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Abstract 

The investigation presented in this thesis is closely related to the modelling of the 
structural behaviour of steel fibre-reinforced concrete (SFRC) beams using a non-
linear finite-element (FE) analysis with a Concrete Damaged Plasticity Model. 
In particular, the aim of this investigation is to verify if this kind of Model can be used 
to analyse a SFRC element and to discuss the results. 
Afterwards, to carry out this analysis, different aspects of the phenomenon were 
examined. First of all, in the validation part, the load-deflection curve is compared with 
experimental and Brittle Cracking Method outcomes; then damage parameters, kinetic 
energy, strength and ductility were evaluated as well. 
In the validation part, the plasticity parameters, namely the dilatation angle  
φ, eccentricity ε, ratio of second stress invariants K and the ratio between biaxial 
compressive yield strength and uniaxial compressive yield strength fb0/fc0, are chosen 
to obtain results as close as possible to the experimental one. 
Successively the same beam was analysed modifying two key parameters, namely 
reducing transverse reinforcement while increasing the amount of fibres. The reduction 
in conventional reinforcement (obtained by increasing stirrups spacing) is very 
important in practice as it helps mitigate reinforcement congestion, the latter is a typical 
issue in the seismic detailing of critical regions such as beam-column joints.  
Afterwards the same procedure was carried out taking into account a cyclic load that 
simulates a seismic load condition. 
For the SFRC constitutive model, that one proposed by Lok and Xiao (1999) has been 
chosen in tension because of its validity in a wide range of fibre volume fraction and to 
be consistent with Abbas, A., Mohsin, S. and Cotsovos, D. (2014), in compression 
instead a new constitutive model is chosen from the author because it is more suitable 
for the Concrete Damaged Plasticity Model, in fact it presents a formula to evaluate 
the damage parameters. 
The results show that steel fibres increase the load-carrying capacity and stiffness, 
which are important parameters to take into account for design consideration. Fibres 
were found also to improve ductility (as well as altering the mode of failure from a brittle 
to a ductile one) and using the Concrete Damaged Plasticity Model this phenomenon 
is clearly displayed.  
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1. Introduction 

1.1 Overview 
Since the dawn of civilization, civil engineers have understood how combining different 
materials is often the most effective solution to structural problems. One such 
successful combination is reinforced concrete, which is an example of how two 
materials, plain concrete and steel bars, with such different characteristics can be 
joined together to create a new, high-performance material. 
Recently, there has been growing interest in adding steel fibres to the concrete mix to 
improve the ductile behaviour of concrete and reduce the concentration of steel bars. 
Fibres are added in the concrete mix in order to enhance the properties of the brittle 
and crack-prone cement-based matrix. In this way, the material can achieve higher 
tensile and flexural strength and also develops a crack control mechanism. The latter 
quality is composed of two steps: firstly, steel fibres, being randomly distributed in the 
concrete, intercept micro-cracks as they inhibit the tendency for them to form into larger 
cracks. Then, after cracking, the fibres spanning the crack will provide a degree of 
residual load-carrying capacity. This capacity can be considerable, depending on the 
dosage and the type of fibre used, and can be employed in a plastic design approach. 
The Steel Fibre Reinforced Concrete (SFRC) elements have the makings of becoming 
the principal building material, especially in seismic zones. For this reason, it is 
important to determine its real behaviour under different actions and also the optimum 
material design. 
 

1.2 Aim and background 
This dissertation is an extension of the work done by Abbas et al (2014), in which an 
investigation was carried out to evaluate the contribution of steel fibres in a reinforced 
concrete beam. In both pieces of research, after a validation stage based on 
experimental data, the element’s constitutive model was modified in ABAQUS software 
to verify the structural improvements due to the fibres percentage increment. 
Therefore, thanks to the large amount of data available, a further investigation could 
be undertaken, taking into account the results obtained from Abbas et al. (2014) using 
the Brittle Cracking Model and those obtained from the author using the Concrete 
Damaged Plasticity Model. The aim of this research is to verify whether using a 
Concrete Damaged Plasticity Model (CDPM) can lead to acceptable outcomes for the 
analysis of a SFRC element. The drawback of this model is that there are many 
parameters involved, all of which, theoretically, have to be set by calibration against 
experimental results. The Concrete Damaged Plasticity Model can represent the 
ductility of concrete behaviour, so it is beneficial to analyse Steel Fibre Reinforced 
Concrete, which is certainly more ductile than plain concrete.    
Unfortunately, the sheer number of parameters in the damage plasticity model makes 
the solution sensitive to any change in these numerous factors.  
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1.3 Results and conclusions 
The analysis carried out with the Concrete Damaged Plasticity Model begins from the 
validation against the experimental and the Brittle Cracking Model outcomes in terms 
of load-deflection curves. The main issue with the Concrete Damaged Plasticity Model 
is linked to the parameters configuration. In this case the plasticity parameters are 
obtained from the literature, when available, otherwise a calibration work is necessary. 
Theoretically, for every kind of structural element, loading pattern, support conditions, 
the plasticity parameters could change, so it could be very difficult to calibrate all the 
parameters. In this investigation, to obtain the best agreement with experimental 
results the author calibrated the model with respect to the dilatation angle y. In this 
case in fact, this is the parameter that affects more the overall behaviour in terms of 
load carrying capacity and failure point. After the validation, the plasticity parameters 
are defined, so it is possible to highlight the outcomes obtained with the Concrete 
Damaged Plasticity Model: more than the load deflection curves, the main results are 
the damaged parameter values when the failure occurs. The damaged parameters 
allow the understanding of the failure mechanisms correlating them with well-defined 
quantities. For this reason, it is usefully to use a constitutive model that links clearly 
the damage parameter with not only the strain, but also with other quantities, like the 
fracture energy or the mesh size, that can deeply represent the element configuration 
and its loading condition. Therefore, in Chapter 3 the damage parameters are 
described and afterwards in Chapter 4 all the outcomes are showed and explained 
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2. Literature Review 

2.1 Introduction 
The aim of this research is to evaluate the extent to which the Concrete Damaged 
Plasticity Model provides a satisfying method to analyse a SFRC structure. Thus, the 
literature review starts with the experimental work of Kotsovos et al. (2006), it contains 
all the experimental data on which this dissertation is based, such as the element 
configuration, the loading pattern and the experimental outcomes obtained in 
laboratory. In section 3.3 there is an overview of all the experimental details.  
Afterwards, it is necessary to describe steel fibres, from the production to the 
verification, also highlighting the environmental impact that this new building material 
could have. Nowadays, it is widely accepted that steel fibres can be successfully used 
inside reinforced concrete, but its contribution to reducing environmental pollution is 
less well known.  
Furthermore, the work done by Kotsovos et al. (2006) was taken as a starting point by 
Abbas et al. (2014), who used a Brittle Cracking Model to analyse the element and 
assessed the contribution of steel fibres to reducing the concentration of standard 
reinforcement. This is an opportunity to compare the Concrete Damaged Plasticity 
Model against an alternative model, indeed the comparison of different outcomes is 
clear since the two analyses start from the same premises. Another important aspect 
of this dissertation is the choice of the SFRC constitutive model. Different models have 
been developed in recent years, using various preconditions, hypotheses and, most 
importantly, range of validity. Since the percentage of fibres inside concrete mix can 
change a great deal, it is important to choose the constitutive model that best complies 
with the percentage used in the analysis. Thus, in section 2.3 different models are 
presented and other considerations are made on the chosen model. Finally, the 
Concrete Damaged Plasticity Model is presented starting from the work of Lubliner et 
al. (1989), afterwards strengths and weaknesses of this model are analysed.  
 

2.2 Steel Fibres 
Among all the different typology of fibre used as structural element (carbon, steel, 
plastic), this research focuses on steel fibres.  
In the beginning of the fibres application in concrete, as Zollo (1997) reported, the 
fibres were rough, because they derived from automobile tires and textile industries. 
Consequently, it was very difficult to vary the fibres’ shape or characteristics and, 
furthermore, using coarse fibres implicated difficulties in casting. For these reasons, 
initially the opinions on fibre reinforced concrete were negative, there was too much 
space between fibres and so they couldn’t increase the concrete strength. After this, 
new kinds of fibres were created and produced, it was possible to add a bigger amount 
of fibres in the concrete mix improving the fibre bond efficiency. As reported in the 
Guidance for the design of steel-fibre-reinforced concrete (2007) nowadays steel fibres 
are designed and made in different shapes, as it is shown in Figure 2.1. The main 
difference is they can be either straight or deformed, the diameter can range between 
0.4 and 1.3mm and their lengths are between 25 and 60mm. More than standard 
reinforcement, fibres need to develop bond with concrete, so they have a big surface 
area and a tensile strength between 2 and 3 times greater than traditional steel bar. 



Chapter 2  Literature Review 

18 

 
Figure 2.1 Different shapes of steel fibre 

The most important physical characteristics of steel fibres are related whether to the 
interaction with concrete (bond mechanisms) or to their own characteristics (tensile 
strength, elastic modulus) or to the conditions of use (dosage, number of fibres per kg 
of fibre).  
Due to the broad range of fibres types today a lot of different fibres classification exists, 
in Europe the BS EN 14889-1 classifies steel fibres into five Groups, according to the 
method of manufacture, as follows: 
Group I Cold-drawn wire 
Group II Cut sheet 
Group Ill Melt extract 
Group IV 
Group V Milled from blocks 
The SFRC element behaviour is not easy to analyse, for this reason, BS EN 14889-1 
requires the effect of fibres on the strength of concrete to be determined in accordance 
with BS EN 14845, using the standard notched beam test in BS EN 14651.The supplier 
is required to declare the amount of fibres in kg/m3 to achieve a residual (post-cracking) 
flexural strength of 1.5Mpa at a 0.5mm opening of the crack and a residual strength of 
1Mpa at a 3.5mm opening.  
Other aspects, always more important in the building world, are recycling as well as 
environmental pollution. Fibres can help environmental conservations making 
demolition materials more recyclable, but they can also be produced through a 
recycling process. In fact, it is possible, as explained in Pilakoutas et al. (2004), to 
extract Recycled Steel Fibres from used tyres, thanks to tyre shredding and cryogenic 
process. Single and double pull-out tests were carried out to evaluate the optimal fibre 
length in order to develop sufficient bond with concrete. The strength of SRSF was 
best utilised when the fibre length was about 20mm, dimension similar to industrial 
fibres one. 
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Wang et al. (2000) demonstrated that “steel fibres recycled from used tyres (RSF) can 
be effectively used to reinforce concrete. In addition, it was indicated that the 
mechanical behaviour of concrete reinforced with tyre-recycled steel fibres (RSFRC) 
is comparable to that of conventional steel fibre reinforced concrete (SFRC)”. 
Furthermore, using recycled fibres can be convenient also from the economic point of 
view, as Achilleos et al. (2011) said the use of steel fibres produced by post-consumer 
tyres is cheaper than the industrial process and could expand the use of fibre 
reinforced concrete. 
The steel fibre can be mixed with other kind of fibres, giving different characteristics at 
the concrete mix, as stated in Chen, B. and Liu, J. (2005), the effect of polypropylene 
and steel fibres can improve the uniformity of the mix, the carbon-steel fibres can low 
the brittleness and the shrinkage of concrete instead. Chiefly the use of different kind 
of fibres in the concrete mix is convenient because it can avoid the disruptive effect, 
namely the presence of voids and aggregate particle segregation, of “highmodulus” 
and course fibres inside concrete. 
Moreover, in order to reduce the amount of steel bars in favour of steel fibres, it is 
important to bear in mind corrosion. It is well known how damaging corrosion could 
be for reinforced concrete structure, according to Granju, J. and Ullah Balouch, S. 
(2005) steel fibres are less vulnerable to corrosion than steel bars. In fact, after they 
carried out experiment with cut specimens, they found out that after one year exposure 
to marine saline fog the strength of the element was increased. This unexpected effect 
is due to two contributions: first of all, the corrosion is too light to depress the fibre’s 
load-bearing capacity and then the corrosion makes the fibres’ surface rougher, so the 
slipping of the fibres in concrete is more difficult. 
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2.3 Different constitutive models for SFRC 
From the first application of fibres in reinforced concrete, different constitutive models 
have been used to describe in the best way the behaviour of Steel Fibre Reinforced 
Concrete. Different authors developed different models depending on different 
experimental data they had or the particular aim they pursued. Thus, there are 
differences not only in the constitutive models but also in the field of application. In fact, 
it is widely accepted that the compression behaviour of SFRC is similar to the plain 
concrete’s one, because fibres do not have remarkable effect on this aspect, on the 
other hand the behaviour in tension is very various and it depends on the fibres 
percentage. 
The first model proposed herein is based on the stress-strain relation exposed in 
RILEM TC 162-TDF (2003), in this model, valid for concrete with compressive strength 
up to C50/60, the fundamental parameters are the crack mouth opening displacement 
(CMODi) and the residual flexural tensile strength, fR,I. In Figure 2.2 the stress-strain 
diagram is showed with the size factor kh. As said before the behaviour in compression 
is the same of plain concrete, instead for tension the values of characteristic stress 
and strain are function of the residual flexural tensile strength fR,1 and fR,4, defined at 
specifics crack mouth opening displacement. The values for fR,1 and fR,4 are determined 
from the following expression: 

𝑓%,' =
3𝐹%,'𝐿
2𝑏ℎ/01

																																				(𝑁/𝑚𝑚1)		 

with b is the width of the specimen (mm), hsp is the distance between tip of the notch 
and top of cross section (mm) and L is the span length of the specimen (mm). The 
values for FR,i are determined from the experimental load-deflection curve, based on 
its respective CMODi or δR,i. 

 
Figure 2.2 Stress-strain and size factor, κh, graphs (RILEM TC 162-TDF 2003) 

The model proposed by Lim et al. (1987) uses parameters referred to fibres 
characteristics, namely the fibre volume fractions Vf, the ratio between cross sectional 
area and the perimeter of the fibres and the fibre orientation factor 𝜂9: . The diagram in 
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Figure 2.3 represents the tensional behaviour of Steel Fibre Reinforced Concrete. The 
behaviour of concrete after cracking is described by a constant stress 𝜎;< function of 
the average ultimate pull-out bond strength 𝜏< of the fibres. This model is suitable for 
a fibre volume fraction between 0.5% and 1.5%. 

 
Figure 2.3 Composite stress-strain relations in tension (Lim et al., 1987) 

As stated before, the concrete properties are functions of fibres characteristics, in fact 
the tensile elastic modulus is: 
𝐸?; = 𝐸@;𝑉@ + 𝜂C𝜂9𝐸D𝑉D 
where 𝑉@  and 𝑉D  are the total volume fraction of the concrete matrix and fibres, 
respectively; 𝐸@; and 𝐸D are the tensile elastic modulus for the matrix and the Young’s 
modulus of steel fibres; 𝜂C is the ratio of the average fibre stress to the maximum fibre 
stress, 𝜂9 orientation factor in the elastic range. 
On the other hand, the ultimate strength is given by: 

𝜎;< = 𝜂C𝜂9: 𝑉D𝑙D
𝜏<
2𝑟

 

with 𝜂9:  orientation factor due to fibres realigning across the crack, where 𝑙D is the fibre 
length, 𝜏< is the ultimate bond stress, r is the ratio of fibre cross-sectional area to its 
perimeter. 
In the end, the last value that characterises the model is the post cracking strain  

𝜀;< = 𝜔< 𝑙∗⁄  

where 𝜔< = 𝑙𝑓 16⁄  and 𝑙∗ is a reference length taken as the average crack spacing. 
After the previous models, valid only for limited fibre volume fraction, now a generic 
constitutive model is presented. This model derived from the flexural behaviour of a 
Steel Fibres Reinforced Concrete investigated by Lok and Pei (1998). This model 
considers that the structural behaviour could present whether strain softening or 
hardening behaviour as the fibres properties change. The compressive behaviour is 
the same of plain concrete, so now the tensile behaviour is described. As shown in 
Figure 2.4, the tensile side of the stress-strain relationship is composed of two stages: 
the pre-cracking stage and the post-cracking one.  
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Figure 2.4 Tensile stress-strain relationship for SFRC (Lok and Pei, 1998) 

The fibres become active in the second stage because in the first one, when the 
concrete is intact, their effect is negligible. Moreover, this model hires that the steel 
fibres bond perfectly to the concrete matrix and that no slippage occurs at the fibre-
matrix interface. So, in the second stage the bond stress increases up to reach the 
maximum value at the end of Process I, in correspondence of a strain equal to:  

𝜀1∗ = 𝜏L
𝐿
𝑑
1
𝐸D0

 

In the previous equation 𝐸D0  is elastic modulus of steel fibres, 𝜏L  is dynamic bond 
stress and 𝐿 𝑑⁄  is the fibre aspect ratio. The maximum tensile strain after failure 𝜀1∗∗  
can range from 2 x 10-4 to 10 x 10-4.  In this investigation, the constitutive model chosen 
is that one designed by Lok and Xiao (1998) described in more detail in section 3.1. 
This choice was made to remain consistent with the work made by Abbas et al (2014) 
and so to corroborate the comparison between the different model used in ABAQUS. 
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2.4 Investigation on Damaged Plasticity Concrete Model 
It was widely accepted that to mimic the behaviour of concrete elements under flexural 
actions two different approaches, a fracture mechanism in tension and a plasticity 
theory in compression, should be used. On the other hand, as explained by Lubliner 
et al. (1989) this approach has some drawback that limit its usefulness, such as the 
difficulties to model the combined effects of cracking and plasticity, or the problem of 
defining the cracks behaviour under cyclic loading. So Lubliner et al. (1989) suggest 
the use of a single constitutive model that can represent the non-linear behaviour of 
concrete both in tension and in compression. The essential parameters in this kind of 
models are the yield criterion, the flow rule and the hardening rule. The plastic-damage 
model uses a variable k as the hardening variable, when its maximum value is reached 
in one point of an element it represents the total damage, namely the formation of a 
macroscopic crack.  
It is important to understand, like Krätzig, W. and Pölling, R. (2004) claim, that micro-
fracturing and damage theories are equal, in fact damage by tension and micro-
cracking in compression follow the same elasto-plastic damage theory. 
Damage or stiffness degradation is related to the entire cracking process, from micro 
cracks growth to their interconnection, to simulate this phenomenon Luccioni et al. 
(1996) introduced a continuum damage mechanics  
On the other hand, as claimed by Nguyen, G. and Korsunsky, A. (2008), the choice of 
model parameters sometimes appears to be rather arbitrary, without a clear connection 
with the experimental methods used to determine the mechanical properties of the 
material.  
An analysis on the combination of a damage approach with a plasticity one is made by 
Grassl (2009), the researcher considers the disadvantages and the qualities of both 
approaches. 
The main drawbacks of the stress-based plasticity models are the implicit stress 
evaluation procedure and the inability to describe the stiffness degradation. On the 
other hand, strain-based damage mechanics models are based on the concept of a 
gradual reduction of the elastic stiffness driven by a total strain measure, but it cannot 
describe irreversible deformations. Combinations of plasticity and damage are usually 
based on isotropic plasticity combined with either isotropic or anisotropic damage. 
Anyway, combinations of isotropic damage and plasticity are widely used, indeed one 
popular class of models relies on a combination of stress-based plasticity formulated 
in the effective stress space combined with a strain-based damage model.  
In the end, the constitutive parameters that govern the damage plasticity model are 
well described in Jankowiak, T. and Łodygowski, T. (2005), they are four different value 
that identify not only the shape of the flow potential surface but also the characteristics 
of the yield surface. In this case, for the flow potential G, it is used the Drucker-Prager 
hyperbolic function as shown in the equation below:  

𝐺 = O(𝑓? − 𝑚 ∙ 𝑓; ∙ tan 𝛽)1 + 𝑞V1 − �̅� ∙ tan 𝛽 − 𝜎 

with 𝑓; is the uniaxial tensile strength of concrete and 𝑓?  is the compressive one; the 
dilatation angle in the p-q plane at high confining pressure is indicated with the letter 
𝛽; in the end m is the eccentricity of the plastic potential surface. The flow potential 
surface is defined in the p-q plane, where �̅� = − Y

Z
𝜎V ∙ 𝐼 is the effective hydrostatic stress 

and 𝑞V = \Z
1
𝑆̅1 is the Mises equivalent effective stress, where S is the deviatoric part of 
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the effective stress tensor 𝜎V. Starting from the loading function proposed by Lubliner, 
the following equation is used to represent the yield condition that the plastic-damage 
model uses:  

𝐹 =
1

1 − 𝛼
(𝑞V − 3𝛼 ∙ �̅� + 𝜃(𝜀̃0C)〈𝜎V@bc〉 − 𝛾〈−𝜎V@bc〉) − 𝜎V?(𝜀̃0C) 

In this equation, the parameter 	𝛾  delineates the shape of loading surface in the 
deviatoric plane while the parameter 	𝛼  is obtained from the Kupfer’s curve. 	𝜎V@bc 
represents the algebraically maximum eigenvalue of the tensor 𝜎V.  In the previous 
equation, the Macauley bracket 〈∙〉 is present, it is defined by 〈𝑥〉 = Y

1
(|𝑥| + 𝑥). In the 

end, the function 𝜃(𝜀̃0C) is obtained using the following equation: 

𝜃(𝜀̃0C) =
𝜎V?(𝜀̃0C)
𝜎V;(𝜀̃0C)

(1 − 𝛼) + (1 + 𝛼) 

where 𝜎V;  and 𝜎V?  are the effective tensile and compressive cohesion stresses, 
respectively, and the parameter	𝛼:   

𝛼 =
(𝑓i9 𝑓?⁄ ) − 1
2(𝑓i9 𝑓?⁄ ) − 1

 

To evaluate the parameter 𝛼 a biaxial laboratory test is needed, in fact it depends on 
the ratio of the biaxial compressive strength 𝑓i9 and uniaxial compressive strength. 
Furthermore, a triaxial compression test is necessary to evaluate the parameter 𝛾, in 
fact it is obtained from the following formula: 

𝛾 =
3(1 − 𝜌)
2𝜌 + 2

 

in which there is the quantity 𝜌, defined at a given state �̅� as: 

𝜌 =
kO𝐽1mno
kO𝐽1mpo

 

where 𝐽1 is the second invariant of stress deviator for the Tensile Meridian (𝜎Y > 𝜎1 =
𝜎Z) and the Compressive Meridian (𝜎Y = 𝜎1 > 𝜎Z) in the yield surface. 
In Figures 2.5 and 2.6 the dependences between stress-cracking strain (𝜀;̃?r) in tension 
and stress – crushing strain (𝜀?̃'s) in compression are shown. 
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Figure 2.5 Dependence 𝜎 − 𝜀 in compression for CDP model 

  
Figure 2.6 Dependence 𝜎 − 𝜀 in tension for CDP model 

It is important to determine the reliance between 𝑑; and cracking strain and 𝑑? and 
crushing strain. To characterise the aspect of flow potential and the loading surfaces 
four parameters are used, namely 𝛽,𝑚, 𝑓, and 𝛾. The latter modifies the shape of the 
loading surface in the deviatoric plane, it is widely agreed a value equal to 0.66667 for 
this parameter. 
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The parameter 𝑓 is obtained from the Kupfer’s curve, the parameter 𝛼 is a function of 
𝑓, as it is shown in a precedent equation. 
Finally, 𝑚 and 𝛽 are evaluated fulfilling the best fitting of the curve, in the meridian 
plane, to the experimental results. Usually 𝑚 ranges between 1 and 1.5 and 𝛽 ranges 
between 0.6 and 0.75. 
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3. Methodology 

3.1 Constitutive SFRC Model 
The constitutive SFRC model designed by Lok and Xiao (1998) is particularly suitable 
for this dissertation work, not only because it was used in the Abbas et al (2014) paper, 
that is the basis of this work, but also because of its wide range of validity, in fact this 
model can be used, with good results, for a range of fibre volume fraction between 
0.5% and 2.5%, namely the range considered by Kotsovos et al. (2006) in the 
experiments. In Figure 3.1 is represented the stress-strain relationship both in tension 
and in compression.  

 
Figure 3.1 Constitutive stress-strain relationship (Lok and Xiao, 1998) 

The compressive part of the constitutive model designed by Lok and Xiao (1999) is the 
classic parabola-rectangle trend used in the Eurocode 2 as well, they stated that the 
effect of fibres in compression is negligible. The model is characterized by two parts: 
the first one is obtained from the following expression:  
𝜎 = 𝑓?[2(𝜀 𝜀?u⁄ ) − (𝜀 𝜀?u⁄ )1]																				(𝜀 ≤ 𝜀?u) 
where 𝑓?  is compressive strength of concrete, the second part is constant with 
𝜎 = 𝑓?	 up to the ultimate strain 𝜀?<. 
Lok and Xiao (1999) stated that the ultimate compressive strain, 𝜀?< for SFRC at 0.003 
may be conservative. For fibre volume fraction between 0.5 and 2%, Lok and Xiao 
(1999) suggested the value of 0.0038.  
However, in this work the author preferred to use a different constitutive model in 
compression taking into account the Concrete Damaged Plasticity Model that needs 
the definition of a damage parameter in compression. Thus, the chosen model in 
compression is described in section 3.2. 
Regarding the tensile relationship this model is similar to the Lok and Pei (1998) one. 
It is possible to divide the trend in three intervals in terms of strain, thus the following 
expressions describe the stress-strain relations:  

𝜎 = 𝑓; x2 y
𝜀
𝜀;Y
z − y

𝜀
𝜀;u
z
1
{ 																												0 ≤ 𝜀 ≤ 𝜀;u 



Chapter 3  Methodology 

28 

𝜎 = 𝑓; x1 − y
1
𝑓;<
z y

𝜀 − 𝜀;u
𝜀;Y − 𝜀;u

z
1
{															𝜀;u ≤ 𝜀 ≤ 𝜀;Y 

𝜎 = 𝑓;<																																																											𝜀;Y ≤ 𝜀 ≤ 𝜀;< 
The first part represents the elastic behaviour that ends when the ultimate tensile 
strength 𝑓; is reached, afterwards, as in Lok and Pei (1998), cracking starts and fibres 
act to improve the concrete behaviour. When the strain 𝜀;Y  is reached and so the 
residual strength 𝑓;< , the second part is over.   
These values are defined by Lok and Pei (1998) as: 

𝑓;< = 𝜂𝜈D𝜏L
𝐿
𝑑

 

𝜀;Y = 𝜏L
𝐿
𝑑
1
𝐸/

 

where 𝜂 is fibre orientation factor in a 3-dimensional (3D) case, Lok and Xiao 
(1999) used the value of 𝜂 as 0.405 for beams. As seen before 	𝜏𝑑 is the bond stress 
interaction between concrete and steel fibres, 𝐿 𝑑⁄  is aspect ratio of the steel fibre and 
𝐸/ is the elastic modulus of steel fibre and 𝜈D is defined as the fibre volume fraction. 
The third part symbolize fibres bridging the crack until they pull out. 
This model can be correlate with the moment-curvature curve showing an important 
aspect of SFRC, namely the relation between fibre volume fraction and softening or 
hardening behaviour. As shown in Figure 3.2, the contribution of fibres is relevant after 
cracks arising, in fact in the range between the strains 𝜀;u and 𝜀;Y concrete and fibres 
both bear the load, so depending on the fibres pull-out, fibre volume fraction and 
bridging behaviour, the flexural moment-curvature response could be classified as 
softening (Case 1), idealised elasto-plastic (Case 2), or hardening (Case 3).       
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Figure 3.2 Relationship between (a) Moment-curvature response and (b) Tensile 

stress-strain behaviour (adapted from Lok and Xiao, 1999) 
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3.2 Concrete Damaged Plasticity Model 
The Concrete Damaged Plasticity Model, implemented in ABAQUS software, is born 
from the Drucker–Prager strength hypothesis and it was modified with respect the 
failure surface, in fact, as shown in Figure 3.3, the deviatoric cross section must be not 
a circle. As stated from Kmiecik, P. and Kaminski, M. (2011), the failure surface is 
governed by Kc, parameter that represents the ratio of the distances between the 
hydrostatic axis and respectively the compression meridian and the tension meridian 
in the deviatoric cross section. This parameter ranges from 0.5 to 1, value for which 
the deviatoric cross section of the failure surface is a circle, like in the Drucker-Prager 
theory. The Concrete Damaged Plasticity model suggests to adopt Kc=2/3.       
 

 

Figure 3.3 Deviatoric cross section of failure surface in CDP model 

Furthermore, also in the meridian plane in the stress space something changes, in fact 
experimental results show that meridians are curves and that the plastic potential 
surface is a hyperbola as shown in Figure 3.4. 
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Figure 3.4 Hyperbolic surface of plastic potential in meridional plane  

The hyperbola’s shape can be modified by eccentricity, namely a small positive value 
that indicates the rate of approach of the hyperbola to its asymptote, in other words, 
this parameter expresses the distance between the vertex of hyperbola and its centre. 
It is determined as the ratio of tensile strength to compressive strength and the 
suggested value is 𝜀 = 0.1.  
In the end, the last parameter that is necessary to well described the concrete 
behaviour is the dilatation angle y, it is defined as the angle of inclination of the failure 
surface measured in the meridional plane, physically it represent the internal friction 
angle of concrete.  
The uncontested merit of this Model is that the parameters, which manage the overall 
behaviour, represent clearly physical characteristics. 
It is well known that concrete is a brittle material, characterized by cracking, but as 
stated by Alfarah et al. (2017), when the stress is cyclic reversal the cracks can be 
closed again and so the broken parts can be repaired. But in reinforced concrete there 
is reinforcement as well, very ductile material that cannot be reassembled, so the 
overall behaviour can be described using a model that combine the damage, used to 
analyse concrete, and plasticity, suitable for steel bars. In Figure 3.5 three different 
models are graphically displayed in terms of uniaxial stress-strain. Observing the three 
models, it is clear that damage causes a stiffness degradation, in fact the elastic 
modulus 𝐸9 , which represent the undamaged material in the loading branches, is 
reduced by the terms (1 − 𝑑) in the unloading branches. Thus, it is possible to express 
the trend of the elastic stiffness in terms of a scalar degradation variable d: 

𝐸 = (1 − 𝑑)𝐸9 

 
(a) Plasticity Model (b) Damage Model (c) Plastic Damage Model 

Figure 3.5 Representation of CPDM 



Chapter 3  Methodology 

32 

The damage parameter d range between 0, intact material, and 1 complete failure. 
Therefore, the stress-strain relation in the damage plasticity model are: 

𝜎? = (1 − 𝑑?)𝐸9k𝜀? − 𝜀?
0Cm 

𝜎; = (1 − 𝑑;)𝐸9k𝜀; − 𝜀;
0Cm 

In the previous expressions, the degradation variable is decomposed in the 
compressive and tensile factor, the relation between them all is: 

1 − 𝑑 = (1 − 𝑠;𝑑?)(1 − 𝑠?𝑑;) 
where 𝑠?  and 𝑠;  are dimensionless coefficients accounting for stress state and 
stiffness recovery effects, being given by: 

𝑠? = 1 − ℎ?k1 − 𝑟∗(𝜎YY)m 
𝑠; = 1 − ℎ;𝑟∗(𝜎YY) 

In the previous equations	𝜎YY is the first principal uniaxial stress (positive for tension), 
𝑟∗  is a stress state parameter being 𝑟∗(𝜎YY) = 1  for tension and 𝑟∗(𝜎YY) = 0  for 
compression, and ℎ? and ℎ; are weighting factors ranging between 0 and 1. 
Factor ℎ?  accounts for re-closing of cracks after tension-compression reversal; ℎ; 
represents recovery of crushed concrete after compression-tension reversal. 

 
Figure 3.6 Uniaxial loading-unloading law 

In Figure 3.6 a graph drawn from ABAQUS manual is displayed to better understand 
how ℎ?  and ℎ;  influence the overall behaviour during a cyclic loading. So, cracking 
start after the peak point 1 and proceed until point 2, which correspond to the onset of 
the unloading branch, in this point 𝑑? = 0, 𝑟∗ = 1, and 𝑠? = 1. Moreover, in this case 
𝑑 = 𝑑; and afterwards the unloading branch has a slope equal to (1 − 𝑑;)𝐸9. From 
point 2 to point 3 cracks decrease until complete closure. After point 3 the load is 
reversed and the parameter ℎ?  assume an important role, in fact from previous 
equations the following value are obtained 𝑟∗ = 0 , 𝑠? = 1 − ℎ? , 𝑠; = 1 , 𝑑? = 0 , and 
𝑑 = (1 − ℎ?)𝑑;. It is evident how the trend depends on ℎ?, so three different values of 
ℎ? are plotted in Figure 3.6: 
• ℎ? = 0 (no crack is closed) with slope (1 − 𝑑;)𝐸9; 
• ℎ? = 0.5 (half of the cracks are closed) with slope (1 − 0.5𝑑;)𝐸9; 
• ℎ? = 1 (all cracks are closed) with slope 𝐸9. 
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In the third case the compressive strength remains constant. 
The compressive part of the diagram ends in point 4, correspondent of point 2 in 
tension, so from now on an unloading branch begins with 𝑟∗ = 0, 𝑠? = 1 − ℎ?, 𝑠; = 1, 
and  
1 − 𝑑 = (1 − 𝑑?)[1 − (1 − ℎ?)𝑑;] = 1 − 𝑑? 
Point 5 represents stress reversal, considering ℎ; = 0, the subsequent branch has a 
slope (1 − 𝑑?)(1 − 𝑑;)𝐸9. In the end, point 6 is the tensile peak from which the cycle 
starts again. 
After the cycle is defined, it is clear that the damage parameters in compression and 
in tension have a critical role. So, defining these parameters is very important to 
understand the entire behaviour. Compressive and tensile parameters are defined as 
the part of normalized energy dissipated by damage: 

𝑑? =
1
𝑔?
� 𝜎?𝑑𝜀??�
����

9
																												𝑑; =

1
𝑔;
� 𝜎;𝑑𝜀;?r
��
��

9
 

where 𝜀??�	and 𝜀;?r are the crushing and cracking strains respectively. Normalization 
coefficients 𝑔? and 𝑔;, displayed in Figure 3.7, represent the energies per unit volume 
dissipated by damage during the entire deterioration process: 

𝑔? = � 𝜎?𝑑𝜀??�
�

9
																												𝑔; = � 𝜎;𝑑𝜀;?r

�

9
 

Previous equations demonstrate that 𝑑? and 𝑑; range between 0 (no damage) and 1 
(destruction). 
 

 

Compression (𝑔?), Tension (𝑔;) 

Figure 3.7. Parts of energy dissipated by damage 

Using the Lok and Xiao constitutive model also for compression lead outcomes not 
consistent with the experimental, so in compression the model designed by Alfarah et 
al. (2017) is used. In this section, the stress-strain law is presented together with the 
equation to evaluate the damage parameter in compression. In Figure 3.8 the 
constitutive model in compression is shown, thus the main quantities are described in 
detail.  
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Figure 3.8 Assumed uniaxial model of concrete behaviour in compression 

First of all, the characteristics of the concrete are depicted: 𝑓?@  represents the 
compressive stress strength and the corresponding strain is 𝜀?@ , that is assumed 
𝜀?@ = 0.0022; this stress and the deformation modulus are expressed in Mpa. Then 
the strains that characterise the constitutive behaviour are delineated:  𝜀??� and 𝜀9?�C  are 
the crushing and elastic undamaged components of strain; instead 𝜀?

0Cand 𝜀?�C are the 
plastic and elastic damaged components.  
The first branch in Figure. 3.8 is linear, 𝜎?(Y) = 𝐸9𝜀?, until the stress reaches the value 
0.4𝑓?@,	𝐸9 is the secant modulus that corresponds to 0.4 𝑓?@ stress and it is in function 
of 𝐸?', described later. 
The second segment, that works from 0.4 𝑓?@ and 𝑓?@ is quadratic: 

𝜎?(1) =
𝐸?'

𝜀?
𝑓?@

� 𝜀?𝜀?@
�
1

1 + y𝐸?'
𝜀?@
𝑓?@

− 2z 𝜀?𝜀?@

𝑓?@ 

In the previous equation, 𝐸?' is the modulus of deformation of concrete for zero stress, 
obtained by 𝐸?' = 10000𝑓?@

Y Z⁄  and 𝐸9 = (0.8 + 0.2𝑓?@/88)𝐸?', both are in Mpa.  
The third branch is the descending one, in this segment the model designed by Alfarah 
et al. (2017) diverges considerably from the classic behaviour used also by Lok and 
Xiao (1999). 
The following equation is used to model the descending branch:   

𝜎?(Z) = �
2 + 𝛾?𝑓?@𝜀?@

2𝑓?@
− 𝛾?𝜀? +

𝜀?1𝛾?
2𝜀?@

�
�Y

 

𝛾? =
𝜋1𝑓?@𝜀?@

2 x𝐺?�𝑙��
− 0.5𝑓?@ y𝜀?@(1 − 𝑏) + 𝑏

𝑓?@
𝐸9
z{
1 												𝑏 =

𝜀?
0C

𝜀??�
 

These equations are in function of 𝐺?� is the crushing energy per unit area, and 𝑙�� is 
the characteristic length, which depends on the mesh size, the type of finite element 
and the crack direction. In this case, regular hexahedron elements are utilized so the 
characteristic length is equal to 30mm, because it is taken as the volume divided by 
the largest face area. Using these parameters, the model becomes more sophisticate 
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because it takes into account not just an energy parameter but also a parameter that 
derived from the finite element model representation. 
To evaluate the value of the parameter b, an iterative procedure is necessary, the initial 
value assumed is b=0,9. The final value of b affects the softening branch of the 
compressive stress strain relation. 
As stated previously the descending branch is very different from the standard 
constitutive model for concrete in compression, in fact it approaches asymptotically to 
zero. In this case the maximum strain value in compression, that normally is taken as 
0,0035, has to be estimated by imposing the equivalence between the crushing energy 
𝐺?�	and the area under the corresponding compressive stress-strain law multiplied by 
the characteristic length. 
The author found that for an ultimate strain equal to 0,035, and a 𝑙�� equal to 30mm 
the equivalence is fulfilled. 
In all the literature regarding the Concrete Damaged Plasticity Model, equations 
explaining clearly the contribution of the compressive damage parameter are limited. 
Alfarah et al. (2017) instead found a clear relationship between the damage parameter 
in compression and not only the concrete strength but also the crushing and fracture 
energies and the mesh size:  

𝑑? = 1 −
1

2 + 𝑎?
[2(1 + 𝑎?)𝑒𝑥𝑝(−𝑏?𝜀??�) − 𝑎?𝑒𝑥𝑝(−2𝑏?𝜀??�)] 

Assuming 𝑓?9 = 0.4𝑓?@  and 𝑓;@ = 𝑓;9 = 0.3016𝑓?r
1 Z⁄  the coefficients, participating in 

the 𝑑? equation, are obtained: 

𝑎? = 7.873				𝑎; = 1					𝑏? =
1.97(𝑓?r + 8)

𝐺?�
𝑙��						𝑏; =

0.453𝑓?r
1 Z⁄

𝐺�
𝑙�� 

In Figure 3.9 the damage parameter used in this work is depicted. 

 
Figure 3.9 Damage parameter in compression 

On the other hand, for the damage parameter in tension, a linear function was used by 
the author. As shown in Figure 3.10 it starts from 0 in correspondence of the tensile 
stress strength, evaluated in section 3.1 and it reaches the value of 0,99 in 
correspondence of the ultimate tensile strain equal to 0,02. 
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Figure 3.10 Damage parameter in tension 

Finally, Alfarah et al. (2017) present an algorithm to draw the stress-strain curve in 
compression, the algorithm is composed by the following ten steps:   
1. The input data are the concrete compressive strength 𝑓?r , the parameters of 

Concrete Damaged Plasticity Model, namely the dilatation angle φ, eccentricity ε, 
ratio of second stress invariants K, the viscosity parameter v and the ratio between 
biaxial compressive yield strength and uniaxial compressive yield strength fb0/fc0, 
the mesh size𝑙��, and the ratio b. Initial assumption is b = 0.9. 

2. Calculate the compressive and the tensile stress strength  
𝑓?@ = 𝑓?r + 8   𝑓;@ = 0.3016𝑓?r

1 Z⁄  
3. State the strain at compressive stress strength as 𝜀?@ = 0.0022. 
4. Calculate the initial tangent modulus of deformation of concrete 
𝐸?' = 10000𝑓?@

Y Z⁄ and the undamaged modulus of deformation 
𝐸9 = (0.8 + 0.2𝑓?@/88)𝐸?'. 

5. Calculate the fracture/crushing energy (N/mm) 

𝐺� = 0.073𝑓?@9.Y�   𝐺?� = �D��
D��
�
1
𝐺�  

6. Build the three segments of the concrete uniaxial compressive law. As stated before, 
the compressive strain is bounded; the selected upper bound should fulfil the 
condition that the crushing energy 𝐺?� is reached. 

7. Calculate the damage parameters according: 

𝑎? = 7.873				𝑎; = 1					𝑏? =
1.97(𝑓?r + 8)

𝐺?�
𝑙��						𝑏; =

0.453𝑓?r
1 Z⁄

𝐺�
𝑙�� 

8. Calculate the compressive damage variables (damage evolution) 
9. Calculate the compressive plastic strain:  

𝜀?
0C = 𝜀??� −

𝜎?𝑑?
(1 − 𝑑?)𝐸9

 

10. Calculate the average value of ratio b and compare with the assumption in step 1. 
Repeat until reaching convergence. 
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3.3 Case study 
The experimental element designed and used by Kotsovos et al. (2006) is shown in 
Figure 3.11. As explained in the Kotzovos paper, in this section the experimental 
features are presented. The element is supported by roller and hinge positioned under 
the bottom flange of the frame beam, this is necessary to allow reactions to act both 
upwards and downwards during cyclic loading.  

 
Figure 3.11 Experimental setup  

Specimens analysed by Kotsovos et al. (2006) are made of whether plain concrete or 
fibre reinforced concrete, in this dissertation only two beams are examined, namely 
D16-FC-30-C and D16-FC-30-M. The fibres used in the experiments were DRAMIX 
RC-80/60-BN, with a length of 60mm and a diameter equal to 0.75mm. The specimens 
have a three-part name, with the constituent parts arranged in sequence as follows: 
part 1, the diameter of the longitudinal steel reinforcement; part2, the concrete mix 
used; part 3, the loading history adopted (monotonic or cyclic). In Figure 3.12 the 
reinforcement arrangement is shown, the longitudinal bars have a diameter of 16mm 
and an average yield-stress (fy) and ultimate strength (fu), as obtained from tension 
tests, equal to 556Mpa and 743Mpa respectively. On the other hand, stirrups have an 
8mm diameter, an average yield-stress equal to 471Mpa and ultimate strength equal 
to 684Mpa. The modulus of elasticity for steel (Es) is 200 Gpa. 
The mix design was provided by Unibeton, using local aggregate furnished by their 
subsidiary in Greece, Halyps S.A. The specimen (including six test cylinders) is cured 
under wet hessian for one month, after which it is stored under laboratory ambient 
conditions at a temperature of approximately 20°C and a relative humidity of 
approximately 50%. The concrete compressive strength is determined by crushing the 
six cylinders at the time of testing, approximately two months after casting. The 
corresponding compressive strengths is equal to 37Mpa. 



Chapter 3  Methodology 

38 

 
Figure 3.12 Dimensions, loading arrangement and reinforcement detailing of the 

column (adapted from Kotsovos et al, 2007) 

Regarding the load pattern, the element is loaded by whether axial or transverse force 
to better mimic a column load pattern.       
At the beginning, axial load N is applied and increases to a value equal to 
𝑁 ≈ 0.2𝑁< = 0.2𝑓?𝑏ℎ, where 𝑁< is the maximum value of N that can be sustained by 
the specimen in pure compression and 𝑓?  the uniaxial cylinder compressive strength. 
The transverse load is displacement controlled and its trend is capable of marking 
cracks, the axial-compressive force is applied concentrically using an external pre-
stressing force induced by high yield steel rods instead. The loading history used in 
the FE analyses is represented in Figures 3.13 and 3.14 both for monotonic and cyclic 
forces. 

 
Figure 3.13 Monotonic loading history 
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Figure 3.14 Cyclic loading history 
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4. Results and Discussion 

4.1 Monotonic Load 
In this section, the beam under monotonic load is analysed. First of all, a validation test 
is carried out to verify the model used, afterwards different beam arrangements are 
investigated to take into account the increasing in the fibres volume percentage Vf and 
the increasing in the stirrups spacing SI as well. The constitutive models used in 
tension and in compression are those previously analysed in sections 2 and 3, on the 
other hand, regarding the plasticity parameters, in the following section they are 
investigated in more detail. In all the analyses carried out in this section the ABAQUS 
dynamic solver is used, so to mimic a quasi-static FE analysis is important to avoid 
dynamic effect, to take into account this problem the energy ratio, namely the ratio 
between the kinetic energy and the strain energy, has to be smaller than 0.5% 
4.1.1 Experimental validation 
The validation of the Concrete Damaged Plasticity Model, against the experimental 
outcome and the result obtained using the Brittle Cracking Model as Abbas et al. 
(2014) did, is carried out. The beam used for the validation has a fibres volume 
percentage equal to 0,4% and the stirrup spacing is 0%, so the reinforcement 
arrangement used in this case is considered as the standard one. In Figure 4.1 the 
stress-strain relation is displayed.  

 
Figure 4.1 Tensile stress-strain diagram adopted for calibration work of Kotsovos et 

al. (2007) SFRC columns 

The relation main points are listed in Table 4.1, this are obtained using the Lok and 
Xiao (1998) theory stated in section 2. The compressive behaviour is not conditioned 
by fibres, so it is always the same described in section 3.  
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Table 4.1 Tensile stress-strain for a SFRC mixture with Vf = 0,4% 

The mesh size used is the same of the Brittle Cracking Model analysis so it is equal to 
30mm. In Figure 4.2 the load deflection curves are displayed for the cases 
investigated, the curves show a trend similar, especially until a displacement equal to 
30 mm, then both the FE curves exhibit a higher trend, but the CDPM reaches a point 
of failure closer to the experimental one.  

 
Figure 4.2 Validation of CDPM load deflection curve with experimental and Brittle 

Cracking Model ones 

From the load deflection curves, it is possible to extrapolate the characteristic values 
listed in Table 4.2, namely the load at yield point Py, the maximum load Pmax and 
ultimate load of the column at failure Pu, and their respective deflections δy, δPmax and 
δu, moreover the ductility μ, evaluated as the ratio between the deflection at failure and 
the deflection at yield point, and the ratio between the maximum load and the yield one 
is evaluated as well. 
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 Py 

[kN] 
δy 

[mm] 
Pu 

[kN] 
δu 

[mm] 
Pmax 

[kN] 
δPmax 
[mm] μ=δu/δy Pmax/Py 

Experimental 155 11 158 65,5 187 31,1 6,0 1,21 
Brittle 144,3 9,7 174,1 60,3 182,9 44,7 6,2 1,267 
CDPM 150,70 10 177,0 64,8 188,85 36,60 6,5 1,253 

Table 4.2 Characteristic values of load deflection curves 

Using the Concrete Damaged Plasticity Model the author had to choose the right value 
for the Plasticity parameters, namely the dilatation angle φ, eccentricity ε, ratio of 
second stress invariants K, the viscosity parameter v and the ratio between biaxial 
compressive yield strength and uniaxial compressive yield strength fb0/fc0. The value 
of the parameters, except the dilatation angle φ, are shown in Table 4.3. 

K e fb0/fc0 v 

0,66667 0,1 1,16 0,003 

Table 4.3 Plasticity parameters 

For the dilatation angle a more accurate analysis was carried out because this 
parameter influences more than the others the load deflection curves. 
As shown in Figure 4.3 three different angles were chosen, namely y = 15°, y = 30° 
and y = 42°, this parameter represents the inclination of the failure surface and so 
when it is increased the correspondent load deflection curve mimics the behaviour of 
a stronger concrete. 

 
Figure 4.3 Comparative analysis of dilatation angle  
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In order to obtain the failure point of the column, the kinetic energy is plotted versus 
the deflection for all the different value as depicted in Figures 4.4, 4.5 and 4.6 for y = 
42°, y = 30° and y = 15° respectively. The failure point corresponds to a sudden jump 
in the kinetic energy, it happens for a deflection equal to 64,8mm for y = 42°, 41,3mm 
for y = 30° and 26,7mm for y = 15°. 

 
Figure 4.4 Kinetic energy for y = 42° 
 

 
Figure 4.5 Kinetic energy for y = 30° 
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Figure 4.6 Kinetic energy for y = 15° 

Using the Damaged Plasticity Parameter, it is possible to highlight the cracks at the 
failure point using the damage parameter in tension dt, Figure 4.7, and the parts 
damaged by crushing in compression using the damage parameter in compression dc, 
shown in Figure 4.8. The damaged parameter in tension represent the crack opening, 
in fact in Figure 4.7 it can be seen how the highest value of dt  is in correspondence of 
the load point in the bottom part of the beam and in correspondence of the support in 
the top part, these clearly represent the cracks. 

 
Figure 4.7 Tension Damage Parameter 

 

Figure 4.8 Compression Damage Parameter 
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4.1.2 Parametric study 
Once the validation work gives good results compared with experimental ones, the 
model is used to evaluate the effects of fibres to replace conventional reinforcement. 
So first of all, the fibres volume percentage is increased considering five different 
percentages: 0%, 1%,1,5%, 2% and 2,5%. Afterwards the spacing between stirrups is 
increased as well, three different spacing percentage are used, namely SI = 0%, 50% 
and 100%, in this way it is possible to highlight if the fibres can replace the traditional 
reinforcement. To evaluate the effect of fibres the strength and the ductility are 
evaluated for each case.  
According to Lok and Xiao (1999) theory, increasing the volume of fibres modifies the 
tensional behaviour of concrete, the different stress-strain relations in tension are 
depicted in Figure 4.9. 

 
Figure 4.9 Tensile stress-strain relationships for different fibres volume fractions 

To compare all the beams with different amount of fibres and different stirrups spacing 
load-deflection curves are obtained. In Figure 4.10 SI=0% so only the fibres volume 
fraction is modified. 
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Figure 4.10 Load-deflection curves for SI=0% 

It is clear from the previous image that there is an improvement in terms of load-
carrying capacity due to the increase in the amount of fibres.  
In Figure 4.11 the kinetic energies for the different amount of fibres are shown. 
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(b)  

Figure 4.11 Kinetic energies with SI=0% for (a) Vf =0%, Vf =1%, Vf =1,5% and (b) Vf 

=2% and Vf =2,5%    

To carry out a more accurate analysis, in Table 4.4 all the characteristic values of the 
load-deflection curves are provided. 
 

 Py  

[kN] 
dy  

[mm] 
Pu  

[kN] 
du  

[mm] 
Pmax  

[kN] 
dPmax 
[mm] 

μ=δu/δy Pmax/Py 

Vf=0% 145,51 9,3 171,8 53,3 178,3 30,00 5,7 1,225 
Vf =1% 160,90 9,3 177,4 64,8 192,45 32,30 6,97 1,196 

Vf =1.5% 183,00 10,6 182,1 64,8 203,20 21,99 6,1 1,110 
Vf =2% 190,86 9,3 190,86 33,3 214,672 25,32 3,6 1,125 

Vf =2.5% 210,64 10,6 218,425 33,3 223,796 23,32 3,1 1,062 

Table 4.4 Load-deflection characteristics for SI=0% 

All the curves are compared against the load-deflection curve obtained using a fibres 
volume percentage equal to 0%, namely that related to a plain concrete beam. 
Furthermore, in Figure 4.12 the curves obtained by Abbas et al. (2014) are showed. 
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Figure 4.12 Load-deflection curves for SI=0% with Brittle Cracking Model 

The yield point can be considered constant for a variation in the fibres volume fraction, 
instead the load at yield increases from 10,5% for Vf = 1% to 44,75% for Vf = 2,5% with 
an average equal to 28,06%, on the other hand the results obtained using a Brittle 
Cracking Model showed an increment with an average of 23,5%. Also, the maximum 
load increases with the Vf, for Vf = 1% the increment is equal to 7,9%, it reaches 25,5% 
for Vf = 2,5%, for this parameter the average is 16,95%, instead for this case the Brittle 
Cracking Model obtained an average equal to 13,1%. The outcomes show a good 
agreement between the two models particularly for the load-carrying capacity. 
From these parameters, the expected improving in the load-carrying capacity due to 
the fibres bridging the crack is confirmed. 
The column investigated for a SI=0% and a Vf = 0% will be used as the control column 
in the following sections. 
Now the results obtained by changing the stirrups spacing are provided in Figures 4.13, 
4.14, 4.15 and 4.16 with a summary in Tables 4.5 and 4.6 for SI=50% and SI=100% 
respectively. 
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Figure 4.13 Load-deflection curves for SI=50% 
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(b) 

Figure 4.14 Kinetic energies with SI=50% for (a) Vf =0%, Vf =1%, Vf =1,5% and (b) Vf 

=2% and Vf =2,5% 
 

Py  

[kN] 
δy 

[mm] 
Pu 

 [kN] 
δu 

[mm] Pmax [kN] δPmax 
[mm] μ=δu/δy Pmax/Py 

CC 145,51 9,3 171,8 53,3 178,3 30,00 5,7 1,225 
Vf=0% 145,7 9,3 177,7 42,0 178,56 32,02 4,5 1,225 
Vf=1% 159,7 9,3 180,2 64,1 193,54 29,36 6,9 1,212 

Vf=1.5% 175,48 9,3 177,2 67,5 203,957 24,04 7,2 1,162 
Vf=2% 191,3 9,3 199,8 40,7 218 25,37 4,3 1,140 

Vf=2.5% 206,7 10 221,2 32,7 223,07 30,03 3,3 1,079 

Table 4.5 Load-deflection characteristics for SI=50% 

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

2

0 10 20 30 40 50

En
er

gy
 [J

]

d [mm] Vf=2% Vf=2.5%



Chapter 4  Results and Discussion 

52 

 

        

Figure 4.15 Load-deflection curves for SI=100% 
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(b)  

Figure 4.16 Kinetic energies with SI=100% for (a) Vf =0%, Vf =1%, Vf =1,5% and (b) Vf 

=2% and Vf =2,5% 

 
Py 

[kN] 
δy 

[mm] 
Pu 

[kN] 
δu 

[mm] 
Pmax 

[kN] 
δPmax 
[mm] μ=δu/δy Pmax/Py 

CC 145,51 9,3 171,8 53,3 178,3 30,00 5,7 1,225 
Vf=0% 145,25 10 150,9 45,3 186,4 40,6 4,2 1,283 
Vf=1% 159,47 10 161,9 60,1 191 30,7 6,0 1,198 

Vf=1.5% 177,17 9,3 166,9 53,3 202,8 25,4 5,7 1,145 
Vf=2% 194,29 10 186,5 55,3 217,8 28,7 5,5 1,121 

Vf=2.5% 206,69 10 214,1 38,0 222,4 29,4 3,8 1,076 

Table 4.6 Load-deflection characteristics for SI=100% 

In agreement with the outcomes obtained by Abbas et al. (2014), depicted in Figures 
4.17 and 4.18, all the beams with different stirrups spacing and different fibres volume 
percentage show better behaviour in terms of strength properties, namely Py and Pmax.  
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Figure 4.17 Load-deflection curves for SI=50% with Brittle Cracking Model 

 
Figure 4.18 Load-deflection curves for SI=100% with Brittle Cracking Model 

The increment in terms of maximum load is well depicted in Figure 4.19 in which the 
values of Pmax, normalized with respect to the respective value of the control column 
Pmax,0, is drawn in function of the fibres volume fraction. 
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Figure 4.19 Normalized maximum strength trend in function of Vf 

From the previous figure, it is clear how the increasing in the fibre volume percentage 
can improve the beam strength. For a SI=50% the trend is similar to that related to 
SI=0% and it is even higher for a Vf = 2%. The beams with SI=100% show strength 
values lower than those related to beams with SI=0% from Vf = 0% to Vf = 1,5%, then 
also for these arrangements the strength increases in correspondence of Vf = 2%. In 
Table 4.7 all the values are provided and they demonstrate as the fibres can 
compensate the reduction in reinforcement. 

 
 Vf [%] Pmax SI=0% Pmax SI=50% Pmax SI=100% 

Pmax,0 = 178,3kN 

0 1 1,001 0,955 
1 1,0793 1,0854 1,0717 

1,5 1,14 1,1439 1,1376 
2 1,2039 1,2226 1,2216 

2,5 1,2551 1,2511 1,2475 

Table 4.7 Normalized maximum strength values for different stirrups spacing 

A comparative analysis with the Brittle Cracking Model was carried out previously for 
SI=0%, now it is possible to analyse also the differences for SI=50% and SI=100%. 
For SI=50% the average of the increment of Pmax, again taking into account the value 
of Pmax,0, is 11,3%, with the same value for Vf = 0% and a maximum increment of 25,1% 
for Vf = 2,5%, on the other hand, for the Brittle Cracking Model, the average of 
increment is 3,9%, with a reduction for Vf = 0% equal to -2,1% and a maximum 
increment equal to 11,5% for Vf = 2,5%. Considering SI=100%, the results show that 
the increment has an average equal to 9,6% with a reduction equal to -4,5% for Vf = 
0% and an increment equal to 24,75% for Vf = 2,5%, for the Brittle Cracking Model 
instead, the overall increment average is equal to 2% with a reduction of -5% for Vf = 
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0% and an increment equal to 7,6% for Vf = 2,5%. In Figure 4.20 the normalized 
strength derived from the analysis with the Brittle Cracking Model is displayed. 

 
Figure 4.20 Normalized maximum strength trend in function of Vf with Brittle 

Cracking Model 

After summarising the results in terms of maximum load, it can be concluded that, 
using the Damaged Plasticity Model, it is possible to outline the same trend, but there 
is an overestimation of the maximum load with the increase of the fibre volume fraction. 
Considering that the response in terms of ultimate deflection and deflection in 
correspondence of the maximum load are comparable for the two models, the 
overestimation of the maximum load is not on the safe side and can lead to an 
overestimation of the beam strength. 
All the conclusions deduced from the investigation of the maximum strength are 
sustained by those made considering the values of the load at yield Py. In Figure 4.21 
these trends are depicted and the values are listed in Table 4.8. 
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Figure 4.21 Normalized load at yield trend in function of Vf 

 
Vf [%] Py SI=0% Py SI=50% Py SI=100% 

Py,0 = 145,51kN 

0 1,00 1,0014 1,00 
1 1,11 1,10 1,10 

1,5 1,26 1,23 1,22 
2 1,31 1,31 1,34 

2,5 1,45 1,42 1,42 

Table 4.8 Normalized load at yield values for different stirrups spacing 

It is widely admitted that one of the most important parameter for a structure is its 
ductility, especially for a seismic analysis. In this work to analyse the ductility of a beam 
two quantities are considered, namely the ultimate deflection and the ductility ratio. 
The aim of the author, that is sustained from Abbas et al. (2014) as well, is to prove if 
the use of fibres can lead to good value of ductility even reducing the amount of shear 
reinforcement. According to this, the ductility ratio for all the different combinations of 
SI and Vf are evaluated, listed in Table 4.9 and drawn in Figure 4.22. 
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Figure 4.22 Ductility ratio in function of Vf for different stirrups spacing 

Vf [%] μ SI=0% μ SI=50% μ SI=100% 
0 5,7 4,5 4,2 
1 6,97 6,9 6,0 

1,5 6,1 7,2 5,7 
2 3,6 4,3 5,5 

2,5 3,1 3,3 3,8 

Table 4.9 Ductility values for different stirrups spacing 

It is clear from the previous figure how the trend is the same for all different SI 
percentages. The ductility has a growing trend until it reaches a particular Vf 
percentage, these fibres volume percentage values are called critical values and they 
grow with the increasing of the stirrups spacing up to SI=50%. In fact, for SI=0% the 
highest ductility value µ = 6,97 is obtained for a Vf = 1%, for SI=50% the highest value 
µ = 7,2 is reached for Vf = 1,5%, in the end for SI=100% the maximum ductility is µ = 
6,0. Furthermore, it is important to underline how the ductility ratio of the control column 
is reached in all the beams with stirrups spacing bigger than 0%, this means that fibres, 
if they are added in the sufficient amount, can restore the ductility of SFRC elements. 
In addition, SFRC elements undergo the well-known problem of over reinforcing, this 
phenomenon is a reduction in ductility that affect reinforced concrete elements when 
the amount of longitudinal reinforcement lead to a stiffer response. This phenomenon 
is clear if the ductility ratio for each column, normalized with respect the control column 
ductility ratio, is considered in function of the Vf. These trends are depicted in Figure 

0,0

1,0

2,0

3,0

4,0

5,0

6,0

7,0

8,0

0 0,5 1 1,5 2 2,5

μ

Vf [%]SI=0% SI=50% SI=100%



Chapter 4  Results and Discussion 

59 

4.23, it shows how after the peak point the curves have a decreasing trend with the 
increasing of the fibres volume fraction, this behaviour starts earlier for the beams with 
SI=0% in which the amount of reinforcement is clearly bigger. In Table 4.10 the values 
of each curves are provided. 

 

Figure 4.23 Normalized ductility trend in function of Vf 
 

Vf [%] Pμ SI=0% PμSI=50% Pμ SI=100% 

Pμ,0 = 6,1 

0 1,1 0,79 0,74 
1 1,22 1,2 1,05 

1,5 1,1 1,3 1,00 
2 0,6 0,8 0,97 

2,5 0,5 0,6 0,67 

Table 4.10 Normalized ductility values for different stirrups spacing 
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Figure 4.24 Ductility ratio in function of Vf for different stirrups spacing with Brittle 

Cracking Model  

In Figure 4.24 the ductility ratio obtained by Abbas et al. (2014) for different SI values 
are showed. It can be seen how the curves are very similar to those obtained by the 
author using the CDPM. The maximum value for the ductility ratio is reached for 
SI=50% for both models, it is equal to 6,71 for the Brittle Cracking Model and equal to 
7,2 for the CDPM. In both models, the trends show an increment in the ductility ratio 
until a critical value that, as explained before, characterise the beginning of an “over 
reinforced” behaviour. Finally, the ductility ratios evaluated with the CDPM, in its 
entirety, is comparable with the Brittle Cracking Model, in fact, just the peak value is 
overestimated. 
Using the Concrete Damaged Plasticity Model, it is possible to highlight the formation 
of cracks thanks to the damage parameters in compression and in tension. 
Furthermore, analysing the cracks pattern, observations about the different structural 
behaviours can be done. In Figures from 4.25 to 4.27 the damage parameter patterns 
in tension for the ultimate deflection are depicted.    
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(a) Vf = 0% 

 
(b) Vf = 1% 

 
(c) Vf = 1,5% 

 
(d) Vf = 2% 

 
(e) Vf = 2,5% 
Figure 4.25 Damage parameter patterns in tension for SI=0% 



Chapter 4  Results and Discussion 

62 

The cracking patterns are similar for all the different fibres volume fractions, cracks 
develop in correspondence of the point of application of the load, in the bottom side, 
and around the internal support, on the top side, as for the beam with Vf = 0,4% 
analysed in section 4.1.1. It is important to notice the differences between the cracking 
patterns taking into account the different values of the ultimate deflection. For the 
beams with a low amount of fibres, Vf = 0% and Vf = 1%, the load carrying capacities 
are the lowest, so, after the cracks developing, the elements fail; this is understandable 
from Figures 4.22 (a) and (b): the cracks are concentrated and the crack width is bigger 
compared with the other beams. When the amount of fibres is increased the trend 
changes. The best structural behaviour is obtained for Vf = 1,5%, in fact for this element 
the maximum load is higher and the value of the ductility ratio is comparable with the 
control column one. In Figure 4.22 (c) it can be seen how the number of cracks is 
grown, this means that after the formation of the first cracks the fibres bridge them 
allowing the formation of other cracks that are less wide than those examined in the 
previous beams. The beams with the highest dosage of fibres, Vf = 2% and Vf = 2,5%, 
represented in Figures 4.22 (d) and (e), show the highest load carrying capacities but, 
at the same time, the lowest ductility ratio values. This behaviour is caused by the high 
amount of fibres that bridge a large number of cracks from the beginning of the loading 
process, allowing the element to better bear the load, but when the maximum load is 
reached the pull-out failure of fibres occur leading to the sudden propagation of cracks 
and afterwards to the element failure.   
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(a) Vf = 0% 

 
(b) Vf = 1% 

 
(c) Vf = 1,5% 

 
(d) Vf = 2% 

 
(e) Vf = 2,5% 
Figure 4.26 Damage parameter patterns in tension for SI=50% 



Chapter 4  Results and Discussion 

64 

 
(a) Vf = 0% 

 
(b) Vf = 1% 

 
(c) Vf = 1,5% 

 
(d) Vf = 2% 

 
(e) Vf = 2,5% 
Figure 4.27 Damage parameter patterns in tension for SI=100% 
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In Figures 4.26 and 4.27 the damage patterns in tension for SI=50% and SI=100% for 
all the fibres volume percentages are depicted.  From the figures, it can be verified 
how the beams reflect the same behaviour of the beams with SI=0%. It is particularly 
interesting the element with SI=50% and Vf = 1,5%, it exhibits the highest ductility ratio 
value, more than the correspondent element with SI=0%. The cracks are scattered and 
the load carrying capacity reaches a value higher than the correspondent beam for 
SI=0%. This means that fibres and stirrups are provided with the perfect balance, in 
fact they do not lead to a high value of stiffness that could cause an over reinforcing 
behaviour, instead the crack bridging effect allow the element to reach high deflection.  
On the other hand, the damage patterns in compression are not so indicative of the 
overall behaviour, in Figures 4.28, 4.29 and 4.30 the damage patterns are displayed 
for different SI values.  
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(a) Vf = 0% 

 
(b) Vf = 1% 

 
(c) Vf = 1,5% 

 
(d) Vf = 2% 

 
(e) Vf = 2,5% 
Figure 4.28 Damage parameter patterns in compression for SI=0% 
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(a) Vf = 0% 

 
(b) Vf = 1% 

 

(c) Vf = 1,5% 

 

(d) Vf = 2% 

 
(e) Vf = 2,5% 
Figure 4.29 Damage parameter patterns in compression for SI=50% 
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(a) Vf = 0% 

 
 (b) Vf = 1% 

  
(c) Vf = 1,5% 

  
(d) Vf = 2% 

  
(e) Vf = 2,5% 
Figure 4.30 Damage parameter patterns in compression for SI=100% 
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It can be observed how the part that undergoes the crushing is in proximity of the 
loading plate, in Figures 4.28 and 4.29 it is concentrated just in one side of the plate, 
in the short span of the beam, afterwards when the SI is increased and so the element 
becomes weaker it is possible to see the crushing damage in other parts of the beams, 
as shown in Figure 4.30. It is interesting to notice that the beam with SI=100% and Vf 
= 2,5% shows the same pattern of the other beams with SI=0% and SI=50%, this 
means that the amount of fibres is enough to make the element strong as those with 
more reinforcement. 
On the other hand, information about the mode of failure can be obtained from the 
analysis of the principal strain vector. In Figures 4.31, 4.32 and 4.33, the principal strain 
vector in correspondence of the failure points are depicted for all the elements 
analysed. It can be seen that the main mode of failure is the bending-shear one. When 
the stirrup spacing is low, SI=0% and SI=50%, the failure is clearly in bending, thus as 
shown in Figures 4.31 and 4.32 the strain vectors show cracks in correspondence of 
the bottom of the section in which the load is applied and in the top of the section of 
the intermediate support. 
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(a) Vf = 0% 

  
(b) Vf = 1% 

 
(c) Vf = 1,5% 

  
(d) Vf = 2% 

  
(e) Vf = 2,5% 

Figure 4.31 Principal strain vector for SI=0% 
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(a) Vf = 0% 

 

(b) Vf = 1% 

 

(c) Vf = 1,5% 

 

(d) Vf = 2% 

 
(e) Vf = 2,5% 
Figure 4.32 Principal strain vector for SI=50% 
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When the stirrups spacing increases, as depicted in Figure 4.30, the mode of failure 
changes from bending to shear. In this case the principal strain vectors show cracks 
propagated along the span between the load plate and the intermediate support, only 
the beam with the highest percentage of fibres is characterized by failure in bending, 
in fact the cracks are concentrated again in correspondence of the support and of the 
load point. These results are consistent with the analysis of the damage parameter 
previously carried out (Figures 4.26 and 4.27).  

 
(a) Vf = 0% 

 

(b) Vf = 1% 

 

(c) Vf = 1,5% 

 

(d) Vf = 2% 
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(e) Vf = 2,5% 

Figure 4.33 Principal strain vector for SI=100% 
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 4.2 Cyclic Load 
After the validation and the parametric studies for the monotonic load, the element was 
analysed using a cyclic load. The aim to use this loading pattern is to simulate the 
seismic load that consists in a reverse cyclic load as showed in Figure 3.14. The 
ABAQUS software, using the Concrete Damaged Plasticity Model, allows to set two 
stiffness recovery factors, both in tension and in compression, this means that the 
model can take into account the stiffness recovery for the concrete when the load 
reverses its direction. The recovery factors range between 0, no recovery, and 1, total 
recovery. The author used a total recovery, stiffness recovery factor equal to 1, in 
compression, in this way the crushing damage is totally recovered when the load 
changes its direction. On the other hand, in tension, the stiffness recovery factor is 
equal to 0, so when a crack occurs in tension, it does not close when the load direction 
is inverted in compression. In Figure 4.34 the load deflection curve obtained is showed. 

 
Figure 4.34 Load deflection curve for cyclic load with CDPM 

With the constitutive model described in Chapter 3 and the plasticity parameters 
presented in section 4.1, the load deflection curve obtained is comparable with the 
experimental outcomes and with the Brittle Cracking Model outcomes (both showed in 
Figure 4.35) in terms of maximum load and point of failure. The maximum load Pmax 
for the CDPM is equal to 166,4kN, the maximum experimental load is 183kN and the 
Brittle Cracking Model maximum load is 181kN. The point of failure obtained by Abbas 
et al. (2014) and by Kotsovos et al. (2006) occurs respectively at 9,25 cycles and 10,8 
cycles. In this work with the CDPM the point of failure is reached for 9,65 cycles, that 
corresponds with a deflection du equal to 4,15mm.  
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Figure 4.35 Load deflection curve for cyclic load with Brittle Cracking Model and 

experimental 

The point of failure is obtained analysing the kinetic energy, in Figure 4.36 the kinetic 
energy trend is showed. A clear sudden jump occurs at 6,4 seconds indicating the 
presence of extensive cracks and consequently the element failure.  

 
Figure 4.36 Kinetic energy using CDPM 

Unfortunately, with this configuration, the load deflection trend is not in line with the 
experimental and the Brittle Cracking Model ones. In Figure 4.35, it is evident as, both 
for experimental and BCM model, the behaviour is completely elastic for a 
displacement equal to ±10mm, thus there are not residual strains, afterwards the trend 
becomes elastic-plastic up to the failure point. Figure 4.34 instead shows a behaviour, 
for the CDPM, that, since displacements lower than 10mm, is not totally elastic. Thus, 
at the end of the first cycle, there is already a residual plastic strain. The overall 
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behaviour is affected by this phenomenon and in conclusion the model validation for 
the cycle load is not verified.  
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5. Conclusions and Recommendations 
The analysis carried out in this research is focused on an investigation on SFRC 
elements modelled with a Concrete Damaged Plasticity Model. Taking into account the 
experimental data obtained by Kotsovos, G., Zeris, C. and Kotsovos, M. (2006), a 
validation of the model was achieved. Afterwards, following the same procedure 
carried out by Abbas, A., Mohsin, S. and Cotsovos, D. (2014) using the Concrete Brittle 
Cracking Model, the author demonstrated the validity of the Concrete Damaged 
Plasticity Model. The procedure consists in the evaluation of the load-deflection curve, 
obtained with a displacement-controlled load, varying the fibres volume fraction 
percentage and the spacing between the stirrups. This procedure was designed with 
the purpose of highlighting the response in terms of structural behaviour when a 
substitution of standard reinforcement with steel fibres occurs. Therefore, five different 
fibres volume fraction percentages were chosen, namely Vf = 0%, Vf = 1%, Vf = 1,5%, 
Vf = 2% and Vf = 2,5%, and three different increments in the stirrups spacing, SI=0, 
SI=50% and SI=100% were investigated. From the outcomes, it can be seen how the 
models are similar, it is possible to recognise the same trends in all the configurations. 
The main difference in the outcomes lies on the parameters with which the damage 
can be evaluated: using the Brittle Cracking Model the investigation is carried out 
analysing the strain vectors and contours, the cracking pattern is linked with maximum 
strain in the constitutive model. The Concrete Damaged Plasticity model instead 
contemplates two different parameters for the damage in tension and in compression 
that represent the damage evolution up to the complete cracking.  
Now it is possible to present a summary of all the observations about this research 
work and its conclusions. 
The Concrete Damaged Plasticity Model is able to represent the behaviour of a Steel 
Fibre Reinforced Concrete beam under monotonic load, using this model it is possible 
to obtain the correct load-deflection curve and the cracking pattern. Furthermore, the 
outcomes in terms of load carrying capacity and ductility ratio are close to those 
obtained with a Brittle Cracking Model. There is a significant overestimation in the load 
carrying capacity that puts the model not on the safe side. 
Regarding the constitutive model, the author chose two different constitutive models: 
in tension the model designed by Lok, T. and Xiao, J. (1998) was used to take into 
account the steel fibres contribution; in compression, according to Lok, T. and Xiao, J. 
(1998) the behaviour of Steel Fibre Reinforced Concrete is the same of plain concrete, 
but the author used the model developed by Alfarah, B., López-Almansa, F. and Oller, 
S. (2017) to take into account the explicit equation of the damage parameter. The 
damage parameters equations both in tension and in compression show cracks pattern 
consistent with the element configuration. 
With the variation in the fibre volume percentage and in the stirrups spacing the fibres 
contribution in reducing steel bars can be considered. Using the Concrete Damaged 
Plasticity Model the author could represent correctly the variations in the element 
behaviour. The analysis was carried out in terms of load-deflection trend, load-carrying 
capacity and ductility. The outcomes obtained with the CDPM are in line with those 
obtained with the Concrete Brittle Cracking Model, they show an improvement in the 
load-carrying capacity when the fibre volume percentage grows up to 2,5%, at the 
same time the ultimate deflection decreases.  
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Furthermore, future works could be carried out based on this research to develop and 
to investigate other aspects of this topic. 
In this research, among all the plasticity parameters, only the dilatation angle was 
changed to obtain better results, it could be interesting to modify other parameters, like 
the eccentricity, and compare the outcomes to highlight the ability of the Concrete 
Damaged Plasticity Model to adapt to different configurations. 
Regarding the damage parameters, the author used different equations to obtain the 
damage parameter in tension and in compression because of the different constitutive 
models used. In tension, the damage parameter grows linearly from 0% to 99%, in this 
way the damage is related only to the strain. Could be useful to evaluate the damage 
parameter equation in tension using the model developed by Alfarah et al. (2017) also 
in tension, and modifying it to take into account the fibres contribution. 
Since the cyclic load model is not verified, different techniques can be used to obtain 
better results. The mesh used by the author is the same for the monotonic and the 
cyclic load, reducing the mesh size could improve the outcomes, in this way the 
premature transition from elastic to plastic behaviour could be avoided. Moreover, 
considering that the plastic behaviour occurs in the first cycle, changing the stiffness 
recovery factor does not change the overall behaviour.  
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