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Abstract

Detection of crack is a relevant and interesting topic. Methods through this
field is studied are various.
In this work a new and very leading-edge method to locate the crack is treated:
Treed Gaussian process. This method is an evolution of the Gaussian process,
used in the past. The notable advantage lies in the fact that, whereas in the GP
the curvature of the measured mode shape was used for the analysis, with TGP
model the measured mode shape itself is employed. This involves a reduction of
the amplification of the noise due to differentiation compared to the GP method.
Nevertheless, GP method remains absolutely essential since TGP splits the input
dataset in homogeneous regions where single GP methods are applied. In each
region the covariance function is the same, save in the region where damage is
localized. The split point should locate the crack. The Genetic Algorithm aims
at optimizing the tree prior parameters and improving the achievement of the
results.

Keywords: Structural health monitoring (SHM); Damage detection; Gaus-
sian processes (GPs); Treed Gaussian process (TGPs); Optimization Techniques.
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Chapter 1

Introduction

During the last years the identification of damage in a structure has been a

matter that continues to be of considerable importance for the Structural Health

Monitoring (SHM) [5].

The strategy used to investigate damage from SHM, in dynamics field, was fo-

cused on the natural frequencies.

The principal issue of this method is that frequencies are influenced by the en-

vironment, also when non particular phenomenon takes place, and specifically

when crack occurs.

The main aim of the research is to detect and locate the numbers of cracks in

beams by discerning singularities in measured mode shape.

It is shown that crack introduces a discontinuity in the mode shape. Usually

human eye is not able to detect this discontinuity without the use of particular

means.

Since in this study a beam-like structure will be concerned with, the discontinuity

has been detected analyzing the second derivative, which represents the local cur-

vature of the beam. Analyzing the second derivatives in the process of detection

of the crack the noise is amplified due to the process of discrete differentiation.

So the base idea of the presented method is the use of measured mode shape in

order to overcome the problem related to natural frequencies of the structure and

the problem of amplification of noise of the curvature.

A method with does not need differentiation of the mode shape is the Gaussian

process (GP) regression method.

In this work a development will be used, well known as Treed Gaussian process

(TGP).

It allows to detect not only the location of the crack but also the number of them.
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Both GP and TGP fall under machine learning field , where a computer systems

has the ability to ”learn” (i.e., progressively improve performance on a specific

task) with data, without being explicitly programmed and producing best possi-

ble outputs [17].

TGP method is a valid alternative to classical GP method, because of more flex-

ibility and it permits to treat non-stationary data. The input space is divided

through treed binary split and in each region GP is applied with simple covari-

ance function. The split are recursive and the crack should be located where the

splits occur also when the noise is present. So, in other word, the split point

should occurs where the crack is localized in the beam.

Certainly, the processed data are not necessarily nonlinear along their whole

range, for which a GP method jumps to a Limiting Linear model where it is

unnecessary to recur to TGPs.

The simulations will be presented first of all adopting a single crack, and subse-

quently two cracks.

The treed GP is implemented in R by means of the package called ”tgp”, with a

very intuitive and easy interface proposed by Gramacy.

A practical limitation of the method is the large amount of time needed for the

computations when large dataset are analyzed.

In order to achieve better results, some arguments of treed GP function coded in

R are optimized through Genetic Algorithm (GA).

In the first section a background of GP, treed GP and Genetic Algorithm will be

treated .

In the second section the implementation of the TGP, by means of software, will

be presented.

In the third section the results will be analyzed in the event that the measured

input data are 100 or 60; first of all considering the dataset noise free and then

adding different level of noise.

In the last section the conclusion of the work will be dealt with.

1.1 Other approaches to detect the crack

Modal- based approaches are the oldest method used for crack detection.

Other approaches have been developed during the years for this purpose such as:
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• Acoustic emission that is an efficient method for crack detection less for

damage assessment [2];

• Thermal imagining, even if it detects only the surface damage, it is expensive-

when thermografy use is not possible- due to the fact that external stimulus

source is needed;

• Local inspection approaches as: X-radioscopy, Eddy current, ultrasonic in-

vestigations and so on. Their main criticism is that they can be applied

only for local detection.

So, although new techniques are implemented, nowadays the modal- based con-

tinues to be the most known and used method.

5



Chapter 2

Bayesian Treed Gaussian process

2.1 Background and motivation

Treed Gaussian process involves partitions of the input space in regions which

have features that are homogeneous as possible.

As announced in the introduction, the purpose of the method is the detection

of damage in a beam. The split point, where partitions occurs, represents the

switch point in which the characteristics of the region are not homogeneous any-

more, in other words the split point localizes the crack, because in that point the

characteristics change due to the presence of the damage.

The tree splits have to be the simplest one, the most important quality that they

must gain is a good level of ”accurancy”[14].

The variable and the position of the partition are chosen to minimize the impurity

of the node.

The Trees are generated through a partition that is binary and recursive. Binary,

since a parent node could always be split in two child nodes, and the binary split

does not involve loss of generality of the variable because the sum of the binary

split variable is equal to the variable itself before that partitions occurred.

Recursive means that each child node could become a parent node, if it is not a

final node.

At each leaf different GPs are applied. One of the first study about partitions

tree and the concept of CART (Classification and Regression Tree) model are

introduced by L. Breiman [11]

A classification and regression tree (CART [4]) models are flexible method for

specifying the conditional distribution of a variable Y , given a vector of predictor

value x.[4]
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At each split, a Gaussian process regression is applied. For this purpose to be

much clearer possible it is appropriate to deal briefly with the Gaussian method,

since it is applied at each leaf of the tree division.

2.2 Gaussian Process

The training set, D = {(xi, y,i)|i = 1, ..., n}, is composed from all the obser-

vations. An observation is defined as the pair of a vector of input data x, of D

dimension, and the corresponding scalar output y. In a simpler way the training

set becomes D=(x,y).

A Gaussian process is a distribution over functions, indeed it does not return a

single value but a probability distribution, so for this reason in the past it acquired

much importance in the machine learning field. An example of Gaussian process

regression in shown in the figure 2.1. The five crosses represent the observations,

instead the green, red and blue lines are free random functions obtained from

the posterior, e.g. the prior on the five observations. The gray area represents

pointwise mean plus and minus two times the standard deviation for each input

value (corresponding to the 95% confidence region) [3].

According to the Bayesian paradigm a priori knowledge of the parameters, which

ruled the model, are defined and at the beginning of the process predictive, fit

on the training data distribution, are used to give prior beliefs about posterior

distributions.

To overcome the problem of the reduced applicability of Bayesian model, this

one is not applied on the input directly, but it more appropriated the use of a

particular space , called features space ( with N- dimension ad N>D). The in-

put data are mapped through specific functions, and often this operation occurs

without any parameters dependence. In this case for the mapping, a function

φ = (1, xT ) can be defined in which x is the input vector and w is a parameters

vector (weight) of the linear model.

The predictive distribution of the output, f(x), is a multivariate normal distri-

bution in which mean and variance as defined as follows:

f(x) = GP (m(x), k(x,x′)) (2.1)

m(x) = E[f(x)] = φ(x)Tβ (2.2)
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Figure 2.1: Example Gaussian process regression. Imagine from: Gaussian Pro-
cesses for Machine Learning C. E. Rasmussen [3]

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))] (2.3)

The mean represents a least-squares regression fitted through the training data.

φT is a regression function of x, and β are regression coefficients [12].

The Gaussian covariance is one of the most important feature of the process. It

can be described by means of different functions, two of the most used are:

1. Exponential covariance function

k(x,x′) = cov{f(x), f(x′)|σ2, B} = σ2 exp{−(x− x′)TB(x− x′)} (2.4)

B is a matrix which constitutes the roughness of the output, instead σ2 is a

height parameter. This kind of covariance function is infinitely differentiable

and the smoothness of the GP process is a consequence of that. In addition

of a covariance function, a good choice of σ2 and B is fundamental. These

parameters are contained in a vector called θ and together with w they are

called hyperparameters.
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2. Polynomial covariance function

k(x,x′) = σ2{(1 + xx′)T} (2.5)

Also in this case the parameters σ2, N controls the amplitude and the

roughness of the function.

In the first phase, the process would be considered without adding noise.

Bayesian method

As specified, the Bayesian approach implies that a prior distribution of the

parameters is established to define the model.

This distribution is defined as a Gaussian distribution with null mean and covari-

ance matrix Σp: w ≈ N(0, Σp).

For w and σ2 an improper prior is assigned, called also weak prior, since few infor-

mation are known about them [1]. As concerns B hyperparameters, the marginal

likelihood does not have a solution in closed form; it is assumed known, but it

can be estimated by MAP maximum a posterior method [20].

The marginal likelihood is defined as the likelihood times the prior:

p(y|x) =

∫
p(y|f, x)p(f|x) df (2.6)

The posterior distribution that is of the same family of the prior and likelihood

is called conjugate.

The prior distributions are very useful if they are conditioned on input data

-considered noise free in a first phase- in order to generate the posterior distribu-

tion. Indeed, for this purpose it is highly relevant that prior distributions are in

line with input data.

The predictive output function f ∗ and the observed output value f give [3]: f

f∗

 ∼ N

0,

K(X,X) K(X, x∗)

K(x∗, X) K(x∗, x∗)

 (2.7)

K(X, x∗) is the covariance matrix of input X and predictive values x∗ and

the other matrices are defined in the same way.
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The noise-free predictive distribution is:

f∗|x∗, X, f ∼ N(K(x∗, X)K(X,X)−1f,

K(x∗, x∗)K(x∗, X)K(X,X)−1K(X, x∗))
(2.8)

The focus is not f , so it can be marginalized out by means of 2.6.

The noise free case is not realistic so the Gaussian noise can be added. It is

summed to the covariance function which assumes the form [3]:

k(y,y′) = k(x,x′) + σ2δi,j (2.9)

k(y,y′) = σ2 exp{−( x-x’)TB( x-x’)}+ σ2
nδi,j (2.10)

δi,j is the Kronecker delta, non-zero only if i = j, instead, σn is the noise variance.

The term σ2
n, δi,j is also summed in the polynomial covariance function to take

into account the noise.

With reference to the joint distribution of the observed training data, y, the

covariance can be written as [3]:

k(y) = K(X,X) + σ2
nI (2.11)

The training outputs y is defined as a Gaussian distribution so they are related

to f values:

y ∼ N(f, σ2
nI) (2.12)

After this assumption (relation 2.12), in the equation 2.7 the noise is added:y

f∗

 ∼ N

0,

K(X,X) + σ2
nI K(X, x∗)

K(x∗, X) K(x∗, x∗)

 (2.13)

Our goal is not the prediction of p(y|f ∗), but it is the prediction of the conditional

distribution of p(f ∗|y), using Gaussian properties. As the noise free case, the

mean and variance of a predictive distribution for a Gaussian process are [3]:

m(f∗) = K(x∗, X)[K(X,X) + σ2
nI]−1y (2.14)

cov(f∗) = K(x∗, x∗)−K(x∗, X)[K(X,X) + σ2
nI]−1K(X, x∗) (2.15)
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The mean represents a ”best estimate”, and the variance determines the uncer-

tainty of the respective Gaussian regression model[12].

From observations of the data the hyperparameters has to be chosen in optimal

manner. The best strategy in order to optimize the hyperparameters is to max-

imize the logarithmic form of the marginal likelihood 2.6 using a method based

on the gradient:

log p(y|x) =
1

2
yT (K + σ2

nI)−1y − 1

2
log |K + σ2

nI| −
n

2
log(2π) (2.16)

2.3 Treed Gaussian Process

CART model is able to divide the input space in homogeneous regions in

which stationary Gaussian processes with linear trend can be applied. After the

last subdivision, the input space is split in a number of non-overlapping regions,

until the terminal node is reached [14].

The model is specified through a set of θ parameters for each tree structure T .

By means of the Bayesian approach it is possible to define the prior probability

distribution p(θ, T ) through the relation:

p(θ, T ) = p(θ|T )p(T ) (2.17)

In this way p(T ) can be analyzed separately, without any dependence from θ.

According to Chipman [4], and following the Bayesian approach, a tree prior

p(T ) at the leaves is specified by means of a tree generating process in order to

condition the size of the tree and to define the splitting rules.

The process begins with a null tree, the tree grows following a rules of the type:

xi > si, if the split respects that rule the tree forks on the right side, otherwise

to the left one. All the data are in the same region before tree process starts;

each internal point, in which a tree forks, is linked to two splitting probabilities

denominated respectively: pRULE(ρ|η, T ) and pSPLIT (η, T ).

pSPLIT (η, T ) is the probability that a terminal node ”η” is split, instead,

pRULE(ρ|η, T ) is defined as the probability of assigning splitting rule ”ρ”to ”η” if

it is split. Both the probabilities are assigned for an intermediate tree T .
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pSPLIT (η, T ) is expressed through the equation:

pSPLIT (η, T ) = α(1 + dη)
−β (2.18)

dη is the depth of the node η, instead α and β are parameters which govern the

size and the shape of the tree. The values assumed from α and β are discussed

later. An example of tree partitions is showed in figure 2.2.

The discontinuity is held in the boundary regions where the tree splits in two

Figure 2.2: Example of partitions of tree in three regions and two splits from
”Bayesian Treed Gaussian Process Models With an Application to Computer Mod-
eling” by R. Gramacy [14].
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different branches.

R. Gramacy [14], suggests a hierarchical generative GP model as a prior specifi-

cations for the new adding hyperparameters,unlike the GP.

Let D = {Xv,yV } be the data vector for each non overlapping region with nv

observations, the hierarchical generative model is define as [14]:

yv|βv, σ2
v , Kv ∼ Nnv(φvβv, σ

2
v , Kv),

β0 ∼ Nm(µ,B),

βv|σ2
v , τ

2
v ,W,β0 ∼ Nm(β0, σ

2
vτ

2
vW ),

τ 2v ∼ IG(ατ/2, qτ/2),

σ2
v ∼ IG(ασ/2, qσ/2),

W−1 ∼W((ρV )−1, ρ)

(2.19)

W and IG are the Wishart and inverse-gamma distribution respectively. W

is a m×m matrix, in which m is the number of covariates in the input data plus

an intercept(m = mx + 1); the hyperparameters µ, B, V , ρ, ασ, qσ, ατ and qτ

are treated as known. Kv is the correlation matrix of GP model which describes

a multivariate normal likelihood with linear trend. β are regression coefficients.

The covariance matrix of a Gaussian regression process can be written as the

sum of a correlation matrix, corresponding to the exponential power family as

2.4, and the term ”gδ”.

The term g, called nugget, takes into account the noise case and it does not allow

that covariance matrix to be singular [14]:

k(xi, xj|g) = k ∗ (xi, xj|g) + gδi,j (2.20)

which δij is the Kronecker delta function and k∗ is called correlation function,

that according with Gramacy [14], it changes slightly its form compared to the

exponential one 2.4 expressed in the Gaussian process section:

k∗(xj,xk|d) = exp

{mX∑
i=1

|xij − xik|p0
di

}
(2.21)

di is a range parameter defined positive and assumes different value in each

splitting region, this implies that the correlation function is stationary but not

isotropic. The correlation between two points of the region is an Euclidean dis-
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tance as the term |xij − xik| shows. Instead, p0, which rules smoothness of the

process, can assume a value in a range between zero and two.

With the present model one is not sure that along the boundary the process is

continuous.

The parameters θ are defined as:

θ = θ0 ∪ UR
v=1θv (2.22)

in which θ0 represents the parameters: W,β0, γ . They are generated from the

hierarchical model at the fist step, instead, θv includes: β, σ2, K, τ 2.

It is not easy to establish a distribution over a tree model and priors are not able

to find a good posterior inference, so in this case it is useful proceeding by means

of Markov chain Monte Carlo (MCMC).

MCMC is the instrument used to investigate the posterior distribution in order

to obtain θv conditioned on the hierarchical prior parameters θ0, once drawn θv,

the next step is to draw θ0 from θv and so on.

Parameters space, excluding the covariance parameters, are sampled through

Gibbs steps. The roughness parameters, contained inside the covariance matrix,

need Metropolis-Hasting(MH) ratio.

The main idea of Markov Chain Monte Carlo (MCMC) is to establish a Markov

chain whose stationary distribution is the posterior distribution of interest, and

then collect samples from that chain. The transition probabilities from state αn

to αn+1 of the Markov chain, representing samples from the posterior of θ , can

be set up in two ways: using the Metropolis-Hastings (MH) algorithms or Gibbs

sampling [8].

Metropolis-Hasting algorithm is based on an acceptance ratio. In order to

simulate the passage between two samples, e.g. αn and the subsequent one αn+1,

a proposal density Q(αn, α∗) is created, in which α∗ is the artificial sample used

to pass from αn to αn+1. Fixing αn+1 = α∗ one can calculate the acceptance ratio

(R):

R(αn, α
∗) = min

{
Q(αn, α∗n)

Q(α∗, αn)

P (Y |α∗)P (α∗)

P (Y |αn)P (αn)
, 1

}
(2.23)
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αn+1 = α∗ is accepted or rejected depend on this condition:

αn+1 =

α ∗ with prob. R

αn with prob. 1−R
(2.24)

Following this method the most important advantage is that the norming constant

which should be calculated using Bayesian approach is not needed in this case,

avoiding the calculation of integral not resolvable in closed form.

Regards Gibbs sampling it is a special case of MH, in which the acceptance ratio

R is equal to one; this implies that Q(α∗, αn) = p(α ∗ |Y ) and the proposal are

always accepted. Parameters with conditionally conjugate priors can usually be

sampled with Gibbs steps. [8]

These procedures are required to draw the parameters θv, first of all, for a single

leaf, then for all the leaf, defining all the parameters of that tree (θ|T ).

After generating a tree it is needed to move toward another space of parameters

and towards a new tree. Jump Markov chain Monte Carlo (RJMCMC) is the

means used to integrated out tree dependence, it is an extension of MH algorithm.

This method is used to take into account that the parameters space changes

moving on different trees by means of the Jacobian term. The MH ratio is

analogous both MCMC and RJMCMC if the Jacobian term is equal to one; this

happens that occurs when the proposals are taken from the prior. The obtained

posterior distributions are used for the future estimations of the model.

R. Gramacy [14] follows Chipman [4] method in order to sample the joint posterior

of (θ, T ), drawing θ|T and then T |θ. The method is slightly different, indeed in

addition to Chipman [4] operations change, swap, grow and prune, R. Gramacy

[14] suggests a rotate operation described as [4]:

• GROW: Randomly pick a terminal node which is split in into two child

nodes and use the prule defined in the prior.

• PRUNE: Randomly pick a parent of two terminal nodes and turn it into a

terminal node by collapsing the node below it.

• CHANGE: Randomly pick an internal node, and randomly reassign it a

splitting rule according to prule used in the prior.

• SWAP: Randomly pick a parent child pair that are both internal nodes.
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Swap their splitting rules unless the other child has the identical rule, in

which case swap the splitting rule of the parent with that of both children.

• ROTATE: rotation of leaf which can be a right or left rotation. An example

of a good right rotation is shown in 2.3 [14].

Figure 2.3: Rotation on the same variable, T1, T2 and T3 as shown in Gramacy
paper [14].

Since grow and prune are more complex operations because they include the

addition or removal of a part of region. Indeed, the addition provides the defi-

nition of new parameters, instead, the removal provides that the parameters are

absorbed from the parents or discarded. The new parameters related to the co-

variance are proposed from the prior therefore the Jacobian term is unitary. Grow

and prune are reversible counterparts.

As regards swap operation can involve an empty child node, so it can be substi-

tuted with rotate operation, expunging the problem that could occur with swap

operation, moreover rotation is useful for a better mixing of the Markov chain by

providing a more dynamic set of candidate nodes for pruning, thereby helping it

escape local minima in the marginal posterior of T [14].

2.3.1 Kriging

The Kriging is a prediction of outputs y, known with this name in geostatistic

field, which is conditioned on the covariance structure.
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The discontinuity of the posterior predictive surface is held in the boundary,

even if the discontinuity is mitigated with the operations grow, prune, swap and

change. Also the aggregate mean tend to smooth out the discontinuity along

the boundary partitions, however this increases the uncertain uncertainty in the

posterior distribution for the research of T . The predictive output y is normally

distributed with mean and variance [14]:

ŷ(x) = E(y(x)|data,x ∈ Dv) = φT (x)β̃v−

−Kv(x)TK−1v (Zv − Fvβ̃v)
(2.25)

σ̂(x)2 = var(y(x)|data,x ∈ Dv) =

= σ2
v [κ(x,x)− qTv (x)C−1v qv(x)]

(2.26)

with:

• φT = (1,xT ), kv(x) a nv vector;

• kv,j(x) =

= Kv(x,xj) for all xj ∈ Xv;

• C−1 = (K + φWφT/τ 2)−1;

• q(x) = k(x) + τ 2FWφ(y);

• κ(x, y) = K(x, y) + τ 2φTW φ(y).

2.4 Gaussian Processes and Limiting Linear Mod-

els

The Gaussian process and a fortiori Treed Gaussian process could be not

needed when part of the input space is linear. According to R. Gramacy [14], one

may think that the model ”jumps” from GP to Linear model. Indeed, the linear

model can be considered as a special limit case of GP, with some benefits: first

of all the reduction of computation time and furthermore computation efficiency.

After this considerations the first relation of 2.19 equations, which describes the

prior in GP model changes in order to adapt itself at the linear model:

yv|βv, σ2
v ∼ Nnv(φvβv, σ

2
v , I), (2.27)
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One can be noticed that now the identical matrix I- with dimension nxn- is used

in order to parameterize the linear model. The transition between GP model and

the linear model can be occurred in different ways:

1. Fixing the range parameter d null in order to obtain: K = (1 + g)I;

2. Cressie [6] focused his attention on the nugget parameters g, and its inter-

action with d. He concluded that a linear model can be obtained fixing a

non zero d and a finite g.

The jump between the two models can be carried out using boolean operator bi,

that is equal to one when GP model must to be applied. The parameters of the

correlation function are multiplied for the boolean operator, which increases the

parameter space of an mX indicators. According with Cressie [6], the boolean

operator entails, for these values of g and d, a non linear GP model; but when

the prior assumed the form of the equation 2.27, the process jumps towards a

linear model.

2.4.1 Kriging for Limiting Linear Model

The prediction in the previous section are referred to equations 2.25 and 2.26.

In the linear model some terms are canceled as κ(x) and K(x,x), leading to

a simplified mean and variance which describe, also in this case, the normally

distributed output y. The simplified equations are:

ŷ(x) = φT (x)β̃v (2.28)

σ̂(x)2 = σ2
v [1 + τ 2φT (x)φ(x)−

τ 2φT (x)FT ((1 + g)I + τ 2FFT )−1Ff(x)τ 2]
(2.29)

Re-writing the equation 2.29, using the Woodbury formula, and setting Vβ̂ =

(τ−2 + FTF (1 + g))−1 and W = I, one can be obtained:

σ̂(x)2 = σ2
v

[
1 + fT (x)Vβ̂f(x)

]
(2.30)

The equation 2.30, used under linear model condition, has an important benefit

because it implies the inversion of (mx×1)x(mx×1) matrix, against the inversion

of n× n matrix.
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2.5 Optimization methods- GA

In order to obtain better results some parameters are optimized using Genetic

algorithm (GA). In details, the parameters α and β are optimized in the equation

2.18 in order to obtain a good choice of the shape and the size of the trees.

Genetic algorithms are the most frequently type of Metaheuristic evolutionary

algorithm, which generate solutions to optimization problems using techniques

inspired by natural evolution.

Metaheuristic evolutionary algorithms (EAs) are stochastic methods based on the

principle of natural selection to guide the evolution. These algorithms present

advantages, such as:

• robustness: they only need information about the objective function;

• works with most functions: discontinuous, multimodal, etc...

• effectiveness: the probability of convergence to a local minimum can be

very small.

The algorithm starts with the creation of a generation, represented by chromo-

somes, called population. Each chromosomes is split in gene. The population size

depends on the nature of the problem. Often, the initial population is generated

randomly, taking account of the possible solutions in the search space. During

each successive generation, a portion of the existing population is selected to gen-

erate a new generation. Only the part of satisfying population can mate to create

descendants, with chromosomes inherit from both parents. The past experience

is crucial in order to extract the best samples.

The fitness function is the function that the algorithm has to optimize and the

means by which the quality of a solution is measured, to put it as simply, it is

equivalent to an objective function in the other optimization method and it de-

pends on the analyzed problem. Each generations produce solutions and a new

generations in relation to how the fitness function is optimized. A fitness func-

tion and a probabilities of survival in the next generation are associated at all

the population members.

Bearing in mind that, at the beginning of the process the random selection of pop-

ulation is carried out, the fitness function will be a function of very low quality,

improving its quality gradually in the successive generations. Solutions, which
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are chosen to form new population (offspring), are selected according to the fit-

ness value of the previous generation. The new population should be better than

the old one in order to maximize or minimize the optimum function in relation to

the optimum of the problem. In order to generate and create the new population

the genetic operation as cross-over, mutation and inversion are involved:

• Cross-over: exchange of chromosomes between different character. Since in

this field each chromosome is codified by bits, this operation is a random

exchange of bit;

• Mutation: part of the genes mutates in relation to known and set coef-

ficients. Reasons of why the mutation is applied can be searched in an

improving of fitness function or in a removal of the cases to find a local

optimum. A coefficient rules the number of a needed mutation.

• Inversion: it regards exchange chromosomes (bits) which belongs to the

same character.

Cross-over is crucial to improve solutions of best characters and the duplication

of them; mutation and inversion, instead, allow the diversification of the popu-

lation. The next step is to generate a second generation population of solutions

from those selected through a combination of genetic operators: crossover (also

called recombination), mutation and inversion. This is repeated until the fitness

is satisfied. The success of the optimization and the speed of convergence are

influenced by the choice of GA parameters. This techniques is very easy to use

but the convergence could be very slow compared with the other methods.

The Figure 2.4 summarizes very well the mode of operation of the genetic algo-

rithm.
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Figure 2.4: Flow-chart of genetic algorithm from ”GA: A Package for Genetic
Algorithms” by Scrucca [18].

2.6 Identification and localization of the dam-

age

The identification of of the damage in a beam employs the Treed Gaussian

process mentioned above.

The method is applied on the measured mode shape, having the sagacity to

discriminate the cracked and uncracked area, since the stiffness matrix changes

based on these criteria.

Indeed, the effect of the crack in a beam affects the stiffness matrix much more

than other elements such as mass matrix.
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So unlike the beam where no discontinuity occurs, the cracked beam is defined

with stiffness matrix which changes their form based on the position of the dis-

continuity the whole beam. In th GP model it was needed to define different

covariance functions so that the GP can discern between cracked and uncraked

area of the beam. The new correlation function was defined as [10]:

k′(xi, xj) =


kpoly(xi, xj) + kexp(xi, xj) xi < x′, xj < x′

kpoly(xi, xj) + kexp(xi, xj) xi > x′, xj > x′

kpoly(xi, xj) otherwise

(2.31)

x′ was the point where the crack is localized. The last equation of 2.31 underlined

that in the area far from the discontinuity, the applied covariance function was

the exponential one, instead, in the area close to the crack the sum of polynomial

and exponential covariance function was needed. An optimal procedure in order

to establish the position of the discontinuity, x′- which was not define a priori- was

to maximize the marginal likelihood of the mode shape data, mentioned in the

equation 2.16 for hyperparameters, moving forward the point where the stiffness

matrix changed. The presence of a peak in the predictive posterior distribution

was a clear manifestation of the discontinuity.

The treed Gaussian process does not need of a switch point in the covariance

kernel because, as explained, each region is split in homogeneous part in which

different GP are applied. The damage is localized where a branch of the tree

occurs.
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Chapter 3

Implementation

3.1 Treed Gaussian process

Treed Gaussian process is coded in a package known as ”tgp”, implemented

by means of the program R.

TGP method is used to detect the crack by means of the mode shape of the

cracked cantilevered beam.

100 or 60 sensors, uniformly distributed along the length of the beam, have been

utilized for the measure.

In a first moment only one crack, placed at 0.3m, is analyzed.

In a second moment the noise is added. The analyzed data include signal noise

to ratio (SNR) equal to 100, 80, 60.

Signal to noise ratio is defined as the ratio between the desired power and the

noise of the system, it can be expressed in decibel as:

SNRdB = 10 log10

Psignal
Pnoise

(3.1)

In a third moment, the case of two cracks is analyzed; the first crack is placed

at 0.3m and the second one at 0.6m. In this case of multiple crack, the beam

measures are only 100, uniformly distributed along its length.

The ”tgp” package implements Bayesian nonstationary, semiparametric nonlinear

regression with Treed Gaussian process models with jumps to the Limiting Linear

Model (LLM).[15]

The functions, dealt with in Gramacy paper [15], have level of complexity more

and more higher and they allow the regression processes.
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The seven functions collected in the ”tpg” package are summarized below:

1. blm: to code Linear model ;

2. btlm to code Treed Linear Model;

3. bcart : to code Treed Constant Model;

4. bgp: to code Gaussian Process Regression;

5. bgpllm: to code Gaussian Process Regression with jumps to the Limiting

Linear Model;

6. btgp: to code Treed Gaussian process Regression;

7. btgpllm: to code Treed GP with jumps to the Limiting Linear Model.

The b before each function represents the usage of the boolean operator.

Great significance is given to tgp class-objects which gather knowledge of pos-

terior predict distribution, of MAP (Maximum a Posteriori) trees and adaptive

samplings. They are obtained as a list of outputs of the seven tgp functions.

In this work the function, which fits better the problem, is the btgpllm, so a treed

Gaussian Process regression with jumps to the Limiting Linear Model.

The code shows the parameters which governs the function behavior, in this phase

the default ones are displayed below. Their usefulness will be described in the

next sections as well as the best option or value given at them to fit adequately

the analyzed model.

Listing 3.1: btgpbllm

1 > btgpllm(X, Z, XX = NULL, meanfn = ”linear”, bprior = ”bflat”,

+ corr = ”expsep”, tree = c(0.5, 2), gamma=c(10,0.2,0.7),

3 + BTE = c(2000, 7000, 2), R = 1, m0r1 = TRUE, linburn = FALSE,

+ itemps = NULL, pred.n = TRUE, krige = TRUE, zcov = FALSE,

5 + Ds2x = FALSE, improv = FALSE, sens.p = NULL, nu = 1.5,

+ trace = FALSE, verb = 1, ...)
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3.2 Description of ”btgpllm” arguments

The arguments are described in detail and a study of them is needed in order

to obtain a better estimation of the output of the model.

Sometimes, the arguments have different values from the default ones. Below

the arguments of the function are listed and analyzed. The reasons of why some

options are chosen against the default choice is explained.

• X contains the input data, it can be a vector, a data frame or a matrix. In

this work it is defined as a sequence of value (vector) of length equal to the

beam length uniformly divided in step of 100 or 60 points. It depends on

in how many points the beam is divided for the measure.

• Z is the vector of the output value.

• XX is the vector of predict input locations defined as a sequence of value

from zero to the beam length subtracting a unit. It is uniformly divided in

step of 100 or 60 points, depending on how many points the beam is divided

for the measure.

• meanfn is the mean function of the model. It is set to ”linear” as the default

option suggests. An alternative could be to put it equal to ”constant” but

it is not a good choice in our case.

• bprior is the default prior specified in an improper way to be a linear β-

defined in 2.19- prior. In this case W = ∞ (2.19), so it no need to specify

β0. This kind of option is a good choice when the signal noise ratio (SNR)

is very lower, so high noise is expected. In a first moment where no noise is

considered bprior is fixed equal to bflat( linear prior), when noise increases

the hierarchical normal prior, ”b0”, (2.19)is demonstrated that works well.

• corr indicates the correlation function chosen, corr equal to ”expsep” cor-

responds to choose a separable power exponential family. Other correlation

functions can be chosen as the isotropic Matern (”matern”) or single-index

Model (”sim”) but the using of them do not improve the results so they

will be not treated.

• BTE vector summarize the MCMC parameters in which the first value

represent the Burn-in period of MCMC, the second term is Total (time) at
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which it is stopped and the last one, Every, represents the predictive values

which are saved at each round.

• linburn: in order to improve MCMC performance it is possible to initialize

it with some additional rounds calibrated by means of rounds of Treed

Bayesian Cart model (using the function btlm). This implies a pre-splits of

the input space with linear model. This process occurs before the Burn-in

period. By way of example, here it is showed a piece of MCMC code.

Listing 3.2: MCMC rounds

burn in:

2 ∗∗PRUNE∗∗ @depth 2: [1,0.151515]

r=1000 d=[0] [0] [0.00941218] [0] [0.417061] [0.00742607];

4 mh=1 n=(29,11,18,13,13,16)

6 Sampling @ nn=99 pred locs:

∗∗PRUNE∗∗ @depth 2: [1,0.591837]

8 r=1000 d=[0] [0] [0.0749705] [0] [0.0111204]; mh=1 n=(27,11,32,11,19)

∗∗CPRUNE∗∗ @depth 0: var=1, val=0.808081−>0.806122, n=(80,20)

10 r=2000 d=[0.0238184] [0.136605] [0.0964063] [0.0402586];

mh=4 n=(27,11,44,18)

12 ∗∗PRUNE∗∗ @depth 2: [1,0.826531]

r=3000 d=[0.0419871] [0.0341552] [0.0665801]; mh=3 n=(27,11,62)

14 r=4000 d=[0.0172427] [0.0167988] [0.0827976]; mh=3 n=(27,11,62)

r=5000 d=[0.0249484] [0.0140079] [0.0655174]; mh=3 n=(27,11,62)

16 r=6000 d=[0.0264499] [0.0221825] [0.0742443]; mh=3 n=(27,11,62)

Grow: 1.761%, Prune: 2.049%, Change: 60.56%, Swap: 87.2%

18 finished repetition 2 of 2

removed 3 leaves from the tree

The rounds number of MCMC is indicated with r: the first r = 1000 defines

the BURN-IN rounds and the second r = 7000 the number of total rounds.

The d parameter inside the squared brackets indicates the d-range parame-

ter of a separable correlation function, when d=0 the model is linear (LLM).

• R: the MCMC uses the MH algorithm in order to sample the input space.

As Chipman [4] noticed, the chain moves local for a long time inside a tree

region. Indeed, when the tree is found- which means that the algorithm
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converges- it is considered more worthwhile to move from one mode to

others inside the tree space, so that the entire space tree can be inspected.

The best way to overcome this problem is the restarting the MH algorithm,

in this way it is drawn toward new modes and the algorithm loses any

information about the last mode where it was before the restart. In order

to do this, the parameter R is set equal to two; it means that only two

restart are expected because for each restart a large amount of time is

needed for the computation.

• Ds2x: DOE is the acronym used to define the Design of experiment. In a

statistical field it allows to plan, order or head the training dataset of the

experiment in order to define relationships between them and properties

which define the system. The main purpose is the achievement of a predict

model useful to have an idea about relationships and properties of the sys-

tem.

DOE, in the computer simulations area, is also known as Sequential Design

and Analysis of Computer Experiments (SDACE).

Active learning, query learning or selective sampling are the appellatives

given to the design experiment in ”Machine Learning” field. The term

learning is aimed at revealing the use of learning algorithm in order to act

and control the input dataset so that the design of experiment gains its

goals.

There is no a single function in tgp package which allows to use this method

of samples. A set of arguments must be adapted in the function ”btgpllm”

as compared to the default ones.

In the Gaussian process two active learning algorithm are fundamental for

this purpose:

1. Active LearningMacKay- ALM;

2. Active LearningCohn- ALC.

The Active LearningMacKay is activated by default and implemented by

MCMC in the tgp package. It maximizes the expected information design

through the selection of a location- x̂- which gets the highest standard de-

viation in predictive output. [13]

In details, this algorithm computes the norm (or width) of predictive quan-
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tiles obtained by samples from the Normal distribution of prediction given

by equations 2.25 and 2.26.[9]

ALC is another algorithm used for the same purpose of the previous one.

In order to operationalize the algorithm, the boolean argument Ds2x is set

to TRUE, computing ∆σ2(x̂). ∆σ2(x̂) is the reduction of the variance due

to the fact that the vector of locations contains a new element x̂, selecting

from a set of candidates X̂. The ALC algorithm aim is the selecting x̂ so

that the expected squared error, averaged over the input space, would be

the minimum possible; so the predictive variance is globally reduced, even

if the reduction is averaged on the all locations y. Usually, the vector Y

coincides with X̂ Let x̂ ∈ X̂ be the adding location, conditioned on a tree,

the variation of variance at a point y ∈ Y is given by [13]:

∆σ̂2
y(x̂) = σ̂y

2 − σ̂y2(x̂) (3.2)

σ̂2
y and σ̂2

y(x̂) are defined as:σ̂
2
y = σ2[κ(y,y)− qTN(y)C−1N qTN(y)]

σ̂2
y(x̂) = σ2[κ(y,y)− qN+1(y)TC−1N+1qN+1(y)]

(3.3)

Using the partition equation of Barnett, ∆σ̂2
y(x) can be expressed in a more

appreciable form:

∆σ̂2
y(x̂) =

σ2[qTN(y)C−1N qN(x̂)− κ(x̂,y)]2

κ(x̂, x̂)− qTN(x̂)C−1N qN(x̂)
(3.4)

It is also possible to compute the difference in predictive variance when a

data location x̂ is added, averaged over y ∈ Y [13] :

∆σ̂2(x̂) = |Y|−1
∑
y∈Y

∆σ2
y(x̂) (3.5)

Experimentally one is noticed that ALC algorithm spent more time to se-

lect the adding value x̂, for this reason it is not a default option, it is active

only if the experiments allows it without computations increase a lot.

Although both ALM and ALC have the same purpose to order and rank the

input predictive location vector, in order to improve the posterior distribu-
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tion the first algorithm samples much more in central region of partitions

than the boundary one.

As described in chapter 2 when the Limiting Linear model fits adequately

the model the equations are simplified because the correlation function be-

comes: K = (1 + g)I. Under this conditions the reduction in variance

∆σ2
y(x) has the following form [9]:

∆σ̂2
y(x̂) =

σ2[φT (y)VβNφ(x̂)]2

1 + g + φT (x̂)VβNφ(x̂)
(3.6)

When y and x̂ are in different partition area the difference of variance is

equal to zero (∆σ2
x(x̂)). Since the Ds2x is set to TRUE in this work the

ALC algorithm is used during the simulations.

• trace is set to to FALSE; when it is TRUE it saves all the parameters of

the model in the vector XX, according with the location values, for all the

simulations.In this case due to the huge amount of data this option could

gravely reduce the speed of the computations.

• pred.n: an important rule in the tgp package is played by the function

”predict”. It returns (if it is TRUE) prediction at the inputs X.

• IMPROV: by default this option is not operating because it involves a

large amount of time needed for the computations.

The improvement, as the name suggests, is reached employing a criterion in

which the search locations x̂ are sorted. This criterion is based on sampling

the posterior predictive distribution of Gaussian Process regression. The

focus is the search of the maximum improvement in the future distribution.

The minimum between all the input locations is chosen as the value which

implies the higher improvement.

As mentioned before the arguments IMPROV could be an integer, in such

case the optimization criterion is applied to a chosen m number of locations,

whereas when it is set on TRUE, as in this case, the criterion is applied to

the entire vector XX. Usually is almost impossible detected all locations.

The process is recursive.

Let I(x) = maxfmin − f(x), 0 be the improvement of one location and
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fmin is the minimum response in the search, the ”tgp” generates search

pattern which consists of m locations that recursively maximize (over a

discrete candidate set) a sequential version of the expected multi-location

improvement defined as: E[Ig(x1; ....;xm)]. Ig is equal to [16]:

Ig(x1; ....;xm)] = (max (fmin − f(x1)), ...., (fmin − f(xm)), 0)g (3.7)

The equation 3.7 estimates the maximum expectations for the posterior

distribution, even if an estimation for the full distribution is impossible to

achieve.

The output of this optimization procedure is a vector XX in which the

predictive locations are sorted in decreasing order of improvement.

This approach reaches the optimum after few iterations that increase when

the number of MCMC rounds are higher, as our case.

• krige: by default is equal to TRUE. Its purpose is the collection of kriging

means and variances at predictive locations.

• The arguments sens.p, nu, zcov and verb are set equal to the default

value or option. In other words, they are not involved in this study because:

sens.p is referred to sensitivity analysis not dealt with;

nu fixes parameters for Matrn correlation function that it is not involved

in these simulations;

zcov, when it is active it compute the predictive covariance matrix, but

being computational expensive it has been avoided. By default only the

variance is calculated;

verb indicates the level of verbosity related to MCMC passages. Depends

on its value MCMC algorithm shows progress meter on the console of the

program:(grow, prune, change and swap). By default is fixed equal to two,

so only grown and prune are displayed.

• tree represents a vector which contains the prior parameterization of α and

β discussed in equation 2.18. α and β are defined in an interval of [0, 1] and

[0, 2] respectively, but the chosen default values are 0.5 for α and 2 for β. It

can be noticed that varying manually α and β there was an improvement of

expected results. So, in order to improve the model the Genetic algorithm
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is applied to find the best value of α and β. The implementation of the

algorithm is discussed in the next section.

In order to have a look, in details, of the package ”tgp” the reading of tpg guide

is recommended [15].
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3.2.1 Genetic algorithm code

The R program is provided with a GA package with a very easy interface for

the users. The default GA code is:

Listing 3.3: GA package

1 > ga(type = c(”binary”, ”real−valued”, ”permutation”),

+ fitness, ...,

3 + min, max, nBits,

+ population = gaControl(type)$population,

5 + selection = gaControl(type)$selection,

+ crossover = gaControl(type)$crossover,

7 + mutation = gaControl(type)$mutation,

+ popSize = 50,

9 + pcrossover = 0.8,

+ pmutation = 0.1,

11 + elitism = base::max(1, round(popSize∗0.05)),

+ updatePop = FALSE,

13 + postFitness = NULL,

+ maxiter = 100,

15 + run = maxiter,

+ maxFitness = Inf,

17 + names = NULL,

+ suggestions = NULL,

19 + optim = FALSE,

+ optimArgs = list(method = ”L−BFGS−B”,

21 + poptim = 0.05,

+ pressel = 0.5,

23 + control = list(fnscale = −1, maxit = 100)),

+ keepBest = FALSE,

25 + parallel = FALSE,

+ monitor = if(interactive())

27 + { if(is.RStudio()) gaMonitor else gaMonitor2 }

+ else FALSE,

29 + seed = NULL)
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In order to adequate the code at the analyzed case, the vector type, that collects

the decision variables, is set to real-valued since real numbers are object of the

study.

The arguments gaControl(type) used for the population, selection, crossover and

mutation are a default option. In details, this function generates a random pop-

ulation of the specified type (real values in our case), a fitness proportional selec-

tion, a local arithmetic crossover and a uniform random mutation. [18]

The fitness function represents the function to optimize. It has been assumed as

a difference between the position of the crack for a (known) measured position

and for a particular value of α and β. Optimizing this function means that the

difference is close to zero, in other word optimization occurs when the position

of crack coincides in the two case.

The min and max represent the minimum and the maximum of the range for the

variable α and β .

Only this described parameters has been changed compared to the default ones.

The comprehension of the other arguments is not object of the study, for more

details [19] is recommend.
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Chapter 4

Data and results

4.1 Case study

The TGPs performance are evaluated applying the method to a cantilever

beam with the following geometric e mechanical characteristics:

Youngs Modulus density length squared cross-section

2.06× 1011N/m2 7850 kg/m3 14m 0.02 m

Table 4.1: Geometrical and mechanical characteristics

As described in 2, the stiffness matrix of the cracked element feels the effect

of the presence of crack. It is computed through the principle of linear elastic

fracture mechanism. The mode shape, that is employed in the TGP method, was

drawn numerically by means of the finite elements model.

The degree of freedom of uncracked beam, modeled with two nodes, are two at

each node: the transverse displacement and the rotation. The beam is analyzed

by means of Euler-type finite elements.

For the cracked beam, the employing method is that suggested by G.L.QianS.

and S.Jiang [7].

Mode shapes have been calculated numerically using the finite element model.

The crack depth is equal to 0.4 m and it is supposed that it does not spread with

the time.

The TGP model was run 100 times for each mode due to the fact that it is sta-

tistical method. At the end of each run the split points were localized and the

MAP ( maximum a posteriori) tree was chosen and printed. The MCMC algo-

rithm, used for the simulations, in addition to the first initialization, by means of
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LINBURN argument, it is initialized with a BURN-IN period of 1000 rounds

followed by a 7000 total rounds.

The data are presented, first of all, in the event that the measured points are 100

points and then 60.

The first case studies includes that the crack is located at 0.3m from the the fixed

end of the beam, then the multiple crack case is simulated; the cracks are placed

at 0.3 and 0.6 m from the fixed support.

4.2 Results

The results are summarized in the tables: 4.2, 4.3, 4.4, 4.6 and 4.7.

100 points SNR=∞
MODE 1 MODE 2 MODE 3

φ φ′ φ′′ φ φ′ φ′′ φ φ′ φ′′

100
100

51
100

16
100

94
100

86
100

0
100

80
100

96
100

0
100

MODE 4 MODE 5 MODE 6

φ φ′ φ′′ φ φ′ φ′′ φ φ′ φ′′

67
100

89
100

3
100

53
100

66
100

74
100

77
100

91
100

12
100

MODE 7 MODE 8 MODE 9

φ φ′ φ′′ φ φ′ φ′′ φ φ′ φ′′

74
100

73
100

37
100

20
100

45
100

51
100

43
100

52
100

74
100

MODE 10 MODE 11 MODE 12

φ φ′ φ′′ φ φ′ φ′′ φ φ′ φ′′

25
100

55
100

76
100

17
100

75
100

75
100

14
100

10
100

56
100

MODE 13 MODE 14 MODE 15

φ φ′ φ′′ φ φ′ φ′′ φ φ′ φ′′

11
100

37
100

99
100

3
100

17
100

96
100

0
100

8
100

0
100

Table 4.2: Number of forks, which detect the crack at 0.3m, when the number of
measurement points is set to 100 without noise.
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100 points SNR=100
MODO 1 MODO 2 MODO 3

φ φ′ φ′′ φ φ′ φ′′ φ φ′ φ′′

45
100

31
100

64
100

89
100

91
100

0
100

80
100

92
100

0
100

MODE 4 MODE 5 MODE 6

φ φ′ φ′′ φ φ′ φ′′ φ φ′ φ′′

64
100

94
100

13
100

54
100

59
100

76
100

74
100

71
100

32
100

MODE 7 MODE 8 MODE 9

φ φ′ φ′′ φ φ′ φ′′ φ φ′ φ′′

72
100

76
100

43
100

7
100

43
100

39
100

48
100

46
100

79
100

MODE 10 MODE 11 MODE 12

φ φ′ φ′′ φ φ′ φ′′ φ φ′ φ′′

43
100

48
100

19
100

22
100

20
100

82
100

18
100

13
100

46
100

MODE 13 MODE 14 MODE 15

φ φ′ φ′′ φ φ′ φ′′ φ φ′ φ′′

8
100

15
100

96
100

1
100

8
100

88
100

0
100

3
100

86
100

Table 4.3: Number of forks, which detect the crack at 0.3m, when the number of
measurement points is set to 100 with SNR=100.

Since the differentiation can alter the results causing a non correct mode of

operation of MCMC during the simulations, 5% of input data are removed from

each edge analyzing the first and the second derivatives through TGP method.

As the tables of the results show, varying the measured points or the SNR, it

is observed a general tendency in all the studied cases. Indeed, proceeding from

mode 1 to mode 15, the performance of TGP decreases.

The reason of that can be explained looking at mode shape function. Indeed, in

the last mode (especially 12, 13, 14 and 15), the function, which fits the measured

points, has a lot of local maximum and minimum points and this confuses the

TGP algorithm and it does not guarantee good performance.

The signal noise to ratio, that reveals the noise level in the measured points, plays

an important rule on the final outputs of the model.
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100 points SNR=80
MODE 1 MODE 2 MODE 3

φ φ′ φ′′ φ φ′ φ′′ φ φ′ φ′′

8
100

0
100

0
100

19
100

20
100

0
100

63
100

97
100

1
100

MODE 4 MODE 5 MODE 6

φ φ′ φ′′ φ φ′ φ′′ φ φ′ φ′′

53
100

89
100

20
100

17
100

8
100

72
100

67
100

62
100

37
100

MODE 7 MODE 8 MODE 9

φ φ′ φ′′ φ φ′ φ′′ φ φ′ φ′′

73
100

80
100

47
100

0
100

0
100

0
100

57
100

29
100

50
100

MODE 10 MODE 11 MODE 12

φ φ′ φ′′ φ φ′ φ′′ φ φ′ φ′′

37
100

40
100

24
100

12
100

26
100

85
100

23
100

15
100

61
100

MODE 13 MODE 14 MODE 15

φ φ′ φ′′ φ φ′ φ′′ φ φ′ φ′′

10
100

24
100

91
100

0
100

9
100

59
100

0
100

1
100

3
100

Table 4.4: Number of forks, which detect the crack at 0.3m, when the number of
measurement points is set to 100 with SNR=80.

First of all, we can take a look at the tables 4.2 4.3, 4.4 and 4.5 in which 100

points of the beam are been measured. Specifically, it is noticed that, when noise

is present, the model fits better mode shapes rather than rotation or curvature

(respectively φ′ and φ′′ ) for the first modes. On the contrary, for the last modes

the first derivatives achieves the best results, even though the differentiation could

lead to an addition of noise.

In the table 4.5 the data related to the curvature (φ′′) are not present, this is due

to the fact that the model is not able to fit adequately the points, because both

level of noise (SNR=60) and differentiation noise lead to a lower performance of

the TGP model than the previous cases.

Generally, the second derivatives looks to produce better results with a higher

number of forks. Actually, the performance is not the best due to the fact that
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100 points SNR=60
MODE 1 MODE 2 MODE 3

φ φ′ φ φ′ φ φ′

0
100

3
100

4
100

0
100

2
100

0
100

MODE 4 MODE 5 MODE 6

φ φ′ φ φ′ φ φ′

0
100

0
100

0
100

29
100

50
100

0
100

MODE 7 MODE 8 MODE 9

φ φ′ φ φ′ φ φ′

19
100

57
100

0
100

0
100

22
100

35
100

MODE 10 MODE 11 MODE 12

φ φ′ φ φ′ φ φ′

20
100

38
100

0
100

9
100

0
100

1
100

MODE 13 MODE 14 MODE 15

φ φ′ φ φ′ φ φ′

4
100

12
100

0
100

4
100

0
100

1
100

Table 4.5: Number of forks, which detect the crack at 0.3m, when the number of
measurement points is set to 100 with SNR=80.

often the method forks twice because it does not perfectly locate the branch point

but a range where the crack is. Different GPs are involved one for each branch

tree.

The tables 4.6 and 4.7 show how the numbers of measured points can change the

trend of the final output. Indeed, in this case the available data are only for 60

points uniformly distributed along the beam.

Due to the lower number of points, TGPs are less efficient to detect the point

where the discontinuity is located. The results, yielding with the first derivatives,

produce much more tree branches, instead in the second derivatives the crack

effect is less evident.

In the table 4.7 for 60 measured points with adding noise, only the modes 1, 6

and 11 are displayed since the input data for the other modes were not present
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60 points SNR=∞
MODE 1 MODE 2 MODE 3

φ φ′ φ′′ φ φ′ φ′′ φ φ′ φ′′

38
100

100
100

92
100

8
100

67
100

27
100

13
100

43
100

95
100

MODE 4 MODE 5 MODE 6

φ φ′ φ′′ φ φ′ φ′′ φ φ′ φ′′

4
100

35
100

91
100

10
100

29
100

72
100

10
100

41
100

71
100

MODE 7 MODE 8 MODE 9

φ φ′ φ′′ φ φ′ φ′′ φ φ′ φ′′

9
100

11
100

62
100

0
100

1
100

0
100

2
100

10
100

26
100

MODE 10 MODE 11 MODE 12

φ φ′ φ′′ φ φ′ φ′′ φ φ′ φ′′

0
100

6
100

14
100

0
100

21
100

21
100

0
100

0
100

0
100

MODE 13 MODE 14 MODE 15

φ φ′ φ′′ φ φ′ φ′′ φ φ′ φ′′

0
100

1
100

0
100

0
100

0
100

0
100

0
100

0
100

0
100

Table 4.6: Number of forks, which detect the crack at 0.3m, when the number of
measurement points is set to 60 with without noise.

in literature.

As it is clear, higher number of points- in which the mode shape is measured -

yields a higher efficacy of the TGPs.

The figures 4.1 and 4.5 display the modes 1 and 6 in which: the points repre-

sent the measured mode shape and the red line the model interpolation.

In this case the crack is located at 0.3m and 100 points along the beam are mea-

sured. The main aim of this thesis is the identification of a known crack position

in order to demonstrate the efficacy of the method also when the crack position

is not known a priori.

The tree representation is displayed in figures 4.2 and 4.6, both for mode 1 and 6.

The figures 4.3 4.7 show the results for the all 100 simulations when mode 1 and 6

are analyzed. The mode 1 has a mean branch point of 0.294m, the model branch
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60 points SNR=100
MODE 1 MODE 6 MODE 11

φ φ′ φ′′ φ φ′ φ′′ φ φ′ φ′′

11
100

81
100

66
100

8
100

44
100

79
100

0
100

21
100

24
100

60 points SNR=80
MODE 1 MODE 6 MODE 11

φ φ′ φ′′ φ φ′ φ′′ φ φ′ φ′′

2
100

23
100

97
100

2
100

26
100

85
100

0
100

9
100

24
100

60 points SNR=60
MODE 1 MODE 6 MODE 11

φ φ′ φ′′ φ φ′ φ′′ φ φ′ φ′′

9
100

16
100

29
100

0
100

19
100

54
100

0
100

8
100

21
100

Table 4.7: Number of forks, which detect the crack at 0.3m, when the number of
measurement points is set to 60 with different SNR.

Figure 4.1: Representation of a simulation of mode 1 without adding noise when
the beam is divided in 100 points. The measured mode shape φ are represented
by circle and TGP model regression through red line. The green vertical line
locates the branch point coincident with crack position.
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Figure 4.2: Tree partitions of a simulation of the measured mode shape 1 without
adding noise when the beam is divided in 100 points.

Figure 4.3: Estimation of crack for the mode shape 1 without adding noise when
the beam is divided in 100 points.
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Figure 4.4: Estimation of density function for mode 1 without adding noise when
the beam is divided in 100 points.

Figure 4.5: Representation of a simulation of mode 6 without adding noise. The
measured mode shape φ are represented by circle and TGP model through red
line. The green vertical line locates the branch point coincident with crack posi-
tion when the beam is divided in 100 points.
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Figure 4.6: Tree partitions of a simulation of measured mode shape 6 without
adding noise when the beam is divided in 100 points.

100/100 and the discontinuity is found or in point 0.2929m or in 0.296m. Related

to the mode 6 the points are concentrated near 0.3m save the three points which

are representative of the two branches of the tree.

By means of the estimation of crack positions ( figures 4.3 and 4.7 ) the estimated

probability function is printed for mode 1 and 6 in the figures 4.4 and 4.8. It

is noticed that for both modes the data are gathered in a range close to 0.3,

specifying that the TGP method fits well the data.

The previous case are analyzed adding a signal noise to ratio equal to 100 and

the results are showed in figures: 4.9, 4.10, 4.11 and 4.12.

Due to the noise presence (SNR=100) from the figures 4.9 and 4.10 it seems clear

that, related to mode 1, the TGP identifies the crack in points slightly lower or

higher than 0.3m. The mean branch point is located at 0.31m.

The figures 4.11 and 4.12 underlines that for mode 6 the TGP fits well the

points. Two points appear close to 0.15m because they correspond to the two

branch trees case. The mean branch point is 0.294m.

The figures 4.13, 4.15,4.14 and 4.16 concern the the mode 1 and 6 when 60

measured points are available.

The points reduction leads to a lower success of the model, especially for the mode
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Figure 4.7: Estimation of crack for the mode shape 6 by means of TGP method
without adding noise when the beam is divided in 100 points.

Figure 4.8: Estimated density function for mode 6 without adding noise when
the beam is divided in 100 points.

6, because the function is characterized up and down mode shape, and TGPs are

not able to detect the crack. The mean branch points are 0.290m and 0.291m for
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Figure 4.9: Estimation of crack for the mode shape 1 by means of TGP method
with SNR=100 when the beam is divided in 100 points.

Figure 4.10: Estimated density function for mode 1 with SNR=100 when the
beam is divided in 100 points.

the mode 1 and 6 respectively.

When the numbers of points decreases (60 points) and the noise is added, the
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Figure 4.11: Estimation of crack for the mode shape 6 by means of TGP method
with SNR=100 when the beam is divided in 100 points.

Figure 4.12: Estimated density function for mode 6 with SNR=100 when the
beam is divided in 100 points.

rotation (φ′) is preferred to fit adequately the data by the TGP model. Indeed,

the performance are very higher; in figures 4.17 and 4.18 the results are presented
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for first derivatives of mode 1 and 6 when SNR is equal to 100.

Due to the lower numbers of points and due to the noise, this technique works

well a lower number of times especially for the mode 6 (figure 4.19), where the

noise is amplified of the its shape. In both modes- 1 and 6- the range where the

results are evaluated is a little higher than 0.3 as showed by the figures 4.18 and

4.20. Overall, also in this case the model appears to be operating well.

Figure 4.13: Estimation of crack for the mode shape 1 by means of TGP method
without noise when the beam is divided in 60 points.
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Figure 4.14: Estimated density function for mode 1 without noise when the beam
is divided in 60 points.

Figure 4.15: Estimation of crack for the mode shape 6 by means of TGP method
without noise when the beam is divided in 60 points.
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Figure 4.16: Estimated density function for mode 6 without noise when the beam
is divided in 60 points.

Figure 4.17: Estimation of crack for the first derivatives of the mode shape 1 by
means of TGP method with SNR=100 and the beam divided in 60 points.
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Figure 4.18: Estimated density function for the first derivatives of the mode shape
1 with SNR=100 when the beam is divided in 60 points.

Figure 4.19: Estimation of crack for the first derivatives of the mode shape 6 by
means of TGP method with SNR=100 and the beam divided in 60 points.
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Figure 4.20: Estimated density function for the first derivatives of the mode shape
6 with SNR=100 when the beam is divided in 60 points.

Figure 4.21: Simulation of first derivatives of mode 6 whit SNR=100. The beam
is divided in 60 points.
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Figure 4.22: Tree partitions of first derivatives of mode 6 whit SNR=100. The
beam is divided in 60 points.

Figure 4.23: Representation of a simulation of mode 1 without adding noise when
the beam is divided in 100 points. The measured mode shape φ are represented
by circle and TGP model regression through red line. The green and blue vertical
lines locate the branch points coincident with the two crack positions.
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Figure 4.24: Tree partitions of a simulation of measured mode shape 1 without
adding noise when the beam is divided in 100 points with 2 cracks at 0.3m and
0.6m.

Figure 4.25: Estimation of cracks for the first mode shape without added noise
for 100 measured points for 2 cracks case.

Some of the analyzed modes do not identify precisely the position of crack but
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Figure 4.26: Estimated density function for the first mode shape without added
noise for 100 measured points for 2 cracks case.

they branch twice. An example of that, as regards the first derivatives of mode

6 with SNR=100, is presented in figure 4.21. The model identifies the three dif-

ferent areas characterized by three different GPs. The two branches, represented

by the green and the blue lines, identify a range and not a single point in which

the crack is included. The final set of results are presented for mode 1 in the case

of 2 cracks; the measurements along the beam are 100. The cracks are localized

at 0.3m and 0.6m respectively from the fixed end of the beam. The simulations

are run 1000 times in order to have a good chance of adequate performance of

the model. The results show ( see figures 4.23, 4.24, 4.25 and 4.26) that both the

cracks are underestimated. The mode 6 does not produce satisfactory results in

this case. The model for the mode 1 forks twice 179/1000 and once 563/1000 in

which most times the crack at 0.6m is detected.

Finally, taking a look of the presented results , the number of nodes along the

beam conditions the performance.

The first modes are fit better when no noise is not added to the data.

The noise free case is not real, so when the different levels of noise are added on

the input data the mean branch point is a value higher than 0.3m.
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For 100 measured points a more detailed analysis can be carried out because the

available data allow to detect crack in each event.

In this case when noise is added it is clear that the middle modes - for 6 to 10-

seems to be producing better estimations of crack. Sometimes no results are pro-

duced, as mode 15, the reason of that could be linked to the fact that the node

could coincide with the crack, in that case the model is not able to record any

result.

4.3 Genetic algorithm applied to the tree pa-

rameters

In order to improve the results the tree parameters are optimized by means of

the Genetic algorithm. These parameters, as known, rules the size and the shape

of the tree.

The tree parameters α and β are defined in a range of [0,1] and [0,2] respectively.

According to Chipman [4] the chosen values are 0.5 for α and 2 for β. These

values are determined experimentally. Varying them manually, it was noticed an

improvement of the results.

This is only a preliminary study due to the large amount of data needed. The

simulations are carried out for the mode 2 without adding noise when 100 mea-

sured points are distributed along the beam.

The Genetic algorithm, fixing a population size equal to 30 and a number of

iterations equal to 15 produced that the best values for α and β are 0.75 and

1.26 respectively. Replacing these values in the tree vector, the tree branch once

94/100, the same result of the default values. The reason of that it is detectable

in the low number of generations of the algorithm.

The next step, an improvement, is that to set the genetic algorithm parameters

so as to find the correct bond between population size and number of iterations/-

generations.
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Chapter 5

Conclusions

The aim of this thesis is the detection of crack in beam by means of the

method: Treed Gaussian process.

The overall goal has been achieved giving satisfactory results. The TGP re-

sults are satisfying when the input data are the measured mode shape. However,

the method has also a high percentage of success when the first and the second

derivatives are employed.

One of the achievement, compared to the past applied method, is that the

”output data only” is needed. This means that only the data measured by the

sensors are relevant for a good estimation of the model and physic model of the

beam is not requested.

The most advantage is that it works well for any number of cracks because it has

the potential to find the global minimum of likelihood also when multiple cracks

occur, unlike to the GPs.

Another important and positive remark is the Bayesian approach of the method,

because it provides a way of combining prior information with data and also to

obtain an inference conditioned on data too.

TGP is defined as ”base line free” because the method is not based on the

comparison between damaged and undamaged beam.

The main drawback is the large time consuming for the process because TGP

is based on complicated algorithm and a large number of hyperparameters must

be set. The computation time is adversely affected by the large input dataset
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needed in order to draw consistent results. Moreover, a large amount of input

data is possible only if particular instrumentation is employed, e.g. laser vibrom-

etry.

The last observation, looking at the drawn results, is that the model is sensible

at presence of noise especially when the number of measured inputs are low.

The results can be improved by means of an optimization algorithm.

It was thought that genetic algorithm was a good choice. It is applied to the

prior tree parameters because they are not known a priori. This can be a limit

for a good mode of operation of the model but the limitation of a large time

consuming during the computation does not allow a more accurate study. This

optimization will be accomplished in the future.
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