrease in amplitude, showing sometimes two peaks in the neighborhood of the resonance 
frequency of the tuned case. This last situation suggests that, for some blades, mistuning can 
also behaves as a dynamic absorber. Since each blade response is different from the others , it 
is useful to plot into a unique diagram the maximum amplitudes of all the responses against 
amplification coefficient. For a more intuitive diagram is convenient to provide the 
magnification factor of the blades, which expresses the normalized maximum amplitude with 
respect to the tuned case. Figures 3.5 show the trend of the magnification factors of all the 
blades as functions of the amplification coefficients, for different patterns (EO =5). 
 
 

 
Figure 3.4a. Forced response of blade 4 by varying    . 
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Figure 3.4b. Forced response of blade 9 by varying    . 

 

 
Figure 3.4c. Forced response of blade 11 by varying    . 

 

 
Figure 3.4d. Forced response of blade 16 by varying    . 
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Figure 3.5a. Magnification factors against    ( pattern 1 ). 

 

 
Figure 3.5b. Magnification factors against    ( pattern 2 ). 

 

 
Figure 3.5c. Magnification factors against    ( pattern 3 ). 
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Figure 3.5d. Magnification factors against    ( pattern 4 ). 

 

 
Figure 3.5e. Magnification factors against    ( pattern 5 ). 

 
 
From figures 3.5 different trends of the magnification factor can be noted. For very low 
amplification coefficients (0.1, 0.01) the mistuned disk behaves as if it was tuned 
(magnification factor = 1). As the amount of mistuning increases, some of the magnification 
factors get very high value, others reach a maximum and then decrease. In the figures 3.6 the 
magnification factors of each blade are compared with the mass distribution, according to a 
specific pattern and amplification coefficient. It is interested to note that, even for a small 
perturbation in the mass, two adjacent blades can have completely different responses. So, the 
mistuning phenomenon has not to be connected to the mechanical properties of each single 
blade, separately, but to the fact that such a perturbation, interacting with EO of the external 
force, cause the energy to converge toward specific disk portions. By looking at figures     
3.6a-3.6f, the envelope of the magnification factors describes a wave trend, whose period is 
strictly connected to the EO of the force and wave amplitude which increases with the amount 
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of mistuning. This “ordinate” distribution of the magnification factors cannot be correlated in 

any way to the “random” mass distribution by only looking at the figure. One issue connected 
to such analysis can occur when the amplification coefficient which is provided to mass 
distribution is too high (figure 3.6g and 3.6h). In that case the response is affected a lot by the 
large deformation that is given to the system. The mechanical properties of each blade have 
an influence on the response of the blade itself which is no more negligible and it tends to 
hide the mistuning effect. A large mass makes the blade less stiff , as a consequence it 
vibrates more with respect to other masses. This situation demonstrates that mistuning doesn’t 

affects the vibration of each blade separately but the way in which the energy is distributed 
among the various portions of the bladed disk.  
 

 
Figure 3.6a. Magnification factors and mass distribution (   = 0.01). 

 
 

 
Figure 3.6b. Magnification factors and mass distribution (   = 0.1). 
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Figure 3.6c. Magnification factors and mass distribution (   = 0.5). 

 
 
 

 
Figure 3.6d. Magnification factors and mass distribution (   = 1). 
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Figure 3.6e. Magnification factors and mass distribution (   = 2). 

 
 
 

 
Figure 3.6f. Magnification factors and mass distribution (   = 3). 
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Figure 3.6g. Magnification factors and mass distribution (   = 5). 

 
 
 

 
Figure 3.6h. Magnification factors and mass distribution (   = 10). 

 
 

A worse situation occurs when the Engine Order is very high. As a matter of fact, a certain 
amount of mistuning, even if it is small, leads to very different and unpredictable response 
from one blade to the other. The reason for that is suggested by the Fre-ND Diagram in figure 
1.4 (chapter 1). The natural frequencies trend has a decreasing slope as the nodal diameter 
increases. This means that in a certain frequency range, more than one nodal diameter are 
excited. The combined contribution of “mistuned” modes causes the response to be 
unpredictable and leads to responses amplitude that can be very high, for some blades. 
Examples of forced response with high EO ( EO=60 ), under mistuning conditions, are 
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reported in the following figures (3.7). It is easy to note that, even for small amplification 
coefficients, the response amplitudes reach very high value, with respect to the amplitudes 
computed for an EO equal to 5 (figures 3.6). By increasing the amplification factor, the wavy 
form of the magnification factors envelope, which is observed for low EO, disappears, giving 
a more “disordered” trend with very different magnification factors from one blade to another 

one. 
 
 

 
Figure 3.7a. Magnification factors and mass distribution (   = 0.01 ; EO = 60). 

 
 

 
Figure 3.7b. Magnification factors and mass distribution (   = 0.1 ; EO = 60). 
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Figure 3.7c. Magnification factors and mass distribution (   = 0.5 ; EO = 60). 

 
 
 

 
Figure 3.7d. Magnification factors and mass distribution (   = 1 ; EO = 60). 
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Figure 3.7e. Magnification factors and mass distribution (   = 2 ; EO = 60). 

 
 
 
 

 
Figure 3.7f. Magnification factors and mass distribution (   = 3 ; EO = 60). 
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3.4 Mistuning identification 
 
3.4.1 Modeling of the bladed disk with joints incorporation 
 
 
The identification of mistuning has a primary role in the study of a bladed disk dynamics. As 
a matter of fact, mistuning cannot be controlled a priori because it is linked to the non 
symmetry of the structure which can be induced by several factors. One of the major causes 
of mistuning is represented by the joints of the blades. They can affect drastically the behavior 
of the whole structure during the application because of the uncertainty linked to the assembly 
operations. Here, joint elements, constituted by a stiffness and a damper, are introduced into 
the lumped parameters model of the bladed disk, between the blades degrees of freedom and 
the corresponding disk degrees of freedom. The aim of the study is to induce mistuning by 
providing a set of joint stiffness affected by a random error with known standard deviation 
and to provide a method of identification of the amount of mistuning, starting from the FRF 
of the mistuned disk. In order to compute the study, the FRF Decoupling Method is adopted. 
This method is based on the use of substructures (without joints) , whose FRF are known or 
easy to be computed, and the FRF of the assembled structure which is known from testing. 
The method allows the study of the mechanical properties of the joints connecting the 
substructures with each other. The need to develop such methods is due to the fact that a 
modeling of the joint is difficult to be done because of its complexity. Many FRF Decoupling 
methods are proposed in literature [13-17]. Before going through the FRF Decoupling, a new 
model of the bladed disk has to be built, in order to introduce the joint elements. A 
representation of the model is showed in figure 3.8. The joint element is described by the 
stiffness    and damping   . In order to properly identify the joint elements another degree of 
freedom is added to the blade model, with respect to the model previously used (figure 1.3). 
The other mechanical properties of mass and stiffness which describe the disk and the blade 
are maintained the same of those used before, in the model of the bladed disk without joints, 
and they are   ,   ,   ,    and   . Since the blade is now modeled with two degrees of 
freedom, the mass    (used in the previous model) is divided by two and the two halves are 
associated to the degrees of freedom of blade. Here the damping matrix is derived by 
introducing viscous damper between the degrees of freedom together with the stiffness 
elements, unlike the 2N dof model used before where the damping matrix is derived through 
the modal matrix by setting a modal damping ratio to the modes. They are respectively   ,    
and   . 
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Figure 3.8. Model of the bladed disk with joints. 

 
 
Then, the new model is constituted by 3N degrees of freedom, where the first N degrees of 
freedom describe the disk while the other 2N degrees of freedom describe the N blades, which 
are modeled with two degrees of freedom. The general equation of motion in matrix form is 
written in equation (3.3). The mass, damping and stiffness matrices, of dimension 3Nx3N, are 
derived from the free body diagram analysis (Appendix 4), while the set of coordinates     is 
a 3Nx1 vector where the degrees of freedom are organized in the order showed by equation 
(3.4). 
 
                                                                                                                  (3.3) 
 

                                                   
 

                                                       (3.4) 

 
By considering the bladed disk to be tuned, at this stage, with joints having all the same 
stiffness and damping characteristic    and   , the FRF     of the whole structure , expressed 
as a receptance, can be computed from the inversion of the dynamic stiffness matrix (3.5), 
once a frequency range is set. 
 

          
  

                                                                                            (3.5) 
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Now, mistuning is applied to the joint stiffness   . So a pattern of mistuned stiffness is 
generated from a normal distribution with known standard deviation    and mean value equal 
to the nominal stiffness      (    = 5E7 N/m, in the numerical example). The probability 
density function of such a distribution is showed in figure 3.9. Then, a set of amplification 
coefficients    can be applied to the pattern in order to amplify the amount of mistuning. The 
set of amplification coefficients is reported on the table 3.2. 
 

 
Figure 3.9. Probability density function of   . 

 
 

Standard deviation σp (N/m) 

ap 1 2 4 

σp (N/m) 1,45E+06 2,90E+06 5,80E+06 

 
Table 3.2. Standard deviations of the amplified mistuning pattern. 

 
 

For each amplification coefficient   , a set of N stiffness    can be derived from the starting 
pattern. As a consequence, a number   of stiffness matrices        can be built. By 
maintaining the same mass matrix and damping matrix of the tuned case, it is possible to get 
the receptance matrix        of the whole structure, per each amplification coefficient applied 
to the pattern, by inverting the dynamic stiffness matrix. The receptance matrix is needed to 
apply the FRF Decoupling Method. It has to be noted that these FRFs, which are now 
computed numerically by building a model of the whole structure, represent the FRFs that are 
acquired experimentally by testing the whole structure which bring, in a real case, the 
unknown quantities of the equivalent stiffness and damping  of the joints.  
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3.4.2  FRF Decoupling Method 
 
The FRF Decoupling Method is an FRF-based method which was developed to face the 
problems linked to the identification of the mechanical properties of a coupling connecting 
two or more substructures. The need for developing such a method is given by the fact that a 
modeling of a joint cannot be easy to be done. Usually joints or interfaces in general have 
complex configurations and geometries so to make the modeling very difficult. Then, a 
reverse method which makes use of experimental data has to be studied in order to get the 
equivalent mechanical properties connected to a joint. In this paragraph the FRF Decoupling 
Method is described. The method assumes to have an assembly which is constituted by two 
substructures A and B. The FRF of the two substructures (without joints),      and       are 
considered as known. Then, the assembly (with joints) is tested and the FRF       is derived 
experimentally. The degrees of freedom of each substructure are divided into two groups in 
order to distinguish between the degrees of freedom which are at the interface with the joint 
from the others. The dofs of substructure A that are at the interface are named “j” while the 
others are named “a”. The dofs of substructure B that belong to the interface are named “k” 

while the other dofs are named “b” (see figure 3.10). 
 

 
Figure 3.10, Scheme of substructures in the FRF Decoupling Method. 

 
 

The displacement coordinates of the two substructures are respectively      , and      (3.6). 
They can be expressed as the product between the receptance matrix and the forcing function 
vector applied to each substructure (3.7).  
 

                   
 
                                                                                                          (3.6a) 

                                                                                                                              (3.6b) 
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                                                                          (3.7a) 

 

               
          

          
   
    

    
                                                                          (3.7b) 

 
From the equations (3.7) the displacements can be written in an explicit form by computing 
the product between the receptance matrix and the forcing vector (3.8). 
 

                          (3.8a) 

                           (3.8b)  

                          (3.8c)  
                          (3.8d) 
 
Once the displacements have been derived, the equilibrium equations at the joint, which is 
considered as an elastic coupling, have to be written. In order to have the equilibrium, the sum 
of the external forces applied to the joint has to be equal to zero (3.9).  

 

                                                                                                                                (3.9) 

 

As a consequence, the force             is equal to the elastic force of the coupling which 
is given by introducing the coupling matrix      which describes its mechanical properties 
and represents the unknown of the method (3.10). This matrix is complex because of the 
damping force contribution which enters the equilibrium equation. By substituting the 
expressions of      and      , respectively (3.8b) and (3.8c) , into the equation (3.10) one 
obtains the equation (3.11). 

 

                                                                                                                        (3.10) 

 

                                           
                                                   (3.11) 

 
An analogue discussion is made on the structure considered as a whole (structure C). In that 
case the coupling is not considered as an external object. It is incorporated into the structure, 
so no distinction is made on the dofs “j” and “k”. In the whole structure configuration the 

degrees of freedom which are considered (and that can be tested ) are the dofs “a” and dofs 

“b”. From this consideration it is possible to write the displacement coordinates of the dofs 

taken into account as the product of a receptance matrix of the whole structure and the forcing 
vector (3.12), like in the substructure configuration.  
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                                                           (3.12) 

 
The matrix equation (3.12) can be developed in order to obtained the equations for the two 
sets of coordinate      and      (3.13). 
 

         
           

                                                                                                (3.13a) 

         
           

                                                                                                (3.13b) 
 
Now, the equations derived from the two studies ( one related to the two substructures A and 
B connected by the coupling and the other study considering the whole structure C ) can be 
combined in order to express the coupling matrix as a function of the other terms. In 
particular it is possible to combine the equations (3.13a) and (3.13b) with equation (3.11) 
which brings the unknown     , in order to obtain the expressions of the sub-matrices which 
constitute the receptance matrix of the whole structure C (3.14).  
 

    
                                 

    
  
                                                   (3.14a) 

 

    
                                 

    
  
                                                  (3.14b) 

 

    
                           

    
  
                                                                (3.14c) 

 

    
                           

    
  
                                                                 (3.14d) 

 
This set of equations can be further developed in order to obtain the expression of the matrix 
     as a function of the other terms (3.15). 
 

                         
                         

  
                                          (3.15a) 

 

                         
                         

  
                                         (3.15b) 

 

                 
                       

  
                                                            (3.15c) 

 

                 
                       

  
                                                            (3.15d) 
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The equations (3.15) are equivalent with each other. One can decide to use an equation rather 
than another one. It depends on the type of receptance matrix which has been derived from 
testing on the structure C (        ,        ,        or        ). The receptance matrices which 
refer to the substructures A and B are meant to be known. The elements of the coupling 
matrix      are complex. By modeling the joint element with a stiffness and a damper  in 
parallel it is possible to give a physical meaning to the elements of that matrix. In more detail, 
the element of the coupling matrix,     is given by the equation (3.16), where     is a stiffness 
quantity and      is a viscous damping quantity. 

 

                                                                                                                             (3.16) 

 
 
 
 

3.4.3  Use of FRF Decoupling for mistuning identification 
 
 
The aim of the study is to apply the FRF Decoupling Method to analyze the mechanical 
characteristics of the joints of the bladed disk and to evaluate the amount of mistuning 
connected to these characteristics. Then, in the following discussion the FRF Decoupling 
method is adapted to the case of study and it is used to derive the characteristics of the joints 
in different mistuning conditions. The substructures in which the bladed disk can be divided 
are the disk and the N blades coupled with the disk. This leads to have N joints to be 
identified at the same time. So, the FRF Decoupling Method, as it was described in the 
previous paragraph, has to be adapted to the multiple-joints configuration represented by the 
bladed disk. In order to do this, one has to write the equilibrium equations by following the 
same procedure used for the case of single-joint configuration. The degrees of freedom which 
are now involved are the ones reported in equation (3.4). These coordinates will be called 
with other subscripts in order to maintain a coherence with the nomenclature used in the 
theory description of the FRF Decoupling Method ( previous paragraph ). In particular, the 
coordinates            ,which constitute the disk and are connected to the joints, are 
associated with the coordinates      (used in the theory of the method). The coordinates 
                , which represents the interface dofs of the blades with the joints, are 
identified with the coordinates      of the method. The coordinates                  , 
corresponding to the dofs of the blades where the excitation forces are applied and where the 
FRF is computed, are associated with the coordinates      of the method. By referring to the 
model in figure 3.8, one can imagine to cut at the two interfaces of each joint, obtaining the 
substructures of the disk and of the N blades. The cut leads to the definition of a force   at the 
interfaces of the disk and the blades with the joint elements , for the equilibrium of the forces. 
This is represented in figure 3.11. Then, the expression of the displacement coordinates      , 
     and      are written in terms of receptance times force contributions summation (3.17, 
3.18, 3.21). 
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Figure 3.11. Sub-structuring of the bladed disk with joints. 

 
Displacement coordinates      , (         : 

 

 
 
 

 
 
        

             
             

        
 

        
             

            
        

 
        

             
             

        

                                                           (3.17a) 

 
Expressing the system of equations in a matrix form one obtains that the coordinates vector 
     is equal to the receptance matrix of the substructure “disk”,      , times the vector of 
forces     (3.17b). 
 

                                                                                                                               (3.17b) 
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Displacement coordinates      , (         : 
 

 
 
 

 
 
       

               
          

 
       

               
          

 
       

               
          

                                                                                  (3.18a) 

 

where            is the receptance of the substructure “blade” (3.18b) with degrees of freedom 
       

 . Each blade has an its own receptance matrix which can be different from that of 
another blade. However, in this specific example, the blades are considered to be all equal, 
with known receptance matrix, and it is assumed to mistune the joints stiffness only.  The 
system (3.18a) written in matrix form becomes (3.18c), where the matrices which multiply the 
force vectors      and     are diagonal ( since equations are all independent with each other ) 
and correspond to the matrices       and       of the method. 
 

            
   
        

     

   
        

                        (3.18b) 

 

      
   
    

      
   

       
   
    

      
   

                                     (3.18c) 

 
At this stage, the equilibrium of the forces at the joint elements can be studied. By referring to 
equation (3.10), the force    (correspondent to the i-th blade) is connected to the difference 
between the displacements of the joint interfaces through the coupling (complex) stiffness   . 
By writing the same equation for all the N joints, one obtains (3.19), where      is a diagonal 
matrix. 
 

                 
   
    
   

                                                                      (3.19) 

 
By substituting (3.17b) and (3.18c) into (3.19) it follows: 
 

                            
                                                                               (3.20) 

 

Finally, the coordinates      has to be defined (3.21a). As for the coordinates     , the 
equations are all independent with each other, so the equation in matrix form is expressed by 
diagonal matrices (3.21b). These matrices correspond to the       and       of the method. 
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                                                                                       (3.21a) 

 

        
   
    

      
   

       
   
    

      
   

                                   (3.21b)                                                   

 
By substituting equation (3.20) into (3.21b) one obtains: 
 

                                     
    

  
                                                    (3.22) 

 

Since      is the response of the blades in the measuring points and      is the forcing 
function vector, the transfer matrix of the equation (3.22) is exactly the receptance sub-matrix  
    

   (3.12) of the whole structure, related to     , and it is built from testing. Then, it 
follows: 
 

    
                                  

    
  

                                                       (3.23) 

 
From this equation, which has the same form of the one obtained in the previous paragraph 
where the single-joint configuration was analyzed (3.14b), it is possible to derive the coupling 
matrix      (3.24), which contains the complex “stiffness” of the joints in its diagonal. 
 

                         
                         

  
                                           (3.24) 

 

where      ,      ,       and       are diagonal matrices and they are constituted by 
elements of the receptance matrix of the blade,       is the receptance matrix of the disk while 
    

   is the experimental receptance matrix (FRF) which is derived from testing. The FRF 
Decoupling method was used for the specific case of study, where a pattern of mistuned    
was assigned to the N joints of the bladed disk and it was then amplified by using 
amplification coefficients equal to 2 and 4 (paragraph 3.4.1). The results coming from the 
application of the method are very accurate and they allows to state with a great precision the 
mechanical properties of the joint elements. In the numerical example, starting from a 
nominal value of       = 5E7 N/m , a mistuned set of    was derived, per each amplification 
coefficient adopted. The results are showed in figures 3.12. From the figures it is clear that the 
method is very accurate since the two plotted sets of stiffness (the real one and the one 
derived by means of the FRF method) can be perfectly overlapped. 
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Figure 3.12a. Comparison between real    and derived   :     . 

 
 
 

 
Figure 3.12a. Comparison between real    and derived   :     . 
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Figure 3.12a. Comparison between real    and derived   :     . 
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Chapter 4 
 
Friction-damped response analysis 
 
In turbine bladed disk applications, the need to damp the vibration of the blades in resonance 
conditions has become more and more demanding in order to reach very high performances in 
the rotational speed of the turbine. As a matter of fact, the structural damping alone is not able 
to ensure low amplitude vibrations. Then, new constructional solutions have been studied in 
order to add damping to the structure. One of the possible solutions is to provide a sliding 
friction between the parts of the system so to induce a damping effect in working conditions. 
The dependence of the friction force on the motion of the structure itself makes the system 
non-linear. Then, a reduction of the number of degrees of freedom involved is needed in order 
to solve easily the non-linear system of equations. Here, the reduction of the problem is made 
by exploiting the property of cyclic symmetry which allows to write a system with few non-
linear equations. According to the design of the bladed disk, the dynamics of the system can 
be studied by following different approaches and models. The aim of this chapter is to analyze 
different models which describe how friction is provided within the system and to compute 
the forced response under the aforementioned conditions. 
 
 
 

4.1 Bladed disk with blade-to-ground friction dampers 
 
The most simple solution to be studied is to provide devices which behaves as blade-to-
ground dampers. A blade-to-ground damper is a device which acts at the blade level and it 
induces sliding friction between the blade body and a fixed reference (ground). Before 
analyzing the model to be used to compute the forced response, a detailed study on the nature 
of the friction force has to be done. In order to study how the friction force enters the 
equations of motion it is useful to consider a single degree of freedom system where a blade-
to-ground damper is introduced (figure 4.1).  
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Figure 4.1. Single degree of freedom system with blade-to-ground damper. 

 
 

The damper induces a friction force, expressed in the equation (4.1),  which is proportional to 
the preload of the damper through a dynamic friction coefficient and it is opposite in the sign 
to the speed of the mass. By looking at the free body diagram of the mass in figure 4.2, the 
friction force has been already oriented in the opposite direction with respect to the speed   . 
This allows to avoid the “minus” sign in the expression of the friction force. 
 

                                                                                                                               (4.1) 

where  

-    , friction force. 
-     , dynamic friction coefficient. 
-     , preload. 
-    , speed. 

 
Figure 4.2. Free body diagram of the sdof system with blade-to-ground damper. 
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The friction force    can be written in a different way by transforming the “sign” function, as 

it is showed in the equation (4.2). By considering a generic variable  , the function  
   

 can be 
expanded in Fourier series (4.3). The Fourier series can be developed in order to obtain a 
series of cosine functions, that represent the useful form for the following discussion, and 
substituted into the expression of the friction force (4.2) obtaining the expression (4.4). 
 

       
  

    
                                                                                                                         (4.2) 

 

  
 

   
     

 

  
            

       
 

  
                                                                             (4.3)  

 

   
 

 
     

     

 
            

 
            

     

 
            

 
                       (4.4) 

 
where  

-   , excitation frequency. 
-   , time variable. 
-   , number of the harmonic. 
-    , phase of the k-th harmonic with respect to the external harmonic force   . 
-    

 

 
     , amplitude of the friction force. 

 

The external harmonic force    is reported in the equation (4.5) as a cosine function with 
excitation frequency   and amplitude   . 
 

                                                                                                                                 (4.5) 
 
Once the expressions of the forces acting on the system have been defined, it is possible to 
substitute them into the equation of motion (4.6) , derived from the free body diagram of the 
mass (figure 4.2). 
 

                                                                                                    (4.6)   

 
The equation of motion is non-linear because of the friction force, then the solution of such a 
differential equation cannot be found by following the usual linear approach. Among the 
various methods, here the Harmonic Balance Method (HBM) is adopted to solve the equation. 
Then, it is needed to express the response   in a harmonic form so to be able to apply HBM. 
Since the external force    and the friction force    are forcing functions constituted by odd 
cosine harmonics, as a consequence the response can be assumed to be of the type expressed 
in the equation (4.7). 
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                                                                                              (4.7) 

where : 

-    , amplitude of the k-th harmonic. 
-    , phase of the k-th harmonic with respect to the external force   . 

 
It is now possible to develop the expression of the response (4.7) so to derive the sine and 
cosine harmonics for the HBM application. Here for simplicity, only the first and the third 
harmonics are developed (4.9), but further harmonics can be also considered in the equation. 
The same thing is done for the friction force (4.8). Then, the speed    and the acceleration    
are derived by taking the first and the second derivative of (4.8), obtaining respectively the 
equations (4.10) and (4.11). 
 

    
 

 
                                                                                       (4.8) 

 
                                                                                             (4.9) 
 
                                                                                        (4.10) 
 
                                                                                      (4.11) 
 
Finally, the equations (4.8), (4.9), (4.10) and (4.11) are substituted into the equation of motion 
(4.6) and the HBM can be applied. Two equations per each harmonic   can be obtained from 
the application of HBM, which balance the sine and the cosine terms. They are the equations  
(4.12) and (4.13). 
 

-  =1, balance of          : 
 

                                                                                       (4.12a) 
 

-  =1, balance of         : 
 

[                                                                              (4.12b) 
 

 

 

 



58 
 

 

-  =3, balance of           : 
 

                                  
 

 
                                             (4.13a) 

 

-  =3, balance of           :  
 

[                                   
 

 
                                           (4.13b) 

 

The non-linear equations still contain the two phases    and    which are uncorrelated at this 
stage. Then, a relation between them has to be found in order to solve the non-linear system 
of equations. By referring to the expressions of the friction force (4.1) and (4.4) , respectively 
the general expression of    and its expanded form in Fourier series, the relation between the 
two phases can be established by developing the expression of    (4.14), taking the first 
derivative of (4.7). 
 

                          
 
                                                                                   (4.14) 

 

Since   , which is expressed by cosine functions, must have the same sign of       (4.14) it 
has to be phased by an angle equal to  

 
 . Then, the final relation that links the phases    and 

   is given by the equation (4.15). By substituting this relation (4.15) into the systems of 
equation (4.12) and (4.13) a new set of equations, per each harmonic, is obtained. Equations 
(4.16) and (4.17) refers respectively to the first and the third harmonic. 
 

      
 

 
                                                                                                                         (4.15) 

 

 =1 : 
                                                                                              (4.16a) 

 

[                                                                                         (4.16b) 

 

 =3 : 

                                  
 

 
                                                       (4.17a) 

 

                                   
 

 
                                                     (4.17b) 
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Further manipulations of the systems of equations can be done in order to express the solution 
     in terms of sine and cosine components instead of using the amplitude and the phase 
(4.7). This is done in order to handle the solution      in a easier way, after the computation. 
The equivalent expression is the following (4.18). 
 

                              
 
                                                                           (4.18) 

 

                           (4.18a)                                                        (4.18b) 
 
By performing the change of variables, the transformed systems of equations (4.19) and 
(4.20) are ready to be solved. 
 

 =1 : 

                       
  

        
                                                                      (4.19a) 

 

                           
  

        
                                                             (4.19b) 

 

 =3 : 

                       
 

 
  

  

        
                                                               (4.20a) 

 

                        
 

 
  

  

        
                                                           (4.20b) 

 

The non-linear system of equation, for the  -th harmonic, can be summarized in the following 
matrix form (4.21), where    is the matrix of the coefficients of the system and it is known, 
   is the vector of the solutions and    is the forcing vector which is a function of the 
solutions of the system   . 
 

                                                                                                                               (4.21) 
 

                                                
              

             
     (4.21a)           

                                                       

             
      

        (4.21b)                                                       
 
    (4.21c) 
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From the theory on Fourier series, it is known that the response      can be written in the 
frequency domain through the combination of the sine and the cosine components of the 
equation (4.18). Then, the frequency response       is given in the equation (4.22). Actually, 
the computation of the response per each harmonics should consider also the negative 
harmonics –  . Since        is equal to the complex conjugate of      , (4.23), (this is a 
very well known result in the Fourier series theory) , it is common use to take twice the 
amplitude of       for      (4.24), in order to include also the negative harmonics. 
 

      
       

 
                                                                                                                   (4.22) 

 

       
       

 
                                                                                                                 (4.23) 

 
                                                                                                                           (4.24) 
 
 
Once the equations of motion have been studied for a single degree of freedom system, the 
next operation is to apply this equations to the case of study. In particular to the model of the 
sector of the bladed disk, under the condition of cyclic symmetry. As it is mentioned at the 
beginning of this paragraph, a blade-to-ground damper is introduced in the system and it acts 
on the blade degree of freedom. A representation of the model with the incorporated friction 
damper is reported in figure 4.3. The equations that govern the motion of such a system are 
the same of those analyzed in Chapter 1, where the cyclic symmetry property has been 
studied. The difference is in the forcing vector, where a friction force of the type studied 
before is added to the external harmonic force acting on the blade. The equation (4.25) 
describes the motion of the system, once an inter-blade phase angle   (so the   ) has been 
set. 
 

 
Figure 4.3. model of the sector with blade-to-ground damper. 
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                                                                    (4.25) 

where 

-                   
 

. 

-     ,    ,    are functions of the phase   . 

 
Since the actual system has two degrees of freedom, this leads to a system with four non 
linear equations, per each harmonic, with four unknowns which are respectively the sine and 
cosine components of the displacement coordinate of the disk       and the sine and cosine 
components of the displacement coordinate of the blade   . The system of equations is 
analogue to that derived in the single degree of freedom system and it can be written in the 
following matrix form (4.26). 
 

 
                 

                

                           
 
                               

                    (4.26) 

 

If    = 1 : 

                              
 
        

    

            
            

    

            
 

 

               (4.26a) 

If    > 1 : 

                              
 
     

 

 
  

    

     
      

 
        

 

 
  

    

     
      

 
 

 

            (4.26b) 

 
By solving the system of non linear equations it is possible to evaluate the forced response of 
the blade. The computation has been performed by considering different Engine Orders and 
by exploring the response of the blade at different preload conditions in the blade-to-ground 
damper, per each    considered. For simplicity, here only the response computed by solving 
the system of equations for the first harmonic is reported (it represents also the main 
contribute to the response, with respect to the other harmonics). In figure 4.4 and 4.5 the 
forced responses of the blade, considering two different Engine Orders ( respectively   =10 
and   =50 ) , are plotted for different value of friction force magnitude    (different preload 
condition). In particular, by considering the normalized friction force with respect to the 
external force amplitude    , expressed by the ratio     

  
 . The plots of the forced response 

are showed together with the forced response under no-friction condition, the magnification 
factor and the percentage reduction plotted against normalized friction force   (   going from 
     to     ) , in order to quantify the effect of the damper in terms of reduction of the 
response amplitude in resonance conditions. From figure 4.4 and 4.5 one can easily note that 
the forced response is not influenced by the EO, in fact the reduction in response amplitude is 
the same for the two situations with different EO. The maximum amplitude reduces 
proportionally as the friction force increases. 
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         Figure 4.4a. Response for different   (EO=10)         Figure 4.4b. Response without friction damper(EO=10) 

 

 

 
Figure 4.4c. Magnification Factor against    (EO=10)        Figure 4.4d. % amplitude reduction against   (EO=10) 

 

 

 

 

 
         Figure 4.5a. Response for different   (EO=50)         Figure 4.5b. Response without friction damper(EO=50) 
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Figure 4.5c. Magnification Factor against    (EO=50)        Figure 4.5d. % amplitude reduction against   (EO=50) 

 

 

 
4.2  Bladed disk with joint friction  
 
The incorporation of  blade-to-ground friction dampers into the model of a bladed disk cannot 
explain well the dynamics of the system in some circumstances where a friction force is 
induced among the parts which constitute the whole structure. In fact, friction forces can be 
generated in the joints connecting the blades to the disk body. In this situation the friction 
force is dependent both on the blade motion and on the disk motion. Then, the equations of 
motion of the system have to be modified in order to take into account the combined 
contribution of the blade and the disk. A new modeling of the sector is required , where a joint 
friction damper is introduced between the blade dof and the disk dof. Such a model is 
represented in figure 4.6. 
 
 

 
Figure 4.6. Model of the sector with joint friction damper. 
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As a consequence, the expression of the friction force    has to be redefined. More in detail, 
the friction force is expressed in the equation (4.27). The only difference with respect to the 
blade-to-ground situation is the argument of the “sign” function which is now the difference 

between the speed of the blade dof      and the speed of the disk dof        (again, the “minus” 

sign is omitted in the expression of    because the force is taken directly in the opposite 
direction with respect to the speed of the blade, as showed in figure 4.7). 
 

                                                                                                                            (4.27) 
 

where                   is the difference function. 

 

 
Figure 4.7. Friction force    between the blade and the disk degrees of freedom 

 
Regardless of the argument of the “sign” function inside the expression of the friction force, 

the latter can be expanded in Fourier series. So, in the equation (4.28) is recalled the Fourier 
expansion of    that has been derived in the previous paragraph.  

 

   
 

 
     

     

 
            

 
                                                                              (4.28) 

 

where     is again the phase of the  -th harmonic with respect to the external harmonic force 
   and it is not defined at this stage. As for the study of the response in presence of blade-to-
ground dampers, here the aim is to apply HBM with the same procedure used in the previous 
paragraph. Then, the equations of motion , on the left hand side, are exactly equal to the ones 
used before (4.26). In order to find a relation which links the phase    (4.28) to the unknowns 
of the system (the sine and cosine components of the two coordinates      and   ), a 
development of the difference function    , which imposes the sign to the friction force    
(4.27), is needed. By referring to the general expression of the displacement coordinates in the 
time domain          and       , respectively equations (4.29) and (4.30), the difference 
function     is developed by taking the first the derivative of the two displacement coordinates 
and by subtracting them (4.31). Here, for simplicity, only the first harmonic (  =1 ) is 
developed. 
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                                                                               (4.29) 

 

                              
 
                                                                                  (4.30) 

where  

-    amplitude of the  -th harmonic of the displacement  . 
-   , phase of the  -th harmonic of the displacement   with respect to the force   . 

 

                                                                                     (4.31) 

where  

-                    . 

-                    . 

-                     . 

-                     . 

By exploiting the properties of trigonometry, the difference function (4.31) can be written 
with a cosine function of amplitude   and phase    (4.32). 
 

                                                                                                                         (4.32) 
 

                
 
            

 
                                                                              (4.32a) 

 

        
         

         
                                                                                                          (4.32b) 

 
So, a new expression of the friction force  is derived from the development of the difference 
function     (4.33). By considering for simplicity only the first harmonic of the Fourier 
expansion of the friction force (4.34) , it is easy to find a relation between the two equivalent 
expressions.  
 

                                                                                                (4.33) 

 

   
 

 
                                                                                                             (4.34) 

 
Expression (4.33) is represented by a “positive” cosine function while the expression (4.34) is 

represented by a “negative” cosine function. In order to have a coherence between the two 
expressions it is necessary to transform (4.33) into a “negative” cosine function by phasing it 
of an angle of π, obtaining the expression (4.35). Since    is proportional to the sign of the 
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difference function, it is enough to match the phase of the expanded form (4.34) and the phase 
of the argument of the “sign” function in the equation (4.35), giving the relation reported in 
the equation (4.36). This relation links the friction force to the displacement coordinate 
components representing the unknowns of the non linear system of equations (4.37), which is 
derived again by the application of the equations (4.12) and (4.13) to the 2-dofs system in 
exam. 
 

                          π                                                                             (4.35) 

 

             
         

         
                                                                                      (4.36) 

 

 
                 

                

                           
 
                               

 
                       (4.37) 

 

If    = 1 : 

                              
 
                                    

 
                        (4.37a) 

 

If    > 1 : 

                              
 
      

 

 
                   

 

 
           

 

                        (4.37b) 

 

where     
 

 
    . 

 
As for the study in the previous paragraph, the computation of the forced response has been 
performed by assuming different Engine Orders and by varying the magnitude of the friction 
force. The response is now dependent on the EO. For a certain value of the normalized 
friction force  , the reduction of the maximum amplitude of the response in resonance 
condition, with respect to the case of no-friction, increases as the EO increases. The 
maximum reduction in amplitude is obtained for EO values near to   

 
. In the case of study,   

is equal to 146 (which is the number of blades in the bladed disk). As a matter of fact, for EO 
equal to 70 the maximum reduction in amplitude is obtained. It is interested to note that for 
EO near to  

 
 , the forced response coincides with that obtained from the study of the system 

with blade-to-ground damper. Here, the forced responses related to different EO values are 
reported in the following figures. 
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EO = 2 : 
 

     
      Figure 4.8a. Response for different   (EO=2)            Figure 4.8b. Response without friction damper (EO=2) 

 

    
    Figure 4.8c. Magnification Factor against    (EO=2)        Figure 4.8d. % amplitude reduction against   (EO=2) 

 
 
EO = 5 : 
 

    
      Figure 4.9a. Response for different   (EO=5)            Figure 4.9b. Response without friction damper (EO=5) 



68 
 

 

  
          4.9c. Magnification Factor against    (EO=5)        Figure 4.9d. % amplitude reduction against   (EO=5) 

 

 

EO = 10 : 
 

    
  Figure 4.10a. Response for different   (EO=10)          Figure 4.10b. Response without friction damper (EO=10) 

     
     4.10c. Magnification Factor against    (EO=10)          Figure 4.10d. % amplitude reduction against   (EO=10) 
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EO = 20 : 
 

    
   Figure 4.11a. Response for different   (EO=20)          Figure 4.11b. Response without friction damper (EO=20) 

 

    
     4.11c. Magnification Factor against    (EO=20)          Figure 4.11d. % amplitude reduction against   (EO=20) 

 

 
EO = 30 : 
 

    
   Figure 4.12a. Response for different   (EO=30)          Figure 4.12b. Response without friction damper (EO=30) 
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     4.12c. Magnification Factor against    (EO=30)          Figure 4.12d. % amplitude reduction against   (EO=30) 

 

 

EO = 40 : 
 

    
   Figure 4.13a. Response for different   (EO=40)          Figure 4.13b. Response without friction damper (EO=40) 

 

    
     4.13c. Magnification Factor against    (EO=40)          Figure 4.13d. % amplitude reduction against   (EO=40) 
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EO = 50 : 
 

    
   Figure 4.14a. Response for different   (EO=50)          Figure 4.14b. Response without friction damper (EO=50) 

 

    
     4.14c. Magnification Factor against    (EO=50)          Figure 4.14d. % amplitude reduction against   (EO=50) 

 

 

EO = 70 : 
 

    
            4.15a. Response for different   (EO=70)          Figure 4.15b. Response without friction damper (EO=70) 
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     4.15c. Magnification Factor against    (EO=70)          Figure 4.15d. % amplitude reduction against   (EO=70) 

 
 
 
 
4.3  Bladed disk with blade-to-blade friction  
 
Another situation in which friction can take place during the motion of a bladed disk is 
represented by the shrouds of the blades, if the latter are provided with such a configuration. 
In order to study how the system behaves under this condition, a new model of the sector has 
to be defined. In fact, it has to include at least two blades. Then, the reference model of the 
sector is the one reported in figure 4.16. In particular, the sector is made of two halves of two 
adjacent blades, in order to satisfy the condition of cyclic symmetry of the structure. 

 

 
Figure 4.16. Model of the sector for the shroud friction study. 
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The lumped parameters model of the sector has four degrees of freedom    ,    ,     and 
   , respectively the disk degrees of freedom at the left and right boundaries of the sector and 
the blades degrees of freedom at the left and the right boundaries of the sector (4.27). The 
mass, damping and stiffness matrices, which describe the model, have been derived in the 
Appendix 3, and they are   ,    and    (A-3.3).  The equation of motion of the sector is 
written in (4.28). 
 
                     

                                                                                                   (4.27) 
 

                                                                                                                        (4.28) 
 
In order to evaluate the forced response of the system to an external harmonic force acting on 
the blades, under the condition of sliding friction between the blades, it is necessary to 
introduce into the model a blade-to-blade damper so to simulate the effect of the friction at 
the shrouds of the blades (figure 4.17). As for the case of blade-to-ground damper and joint 
damper, the aim of the study is to compute the forced response by means of the Harmonic 
Balance Method.  
 

 
Figure 4.17. Sector model with incorporated blade-to-blade damper. 

 

The friction force    which is established between the blades is proportional to the sign of the 
difference in speed of the blades masses (4.29). Thanks to the cyclic symmetry of the disk, the 
speed of one of the two blades masses can be expressed as a function of the speed of the other 
(4.30).  
 

                                                                                               (4.29) 

 

                                                                                                                                 (4.30) 
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By considering a generic variable  , the function describing the friction force can be 
expanded in Fourier series (4.31). 
 

                     
 

  
              

  

 
    

                  
  

 
                               (4.31) 

 
The Fourier expansion (4.31) can be applied to the friction force function. By developing this 
expression, it is possible to write the friction force with a cosine function (4.32), where    is 
the phase of the  -th harmonic with respect to the external harmonic force    (4.33). 
 

      
 

 
             

  

  
      

 
            

 
                                                            (4.32) 

 

                                                                                                                              (4.33) 
 
The expression of the friction force (4.32) is analogue to the case of blade-to-ground damper. 
In fact, it is possible to write, per each harmonic  , the contribution of friction in time 
domain, as follows:  
 

  
     

 

 
         

  
  

  
      

 
                    

      

 
                          (4.34) 

where            
 
         

  
  

  . 

 
The equation (4.34) is equivalent to equation (4.4) in paragraph 4.1, which describes the 
friction force in the study of a single degree of freedom system with blade-to-ground damper, 
with the exception of       that is a function of the inter-blade phase angle. This allows to 
apply the HBM in the same way of the blade-to-ground case. If the response   is defined, in 
the general form, with a cosine function having a phase    with respect to the external force 
(4.35), the relation between the phase    and the phase    is still (4.36). The non linear 
equations of motion which derive from HBM are the same of the blade-to-ground case (4.16) 
with the exception of the       which has a different expression. In the equation (4.37) is 
reported only the system of non-linear equation for the first harmonic. 
 

                      
 
                                                                                            (4.35) 

 

      
 

 
                                                                                                                         (4.36) 
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 =1 : 

                                                                                            (4.37a) 

 

[                                                                                      (4.37b) 

 
Since the friction force can be written entirely as a function of the speed of left hand side 
blade, the equation of motion can be modified through a proper transformation matrix    , 
whose construction has been explained in Appendix 3 (A-3.6). This transformation introduces 
the inter-blade phase angle   into the equation, by reducing the degrees of freedom of the 
model from four to two. In particular, the new set of coordinate      contains the disk dof and 
the blade dof on the left boundary of the sector, since the other dofs are directly derived from 
the latter. The new equation of motion is the one showed in equation (4.38) and the mass, 
damping and stiffness matrices are function of the inter-blade phase. 
 

  
           

           
                     

 
                                                     (4.38) 

where                    
  . 

 
 

The forcing vector     contains the forces applied to the degrees of freedom of the reduced 
model. In particular the non zero term of the vector is the second one, related to the blade dof, 
and it contains the external force and the friction force. Now it is possible to introduce the 
expressions of the friction force and the external force into the forcing vector and apply the 
HBM to the system in exam. The system contains four non-linear equations with four 
unknowns, per each harmonic, and its form is the same of that derived in the blade-to-ground 
case with the exception of        (4.39). 

 

 
                 

                

                           
 
                               

                    (4.39) 

 

If    = 1 : 

                              
 
          

    

            
               

    

            
 

 

     (4.39a) 

If    > 1 : 

                              
 
     

 

 
     

    

     
      

 
        

 

 
     

    

     
      

 
 

 

 (4.39b) 
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By solving the non-linear system, the response amplitude of the blade, per each harmonic, is 
directly derived by the component sine and cosine      ,      which solve the non-linear 
system. Again, here are reported the responses computed for the first harmonic only, by 
setting different values of EO and different preload conditions, as for the previous studies in 
paragraph 4.1 and 4.2. For low EO (2,5,10) the friction force induces a boost in the amplitude, 
so the friction force behaves as a dragging force and it increases the response. As the EO 
increases (20,30), the damping effect is visible for a certain range of  preload. The reduction 
of the amplitude reaches a maximum and then start to decrease by increasing the preload in 
the damper. For high EO (40,50,70) what is obtained is a continuous decrease of the 
amplitude as the preload increases. In particular for EO equal to 70 (near  

 
 ) the situation is 

equivalent to the case of blade-to-ground damper where the reduction of the amplitude is 
proportional to the preload and it represents the limit case which leads to a maximum 
damping of the response in resonance conditions.  
 
 
 
EO = 2 : 
 

 
         Figure 4.18a. Response for different   (EO=2)       Figure 4.18b. Response without friction damper (EO=2) 

 

 
         4.18c. Magnification Factor against    (EO=2)          Figure 4.18d. % amplitude reduction against   (EO=2) 
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EO = 5 : 
 

 
       Figure 4.19a. Response for different   (EO=5)          Figure 4.19b. Response without friction damper (EO=5) 

 
         4.19c. Magnification Factor against    (EO=5)          Figure 4.19d. % amplitude reduction against   (EO=5) 

 
EO = 10 : 
 

 
      Figure 4.20a. Response for different   (EO=10)       Figure 4.20b. Response without friction damper (EO=10) 
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     4.20c. Magnification Factor against    (EO=10)          Figure 4.20d. % amplitude reduction against   (EO=10) 

 
 
EO = 20 : 
 

 
    Figure 4.21a. Response for different   (EO=20)       Figure 4.21b. Response without friction damper (EO=20) 

 

 
     4.21c. Magnification Factor against    (EO=20)          Figure 4.21d. % amplitude reduction against   (EO=20) 
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EO = 30 : 
 

 
      Figure 4.22a. Response for different   (EO=30)       Figure 4.22b. Response without friction damper (EO=30) 

 
     4.22c. Magnification Factor against    (EO=30)          Figure 4.22d. % amplitude reduction against   (EO=30) 

 

EO = 40 : 
 

 
      Figure 4.23a. Response for different   (EO=40)       Figure 4.23b. Response without friction damper (EO=40) 
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     4.23c. Magnification Factor against    (EO=40)          Figure 4.23d. % amplitude reduction against   (EO=40) 

 
 
EO = 50 : 
 

 
     Figure 4.24a. Response for different   (EO=50)       Figure 4.24b. Response without friction damper (EO=50) 

 

 
     4.24c. Magnification Factor against    (EO=50)          Figure 4.24d. % amplitude reduction against   (EO=50) 
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EO = 70 : 
 

 
      Figure 4.25a. Response for different   (EO=70)       Figure 4.25b. Response without friction damper (EO=70) 

 
     4.25c. Magnification Factor against    (EO=70)          Figure 4.25d. % amplitude reduction against   (EO=70) 
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Conclusions 
 
The thesis allows to understand how mistuning affects the vibration of a bladed disk. The aim 
of the thesis was to find a method of study to acquire information about the mechanical 
characteristics of a bladed disk which is affected by mistuning. It was demonstrated that, 
through a dedicated testing on the structure, it is possible to investigate the mechanical 
properties of the system by means of the FRF Decoupling Method, which allows to get the 
equivalent stiffness and damping properties of the joints, connecting the blades to the disk, 
which represent a source of mistuning because of the uncertainties linked to the coupling. 
This reverse engineering approach allows the designer to avoid the modeling, then the 
dynamic study of such complicated parts represented by the joints. Fortunately, the joints 
represent a region where friction can occur. It is well known that friction can damp the 
response of the blades by reducing considerably the resonance amplitude and it is a benefit for 
the fatigue life of the components. For this reason, the last chapter of the thesis was dedicated 
to the study of the friction-damped response, trying to evaluate the damping effect of friction 
by means of equivalent friction dampers incorporated in the model. It was shown that the 
damping effect depends strongly on the preload conditions but also on the EO if a sliding 
friction is generated between moving parts of the system. 
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Appendix 
 
1  Modeling of the bladed disk 
 
The structure was studied by using a lumped parameters method. The model is constituted by 
two mass elements    and   , respectively the mass of the disk sector and the mass of the 
blade, and three stiffness elements    ,    and    respectively the disk stiffness connecting 
two adjacent degrees of freedom , the disk stiffness connecting the degrees of freedom to the 
ground, and the stiffness associated to the blade. By referring to the graphical representation 
of the model in a circular configuration showed by the figure 3.1, in chapter 1, it is possible to 
see this system represented in a equivalent linear ( figure A-1.1 ) form so to be able to study 
the free body diagram for each degree of freedom and to write the equations of motion. 

 
Figure A-1.1 Lumped parameters model 

 
With such a configuration the subscript   is meant to assume values from   to  . The free 
body diagram of the  -th disk mass      is showed in figure A-1.2 and produces the first   
equations of motion (A-1.1). 

 
Figure A-1.2. Free body diagram of the     . 
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                                                                (A-1.1a) 
 

                                                                        (A-1.1b) 
 

                                                                     (A-1.1c) 
 
 

The other   equations of motion (A-1.2) refer to the degrees of freedom of the blades, whose 
free body diagram is reported in figure A-1.3. Now the subscript   is meant to range from 
    to   . 

 
Figure A-1.3. Free body diagram of     . 

 
 

                                                                                                                (A-1.2) 
 

The mass matrix     and the stiffness matrix     are derived from the equilibrium equations 
of each degree of freedom and they have dimension      : 
 

             
       

     
       

    

 

    

 
 
 
 
 
 
 
      
     
   

     
   
   

     
   
       

 
   
  

 

    
  
    

 
 
 
 
 
 

         

 

with             . 
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2  Modeling of a disk sector  
 
The analysis of the system by exploiting the cyclic symmetry property is conducted on a 
single sector of the bladed disk. The sector can be modeled with three degrees of freedom. 
The masses involved are      ,      which correspond both to the half of the mass   , used 
in the full system study, and the mass of the blade   . The stiffness elements    ,    and    
are the same of those used in the full system study. The lumped parameters model of the 
sector is the one showed in figure A-2.1. Then, it is possible to derive the mass matrix and the 
stiffness matrix associated to the system, with the same procedure used for the full system 
study ( the free body diagrams for each degree of freedom are showed in figures A-2.2). 

 
Figure A-2.1. Lumped parameters model of the sector. 

 

 
Figure A-2.2a. Free body diagram of the left hand side dof. 

 

 
Figure A-2.2b. Free body diagram of the right hand side dof. 
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Figure A-2.2c. Free body diagram of the blade dof. 

 
 

Being the displacement coordinates vector                     , the mass matrix      and the 
stiffness matrix      are easily derived: 
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3  Modeling of a sector for blade-to-blade friction analysis 
 
The study of the forced response of the system with the introduction of  sliding friction 
between the shrouds of the blade, by exploiting the cyclic symmetry property, requires the 
definition of a new model of the sector. It has to include at least two blades in order to 
consider the friction force which is generated between them, during the motion. A possible 
choice, which includes the minimum number of degrees of freedom, is the one represented in 
figure A-3.1 (in the figure, the sector is constituted by all the mass and stiffness elements 
included within the thick dashed line). In order to satisfy the cyclic symmetry property, the 
sector is constituted by two halves of two adjacent blades and the portion of disk which is 
delimited between them. Since the sector is defined in such a way, the mass and stiffness 
elements, which constitute the lumped parameters model of the sector, correspond exactly to 
the half of the mass and stiffness elements defined for the full-system model, with the 
exception of the stiffness element which connects the two adjacent disk masses because it is 
entirely included within the sector. 
 
 

 
Figure A-3.1. Sector model for blade-to-blade friction analysis 

 
 

If the mass and stiffness elements defined for the full-system study are    ,    ,    ,    and 
   (identified by a subscript with capital letter) the mass and stiffness elements of the new 
sector are    ,    ,    ,    and    (identified by a subscript with small letter) and they are 
defined as follows: 

   
  

 
  ;     

  

 
  ;      

  

 
  ;         ;     

  

 
  . 

 
It is now possible to study the free body diagrams of the masses of the sector and to write the 
equations of motion (A-3.1), in order to find the mass and stiffness matrices which describes 
the model. From figure A-3.2 the free body diagrams are derived ( figures A-3.3). 
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Figure A-3.2. Schematic representation of the sector model. 

 

Free body diagram of     : 

 
Figure A-3.3a. Free body diagram of mass    . 

 

                                                                                        (A-3.1a) 
 
 

Free body diagram of     : 

 
Figure A-3.3b. Free body diagram of mass    . 

 

                                                                                        (A-3.1b) 
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Free body diagram of     : 

 
Figure A-3.3c. Free body diagram of mass    . 

 

                                                                                                              (A-3.1c) 
 
 

Free body diagram of     : 

 
Figure A-3.3d. Free body diagram of mass    . 

 

                                                                                                              (A-3.1d) 
 
 
The mass and stiffness matrices are directly defined from the free body diagrams (A-3.3), 
once a vector of coordinates     has been set (A-3.2).  
 
                     

                                                                                                 (A-3.2) 
 

    

   
   

  
  

  
  

   
   

                                                                                           (A-3.3a) 
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                                                      (A-3.3b) 

 

The damping matrix      can be obtained by means of the modal matrix, once a modal 
damping ratio has been associated to each mode shape. Once all the matrices have been built, 
the equation of motion of the system can be written in the classical matrix form (A-3.4).  
 

                                                                                                                     (A-3.4) 
  
The cyclic symmetry property is introduced in the model through a proper transformation 
matrix, as in the case of the linear system study. Here, two nodes of the model belong to the 
left boundary of the sector. The other two nodes belong to the right boundary of the sector. 
So, a relation can be established between the coordinates of the left hand side of the sector 
and those of the right hand side. The transformation matrix allows to reduce the degrees of 
freedom of the model from four to two,       (A-3.6). In particular the coordinates     and 
    can be written as functions of the coordinates     and     respectively (A-3.5), by means 
of the inter-blade phase angle which brings the information of the EO. 
 

                                                                                                                             (A-3.5a) 
 

                                                                                                                             (A-3.5b) 
 

             

  
    
  
    

   
    
    

                                                                                      (A-3.6) 

 
By substituting (A-3.6) into the equation of motion (A-3.4) and pre-multiplying both left and 
right hand side of the equation by the transpose of the transformation matrix, the new 
equation of motion of the reduced system can be written as follows (A-3.7). Now, the 
matrices   

     ,        and        depends on the EO. 
 

  
           

           
                                                                                          (A-3.7) 
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4  Modeling of the bladed disk with joints incorporation 
 
The lumped parameters model of the bladed disk used in the paragraph 3.4 is constituted by 
3N degrees of freedom     (A-4.1). They are ordered in the coordinates vector so to have the 
first N dofs connected to the disk, the second N dofs connected to the interfaces of the blades 
with the joints and the third N dofs describing the motion of the blades where the excitation 
force is applied. By looking at figure A-4.1 it is possible to derive the free body diagrams of 
the masses of the system, then to build the mass , stiffness and damping matrices.  
 

                                                   
 

                                                   (A-4.1) 

 

 
Figure A-4.1. Model of the bladed disk with joints incorporation. 

 
Free body diagram of      ,   = 1, … , N : 

 

 
Figure A-4.2a. Free body diagram of     . 
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Free body diagram of     

 
  (blade root) ,   = N+1, … , 2N : 

 

 
Figure A-4.2b. Free body diagram of     

 
 at the roots of the blades. 

 

Free body diagram of     

 
  (blade tip) ,   = 2N+1, … , 3N : 

 

 
Figure A-4.2c. Free body diagram of     

 
 at the tips of the blades. 
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