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Abstract 

Estimation of the fatigue life of mechanical components subjected to general 

load conditions are of great interest in many engineering fields. Fatigue life 

is estimated by vibration testing. As vibrations may be random in nature in 

a wide range of applications, random fatigue investigation has the greatest 

interest. An efficient way of dealing with random vibrations is to use a 

statistical process to determine the probability of the occurrence of particular 

amplitudes. In this type of approach, the random vibration can be 

characterized using a mean, standard deviation and a probability 

distribution. 

The experimental part of this project was consisted in exciting steel alloy 

specimens with a band-limited ergodic Gaussian white noise using a modal 

shaker until rupture. Applying some modal analysis techniques, the 

necessary vibrational parameters were obtained and recorded, thanks to 

some accelerometers. 

The theoretical part was to estimate the fatigue life of the specimen using 

Miner’s rule based on the vibrational parameters collected during the 

experiments and on statistical representation of the random vibrations 

applying Steinberg 3-band method. The results were compared to the fatigue 

life obtained experimentally. 

Experiments have shown that the specimen broke in less time than what was 

predicted theoretically using the same values as in the experiment. The 

difference might be the result of using a non-precise Wohler’s curve. 
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1 Introduction 

Vibration testing is done to introduce a forcing function into a structure, 

usually with the use of a vibration test shaker or vibration testing machine. 

These induced vibrations, vibration tests, or shaker tests are used in the 

laboratory or production floor for a variety of things, including qualifying 

products during design, meeting standards, regulatory qualifications (e.g. 

MIL-STD 810, etc.), fatigue testing, screening products, and evaluating 

performance [1]. 

The most common types of vibration testing services conducted by vibration 

test labs are Harmonic and Random. Harmonic (one frequency at a time) tests 

are performed to survey the structural response of the device under test 

(DUT). A random (all frequencies at once) test is generally considered to more 

closely replicate a real-world environment. 

Determining the fatigue life of parts under periodic, sinusoidal vibration is a 

straightforward process in which damage content is calculated by multiplying 

the stress amplitude of each cycle from harmonic analysis with the number 

of cycles that the parts experience in the field. The computation is relatively 

simple because the absolute value of the vibration is highly predictable at any 

point in time [2]. 

Vibrations may be random in nature in a wide range of applications, however, 

such as vehicles traveling on rough roads or industrial equipment operating 

in the field where arbitrary loads may be encountered. In these cases, 

instantaneous vibration amplitudes are not highly predictable as the 

amplitude at any point in time is not related to that at any other point in 

time. As shown in Figure 1-1, the lack of periodicity is apparent with random 

vibrations [2]. 

 

Figure 1-1: Random vibrations measured for vehicle on a rough road 
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Figure 1-2: Random time–history can be represented as a series of overlapping 

sinusoidal curves 

 

The complex nature of random vibrations is demonstrated with a Fourier 

analysis of the random time–history shown in Figure 1-2, revealing that the 

random motion can be represented as a series of many overlapping sine 

waves, with each curve cycling at its own frequency and amplitude. With 

these multiple frequencies occurring at the same time, the structural 

resonances of different components can be excited simultaneously, thus 

increasing the potential damage of random vibrations. 

Because of the mathematical complexity of working with these overlapping 

sine curves to find instantaneous amplitude as an exact function of time, a 

more efficient way of dealing with random vibrations is to use a statistical 

process to determine the probability of the occurrence of particular 

amplitudes. In this type of approach, the random vibration can be 

characterized using a mean, the standard deviation and a probability 

distribution. Individual vibration amplitudes are not determined. Rather, the 

amplitudes are averaged over a large number of cycles and the cumulative 

effect determined for this time period. This provides a more practical process 

for characterizing random vibrations than analyzing an unimaginably large 

set of time–history data for many different vibration profiles. 

An important aspect of such a statistical representation is that most random 

processes follow a Gaussian probability distribution. This aspect has a great 

rule in this work since the excitation random signal, in the fatigue tests done, 

was the Gaussian White Noise.  
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Representing the random signals in this manner is sometimes called a zero-

mean Gaussian process, since the mean value of the signals centers at zero of 

the histogram, as do the random signal responses, which are usually 

described in terms of standard deviation (or sigma value) of the distribution. 

Figure 1-3 shows how the Gaussian distribution relates to the magnitude of 

the acceleration levels expected for random vibration.  It is important to note 

that the Gaussian probability distribution does not indicate the random 

signal’s frequency content. That is the function of the power spectral density 

analysis. 

 

 

Figure 1-3: Gaussian distribution (right) of random signal (left): 

 

The usual way to describe the severity of damage for random vibration is in 

terms of its power spectral density (PSD), a measure of a vibration signal’s 

power intensity in the frequency domain. 

Random vibration analysis is usually performed over a large range of 

frequencies — from 20 to 2,000 Hz, for example. Such a study does not look 

at a specific frequency or amplitude at a specific moment in time but rather 

statistically looks at a structure’s response to a given random vibration 

environment. Certainly, we want to know if there are any frequencies that 

cause a large random response at any natural frequencies, but mostly we 

want to know the overall response of the structure. The square root of the 

area under the PSD curve (grey area) in Figure 1-4 gives the root mean square 

(RMS) value of the acceleration, or Grms, which is a qualitative measure of 

intensity of vibration. 

In vibration theory, the modal analysis method allows huge simplifications in 

studying the vibratory response of systems from both deterministic and 

random excitations. Since the end of the last century, experimental modal 

analysis techniques received a special attention and started to be used in 

many practical applications, with satisfactory results. 
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Figure 1-4: Random time–history (left), power special density (PSD) of a random 

time-history (right) 

 

The objective of this thesis is to develop a new constitutive model and a new 

damage model for high cycle fatigue behavior of steel alloy starting from 

random fatigue tests. 

In brief, the purpose of this work is to start a bibliographic research in the 

field of vibration, modal analysis and fatigue, to discover and get familiar 

with these areas (chapter 2). Then, to do the predefined experimental tests 

and simulations on steel specimens; first to find the modal parameters, then 

to perform the random fatigue tests (chapter 3). Finally, to process the results 

by the chosen fatigue model and to correlate the results obtained theoretically 

with those obtained experimentally (chapter 4). 

This work which last six months was to set the foundations for future studies 

by moving further from the first steps already taken by previous students in 

the DIMEAS Laboratory with the same equipment set.  
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2 Literature Review 

 

2.1 Introductory Concepts on Vibrations 

The vibrations of linear systems fall into two categories – free and forced. Free 

vibrations occur when a system vibrates in the absence of any externally 

applied forces (i.e. the externally applied force is removed and the system 

vibrates under the action of internal forces). A finite system undergoing free 

vibrations will vibrate in one or more of a series of specific patterns. Each of 

these specific vibration patterns is called a mode shape and it vibrates at a 

constant frequency, which is called a natural frequency [3]. These natural 

frequencies are properties of the finite system itself and are related to its 

mass and stiffness (inertia and elasticity). It is interesting to note that if a 

system were infinite it would be able to vibrate freely at any frequency (this 

point is relevant to the propagation of sound waves) [3]. Forced vibrations, on 

the other hand, take place under the excitation of external forces. These 

excitation forces may be classified as being (i) harmonic, (ii) periodic, (iii) non-

periodic (pulse or transient), or (iv) stochastic (random). Forced vibrations 

occur at the excitation frequencies, and it is important to note that these 

frequencies are arbitrary and therefore independent of the natural 

frequencies of the system [3]. The phenomenon of resonance is encountered 

when a natural frequency of the system coincides with one of the exciting 

frequencies. 

When the energy of a vibrating system is gradually dissipated by friction and 

other resistances, the vibrations are said to be damped. The vibrations 

gradually reduce or change in frequency or intensity or cease and the system 

rests in its equilibrium position. An example of this type of vibration is the 

vehicular suspension dampened by the shock absorber. 

 

2.2 Single Degree-of-Freedom (SDOF) System 

The fundamentals of vibration analysis can be understood by studying the 

simple mass-spring-damper model, Figure 2-1 [4]. Indeed, even a complex 

structure such as an automobile body can be modelled as a "summation" of 

simple mass-spring-damper models. The mass-spring-damper model is an 

example of a simple harmonic oscillator. The mathematics used to describe 

its behavior is identical to other simple harmonic oscillators such as the RLC 

circuit. 
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Figure 2-1: Mass–spring–damper model; 𝐤 is the linear elastic stiffness coefficient, 

𝐦 is the object’s mass, 𝐜 is the linear viscous damping coefficient, and 𝐟(𝐭) is the 

external excitation force (in case of free vibration, 𝐟(𝐭) = 𝟎) 

The mass–spring–damper model, shown in Figure 1.1, is called a single 

degree of freedom (SDOF) model since the mass is assumed to only move up 

and down. In more complex systems, the system must be discretized into more 

masses that move in more than one direction, adding degrees of freedom. This 

latter system is called a multiple degree of freedom system and will be 

discussed in section 2.4. 

The step-by-step mathematical derivations are not included in this thesis, as 

they are not the point of interest. A detailed description can be found in 

numerous text books and articles. Some of these references are included in 

the bibliography [3] [5] [4] [6] [7] [8]. 

The equation of motion for translation oscillations of the single degree-of-

freedom system in Figure 2-1 is: 

 𝒎𝒙̈ (𝒕) + 𝒄𝒙̈ (𝒕) + 𝒌𝒙̈(𝒕) = 𝒇(𝒕) (1) 

The natural frequency 𝒇𝒏 of the system is defined as:  

 𝝎𝟎 = 𝟐𝝅𝒇𝒏 = √𝒌 𝒎⁄  (2) 

The damping ratio 𝜻, defined as the ratio of the actual damping 𝒄 to the 

critical damping 𝒄𝒄 = 𝟐√𝒎𝒌: 

 𝜻 = 𝒄 𝒄𝒄⁄  (3) 

 

2.2.1 Free Vibration [4] 

Considering the case of free vibration, i.e. 𝒇(𝒕)  =  𝟎, eq. (1) can be written as: 

 𝒎𝒙̈ (𝒕) + 𝒄𝒙̈ (𝒕) + 𝒌𝒙̈(𝒕) = 𝟎 (4) 

Based on equation (4) the SDOF system can be classified as: 

• Undamped (𝜻 → 𝟎): system with constant amplitude oscillations; 

• Underdamped (𝜻 < 𝟏 & 𝒄 < 𝒄𝒄): characterized by a cosinusoidal decay 

oscillation; 
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• Overdamped (𝜻 > 𝟏 & 𝒄 > 𝒄𝒄): exponential decay with no oscillation but 

which takes more time to reach the equilibrium position when 

compared to the critically damped system; 

• Critically damped (𝜻 = 𝟏 & 𝒄 = 𝒄𝒄): system returns to the equilibrium 

position quick with no overshoot or oscillation. 

 

Figure 2-2: Free response of single degree-of-freedom system. 

Figure 2-2 shows a graphical representation of the free response of SDOF 

system with different damping ratios. For the purposes of the present thesis, 

only under-damped systems will be considered, since all the studied 

phenomena on the experimental tests have small damping ratio values. 

 

2.2.2 Forced Vibration with Harmonic Excitation [4] 

We consider the periodic forcing function: 

 𝒇(𝒕) = 𝑭 𝐬𝐢𝐧(𝟐𝝅𝒇𝒕) (5) 

 

Substituting equation (5) in equation (1), the steady state solution of this 

problem can be written as: 

 𝒙̈(𝒕) = 𝑿 𝐬𝐢𝐧(𝟐𝝅𝒇𝒕 + 𝝓) (6) 

 

The result states that the mass will oscillate at the same frequency, 𝒇, of the 

applied force, but with a phase shift ∅. 𝑿 is the vibration amplitude. 𝑿 and 𝝓 

can be expressed as: 

Amplitude: 𝑿 =
𝑭

𝒌

𝟏

√(𝟏 − 𝒓𝟐)𝟐 + (𝟐𝜻𝒓)𝟐
 (7) 

Phase: 𝝓 = 𝐭𝐚𝐧−𝟏 (
𝟐𝜻𝒓

𝟏 − 𝒓𝟐
)  (8) 

where “𝑟” is defined as the ratio of the harmonic force frequency over the 

undamped natural frequency of the mass–spring–damper model: 

 𝒓 = 𝒇 𝒇𝒏⁄  (9) 
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2.2.3 Frequency Response Function 

The plot of these functions (7) and (8), Figure 2-3, called "the Frequency 

Response of the system (FRF)", presents one of the most important features 

in forced vibration. In a lightly damped system when the forcing frequency 

nears the natural frequency (𝒓 ≈ 𝟏), the amplitude of the vibration can get 

extremely high. This phenomenon is called resonance (subsequently the 

natural frequency of a system is often referred to as the resonant frequency).  

 

Figure 2-3: Forced Vibration Response  

So far in this sub-section, solutions have been sought for the output steady-

state displacement, 𝑿. The complex ratio of the output displacement to the 

input force, 𝑿/𝑭, i.e. equation (7), is commonly referred to as a receptance. 

There are a range of different force–response relationships that are of general 

engineering interest. In many applications in noise and vibration, in addition 

to the receptance, the mobility (velocity/force; 𝑽/𝑭) and the inertance 

(acceleration/force;  𝑨/𝑭) are often of interest. 

 

2.2.4 Quality factor 

It can be shown that the steady-state amplitude, X, is a maximum when 

 𝒓 = √𝟏 − 𝟐𝜻𝟐 (10) 

The maximum value of 𝑿 is: 

 𝑿𝒓 =
𝑿𝟎

𝟐𝜻 (√𝟏 − 𝜻𝟐)
 (11) 

and the corresponding phase angle at 𝑿 =  𝑿𝒓 is: 

 𝝋 =  𝐭𝐚𝐧−𝟏 (
√𝟏 − 𝟐𝜻𝟐

𝜻
) (12) 

where 𝑿𝟎 = 𝑭/𝒌. For most practical situations, however, 𝜻 is small (<0.05): 

 𝑿𝒓 ≈
𝑿𝟎

𝟐𝜻
    &     𝝋 ≈ 𝐭𝐚𝐧−𝟏 (

𝟏

𝜻
) (13) 
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For these cases of small damping, amplitude resonance and phase resonance 

are assumed to be equal, i.e. 𝝋 ≈  𝟗𝟎°, and therefore 𝝎 ≈  𝝎𝒏. The 

magnification factor at resonance is thus ∼ 𝟏/𝟐𝜻 and it is called the 𝑸 factor 

or the quality factor, i.e.: 

 
𝑿𝒓

𝑿𝟎
=

𝟏

𝟐𝜻
= 𝑸 (14) 

The quality factor is described physically as a measure of the sharpness of the 

response at resonance and is a measure of the system’s damping. The points 

where the magnification factor is reduced to 𝟏/√𝟐  of its peak value (or the −3 

dB points) are defined as the half-power points. The damping in a system can 

thus be obtained from the half-power bandwidth. This is illustrated in Figure 

2-4. By solving equation (7) for 𝑿𝒎𝒂𝒙̈ √𝟐⁄  , where 𝑿𝒎𝒂𝒙̈  =  𝑿𝒓/𝑿𝟎, the half-

power frequencies (𝝎𝟏 and 𝝎𝟐) can be obtained. They are 

 𝝎𝟏,𝟐 = (𝟏 ±  𝜻 )𝝎𝒏, (15) 

therefore, 𝑸 =
𝟏

𝟐𝜻
=

𝝎𝒏

𝝎𝟐 −𝝎𝟏
 (16) 

 

Figure 2-4: Half-power bandwidth and half-power points for a linear oscillator 

2.3 Forced Vibration with Random Excitation [3] 

As already mentioned before, excitation forces may be classified as being 

harmonic, periodic, non-periodic (pulse or transient), or stochastic (random).  

The response of a one-degree-of-freedom system harmonic signals has been 

summarized in section 2.2.2. The cases of periodic and non-periodic signals 

are beyond the scope of this thesis, as random excitations are the point of 

interest. However, these signals are still deterministic and can therefore be 

expressed by an explicit mathematical relationship. 

Quite often, in noise and vibration analysis, the input signal to some system 

cannot be described by an explicit mathematical relationship. It is random in 

nature (i.e. the time history of the signal is neither periodic nor transient but 

is continuous and does not repeat itself) and should be described in terms of 

probability statements and statistical averages – this class of vibrations is 
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termed random vibrations. Also, if the input to a system is random, its output 

vibrations will also be random. Some typical examples of random vibrations 

are the turbulent flow over an aircraft body; the response of ships to ocean 

waves…etc. A time history of a typical random signal containing numerous 

frequency components is illustrated in Figure 2-5. 

 

Figure 2-5: A time history of a typical random signal. 

An individual time history of a random signal is called a sample record, and 

a collection of several such records constitutes an ensemble average of a 

random, or a stochastic, process. A random process can be: 

i. ergodic (or strictly stationary) if all the probability distributions 

associated with it are time-invariant; 

ii. weakly stationary if only its first and second order probability 

distributions are invariant with time;  

iii. non-stationary when its probability distributions are not stationary 

with respect to a change of the time scale, i.e. they vary with time.  

Most random physical phenomena that are of interest to engineers can be 

approximated as being stationary – if a signal is very long compared with the 

period of the lowest frequency component of interest, it is approximately 

stationary. Therefore, only the random vibrations of stationary signals 

(ergodic) will be presented in this thesis. A Flowchart illustrating the 

different types of input and output signals can be found in Appendix A 

Four types of statistical functions are used to describe random signals: 

i. mean-square values and the variance – they provide information about 

the amplitude of the signal; 

ii. probability distributions – they provide information about the 

statistical properties of the signal in the amplitude domain; 

iii. correlation functions – they provide information about the statistical 

properties of the signal in the time domain; 

iv. spectral density functions – they provide information about the 

statistical properties of the signal in the frequency domain. 

Throughout this section a linear system with a single input and a single 

output will be considered. The input will be assumed to be a random signal, 

𝒙̈(𝒕), and the output will be defined as 𝒚(𝒕). The system will be modelled as a 

SDOF mass–spring–damper. 
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2.3.1 Probability Density Function (PDF)  

The expected or mean value of a function 𝒙̈(𝒕) is given by: 

 𝑬[𝒙̈(𝒕)] =
𝟏

𝑻
 ∫ 𝒙̈(𝒕)𝒅𝒕

𝑻

𝟎

= ∫ 𝒙̈𝒑(𝒙̈) 𝒅𝒙̈
∞

−∞

 (17) 

where 𝒑(𝒙̈) is the probability density function. It specifies the probability, 

𝒑(𝒙̈) 𝒅𝒙̈, that a random variable lies in the range 𝒙̈ to 𝒙̈ +  𝒅𝒙̈.  

For a stationary random process, 𝑬[𝒙̈(𝒕)]  =  𝑬[𝒙̈]. This is because a stationary 

random process is time-invariant. It is sometimes referred to as the first 

statistical moment.  

The second statistical moment, or the mean-square value, 𝑬[𝒙̈𝟐], is the 

average value of  𝒙̈𝟐 and is given by: 

 𝑬[𝒙̈𝟐(𝒕)] =
𝟏

𝑻
 ∫ 𝒙̈𝟐𝒅𝒕

𝑻

𝟎

= ∫ 𝒙̈𝟐𝒑(𝒙̈) 𝒅𝒙̈
∞

−∞

 (18) 

The positive square root of 𝑬[𝒙̈𝟐] is the Root-Mean-Square (RMS) value of the 

signal. The standard deviation 𝝈 of 𝒙̈(𝒕), and the variance, 𝝈𝟐, are defined by: 

 𝝈𝟐  =  𝑬[𝒙̈𝟐 ]  −  {𝑬[𝒙̈]}𝟐 (19) 

 

2.3.2 Auto-Correlation Function 

The auto-correlation function for a random signal, 𝒙̈(𝒕), provides information 

about the degree of dependence of the value of 𝒙̈ at some time 𝒕 on its value 

at some other time  + 𝝉 . For a stationary random signal, the auto-correlation 

depends upon the time separation, and is independent of absolute time. It is 

defined as: 

 𝑹𝒙̈𝒙̈(𝝉) = 𝑬(𝒙̈(𝒕) 𝒙̈(𝒕 + 𝝉)) = 𝐥𝐢𝐦
𝑻→∞

𝟏

𝑻
 ∫ 𝒙̈(𝒕) 𝒙̈(𝒕 + 𝝉)𝒅𝒕

𝑻

𝟎

 (20) 

 

 

Figure 2-6: A typical auto-correlation function for a stationary random signal. 
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The auto-correlation function is an even function, it does not contain any 

phase information, and its maximum value always occurs at 𝝉 =  𝟎. For 

periodic signals, 𝑹𝒙̈𝒙̈(𝝉) is always periodic, and for random signals it always 

decays to zero for large values of 𝝉. It is therefore a useful tool for identifying 

deterministic signals which would otherwise be masked in a random 

background. A typical auto-correlation signal is illustrated in Figure 2-6. 

 

2.3.3 Power Spectral Density Function (PSD)  

The spectral density function is the Fourier transform of the correlation 

coefficient. A general Fourier transform pair, 𝑿(𝝎) and 𝑥(𝑡) is defined as: 

 𝑿(𝝎) =
1

2𝜋
∫ 𝑥(𝑡) 𝑒−𝑖𝜔𝑡𝑑𝑡
+∞

−∞

 (21) 

and 

 𝑥(𝑡) = ∫ 𝑿(𝝎)𝑒𝑖𝜔𝑡𝑑𝑡
+∞

−∞

 (22) 

𝑿(𝝎) is the Fourier transform of 𝑥(𝑡) and it is a complex quantity. Classical 

Fourier analysis also introduces the condition that: 

 ∫ |𝑥(𝑡)| 𝑑𝜏
+∞

−∞

< ∞ (23) 

i.e. classical theory is valid for functions which are absolutely integrable and 

decay to zero when |𝑡| → ∞. Stationary random signals do not decay to zero 

with time. This problem is overcome by Fourier analysing the correlation 

function instead (the correlation function of a random signal decays to zero 

with increasing 𝜏). It is important to note that the frequency content of the 

stationary random signal is not lost in the process. 

The Fourier transform of 𝑅𝑥𝑥(𝜏) and its inverse are thus given by: 

 𝑺𝒙̈𝒙̈(𝝎) = 𝐹(𝑅𝑥𝑥(𝜏)) =
1

2𝜋
∫ 𝑅𝑥𝑥(𝜏) ∙ 𝑒

−𝑖𝜔𝑡𝑑𝜏
+∞

−∞

 (24) 

𝑺𝒙̈𝒙̈(𝝎) is the auto-spectral density of the 𝑥(𝑡) random signal and it is a 

function of frequency. The auto-spectral density is widely used in noise and 

vibration analysis. The area under an auto-spectrum is the mean-square 

value of a signal. 

It should be pointed out at this stage that the experimental estimation of 

spectra from measured data does not follow the above mentioned formal 

mathematical route of obtaining the spectra from the correlation function. 

With the development of the fast Fourier transform (FFT) technique, digital 

estimates of spectra can be directly obtained from the time histories with 

suitable computer algorithms. 
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2.3.4 Frequency Response Function (FRF) 

Consider an arbitrary input signal, 𝑥(𝑡), to a linear system such that the 

condition in eq. (23).  Its Fourier transform, 𝑿(𝝎), is given by eq. (21). 

For a linear system, there is a relationship between the Fourier transforms 

of the input signal, 𝑿(𝝎), and the output signal, 𝒀(𝝎). This relationship is:  

 𝒀(𝝎)  =  𝑯(𝝎)𝑿(𝝎) (25) 

where 𝑯(𝝎) is the Frequency Response Function (FRF) of the linear system. 

𝑯(𝝎) can be receptance, mobility, inertance etc... as described in section 2.2.3. 

The output signal, 𝒚(𝒕), from the linear system can subsequently be obtained 

by inverse Fourier transforming equation. 

From the receptance FRF, it is possible to calculate the other quantities using 

derivatives, and the following expressions are obtained: 

𝑅𝑒𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒: 𝑹(𝝎) =
𝑿(𝝎)

𝑭(𝝎)
 (26) 

𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦: 𝑽(𝝎) =
𝑿 (𝝎)

𝑭(𝝎)
= 𝒊𝝎

𝑿(𝝎)

𝑭(𝝎)
 (27) 

𝐼𝑛𝑒𝑟𝑡𝑎𝑛𝑐𝑒: 𝑨(𝝎) =
𝑿 (𝝎)

𝑭(𝝎)
= −𝝎𝟐

𝑿(𝝎)

𝑭(𝝎)
 (28) 

 

2.3.5 Ergodic White Gaussian Noise 

In probability theory, the normal (or Gaussian) distribution is a very common 

continuous probability distribution function. A typical Gaussian distribution 

curve is illustrated in Figure 2-7. Gaussian random process is a random 

process in which, for any time instant on an ensemble, the random variables 

follow a Gaussian distribution. It can be proved that if the excitation of a 

linear system is a Gaussian random process, the response is Gaussian [7].  

 

Figure 2-7: Gaussian Probability Density Function 
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White Noise is a random signal having equal intensity at different 

frequencies, giving it a constant power spectral density [9]. White noise refers 

to a statistical model for signals and signal sources, rather than to any specific 

signal. White noise draws its name from white light [10]. 

In discrete time, white noise is a discrete signal whose samples are regarded 

as a sequence of serially uncorrelated random variables with zero mean and 

finite variance. If each of these samples has a normal distribution with zero 

mean, the signal is said to be Gaussian white noise [11]. 

Typically, the PSD of a white Gaussian noise is wide and flat, Figure 2-8a. A 

PSD that extends from −∞ to +∞ is not realistic. Therefore, noise is 

considered only in the interested bandwidth. An example of passband white 

Gaussian noise PSD is illustrated in Figure 2-8b. 

 

Figure 2-8: PSD of (a) an ideal white noise, and (b) a passband white noise 

In the experimental tests, which will be described later, random excitations 

were done by applying ergodic white Gaussian noise to the testing specimens. 

 

2.4 Multiple Degree of Freedom (MDOF) System  

Differently from the SDOF systems, multi degrees of freedom systems, as the 

one in Figure 2-9, require more than one independent coordinate to describe 

its parts position. Systems with a finite number of degrees of freedom are 

called discrete. 

 

Figure 2-9: Multiple degree of freedom system 

Many real systems, especially those involving continuous elastic members, 

have an infinite number of degrees of freedom, and are called continuous or 

distributed systems. Most of the time, these continuous systems are 
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approximated by discrete systems with multiple degrees of freedom instead 

of dealing with a continuous problem, and the solutions are obtained in a 

simpler manner, although not exact. However, the advent of computers made 

possible the development of numerical methods for solving in some 

reasonable time systems with a great number of degrees of freedom, 

improving the result’s accuracy. 

Different methods exist to approximate a continuous system to a MDOF 

system, such as the lumped-parameter method of the finite element method. 

In this thesis, the latter was used, and it consists on “replacing the geometry 

of the system by large number of small elements. By assuming a simple 

solution within each element, the principles of compatibility and equilibrium 

are used to find an approximate solution to the original system” [6]. 

In any case, it’s possible to derive a set of n equations of motion, where n is 

the number of degrees of freedom of the system. These equations can be 

expressed is matrix form as: 

 [𝑴]{𝒙̈ (𝒕)} + [𝑪]{𝒙̈ (𝒕)} + [𝑲]{𝒙̈(𝒕)} = {𝑭(𝒕)} (29) 

 

where [𝑴], [𝑪] and [𝑲] are the called mass, damping and stiffness matrices, 

respectively, and {𝒙̈ (𝒕)}, {𝒙̈ (𝒕)}, {𝒙̈(𝒕)} and {𝑭(𝒕)} are the acceleration, the 

velocity, the displacement and the force vectors respectively. 

In the general case, the matrices  [𝑴], [𝑪] and [𝑲] are fully populated and 

equation (29) denotes a system of n coupled second-order ordinary differential 

equations. These equations can be decoupled using a procedure called modal 

analysis, which requires the natural frequencies and normal modes or 

natural modes of the system [8]. 

 

2.5 Modal Analysis  

Modal analysis is the study of a structure in terms of its natural 

characteristics which are the frequency, damping and mode shapes i.e. its 

dynamic properties [12].  

Modal analysis is the field of measuring or calculating and analyzing the 

dynamic response of structures during excitation. Examples would include 

measuring the vibration of a car's body when it is attached to an 

electromagnetic shaker, analysis of unforced vibration response of vehicle 

suspension [13]. Modern day experimental modal analysis systems are 

composed:  

• sensors such as transducers (typically accelerometers, load cells), or 

non-contact via a laser vibrometer, or stereo photogrammetric cameras  

• data acquisition system and an analogue-to-digital converter front end 

(to digitize analogue instrumentation signals) and  

• host PC (personal computer) to view the data and analyses it. 
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Typical excitation signals can be classed as impulse, broadband, swept sine, 

chirp, and possibly others. Each has its own advantages and disadvantages. 

Where structural resonances occur, there will be an amplification of the 

response, clearly seen in the response spectra. Figure 2-10 illustrates an 

example of a frequency response function, where the peaks represents the 

resonances or the natural frequencies of the tested structure.  Using the 

response spectra and force spectra, a transfer function can be obtained. The 

transfer function (or frequency response function (FRF)) is often curve fitted 

to estimate the modal parameters i.e. the modal frequency (resonance), the 

modal damping (damping at resonance), and the mode shape [14]; however, 

there are many methods of modal parameter estimation and it is the topic of 

much research. 

 

Figure 2-10: A typical example of frequency response spectrum 

 

2.5.1 Modal Parameters Estimation Methods 

Modal parameter estimation is the process of determining the modal 

parameters from experimentally measured data. These techniques, also 

called curve fitting, have developed greatly during the past 30 years. 

The most widespread classification of modal parameter identification 

methods is between frequency domain methods and time domain methods. 

The technique used in this work is a frequency domain method so-called Peak-

Picking technique. It was used for its simplicity and compatibility to the 

available equipment [15]. 

 

Figure 2-11: The frequency response of simple structures can be split up into 

individual modes, each mode behaving as a SDOF system 
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For lightly damped systems without closely spaced modes it can be assumed 

that near a natural frequency, the overall vibration tends to be dominated by 

the mode of resonance, whereas the other modes’ influence is negligible. So, 

this mode can be idealized as an independent SDOF system, as shown in 

Figure 2-11, and the overall response of the structure at any frequency is the 

sum of the contributions of each mode. This is called the superposition 

principle [14]. 

The modal frequencies can be estimated from the frequency response data by 

observing the frequency at which any of the following trends occur [16]: 

• The magnitude of the frequency response is a maximum; 

• The imaginary part of the frequency response is a maximum or minimum; 

• The real part of the frequency response is zero; 

• The phase of the frequency response is 90°. 

A graphical representation of these trends is shown in Figure 2-12. 

 

Figure 2-12: Modal frequency identification on an idealized SDOF system 

A commonly used technique to extract the modal damping from the FRF is 

the half-power bandwidth or 3dB method, in which each of the idealized 

SDOF systems that compose the measured FRF is analyzed separately. This 

method is described in section 2.2.4. 

From the measured modal damping, it is possible to calculate the equivalent 

loss factor 𝜼 from the following equation, as pointed out by [17]: 

 𝜼 = 𝟐𝜻 ∙ √𝟏 − 𝜻𝟐 (30) 

 

To estimate the modal shape, one of the simplest method is called Quadrature 

Picking and it’s based on the fact that the FRF of a SDOF system at resonance 

is purely imaginary, and as a result, this value is proportional to the modal 

displacement. Consequently, by examining the magnitude of the imaginary 

part of the FRF in the resonant frequencies at several points on the structure, 

the relative modal displacement at each point can be found. From these 

displacements, the mode shapes can be established. The procedure can then 

be repeated to determine all the required mode shapes [14]. The quadrature 

method is one of the more popular techniques for estimating modal 
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parameters because it is easy to use, very fast and requires minimum 

computing resources. An example of quadrature picking method is illustrated 

in Figure 2-12. It is, however, sensitive to noise on the measurement and 

effects from adjacent modes [16]. 

 

Figure 2-13: Modal coefficients estimation by the Quadrature Picking method 
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2.6 Fatigue 

In general, fatigue can be defined as a phenomenon that takes place on 

components and structures subjected to time-varying external loadings and 

that manifests itself in the deterioration of the material’s ability to carry the 

intended loading [18]. 

Fatigue occurs when a material is subjected to repeated loading and 

unloading. If the loads are above a certain threshold, microscopic cracks will 

begin to form at the stress concentrators such as the surface, persistent slip 

bands (PSBs), interfaces of constituents in the case of composites, and grain 

interfaces in the case of metals [19]. 

It has been estimated that fatigue contributes to approximately 90% of all 

mechanical service failures. Fatigue is a problem that can affect any part or 

component that moves. Automobiles on roads, aircraft wings and fuselages, 

ships at sea, nuclear reactors, jet engines, and land-based turbines are all 

subject to fatigue failures [20]. 

 

2.6.1 Fatigue Life 

The American Society for Testing and Materials (ASTM) defines fatigue life, 

𝑵𝒇, as the number of stress cycles of a specified character that a specimen 

sustains before failure of a specified nature occurs [21].  

To determine the strength of materials under the action of fatigue loads, 

specimens are subjected to repeated or varying forces of specified magnitudes 

while the cycles are counted until destruction. Several tests are necessary 

because of the statistical nature of fatigue, to increase the accuracy. The 

results are plotted in the form of a S-N diagram (or Wohler diagram), that 

has the fatigue strength as its ordinate and the number of cycles to rupture 

as abscissa, this last disposed in a logarithmic scale. A typical example of S-

N curve is illustrated in Figure 2-14 (right) [22]. 

 

 

Figure 2-14: Typical S-N curve (right); Ultimate Strength and Yield strength can 

be determined from static stress-strain tests (left) 
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There are three key values that separate the plastic, elastic and infinite life 

regions (Figure 2-14): 

• Ultimate Strength: Stress level required to fail with one cycle; 

• Yield Strength: Dividing line between elastic and plastic region; 

• Endurance Limit: If all cycles are below this stress level amplitude, no 

failures occur. 

A S-N curve can contain several different areas: a plastic region, an elastic 

region and an infinite life region (Figure 2-14): 

Infinite life region: Some materials, like steel, exhibit an infinite life region.  

In this region, if the stress levels are below a certain level, an infinite number 

of cycles can be applied without causing a failure (of course, no test has been 

performed for an infinite number of cycles in real life, but a million+ cycles is 

typical) [23]. Many non-ferrous metals and alloys, such as aluminum, 

magnesium, and copper alloys, do not exhibit well-defined endurance limits. 

Comparison of steel and aluminum S-N curves is shown in Figure 2-15. 

Elastic region: the relationship between stress and strain remains linear.  

When a cycle is applied and removed, the material returns to its original 

shape and/or length.  This region is also referred to as the “High Cycle 

Fatigue” region, because a high number of stress cycles, at a low amplitude, 

can cause the part to fail. 

Plastic region: the material experiences high stress levels, causing the shape 

and/or geometry to change due to the repeated application of stress cycles.  

This region is also referred to as the “Low Cycle Fatigue” region of the S-N 

curve, where a low number of stress cycles, with a high amplitude, result in 

failure. 

 

Figure 2-15: Typical S-N Diagrams of aluminum and steel alloys 
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2.6.2 Miner’s Rule 

Miner’s Rule [24] is used to calculate damage caused by cyclic/time variant 

loading.  It is a linear damage accumulation model that uses a load time 

history and S-N curve as inputs to calculate damage. 

Miner’s rule can be written as: 

 𝑫 =∑𝒅𝒊
𝒊

=∑
𝒏𝒊
𝑵𝒊

𝒊

 (31) 

where 𝑫 the cumulative damage, 𝒅𝒊 is the fatigue damage in each cycle, 𝒏𝒊 is 

the expected number of cycles at a stress level 𝝈𝒊, and 𝑵𝒊 is the number of 

cycles to failure at that same stress level calculated from the S-N fatigue life 

curve.  

When damage, 𝑫, is equal to “1”, failure occurs. The definition of failure for a 

physical part varies. It could mean that a crack has initiated on the surface 

of the part. It could also mean that a crack has gone completely thru the part, 

separating it. 

 

2.6.3 Random Vibration Fatigue 

In a random vibration analysis, it is assumed that the loading and response 

is statistical in nature and it can be represented by a zero-mean normal 

(Gaussian) distribution. It is sometimes convenient to view this distribution 

from the perspective of the likelihood that a certain level of load or response 

will fall within a certain standard deviation from the mean. Typically, we 

consider the 𝟏𝝈, 𝟐𝝈, and  𝟑𝝈 (standard deviation or RMS) levels. As an 

example, given a random Gaussian loading, 𝒙̈(𝒕), the probability that 𝒙̈(𝒕) lies 

between ± 𝟏𝝈 is 𝟔𝟖. 𝟑%, the probability that it lies between ± 𝟐𝝈 is 𝟗𝟓. 𝟒%, 

and that for ± 𝟑𝝈 is 𝟗𝟗. 𝟕%, as shown in Figure 2-16 [25]. 

 

Figure 2-16: Gaussian distribution (right) of typical random signal (left) 

Time-domain methods, using Rain-flow counting, can also be applied to 

random processes. However, analysis in the frequency domain is usually 

preferred due to the significant advantage from the perspective of numerical 

computation. There are many frequency-based methods that have been 

developed over the years which calculate damage based on a random 

vibration loading. These different methods employ various techniques that 
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calculate the fatigue life based on the  𝟏𝝈 values that are typically calculated 

by the Finite Element Analysis. All the common methods used today are 

based on Miner’s rule. 

 

2.6.4 Steinberg 3-Band Method 

The Steinberg 3-band method for damage calculation is frequently used due 

to its simplicity [26]. It uses a Miner's Rule approach to calculate cumulative 

fatigue damage by assuming that the stress amplitude response at a given 

location has a Gaussian distribution that's divided into the following three 

intervals: 

• 68.3% of the time at 𝝈  

• 27.1% of the time at 𝟐𝝈 

• 4.3% of the time at 𝟑𝝈 

In each of these intervals, the number of cycles to failure (𝑵𝟏, 𝑵𝟐, and 𝑵𝟑) can 

be determined from the material S-N curve, as shown in Figure 2-17. Then, 

if the total number of applied cycles "𝒏" is known, we can use the Steinberg 

3-band method to determine the cumulative fatigue damage, 𝐷: 

 𝑫 = 𝒏 (
𝟎. 𝟔𝟖𝟑

𝑵𝟏
+
𝟎.𝟐𝟕𝟏

𝑵𝟐
+
𝟎. 𝟎𝟒𝟑

𝑵𝟑
) (32) 

When all the life is used up, the value of 𝑫 will be equal to 1.  

 

Figure 2-17: Number of cycles estimation method using Steinberg 3-Band Method 

Steinberg’s method is useful for illustrating the basic concept of fatigue 

analysis for random processes, but it has a couple of drawbacks which hinder 

its accuracy. Many other frequency domain methods are available, which 

produce much better correlation with rainflow-counting results for wide-band 

random response. Some of these include Wirsching-Light, the 0:75 method, 

Gao-Moan, Dirlik, Zhao-Baker, Tovo-Benasciutti and Petrucci-Zuccarello. 
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2.6.5 Miles Equation 

Miles investigated fatigue failure of aircraft structural components caused by 

jet engine vibration and gust loading. Miles simplified his research by 

modelling a system using one degree of freedom. He also applied statistical 

recent results. While his goal was to analyze the stress of a component, the 

equation can be rearranged and used to determine, among others, 

displacement, force, and, in this case, acceleration. 

Miles' Equation is derived using a Single Degree of Freedom (SDOF) system 

(lightly damped), consisting of a mass, spring and damper, excited by a 

constant-level white Noise random vibration input from 0 Hz to infinity. It 

states that the RMS of the output acceleration amplitude, 𝑮𝑹𝑴𝑺,𝒐𝒖𝒕, is: 

 𝑮𝑹𝑴𝑺,𝒐𝒖𝒕 = √
𝝅

𝟐
∙ 𝒇𝒏 ∙ 𝑷𝑺𝑫𝒊𝒏 ∙ 𝑸 (33) 

 

where 𝒇𝒏 is the resonant frequency; 𝑷𝑺𝑫𝒊𝒏 is the power spectral density 

function of the input acceleration; 𝑸 is the quality factor (section 2.2.4). 
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3 Experimental Tests 

3.1 Test Bench 

Experimental tests were performed using a test bench, shown in Figure 3-1, 

located in the DIMEAS Laboratory of Politecnico di Torino. The main 

hardware and software, and specimen characteristics used in these tests are 

described in this section. 

 

Figure 3-1: Test bench 

3.1.1 Hardware 

The test bench is consisted of: 

• Modal Shaker 

• Amplifier 

• Input and Output Instruments 

• Accelerometers 

• Clamping System 

 

Modal Shaker 

The device used to excite the specimens in the vibration tests was Dongling 

Modal Shaker model ESD-045. It’s a compact system suited for micro-

vibration tests since it has a permanent magnet inside, which allows it to be 

driven directly by the power amplifier analog signal and reduces the heat 

generation. Its technical specifications are displayed in Figure 3-2, [27]. 
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Figure 3-2: Modal shaker and its specifications  

 

Amplifier 

Dongling linear power amplifier PA-1200 is used to raise the power of the 

output analog signal to operate the Modal Shaker. Its technical specifications 

are displayed in Figure 3-3 , [28]. 

 

Figure 3-3: Power Amplifier PA-1200 and its specifications 

 

Input and Output Instruments 

Data transfer between the computer and the test bench equipment were done 

through the National Instruments compact modules: one NI 9234 for input 

data transfer, and one NI 9263 for output data transfer.  

Both the NI 9234 and NI 9263 are connected to the computer by an USB cable 

through one compact DAQ NI 9171 each (shown in Figure 3-4), that 

intermediates this connection. 

The NI 9234 is an analog input module used to acquire data from the 

transducers, i.e. accelerometers. While the NI 9263 is an analog output 

module, used for sending the desired voltage signal to the Modal Shaker, 

passing through the power amplifier first. Their main specifications are 

shown in Figure 3-5 [29], [30]. 
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Figure 3-4: NI 9171 

 

Figure 3-5: NI 9234 (left) and NI 9263 (right) and their specifications 

Accelerometers 

Accelerometers are the most important instruments in this research since 

they are used to record the acceleration response of the specimen at certain 

points. Two Triaxial PCB TLB356A12 accelerometers were used; one was 

placed on the clamping element to record the base acceleration and the other 

one was placed on the tip of the specimen to measure the tip acceleration. 

Both accelerometers were connected to the channels of the input module NI 

9234. Their specifications are mentioned in Figure 3-6 [31]. 

 

Figure 3-6: Accelerometers PCB TLB356A12 and their specifications 

A new calibration for both accelerometers was done by previous student’s 

work, (Camille, [32]) because the last calibration was done in 2009. The new 

accelerometers sensitivities are: 

• Base accelerometer: 82.99 mV/g 

• Tip accelerometer: 85.35 mV/g 
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Clamping Elements  

A clamping structure, shown in Figure 3-7, is used to fix the to the Modal 

Shaker. It is composed of two metallic supports and a set of four screws, nuts 

and washers that keep the specimen fixed between the supports. The lower 

element has a groove on its inner face, where the specimen is placed, to 

guarantee a proper fixation. The upper support covers them and the screws 

compress these two parts with the specimen between them firmly. 

The mass of the lower part is 200,4g and the mass the upper part 205,6g. 

The sketch of both parts is shown in Appendix B 

 

 

Figure 3-7: Lower (left) and upper (right) clamping elements 

 

3.1.2 Software 

The software used the most throughout the whole research was LabVIEW for 

its capabilities, simplicity and integration with physical platforms. It’s based 

on a graphical programming syntax, with many built-in functions and 

procedures that permit signal and data generation, processing, output and 

acquisition, thus allowing system control in an effective and easier way. 

Besides that, LabVIEW has a great integration with the National 

Instruments hardware used in the test bench. 

 

 

Another National Instruments’ software used was SignalExpress 2015, that, 

like LabVIEW, allowed the tests to be done in an easier way because of its 

advantages in programming syntax too, but using a step-based syntax rather 

than graphical. 
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3.1.3 Specimen 

The specimens used for the are made of steel alloy CP780, which is a common 

alloy in many industrial applications. Material specifications of the specimen 

will be discussed in section 3.2. 

The specimen’s geometry, as shown in Figure 3-8, was chosen based on 

previous researches and papers [15], [32], [33], [34], , [35], [36], [37], [38], [39], 

for two main reasons: 

• its size is small enough; first to be analyzed with the available test 

bench equipment due to limitations of the Modal Shaker and the 

clamping structure, and then to have low stiffness as to avoid longer 

test times until its rupture.  

• the notches are stress concentration points placed in specific zones in 

the specimen: the one closest to the clamped end (base), indicated as 

Notch 1, is highly deformed when excited in the second modal 

frequency, as it can be seen in Figure 3-9, as in that point the stresses 

are the highest. Therefore, the specimens are made to break exactly 

at Notch 1. 

Each specimen was marked before the experimental test, as shown in Figure 

3-8. A vertical line 32mm left to the base was made to guarantee the same 

clamping condition on each test, while on the tip end, the accelerometer’s 

position was marked to place the accelerometer in a central position at the 

tip. Specimen sketch and dimensions are reported in Appendix C 

The edges of Notch 1 were polished to avoid stress concentration due to 

superficial roughness from the fabrication process. 

 

Figure 3-8: Specimen B01 

 

Figure 3-9: Stress concentration in Notch 1 when excited in second mode 
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3.2 Material 

The material used in this study was the Complex Phase (CP) Steel CP780. 

The reason behind this choice is because steel alloys are vastly used in 

automotive industry for many components. It is a steel for complex shapes 

with energy absorbing capability and corrosion resistance. Galvanic corrosion 

protection of these zinc-based coated products makes them ideal for wet area 

components [40]. CP steels can be used in suspension system parts such as 

suspension arms [41]. 

3.2.1 Chemical Composition 

The structure of these steels is a ferrite/bainite matrix containing martensite 

and small amounts of retained austenite and/or perlite. This creates a high 

yield strength tensile strength ratio. Chemical composition of the specimen 

material is reported in Table 3-1 [40]. 

Chemical Element Composition % 

%C max 0.18 

%Si max 1 

%Mn max 2.5 

%P max 0.05 

%S max 0.010 

%Cr + %Mo max 1.00 

%Nb + %Ti max 0.15 

%Al max 0.015-1.00 

%Cu max 0.2 

%B max 0.005 

Table 3-1: CP780 Chemical composition (ladle analysis in wt.%) 

3.2.2 Mechanical Properties 

Tensile Test 

The mechanical properties of CP780 were extracted by a tensile test made 

using a specimen cut, as shown in Figure 3-10, according to the standards.  

 

Figure 3-10: Tensile test specimen 

The tensile test for CP780 was made by previous student’s work (Camille, 

[32]), under the supervision of Prof. Sesana, with a servo-hydraulic testing 
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system INSTRON 8801. The specimen’s deformation was measured with a 

strain gauge placed on central part of the deformed region.  

As a result of this test, material’s characteristic stress-strain curve is 

obtained as shown in Figure 3-11. From this graph, young’s modulus, yield 

strength and the ultimate tensile strength, are extracted and they are 

reported in Table 3-2. 

 

Figure 3-11: CP780 stress-strain curve 

Mechanical Property Value 

Young’s Modulus (E) 189.1-191.2 GPa 

Yield strength (Rp0,2) 489-496 MPa 

Ultimate tensile strength 809-810 MPa 

Table 3-2: CP780 mechanical properties 

Fatigue Strength 

CP steels display high fatigue strength but they are more sensitive to severe 

strain peaks, i.e. abusive loads. Figure 3-12 gives examples of Wöhler curves 

for a variety of CP steels produced by ArcelorMittal. They are expressed as 

stress amplitude versus cycles to failure and are obtained with a stress ratio 

of R = 0.1 and repeated tensile loading [17]. 

 

Figure 3-12: Wohler curves of different complex phase steels 
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3.3 Test Procedure 

This test procedure was done by previous student’s work (Costa Lima, [15]). 

In this section, only the main test procedure steps will be mentioned. 

3.3.1 Test Setup 

To perform the fatigue test, test bench elements must be placed as shown in 

Figure 3-13. Before starting, the specimen must be polished and its mass 

must be measured. Then, the specimen is clamped to the modal shaker by the 

clamping elements. With a special glue, two accelerometers are placed one on 

the base and the other on the specimen tip and they are connected to the 

computer through the dedicated National Instrument input modules (NI 

9234) as described in section 3.1.1.  

The Modal shaker is connected directly to the amplifier, which is connected 

also to the computer through the output modules (NI 9263). 

After setting up the test bench, fatigue analysis test can be initiated. The 

specimen was subjected to several cycles of initial measurements, pre-test, 

followed by a “load block” for a certain amount of time controlled by the 

operator, and these cycles were repeated until the specimen’s rupture. Both, 

the pre-test and the load block will be described in the following sections. 

 

Figure 3-13: Test setup 

3.3.2 Pre-Test 

The aim of this test is to obtain the Reactance Frequency Response Function 

(FRF), according to the definitions described in section 2.3.4, which is used to 

extract the natural frequencies and the corresponding damping ratio of the 

tested specimen. 

To do this, a SignalExpress program named “Shaker Test”, Figure 3-14, is 

used. This program applies a wideband white Gaussian noise analog signal 

to the specimen through the modal shaker. Simultaneously, it measures the 

specimen’s tip acceleration response by the tip accelerometer. As a result, the 

specimen’s Inertance FRF is measured taking the excitation force that acts 

on the clamped region as input, and the specimen’s tip acceleration as output. 
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The excitation force is calculated using Newton’s 3rd law: 

 𝑭(𝒕) = 𝒎𝒔𝒑𝒆𝒄𝒊𝒎𝒆𝒏 ∙ 𝒂𝒃𝒂𝒔𝒆(𝒕) (34) 

where 𝑚𝑠𝑝𝑒𝑐𝑖𝑚𝑒𝑛 is the specimen’s mass, in kilograms, and 𝑎𝑏𝑎𝑠𝑒(𝑡) is the 

measured base acceleration. 

As previously discussed, the output analog voltage signal sent to the modal 

shaker must pass first through the power amplifier. The amplification factor 

must be set according to predetermined value, as every specimen is going to 

be tested at different amplification factor. 

 

Figure 3-14: Frontal panel of the “Shaker Test” program 

Other program’s settings, as mentioned in [15], are reported in Table 3-3. 

Setting Value 

Noise output signal amplitude 1V 

Noise output signal filter 4th order lowpass filter 

Noise cut-off frequency 3000 HZ 

Accelerometers input signal filter 3rd order bandpass filter 

Accelerometers signal cut-off frequencies 10 – 3000Hz 

FRF: window Hanning 

FRF: number of averages 15 

Table 3-3: "shaker test" program settings 

Since the Reactance FRF is the desired quantity, it can be obtained from the 

Inertance (Accelerance) FRF using a LabVIEW program designed for this 

purpose, Figure 3-15 . As a result, both the reactance magnitude and phase 

spectra can be saved as text files. 
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Figure 3-15: Inertance FRF (white) converted into Reactance FRF (red). 

Now, having the reactance FRF, specimen’s modal parameters, i.e. modal 

frequency and modal damping, are estimated by a LabVIEW program named 

“Modes Estimation”, which uses a built-in block called MP_Peak_Picking.vi.  

This Sub-VI uses the half-power bandwidth method to estimate the modal 

damping from the manually selected resonant frequency. The procedure is to 

select a frequency range of interest around a specific mode and it simulates 

the single degree of freedom system (SDOF) that best approximates that 

spectrum portion, based on the peak frequency chosen by the user inside that 

range. 

 

Figure 3-16: Front panel of the LabVIEW program “Modes estimation”. 
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In this thesis, only the second mode is analyzed because the specimen is 

designed to break in Notch 1, as previously mentioned in section 3.1.3, which 

corresponds to the point that has the largest stresses when excited in the 

second mode, as shown in the upper right picture of Figure 3-17, [15].  

 

Figure 3-17: First four modes of the model 

3.3.3 Load Blocks 

Summarizing what is done till now; first the Inertance FRF (IFRF) was 

obtained using “Shaker Test” program, and the IFRF magnitude and phase 

are saved as external files. These files are the inputs of another LabVIEW 

program which calculate the Reactance FRF (RFRF). Then, using the 

LabVIEW program “Modes Estimation”, the second mode frequency and the 

corresponding modal damping are obtained and recorded as Block 0. This 

procedure is called the PRE-TEST. It is important to note that in the pre-

tests, both accelerometers must be placed as described in Figure 3-13. 

After the pre-tests another test was performed, the Load blocks. Its purpose 

is to subject the specimen to a specific random acceleration load through the 

Modal Shaker for time desired by the operator. 

It was made using LabVIEW programs called “Accelerometer Test”, Figure 

3-18. It generates a random Gaussian noise signal with a certain standard 

deviation (which is related to the load magnitude). This signal then passes 

through a bandpass filter to excite the specimen only within a specific 

frequency range, namely around the second resonant frequency. To make the 

tests feasible in terms of time, the frequency range must not be too wide nor 

too narrow as it would cause resonance and the specimen might break in a 

few minutes. A frequency range ±20 was considered in this thesis. 
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Figure 3-18: Frontal panel of the "Accelerometer Test" program  

In the program’s front panel, Figure 3-18, it can be set the type of the random 

acceleration signal (Gaussian noise was used), the value of the standard 

deviation (value of 2 is chosen by [15]), the bandpass filter’s upper and lower 

cut-off frequencies, and the desired test duration. 

During the load block test, the tip accelerometer was removed, keeping only 

the base accelerometer. However, it was kept only for few second at the 

starting of each load block test to record the specimen tip acceleration. The 

acceleration values from both accelerometers were saved in an external file 

as to be used later in data processing.  

Load block test was repeated for fixed time duration (1 hour) until the 

specimen breaks, of course at notch 1. It is important to note that after each 

load block test, the pre-test was done again to obtain the new natural 

frequency and damping ratio. These new values were recorded as Block X, 

where X is the number of the previous load block test done. For example: 

Block 2 FRF measurements means that the second mode frequency and modal 

damping are obtained by the pre-test after completing the second load block 

test (as a total, the specimen is tested until now for two hours). 

Finally, the tests sequence is represented on the flowchart in 0 

 

3.4 Test Plan  

Following the test procedure described in section 3; 30 CP780 steel specimens 

were available for testing. They were numbered B01, B02…B30. 

The goal was to do the test at three different amplification factors. For each 

amplification factor, three different specimens must be tested. In total, I had 

to perform the test for nine different CP780 specimens. Each specimen was 

tested according to procedure described, until its rupture. 
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Load block tests were done according to the setting reported in Table 3-4, 

where 𝒇𝒏 is the second mode natural frequency obtain from the pre-test. 

 

Setting Value 

Applied signal 𝑊ℎ𝑖𝑡𝑒 𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑛𝑜𝑖𝑠𝑒 

Standard deviation 2 

Lower cut-off frequency 𝑓𝑛  −  20 𝐻𝑧 

Upper cut-off frequency 𝑓𝑛  +  20𝐻𝑧  

Test duration  1 ℎ𝑜𝑢𝑟 

Acceleration data recording duration1 60 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

Table 3-4: "Accelerometer test" program settings 

3.4.1 Acceleration Profile 

During each load block test, samples of the excitation acceleration were 

taken, by recording for 60 seconds the base acceleration measured with the 

base accelerometer. Figure 3-19 shows the probability density function (PDF) 

of specimen B05 base acceleration. It is well-approximated to a zero-mean 

Gaussian distribution (in orange), confirming the assumption of a Gaussian 

noise. A similar analysis can be done for the tip acceleration of B05 measured 

by means of the tip accelerometer, as shown in Figure 3-20. 

 

Figure 3-19: PDF of the base acceleration of specimen B05. 

                                            
1 The acceleration data recording duration is the time desired to record the acceleration 

values from the tip and base accelerometers. The recorded values are saved in an external 

file for further use. 
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Figure 3-20: PDF of the tip acceleration of specimen B05 

3.4.2 Amplification Factor 

As already said, tests must be done for different amplification factor. Rotating 

the amplifier wheel, amplifier can be set for different values.  

Amplifier PA-1200 described in section 3.1.1, has amplification range 

between 0 and 10. In this thesis, we want to consider only three amplification 

factors. In this subsection we will discuss how these three factors were 

determined. 

Applying an amplification factor of value equal to 2, the specimen did not 

vibrate because the output signal was too week. Therefore, our starting point 

was 2.5.  

Four preliminary amplification factors were chosen. For each factor, one 

specimen was tested according to Table 3-5.  

 

Specimen Amplification Factor 

B02 3 

B03 3.5 

B04 4 

B05 2.5 

Table 3-5: Preliminary amplification factors chosen 

The results of specimens B02, B03, and B04 tests are reported in Table 4 3. 

The results of specimen B05 test are reported in Table 3-7. 
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Specimen B02 B03 B04 

Amplification 3 3.5 4 

Mode Block 
Time 

(min) 

Freq. 

(Hz) 

Damp. 

(%) 

Time 

(min) 

Freq. 

(Hz) 

Damp. 

(%) 

Time 

(min) 

Freq. 

(Hz) 

Damp. 

(%) 

2 

0 0 73.89 2.11 0 69.56 2.68 0 77.75 3.14 

1 60 73.21 2.49 60 68.87 2.15 38 Rupture 

2 60 72.50 2.75 56 Rupture    

3 60 80.48 2.09       

4 47 Rupture       

Total time (min) 227  116   38   

Table 3-6: B02, B03, and B04 specimens’ tests results 

 

Specimen B05 Amplification 2.5 Mode 2 

Block 
Time 

(min) 

Freq. 

(Hz) 

Damp. 

(%) 
Block 

Time 

(min) 

Freq. 

(Hz) 

Damp. 

(%) 
Block 

Time 

(min) 

Freq. 

(Hz) 

Damp. 

(%) 

0 0 85.94 1.71 14 60 83.21 1.83 28 60 83.21 1.87 

1 60 83.89 1.50 15 60 82.53 1.69 29 60 83.21 1.87 

2 60 85.26 2.15 16 60 83.21 2.22 30 60 83.21 1.69 

3 60 85.26 1.75 17 60 83.21 1.88 31 60 83.21 1.69 

4 60 84.58 1.79 18 60 83.21 1.77 32 60 83.89 1.65 

5 60 84.58 1.98 19 60 83.21 2.15 33 60 83.89 1.65 

6 60 83.89 1.58 20 60 83.21 2.10 34 60 83.21 1.65 

7 60 83.89 2.39 21 60 83.21 1.98 35 60 83.21 1.65 

8 60 83.89 1.89 22 60 83.21 2.00 36 60 83.21 1.65 

9 60 83.89 1.68 23 60 83.21 1.87 37 60 83.21 1.65 

10 60 83.89 1.50 24 60 83.21 2.05 38 60 83.21 1.65 

11 60 83.89 1.22 25 60 83.21 2.22 39 60 83.21 1.65 

12 60 83.21 1.86 26 60 83.21 2.18 40 60 83.21 2.16 

13 60 83.21 1.92 27 60 83.21 1.66 Total 2400 min 

Table 3-7: B05 specimen’s tests results with amplification factor 2.5 

As it can be observed from Table 3-6, setting the amplifier for value equal to 

4, the specimen broke in less than one hour, more precisely in 38 minutes. 

This result may not be accepted because we need to perform the fatigue test 

for longer time to analyze the results later.  

For amplification factor equals to 2.5, 40 load block tests were done, i.e. the 

specimen was tested for 40 hours. Unfortunately, the specimen did not break.  

Finally, the three amplification factors selected are 2.75, 3, and 3.25. 
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3.5 Test Results 

The experimental tests were performed for nine specimens, each three 

specimens with one amplification factor, as described in Table 3-8. 

 

Specimen Amplification Factor 

B10, B11, B18 2.75 

B12, B13, B14 3 

B15, B16, B17 3.25 

Table 3-8: Experimental test specimens 

After each load block test (of one hour), the modal parameters, i.e. the second 

modal frequency and modal damping are obtained by performing the pre-test, 

and the results are recorded as shown in Table 3-9, Table 3-10, and Table 

3-11. It is important to note that the modal parameters in Block 0 are the 

initial values. 

 

Amplification factor = 2.75 

Specimen B10 B11 B18 

Mass (g) 115.9 117.3 116.7 

Mode Block 
Time 

(min) 

Freq. 

(Hz) 

Damp. 

(%) 

Time 

(min) 

Freq. 

(Hz) 

Damp. 

(%) 

Time 

(min) 

Freq. 

(Hz) 

Damp. 

(%) 

2 

0 0 88.67 2.48 0 90.72 2.25 0 85.94 2.44 

1 60 85.26 2.81 60 90.72 2.25 60 83.89 2.52 

2 60 85.26 1.95 60 90.72 2.25 60 83.89 2.52 

3 60 85.26 1.95 60 90.72 2.25 60 83.89 2.25 

4 60 85.26 1.95 8 Rupture 60 83.89 2.25 

5 5 Rupture    60 83.89 2.89 

6       60 83.89 2.89 

7       40 Rupture 

Total time (min) 245  188   400   

Table 3-9: B10, B11, and B18 specimen tests with AF 2.75 
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Amplification factor = 3 

Specimen B12 B13 B14 

Mass (g) 114.6 116.8 116.4 

Mode Block 
Time 

(min) 

Freq. 

(Hz) 

Damp. 

(%) 

Time 

(min) 

Freq. 

(Hz) 

Damp. 

(%) 

Time 

(min) 

Freq. 

(Hz) 

Damp. 

(%) 

2 

0 0 85.26 2.40 0 84.58 2.74 0 85.94 1.96 

1 60 83.21 2.50 60 83.21 2.33 60 85.94 2.28 

2 60 83.21 1.96 60 82.53 2.21 60 85.94 2.62 

3 5 Rupture 19 Rupture 60 85.94 2.23 

4      48 Rupture 

Total time (min) 125  139   228   

Table 3-10: B12, B13, and B14 specimen tests with AF 3 

Amplification factor = 3.25 

Specimen B15 B16 B17 

Mass (g) 116.9 116.9 116.8 

Mode Block 
Time 

(min) 

Freq. 

(Hz) 

Damp. 

(%) 

Time 

(min) 

Freq. 

(Hz) 

Damp. 

(%) 

Time 

(min) 

Freq. 

(Hz) 

Damp. 

(%) 

2 

0 0 86.62 2.64 0 84.58 2.62 0 87.31 2.35 

1 60 85.26 2.31 60 84.58 2.53 60 81.85 2.06 

2 21 Rupture 14 Rupture 1 Rupture 

Total time (min) 81  74   61   

Table 3-11: B15, B16, and B17 specimen tests with AF 3.25 

A graphical representation of test duration of all the tested specimens is 

shown in Figure 3-21. In can be seen that increasing the amplification factor, 

the time required for specimen rupture decreases. 

 

Figure 3-21: Test duration of tested specimens 
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4 Fatigue Analysis and Discussion 

4.1 Data Processing 

Starting from the acceleration time-histories obtained from both 

accelerometers, the tip accelerometer and the base accelerometer, and 

applying the fatigue models, described in section 2.6, the fatigue life of each 

specimen can be calculated by the procedure described below. 

This procedure must be done for each load block in each specimen, and it 

consists of three main stages: 

1. PSD analysis; 

2. Stress calculation; 

3. Fatigue analysis or fatigue life calculation. 

These three stages are described in detail in the following subsections. 

 

4.1.1 PSD Analysis 

Random vibration environments, normally deal in terms of the power spectral 

density PSD, which is measured in gravity units [G] so that it is 

dimensionless. That is, the acceleration is divided by the acceleration of 

gravity [26]: 

 𝑮 =
𝒂

𝒈
=

acceleration

gravity
   (dimensionless) (35) 

 

Random vibration PSD curves can come in a wide variety of shapes, 

depending on the type of condition the curve is trying to simulate. The square 

root of the area under the input/output PSD curve represents the 

input/output root mean square (RMS) acceleration level in gravity units [G]. 

In order to predict the probable acceleration levels, it is necessary to 

understand the probability distribution functions. The distribution most often 

encountered, and the one that lends itself most readily to analysis, is the 

Gaussian distribution. In our case, the input and output acceleration have 

zero-mean Gaussian distribution as it is shown in Figure 3-19 and Figure 

3-20. 

As it has been described in section 2.6.3, in Gaussian PDF, the probability 

that the instantaneous acceleration lies between ± 𝟏𝝈, which is the RMS 

value, is 𝟔𝟖. 𝟑% of the time, the probability that it lies between ± 𝟐𝝈 is 𝟗𝟓. 𝟒%, 

and that for ± 𝟑𝝈 is 𝟗𝟗. 𝟕𝟑%.  
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The acceleration time-histories extracted from the experiments, were 

expressed in [m2/s]. Therefore, they should be converted to gravity units 

applying equation (35). The acceleration RMS value (standard deviation) in 

gravity units will now be expressed as 𝑮𝑹𝑴𝑺. What we are interested in, is 

the output (response) RMS acceleration 𝑮𝑹𝑴𝑺,𝒐𝒖𝒕𝒑𝒖𝒕. 

𝑮𝑹𝑴𝑺,𝒐𝒖𝒕𝒑𝒖𝒕 can be obtained experimentally from the acceleration time-history 

collected by the tip accelerometer, using Excel (built-in function STDEV.S). 

Another method to calculate 𝑮𝑹𝑴𝑺,𝒐𝒖𝒕𝒑𝒖𝒕 theoretically was used in previous 

students’ works [35] [37] [36]. This time the response acceleration time-

histories were missing. The method is based on Mile’s Equation (section 

2.6.5): 

 𝑮𝑹𝑴𝑺,𝒐𝒖𝒕𝒑𝒖𝒕 = √
𝝅

𝟐
∙ 𝒇𝒏 ∙ 𝑷𝑺𝑫𝒊𝒏 ∙ 𝑸 (36) 

 

From the input acceleration time-history, 𝑮𝑹𝑴𝑺,𝒊𝒏𝒑𝒖𝒕 can be obtained. Then, 

the input power spectral density 𝑷𝑺𝑫𝒊𝒏 can be calculated by: 

 

where 𝚫𝒇 is the Gaussian random vibration frequency band, in which 

specimens were excited (in our case 𝚫𝒇 = 𝒇𝒏 ± 𝟐𝟎, where 𝒇𝒏 is the second 

mode natural frequency). 

𝑸, presented in equation (36), is the transmissibility (or quality factor, section 

2.2.4) at the natural frequency, and it can be obtained from equation the 

following equation: 

 𝑸 =
𝟏

𝟐𝜻
 (38) 

 

where 𝜻 is the damping ratio. It is important to note that 𝒇𝒏 and 𝜻 were 

obtained from the experimental tests done.  

In this thesis, both the experimental and the theoretical methods were used 

and a comparison between the results is reported in Table 4-1. It in can be 

seen that the ratio between the results, in each block, is approximately 

constant with an average value of 2.34. 

Fatigue life calculations was done using both values. 

 

 

 

 

 𝑷𝑺𝑫𝒊𝒏 =
𝑮𝑹𝑴𝑺,𝒊𝒏𝒑𝒖𝒕
𝟐

𝚫𝒇
 (37) 
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   G RMS Response  

AF Specimen Block Exp. Theor. Ratio Theor/Exp 

2.75 

B10 

1 12.16 26.18 2.15 

2 11.88 24.61 2.07 

3 12.58 25.67 2.04 

4 12.58 25.67 2.04 

5 12.58 25.67 2.04 

B11 

1 12.52 27.85 2.22 

2 12.52 27.85 2.22 

3 12.52 27.85 2.22 

4 12.52 27.85 2.22 

B18 

1 10.47 23.27 2.22 

2 10.47 23.27 2.22 

3 10.60 25.28 2.39 

4 10.60 25.28 2.39 

5 10.69 23.04 2.16 

6 10.69 23.04 2.16 

7 10.94 23.25 2.13 

3 

B12 

1 15.50 35.03 2.26 

2 14.14 33.16 2.35 

3 14.15 34.09 2.41 

B13 

1 14.96 34.04 2.28 

2 14.57 37.31 2.56 

3 14.61 37.70 2.58 

B14 

1 11.91 31.23 2.62 

2 11.67 34.75 2.98 

3 11.64 28.30 2.43 

4 11.31 31.84 2.81 

3.25 

B15 
1 16.43 37.87 2.30 

2 14.93 38.86 2.60 

B16 
1 17.31 36.21 2.09 

2 16.95 36.23 2.14 

B17 
1 16.88 37.90 2.25 

2 11.12 35.76 3.21 
 Average    2.34 

Table 4-1: G RMS response obtained experimentally and theoretically 

4.1.2 RMS Stress Calculation 

As said before, the most stressed point on the specimen is Notch 1. Therefore, 

in order to calculate the RMS bending stress, a lumped model for part A of 

the specimen, shown in Figure 4-1, is assumed. Part A is modelled as a 

cantilever beam of length 𝑳 with a rectangular cross-section and a 

concentrated mass, 𝒎𝒆𝒒, at its free end. 
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 𝑳 = 𝟎. 𝟏𝟐𝟏 𝒎 is the length of part A (Figure 4-1), and 𝒎𝒆𝒒 = 𝟎. 𝟒𝟒𝟓 ∗𝒎𝒔𝒑𝒆𝒄𝒊𝒎𝒆𝒏 

is the mass of part A in [kg]. Then, the RMS bending stress can be calculated 

as follows: 

 𝑺𝟏𝝈  =
𝑴

𝑰
𝒀    [𝑴𝑷𝒂] 

 
(39) 

 

where 𝑰 is the second moment of area in [m4], 𝒀 is the vertical distance away 

from the neutral axis in [m], and 𝑴 is the bending moment in [N.m]. 

𝒀 = 𝒉
𝟐⁄ = 𝟎. 𝟎𝟎𝟎𝟔𝟐𝟓 𝒎 where 𝒉 = 𝟏. 𝟐𝟓𝒎𝒎 is the specimen’s thickness.  

The second moment of area 𝑰 can be evaluated by: 

 𝑰 =
𝒃𝒉𝟑

𝟏𝟐
= 𝟏. 𝟏𝟓𝟔 ∗ 𝟏𝟎−𝟏𝟐 𝒎𝟒 (40) 

where 𝒃 = 𝟎. 𝟎𝟎𝟕𝟏 𝒎 is the notch length as shown in Figure 4-1. 

 

     

Figure 4-1: Part A of the specimen (left), and its lumped model (right) 

 

The bending moment 𝑴 can be obtained from the following equation: 

 𝑴 = 𝑲 ∗𝒎𝒆𝒒 ∗ 𝑳 ∗ 𝑮𝑹𝑴𝑺,𝒐𝒖𝒕𝒑𝒖𝒕 (41) 

 

𝑲 is the stress concentration coefficient. 𝑲 can be used in the stress equation 

or in defining the slope b of the S-N fatigue curve for alternating stresses. The 

stress concentration should be used only once in either place. For this work, 

a stress concentration factor K=2 was used in the stress equation. 

Once   𝑺𝟏𝝈 is obtained, the stresses corresponding to the 𝟐𝝈 and 𝟑𝝈 

acceleration levels are: 

 
𝑺𝟐𝝈 = 𝟐𝑺𝟏𝝈 

𝑺𝟑𝝈 = 𝟑𝑺𝟏𝝈 
(42) 

4.1.3 Fatigue Analysis 

For fatigue life calculation, root mean square (RMS) stress quantities, 

obtained from the previous step (subsection 4.1.2), are used in conjunction 
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with the standard fatigue analysis procedure. The following procedure, which 

consists of three steps, explains how to calculate the fatigue life using one of 

the most common approaches: The Steinberg 3-Band Technique (described in 

section 2.6.4) using Miner’s Cumulative Damage Ratio (described in section 

2.6.3) [26]. 

Step 1: 

The first step is to determine the number of stress cycles needed to produce a 

fatigue failure. The approximate number of stress cycles, 𝑵𝟏, 𝑵𝟐, and 𝑵𝟑 
required to produce a fatigue failure in the specimen for the 𝟏𝝈, 𝟐𝝈 and 

𝟑𝝈 stresses respectively, can be obtained from the S-N diagram of the tested 

specimen. S-N diagram of specimen’s material used can be estimated using 

Bastenaire Model, as shown in Figure 4-2 [37] [42]: 

 𝑵 = 𝑨
𝒆𝒙̈𝒑 [−

𝝈 − 𝝈𝒅
𝑩 𝑪]

𝝈 − 𝝈𝒅
 (43) 

 

where 𝝈𝒅 is the endurance limit in [MPa]; For steel can be assumed as half 

the UTS, therefore from Table 3-2, 𝝈𝒅 = 𝟒𝟎𝟓 𝑴𝑷𝒂. 

A, B, and C are parameters such that: A= 2.3E+07, B=165, and C=5. 

 

Figure 4-2: Modeling of the Wohler curve (blue) by the Bastenaire model (red). 

Step 2: 

From the Steinberg 3-Band method, the actual number of fatigue cycles 𝒏𝟏, 

𝒏𝟐, and 𝒏𝟑  accumulated during time, 𝒕𝒕𝒆𝒔𝒕, of vibration testing can be 

obtained from the percent of time exposure for the 𝟏𝝈, 𝟐𝝈 and 𝟑𝝈 stresses 

respectively, using the following equation: 

 𝒏 [cycles] = 𝒇𝒏[Hz] ∗ 𝒕𝒕𝒆𝒔𝒕[sec] ∗
%𝒕𝒆𝒙̈𝒑𝒐𝒔𝒖𝒓𝒆

𝟏𝟎𝟎
 (44) 
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𝒇𝒏 is the specimen’s natural frequency (in our case, the second mode). 

Considering 68.3% of the time at 𝟏𝝈, 27.1% of the time at 𝟐𝝈, and 4.3% of the 

time at 𝟑𝝈, then we can obtain: 

 {

𝒏𝟏𝝈 = 𝒇𝒏 ∗  𝒕𝒕𝒆𝒔𝒕 ∗  𝟔𝟎 ∗  𝟔𝟎 ∗  𝟎. 𝟔𝟖𝟑
𝒏𝟐𝝈 = 𝒇𝒏 ∗  𝒕𝒕𝒆𝒔𝒕 ∗  𝟔𝟎 ∗  𝟔𝟎 ∗  𝟎. 𝟐𝟕𝟏
𝒏𝟑𝝈 = 𝒇𝒏 ∗  𝒕𝒕𝒆𝒔𝒕 ∗  𝟔𝟎 ∗  𝟔𝟎 ∗  𝟎. 𝟎𝟒𝟑

 (45) 

Step 3: 

Last step is to calculate the Miner’s cumulative fatigue damage ratio. From 

the values obtained in step 1 and step 2, we can have: 

 𝒅 = ∑
𝒏𝒌
𝑵𝒌

𝟑

𝒌=𝟏

=
𝒏𝟏
𝑵𝟏

+
𝒏𝟐
𝑵𝟐

+
𝒏𝟑
𝑵𝟑

 (46) 

 

Note that, the damage ratio 𝒅, obtained above, is not the total damage ratio 

of the tested specimen. In fact, for each specimen, the damage ratio 𝒅 must 

be calculated for every load block till rupture, and the total damage ratio is 

the summation of the obtained values. 

Therefore, the total Miner’s cumulative fatigue damage ratio is: 

 

where 𝒎 is the number of the load blocks. As an example, the specimen B02, 

reported in Table 3-6, was tested for 4 load blocks, i.e. 𝒎 is equal to 4. 

 

4.2 Fatigue Analysis Results 

Following the procedure described above, the results obtained for each 

specimen using both the experimental and the theoretical response GRMS, 

are reported in the following tables: 

 

 

 

4.3 Discussion 

 

 

 

 

 𝑫𝒕𝒐𝒕𝒂𝒍 = ∑𝒅𝒊

𝒎

𝒊=𝟏

 (47) 
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5 Conclusion 
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Appendix A Flowchart of Excitation Signals 

Types 
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Appendix B Clamping Elements Sketch 
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Appendix C Specimen Sketch 
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Appendix D Experimental Tests Flowchart  
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