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Abstract 

 

The aim of the present thesis is to analyse the behaviour of suspension bridges under 

wind by a commercial finite element software; in particular, the longest suspension bridge in 

the world – the Akashi Kaikyo Bridge – was selected as a case study. The research is focused 

on the most dangerous phenomenon that may occur in this kind of structures, i.e., flutter 

instability. The goal is to explore different numerical models in order to compare the results 

to those obtained by different approaches, both analytical and numerical. 

The first part begins with theoretical considerations regarding the description of wind 

effects on suspension bridges. Analytical and numerical approaches, developed by various 

authors, are presented. A study from the literature, performed on an ideal suspension bridge, 

is considered at first. Afterwards, different analyses performed, by several authors, on the 

Akashi Kaikyo Bridge to evaluate its natural frequencies and critical flutter wind speed are 

presented. The results are taken as reference values in order to make a comparison with the 

numerical results obtained in this thesis using ANSYS software, presented in the following 

part. 

The second part begins with a “validation problem”: a modal analysis of a simple 2D 

structure was performed in ANSYS before studying the Akashi Kaikyo Bridge. Then, different 

models and analysis of the Akashi Kaikyo Bridge performed in this thesis are presented. A 

“Fish-bone” model was firstly implemented. A preliminary modal analysis was run to evaluate 

the natural frequencies and mode shapes of the structure. Afterwards, a flutter analysis was 

run by considering all three unsteady aerodynamics loads acting on the deck, i.e. Lift, Drag 

and Moment, modelled by the so-called flutter derivatives. In this way, it was possible to 

evaluate the critical flutter speed and frequency, as well as to identify the critical mode shape. 

The numerical model of the bridge was then improved by modelling the deck as a 3D truss 

beam, as in the real case. As for the previous model, a modal analysis was performed before 

studying flutter instability. Three different approaches were followed to evaluate the flutter 

speed and frequency, and the corresponding mode shape: (i) Lift, Drag and Moment all 

modelled as unsteady actions; (ii) Lift and Moment treated as unsteady actions, Drag force 

modelled as steady load; (iii) Lift and Moment modelled as unsteady actions, Drag force totally 

neglected.   
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In conclusion, the results obtained by the three different analyses are compared to 

literature data about the Akashi Kaikyo Bridge, as well as to results obtained by other methods 

described in the first part of the thesis.    
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CHAPTER 1 

INTRODUCTION 

In a suspension bridge, the traffic-carrying deck is supported by a series of wire ropes 

that hang from massive cables draped between tall towers. The Brooklyn Bridge in New York 

City and the Golden Gate Bridge in San Francisco are two of the most famous suspension 

bridges. The Akashi Kaikyo Bridge in Japan, which was completed in 1998, is characterised 

by the world's longest suspension span, precisely of 1991 m.  

It is possible to divide the suspension bridges evolution in three generations. 

• The first generation consist of a lot of framework deck bridges, built in the 

USA between the end of 19th and the beginning of 20th century (Brooklyn 

1883, Golden Gate 1937). The span of this kind of bridges reach a maximum 

length of 1000 m. The framework deck gives a great flexural and torsional 

stiffness to the structure, but the big wind resistance is obtained with 

important weights of all the elements, with large structural deformation under 

variable loads. The Akashi Kaikyo Bridge (built in 1998), with his 1991 m of 

span, represents the maximum limit for this bridges’ generation. 

• The second generation includes aerodynamic deck bridges, with single 

caisson. Built in the second half of 20th century in Europe (Humber Bridge 

1981, Bosforo 1973), these bridges have a span, whose length varies between 

1000 m and 1600 m. The aerodynamic caisson presents small deformations 

under wind actions and it has smaller weight. This kind of deck maintains an 

important torsional stiffness, but for big spans, it is necessary to increase the 

deck height that causes the growth of wind resistance and the structural 

weight. For this generation, it is possible to define a maximum span limit 

about 2000 m, where the stability contribution given by the deck is negligible. 

http://www.madehow.com/knowledge/Golden_Gate_Bridge.html
http://www.madehow.com/knowledge/Akashi_Kaikyo_Bridge.html
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• The third generation was born with the design of Messina Bridge, 

characterised by a deck structure that allows an increase of maximum span 

length. The deck section is composed by multiple caissons with aerodynamic 

shapes, it offers a very small wind resistance and it is stable respect to the 

aero-elastic instability phenomena. The structural stability depends on 

suspension system, which gives enough stiffness at the central span of 3300 

m.  

1.1 Historical development 

One of the oldest of engineering forms, suspension bridges were constructed by primitive 

peoples using vines for cables and mounting the roadway directly on the cables. A much 

stronger type was introduced in India about the 4th century ad that used cables of plaited 

bamboo and later of iron chain, with the roadway suspended. In modern times, the suspension 

bridge provided an economical solution to the problem of long spans over navigable streams 

or where there are sites which present difficulties in placing piers in the stream. British, 

French, American, and other engineers of the late 18th and early 19th centuries encountered 

serious problems of stability and strength against wind forces and heavy loads; failures 

resulted from storms, heavy snows, and droves of cattle. 

Earliest versions of suspension bridges were built by Thangtong Gyalpo, Tibetan saint 

and bridge-builder (among other things) from the 15th century. He built over 58 iron chain 

suspension bridges around Tibet and Bhutan and one of his bridges survived until 2004 when 

it was destroyed by a flood. Most of his bridges had chains as suspension cables while his early 

bridges used ropes from twisted willows or yak skins, as illustrated in Figure 1-1. 

 

Figure 1-1: Suspension Bridge Thangtong Gyalpo [1] 
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The first iron chain suspension bridge on the soil of United States was the made at 

Jacob's Creek in Westmoreland County, Pennsylvania in 1801. This bridge, as illustrated in 

Figure 1-2 was the first to have all the necessary components of a modern suspension bridge 

and was designed by James Finley who patented a system for suspending a rigid deck from a 

bridge's cables in 1808. That years can be considered as the beginning of the era of the modern 

suspension bridges. After that, two bridges were built in England: Dryburgh Abbey Bridge 

(built in 1817) and Union Bridge (built in 1820). The first large bridge that used the technique 

invented by Finley was the bridge over the Menai Straits in Wales built by Thomas Telford 

and completed in 1826. Cables consisting of many strands of wire for suspension were used 

instead of chains for the first time in 1930 by French engineers. Soon John Roebling, American 

inventor, found a way to spin the cables in loco instead of transporting them prefabricated. He 

also invented rigid deck platform which is stiffened with trusses. 

  

 

Figure 1-2: Suspension bridge at Jacob's Creek in Westmoreland County[2] 

Since then suspension bridges became popular because they allowed to overcome 

spaces that otherwise could not be overcome with conventional methods. The main advantage 

is that it can be made with longer spans respect to all other types of bridges; it is cheaper bridge 

type (even with longer spans) because it uses less material; during construction it does not 

require access from below so it doesn't matter what is present below nor how high is bridge. 

Furthermore, it is more earthquake-proof than other types; and it can be modified easily to 

accommodate wider vehicles or to add additional lanes. However, on the other hand, it also 

has its disadvantages: it must be made very stiff or aerodynamic, so high winds wouldn't cause 

vibrations; and it is very difficult for to carry heavy rail traffic compared to other bridge types 

because of relatively lower stiffness of a board. When compared, suspension bridges are often 

compared by the length of their main span (longest span they have). Akashi Kaikyo Bridge is 

the suspension bridge with the longest span in the world since 1998. Its 1991 meters connects 

Kobe and Awaji Island in Japan. At the second place in this type of list is present the Xihoumen 

Bridge with 1650 meters on the Zhoushan Archipelago, the largest offshore island group in 

China. 

http://www.historyofbridges.com/facts-about-bridges/types-of-bridges/
http://www.historyofbridges.com/facts-about-bridges/types-of-bridges/
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CHAPTER 2 

WIND LOAD 

The beginning of the history of big suspension bridge dates back to 1826, when the 

construction of the Bridge Menai ended. Designed by the English engineer Telford, it was very 

important because it connected Anglesey land and England with a main span of 176 m. 

Unfortunately, the bridge had a short life, in fact it was destroyed by a wind storm after some 

months. 

In Europe and USA, in 19th century, several bridges fell down, under wind action 

because no analysis regarding this load was done before the bridges construction. 

When, in West Virginia (USA), the Wheeling Bridge fell, the analysis of wind effects 

starts for the design of big span bridges. Thanks to the improvement of the design methods, 

the bridges were realized with an increasing slenderness and the ratio between the height of 

deck and main span length became smaller. 

Another important example of suspension bridge is the Golden Gate in San Francisco, that in 

few times presented fluctuations under wind action of 3 m in horizontal plane.  

 

Figure 2-1: Tacoma Narrows Bridge falls[3] 
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A structure with a more important slenderness was the Tacoma Narrows Bridge 

(Figure 2-1), with a main span of 853 m, built in 1940 in west coast of USA by Moisseif. This 

bridge was characterized by an insufficient stiffness to counteract wind dynamic actions. The 

structure, closed at the end of construction, started to propose vertical fluctuations and, during 

a storm with a wind speed of 50 km/h, had torsional vibrations with increasing magnitude and 

fell in some hours. After this disaster, the researchers and technicians decided to focus 

especially on the studies of the bridge aerodynamics and the analyses on aircraft wings were 

used for big span bridges to evaluate the actions of wind on the decks. The most dangerous 

phenomenon in suspension bridge is flutter, caused by resonance between unsteady forces 

produced by moving structure and its fluctuation. 

 

 

Figure 2-2: Golden Gate Bridge 

2.1 Introduction to flutter of long-span bridges 

The aeroelastic instability has a great importance in big span suspension bridges. 

Aero-elastic instability by flutter on the deck is caused by matching of two modes of 

fluctuation, flexural and torsional, with similar deformed shapes. Relative frequencies are 

approached by wind action, that gives energy to the system. The matching of 2 degrees of 

freedom is the characteristic aspect of this phenomenon: vertical and torsional motion are 

timed on the same frequency, equivalent to the average value between the two fluctuations. 

Wind effects on decks are correctly evaluated with time domain analysis, using non-

linear numerical simulation, with the definition of appropriate wind stories and experimental 

test in wind tunnel. In this case, to understand the real behaviour of the main structure, scaled 

models are used to perform all the analyses. Furthermore, also sections of the deck are studied, 

to focus on the behaviour of the bridge and the local effects. 
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But theoretical models are very important because they allow to evaluate at least the 

order of magnitude of wind speed through which the instability may occur. 

The analysis in frequencies domain is possible if a linearization of phenomenon is 

realised, with the introduction of strength coefficients obtained by scaled models. 

The reasons why it is possible to consider analytic approach are: 

• Structure has an elastic-linear behaviour, with a sinusoidal exponentially dumped 

response;  

• The transition between stable and instable configuration happens in conditions 

of oscillatory motion about equilibrium configuration on average wind condition.  

These hypotheses allow to perform flutter analysis for a linear elastic system. The 

dynamic problem could be represented, in linearized form, with this equation: 

[𝑀] ∙ �̈�(𝑇) + [𝐾] ∙ 𝛿(𝑇) = 0 (2-1) 

where: 

• 𝛿: is the displacements vector, time depending; 

• [𝑀]: is the mass matrix; 

• [𝐾]: is the tangent stiffness matrix. 

 

The necessity of performing stability linear analyses, lead the researchers to consider 

harmonic time disturbances, because dynamic evolution of the structure could be divided in a 

series of harmonic contributions with a Fourier process. It is assigned an harmonic 

disturbance (𝛿) = (𝛿0) ∙ 𝑒𝑖𝜔𝑡, where 𝛿0 is the initial displacement, and initial conditions. The 

system of differential equation (2.1) has trivial modes as solution, except for modes with ω 

pulsation, that satisfy characteristic equation: 

([𝐾] − 𝜔2[𝑀]){𝛿} = (0) (2-2) 

The solution of the system allows to obtain eigenvalues ω and eigenvectors {𝛿} in 

undeformed configuration of the structure. The equation represents stress-free configuration 

of suspension bridge, where it is possible to find the mass matrix and the structural stiffness 

of the system. Correct modal analyses for these kinds of structures could be performed using 

static prestressed configuration, assuming this form: 

([𝐾] + [𝐾]𝑔 − 𝜔2[𝑀]){𝛿} = (0) (2-3) 

So, defining: 

[𝐾] = ([𝐾] + 𝜆[𝐾]𝑔) (2-4) 
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it is possible to obtain eigenvalue 𝜔𝑗 (j=1,2…n d.o.f.) as a function of load factor 𝜆. The 

equilibrium can become unstable in correspondence of the critical value 𝜆𝑐. 

Considering the 𝑗𝑡ℎ eigenvector: 

{𝛿𝑗} = {𝛿0𝑗} ∙ 𝑒𝑖𝜔𝑗𝑡 = {𝛿0𝑗} ∙ 𝑒𝑖(𝜔𝑟+𝑖𝜔𝑖)𝑗𝑡 = {𝛿0𝑗} ∙ 𝑒𝑖𝜔𝑟,𝑗𝑡 ∙ 𝑒−𝑖𝜔𝑖,𝑗𝑡 (2-5) 

It is possible to consider that the stability depends on the sign of the imaginary part of 

the eigenvalue 𝜔𝑗: 

• If 𝜔𝑖𝑗 > 0 for each eigenvalue, equilibrium is stable; 

• If 𝜔𝑖𝑗 = 0 at least for one eigenvalue, equilibrium is metastable; 

• If 𝜔𝑖𝑗 < 0 at least for one eigenvalue, equilibrium is unstable. 

Static instability 

 

 

Dynamic instability (flutter) 

 

 

Figure 2-3: Representation of static and dynamic instability[4] 

For conservative models, the pulsations (angular frequencies) can be real for stable 

system or imaginaries for unstable ones. Equilibrium becomes unstable if the smallest 

characteristic pulsation assumes zero value, or if the stiffness matrix shows a singularity. 

When the equilibrium is unstable, the structure, after a perturbation, leaves its configuration 

and it may assume another stable configuration. This instability is called divergence or static 

-

- 

-

- 
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bifurcation of equilibrium and its characterization can be evaluated even without a dynamic 

approach. 

In non-conservative systems, equilibrium becomes instable when the smallest 

characteristic pulsation assumes zero value, as in conservative system, or when two pulsations 

tend one to each other and they become complex conjugates, or again when a single pulsation 

becomes complex. In this case, an alternative equilibrium configuration for the structure, 

doesn’t exist. The case of two pulsations complex conjugates display a flutter instability 

phenomenon and the load condition that generate the coincidence between two pulsations is 

called flutter load. 

To perform a complete analysis of the bridge, it is possible to consider three different 

approaches: 

• Steady aerodynamic analysis; 

• 1 degree of freedom flutter analysis; 

• 2 degrees of freedom flutter analysis. 

 Steady aerodynamic analysis 

The analysis is performed considering a static condition of the bridge and, with the 

application of plane forces in x and y directions and torque moment; stability is evaluated with 

respect to the deformed shape of the deck under wind action and its instability.  It is possible 

to consider laminar flow on deck direction that generates steady forces. 

 

 Figure 2-4: Representation of the forces acting on the deck 

Drag force in x direction, lift force in y direction and moment around z axis are shown 

in the following equations: 

𝐷𝑠 =
1

2
∙ 𝜌 ∙ 𝑈2 ∙ 𝐵 ∙ 𝐶𝐷(𝛼) (2-6) 
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𝐿𝑠 =
1

2
∙ 𝜌 ∙ 𝑈2 ∙ 𝐵 ∙ 𝐶𝐿(𝛼) (2-7) 

𝑀𝑠 =
1

2
∙ 𝜌 ∙ 𝑈2 ∙ 𝐵2 ∙ 𝐶𝑀(𝛼) (2-8) 

 

 

where: 

• 𝜌: air density [kg/m3]; 

• U: average wind speed [m/s]; 

• B: deck width [m]; 

• 𝐶𝐷 , 𝐶𝐿 , 𝐶𝑀: non-dimensional static aerodynamic factors of drag, lift and 

moment; 

• 𝛼: angle of attach [deg]. 

Aerodynamic factors are evaluated in wind tunnel with a scale section, where it is 

possible the variation of 𝛼, so forces are obtained. Dividing 𝐷𝑠, 𝐿𝑆, 𝑀𝑆 by 
1

2
∙ 𝜌 ∙ 𝑈2 ∙ 𝐵 are 

evaluated 𝐶𝐷, 𝐶𝐿 , 𝐶𝑀. 

 

 

Figure 2-5: 𝐶𝐷, 𝐶𝐿 , 𝐶𝑀  graphs for different bridge sections and different angles of attach 
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For small angles of attach the 𝐶𝐷 , 𝐶𝐿 , 𝐶𝑀 can be linearized and then Eq. 2-6, 2-7, 2-8 

become: 

𝐷𝑠 =
1

2
∙ 𝜌 ∙ 𝑈2 ∙ 𝐵 ∙ 𝐶𝐷(0) (2-9) 

𝐿𝑠 =
1

2
∙ 𝜌 ∙ 𝑈2 ∙ 𝐵 ∙ (𝐶𝐿(0) + (

𝑑𝐶𝐿

𝑑𝛼
) ∙ 𝛼) (2-10) 

𝑀𝑠 =
1

2
∙ 𝜌 ∙ 𝑈2 ∙ 𝐵2 ∙ (𝐶𝑀(0) + (

𝑑𝐶𝑀

𝑑𝛼
) ∙ 𝛼) (2-11) 

 

Static divergence 

Static divergence is an instability phenomenon where the in-wind natural frequency of a 

mode decreases to zero as the wind velocity increases. This is a static instability in torsion that 

occurs because of the loss of torsional stiffness. 

 

 

Figure 2-6: Simplified model with single degree of freedom (left), variation of 𝐶𝑀 with angle of 
attack 𝛼 (right) 

It is possible to define: 

• Resisting elastic moment: 

𝑀𝑒 = 𝑘𝑎 ∙ 𝛼 (2-12) 

𝑘𝑎: torsional stiffness [Nm/m] 

• Acting aerodynamic moment: 

𝑀𝑠 =
1

2
∙ 𝜌 ∙ 𝑈2 ∙ 𝐵2 ∙ (𝐶𝑀(0) + (

𝑑𝐶𝑀

𝑑𝛼
) ∙ 𝛼) (2-13) 

It is possible to observe that the instability of 𝑀𝑠 effect increases with wind speed. 
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For the equilibrium it is necessary to have 𝑀𝑒 = 𝑀𝑠, and thus: 

𝑘𝑎 ∙ 𝛼 =
1

2
∙ 𝜌 ∙ 𝑈2 ∙ 𝐵2 ∙ (𝐶𝑀(0) + (

𝑑𝐶𝑀

𝑑𝛼
) ∙ 𝛼) (2-14) 

 

It is possible put on first member terms depending by 𝛼: 

[𝑘𝛼 −
1

2
∙ 𝜌 ∙ 𝑈2 ∙ 𝐵2 ∙ (

𝑑𝐶𝑀

𝑑𝛼
)] ∙ 𝛼 =

1

2
∙ 𝜌 ∙ 𝑈2 ∙ 𝐵2 ∙ 𝐶𝑀(0) (2-15) 

where total stiffness of system is expressed by: 

𝑘𝑡𝑜𝑡 = [𝑘𝛼 −
1

2
∙ 𝜌 ∙ 𝑈2 ∙ 𝐵2 ∙ (

𝑑𝐶𝑀

𝑑𝛼
)] (2-16) 

By the condition 𝑘𝑡𝑜𝑡 = 0, it is possible to evaluate critical speed of torsional 

divergence: 

𝑈𝐷 = √
2 ∙ 𝑘𝛼

𝜌 ∙ 𝐵2 ∙ (
𝑑𝐶𝑀

𝑑𝛼
) 

 (2-17) 

An important aspect is the presence of deck width B as denominator of the expression, 

in fact, if B increase there is the reduction of critical speed. 

 

 

Figure 2-7: Graphics representation of critical wind speed 

Considering a graphic behaviour of the derivates of Ms and Me with respect to the angle 

of inclination 𝛼, it is clear how the derivate of Ms with respect to the angle of inclination 𝛼 has 

a linear trend respect to the wind speed powered to two (𝑈2), while the derivate of Me assumes 

a constant value.  

U2

Behaviour of ∂Ms/∂α and ∂Me/∂α

∂Me/∂α

∂Ms/∂α

𝑈𝑐𝑟
2  
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There are two possibilities: 

• When  
𝜕𝑀𝑒

𝜕𝛼
>

𝜕𝑀𝑠

𝜕𝛼
  the system is stable; 

• When 
𝜕𝑀𝑒

𝜕𝛼
<

𝜕𝑀𝑠

𝜕𝛼
  the system is instable. 

The graph shows that when there is the intersection between two lines of stabilising 

and destabilising moments,  
𝜕𝑀𝑠

𝜕𝛼
 become greater than 

𝜕𝑀𝑒

𝜕𝛼
 and in this point the wind speed 𝑈2 

is the 𝑈𝐶𝑟
2

 that causes torsional divergence of the bridge. 

 Two-degree of freedom flutter 

After several studies, the researchers found the possibility to adapt the analyses 

developed on the wings of the planes on the sections of suspension bridges to perform 

aeroelastic stability analyses.  

 

 

Figure 2-8: Two degrees of freedom simplify model 

In their formulation, Scanlan and Tomko have shown that, in small fluctuations field, 

self-exciting forces assume expressions function of the coordinates h and 𝛼: 

𝐿𝑆𝐸 =
1

2
𝜌𝑈2𝐵 [𝐾𝐻1

∗(𝐾)
ℎ̇(𝑡)

𝑈
+ 𝐾𝐻2

∗(𝐾)
𝐵 ∙ �̇�(𝑡)

𝑈
+ 𝐾2𝐻3

∗(𝐾)𝛼(𝑡) + 𝐾2𝐻4
∗(𝐾)

ℎ(𝑡)

𝐵
] (2-18) 

𝑀𝑆𝐸 =
1

2
𝜌𝑈2𝐵2 [𝐾𝐴1

∗(𝐾)
ℎ̇(𝑡)

𝑈
+ 𝐾𝐴2

∗(𝐾)
𝐵 ∙ �̇�(𝑡)

𝑈
+ 𝐾2𝐴3

∗(𝐾)𝛼(𝑡) + 𝐾2𝐴4
∗(𝐾)

ℎ(𝑡)

𝐵
] (2-19) 

where: 

• t: time(s); 

• 𝐾 =
𝜔𝐵

𝑈
: fluctuating reduced frequency; 

• 𝜔: angular frequency of fluctuating [rad/s]; 

• 𝐻𝑖
∗(𝐾), 𝐴𝑖

∗(𝐾): flutter derivates obtained in wind tunnel. 
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Figure 2-9: Examples of flutter derivates   

Classical formulation for flutter analysis starts form the hypothesis that the interaction 

between wind and structure can be evaluated using bi-dimensional calculation of transversal 

section of the deck, so tri-dimensional effects are negligible. Another simplification is to 

neglect section motion in wind direction.  So, it is possible to consider two degrees of freedom 

in the bridge section that are vertical translation, defined by h displacement, and rotation 𝜑. 

The equations of motion can be expressed in these forms: 

𝑚ℎ̈(𝑡) + 𝑐ℎℎ̇(𝑡) + 𝑘ℎℎ(𝑡) = 𝐿𝑆𝐸(𝑡, 𝐾) (2-20) 

𝐼�̈�(𝑡) + 𝑐𝛼�̇�(𝑡) + 𝑘𝛼𝛼(𝑡) = 𝑀𝑆𝐸(𝑡, 𝐾) (2-21) 

• 𝑚: is the mass of system for unit length; 

• 𝐼: is the deck polar moment of inertia for unit length; 

• 𝑐ℎ , 𝑐𝛼: mechanic dumping factors; 

• 𝑘ℎ , 𝑘𝛼: elastic stiffness factors. 

𝐿𝑆𝐸 , 𝑀𝑆𝐸 characterize the force in orthogonal direction respect to wind speed and 

aerodynamic moment on the section. These terms, in a flutter analysis, depend on section 

bridge displacement.  
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Generally, aerodynamic forces are related to the reduced pulsation 𝐾 with the Eq. 2-

18, 2-19. Knowing the forces 𝐿𝑆𝐸 , 𝑀𝑆𝐸, the flutter critical wind speed can be obtained. 

 

 

Figure 2-10:  Definition flutter critic speed 

It is necessary to search harmonic solution of the Eq. 2-20, 2-21 in the form: 

ℎ(𝑡) = ℎ0𝑒
𝑖𝜔𝑡; 𝛼(𝑡) = 𝛼0𝑒

𝑖𝜔𝑡 (2-22) 

By separing the real and imaginary parts, two equations of the 3th and 4th order in 𝐾 

are obtained. The common solution gives the reduced frequency for flutter 𝐾𝐹. The frequency 

𝜔𝐹 that satisfies the two equations is the flutter frequency. 

So, the flutter instability speed can be obtained as: 

𝑈𝐹 =
𝐵𝜔𝐹

𝐾𝐹

(2-23) 

In non-conservative models, the system becomes instable when two pulsations, of 

flexural and torsional oscillations, are timed on the same frequency and become complex 

conjugates. In this case, an alternative equilibrium configuration for the structure doesn’t 

exist. The case of two complex conjugates pulsations gives flutter instability phenomenon and 

the corresponding load is called the flutter load.  

 

 One-degree of freedom flutter 

Considering stocky bridge sections, the influence of 𝛼 and �̇� in 𝐿𝑆𝐸 and of ℎ and ℎ̇ in 

𝑀𝑆𝐸 are negligible. 

So, motion equations assume decoupled formulation: 

𝑚ℎ̈(𝑡) + 𝑐ℎℎ̇(𝑡) + 𝑘ℎℎ(𝑡) =
1

2
𝜌𝑈2𝐵 [𝐾𝐻1

∗(𝐾)
ℎ̇(𝑡)

𝑈
] (2-24) 
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𝐼�̈�(𝑡) + 𝑐𝛼�̇�(𝑡) + 𝑘𝛼𝛼(𝑡) =
1

2
𝜌𝑈2𝐵2 [𝐾𝐴2

∗(𝐾)
𝐵 ∙ 𝛼(𝑡)̇

𝑈
+ 𝐾2𝐴3

∗(𝐾)𝛼(𝑡)] (2-25) 

In this case aero-elastic instability depends on self-exciting fluctuations in bending or 

torsion mode. Bending flutter is also called galloping.  

Considering the torsional motion: 

𝐼�̈�(𝑡) + 𝑐𝛼�̇�(𝑡) + 𝑘𝛼𝛼(𝑡) = 𝑐𝛼
∗ �̇�(𝑡) + 𝑘𝛼

∗𝛼(𝑡) (2-26) 

And thus: 

𝐼�̈�(𝑡) + (𝑐𝛼 − 𝑐𝛼
∗)�̇�(𝑡) + (𝑘𝛼 − 𝑘𝛼

∗ )𝛼(𝑡) = 0 (2-27) 

where: 

𝑐𝛼
∗ =

1

2
𝜌𝑈2𝐵2𝐾𝐴2

∗(𝐾) (
𝐵

𝑈
) (2-28) 

𝑘𝛼
∗ =

1

2
𝜌𝑈2𝐵2𝐾2𝐴3

∗(𝐾) (2-29)  

are aerodynamic dumping and aerodynamic stiffness factors. 𝑐𝛼
∗ , 𝑘𝛼

∗  are positive for 

positive 𝐴2
∗ , 𝐴3

∗ . If 𝑈 increases, two configurations are possible:  

• Global damping factor (𝑐𝛼 − 𝑐𝛼
∗) can assume value of zero or negative value; 

for (𝑐𝛼 − 𝑐𝛼
∗) < 0, a trouble on the profile is amplified by energy transported 

from fluid to structure, if (𝑐𝛼 − 𝑐𝛼
∗) = 0 the fluctuation is harmonic.  

• Global stiffness factor (𝑘𝛼 − 𝑘𝛼
∗ ) can assume value of zero or negative value; 

for (𝑘𝛼 − 𝑘𝛼
∗ ) < 0 instability aerodynamic moment is bigger than stability 

elastic one and a static instability is present. 

Flutter condition and its critical speed are evaluated by: 

𝑐𝛼 −
1

2
𝜌𝑈2𝐵2𝐾𝐴2

∗(𝐾) (
𝐵

𝑈
) < 0 (2-30) 

It is possible to define the damping factor: 

𝜁𝛼 =
𝑐𝛼

2𝐼𝛼√
𝐾𝛼

𝐼𝛼
 

=
𝑐𝛼

2𝐼𝛼𝜔𝛼

→ 𝑐𝛼 = 2𝐼𝛼𝜔𝛼𝜁𝛼 (2-31)
 

The Eq. 2-30 becomes: 

2𝐼𝛼𝜔𝛼𝜁𝛼 −
1

2
𝜌𝑈2𝐵2𝐾𝐴2

∗(𝐾) (
𝐵

𝑈
) < 0 (2-32) 
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For long span bridges, it is highlighted the empirical connection between 𝐴2
∗ = 𝐴2

∗(𝐾) 

The imaginary part of the eigenvalue obtained on the motion Eq. 2-25 is equal to pulsation 𝜔𝛼, 

with good approximation. 

It is possible to assume: 

(𝐴2
∗)𝐹 =

2𝐼𝛼𝜁𝛼

𝜌𝐵4
(2-33) 

Using this formulation, 𝐾𝐹 will be evaluated without iterative process, and thus the 

flutter critical speed can be obtained as: 

𝑈𝐹 =
𝜔𝛼𝐵

𝐾𝐹

(2-34) 



 

28 

CHAPTER 3 

NUMERICAL FULL-BRIDGE MODELLING 

AND DESCRIPTION OF THE CASES 

STUDY 

In the USA, when the Wheeling Bridge and the Tacoma Narrow Bridge fell down, 

started the analysis of wind effects on the design of big span bridges. In the last century and in 

the past years, different approaches have been developed by several authors with the goal of 

studying the behaviour of big span bridges under wind action. 

Basically, there are two types of methods: 

• The first one is more general, tested on ideal bridges and can be used for real 

structures.  

• The other consists of a series of methods that have been developed for specific 

real problems. Even though it is focused on particular cases, this fact does not 

avoid applying the same procedure on other cases in order to verify the 

behaviour of suspension bridges.  

The first phase consists in a modal analysis of the bridge to evaluate the natural 

frequencies of the structure and the related modal shapes. In the following step, a static 

approach starts in order to obtain the critical wind speed that causes the torsional divergences 

(described in Chap. 2). 

The third phase considers a unsteady analysis to evaluate the flutter wind speed, that 

is the more dangerous phenomenon on suspension bridges due to the high slenderness of this 

kind of structures. Flutter analysis can be performed in time domain or in frequencies domain; 

considering the first case, it is possible to describe the displacements and the rotations of one 
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or more points of the deck for different wind speed, and, in case of divergence of one value, it 

is obtained flutter critic speed. 

The frequencies domain approach, instead, is based on complex eigenvalues analysis 

where, for each wind speed, a critical mode is evaluated, considering real and imaginary part 

of the solution. The real part represents the frequency of critical mode and the imaginary one 

describes the stability of solution, or the opposite, and when it becomes equal to zero, there is 

the flutter phenomenon. 

3.1 A Salvatori and Borri study 

In 2007, Salvatori and Borri with the collaboration of “Università degli studi di Firenze”, 

presented a non-linear semi-empirical analysis performed on ideal suspension bridges where 

the deck has a rectangular cross section. 

 Analysis method 

A numerical framework for full-bridge aeroelasticity is presented, based on unsteady 

cross-sectional load models and on the finite elements modelling of the structure. A frequency-

domain approach based on aeroelastic derivatives and nonlinear complex eigenvalue analysis 

is compared to its equivalent time-domain counterpart based on indicial functions and direct 

integration of the equations of motion. 

Considering the Figure 3-1, a bridge with straight span subjected to a wind flow is 

considered, with a mean velocity horizontal and orthogonal to the bridge span. The bridge deck 

cross-section, in the zx plane, is treated as a rigid body. Hence, the motion of the cross-section 

is described by three degrees of freedom, respectively the horizontal displacement, the vertical 

displacement z, and the rotation ay.  

The pressure field around the cross-section results in a horizontal force Fx, a vertical 

force Fz and a pitching moment My, power-conjugated with the rates of x, z, and ay respectively. 

 

Figure 3-1: Forces acting on bridge section[5] 
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A typical ‘fishbone-like’ structural model is shown in Figure 3-2. Wind actions are 

applied through special one-node ‘elements’ characterized by an orientation and an along span 

influence length. The discretized equation of motion is presented as follow: 

 

𝑀�̈� + 𝐶�̇� + 𝐹𝑘(𝑑) = 𝑃𝑑𝑒𝑎𝑑 + 𝑃𝑤𝑖𝑛𝑑 (3-1) 

 

 

where: 

• d: is the vector of nodal degrees of freedom; 

• M: is the mass matrix; 

• C: is the linear dumping matrix; 

• 𝐹𝑘: is the vector of internal structural forces; 

• 𝑃𝑑𝑒𝑎𝑑 , 𝑃𝑤𝑖𝑛𝑑: are the dead and wind load. 

 

 

Figure 3-2:  Representation of discrete structural model 

For dynamic analyses, a model linearized around the mean steady configuration d is 

considered, where d is evaluated for each value of wind speed 𝑈. Now it is possible to obtain a 

linearized equation of motion: 

𝑀�̈� + 𝐶�̇� + 𝐹𝑘(𝛿) = 𝑃𝑎 + 𝑃𝑏 (3-2) 

 

where: 

• 𝛿=d-d’: is the vector of the displacements around the main steady 

configuration; 

• 𝑃𝑎 , 𝑃𝑏: are the vectors assembling the self-excited aeroelastic forces and 

buffeting forces respectively. 
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Performing a frequency domain analysis, the vector of aeroelastic load is: 

𝑃𝑎
𝐴𝐷 = −𝐾𝑎

𝐴𝐷(𝑈, 𝜔)𝛿 − 𝐶𝑎
𝐴𝐷(𝑈, 𝜔)�̇� (3-3) 

where: 

• 𝐾𝑎
𝐴𝐷: is the matrix of flutter function in term of stiffness; 

• 𝐶𝑎
𝐴𝐷: is the matrix of flutter function in term of dumping. 

Let 𝜙 be the matrix whose columns are N selected mass-normalized modal shapes and 

considering 𝛿~𝜙𝜁, the equations of motion are projected in a reduced modal shape.  

𝜁̈ + 𝜙𝑇(𝐶 + 𝐶𝐴)𝜁̇𝜙 + 𝜙𝑇(𝐾 + 𝐾𝐴)𝜁𝜙 = 0 (3-4) 

Introducing 𝜂~𝜁̇, the system is represented in the state space and reduced to a 

homogeneous system of first order differential equations.  

�̇� = 𝐴𝜓 (3-5) 

where: 

• A: is a matrix function whose terms are function of (𝐾 − 𝐾𝑎
𝐴𝐷) and (𝐶 − 𝐶𝑎

𝐴𝐷) 

(C and K structural dumping and stiffness), and 𝜙; 

• 𝜓 = [𝜂𝑇 𝜁𝑇]𝑇. 

So, a non-linear complex eigenproblem it is obtained: 

(𝐴 − 𝜆𝐼)𝜓 = 0 (3-6) 

in which: 

• 𝜓 = [𝜂n
𝑇 𝜁𝑛

𝑇]𝑇 = [𝜆𝜂n
𝑇 𝜁𝑛

𝑇]𝑇. 

Each couple of conjugated eigenvalues can be written as 𝜆𝑛 = −𝜈𝑛𝜔𝑛 ± 𝑖𝜔𝑛√1 − 𝜈𝑛
2, 

where 𝜔𝑛 = ‖𝜆𝑛‖ is the circular frequency and 𝜈𝑛 = −
𝑅𝑒(𝜆𝑛)

𝜔𝑛
 is the damping ratio and i the 

imaginary unit. The matrix A is a function of the frequency and each eigenvalue must be 

computed iteratively. To the purpose of this part analysing stability, we focus only on the 

lowest-damping mode, which is potentially responsible of instability. More in general, it is 

possible to repeat the nonlinear calculation for each mode; in this way the structural modes 

that were coupled by aeroelastic effects can be uncoupled again. This step allows frequency-

domain buffeting analyses as shown in flow chart (Figure 3-3). The analysis starts with zero-

mean wind velocity and an assumption on the frequency of the critical mode. Then 𝑈 is 

increased step by step, for each one of which the mean steady configuration is evaluated, by 

non-linear analysis. After assembling matrix A and performed its spectral calculation, the 
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lowest damping eigenvalue is selected. The actual frequency is different respect to the trial one, 

so it is necessary to have an iterative calculation until convergence. The real part of the 

converged eigenvalue governs the stability of the system; if a positive damping is obtained, 𝑈 

is incremented and the old frequency is used as initial assumption for the next iterative loop.  

The analysis ends as soon as non-positive damping is obtained, so critical speed is 

evaluated. 

 

 

 

Figure 3-3: Flow chart of stability analysis in frequency domain  

In time-domain, the linearized problem is: 

𝑀�̈� + 𝐶�̇� + 𝐾𝛿 = 𝑃𝑎
𝐼𝐹 = −𝐾𝑎

𝐼𝐹𝛿 − 𝐶𝑎
𝐼𝐹�̇� + 𝑃𝑐𝑜𝑛𝑣

𝐼𝐹 (3-7)  

where: 

• 𝑃𝑎
𝐼𝐹: is a vector obtained from indicial functions depending by flutter 

derivates; 

• 𝐾𝑎
𝐼𝐹 , 𝐶𝑎

𝐼𝐹, 𝑃𝑐𝑜𝑛𝑣
𝐼𝐹 : assemble the contribution of each modelled cross-section. 

The time integration of Eq. 3-7 is performed with trapezoidal rule, that is 

unconditionally stable for linear problems. When typical bridge characteristics are used, the 
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choice of the time-step size is dictated by the evaluation of the convolution integrals, so that 

no problem arises in the integration of the equations of motion. The computational efficiency 

can be improved by using a smaller timestep for the evaluation of the convolution integrals 

and a larger one for the integration of the equations of motion; in this case an interpolation 

scheme must be provided from the coarser to the finer time-discretization. 

As sample structure an ideal suspension bridge with 1400 m main span and 

streamlined deck-aerodynamics is chosen. The main geometrical and mechanical 

characteristics of the structure are illustrated in Figure 3-4, and reported in Table 3-1 (steel 

deck is assumed). The main span of the bridge is discretized with 20 elements. 

 

Figure 3-4: Geometry of the bridge 

Main span lenght LMain=1400.00 m 

Side span length Lside=320.00 m 

Tower height Htower=190.00 m 

Deck height above ground level Hdeck=60.00 m 

Main cable sag H=128.00 m 

Number of hangers in the main span Nhang=70 

Deck width B=35.00 m 

Deck height D=2.45 m 

Main cable cross-section area Amain=0.5500 m2 

Hanger cross-section area Ahang=0.0090 m2 

Deck mass per unit-span Mdeck=14.0 103 kg/m 

Deck rotational mass per unit-span Θdeck=1400 103 (kg m2)/m 

Deck cross-section area Adeck=1.40 m2 

Deck moment of inertia about X Jy,deck=2.50 m4 

Deck moment of inertia about Z Jz,deck=145.00 m4 

Deck torsional constant Jt,deck=11.00 m4 

Table 3-1:Geometrical properties Salvatori-Borri bridge 
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 Analysis results 

 

Considering time-domain analysis, at each incremental step, the equations of motion 

are linearized around the mean steady configuration and the indicial function load model is 

considered. After the imposition of a perturbation as initial condition, it is possible to perform 

a direct-time integration of Eq. 3-7, then the history of motion is analysed.  At sub-critical 

mean wind velocities, the oscillations are damped down (Figure 3-5a), whereas at super-

critical mean wind velocities diverging oscillations appear. The borderline condition of 

stationary oscillations represents the critical stability threshold (Figure 3-5b) and is obtained 

for a mean wind velocity of 75.7 m/s. The relevant critical frequency of 0.241 Hz is computed 

through the Fourier analysis. 

 

Figure 3-5: Time history fluctuations 

The stability analysis in the frequency domain is performed according to the procedure 

described above. The present goal is the comparison with the time-domain simulations of the 

full structure. As first analysis, it is necessary to evaluate the aeroelastic stiffness and damping 

by using the approximation of unsteady coefficients. In this case the analysis is theoretically 

equivalent to the time-domain one based on identified indicial functions, as confirmed by the 
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numerical results which agree within the computational accuracy. A mode with non-positive 

damping is firstly obtained at a mean wind velocity of 75.8 m/s with a frequency of 0.236 Hz 

and the critical mode is a symmetric coupled vertical–torsional flutter. 

 

  

Figure 3-6: Critical mode-shape (absolute value on the left, phase angle on the right) 

3.2 Akashi Kaikyo Bridge 

This bridge over the Akashi Strait is one among several situated along the Kobe-

Naruto route between the Japanese islands of Honshu and Shikoku. It crosses the Strait at a 

distance of about 4 km and connects Honshu, Japan’s main island, to neighbouring Awaji. The 

waterway is among the most navigated ones in the world, in fact maritime traffic is an 

important consideration. For the design, a suspension bridge was chosen with an extremely 

rigid latticework deck so that the Strait could be crossed using the minimum number of 

supports. Its total length is 3910 m, with a main span of 1991 m. Its two towers are 297 m high; 

crossbeams have been used as a reinforcement. 
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Figure 3-7: Akashi Kaikyo Bridge section 

 

Figure 3-8: Akashi Kaikyo Bridge profile 

Because of the high possibility of being hit by typhoons, rigorous tests have been 

carried out to ensure an appropriate response from the bridge when exposed to wind loads. 

Among all the most remarkable of these studies is the one carried out by Katsuchi at the John 

Hopkins University. Others include the experimental testing on a full model of the bridge on 

a scale of 1/100, done by Miyata. 

 

Main span length 1991 m 

Lateral span length 960 m 

Towers height 297 m 

Number of hangers 112 each side 

Total deck width 35.5 m 

Distance between hangers 17.75 m 

Deck edge 14 m 

Diameter of main cables 1.12 m 

Diameter of hanger 0.19 m 
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Deck moment of inertia about Y 24 m4 

Deck moment of inertia about Z 130 m4 

Torsion deck moment of inertia 17.8 m4 

Deck mass 28.7 tons/m 

Polar inertia moment in deck 5800 (tons m4)/m 

Table 3-2: Geometrical and mechanical properties of the Akashi Kaikyo Bridge 

 Miyata and Katsuchi studies 

First of all, it is necessary to evaluate both the natural frequencies and modes for the 

Akashi Kaikyo Bridge. It is possible to obtain results by different approaches: Katsuchi studied 

the problem with an analytic approach as described in Chap. 2, Miyata analysed the bridge 

behaviour using a scale model 1/100 in a wind tunnel (Figure 3-9). Another possible approach 

is using the finite element software ADISNOL3D, where the numerical model of the bridge is 

realised with a “Fish-bone” structure (Figure 3-10).  

 

Figure 3-9: Scale model used by Miyata 

Another factor considered, using finite elements software, was the geometric non-

linearity in the cable system. 

 

Figure 3-10: Fish bone model used in ADISNOL3D 
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Table 3-3 compares the natural frequencies obtained by the different methods 

mentioned above. 

Mode type ADISNOL3D KATSUCHI MIYATA 

(1)H-S 0.045 0.038 0.038 

(2)V-S 0.0662 0.0652 0.0637 

(3)V-A 0.0736 0.075 0.074 

(4)V-A 0.085 0.085 0.083 

(5)H-A 0.0946 0.0783 0.775 

(6)V-S 0.122 0.121 0.121 

(10)L-TS 0.158 0.127 0.149 

(11)V-S 0.162 0.163 - 

(12)T-LS 0.163 0.155 - 

(14)V-A 0.174 0.171 - 

(24)T-A 0.219 0.211 0.207 

(25)V-S 0.227 0.221 - 

(26)T-A 0.239 0.254 - 

(27)H-A 0.25 0.221 - 

(28)T-S 0.261 0.297 - 

(29)V-A 0.282 - - 

(38)T-S 0.321 - - 

 

Table 3-3: Comparison of natural frequencies[6] 

Flutter analysis 

In the Akashi Kaikyo Bridge, an aeroelastic analysis using the 16 modes was chosen, 

based on multimodal theory. The flutter derivatives for the deck of this bridge were the ones 

used by Katsuchi in his own study on the bridge’s aeroelastic behaviour. It is worth mentioning 

that the researcher also used for the study of this bridge the coefficients Pi (i = 1....6) relating 

the force of horizontal thrust D (drag) to deck movements. According to the conclusions of 

Katsuchi, these coefficients have a marked influence on the bridge’s behaviour under the 

phenomenon of flutter. 

Using the finite elements software FLAS, the first step in studying the behaviour of the 

Akashi Kaikyo Bridge was to consider the two classic modes in flutter phenomena: the first 

mode of vertical bending and the first one of torsion. It must be remembered that in this bridge 

the first torsional modes also have an appreciable component of lateral bending. Tests were 

carried out on the two possibilities. The results are that when modes 2 and 10 are considered, 
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flutter does not occur until speeds of more than 100 m/s are reached. By contrast, if modes 2 

and 12 are chosen, flutter is produced at 77.69 m/s, a more probable result. The graphical 

representations found in Figure 3-11 underline the evolution of the real and imaginary parts 

of the eigenvalues obtained for the increasing wind speeds, as well as the critical wind speed 

values and the reduced frequency associated with it. As can be detected in the Figure 3-11, 

mode 12 of symmetrical torsion, with a noticeable lateral component, is responsible for the 

flutter instability, reached at a wind speed of 𝑈= 77.69 m/s, and a reduced frequency of K = 

0.4554 corresponding to f = 0.158 Hz. 

 

Figure 3-11: Real parts(left) and imaginary part (right) behaviour for 2 mode analysis[6] 

It is possible to appreciate that the finite elements software used for this analysis 

doesn’t present a stability on the solution with the increasing of natural modes analysed. In 

fact, using 17 vibration modes, FLAS software obtain the same kind of graphs used for the two-

modes calculation.  

The critical wind speed is U = 93.33 m/s with K = 0.5064 and f=0.175 Hz. By observing 

Figure 3-12, one can see how, in this analysis, the factor responsible for flutter is mode 24, 

which is the one for asymmetric torsion (AT). Therefore, the mode in which null damping is 

reached within the two-mode analysis undergoes a variation (TLS mode 12). 

Figure 3-12: Real parts(left) and imaginary part (right) behaviour for 17 mode analysis[6] 
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Another considerable change takes place when the flutter speed increases more than 

15 m/s. These differences invalidate the aeroelastic analysis carried out with two vibration 

modes on the Akashi Strait Bridge. Thus, it seems that, with any bridge with a main span over 

1500 m long, an analysis based on two modes of vibration, using FLAS, could provide 

unreliable results. 

 

Analysis Flutter speed U (m/s) Frequency f (Hz) 

FLAS, 2 modes 77.69 0.157 

FLAS, 17 modes 93.33 0.175 

Katsuchi, 2 modes 58.9 - 

Katsuchi, 15 modes 87-96 0.146 

Miyata (reduced model) 85-95 0.207 

Table 3-4: Comparison of different flutter analysis[6] 

Table 3-4 compares the results from the aeroelastic analyses carried out on the Akashi 

Kaikyo Bridge with the analytical calculations made by Katsuchi and the testing done by 

Miyata using a full model on a 1/100 scale. Drawing one’s attention to the multimodal analyses, 

much more precise than those which use only two vibration modes, it is possible to observe 

how all the values in the table hover around 90 m/s, returning to more or less the same point 

according to the suppositions one makes. As for the response frequency, the value obtained by 

Katsuchi approximates one of the possibilities found in the analysis for 17 modes. On the other 

hand, the value obtained by Miyata in the reduced scale model study of the bridge is similar to 

the frequency of the other flutter shape. 

 D’Argenio study 

The aeroelastic analysis of Akashi Kaikyo Bridge can be performed using analytic 

development, with the software MATLAB. In his Master’s Thesis, D’argenio realised a program 

developed in MATLAB to study the behaviour of the bridge under wind effects. 

Due to the fact that the effects given by the lateral spans of 960 m are not negligible, it 

is necessary to consider a reduced elastic modulus E*=1.6E+10 for the main cables to take into 

account the deformability of the piers under loads. 

 

𝝆𝒂 1.25 kg/m3 Air density 

Cd 0.421 Aero-dynamic resistance factor 

C’m 0.306 Derivate of moment factor 

Table 3-5: Aero-dynamic properties of Akashi Kaikyo Bridge  
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With aerodynamic and mechanical properties shown in Table 3-3,3-5, considered with 

angle of attach equal to zero, MATLAB software gives curves that represent the evolution with 

wind speed of frequencies of oscillation of the bridge (Figure 3-13) and corresponding modes 

(Table 3-6). Critic speed for the static instability is 𝑈𝑐𝑟=108 m/s. 

 

The speeds for torsional divergences and flexural-torsional instability corresponding 

to critical loads 𝑝𝑠𝑐1 , 𝜇𝑠𝑐1 (Eq. 2-6,2-8) are: 

• Ucr=268.63 m/s for antisymmetric torsional divergence; 

• Ucr=112.86 m/s for antisymmetric flexural-torsional divergence; 

• Ucr=156.98 m/s for symmetric torsional divergence; 

• Ucr=144.98 m/s for symmetric flexural-torsional divergence; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-13: Flexural and torsional frequencies behaviour respect wind speed, of Akashi Kaikyo 
Bridge, obtained with MATLAB 

Mode Frequency (Hz) 

1st H-S 0.027 

1st V-S 0.066 

2nd H-A 0.075 

1st V-A 0.077 

2nd V-S 0.120 
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1st T-S 0.124 

2nd V-S 0.164 

1st T-A 0.212 

Table 3-6: Natural frequencies of Akashi Kaikyo Bridge obtained with MATLAB program[7]  

 

D’Argenio’s analysis, in order to evaluate the flutter speed, considers two unsteady 

aeroelastic actions, lift and moment (Eq. 2-18, 2-19), with second order effects. It is possible 

to write the expressions of 𝐿𝑣 , 𝑀𝜃 as functions of wind speed 𝑈 and reduced wind speed 𝑈𝑟, 

considering the reduced frequency 𝐾 =
2𝜋

𝑈𝑟
. 

Now Eq. 2-18, 2-19 can be written as functions of four factors: 

𝐿𝑣 = 𝐿1 (
𝜕𝑣

𝜕𝑡
) + 𝐿2 ( 

𝜕𝜃

𝜕𝑡
 ) + 𝐿3𝜃 + 𝐿4𝑣 (3-8) 

𝑀𝜃 = 𝑀1 (
𝜕𝑣

𝜕𝑡
) + 𝑀2 ( 

𝜕𝜃

𝜕𝑡
 ) + 𝑀3𝜃 + 𝑀4𝑣 (3-9) 

where: 

• 𝐿𝑖 , 𝑀𝑖: are functions of flutter derivates obtained in the wind tunnel; 

• 𝑣: is the vertical displacement; 

• 𝜃: is the rotation. 

The iterative procedure, used to obtain the flutter critical speed, starts with the 

definition of an initial 𝑈 and 𝑈𝑟  where flutter derivates are evaluated. It is possible to consider 

increasing values of two variables and for each one of 𝐿𝑣 , 𝑀𝜃, that are used to solve the 

eigenvalue problem on MATLAB software. Each eigenvalue 𝜔 is composed by real and 

imaginary parts given by unsteady actions, and it defines the stability of the solution. 

In fact, when the imaginary part becomes negative, the critical value 𝑈𝑟,𝑐𝑟𝑗 is obtained; 

the real part represents the critical value of pulsation 𝜔𝑐𝑟,𝑗. This value must be compared with 

analytic result 𝜔𝑗 =
2𝜋𝑈𝑗

𝑈𝑟𝑐𝑟𝑗𝐵
, using the wind speed assumed at the beginning of iterative cycle j. 

The iteration stops when the difference between 𝜔𝑗 , 𝜔𝑐𝑟,𝑗 is smaller than the tolerance (0.01-

0.03). The wind speed value for which convergence is reached, it will be the critical flutter 

speed 𝑈𝑓 . One result is obtained for the symmetric modes and another one for the anti-

symmetric modes, the smallest one is the correct instability value. 

 

 

 



3 
Numerical full-bridge modelling and description of the cases study 

43 

Akashi Kaikyo Bridge 𝑼𝒓𝒄 fc[Hz] 𝑼𝒇[m/s] 

Anti-symmetric configuration 29.397 0.0791 81.1 

Symmetric configuration 28.454 0.0660 65.1 

Table 3-7: Critic flutter wind speed and frequencies for symmetric and anti-symmetric 
configurations, with second-order effects[7] 

Figure 3-14: Solutions for individuation of critic flutter speed with second-order effects: anti-
symmetric mode (left), symmetric mode (right) 

Akashi Kaikyo Bridge 𝑼𝒓𝒄 fc[Hz] 𝑼𝒇[m/s] 

Anti-symmetric configuration 29.607 0.0748 77.0 

Symmetric configuration 28.735 0.0637 63.4 

Table 3-8: Critic flutter wind speed and frequencies for symmetric and anti-symmetric 
configurations, without second-order effects 

Figure 3-15: Solutions for individuation of critic flutter speed without second-order effects: anti-
symmetric mode (left), symmetric mode (right)[7] 
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 Maldera study: series of functions 

The first step of this approach, performed by Maldera, is to evaluate the critic wind that 

causes static instability of Akashi Kaikyo Bridge. Using a flow developed in MATLAB, with the 

mechanical properties shown in Table 3-2,3-5, it is possible to obtain the critic value 𝑈𝑐𝑟 ≅

108 𝑚/𝑠 (Figure 3-16), as obtained in D’Argenio’s thesis. 

The program realised in MATLAB gives the curves of the oscillation frequencies 

respect to the wind speed. The graph gives a first value of the possible classical flutter critic 

speed, that is appreciable for a 𝑈𝑐𝑟 ≅ 82 𝑚/𝑠, where vertical and torsional motion become 

timed on the same frequency (𝑓𝑐𝑟 ≅ 0.1 𝐻𝑧), that is the average value between the two 

fluctuations. 

It is possible consider a two-degree of freedom analysis, vertical displacements 𝑣 and 

the rotations 𝜃. The expression regarding the flexural and torsional behaviour of suspension 

bridges subjected to vertical load 𝑝(𝑧)  and torque moment 𝑚(𝑧) are: 

𝐸𝐼
𝑑4𝑣

𝑑𝑧4
− 𝐻

𝑑2𝑣

𝑑𝑧2
= 𝑝 − (

𝑞𝑔

𝐻
)

2 𝐸𝑐𝐴𝐶

𝑙
 ∫ 𝑣𝑑𝑧

𝑙

0

(3-10) 

𝐸𝐼𝜔
𝑑4𝜃

𝑑𝑧4
− (𝐺𝐼𝑡 + 𝐻𝑏2)

𝑑2𝜃

𝑑𝑧2
= 𝑚 − 𝑏2 (

𝑞𝑔

𝐻
)

2 𝐸𝑐𝐴𝐶

𝑙
 ∫ 𝜃𝑑𝑧

𝑙

0

(3-11) 

where: 

• 𝑙: main span of the bridge; 

• 𝑏: half width of the deck; 

• 𝑞𝑔: self-weight of the bridge per unit span; 

• 𝐻: horizontal forces on main cables given by self-weight; 

• 𝐸𝑐𝐴𝐶: extensional stiffness of main cables (constant value); 

• 𝐸𝐼: flexural stiffness of the deck (constant value); 

• 𝐺𝐼𝑡: principal torsional stiffness of section (constant value); 

• 𝐸𝐼𝜔: secondary torsional stiffness (constant value). 
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Figure 3-16: Main span of suspension bridge subjected to steady actions 𝑝𝑥, 𝑚𝑧 

Considering the deck in horizontal position and the wind load acting as shown in 

Figure 3-16, the aerostatic actions are evaluated as in Eq. 2-6,2-8, considering angle of attack 

𝜃 = 0. The stationary lift forces are negligible because of the huge loads of the bridge.  

In case of symmetric oscillations, the integrals ∫ 𝑣𝑑𝑧
𝑙

0
 and ∫ 𝜃𝑑𝑧

𝑙

0
 in Eq. 3-10, 3-11 are 

equal to zero, and it is possible to insert the expressions of 𝑝𝑥 , 𝑚𝑧 in the same equations to 

study vertical and torsional behaviour of the deck. 

The solution of the system defined by Eq. 3-10,3-11 can be looked for in the following 

form in separable variables: 

𝑣(𝑧, 𝑡) = 𝑉(𝑡)𝜂(𝑧);    𝜃(𝑧, 𝑡) = 𝜙(𝑡)𝜓(𝑧) (3-12) 

where the functions 𝜂(𝑧) and 𝜓(𝑧) satisfy boundary conditions: 

𝜂(0) = 𝜂(𝑙) =
𝑑2

𝑑𝑧2
 𝜂(0) =

𝑑2

𝑑𝑧2
𝜂(𝑙) =  𝜓(0) = 𝜓(𝑙) = 0 (3-13) 

It is possible assume the following expression: 

𝜂(𝑧) = 𝜓(𝑧) = sin
2𝑛𝜋𝑧

𝑙
(3-14) 

where: 

• 𝑛: natural number; 

• 𝑓𝑎𝑐𝑡𝑜𝑟 2: is necessary for selecting anti-symmetric deformed shapes only. 
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By inserting the solution given by Eq. 3-12 into the modified Eq. 3-10, 3-11, and a 

system of equation in matrix form is obtained: 

[𝑀]{�̈�} + [𝐾]{𝑞} − 𝑝𝑥[𝐾𝑔
𝑝
]{𝑞} − 𝜇𝑠[𝐾𝑔

𝜇
]{𝑞} = {0} (3-15) 

The non-trivial solution can be found by the eigenvalues problem: 

det([𝐾] − 𝑝𝑥[𝐾𝑔
𝑝
] − 𝜇𝑠[𝐾𝑔

𝜇
] − 𝜔2[𝑀]) = 0 (3-16) 

where: 

•  𝜔2: are the dynamic eigenvalues of the system; 

• [𝐾𝑔
𝑝
]: is the geometric stiffness matrix with respect to horizontal actions; 

• [𝐾𝑔
𝜇
]: is the geometric stiffness matrix with respect to torque actions. 

For each 𝑛, critic values of the transversal distributed load and distributed moment, 

that cause flexural-torsional instability and pure torsional divergence, are obtained. In the 

opposite case, with 𝑝𝑥 = 𝜇𝑠 = 0, natural pulsations are obtained. 

Another important feature is the study of symmetric oscillations of the suspension 

bridge considering additional horizontal loads in the main cables in the Eq. 3-10, 3-11: 

ℎ𝑠(𝑡) =
𝑞𝑔

𝐻

𝐸𝑐
∗𝐴𝐶

𝑙
 ∫ [𝑣(𝑧, 𝑡) − 𝑏𝜃(𝑧, 𝑡)]𝑑𝑧

𝑙

0

 (3-17) 

ℎ𝐷(𝑡) =
𝑞𝑔

𝐻

𝐸𝑐
∗𝐴𝐶

𝑙
 ∫ [𝑣(𝑧, 𝑡) − 𝑏𝜃(𝑧, 𝑡)]𝑑𝑧

𝑙

0

 (3-18) 

In the same way of the preceding case, the three-parameter model has a solution in 

the same separable variables form. In this case the expressions 𝜂(𝑧), 𝜓(𝑧) are defined by a 

series of sinusoidal functions: 

𝜂(𝑧) = 𝜓(𝑧) = 𝑎1 sin
𝜋𝑧

𝑙
+ 𝑎3 sin

3𝜋𝑧

𝑙
+ sin

5𝜋𝑧

𝑙
+ ⋯ (3-19) 

where each coefficient 𝑎𝑖 is determined from the free oscillations of the bridge. In this 

case mode-shape 𝑛 will be defined by a series of 𝑎𝑖 factors, that give their contribution to define 

the modal shape. The analysis gives a good solution using only the first four terms in 𝜂(𝑧), 𝜓(𝑧) 

expressions. 

By substituting 𝜂(𝑧), 𝜓(𝑧) in to Eq. 3-10, 3-11, modified for symmetrical approach, the 

eigenvalues-eigenvectors problem is obtained. 

In this case, it is possible to observe that if 𝜂(𝑧), 𝜓(𝑧) are defined by four factors, the 

matrix  [𝐾𝑔
𝑝
] loses its symmetry because some additional term appears. 
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Considering Akashi Kaikyo Bridge and approximating 𝜂(𝑧) = 𝜓(𝑧) with a series of 

four functions, the increase in stiffness results very small. In fact, it is possible to evaluate a 

rise of 𝑈𝑐𝑟  for torsional divergence and flexural-torsional symmetric instability of 2.9% and 

0.8% respectively. 

 

 

Figure 3-17: Flexural and torsional, real and imaginary part behaviour respect wind speed, of 
Akashi Kaikyo Bridge, obtained with MATLAB, one approximating function[8] 

Considering no wind loads it is possible to evaluate natural frequencies of vibration 

with four approximating functions (Table 3-9). 

 

Mode Frequency [Hz] 

1st V-A 0.0767 

1st V-S 0.0776 

1st T-S 0.1237 

1st T-A 0.2117 

Table 3-9: Natural frequencies of Akashi Kaikyo Bridge obtained with four-function analysis 

The analysis of variation of vibration frequencies, respect to the wind speed, is 

developed using four function approximation. The new graph highlights an increasing of 

flexural and torsional frequencies of 19% and 3% respectively. The low influence in torsional 

frequencies depends by the huge torsional stiffness of the deck of Akashi Kaikyo (Figure 3-

18). 

 



3 
Numerical full-bridge modelling and description of the cases study 

48 

 

Figure 3-18: Behaviour of torsional and flexural frequencies respect wind speed, obtained with 
one and four approximating functions[8] 

It is possible to consider that aerodynamic stiffness is generally very small compared 

to the structural stiffness of the bridge, except for the stiffness related to the torsional rotation 

𝜃. So, in the formulation of unsteady aeroelastic forces, the functions depending by 

𝐻4
∗, 𝐻5

∗, 𝐻6
∗, 𝐴4

∗ , 𝐴5
∗ , 𝐴6

∗  are negligible and Eq. 2-18,2-19 can be write as: 

𝐿𝑛𝑠 =
1

2
𝜌𝑈2𝐵 [𝐾𝐻1

∗(𝐾)
�̇�

𝑈
+ 𝐾𝐻2

∗(𝐾)
𝐵 ∙ �̇�

𝑈
+ 𝐾2𝐻3

∗(𝐾)𝜃] (3-20) 

𝑀𝑛𝑠 =
1

2
𝜌𝑈2𝐵2 [𝐾𝐴1

∗(𝐾)
�̇�

𝑈
+ 𝐾𝐴2

∗(𝐾)
𝐵 ∙ �̇�

𝑈
+ 𝐾2𝐴3

∗(𝐾)𝜃] (3-21) 

With the same procedure used by D’Argenio (Chap. 3-3-2) in MATLAB for symmetric 

and anti-symmetric cases, the flutter wind speed is evaluated considering four approximating 

functions to describe vertical displacements and torsional rotations of the deck.   

 

Akashi Kaikyo Bridge 𝑼𝒓𝒄 fc[Hz] 𝑼𝒇[m/s] 

Anti-symmetric configuration 29.6071 0.0743 81.1 

Symmetric configuration 28.3593 0.0746 75.6 

Table 3-10: Flutter critic speeds with second-order effects, using four approximating functions[8] 

Akashi Kaikyo Bridge 𝑼𝒓𝒄 fc[Hz] 𝑼𝒇[m/s] 

Anti-symmetric configuration 29.3977 0.0791 81.4 

Symmetric configuration 28.0069 0.0760 77.2 

Table 3-11: Flutter critic speeds without second-order effects, using four approximating 
functions[8] 
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It is possible to observe that considering second-order effects causes a reduction of 

flutter critic speed of 2.1% in symmetric configuration. In both cases (with and without second-

order effects), the critical condition is obtained for the symmetric configuration.  

 

Symmetric 

configuration 

4 sinusoidal 

functions Uf  [m/s] 

1 sinusoidal 

function Uf [m/s] 

% relative 

error 

2nd order analysis 75.6 65.1 16 

Standard analysis 77.2 63.4 21 

Table 3-12: Results with second-order and standard analysis, with four and one approximating 
functions 



 

50 

 

 

 

 

 

 

 

 

 

 

PART 2 



 

51 

CHAPTER 4 

TEST PROBLEMS IN ANSYS  

In Part 1, the historical development of the design and construction of suspension 

bridges, from 19th century until today, was discussed. At the beginning, the bridges were 

designed without considering in the appropriate way wind effects: several bridges, as Tacoma 

Bridge (1940), fell down for this reason. After this disaster, a new impulse in this direction 

arose, with studies on aerodynamics of bridges and analyses on aircraft wing, which were used 

for big span bridges applications to evaluate the actions of wind on the deck. In fact, it has been 

demonstrated that the wind effects are necessary to design suspension bridges. These 

structures, with their important length and slenderness, are very sensitive to the horizontal 

loads that could cause important flexural and torsional displacements.  

In Chap. 2, it has been shown that the most dangerous phenomenon that may occur 

on suspension bridges is flutter, in fact when it emerges the consequences for the structure are 

catastrophic.  

Wind effects analysis on bridges can be performed with different methods as shown in 

Part 1: 

• Analytic analysis; 

• Finite elements numerical methods; 

• Studying the behaviour of reduced model in wind tunnel. 

In Part 2 suspension bridges, in particular Akashi Kaikyo Bridge, will be studied by 

using the finite element software ANSYS. The results will be compared with those obtained in 

Part 1 and those presented in the literature for this structure. 

An important goal of the analysis is the validation of the analytic and numerical 

methods, in case of compatibility of results respect to bibliographic ones. 
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First, it will be necessary to analyse simple cases with software ANSYS to ensure the 

accuracy of the results obtained. After, it will be possible to study more complex structure and, 

in the end, a flutter analysis of the longest suspension bridge in the world, the Akashi Kaikyo 

Bridge, will be realised. 

4.1 Dynamics of straight prestressed cable 

The first case considered is a straight cable (Figure 4-1), where a modal analysis is 

performed using ANSYS software and the results will be compared with those obtained with 

FEM software Lusas and with analytic results. 

 

 

  Figure 4-1: Straight cable subjected to pretension T  

Consider the displacement y in orthogonal direction respect to x-axis, the equilibrium 

equation of a cable segment of length 𝑑𝑥 and mass 𝜌𝑑𝑥 is: 

𝜌𝑑𝑥
𝑑2𝑦

𝑑𝑡2
= −𝑇

𝑑𝑦

𝑑𝑥
+ 𝑇 (

𝑑𝑦

𝑑𝑥
+

𝑑2𝑦

𝑑𝑥2
𝑑𝑥) (4-1) 

 

It is possible to search a solution depending on 𝑥, 𝑡(time), in the form: 

𝑦(𝑥, 𝑡) = 𝜑(𝑥)𝑓(𝑡) (4-2) 

And with the substitution of Eq. 4-2 in 4-1, it can be obtained: 

1

𝑓(𝑡)

𝑑2𝑓(𝑡)

𝑑𝑡2
=

𝑇

𝜌

1

𝜑(𝑥)

𝑑2𝜑(𝑥)

𝑑𝑥2
(4-3) 

To verify Eq. 4-3, the two members must be equal to the same constant −𝜔2, and by 

solving the two separate differential equations they are obtained the infinite natural pulsations 

of the system: 
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𝜔𝑖 = 𝑖
𝜋

𝑙
√

𝑇

𝜌
(4-4) 

 Numerical example 

Now it is possible to perform a simple example of a tension straight cable, with the 

software ANSYS, with the properties of Table 4-1: 

 

Length 30 m 

Cross section 1.9 10-4 m2 

Pretension T 30 kN 

Unit length weight 1.5 kg/m 

Table 4-1: Straight cable properties 

First, in order to perform the FEM analysis, it is necessary to realise the numerical 

model in the software. The finite element that has been selected is BEAM188. It is a linear (2-

node) beam element in 3D with six degrees of freedom in each node that includes translations 

in x, y and z directions and rotation respect to x, y and z axis. BEAM188 (Figure 4-2) includes 

stress stiffness terms, by default, in any analysis with the command NLGEOM,ON. 

The element can be used with any cross section using the appropriate ANSYS 

command. 

 

Figure 4-2: Representation of BEAM188 element[9] 

The structure is simply supported in 𝑥𝑦 plane and only plane oscillations are 

considered. A concentrated load of 30 kN is applied; the mesh consists in 200 elements as in 

Lusas analysis.  

Modal analysis is realised with the command Solution>Analysis type>Modal and 

selected Analysis options>Block Lanczos and PSTRES,ON to consider prestress effects. 
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Mode-shapes and relative frequencies are showed in Figures 4-3;4-7. 

Figure 4-3: Mode 1, 2.3595 Hz                                         Figure 4-4: Mode 2, 4.7209 Hz 

               Figure 4-5: Mode 3, 7.0865 Hz                                            Figure 4-6: Mode 4, 9.4581 Hz 

 

Figure 4-7: Mode 5, 11.838 Hz 

The results obtained in ANSYS are now compared to Lusas and analytic ones and, for 

each mode, the relative error is evaluated to have an estimate of the accuracy of the numerical 

method. 
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Mode Ansys 

frequency 

[HZ] 

Lusas 

frequency 

[HZ] 

Analytic 

frequency 

[HZ] 

 %err 

respect 

Lusas 

 %err 

respect 

analytic 

  

1st 2.3595 2.357 2.35  0.1  0.4   

2nd 4.7209 4.715 4.71  0.1  0.2   

3rd 7.0865 7.075 7.07  0.1  0.2   

4th 9.4581 9.438 9.43  0.2  0.3   

5th 11.838 11.805 11.78  0.3  0.5   

 

Table 4-2: Results comparison and relative errors[10] 

In Table 4-2, it is possible to observe as the differences in term of vibration frequencies 

are negligible, with a relative error smaller than 0.5% in both cases, and this is a first validation 

of the ANSYS numerical model.  

4.2 Heavy cable small oscillations 

Studying small oscillations of heavy cables is an important step to know the dynamic 

behaviour of suspension bridges. The dynamic behaviour of a cable is not linear because of the 

stiffening of the element, if the oscillation amplitude rises. It is possible to obtain a 

linearization of the problem considering small displacement of the heavy cable (Figure 4-8). 

 

 

Figure 4-8: Heavy cable fluctuations 

The dynamic equilibrium equations it is represented by: 

𝐻
𝑑2𝑣

𝑑𝑧2
−

ℎ(𝑡)

𝐻
 𝑞𝑔 = 𝜇

𝑑2𝑣

𝑑𝑡2
(4-5) 
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where the pull action ℎ is: 

ℎ(𝑡) =
𝐸𝐴

𝑙

𝑞𝑔

𝐻
∫ 𝑣(𝑧, 𝑡)

𝑙

0

𝑑𝑧 (4-6) 

and: 

• 𝐻: is the horizontal component of the pull in the cable; 

• 𝑞𝑔: is the load given by self-weight for unit length on horizontal projection. 

It is possible solve the problem with variable separation respect 𝑧 coordinate and time 

𝑡, and the solution of the Eq. 4-5 it is expressed as product of two functions: 

𝑣(𝑧, 𝑡) = 𝜂(𝑧)𝑓(𝑡) (4-7) 

Oscillations that satisfy the condition 𝜂(𝑧) = −𝜂(−𝑧) are anti-symmetric and they 

don’t cause variation of pull actions in the cable. The identity 𝜂(𝑧) = 𝜂(−𝑧) is relative to 

symmetric oscillations that cause an increase of pull actions. 

Using the approach described in Chap. 3.2.3 the natural pulsations are obtained for 

symmetric and anti-symmetric cases. 

 Numerical example 

As in the previous case of a straight cable, it is possible to perform a modal analysis of the 

heavy cable with the software ANSYS. In this case there is also a validation of the numerical 

model for a problem with some peculiarities respect to the suspension bridge case. 

In fact, it is possible to consider the heavy cable as the main cable of a suspension 

bridge that supports loads coming from the deck. 

Span 1400 m 

Middle span displacement 128 m 

Cross section 0.55 m2 

E 2E11 N/m2 

Unit span weight 221706 N/m 

 Table 4-3: Geometrical properties of heavy cable 

The heavy cable, with the properties shown in Table 4-3, is realised in ANSYS using 

the element BEAM188 as in the case of straight cable, in Chap 4.1. The structure is subjected 

to self-weight actions that give its prestress. Hinges at the two ends allow rotation around 𝑧 

axis. The mesh consists in a discretization of 200 elements as in the same Lusas model. 

Performing modal analysis as described in the previous analysis, the following results can be 

obtained (Figure 4-9;4-14). 
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  Figure 4-9: Mode 1 anti-symmetric, 0.09464 Hz             Figure 4-10: Mode 1 symmetric, 0.1323 Hz 

                                                                               
Figure 4-11: Mode 2 anti-symmetric, 0.1937 Hz                Figure 4-12: Mode 2 symmetric, 0.1793 Hz 

 

 Figure 4-13: Mode 3 anti-symmetric, 0.2918 Hz              Figure 4-14: Mode 3 symmetric, 0.2459 Hz 
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The results obtained in ANSYS are now compared to Lusas and analytic ones and, for 

each mode, the relative error is evaluated to have an estimate of the accuracy of the numerical 

method (Table 4-4). 

 

Mode Ansys 

frequency 

[HZ] 

Lusas 

frequency 

[HZ] 

Analytic 

frequency 

[HZ] 

 %err 

respect 

Lusas 

 %err 

respect 

analytic 

  

1st AS 0.09464 0.09 0.0979  4.8  0.3   

1st S 0.1323 0.128 0.1326  3.5  0.2   

2ndAS 0.1937 0.186 0.1958  4.1  1   

2nd S 0.1793 0.188 0.1875  4.8  4.5   

3rd AS 0.2918 0.280 0.2936  4.2  0.6   

3rd S 0.2459 0.238 0.2492  3.3  1.3   

Table 4-4: Results comparison and relative errors 

In Table 4-4, it is possible to observe how the differences in term of oscillation 

frequencies are very small, with a maximum relative error smaller than 4.8% respect to Lusas 

results and 4.5% respect to analytic ones. 

4.3 Real case numerical example: Singapore 

Suspension Footbridge 

It is possible to consider a numerical example realised with ANSYS program of a 

suspension footbridge of small span: the Singapore Suspension Footbridge (Figure 4-15). A 

plane model of the structure is realised and a modal analysis is performed with the goal of 

evaluating the natural frequencies to be compared to the ones obtained in the other methods, 

as in the previous cases analysed. 

The structure examined is a footbridge realised in Singapore with a suspension span 

of 35 m (Table 4-5). It is designed respect to static actions and dynamic actions, as wind loads. 

 

Span 35 m 

Width 1.6 m 

Deck cross section 2.662 10-2 m2 

Deck density 209 kg/m 

Edeck 200 GPa 

Ideck 1.666 10-4 m4 
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Ehangers 100 GPa 

Ahangers 2.01 10-4 m2 

Ecable 51.9 Gpa 

Acable 3.504 10-4 m2 

Cable density 5.569 kg/m 

Cable max displacement 5.5 m 

Towers height 6 m 

Table 4-5: Mechanical and geometrical properties of Singapore Suspension Footbridge 

 

 

Figure 4-15: Geometrical properties of Singapore Suspension Footbridge 

Main cable and deck are modelled in ANSYS using the element BEAM188 as in the 

previous cases. The hangers, that are subjected to axial forces to transmit loads from deck to 

main cable, are modelled using element LINK180 and their weight it is considered negligible.  

 

 

Figure 4-16: LINK180 representation[11] 
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LINK180 is a 3D element that can be used to model trusses, cables and links. It is a 

uniaxial tension-compression element with three degrees of freedom each node: translation in 

the nodal x, y and z directions. By default, this element includes stress-stiffness terms in any 

analysis that includes large-deflection effects. LINK180 is defined by two nodes, cross-

sectional area and material properties, assigned in modelling phase. The mesh realised 

consists in a discretization of 200 elements for main cable and deck and each hanger is 

modelled as a single element. The static scheme considers hinges at the extremities of the main 

cable, whereas the deck is simply supported in vertical plane 𝑥𝑦. 

The results of modal analysis are shown in Figure 4-17;4-19: 

 

 

  Figure 4-17: Mode 1 symmetric, 1.4531 Hz                     Figure 4-18: Mode 1 anti-symmetric, 2.0935 Hz 

 

Figure 4-19: Mode 2 symmetric, 4.6431 Hz 

The results obtained are compared with those obtained by analytic method 

(Lacarbonara, 2013[12]) and in Lusas (Table 4-6). 

For the first symmetric mode, it is possible to observe a large difference between the 

results obtained by different methods, while for the other modes the relative errors decrease 

and values of natural frequencies converge. 
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Mode Ansys 

frequency 

[HZ] 

Lusas 

frequency 

[HZ] 

Analytic 

frequency 

[HZ] 

 %err 

respect 

Lusas 

 %err 

respect 

analytic 

1st S 1.4531 1.970 1.911  35.5  33.6 

1st AS 2.0935 2.074 2.143  0.9  2.3 

2nd S 4.6431 4.567 4.668  1.6  0.5 

 

Table 4-6: Results with different methods and relative errors 

4.4 Salvatori-Borri ideal bridge 

A further development of the analysis realised in the previous Chapters allows to study a 

3D model of a suspension bridge. In this way, its out of plane behaviour can be analysed, 

accounting for modal shapes and natural frequencies in horizontal direction and torsion. 

The ideal model analysed by Salvatori-Borri in Chap. 3.1 is studied, by realising a 

numerical model in ANSYS with the geometrical properties described in Table 3-1. 

 

 

 

Figure 4-20: “Fish-bone” ANSYS numerical model 

The “fish-bone” numerical model (Figure 4-20), is realised with ANSYS elements that 

allow considering geometric non-linearity when the analysis is developed. 

In fact, the main cables are modelled using BEAM188 elements and they are restrained 

with hinges at the ends. The hangers, as in the case of plane model, are realised using element 

LINK180 that transmits only axial forces and their weight is negligible. The deck is modelled 

by element BEAM188 and it is connected to hangers by rigid links, that are fictitious elements 
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of the numerical model necessary to realise the connection. They are BEAM188 elements for 

which a very big inertia is assigned, to obtain a rigid flexural behaviour; their weight is imposed 

equal to zero. The static scheme of the deck provides a self-supported configuration in 

horizontal and vertical plane that permits rotations around 𝑦 and 𝑧 axes.  

After the realisation of ANSYS numerical model, a modal analysis is performed as 

described in the previous cases and the following results are obtained (Figure 4-21;4-26): 

 

 

Figure 4-21: Mode 1 H-S, 0.08456 Hz                               Figure 4-22: Mode 1 V-A, 0.1052 Hz 

 

 

  Figure 4-23: Mode 1 V-S, 0.1426 Hz                              Figure 4-24: Mode 1 H-A, 0.1762 Hz 
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Figure 4-25: Mode 1 T-S, 0.3432 Hz                            Figure 4-26: Mode 1 T-A, 0.3457 Hz 

Mode Frequency [Hz] 

1st H-S 0.08456 

1st V-A 0.1052 

1st V-S 0.1426 

1st H-A 0.1762 

2nd V-A 0.2057 

2nd H-S 0.2107 

2nd V-S 0.2396 

2nd H-A 0.2749 

3rd V-S 0.2807 

3rd V-A 0.3259 

3rd H-A 0.3365 

1st T-S 0.3432 

1st T-A 0.3457 

 

Table 4-7: Natural frequencies of Salvatori-Borri bridge 
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CHAPTER 5 

AKASHI KAIKYO BRIDGE ANALYSIS 

The finite elements numerical modelling of large suspension bridges is not an easy 

task, in fact, as showed in Chap. 4, these structures present a non-linear geometric behaviour, 

due to hangers and main cables. The increasing of load in hangers and cables, produced by the 

self-load of the bridge, causes an important stiffening effect on the structure. 

The increasing of pull stress 𝐻 in main cables generates a reduction of displacements 

given by further loads. 

In suspension bridges, self-weight increases structural stiffness and it allows to 

support loads given by traffic or wind. These kinds of structures represent the easiest way to 

overcome big spans because, in unloaded condition, the elements that support permanent load 

are hangers and cable, whereas the deck is free by stresses. 

So, it is necessary to use a software that can take into account specific effects and that 

allows to solve an eigenvalues problem. The software must also consider unsteady forces acting 

on the bridge, to perform a flutter analysis. 

The structure analysed in this chapter is the Akashi Kaikyo Bridge that, with its 1991 

m of main span, is today the longest suspension bridge in the world. 

Two different numerical models of the bridge were realised: the first is a “Fish-bone” 

model, where after the definition of natural frequencies, a first flutter analysis is performed. 

The second is a more realistic model with a complex truss deck, that allows to consider with 

more accuracy the torsional behaviour of the suspension bridge and performs a more efficient 

flutter analysis. 

The construction of the Akashi Kaikyo Bridge ended in 1998 and links the city 

of Kobe on the Japanese mainland of Honshu to Iwaya on Awaji Island. It crosses the 

busy Akashi Strait as part of the Honshu–Shikoku Highway. Its main cable, with a total 

diameter of 1.6 m present a new technology of maintenance the “Dry air injection system” to 

https://en.wikipedia.org/wiki/Kobe
https://en.wikipedia.org/wiki/Honshu
https://en.wikipedia.org/wiki/Awaji_Island
https://en.wikipedia.org/wiki/Akashi_Strait
https://en.wikipedia.org/wiki/Shikoku
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protect from corrosion. The system consists in injecting dry air into main cables and to keep 

the humidity inside the cables at a constant value. This system is a revolutionary idea because 

in this way the maintenance cost can be highly reduced. 

 

 

Figure 5-1: Dry air injection system 

For the construction of deck beams (Figure 5-2) 90,000 tons of reinforcement steel 

have been used. Due to the large size of the bridge, the wind load which must face is higher 

than that of any other existing bridge at the completion of construction. Using steel with high 

tensile strength for the beams made very strong yet lightweight, and thus cheaper. The 

reinforcing elements are prefabricated shaped panel and transported to the construction site 

where they have been erected into the interior of the anchorages and towers with floating 

cranes. 

 

Figure 5-2: View of Akashi Kaikyo Bridge 

5.1 “Fish-bone” model 

The ANSYS numerical model is realised with the geometrical properties shown in 

Table 3-2. A “Fish-bone” model (Figure 5-3) of the central span was realised. For the main 
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cables a reduced elastic modulus 𝐸∗ = 1.6 1010 𝑃𝑎 was used, taking into account the 

deformability of the side cables over the lateral spans of 960.  

The main cables are modelled using BEAM188 elements, as in Salvatori-Borri case, 

and they are restrained with hinges at the extremities. The hangers are realised using element 

LINK180 that transmits only axial forces and their weight is negligible. The deck is modelled 

with element BEAM188 and it is connected to hangers by rigid links, fictitious elements of the 

numerical model necessary to realise the connection. They are BEAM188 elements for which 

a very big inertia is assigned to obtain rigid flexural behaviour and their weight is imposed 

equal to zero. The static scheme of the deck provides a self-supported configuration in 

horizontal and vertical plane that allows rotations around 𝑦 and 𝑧 axes (Figure 5-3).  

 

Figure 5-3: Akashi Kaikyo “Fish-bone” numerical model 

After the realisation of ANSYS numerical model, a modal analysis was performed as 

described in previous cases and the following results were obtained (Figure 5-4;5-9): 

 

 

        Figure 5-4: Mode 1 H-S, 0.0366 Hz                                   Figure 5-5: Mode 1 V-S, 0.0593 Hz 
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Figure 5-6: Mode 1 H-A, 0.0654 Hz                                 Figure 5-7: Mode 1 V-A, 0.0815 Hz 

 

         Figure 5-8: Mode 1 T-S, 0.132 Hz                                      Figure 5-9: Mode 1 T-A, 0.203 Hz 

ANSYS modal analysis results are compared to those obtained by D’Argenio by a 

continuous model (Chap 3.2.2) and results from the literature (Bridge Aeroelasticity, Chap. 

3.2.1). The relative errors between the three different methods in terms of frequency are shown 

in Table 5-1. 

 

Mode ANSYS 

results 

[Hz] 

Analytic 

results  

[Hz] 

Literature 

results 

[Hz] 

%err 

respect 

analytic 

%err 

respect 

literature 

1st H-S 0.0366 0.027 0.045 35 22 

1st V-S 0.0593 0.066 0.065 11 10 

1st H-A 0.0653 0.075 0.084 15 28 

1st V-A 0.0815 0.077 0.085 5.8 4.3 

2nd V-S 0.118 0.120 0.122 1.7 3.4 



5 
Akashi Kaikyo Bridge analysis 

68 

1st T-S 0.132 0.124 0.129 6.4 2.3 

2nd V-A 0.159 0.164 0.171 3.1 7.5 

1st T-A 0.203 0.212 0.210 4.4 3.4 

Table 5-1: Akashi Kaikyo Bridge modal analysis results 

The relative errors are not negligible for lower frequencies, while they become smaller 

for the higher modes. 

 Flutter analysis 

After the evaluation of natural vibration frequencies, it is possible to perform a flutter 

analysis of the Akashi Kaikyo Bridge. The aim of flutter analysis is to predict the lowest critical 

wind velocity that induces flutter instability, and the corresponding flutter frequency. 

The procedure adopted to perform the analysis in ANSYS software is described in the 

article by X.G. Hua et al., 2007 [13]. 

The numerical model uses a specific element, MATRIX27, in ANSYS to model the 

aeroelastic forces acting on the bridge, where the stiffness and damping matrices are expressed 

in terms of the reduced wind velocity and flutter derivatives. With the use of this FE model, 

damped complex eigenvalue analysis is carried out to determine the complex eigenvalues, of 

which the real part is the logarithm decay rate and the imaginary part is the damped vibration 

frequency. The condition for onset of flutter instability becomes that, at a certain wind velocity, 

the structural system incorporating fictitious MATRIX27 elements has a complex eigenvalue 

with zero or near-zero real part, with the imaginary part of this eigenvalue being the flutter 

frequency.  

The equation of motion of a bridge structure in the smooth flow can be expressed as: 

[𝑀]{�̈�} + [𝐶]{𝑋}̇ + [𝐾]{𝑋} = {𝐹𝑠𝑒} (5-1) 

 where: 

• 𝑀,𝐶, 𝐾: are the global mass, damping and stiffness matrices; 

• �̈�, �̇�, 𝑋: represent nodal acceleration, velocity and displacement vectors; 

• 𝐹𝑠𝑒: is the vector of nodal aeroelastic forces. 
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The aeroelastic forces (Figure 5-10) acting on unit span of bridge girder can be 

expressed as a linear function of nodal displacement and velocity (Scanlan 1978): 

𝐿𝑠𝑒 =
1

2
 𝜌𝑈2(2𝐵) [𝐾𝐻1

∗
ℎ̇

𝑈
+ 𝐾𝐻2

∗  
𝐵�̇�

𝑈
+ 𝐾2𝐻3

∗𝛼 + 𝐾2𝐻4
∗
ℎ

𝐵
+ 𝐾𝐻5

∗
�̇�

𝑈
+ 𝐾2𝐻6

∗
𝑝

𝐵
] (5-2) 

𝐷𝑠𝑒 =
1

2
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𝑈
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∗
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] (5-3) 

𝑀𝑠𝑒 =
1

2
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𝑈
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] (5-4) 

where: 

• 𝜌: is the air mass density, 1.27 [kg/m3]; 

• 𝑈: is the wind speed; 

• 𝐵: is the width of bridge deck; 

• 𝐾 =
𝜔𝐵

𝑈
: is the reduced circular frequency; 

• ℎ, 𝑝, 𝛼: are the vertical, lateral and torsional displacement, respectively; 

• 𝐴𝑖
∗, 𝐻𝑖

∗, 𝑃𝑖
∗: are non-dimensional flutter derivates, which are function of 

reduced wind speed and they are evaluated in wind tunnel. 

 

Figure 5-10: Deck section representation 

In finite element analysis, these distributed forces are converted into equivalent nodal 

loadings acting at the member ends. Thus, aeroelastic forces for element e can be expressed in 

terms of nodal displacement and nodal velocity as: 

{𝐹𝑎𝑒} = [𝐶]𝑎𝑒
𝑒 {𝑋}̇ 𝑒 + [𝐾]𝑎𝑒

𝑒 {𝑋}𝑒                                                             (5-5) 

 

Where [𝐾]𝑎𝑒
𝑒 , [𝐶]𝑎𝑒

𝑒  represent the local aeroelastic stiffness and damping matrices for 

element e, respectively.  
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Using the lumped formulation, the expressions of [𝐾]𝑎𝑒
𝑒 , [𝐶]𝑎𝑒

𝑒  are obtained as: 

[𝐾]𝑎𝑒
𝑒 = [

𝐾𝑎𝑒1
𝑒 0

0 𝐾𝑎𝑒1
𝑒 ] (5-6) 

[𝐶]𝑎𝑒
𝑒 = [

𝐶𝑎𝑒1
𝑒 0

0 𝐶𝑎𝑒1
𝑒 ] (5-7) 

[𝐾]𝑎𝑒1
𝑒 = 𝑎

[
 
 
 
 
 
0 0 0 0 0 0
0 𝑃6

∗ 𝑃4
∗ 𝐵𝑃3

∗ 0 0

0 𝐻6
∗ 𝐻4

∗ 𝐵𝐻3
∗ 0 0

0 𝐵𝐴6
∗ 𝐵𝐴4

∗ 𝐵2𝐴3
∗ 0 0

0 0 0 0 0 0
0 0 0 0 0 0]

 
 
 
 
 

(5-8) 

[𝐶]𝑎𝑒1
𝑒 = 𝑏

[
 
 
 
 
 
0 0 0 0 0 0
0 𝑃5

∗ 𝑃1
∗ 𝐵𝑃2

∗ 0 0

0 𝐻5
∗ 𝐻1

∗ 𝐵𝐻2
∗ 0 0

0 𝐵𝐴5
∗ 𝐵𝐴1

∗ 𝐵2𝐴2
∗ 0 0

0 0 0 0 0 0
0 0 0 0 0 0]

 
 
 
 
 

(5-9) 

where: 

• 𝑎 =
1

2
𝜌𝑈2𝐾2𝐿𝑒; 

• 𝑏 =
1

2
𝜌𝑈𝐾𝐿𝑒; 

• 𝐿𝑒: is the length of fictitious element. 

The user-defined element in ANSYS, MATRIX27, is an element with two nodes with 

six degrees of freedom each one (Figure 5-11), and with its local coordinate system being 

coincident with the global coordinate system. The element is arbitrary in geometrical 

configuration and the element properties are specified by stiffness, mass, and damping 

coefficients. 

 

Figure 5-11: Matrix27 ANSYS element[14] 
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The first step for flutter analysis using ANSYS is to simulate the aeroelastic forces 

acting on each node by element MATRIX27. To achieve this, a hybrid FE model incorporating 

one structural element with four MATRIX27 elements as illustrated in Figure 5-12 is 

formulated. Considering the fact that one MATRIX27 element can only model either an 

aeroelastic stiffness matrix or an aeroelastic damping matrix instead of both simultaneously, 

a pair of MATRIX27 elements are attached every node in a structural element to simulate the 

aeroelastic forces. For a deck element e as shown in Figure 5-12, MATRIX27 elements e1 and 

e3 are attached after defining a fictitious node k to represent the aeroelastic stiffness and 

damping at node i, while MATRIX27 elements e2 and e4 are attached after defining a fictitious 

node l to represent the aeroelastic stiffness and damping at node j. The pair of MATRIX27 

elements attached to each structural node share the same nodes. 

 

Figure 5-12: Hybrid finite element model for flutter analysis in ANSYS 

Now it is possible to assemble all element matrices into global aeroelastic stiffness and 

damping matrices: 

[𝐹]𝑎𝑒 = [𝐾]𝑎𝑒{𝑋} + [𝐶]𝑎𝑒{�̇�} (5-10) 

Substituting Eq. 5-10 in Eq. 5-1 results in the governing equation of motion for the 

structure after incorporating MATRIX27 elements, as: 

[𝑀]{�̈�} + ([𝐶] − [𝐶]𝑎𝑒){𝑋}̇ + ([𝐾] − [𝐾]𝑎𝑒){𝑋} = 0                            (5-11) 

With this equation, damped complex eigenvalue analysis can be carried out to 

determine the characteristic of the parametrized system. The dynamic response can be 

approximated by a superposition of the first m conjugate pairs of complex eigenvalues and 

eigenvectors, as: 

𝑋 = ∑ 𝜙𝑗𝑒𝑗
𝜆𝑡

𝑚

𝑗=1

(5-12) 

where: 

• 𝜙𝑗 = 𝑝𝑗 ± 𝑖𝑞𝑗: is the jth complex conjugate pair of eigenvectors; 

• 𝜆𝑗 = 𝜎𝑗 ± 𝑖𝜔𝑗. 

The system is dynamically stable if the real part of all eigenvalues is negative and 

dynamically unstable if the real part of one or more eigenvalues is positive. The condition for 
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occurrence of flutter instability is then identified as follows: for certain wind velocity 𝑈𝑓  the 

system has one complex eigenvalue 𝜆𝑓 with zero or near zero real part, the corresponding wind 

velocity 𝑈𝑓  being the critical flutter wind velocity and the imaginary part of the complex 

eigenvalue 𝜆𝑓 becoming the flutter frequency. 

MATRIX27 elements were incorporated in the numerical model of Akashi Kaikyo 

Bridge to perform flutter analysis for a real case. Two hybrid elements (𝐿𝑒 unitary value), for 

aeroelastic stiffness and damping, respectively, have been attached at each node and they are 

fully restrained at their extremities (Figure 5-13). 

 

 

Figure 5-13: Hybrid ANSYS model of Akashi Kaikyo Bridge, with MATRIX27 elements  

Because of the impossibility to know the complex mode which corresponds to a real 

flutter frequency a priori, a mode-by-mode tracing method is employed to iteratively search 

the flutter frequency and determine the critical flutter wind velocity. The procedure in ANSYS 

is summarized in the following steps: 

1. Establish the initial structural FE model without MATRIX27 elements and 

compute the first m natural modes 𝜔𝑖
0(i=1,…,m); 

2. Establish the FE model of the integrated system with MATRIX27 elements, in 

which the flutter derivatives are inputted through the command TABLE in 

ANSYS; 

3. Set an initial guess of critical wind velocity 𝑈0 and its increment ∆𝑈. Let the 

initial oscillation frequency 𝜔0 be the frequency 𝜔𝑖
0 of each natural mode in 

turn. Given the tolerance 𝜖; 

4. Determine the reduced wind velocity and the aeroelastic stiffness and 

damping matrices in MATRIX27 elements at the present iteration, and then 

carry out the damped eigenvalue analysis; 
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5. Compare the imaginary part of the ith computed complex eigenvalue 𝜆𝑖 with 

𝜔0. If |
𝐼𝑚(𝜆𝑖)−𝜔0

𝐼𝑚(𝜆𝑖)
| > 𝜖, let 𝜔0 = 𝐼𝑚(𝜆𝑖) and repeat steps 4 and 5, otherwise go to 

step 6; 

6. Repeat steps 4 and 5 over all m computed natural modes. If the real parts of 

all complex eigenvalues 𝜆𝑖(i=1,…,m) are negative, let 𝑈 = 𝑈0 + ∆𝑈 and repeat 

steps 4 and 5, otherwise when real part for one mode become equal to zero, it 

is obtained flutter critic speed. 

To assemble the MATRIX27 for each wind speed, flutter derivates, function of 

reduced wind speed in terms of Ai, Pi, Hi (Figure 5-14), are necessary to obtain the 

formulations of the three unsteady forces acting on the deck: 𝐿𝑛𝑠, 𝐷𝑛𝑠 , 𝑀𝑛𝑠. 

 

 

Figure 5-14: Flutter derivates for Akashi Kaikyo Bridge 

Analysis results 

The above-described method is used to perform a flutter analysis on the Akashi Kaikyo 

Bridge, with “Fish-bone” numerical model. Using that structural approximation, the model is 

not able to analyse the torsional behaviour of the bridge under wind effects. In fact, the 

iterative method does not evaluate correctly torsional frequencies and their modal shapes, 
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changing wind speed. The eigenvalue relative at the first symmetric vertical mode is the only 

one that is obtained in the damped modal analysis, and its real and imaginary part are correctly 

evaluated, for each wind speed.  

 

 

Figure 5-15: Real part eigenvalue (left), imaginary part (right) 

The iterative procedure starts from an initial wind speed of 𝑈0 = 0 m/s, and the 

increasing of wind speed ∆𝑈 in the procedure has been fixed to 10 m/s for each analysis, till a 

design value of arrive to 𝑈 = 70 m/s. After this point, the discretization step-by-step of ∆𝑈 was 

set to ∆𝑈 = 1 m/s, because the real part of the eigenvalue is approaching zero. The analysis 

furnished a flutter critic speed 𝑈𝑓 = 77.2 m/s, given by 1st V-S mode with a frequency of 0.045 

Hz (Figure 5-15). The results are compared to that reported in the literature (“Bridge 

aeroelasticity”[6] obtained as average value between analytic, numerical and reduced model 

methods, “Aeroelastic Phenomena”[15] obtained with numerical model) and with that 

obtained by Maldera by MATLAB program (Table 5-2). 

 

 ANSYS 

results 

Literature 

data 

Analytic 

results 

%err 

literature 

%err 

analytic 

Ucr [m/s] 77.2 77.7 75.6 0.6 2.1 

fcr [Hz] 0.045 0.138 0.075 206 83 

Table 5-2: Akashi Kaikyo Bridge flutter analysis results comparison 

Observing Table 5-2, it is clear how the flutter critic speed, obtained in ANSYS with 

“Fish-bone” model, shows a very small relative error respect to literature data and analytic 

model. Much bigger differences can be evaluated considering flutter critical frequency with a 

relative error bigger than 200% between ANSYS results and bibliographic data. But, the more 

considerable difference is that the results showed in literature and those obtained with analytic 
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methods display first torsional symmetric mode as responsible of flutter instability. Whereas, 

the numerical model, realised in ANSYS, showed that the flutter instability is associated to the 

first symmetric vertical mode. So, it is possible to assert that the “Fish-bone” numerical model 

of Akashi Kaikyo Bridge produces good results in terms of flutter critical wind speed, but it 

does not show the correct mode responsible of the phenomenon.  

5.2 “Truss-beam” deck model 

The “Fish-bone” model of the Akashi Kaikyo Bridge, analysed in Chap 5.1, shows good 

results in terms of natural frequencies and mode-shapes compared to literature data. In the 

flutter analysis, considering the mode-shape responsible of the phenomenon, it is possible to 

evaluate a difference respect the results of analytic analysis and bibliographic data that show 

first torsional symmetric mode as the responsible of the instability. 

For this reason, it is possible to improve the numerical model analysed, with the 

realisation of a truss beam deck model that represents, with a better accuracy, the real 

structure of the Akashi Kaikyo Bridge. The aim of this model is to analyse correctly the 

torsional behaviour of the deck under wind action and to obtain a better solution in term of 

critical wind speed, frequency and mode-shape that cause flutter instability. 

The structure is modelled with four main longitudinal beams connected by transversal 

elements and two secondary longitudinal beams in the bottom part of the deck. There are 

stiffeners in longitudinal direction that transmits load between top and bottom longitudinal 

beam, and transversal elements orthogonal respect the axis of the deck. In the bottom part of 

the deck, V-shaped elements are assembled with the up-wind function (Figure 5-16). The 

numerical model is realised with the assembly in the longitudinal direction of the same module 

40 m long. 

 

 

 Figure 5-16: “Truss-beam” deck ANSYS numerical model 
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Figure 5-17: Akashi Kaikyo Bridge rendering model 

Material properties are the same of the “Fish-bone” model showed in Table 3-2. The 

numerical model in ANSYS is realised using BEAM188 elements for main cables and deck 

elements, whereas LINK180 element is assigned to hangers. The static scheme considers 

hinges at the extremity of main cables and the deck is restrained as simply supported beam in 

vertical plane 𝑥𝑦, whereas, due to huge stiffness in horizontal plane 𝑥𝑧, it is fully restrained in 

the other directions. The geometrical properties of “truss-beam” deck are showed in following 

Table 5-3: 

 A [m2] Ixx [m4] Iyy [m4] 

Longitudinal beams 1.05 0.0757 0.111 

Longitudinal secondary beams 0.410 0.0139 0.0139 

Longitudinal stiffeners 0.533 0.0236 0.0236 

Transversal stiffeners 0.372 0.0165 0.0080 

V-shaped up-winds 0.358 0.0122 0.00936 

 

Table 5-3: Geometrical properties of “truss-beam” deck 

 Modal analysis 

After the realisation of ANSYS numerical model, a modal analysis was performed as 

described in the previous cases and natural frequencies and modal shapes of the “truss-beam” 

model are evaluated. ANSYS results are compared to those obtained by D’Argenio with analytic 

method (Chap 3.2.2) and the data reported in literature (Bridge Aeroelasticity, Chap. 3.2.1). 

They are evaluated the relative errors between the three different methods in term of frequency 

for each natural mode (Table 5-4). 
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Mode ANSYS 

results 

[Hz] 

Analytic 

results 

[Hz] 

Literature 

data 

[Hz] 

%err 

respect 

analytic 

%err 

respect 

literature 

1st H-S 0.0463 0.027 0.045 71 2.8 

1st V-S 0.100 0.066 0.065 51 52 

1st H-A 0.077 0.075 0.084 2.6 9 

1st V-A 0.102 0.077 0.085 32.4 20 

2nd V-S 0.158 0.120 0.122 31 29 

1st T-S 0.142 0.124 0.129 14.5 10 

2nd V-A 0.229 0.164 0.171 39.6 33.9 

1st T-A 0.203 0.212 0.210 4.4 3.4 

Table 5-4: Modal analysis “truss-beam” model results 

It is possible to underline an increasing of relative errors respect the case of “Fish-

bone” model, more considerable for vertical modes. In fact, the literature data and the analytic 

analysis are obtained modelling the deck as a simple beam, whereas in “truss beam” model 

there is an increasing of deck’s stiffness that generate different results respect the previous 

case. 

 Flutter analysis 

After the modal analysis, a flutter analysis of the Akashi Kaikyo Bridge was 

performed. The procedure is the one adopted for the “Fish-bone” model.  

The flutter analysis was performed by three approaches where the wind actions 

applied on the bridge (Drag, Lift and Moment) are modelled in different ways: 

• Drag, Lift and Moment are modelled as three unsteady actions; 

• Lift and Moment are modelled as unsteady actions and Drag is a steady 

horizontal force; 

• Lift and Moment are unsteady actions, whereas Drag contribution is 

neglected. 

 

 

 

 



5 
Akashi Kaikyo Bridge analysis 

78 

Lift, Drag and Moment unsteady analysis 

The analysis can be performed as shown in case of “Fish-Bone” model; Lift, Drag and 

Moment are expressed by Eq. 5-2;5-3;5-4 and they are applied as shown in Figure 5-18: 

 

Figure 5-18: Deck section and actions representation 

The hybrid numerical model uses the element MATRIX27 in ANSYS to model the 

aeroelastic forces acting on the bridge, in a way that the stiffness and damping matrices are 

expressed in terms of the reduced wind velocity and flutter derivatives. The fictitious elements 

MATRIX27 have a unitary length and they are realised with a constant interaxial distance and 

connected to the middle axis of the deck, as showed in Figure 5-13 for the “Fish-bone” model. 

By the “truss-beam” modelling, damped complex eigenvalue analysis is correctly 

performed in terms of real and imaginary part also respect to torsional mode-shapes and so, 

there is an improvement of the solution respect to “Fish-bone” model, which, by contrast, is 

not able to evaluate torsional behaviour in the flutter instability. First torsional and vertical 

modes are analysed in the solution, in both symmetric and anti-symmetric configuration. 

 

 

Figure 5-19: Real (left) and imaginary (right) part of the solution 

The analysis evaluates a flutter critic speed 𝑈𝑓 = 81.3 m/s, given by 1st T-S mode, 

(Figure 5-19) with an horizontal component of displacement and a critical frequency of 0.122 
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Hz (Figure 5-20). It is possible to observe that damped modal analysis gives a small reduction 

of vibration frequencies for each natural mode, as wind speed is increased. 

 

 

Figure 5-20: Critical flutter mode-shape 

The results, as for “Fish-bone” model, are compared to those reported in the literature 

(“Bridge aeroelasticity”[6], “Aeroelastic Phenomena”[15]), and with those obtained by 

Maldera in MATLAB (Table 5-5). 

 

 ANSYS 

results 

Literature 

data 

Analytic 

results 

%err 

literature 

%err 

analytic 

Ucr [m/s] 81.3 77.7 75.6 4.6 7.5 

fcr [Hz] 0.122 0.138 0.075 13 62 

Table 5-5: Akashi Kaikyo Bridge flutter analysis, with three n-s actions, results comparison 

It is possible to observe that the flutter critic speed, obtained in ANSYS with “truss-

beam” model, presents a relative error respect to literature data smaller than 5% and of 7.5% 

respect to analytic model. More important differences can be evaluated considering flutter 

critical frequency, with a relative error of 13% between ANSYS results and literature data. 

Respect to the case of “fish-bone” model, it is possible to observe a small increase in critical 

wind speed of about 5 m/s, that presents a relative error smaller than 1%, compared to 

bibliographic data for Akashi Kaikyo Bridge. “Truss-beam” analysis gives result with higher 

accuracy in terms of critical flutter frequency, but the most important improvement is the 

identification of the mode-shape associated to the instability that is, as in the literature data 

and analytic results, the first torsional symmetric mode. 
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L-M unsteady, Drag steady actions 

As in the previous case, Lift and Moment are considered as unsteady actions and they are 

evaluated in function of flutter derivates 𝐻𝑖 , 𝐴𝑖. In addition, in this case the Drag horizontal 

action is modelled as a steady force acting on the deck and it is function of aerodynamic 

resistance factor 𝐶𝑑 (Table 3-5): 

𝐷𝑠 =
1

2
𝜌𝑈2𝐵𝐶𝑑(0) (5-13) 

Drag force is evaluated for each wind speed considered in the analysis, for an angle of 

attack 𝛼 = 0. The hybrid numerical model utilises the element MATRIX27 in ANSYS to model 

the aeroelastic forces acting on the bridge, in a way that the stiffness and damping matrices 

are expressed in terms of the reduced wind velocity and flutter derivatives. In this case, the 

terms in the matrices, depending on unsteady Drag, are set equal to zero. 

[𝐾]𝑎𝑒1
𝑒 = 𝑎

[
 
 
 
 
 
0 0 0 0 0 0
0 0 0 0 0 0
0 𝐻6

∗ 𝐻4
∗ 𝐵𝐻3

∗ 0 0

0 𝐵𝐴6
∗ 𝐵𝐴4

∗ 𝐵2𝐴3
∗ 0 0

0 0 0 0 0 0
0 0 0 0 0 0]

 
 
 
 
 

(5-14) 

[𝐶]𝑎𝑒1
𝑒 = 𝑏

[
 
 
 
 
 
0 0 0 0 0 0
0 0 0 0 0 0
0 𝐻5

∗ 𝐻1
∗ 𝐵𝐻2

∗ 0 0

0 𝐵𝐴5
∗ 𝐵𝐴1

∗ 𝐵2𝐴2
∗ 0 0

0 0 0 0 0 0
0 0 0 0 0 0]

 
 
 
 
 

(5-15) 

where: 

• [𝐾]𝑎𝑒
𝑒 , [𝐶]𝑎𝑒

𝑒  represent the local aeroelastic stiffness and damping matrices for 

element e, respectively, without Drag terms; 

• 𝑎 =
1

2
𝜌𝑈2𝐾2𝐿𝑒; 

• 𝑏 =
1

2
𝜌𝑈𝐾𝐿𝑒; 

• 𝐿𝑒: is the length of fictitious element. 

The “six-steps” iterative procedure, described in Chap. 5.1, was applied by using the 

same ∆𝑈 adopted in the case of three unsteady actions. First torsional and vertical modes are 

analysed in the solution, in both symmetric and anti-symmetric configuration.  
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Figure 5-21: Real (left) and imaginary (right) part of the solution 

. The analysis furnished a flutter critic speed 𝑈𝑓 = 76.4 m/s, associated to 1st T-S mode, 

(Figure 5-21) with an horizontal component of displacement, as in the three unsteady actions 

calculation, and a critical frequency of 0.131 Hz (Figure 5-20). As in the previous case, it is 

possible to observe that damped modal analysis gives a small reduction of vibration 

frequencies for each natural mode, as wind speed is increased. 

The results are compared to those reported in the literature (“Bridge 

aeroelasticity”[6], “Aeroelastic phenomena”[15]), and with those obtained by Maldera in 

MATLAB (Table 5-6). 

 

 ANSYS 

results 

Literature 

data 

Analytic 

results 

%err 

literature 

%err 

analytic 

Ucr [m/s] 76.4 77.7 75.6 1.7 1 

fcr [Hz] 0.131 0.138 0.075 5.3 74 

Table 5-6: Akashi Kaikyo Bridge flutter analysis, with two n-s actions and Drag steady, results 
comparison 

The analysis, performed with Moment and Lift as unsteady actions plus steady Drag, 

gave very accurate results in terms of critical flutter speed: the relative error is always smaller 

than 2%. The horizontal effect, given by steady Drag, produces a destabilising effect that 

reduces the flutter critical wind speed of 4.9 m/s, respect to the three unsteady actions case. 

Another effect is the increasing of critical flutter frequency that reaches 0.131 Hz.  
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Lift and Moment unsteady actions 

The last analysis developed considered only Lift and Moment, whereas Drag force on 

the bridge is not included at all. The flutter analysis was then performed considering Lift and 

Moment as unsteady actions. 

The same “six-steps” procedure presented in Chap. 5.1 was used. The fictitious 

element MATRIX27 is assembled as in the case of two unsteady actions. In fact, the terms in 

the matrices, which depending unsteady Drag, are imposed equal to zero and the final 

expressions of aeroelastic stiffness and damping is represented in Eq. 5-14;5-15. 

The analysis was conducted up to a maximum wind speed of 100 m/s and first 

symmetric and anti-symmetric vertical and torsional modes were studied. The iterative 

procedure started from an initial wind speed of 𝑈0 = 0 m/s, and the increasing of wind speed 

∆𝑈 in the procedure was fixed to 10 m/s for each analysis up to 𝑈 = 70 m/s. After this point, 

the step-by-step discretization of ∆𝑈 was set to ∆𝑈 = 5 m/s, until reaching the wind speed 

𝑈𝑚𝑎𝑥 = 100 m/s. 

 

Figure 5-22: Real (left) and imaginary (right) part of the solution 

No flutter was detected by this analysis in the 0-100 m/s wind speed range. In fact, the 

real part, that gives information about stability of the solution, assumes negative values along 

the wind speed interval considered for all modes analysed, included the first symmetric 

torsional mode, responsible of the instability in the two other cases. For this reason, it is 

possible to affirm that this last numerical model implemented in ANSYS was not able to obtain 

the correct solution for flutter instability.  
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CHAPTER 6 

CONCLUSIONS 

The finite element numerical modelling of long-span suspension bridges is a peculiar 

problem; in fact, such structures present a geometrically non-linear behaviour, because of the 

presence of hangers and main cables. The pre-loading of hangers and cables, produced by the 

bridge self-weight, causes an important stiffening effect that must be taken into account. So, it 

is necessary to use a software that is able to consider the said effect before solving an 

eigenvalue problem such that of a linearized stability analysis. Moreover, to perform a bridge 

flutter analysis, the software must also be able to model unsteady aerodynamic forces, such as 

the wind loads acting on oscillating bridge decks. By means of ANSYS software, it was possible 

to address both the previous issues. As concerns the modeling of cable and beam structures in 

ANSYS, the following finite elements were adopted: 

• BEAM188 to model main cables and bridge deck; 

• LINK180 to model hangers, that transmit only axial forces from the deck to 

main cables. 

Some “test problems” were initially considered: a straight prestressed cable, a heavy 

parabolic cable, and 2D model of the Singapore Suspension Footbridge. The results, in terms 

of natural frequencies and modes, showed a very high accuracy compared to the analysis 

performed by other methods. In fact, ANSYS modal analyses displayed relative errors, in the 

evaluation of natural frequencies, smaller than 5% respect to analytic or numerical (Lusas) 

results. Another “validation problem” considered the case of an ideal suspension bridge, the 

one studied by Salvatori-Borri[5] Chap. 3.1. 

As regards the original work of the thesis, a numerical study of the flutter problem of 

the Akashi Kaikyo Bridge was performed in ANSYS. Different models and analyses were 

realized. In all models, the unsteady wind actions, needed to perform flutter analysis, were 

modeled by using a specific element from the library: MATRIX27. 
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At first, a “Fish-bone” model was implemented and a flutter analysis was run by 

considering the unsteady forces of lift, drag, and moment. The analysis showed a good 

accuracy in predicting the critical flutter speed, but important differences were displayed with 

respect bibliographic data (“Bridge aeroelasticity”[6], “Aeroelastic phenomena”[15]), in 

terms of critical flutter frequency and respect the mode-shape responsible of the instability 

(Table 6-1). In fact, literature data indicate the first symmetric torsional mode associated to 

flutter phenomenon, whereas ANSYS “Fish-bone” numerical model identified the first 

symmetric vertical (bending) mode as responsible for flutter instability. In other words, the 

“Fish-bone” model was not able to describe the torsional behavior properly. 

 ANSYS 

results 

Literature 

data 

%err 

Ucr [m/s] 77.2 77.7 0.6 

fcr [Hz] 0.045 0.138 206 

Table 6-1: “Fish-bone” model flutter analysis results comparison 

The bridge model was improved by realising a “truss-beam” deck model that 

represents, with a better accuracy, the real structure of the Akashi Kaikyo Bridge. The aim of 

this model was to describe the torsional behaviour of the deck under wind more correctly and 

to obtain a better solution in terms of flutter wind speed, frequency and mode-shape. On this 

bridge model, three different flutter analyses were performed.  

In the first analysis, three unsteady actions of lift, drag and moment were applied to 

the deck, obtaining, as it was expected, good results in terms of flutter wind speed, frequency, 

and mode shape (the first symmetric torsion mode).  

In the second analysis, unsteady lift and moment actions, plus a steady drag force were 

applied to the deck: the results show an appreciable accuracy with respect to literature data, 

as in the previous case (Table 6-2). This is a very important result because it permits, in case 

of a numerical analysis performed in ANSYS, to evaluate the flutter critical speed and 

frequency correctly even if the flutter derivatives associated to drag forces (𝑃i) are not 

available, provided the steady component of the drag force is considered (this requires 

knowing only the drag coefficient 𝐶D). 

In the third calculation, flutter analysis was developed by including only the unsteady 

lift and moment forces, whereas the drag wind force was totally neglected. In this case, the 

analysis didn’t detect flutter instability for wind speeds up to 100 m/s, whereas for the two 

previous approaches the predicted critical wind speed was around 80 m/s. For this reason, it 

has been possible to assert that the horizontal wind load can’t be consider negligible when 

performing a flutter analysis on numerical models in ANSYS, at least for very long-span 

bridges like the Akashi Kaikyo.  



6 
Conclusions 

85 

 ANSYS    

(Lns+Dns+

Mns) 

ANSYS 

 (Lns+ 

Mns+Ds) 

Analytic 

results 

Literature 

data 

% err  

Lns+Dns+Mns/ 

literature 

% err 

Lns+Mns+Ds/ 

literature 

Ucr[m/s] 81.3 76.4 75.6 77.7 4.6 1.7 

fcr [Hz] 0.122 0.131 0.075 0.138 13 5.3 

Table 6-2: “Truss-beam” model flutter critic speeds and frequencies comparison 

Table 6-2 shows that the analysis with unsteady lift and moment (Lns, Mns) plus steady 

drag (Ds), offered a higher accuracy than the analysis with three unsteady loads (Lns, Mns, Dns) 

with respect to the literature values, this both in terms of flutter speed and frequency. 

Considering the results, it can be noticed that the flutter critical frequency showed a relatively 

high sensitivity with respect to the model used to perform the analysis; conversely, the flutter 

critical speed showed a lower sensitivity.  

Numerical models such the ones realised in this thesis can be used to develop wind 

analysis on suspension bridges to evaluate flutter instability. In fact, the showed procedure can 

be applied to other case studies to have a further validation of the numerical method, with the 

application to bridges presenting different lengths and deck structures.    
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