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Abstract 

The aim of the present thesis is to analyse the scale effects on fracture energy and 

tensile strength of plain concrete. The former is the amount of energy necessary to 

create a unit area of a crack, and gives a measure of the material fracture toughness; 

the latter represents the force per unit area that causes the failure. These two 

material parameters, together with a geometric dimension of the structure, can 

describe the global structural behaviour, e.g., by means of brittleness numbers.  

Fracture energy and tensile strength are often considered as material properties in 

concrete fracture mechanics. For instance, the cohesive crack model considers the 

cohesive law, i.e. the diagram in which cohesive stress is represented as a function 

of the crack opening displacement, as an intrinsic material property, and 

consequently the fracture energy, that is equal to the area under this diagram, is a 

parameter independent from the structural size, geometry and loading condition. 

According to this model, RILEM TC 50-FMC proposed an experimental method  to 

determine the fracture energy of concrete. It consists in a three-point bending test, 

performed by using pre-notched specimens with recommended sizes, depending on 

the maximum diameter of the aggregate. 

However, many experimental results demonstrate how the fracture energy and the 

tensile strength of quasi-brittle materials such as concrete are size dependent, and 

so they cannot be considered as material properties, unless they are evaluated on 

very large specimens. It was observed that fracture energy and toughness of 

concrete increase with the specimen size, whereas the tensile strength decreases. 

This phenomenon has been studied with intensive research activities, at least for two 

reasons: (i) experimental results obtained with tests performed on laboratory-size 

specimens cannot be easily extrapolated to large-scale concrete structures without a 

careful understanding of size effect; (ii) it is impossible for most laboratories to 

perform tests directly on large structure-like specimens. Many researchers have dealt 

with this problem, and many theories have been proposed in order to provide a 

theoretical explanation and a predictive model of the scale effects on fracture 

parameters. 

In the first part of this work, after a short review of fracture mechanics fundamentals, 

a  description of the principal scale effect models is presented. Particular attention is 

reserved to the fractal model proposed by Carpinteri: this will be used in the second 

part of the present thesis to interpret some experimental results. The fractal model 

explains scale effects by considering the fractal nature of fracture surfaces in 

disordered materials with a multi-scale heterogeneity. In fact, defining the tensile 

strength of concrete as a force on a surface with a fractal dimension lower than 2 

(lacunar fractal), and the fracture energy as an energy dissipated on a surface having 

a dimension higher than 2 (invasive fractal), two renormalized size-independent 

properties of the material can be defined. 
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In the present work, three-point bending tests have been performed on plain concrete 

pre-notched specimens of different sizes. RILEM Recommendation was followed for 

the testing procedure and for the evaluation of fracture energy and bending strength. 

Scale effects on these two parameters were observed, and the fractal model was 

applied in order to define two power laws able to express these two parameters as a 

function of the beam depth and the corresponding fractal material property. 

Furthermore, a renormalization procedure has also been extended to the kinematic 

aspect of the problem, taking into account the rotation angle of the mid-span section 

in the critical situation immediately before the final collapse. Thus a fractal cohesive 

law has been defined: it is function of the three size-independent renormalized values 

of fracture energy, bending strength and rotation angle.  

Moreover, during the tests, two non-destructive techniques of damage monitoring 

were  used: Dynamic Identification and Acoustic Emission analysis.  

The former consisted in the evaluation of variations in the natural bending 

frequencies during damage progress; this was done in practice by analysing the free 

response signals consequent to external impulsive forces, for different loading steps.  

On the other hand, the Acoustic Emission (AE) technique is based on the acquisition 

of the ultrasonic signals generated by cracks formation and extension in the bulk of 

the material. Crack classification was performed using  the Rise Angle procedure. 

Moreover scale effects on the AE energy were observed, and described by a power 

law. Unlike the fracture energy, that is an energy dissipated in an invasive fractal 

domain, the AE energy seems to be an energy emitted in a lacunar fractal domain: 

the difference between the two physical fractal dimensions represents a further 

demonstration of the absence of correlation between dissipated and emitted energy.  
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Introduction 

Scale effects in concrete and non-destructive damage monitoring techniques are the 

main topics of this thesis work. 

The thesis has been divided into two parts. 

The first part contains a review of the main concepts concerning Fracture Mechanics 

and the two damage monitoring techniques applied during the experimental 

campaign, namely Acoustic Emission (AE) and Dynamic Identification (DI). In section 

[1.1] the fundamental concepts of linear and non-linear Fracture Mechanics are 

reviewed; particular attention is given to the scale effects on the structural behaviour. 

After a brief description of the principal scale effect models, the fractal scaling laws 

and the renormalization procedure proposed by Carpinteri for fracture energy and 

tensile strength are presented in detail. Furthermore, the experimental method 

recommended by RILEM TC 50 – FMC to evaluate the fracture energy of concrete is 

described. Section [1.2] is about the AE analysis, while section [1.3] briefly explains 

the theoretical basis of damage monitoring techniques based on the dynamic 

response of the structure. 

In the second part of the thesis, the experimental results obtained during three-point 

bending tests are discussed. Four different scales of plain concrete specimens are 

considered. In section [2.1], the experimental set-up is described. Section [2.2] 

shows the numerical (FEM) results concerning the natural frequencies of the 

specimens in both the initial configuration and the damaged configuration. The 

experimental results are presented in section [2.3]. Fractal scaling laws are defined 

for fracture energy, bending strength and rotation angle of the mid-span section in 

correspondence to the final failure. A scale independent cohesive law is eventually 

proposed for bending. Section [2.4] is a focus on the results of AE analysis and on 

the modal frequency variations for the different specimen sizes. Correlations between 

these two techniques are shown, highlighting their pros and cons. In section [2.5], the 

results of three and four-point bending tests made on specimens of the same size 

are compared, in order to emphasize the differences in terms of stability of the crack 

propagation process.    
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1 Fundamental concepts 

1.1 Fracture mechanics and scale effects on tensile strength and 

fracture energy 

After the introduction of Fracture Mechanics, the classical concept of strength was 

completely reconsidered. The ductility of a material can be described by introducing 

the concept of toughness. It represents the capacity of material to oppose the 

fracture propagation. 

Nevertheless, it is necessary to distinguish the ductility of a material from the ductility 

of a structure. The former depends only on the intrinsic characteristics of the material 

(strength and toughness), the latter depends also on the size of the structure. 

In compressed structures there is a transition between plastic collapse and buckling 

that depends on the slenderness of the structure. An interaction between two 

different collapse phenomena exists also in tensed structures, in which the transition 

from plastic to brittle collapse, in this case, is a function of the dimensional scale of 

the structure. 

In particular, a ductile behaviour can be associated to relatively small structures, 

whereas a brittle behaviour , with an unstable crack propagation, characterizes the 

larger ones. This concept is expressed in Figure 1.1 (Carpinteri, 1992), where three 

notched beams under a three point bending test in laboratory are considered as an 

example. Even though the material is the same, the ductile-brittle transition appears 

clearly with the increasing of the element dimension.  

 

Figure 1.1 – Ductile-brittle transition with the increase of specimen size 
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In the following, some of the models introduced in Fracture Mechanics to explain and 

quantify the scale effects will be discussed. In particular, brittleness numbers are 

defined in order to describe the ductility of a structure with a single value. After a brief 

historical introduction in which different models proposed by different authors will be 

mentioned, particular attention will be given to the fractal model proposed by 

Carpinteri to explain the size effect on tensile strength and fracture energy of 

disordered materials like concrete. The fractal model will be used in Part II to interpret 

the experimental results. 

1.1.1 Review of Fracture Mechanics 

In this paragraph the main concepts of Fracture Mechanics will be reported, starting 

from the classical linear theory up to the nonlinear ones. If the use of these concepts 

is already consolidated in the design of metal structures, their application in the field 

of quasi-brittle materials is very recent. Only during the late 1970s and the 1980s the 

research effort was dedicated to adapt the foregoing models to these materials, and 

to find experimental methods for the measure of the new parameters introduced in 

order to describe the heterogeneous nature especially of concrete.  

The application of Fracture Mechanics into concrete design becomes important 

especially for the large size structures such as dams or nuclear reactor containments, 

because it may allow a better evaluation of safety coefficients with a consequent gain 

both in economic terms and in structure reliability.   

Special comments will be reserved in section [1.1.1.2] for Hillerborg’s fictitious crack 

model (Hillerborg, Modéer and Petersson, 1976) which was introduced for concrete. 

In section [1.1.1.3] the snap-back instability will be described for relatively large 

scales, together with brittleness numbers. In the last section [1.1.1.4] the technique 

provided by RILEM Recommendation to determine the fracture energy of mortar and 

concrete will be presented.  

1.1.1.1 Review of Linear Elastic Fracture Mechanics 

In this section a brief summary of the main concepts of Linear Elastic Fracture 

Mechanics (LEFM) is reported. Even though it represents a widely used basic tool for 

study the fracture in brittle conditions, LEFM can give good predictions only when the 

structure remains elastic, for the most part, up to the crack initiation. This is the 

reason why it is necessary to introduce nonlinear models to study the fracture in 

concrete or other quasi-brittle materials.  

The stimulus for Fracture Mechanics arrived from a paper of Iglis (1913) in which an 

elastic solution is derived for the evaluation of stresses at the vertex of an ellipsoidal 

defect in an infinite solid subjected to tension. Previously, in 1898, Kirsch studied the 

problem of a circular cavity in an infinite slab subjected to tension: he found at the 

edges of the hole a stress concentration factor equal to 3 when the slab is subjected 

to uniaxial tension (Figure 1.2a). In the same situation, but in presence of an elliptical 
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defect, the stress concentration factor evaluated by Inglis is: (       ), where   

and   are respectively the major and the minor semi-axes of the ellipse (Figure 1.2b). 

In other words, if the tensile strength of the material is   , an infinite slab with an 

elliptical hole subjected to an uniaxial tension will collapse when the stress is equal 

to: 

     
  

(       )
 (1.1) 

  

From Eq. (1.1), Kirsch’s result can be obtained posing     (circular defect).  

The stress concentration factor proposed by Inglis increases with increasing of the 

eccentricity of the ellipse: at the limit, when     and so      , this factor tends 

to infinit (Figure 1.2c). Looking again at Eq. (1.1), it means that a slab subjected to 

tension with a linear crack has no resistance. However, this result is absurd. This 

means that the results proposed by Inglis cannot be applied to the fracture problem.  

 

Figure 1.2: Stress concentration factor for different shapes of defects  

The problem was overcome a few years later by Griffith (1921).  He also thought that 

the fracture arises from pre-existing defects in the material. However, he proposed 

an energy failure criterion, introducing the concept of fracture energy, i.e. a 

parameter able to describe the material toughness. Thus, the distinction between 

strength and toughness became evident. Griffith considered a plate in plane stress 

conditions, subjected to a constant stress  , containing a crack with a length   . He 

assumed that the plate width is much larger than   , so that   is the only geometric 

parameter of the problem. In order to have an increase of crack size, the potential 

energy in the plate must be sufficient to exceed the surface energy of the material; in 

other words, the elastic energy released for an incremental increase in the crack 

length, d , must overcome or be equal to the energy required for the formation of the 

new free surface: 

   
  

 
   
  

 (1.2) 
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where     is the elastic strain energy released by the uniformly stressed slab of unit 

thickness when a crack    long is made. Griffith demonstrated that:  

      
  
  

 
 (1.3) 

  

   is instead the dissipated surface energy required to create a new fracture    long: 

         (1.4) 
  

where   is an energy per unit of area. 

Substituting Eq. (1.3) and Eq. (1.4) in Eq. (1.2), and introducing the fracture energy: 

       (1.5) 
  

Griffith obtained the following instability condition, represented in Figure 1.3: 

  √
    

   
 (1.6) 

  

 

Figure 1.3: Ductile-to-brittle transition as a function of the half-length of the crack 

The curve  represented in Figure 1.3 has two asymptotes. The first one is horizontal: 

it means that slab resistance decreases with the increasing of crack length. The 

second one is vertical: it means that a slab without any cracks has infinite resistance. 

However, this latter result is wrong. The material has in fact its own resistance, 

indicated with   . Thus a cut-off of the curve must be applied in correspondence of  

    . In this way a parameter   , only function of material properties, is obtained: 

   
 

 
 
    

  
  (1.7) 
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It represents the half-length of equivalent micro defect pre-existing in the material, 

and it can be seen as a measure of  fracture material sensitivity. In fact: 

- if      the slab will fail for plastic collapse, because the crack is too small 

and does not influence the material behaviour; 

- if      the slab will fail for brittle fracture in correspondence of an external 

stress     . 

Figure 1.3 shows clearly the analogy, already discussed at the beginning of section 

[1.1],  between the unstable crack propagation, related to structures subjected to 

tension, and the instability of elastic equilibrium (Euler’s hyperbole in Figure 1.4), 

related to structures subjected to compression. 

 

Figure 1.4: Transition from plastic collapse to buckling in compressed structures as a function of 
slenderness 

Furthermore, Eq. (1.7) underlines that the tensile strength    is not a material 

property, because it is a function of  the half-length of equivalent micro defect pre-

existing in the material. 

 

The concept of stress concentration factor, used e.g. by Inglis in the study of the 

effects of an elliptical defect in a body subjected to tension, was therefore 

substituted, in the study of fractures, by the stress intensity factor: in correspondence 

of the crack tip, in fact, the stress tends to infinit. This singularity was determined by 

Westergaard (1939) with his method of complex potentials, and also by Williams 

(1952) with his series expansion method. In the immediate vicinity of the crack tip 

(i.e. for     with   horizontal coordinate with origin in correspondence of the crack 

tip) the stress in the perpendicular direction of the fracture is:  

   
  

√     
 (1.8) 
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in which    is the stress intensity factor (the symbol “I” is referred to a mode I 

fracture: the crack classification will be discussed in section [1.2.2]). This factor 

depends on the boundary conditions (geometry of the problem, external loads, etc.), 

the dimensions of the structure and of the crack. In particular, in an infinite slab with a 

crack    long, uniformly tensed by an external stress   (Figure 1.5), it is equal to:  

     √    (1.9) 
  

 

Figure 1.5: Stress intensification near the crack tip 

The physical dimensions of    are unusual: [ ]  [ ]    . This fact can be considered 

as a fundamental reason of the scale effects already discussed at the beginning of 

section [1.1]. Changing the geometry of the problem and the boundary conditions 

(loads and constraints), Eq. (1.9) must be substituted by: 

     √      (1.10) 
  

where   is a shape function that depends on the geometry of the problem. It is 

usually evaluated by a polynomial expression, function of the crack length and of the 

characteristic dimension of the structure. Some of these empirical formulas can be 

found in Tada, Paris, Irwin (1985) for the most common test specimens 

configurations. For instance, for a three-point bend (TPB) test specimen with a ratio 

        (Figure 1.6a), Eq. (1.11) can be used: 

 (
 

 
)              (

 

 
)       (

 

 
)
 

       (
 

 
)
 

       (
 

 
)
 

 (1.11) 

  

Instead for a four-point bend (FPB) test specimen with a ratio         (Figure 1.6b) 

it is possible to use Eq. (1.12), relative to a pure bending specimen: 

 (
 

 
)             (

 

 
)       (

 

 
)
 

       (
 

 
)
 

      (
 

 
)
 

 (1.12) 
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Figure 1.6: (a) TPB test and (b) pure bending specimens 

When the stress intensity factor reaches its critical value    , the unstable fracture 

propagation occurs.     is usually considered as a material property, and it 

represents the material  toughness.  Using Eq. (1.8), and supposing that Eq. (1.9) 

can be used to express   , the instability condition becomes: 

   
  √   

√     
 

   

√     
 (1.13) 

  

and consequently: 

  
   

√   
 (1.14) 

  

Comparing the conditions (1.6) and (1.14), it is possible to conclude that: 

    √     (1.15) 
  

Eq. (1.15) expresses the relationship between the fracture energy and the critical 

value of the stress intensity factor. This fundamental result, that correlates the energy 

criterion of Griffith with the tensional approaches, was proposed in 1957 by Irwin. For 

this reason Eq. (1.15) is known as Irwin’s relationship. Moreover he generalized the 

energy criterion of Griffith, proving its independence from the geometry and the 

loading process; he also defined the strain energy release rate    as the total 

potential energy  per unit increment of fracture area, and demonstrated how Eq. 

(1.15), expressed in critical terms, can be rewritten also for general values of    and 

  .    
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1.1.1.2 Cohesive crack models 

Even though LEFM represents the basic theory for the analysis of many structural 

problems, its application must be limited for materials that remain elastic up to the 

brittle propagation of fracture. The singularity       that involves the stresses in 

presence of a fracture actually does not exist before a certain distance from the crack 

tip. In this region, in fact, plastic phenomena occur. For this reason the real value of 

the stress is lower than the theoretical one, because it remains equal to the tensile 

strength of material (Figure 1.7). 

 

Figure 1.7: Plasticization of the material near the crack tip  

Thus, around the crack tip, a plastic region develops. It can reach an important 

extension in materials that exhibit a ductile behaviour. Irwin (1960) demonstrated 

that, at the onset of crack propagation, this region has an extension: 

    
 

 
 
   
 

  
  (1.16) 

  

Another evaluation of the size of the yielding zone at the crack tip in correspondence 

of the collapse was proposed by Dugdale (1960): 

    
 

 
 
   
 

  
  (1.17) 

  

A fracture can be considered brittle when the plastic zone is much smaller than the 

pre-existing crack length and the structural dimension: 

      (1.18) 
  

      (1.19) 
  

where   represents a characteristic dimension of the structure. 

Generally this happens in many metallic materials, in which LEFM is usually 

available. In these cases the stresses in the plastic zone can be assumed increasing 

or constant at the increasing of the external loads. On the other hand, the Fracture 

Process Zone (FPZ) in concrete can assume a large size, and the stresses inside it 
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decrease with the increase of external loads. For these reasons, LEFM becomes 

unsuitable for materials such as concrete or tough steels, able to develop large 

yielding zones close to the crack tip before the unstable propagation. 

Starting from the 1960s, various non-linear theories were proposed for the Fracture 

Mechanics. They can be distinguished into two major categories: the equivalent 

elastic crack models and the cohesive crack models.  The latter, in particular, were 

developed just to simulate what really happens in the process zone of concrete. 

During the crack opening, from one face of the fracture to the other, stresses are still 

transferred. Barenblatt (1959) was the first to propose a cohesive model: in order to 

simulate the interatomic forces between the two crack faces, he introduced in this 

model distributed cohesive stresses, only in a small region near the crack tip; the 

values of these stresses were function of the separation between the fracture faces. 

Another important cohesive model was proposed by Dugdale (1960): unlike the 

Barenblatt’s model, in which the microscopic atomic interaction was considered, in 

this case the goal was to simulate the macroscopic plasticity; in particular, a constant 

distribution of yield stresses (perfectly plastic behaviour) were introduced in the 

cohesive zone of a linear crack. Afterwards, other cohesive crack models have been 

developed with various names, in order to exceed the limits of LEFM, that moreover 

is able to describe crack propagation but not the crack initiation (in other words it 

inevitably needs the presence of a pre-existing defect). Among these, Hillerborg’s 

fictitious crack model (Hillerborg, Modéer and Petersson, 1976) deserves particular 

attention. It was thought for concrete, and it can be applied also to initially uncracked 

solids. In this model the fracture zone develops at one point when the first principal 

stress reaches the tensile strength (Petersson, 1981). The fracture zone of a non-

yielding material is characterized by a lot of micro-cracks, which make this zone 

weaker. Even though this part of material is partially destroyed, a stress transfer 

takes place between the two faces, until their distance is less than a certain value. 

These bridging stresses are physically due to zigzag cracking, aggregate 

interlocking, crack branching and eventually to the presence of fibers. The fracture 

zone, in which these interaction phenomena occur, is not a real fracture: indeed this 

crack, able to transfer stresses, is a fictitious crack (Figure 1.8). For this reason 

Hillerborg’s model is known as Fictitious Crack Model.  The value of these bridging 

stresses depends on the width of the fracture. In correspondence of a distance    

between the slit faces the interaction is null. To describe correctly the stress-

deformation properties of the non-yielding materials, two constitutive laws are 

therefore necessary: 

- a relation between stress and relative strain (    curve: Figure 1.9a) to 

describe the deformation properties of the material outside the process zone; 

- a relation between the stress and the widening of the crack in the stressed 

direction (    curve: Figure 1.9b) to describe the deformation properties of 

the fracture zone. 
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Figure 1.8: Fictitious Crack Model: (a) crack tip process zone, (b) damage zone in front of the real crack 
tip, (c) cohesive forces behind the fictitious crack tip 

 

 

Figure 1.9: Double constitutive law: (a) stress-strain, (b) stress-crack opening displacement 

While in materials with an elastic-hardening-softening behaviour like steel the energy 

is dissipated both on the fracture surfaces and in the whole volume of the solid, in 

materials with an elastic-softening behaviour like concrete the dissipation takes place 

only on the fracture faces. The strains, in materials with an elastic-softening 

behaviour, are not uniform in the body: they are localized in correspondence of the 

crack. Hence the softening branch in the     diagram of brittle materials (Figure 

1.10) depends on the characteristic dimension of the body.  
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Figure 1.10: Elastic-softening behaviour of brittle materials for tensile stresses 

A true material property is instead the cohesive law  ( ) (Figure 1.9b). The area 

under this curve is the fracture energy (Eq.(1.20)); consequently it is an intrinsic 

property of the material: 

   ∫     

  

 

 (1.20) 

  

Therefore in Hillerborg’s model the real crack must be distinguished from the 

cohesive (or fictitious) crack. An extremity of this latter corresponds to the point in 

which the widening is equal to    and the bridging stresses are equal to zero, while 

the other one is the beginning of the process zone, where the cohesive stress is 

equal to the tensile strength (Figure 1.8c). The values of the cohesive stresses in the 

intermediate points of the fictitious crack can be deduced according to the     

curve (Figure 1.9b).  

1.1.1.3 Scale effects and snap-back phenomenon  

For sake of simplicity, a tensile test on a specimen with an initial length    is 

considered. If the material has an elastic-softening behaviour (e.g., concrete) the 

energy dissipated on the fracture surfaces, equal to       (where    is the fracture 

area, corresponding for this kind of test to the initial area of the specimen cross 

section), corresponds to the energy dissipated in the whole volume       , because 

the dissipation in such materials is localized only in correspondence of the crack. If 

the test is performed on specimens with different length   , the curves      shown 

in Figure 1.11 will be obtained (Carpinteri, 1992). Since the area under each of these 

curves must be equal to the total dissipated energy, that is      , a smaller elastic 

modulus and a softening branch (also called negative hardening branch) with an 

increasing negative slope will be obtained with the increase of the specimen length. 

For considerable specimen lengths, the slope of the softening branch can even 

become positive. 
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Figure 1.11: Scale effects on the diagram      in a tensile test on a brittle material  

When the maximum load during the test is reached, the whole specimen is subjected 

to the maximum stress represented by point A in Figure 1.12. In a certain section 

(probably in the middle) a crack begins to propagate: from this moment on, the intact 

material away from the fracture is subjected to an elastic unloading, according to the 

    curve (point B in Figure 1.12a), while the stress in a point inside the fracture 

zone decreases according to     curve (point B in Figure 1.12b) as a function of 

the widening  . 

 

Figure 1.12: Different phases of a tensile test on a brittle material represented on the two constitutive 
laws, supposed linear 

If the initial length    is large enough, the elastic shortening of the intact material due 

to the elastic unloading can prevail on the widening   of the crack: in these cases, a 

softening branch with a positive slope can be obtained. This represents a 

catastrophic phenomenon, because, even if the test is performed by controlling the 

displacement, a sudden load drop can happen. This loss of stability in controlled 

displacement condition is called snap-back instability, and it can experimentally 

observed only if the test is performed by controlling the crack mouth opening 
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displacement  . The conditions that contribute to the occurrence of this phenomenon 

are: the low material toughness, the high tensile strength and large dimensional 

scales. As it has already been anticipated, while the tensile strength and fracture 

energy are considered as material properties in the cohesive model, the structure 

ductility depends on the scale.  

A first scale effect, already discussed in section [1.1.1.1], concerns the crack length: 

if      , where    is a function of material properties (Eq. (1.7)), the unstable crack 

propagation precedes the plastic collapse. A second scale effect is related to the 

absolute dimensions of the cracked structure: if geometrically similar solids, made of 

the same material, characterized by a crack length proportional to the characteristic 

dimension of the solid, are tensed up to the failure, the collapse mechanism could be 

different, depending on the absolute dimension of the solid (Carpinteri, 1992). 

In a three-point bend test (Figure 1.13), for example, the failure for brittle fracture 

happens when the stress   satisfies the criterion in Eq. (1.14), in which     can be 

expressed, for the TPB geometry, also in the form: 

    
      

      
  (

 

 
) (1.21) 

  

where the shape function   can be evaluated using the following polynomial 

expression: 
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 (1.22) 

  

 

Figure 1.13: Three-point bending test geometry 

Moreover the failure can be reached due to plastic collapse, in correspondence of a 

bending moment: 

     
 

 
              

   
    

  (   ) 

 
 (1.23) 
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corresponding to a load       that, in dimensionless form, can be expressed as a 

function of the relative depth of the fracture    : 

      

       
 (  

 

 
)
 

 (1.24) 

  

Likewise, the load      corresponding to the failure for brittle fracture (Eq. (1.21)) can 

be rewritten in dimensionless form: 

      

       
 

 

 (
 
 )

 (1.25) 

  

where  , equal to: 

  
   

       
 (1.26) 

  

is called brittleness number (Carpinteri, 1989a); it represents the most concise way to 

describe the structure ductility, because it contains all the three necessary 

information: the material toughness, the tensile strength and the characteristic 

dimension of the specimen. 

Eq.(1.25) shows how the dimensionless load corresponding to the unstable crack 

propagation can be expressed as a function of the ratio     and of the brittleness 

number  . Thus the two failure conditions (Eq.(1.24) and Eq.(1.25)) can be 

graphically represented as in Figure 1.14 (Carpinteri, 1989a).  

 

Figure 1.14: Dimensionless failure load in function of the relative crack depth for a TPB test, by varying 
the brittleness number 
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From Figure 1.14, it is evident how, for high values of the brittleness number, in 

particular higher than the limit value         , the plastic collapse always precedes 

the unstable propagation of the fracture, while for smaller values of   this happens 

only for very small or very large values of the ratio    . 

The ratio        is a measure of the material ductility. Concrete is characterized by a 

relative high value of this ratio: this is due to the softening behaviour (Figure 1.10). 

Another parameter that can be used to describe the structure ductility is the energy 

brittleness number (Carpinteri, 1989a): 

   
  
    

 (1.27) 

  

The correlation with the static brittleness number above mentioned (Eq.(1.26)) is: 

       
  (1.28) 

  

with        .  

Two structures have the same behaviour at failure if two of the three dimensionless 

parameters         are the same for both of them. 

Continuing to consider a TPB test, Figure 1.15 (Carpinteri, Colombo, 1989) shows 

the effect of a difference in material toughness on     curves, obtained with a 

numerical simulation considering different values of the relative crack depth. 

 

Figure 1.15: Influence of material toughness on     curves for different values of the relative crack 
depth 

Whether the material is kept constant, scale effects can be observed in Figure 1.16 

(Carpinteri, 1989d) on     curves, obtained with a numerical simulation, 

considering different values of the relative crack depth. 
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Figure 1.16: Influence of beam depth on     curves for different values of the relative crack depth 

Therefore a brittle behaviour can be observed with a decrease of material toughness 

or with an increase of the characteristic dimension of the solid. These two aspects, 

together with the tensile strength, can be summarized in a single parameter, that is 

the brittleness number. Figure 1.17 (Carpinteri, 1989a) shows how, in a TPB test, the 

behaviour changes in function of    values, for a fixed     ratio.   

 

Figure 1.17: Dimensionless load-deflection diagrams by varying the energy brittleness number for a fixed 
value of relative crack depth 
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In particular, high values of    correspond to ductile behaviours; on the other hand, 

with low values of    a brittle behaviour is observed, characterized in the extreme 

cases by a snap-back instability. 

At limit, for      it can be demonstrated how the cohesive crack model gives the 

same results obtainable through LEFM (Carpinteri, 1989a). Furthermore it is evident 

how the cohesive crack model is able to describe the brittle-ductile transition so far 

discussed. 

For a three-point bending test, for example, two limit situations can be considered 

(Carpinteri, 1989b): 

-     : absence of initial fracture; using the elastic theory, the mid-span 

deflection may be evaluated by: 

  
 

  
 
    

   
 
 

  
 
    

 
 
  

    
 
 

 
 
    

   
 (1.29) 

  

where       represents the slenderness. In dimensionless form: 
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where  ̃ is the dimensionless load: 

 ̃  
   

       
 (1.31) 

  

By imposing the condition: 

  
 

   
 
     

      
 
 

 
 
   

    
    (1.32) 

  

it follows that: 

 ̃  
 

 
 (1.33) 

  

Using Eq. (1.30) and the condition on  ̃ (Eq.(1.33)), the following condition is 

obtained: 

 ̃  
 

 
       (1.34) 

  

-     : limit situation before the final failure; two rigid parts are connected by 

an hinge in the upper beam edge, while cohesive stresses are acting, 

approximately with a linear distribution, on the fracture surfaces up to the point 

in which the widening is equal to   . The portion of the ligament in which these 

stresses are still present is identified by the coordinate   (Figure 1.18). 
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Figure 1.18: Limit situation before the final failure with cohesive forces 

The geometrical similitude of the triangles ABC and AB’C’ in Figure 1.18 

allows to write: 

 

   
 
    

 
 (1.35) 

  

The rotational equilibrium around the hinge in point A provides: 

 

 
 
 

 
 
      

 
 
 

 
 (1.36) 

  

Using Eq.(1.36), Eq.(1.31), Eq.(1.35), it is possible to write: 
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 (1.37) 

  

Considering for sake of simplicity a linear cohesive law, and taking into 

account Eq.(1.27), Eq.(1.37) can be rewritten as: 
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 (1.38) 

  

By imposing the condition     and using Eq.(1.37),  it follows that : 

 ̃  
 

 
 (
 

 
)
 

 
 

 
 (1.39) 

  

Eq.(1.38) and Eq.(1.39) imply another condition concerning  ̃ : 

 ̃  
    

 

    
    (1.40) 

  

Two conditions on  ̃ have been found (Eq.(1.34), Eq.(1.40)). When the two 

domains are separated, the two  ̃   ̃ branches (linear and hyperbolic) are 
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presumably connected by a regular curve (Figure 1.19a), while if the two 

domains are partially overlapped (Figure 1.19b) the two branches are 

presumably connected by a curve with a negative (softening) or even positive 

slope (snap-back) (Carpinteri, 1989b). 

 

Figure 1.19: Dimensionless load-deflection curves: (a) ductile behaviour, (b) brittle behaviour 

Thus, looking also at Figure 1.19, it is clear that, for a three-point bending geometry, 

an unstable behaviour with a possible snap-back phenomenon may occur when: 

      (1.41) 
  

Substituting the values expressed in Eq.(1.34) and in Eq.(1.40), the brittleness 

condition for a three-point bending geometry (Eq.(1.41)) becomes: 

  
    

  ̃  
 

 
 (1.42) 

  

Carpinteri (1989e) found a similar brittleness condition also for the uniaxial tension 

geometry; in that case:  

  
    

  ̃  
 

 
 (1.43) 

  

Therefore, it is clear that the brittleness of a structure depends also on the loading 

conditions and on the external constraints: uniaxial tension, e.g., is more brittle than 

three point bending.  

1.1.1.4 Experimental determination of fracture energy of concrete according to 

RILEM Recommendation 

RILEM TC 50-Fracture Mechanics of Concrete (1985) recommends a method to 

determine experimentally the fracture energy of plain concrete and mortar. This 

material property, that gives a measure of the material toughness, is defined as the 

absorbed energy per unit area of the fracture plane (the fracture area is the projected 
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area on a plane parallel to the crack direction). The method consists in three-point 

bending tests on notched beams, performed until the complete fracture of the 

specimen. The test must be stable, without sudden jumps in deformations or 

stresses: for this reason, the testing machine has to be stiff enough or furnished with 

a closed-loop servo control. Whether there are problems of stability, the test should 

be performed by controlling the crack mouth opening displacement. The size of the 

beam depends on the maximum size      of the aggregate, according to Table 1 

(the symbols are referred to Figure 1.13).   

     

[  ] 

  

[  ] 

  

[  ] 

  

[  ] 

  

[  ] 

                              

                                 

                                 

                                 

Table 1: Sizes of specimens recommended by RILEM TC 50-FMC 

The beam with a depth of 100 mm is considered the standard test beam, also 

because it is easy to handle. Nevertheless, if the maximum aggregate size is bigger 

than 16 mm, other beam sizes are recommended. In order to limit the stress due to 

the weight of these bigger specimens, it is better to increase the width, the depth and 

the notch depth with the same factor  , while the span only with a factor √ . The 

presence of the notch, with a depth equal to half the beam depth ± 5 mm, ensures 

that the fracture takes place in a well-defined plane, so that the energy absorption in 

other process, different from tensile fracture, is negligible (Hillerborg, 1983). The 

compressive strength of the material must be at least five times the tensile one, in 

order to avoid energy absorption in the compressed zone of the ligament. The result 

of the tests, performed with a constant rate of deformation, is the curve representing 

the load as a function of the vertical displacement of the mid-span section (Figure 

1.20). The area    under this diagram gives the energy supplied by the machine. 

 

Figure 1.20: Typical load-deflection curve obtainable with a TPB test on a concrete specimen 
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However the load imposed by the testing machine acts together with the beam 

weight and with the weight of the loading device which is not attached to the 

machine. These additional forces also supply energy when the beam deflects. 

Hence, in order to obtain the total absorbed energy, it is necessary to correct the 

    curve experimentally obtained as shown in Figure 1.21. 

 

Figure 1.21: Load-deflection curve modified in order to consider also the beam weight and the weight of 
the loading arrangement 

In Figure 1.21, the recorded curve is represented with a continuous line, while the 

dashed lines represent the remaining part necessary to obtain the complete curve. In 

particular, the horizontal axis is translate downward of a quantity   , which represents 

the concentrated load, applied in the center of the beam, that would produce in the 

mid-span section the same bending moment due to self-weight and weight of loading 

arrangement. Thus the total absorbed energy is:  

           (1.44) 
  

The areas    and    are very similar, and they can be considered equal to       (   

is the deformation reached at the end of the test, when the load is zero and the beam 

is completely broken).  

Finally the fracture energy is evaluated as: 

   
(         )

    
 (1.45) 

  

in which           , where    is the weight of the beam between the supports, 

calculated as the beam weight multiplied by    , while    is the weight of the part of 

the loading arrangement which is not attached to the machine, but follows the beam 

until failure;   is the acceleration of gravity (         ), whereas      is the ligament 

area, obtained with an ideal projection of the fracture area on a plane perpendicular 

to the beam axis.  
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Although the fracture energy is considered a material property in the cohesive crack 

model, Hillerborg (1983,1984) highlighted the influence of the beam depth on the 

fracture energy values through the results of several tests performed in different 

laboratories in all the world. In particular he noticed that an increase in the beam 

depth with a factor 4 gives an increase in    of about the 20%.  

Along with the fracture energy, it is possible to determine, using the results of these 

tests, other two material properties (Hillerborg, 1984): 

- from the initial slope of the load-deformation diagram, an approximate value of 

the modulus of elasticity might be obtained; 

- the bending strength corresponding to the maximum load      reached in the 

test: 

   
    

   
   
 
(     

   
 )  

 
 

  (   ) 

 

 (1.46) 

  

in which       is the concentrated load that should be applied in the center 

of the beam in order to obtain the same bending moment in the mid-span 

section due to the distributed load representing the weight of the specimen. 

The aim of this work will be the experimental determination and the description of the 

scale effects on fracture energy and bending strength, evaluated by means of the 

        on plain concrete specimens with the different sizes recommended by 

RILEM TC 50-FMC (Table 1). 

1.1.2 Review of scale effect models 

In the classical failure theories, the tensile strength is a material constant, 

independent of the structural size and geometry. It is one of the three parameters 

which characterize the cohesive law used in the fictitious crack model described in 

section [1.1.1.2]. This model postulates that the tensile strength, the fracture energy, 

the critical opening displacement and the shape of the softening curve are constant 

properties for a given type of concrete.  Actually these parameters, fundamental to 

describing the fracture behaviour of concrete, are found to be significantly scale-

dependent. In fact, numerous experiments have shown that, when geometrically 

similar concrete specimens are tested, an increase of specimen size leads to 

decreasing of strength and increasing of fracture energy and toughness.  

Consequently the concept of quasi-brittleness becomes relative. Quasi-brittle 

materials, such as concrete, are materials incapable of purely plastic deformations 

but characterized by a fracture process zone with a not negligible dimension if 

compared to the structural size. However, on a large enough scale they become 

perfectly brittle, while on a small enough scale they behave as elastic bodies with a 

perfect plastic crack, following the theory of plasticity. Vice versa, brittle materials, 
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which are usually characterized by a crack growth governed by LEFM, become 

quasi-brittle on a small enough scale.   

Theoretically, for the direct measurement of size-independent fracture properties of 

concrete-like materials, very large specimens should be tested, but this is well 

beyond the capacity of a common laboratory. Because there is a great gap between 

the scales of laboratory tests and of large structures such as dams, bridges, etc., size 

effect models are necessary for the assessment of fracture parameters based on the 

results of tests performed on normal laboratory-size specimens. 

For these reasons, the phenomenon has been studied by many researchers, and 

different theories have been proposed to explain the sources of scale effects and to 

provide models in order to express fracture energy and strength in function of a 

characteristic dimension of the structure.  The controversial history of these models is 

briefly outlined in the next paragraph [1.1.2.1]. According to the final report of RILEM 

TC QFS (Bazant et al., 2004), three basic theories of scaling can be identified: 

- the Weibull statistical theory (Weibull, 1939); 

- the theory of stress redistributions and stored energy release caused by large 

stable growth of cracking zones or fractures (Bazant, 1984); 

- the theory of crack fractality (Carpinteri, 1994a, 1994b). 

However, another model, based on the concept of local fracture energy (Hu, 

Wittmann, 1992), will be discussed: the boundary effect model (Duan, Hu, Wittmann, 

2002).   

Finally, in section [1.1.2.2], the attention will be focused on the fractal model and the 

renormalization procedure, that will be used in the second part of the present thesis 

to interpret the experimental results. 

1.1.2.1 Historical development of the principal scale effect models 

The effect of structure size on material strength is an old problem. Already in the 

1500s, Leonardo da Vinci observed that: “Among cords of equal thickness the 

longest is the least strong”; furthermore he wrote that a cord “is so much stronger […] 

as it is shorter”. Practically he supposed an inverse proportionality of tensile strength 

to the length of the chord. This exaggerated hypothesis on size effect was 

disallowed, about a hundred years later, by Galileo Galilei . He stated that if a long 

chord is cut in different points, the remaining parts are not stronger; nevertheless he 

also discussed scale effects, referring to the different shape of animal bones in large 

and small animals: the greatness of bones is the weakness of big animals.  

The problem was treated with carefulness and extensive experiments by Mariotte 

(1686). Introducing the concept of the “inequality of matter”, he proposed for the first 

time  the basic idea of the statistical size effect: in a structure, the material contains 

weaker points with a resistance lower than the nominal one; obviously, the probability 

of encountering these defects increases with the structural size.  
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After Mariotte’s work, scale effects were studied again by Griffith (1921). He 

experimentally observed how the resistance of glass fibers substantially increases 

when their diameter is reduced. He explained this phenomenon by saying that: “[…] 

the weakness of isotropic solids […] is due to the presence of discontinuities or flaws 

[…]. The effective strength of technical materials could be increased 10 or 20 times 

at least if these flaws could be eliminated”. With reference to Eq. (1.7), this statement 

can be clarify considering, e.g., high strength concretes: with a reduction of the 

porosity and consequently of the half-length of equivalent micro defect pre-existing in 

the material (  ), an important increase of the strength    can be obtained. Thus, 

Griffith gave a physical explanation to Mariotte’s statistical idea.  

Until about 1980, size effects were considered as a purely statistical problem. The 

basic framework of statistical size effect theory was completed by Weibull (1939). He 

proposed a new probability distribution (that will take his name) to describe the  

extremely small values of material strength. It consists in a power law with a 

threshold. Afterwards, this distribution will be justified theoretically, using a 

probabilistic model for the placement of microscopic defects in the material. A basic 

concept for the statistical approach is the weakest link model, introduced by Peirce 

(1926) for discrete systems such as chains, and then extended to continuous 

systems. In the discrete model, the survival probability of a chain, subjected to two 

tensile forces at its extremities, is calculated as the joint probability of survival of all 

the   elements that form the chain; at the end, the failure probability    of the whole 

chain can be obtained using the following power law:  

      
    ( ) (1.47) 

  

where  ( ) is the probability of failure of one element for the given stress level  . In 

the continuous model for structures subjected to uniaxial stress, Eq.(1.47) can be 

used substituting   with the ratio     , in which   represents the volume of the 

continuous body, while    is a representative volume of the material. Therefore, in 

this case the probability of failure   ( ) is referred to reference volume   . Because 

   and consequently  ( ) are difficult to determine, Eq.(1.47) is substituted by: 

  (   )     
  ( )   (1.48) 

  

 ( ) is called concentration function; Weibull proposed his statistical probability 

distribution to express this function: 

 ( )  
 

  
 〈
    
  

〉  (1.49) 

  

The three parameters that appears in Weibull distribution are: 

- the shape parameter  : experimental evidences show that      is a good 

value for concrete; 

- the scale parameter   ; 
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- the strength threshold   : it is usually assumed equal to zero, because its 

determination is very difficult. 

   is a reference volume, that can be considered equal to the volume of specimens 

used to experimentally determine Weibull’s parameters. 

In general, for structures subjected to non-uniform multidimensional stress, Weibull 

statistical size effect on the mean strength can be expressed how: 

    
      (1.50) 

  

where           respectively for uni-, two- and three-dimensional similarity of 

specimen;   is the characteristic size.  

However, this scaling law can be applied only on structures with a brittle behaviour, 

i.e. structures that fail as soon as macroscopic cracking occurs, without the 

development of important plastic zones. For quasi-brittle materials, instead, this 

theory presents several limitations (Bazant et al., 2004): 

a)  the presence of a power law implies the absence of any characteristic length; 

obviously it is not the case of materials, such as concrete, that contains 

important heterogeneities and that exhibit a large fracture process zone before 

the final collapse: remembering the expression provided by Irwin (Eq.(1.16)) 

for the extension of this region at the onset of crack propagation, the following 

definition of the characteristic length (or material length) can be adopted: 

   
    

  
  (1.51) 

  

b) quasi-brittle materials, e.g., concrete, collapse only after a large stable 

macroscopic crack growth and the development of an important fracture 

process zone before reaching the maximum load; consequently, the stress 

distribution in correspondence of the final failure is very different from the 

elastic stress distribution considered in statistical size effect theory, because 

important stress redistributions occur; 

c) the classical Weibull theory considers every structure as an equivalent 

uniaxially stressed bar, thus it cannot describe the stress field realistically; 

d) the model gives very large differences, in terms of size effects, between two- 

and three-dimensional geometric similarities, that are not realistic; 

e) size effects obtained with Weibull model are smaller than size effects 

experimentally observed on quasi-brittle specimens; 

f) the classical Weibull theory, based on the weakest link model, does not 

consider the spatial correlation of material failure probabilities at various 

points. 

Hence, the statistical size effect theory appears inapplicable for concrete, unless 

large enough structures are considered, characterized by a brittle behaviour.  
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Since the 1970s, the idea of deterministic size effect, due to the stress redistribution 

before the failure in quasi-brittle materials, began to be considered. In that period it 

was understood that LEFM cannot be used for materials like concrete that exhibit a 

large fracture process zone before the unstable crack propagation. Leicester (1969) 

performed several tests on similar notched beams of different sizes; he tried to apply 

a power law to fit the results in terms of nominal strength:  

    
   (1.52) 

  

He experimentally observed that the optimum value of the size coefficient   was less 

than    , that is the value expected from LEFM. However Eq.(1.52) was not yet the 

right solution, also because it is a power law and so denies the presence of a 

characteristic length in concrete. Other three-point bend tests were performed by 

Walsh (1972). He also considered notched geometrically similar plain concrete 

specimens of different sizes, and observed, on a doubly logarithmic diagram with 

nominal strength versus size, that the scaling law should represent the transition 

between two extreme cases: plasticity and LEFM. The plastic limit analysis should be 

applied to small enough scales, that exhibit a ductile behaviour; according to this 

theory, the strength is independent from the structure size. On the other hand, for 

large enough scales a brittle behaviour can be considered, and LEFM can be 

applied; according to this theory, the nominal strength declines in proportion to      . 

Another important contribution was represented by Hillerborg’s fictitious crack model 

(Hillerborg, Modéer and Petersson, 1976), in which the deterministic nature of size 

effects was further emphasized.    

The combination between the two above mentioned extreme cases (plasticity and 

Linear Elastic Fracture Mechanics) become the key to study the deterministic size 

effect of quasi-brittle materials. For small enough scales, a strength criteria can be 

used, and consequently there are no scale effects (horizontal straight line in Figure 

1.22); on the contrary, for large enough scales, characterized by a perfectly brittle 

behaviour, LEFM can be applied (inclined straight line in Figure 1.22 of slope     ). 

Although these two theories considered separately do not contemplate any 

characteristic length (they are power laws), their combination does: this material 

length is in fact represented by the intersection between these two power laws, and it 

is denoted as   . The first very famous attempt to bridge these two extreme 

behaviours for the intermediate scales was proposed by Bazant (1984), with the so 

called Size Effect Law (SEL):     

   
    

√  
 
  

 
(1.53) 

  

in which: 

- B is a dimensionless constant; 

-    is the material length, representing the transitional size; 
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-    is a material constant, representing the tensile strength for small enough 

scales. 

Both   and    depend on fracture properties of the material and on the geometry of 

the structure, but they are independent from the structural size. These two 

parameters are usually experimentally determined. The function represented by 

Eq.(1.53) has two asymptotes: 

- for       size effect tends to disappear:                  (strength 

criteria represented by horizontal asymptote in Figure 1.22); 

- for      the function tends to the power law expected from LEFM (inclined 

asymptote in Figure 1.22): 

        (
 

  
)
 
 

 
               

 

 
                

Thus, Size Effect Law can be represented as in Figure 1.22: 

 

Figure 1.22: Size Effect Law (Bazant, 1984) 

If      structure behaviour is closer to plasticity and so it is predominantly ductile, 

whereas if      the structure presents a predominantly brittle behaviour, closer to 

Linear Elastic Fracture Mechanics. For this reason, the dimensionless number: 

  
 

  
 (1.54) 

  

can be considered as a brittleness number (Bazant, 1984), independent of structure 

shape. “For     the structure is perfectly brittle (i.e. follows LEFM), in which case 

the size effect is the strongest  possible, while for     the structure is non-brittle (or 

ductile, plastic), in which case there is no size effect. Regardless of geometry, 

quasibrittle structures are those for which         , in which case the size effect 

represents a smooth transition (or interpolation) that bridges the power law size 

effects for the two asymptotic cases” (Bazant et al., 2004). Bazant’s size effect law 
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(Eq.(1.53)) can be derived easily writing an energy balance condition (Bazant, 1984) 

that involves the energy available (function of   ) and the energy required for crack 

propagation (function of the fracture energy,   , considered in this case as a material 

property). The hypothesis used by Bazant in this demonstration imply important 

limitations of his size effect law: it can be considered valid only within a limited size 

range. Furthermore, Bazant supposed that, in correspondence of the maximum load, 

there is always a crack with a length proportional to specimen size. In this way, he 

could propose similar considerations to those already reported in section [1.1.1.1]: 

considering the half-length    of equivalent micro defect pre-existing in the material 

(Eq.(1.7)), according to this hypothesis, small structures with      will fail for plastic 

collapse, while large structures with      will fail for unstable crack propagation. 

Nevertheless, such a hypothesis could be considered true only if pre-existing cracks 

are present; otherwise, what really happens is exactly the opposite. In section 

[1.1.1.3], Figure 1.16 shows the numerical results obtained by the application of the 

cohesive crack model; in particular, considering a large size specimen without a pre-

existing notch (     ), a very brittle behaviour was observed (snap-back 

instability), since the failure, in correspondence of the maximum load, occurs without 

a previous development of macro cracks. Actually, in fact, in unnotched specimens 

the size   of the characteristic flaw is independent of the specimen size. 

Consequently, SEL can be used only with pre-notched specimens, under the 

condition that the notch depth must be proportional to the structure size. 

A completely different approach is represented by the fractal explanation of size 

effects proposed by Carpinteri (1994a). In this theory, the quasi-brittle and disordered 

materials such as concrete are considered as fractal object with a self-similarity 

microstructure, in order to define scale-invariant material constants, with non-integer 

physical dimensions depending on the fractal nature of the damaged material 

microstructure. In fact, if strength and toughness of disordered materials are 

measured with reference to the classical Euclidean geometrical entities (areas and 

volumes with integer dimensions of 2 and 3, respectively), it is impossible to obtain 

constant material properties. It is necessary to consider the actual dimension of 

material ligament at peak stress and the actual dimension of fracture surface at 

failure in order to define the “universal” scale-independent values of these two 

parameters. This procedure, from a mathematical point of view, may be framed in the 

so-called Renormalization Group Theory. In particular, the energy dissipation during 

the crack propagation is supposed to occur in an invasive fractal domain, with an 

intermediate dimension  between 2 (surface) and 3 (volume); on the other hand, 

tensile strength is defined on a lacunar fractal domain, with a dimension lower than 2. 

The fractal domains present in nature are characterized by a random self-similarity: it 

means that their aspect seems to be statistically the same under the different scales 

of observation. However, fractality tends to vanish with the increase of the 

observation scale: there is an order-disorder transition (Mandelbrot, 1982) from a 

fractal disordered regime at the microscopic scales up to an homogeneous Euclidean 

regime at the largest scales, in which the heterogeneity of the material can be 
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neglected. In other words, the effect of microstructural disorder decreases in large 

structures (large relatively to the microstructural characteristic size of the material). At 

limit, when the structural size tends to infinit, scale effects should be null, and thus it 

is possible to determine the true material properties. Carpinteri, Chiaia, Ferro (1995) 

supposed a continuous topological transition between these two asymptotic regimes 

(fractal and homogeneous): in order to describe the entire range of the scaling, not 

only one, but infinite fractal exponents are necessary.   For this reason, this kind of 

scaling laws are called Multifractal Scaling Laws (MFSL). Actually, the transition from 

a disordered to an ordered regime can be observed only if scale variations over 

several orders of magnitude are considered. In laboratory tests, however, only 

narrow size range  can be investigated (it usually does not exceed one order of 

magnitude): therefore it is better in these cases to use a monofractal scaling law (see 

Section [1.1.2.2]), characterized by a single fractal exponent, obtained considering 

the tangent to the MFSL in correspondence of the scale range of interest. In other 

words, the monofractal law can be seen as an approximation of the multifractal law in 

a limited scale range. Thus, mono-fractality  will be considered in the second part of 

the present work, where the results concerning three-point bending tests on different 

size specimens in a scale range of 1:4 will be analysed. Two Multifractal Scaling 

Laws have been proposed by Carpinteri, Chiaia, Ferro (1995) for fracture energy and 

tensile strength of quasi-brittle and disordered materials. They are represented in 

Figure 1.23 with linear diagrams, and in Figure 1.24 with bilogarithmic diagrams;   

represents the characteristic dimension of the specimen.  

 

Figure 1.23: Multifractal Scaling Laws for (a) fracture energy and (b) tensile strength in linear diagrams  

The laws represented in Figure 1.23 have analytical expressions in the form: 

   (  
 

 
)
    

 (1.55) 
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(1.56) 

  

In the bilogarithmic form, Eq.(1.55) and Eq.(1.56) become respectively: 

        
 

 
     (  

 

       
) (1.57) 

  

       
 

 
     (  
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(1.58) 

  

 

Figure 1.24: Multifractal Scaling Laws for (a) fracture energy and (b) tensile strength in bilogarithmic 
diagrams 

Considering the MFSL for tensile strength (Eq.(1.56)): 
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          √    
     : it represents the real material property 

(horizontal asymptote in Figure 1.23b), because it is referred to very large 

sizes, in which the fractality has not any effect; 

             (vertical asymptote in Figure 1.23b). 

The trend shown in Figure 1.23b is thus the same of that represented in Figure 1.3 

with Griffith’s hyperbola. In the bilogarithmic form (Eq.(1.58)), obviously, there is 

again the horizontal asymptote for macro scales, while for micro scales the vertical 

asymptote observed in Figure 1.23b becomes an inclined asymptote with a negative 

slope of  : it represents the highest possible disorder, called Brownian disorder. In 

Figure 1.24b point Q, representing the intersection of the two asymptotes, 

corresponds to the value        . From a dimensional analysis, the ratio     results 

to be a length: it represents a characteristic length     of the material, related to its 

heterogeneity and to the maximum aggregate size, and it separates the fractal 

regime for small scales from the homogeneous asymptotic regime for large scales. 

Hence, Eq.(1.56) can be rewritten in the following way: 

   √  (  
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  (  
   
 
)

 
 
 (1.59) 

  

Similar considerations can be done for fracture energy. With respect to Eq.(1.55): 

            √    
 : it is the real constant of the material (horizontal 

asymptote in Figure 1.23a), since it is referred to macro scales; 

             

Eq. (1.55) becomes so: 
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 (1.60) 

  

Representing this law in a bilogarithmic diagram (Figure 1.24a), also in this case two 

asymptotes are present: the horizontal one referred to the homogeneous regime, and 

the inclined one, for fractal regime, characterized by a positive slope of  . The two 

MFSL represented in Figure 1.24 are thus very similar; the only difference is the sign 

of the Brownian exponent:      for the invasive domain related to fracture energy, 

     for the lacunar domain related to tensile strength. The two parameters A and B 

in Eq.(1.55) and (1.56) can be determined using experimental results, through best 

fitting procedures.  

Contrary to Bazant’s Size Effect Law, the MFSL permits a good interpolation of 

experimental results also when large notches in the specimens are absent. Bazant 

manifested some skepticism about the fractal theory, especially on the slope of the 

MFSL asymptote at the smaller scale, and on the concavity of the law represented in 

Figure 1.24b (Bazant et al., 2004), since it is opposite of that characterizing his SEL 

(Figure 1.22). However, it was observed how the MFSL consents interpolation of 
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experimental results better than SEL. Besides the limitations above mentioned, a 

further anomaly is present in Bazant’s Size Effect Law: in the limit of infinite structural 

size, LEFM seems to govern completely the strength behaviour; consequently, for 

very large structures the tensile strength should be equal to zero. This result is 

obviously absurd. After several corrections of SEL, Bazant introduced the so-called 

Universal Size Effect Law (USEL), suitable not only for notched specimens, but also 

to describe crack initiation. Nevertheless, in this case the same upward concavity of 

MFSL is obtained (Bazant, 1997).        

Recently, another noteworthy scale effect theory has been proposed, based on the 

concept of local fracture energy (Hu, Wittman, 1992). The source of scale effects, in 

this case, is represented by the interaction between the crack, the Fracture Process 

Zone (FPZ) and the boundary of specimen. In Section [1.1.1.2] it was underlined how 

in concrete specimens, LEFM can be applied only if FPZ is enough small respect to  

specimen size, and away from the front and back surfaces. In fact, when the fracture 

is approaching to the back surface during its propagation, the FPZ is not small in 

comparison with the remaining part of the uncracked ligament, and thus LEFM fails. 

In other words, LEFM is suitable with large enough specimens, in which FPZ should 

be far away from any boundaries. On the contrary, if crack-tip FPZ is not small in 

comparison with its distance to boundaries, scale effects will occur. Therefore, an 

inner region, away from the boundaries, in which LEFM can be applied, may be 

distinguished from a boundary/outer region. A local fracture energy model is thus 

proposed; it assumed that: “[…] different fracture energy dissipations occurred at 

different positions along the crack path”  (Duan, Hu, Wittmann, 2002). A bilinear 

function was proposed to describe approximately the energy distributions along the 

ligament of a pre-notched specimen. This law, called   ( ), is represented in Figure 

1.25 as a function of ligament coordinate   ; the analytical expression is the following: 

  ( )  {

                                                    
 

   
(     )

  
                         

  (1.61) 

  

in which: 

- (   ) is the ligament size (see Figure 1.13 for TPB test); 

-    in this case represents the size-independent material property; it can be 

measured only in the inner region away from the boundaries, where LEFM 

applies; 

-   
  is called transition ligament length, and corresponds to the intersection of 

the two straight lines that approximate   ; it represents the passage from inner 

to outer region.  

Summing up, in the inner region the local fracture energy is constant and equal to   , 

that is the size-independent fracture energy of the material; in the outer region,    is 

location dependent, and falls to zero in correspondence of the specimen back face.  
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Figure 1.25: Distribution of fracture energy along the ligament (local fracture energy model) 

In this model, the RILEM defined fracture energy (Eq.(1.45)) described in Section 

[1.1.1.4] represents an average value, that includes the energy dissipations in both 

the inner and the outer regions (in Figure 1.25 it is indicated with   ); for this reason it 

represents a size-dependent parameter. Only if the inner region is significantly bigger 

than the outer region, it becomes size/ligament independent: this happens in large 

enough specimens. In fact: “[…]    approaches to    asymptotically with increasing 

specimen size as the maximum outer/boundary region has already been established 

and only the inner region is being increased” (Duan, Hu, Wittmann, 2002). The 

usefulness of the method consists in the determination of the size-independent 

fracture energy    by means of the size-dependent    measurements. However, it is 

necessary to know the transitional ligament length, since the available equation is 

only one (Eq.(1.61)), but the unknowns are two (   and   
 ). A first way to solve the 

problem consists in performing several tests for the determination of    on fixed size 

specimens, but with different notch length: thus an over-determinate system of 

equations can be obtained and solved by a least square method in order to 

determine the best estimates of     and   
 . A second possibility was  proposed by 

Muralidhara et al. (2010). It consists in an hybrid method, since it is based on the 

localization of Acoustic Emission events along the ligament length. Experimental 

evidences show in fact that AE activities decrease towards the specimen back 
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boundary. If an histogram with the number of AE events in the different portions of 

ligament lengths is outlined, it is possible to determine using AE technique the value 

of the transition ligament length   
 ; at that point Eq.(1.61) contains a unique 

unknowns, i.e. the true size-independent value of material fracture energy. 

Muralidhara, Prasad, Singh (2013) proposed a further method to determine the size 

independent fracture energy of material. It is called fracture energy release rate. It is 

based on the assumption that the fracture energy is proportional to the size of the 

FPZ, and in turn this latter is proportional to the specimen size. However the rate of 

increase of FPZ size decreases with the increasing of specimen size. Consequently 

the rate of increase of fracture energy decreases with the increase in un-cracked 

ligament length. The ratio between the fracture energy and the un-cracked ligament 

length practically becomes a constant in correspondence of large un-cracked 

ligament lengths. This constant should represent the real material property   .   

1.1.2.2 Fractal model for scale effects on tensile strength and fracture energy 

In the previous paragraph, the principal scaling laws for tensile strength and fracture 

energy have been mentioned and briefly described. Among them, the fractal theory 

(Carpinteri, 1994a, and Carpinteri, Chiaia, Ferro, 1995) is of course one of the most 

interesting and experimentally validated. Multifractal Scaling Laws have been 

discussed and, furthermore, the difficulties in their practical application have been 

underlined. In fact, considering the capacities of a common laboratory, the maximum 

size range that can be examined usually does not exceed one order of magnitude, 

and this is not enough in order to use these laws. For this reason, in this section the 

attention will be focused on the so-called mono-fractal model. It can be seen as an 

approximation of the corresponding MFSL, obtainable considering a tangent in the 

narrow size range experimentally investigated. The mono-fractal scaling laws for 

fracture energy and tensile strength can be obtained by means of a renormalization 

procedure: rather than variations in specimen size, a sequence of scales of 

observation will be taken into account in the following demonstrations (Carpinteri, 

1994b).    

In order to obtain the renormalized fracture energy, it is necessary to start from the 

total energy dissipated by fracture, denoted with  . It is an invariant with respect to 

the scale of observation. The common way to evaluate this energy is multiplying the 

fracture energy (corresponding to the macroscopic scale of observation, i.e. the 

fracture energy experimentally measured, called    in the previous paragraphs, here 

denoted with   ) by the ligament area (the conventional area  , denoted with   ). 

Considering a second more detailed scale of observation, it is possible to take into 

account the roughness and the self-similar tortuosity characterizing the fracture 

surface, i.e. the domain in which the energy dissipation occurs. This implies that the 

area measured in this scale of observation, denoted with   , is bigger than   . 

Consequently, for the invariance of the total dissipated energy  ,    will be smaller 

than   . At limit, considering the asymptotical microscopic scale of observation,    
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will be zero, while    will represent an infinite area. This result would be 

meaningless. Actually,    should represent the measure of an invasive fractal 

domain: it is different from an area, because it has a non-integer physical dimension, 

bigger than 2 of an additive factor   . Hence,    must be substituted by   , that will 

be a length elevated to an exponent       . As a consequence,    must be 

substituted by   
 , that represents the renormalized size-independent fracture energy, 

characterized by non-integer physical dimension. Writing the invariance of the total 

dissipated energy: 

                              (1.62) 
  

and applying the above described substitutions, it is possible to write: 

     
  (

  

 
)    

  (
     

  
)    

      (1.63) 

  

in which   represents a characteristic dimension of the specimen (for TPB tests it is 

the beam depth: see Figure 1.13). Eq.(1.63) represents the power law that expresses 

the RILEM fracture energy as a function of the specimen size and of the true material 

property   
 . In logarithmic form, Eq.(1.63) becomes: 

         
         (1.64) 

  

In a bilogarithmic diagram, Eq.(1.64) is represented by a straight line with a positive 

slope equal to the fractal exponent    (Figure 1.26a). 

Through exactly analogous considerations it is possible to obtain also the 

renormalized tensile strength. In this case the invariant of the problem is represented 

by the maximum total force   that a specimen is able to transmit (for sake of 

simplicity, a tensile test can be thought). In a macroscopic scale of observation, the 

total force    can be expressed by the product of the cross-sectional area      by 

the tensile strength      . With a second more detailed scale of observation, it is 

possible to note the real nature of material ligament, characterized by self-similar 

weakening due to cracks, pores, defects, aggregates, voids, inclusions, etc. For this 

reason the area    measured in this case will be smaller than   . Consequently, for 

the invariance of the total force   transmitted by the specimen,    will be bigger than 

  . At limit, considering the asymptotical microscopic scale of observation,    will be 

infinite, while    will represent an area equal to zero. Again, this latter result would 

be absurd. Actually,    should be the measure of the lacunar fractal domain 

representing the damaged ligament. It will be denoted as   , because it is not an 

area: it has a non-integer dimension smaller than 2 of a factor   . As a consequence, 

   must be substituted by   
 , that represents the renormalized size-independent 

tensile strength, characterized by non-integer physical dimension. Writing the 

invariance of the total applied force: 

                              (1.65) 
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and applying the above described substitutions, it is possible to write: 

     
  (

  

 
)    

  (
     

  
)    

       (1.66) 

  

Eq.(1.66) represents the power law that expresses the size-dependent tensile 

strength as a function of the specimen size and of the true material property   
 . In 

logarithmic form, Eq.(1.66) becomes: 

         
         (1.67) 

  

In a bilogarithmic diagram, Eq.(1.67) is represented by a straight line with a negative 

slope equal to the fractal exponent    (Figure 1.26b). 

 
Figure 1.26: Mono-fractal scaling laws for (a) fracture energy and (b) tensile strength 

These two scaling laws were used by Carpinteri and Ferro (1994) to interpret the 

results of uniaxial tensile tests on dog bone shaped concrete specimens of four 

different sizes (Figure 1.27), with a scale range 1:8 (actually for the bigger size only 

the tensile strength value is available, because in that test a snap-back instability 

occurred). These results are represented in Figure 1.28. 

 
Figure 1.27: Geometry of the specimens used in tensile tests performed by Carpinteri, Ferro (1994) 
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Figure 1.28: Size effect, observed in tensile tests performed by Carpinteri, Ferro (1994),  

(a) on tensile strength and (b) on fracture energy 

Observing Figure 1.28 and using Eq.(1.64) and Eq.(1.67), the application of the 

mono-fractal scaling laws to fitting the experimental results obtained by Carpinteri 

and Ferro (1994) provided: 

 tensile strength:             
       

 

      
 

 

 fracture energy:             
         

 

      
 

Experimental results show that the dimensional decrement    for the tensile strength 

and the dimensional increment    for the fracture energy both assume always values 

between the two limits   and  : 

         means the absence of fractality and consequently of size effects: 

this happens for macro scales (homogeneous Euclidean regime, Figure 1.24); 

           indicates the maximum possible disorder: this happens for 

micro scales (fractal Brownian regime, Figure 1.24), and it corresponds to the 

maximum size effect (LEFM field). It is interesting to note how in this case both 

  
  and   

  assume the same physical dimension of a stress intensity factor. 

In particular, the maximum value     can be explained as follows: 

        implies that the energy dissipation occurs in a fractal space of 

dimension 2.5: this represents a Brownian surface, that is the maximum 

degree of disorder verifiable in a fracture process. In fact        would 

mean, from a geometrical point of view, to have a fracture surface with sharp 

tortuosity, incompatible with the kinematic of crack opening and closing; 

        is instead a maximum limit related to the fracture mechanics and to 

the stress singularity described in Section [1.1.1.1]. 

For these reasons, apart from the limit situations, the following condition will be valid:  

        (1.68) 
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At this point, a generalization of the energy brittleness number (Eq.(1.27)) can be 

given by Dimensional Analysis (Carpinteri, 1994a): 

  
  

  
 

     
(       )

 (1.69) 

  

If the reversal of physical roles of toughness and strength is supposed to be absurd, 

the exponent of the characteristic dimension   in Eq.(1.69) must be positive, i.e. 

Eq.(1.68) must be respected. 

Another important contribution in the present theory came from Cornetti’s work 

(1998). He introduced the concept of fractal strain, so that the fractal scaling law 

could be extended also on kinematical quantities such as the crack opening 

displacement. It was experimentally observed, in fact, an increasing tail of the 

cohesive law (Figure 1.9b) and consequently an increase of the critical displacement 

   with the increase of specimen size. In other words, the classical cohesive law is 

not a size-independent material property. The scaling laws on two of the three 

parameters that describe the cohesive law have been discussed up to this point. With 

the further introduction of a fractal kinematical quantity, the so-called fractal critical 

strain   
 , it is possible to define a scale-invariant cohesive law, function of the true 

material properties. The model that was thus obtained is called fractal (scale-

independent) cohesive crack model (Carpinteri, Chiaia, Cornetti, 2002). In order to 

define the fractal critical strain, it is necessary to observe how the damage is often 

not localized onto a single section, but it is spread over a finite band. Experimental 

evidences provided by Kleiser and Bocek (1986) on metals subjected to tension have 

allowed to advance the following hypothesis: “[…] damage into heterogeneous media 

presents fractal patterns […]. Every damage band, when observed at a sufficiently 

high resolution, is made out of several smaller bands, which, in turn, appear to be 

constituted by smaller and smaller bands, and so on” (Carpinteri, Chiaia, Cornetti, 

2002). Therefore, considering for example a simple bar subjected to tension, a fractal 

strain localization can be assumed. Cornetti (1998) proposed the concept of fractal 

strain acting upon lacunar domains: using again a renormalization procedure, it is 

possible to define a renormalized critical strain, that will represent the true material 

property. In fact, the critical displacement     can be expressed, for what concerns 

the macro scales, how the product of the nominal strain at rupture   , times the 

nominal width   of the damaged band. However, considering the fractal strain 

localization,    can be also defined as the fractal measure of the lacunar set 

constituted by the slip lines in which strain occur (     ), times the fractal critical 

strain   
 . Thus, for the invariance of the critical displacement   , it is possible to 

write: 

          
        (1.70) 

  

A power law also for the size-dependent critical strain can be thus derived: 



Fundamental concepts 40 

 

 

     
       (1.71) 

  

Eq(1.71) provides the critical strain as a function of the characteristic size   and the 

true material property   
 , that is not a dimensionless quantity, but it presents an 

anomalous  non-integer physical dimension. Furthermore, Eq.(1.70) shows the power 

law for the critical displacement, that in logarithmic form becomes: 

         
  (    )      (1.72) 

  

In the same way, Eq.(1.71) can be written in logarithmic form as follows: 

         
         (1.73) 

  

The fractal exponent    describes the degree of disorder that characterizes the 

kinematic of damage (Carpinteri, Chiaia, Cornetti, 2002): 

      represents a ductile behaviour, a diffused damage: this limit value 

occurs with the micro scales, in which the failure is governed by the 

conventional critical strain   , that is independent of the band size  ; 

      represents, on the other hand, a brittle behaviour, with a localization of 

the damage in correspondence of a single cross-section: this limit value 

occurs with the macro scales, in which the failure is governed by the critical 

displacement   , that results in this case a size-independent parameter as in 

Hillerborg’s fictitious crack model. 

For the mesoscales, it will be:  

       (1.74) 
  

If      is the fractal dimension of the lacunar projection of the damaged sections, 

and      is the fractal dimension of the lacunar fracture cross section, the energy 

will be dissipated over the cartesian product of these two fractal domains, that will be 

the invasive fractal domain of dimension     . A rigorous theorem of mathematical 

analysis ensures that the fractal dimension of the cartesian product between two 

fractal domains is equal to the sum of their fractal dimensions. Thus: 

(    )  (    )       (1.75) 
  

Eq.(1.75) implies that: 

           (1.76) 
  

Eq.(1.76) provides a very convincing answer to the skepticism of Bazant related to 

the slope     of the inclined asymptote in MFSL for tensile strength (Figure 1.24b). In 

fact, for the micro scales (fractal regime), it has been said that        , while 

       for kinematic reasons of crack opening and closing: consequently Eq.(1.76) 

ensures for the fractal regime a value       . 

At this point, Eq.(1.66) and Eq.(1.70) can be put in a general form, relative to a 

generic load level: 
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          (1.77) 
  

           (1.78) 
  

Introducing Eq.(1.77) and Eq.(1.78) in Eq.(1.20), it is possible to obtain the fractal 

cohesive law, that represents the true material property: 

   ∫     

  

 

 ∫         

  
 

 

                   ∫   

  
 

 

     (1.79) 

  

Remembering the power law that describes the scale effects on fracture energy 

(Eq.(1.63)), it is clear that Eq.(1.76) is respected (          ), while the 

renormalized fracture energy results to be equal to the area under the diagram 

      that represents the fractal cohesive law (Figure 1.29b).  

  
  ∫   

  
 

 

     (1.80) 

  

During the softening branch, after the peak load,    decreases from the maximum 

value   
  up to zero, when      

 ; in the meanwhile, the non-damaged parts of the 

tensed bar are subjected to an elastic unloading, according to the pre-peak diagram 

    (Figure 1.29a). 

 

Figure 1.29: Double constitutive law: (a) stress-strain, (b) fractal (scale-independent) cohesive law 

Considering again the experimental results obtained by Carpinteri and Ferro (1994) 

with uniaxial tensile tests on dog bone shaped concrete specimens of different sizes, 

Figure 1.30 shows the     and the      diagrams (Carpinteri, Chiaia, Cornetti, 

2002). In this latter,   represents the displacement localized in the damaged band, 

calculated by subtracting from the total one the displacement due to elastic and 

inelastic pre-peak deformation.  
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Figure 1.30: (a) Stress vs. strain and  (b) cohesive law related to uniaxial tensile tests  

performed by Carpinteri and Ferro (1994) 

Figure 1.30 shows that, with the increase of specimen size, the tensile strength    

decreases, while the critical displacement    increases. Furthermore, it can be seen 

how the area under the cohesive laws in Figure 1.30b depends by specimen size. On 

the contrary, using Eq.(1.77) and Eq.(1.78) it is possible to obtain the true material 

property, i.e. the fractal cohesive law (Figure 1.31). The value of the fractal exponent 

   is obtained from Eq.(1.76):                            . 

 
Figure 1.31: Fractal cohesive law related to uniaxial tensile tests performed by Carpinteri and Ferro (1994) 

As expected, the three size-dependent cohesive laws represented in Figure 1.30b 

collapse onto a unique curve, that represents the fractal (scale independent) 

cohesive law (Figure 1.31).  

This theory, described up to this point for tensile tests, was applied also in the case 

of uniaxial compression tests on concrete specimens of different sizes (Carpinteri, 

Corrado, 2009). Scale effects, in fact, influence also the compression strength and 

the post-peak softening branch of the     diagram. Experimental evidences show 
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that  a strong localization of deformations takes place, also in compressed 

specimens, during the softening regime. Therefore, the energy dissipation occurs on 

an internal surface rather than in the volume. Hence, a close analogy exists between 

the tensile and the compression tests. However, whilst in tension the localized 

displacement corresponds to a crack opening, in compression it consists in a 

material interpenetration. Consequently the cohesive crack model is not applicable. 

Nevertheless, a new model, analogous to the cohesive crack model, can be used for 

concrete crushing: it is called Overlapping Crack Model (Carpinteri et al., 2007). This 

is characterized by a double constitutive law: a stress-strain relationship until the 

compression strength    (Figure 1.32a), and a post-peak stress-displacement 

(overlapping) law describing the concrete crushing (Figure 1.32b). Similarly to the 

cohesive law (Figure 1.9b), the three parameters that describe an overlapping law 

are: the compression strength   , the critical value of displacement    
  (in this case 

this represents an interpenetration) and the crushing energy    (the analogous of 

fracture energy for compression). This latter is equal to the area under the 

overlapping law (Figure 1.32b).   

 
Figure 1.32: Overlapping Crack Model: (a) pre-peak stress vs. strain diagram, (b) overlapping law 

In the Overlapping Crack Model, these three parameters, and consequently the 

overlapping law (Figure 1.32b), are considered material properties. Actually they are 

scale dependent, because of the strain localization in the specimen at failure. 

Experimental results demonstrate that compression strength decreases with the 

increase of specimen size. Therefore, the fractal theory was extended also to the 

compression problem, supposing that the energy dissipation occurs in a fractal 

domain of dimension between 2 (surface) and 3 (volume). In this case, however, 

Carpinteri and Corrado (2007) did not consider the scale effects on compression 

strength, because this mechanical parameter did not present a clear trend in the 

experimental results obtained. Consequently, Eq.(1.76) becomes, for the 

compression problem: 

        (1.81) 
  

Measuring the area under the stress-displacement curves experimentally obtained, 

Carpinteri and Corrado (2007) determined the values of crushing energy 
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corresponding to the different specimen sizes. Performing a best-fitting procedure on 

these results, reported in a bilogarithmic diagram, using a linear regression, it was 

possible to obtain, by means of a law analogous to Eq.(1.64), the fractal exponent    

and the renormalized crushing energy   
 , i.e. the true material constant. They 

resulted: 

         

   
       

 

      
 

Knowing the value of    , the other fractal exponent    can be obtained using 

Eq.(1.81): 

              

At that point the fractal overlapping laws for the different specimen sizes and 

slenderness can be derived. They are represented in Figure 1.33. 

 

Figure 1.33: Fractal Overlapping Laws obtained by Carpinteri, Corrado (2007)  

As expected, a good superposition of the fractal overlapping laws is obtained, 

because this law is the true scale independent material property. 

The method described in this paragraph, so far applied for uniaxial tensile and 

compression tests, will be extended, in the second part of the present thesis, to the 

bending problem. The mono-fractal scaling laws will be applied on the results of TPB 

tests, performed on plain concrete specimens of different sizes; then, considering 

also in that case the kinematic aspect, a fractal cohesive law for the bending problem 

will be determined, as a function of three renormalized material properties. 
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1.2 The Acoustic Emission Technique 

In order to perform damage monitoring during the TPB tests carried out for the scope 

of the present thesis, Acoustic Emission Technique was applied. In this section, a 

brief review of the main concepts of this kind of analysis is presented. Particular 

attention will be reserved only to the parameters of interest for the scope of the 

present work.    

1.2.1 General aspects 

Acoustic emission (AE) technique is a non-destructive and non-invasive method for 

the evaluation of the physical condition of a structure during its loading. It allows to:  

- obtain information about the actual situation of the structure; 

- estimate the energy emitted during crack propagation; 

- estimate the mode of fracture propagation; 

- estimate the speed of the damage advancement; 

- identify the position of the damage in the structure. 

This monitoring method is similar to the one used in earthquake control. Rather than 

the seismic waves, in this case the transducers, attached on the surface of the 

structural element, have to capture the transient elastic waves generated by cracking 

(Figure 1.34). 

 

Figure 1.34: Detection of AE waves (Grosse, Ohtsu, 2008) 

Fracture in a material, in fact, is accompanied by an energy release that generates 

the propagation of these waves within the bulk of the element; when they reach the 

surface, they can be received by the sensors. In AE monitoring, piezoelectric sensors 

are generally used. They are able to convert the dynamic motions captured on the 

surface of the material into electric signals. AE technique can be applied on various 

kinds of materials. However, AE waves, before being captured by the sensors, will be 

subjected to an attenuation that depends on the heterogeneity of the monitored 

material. These heterogeneities could represent in fact diffraction elements or 
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reflective surfaces for these waves. In typical metallic alloys, for instance, the 

attenuation is low; in that case, therefore, the frequencies of AE signals will be higher 

respect to the case of disordered materials such as concrete. Anyway, AE signals 

are in the ultrasonic field; their wavelength is of the order of magnitude of the flaw 

that generates the elastic wave. Thus, high frequency waves are generated from 

small discontinuities (that usually occur at the beginning of the damage process), 

whereas low frequency ones are produced by large cracks. 

From an energetic point of view, it is necessary to distinguish the dissipated energy 

on the fracture surface from the emitted one, released in the form of AE waves. For 

quasi-brittle materials such as concrete, the following energy balance subsists 

(Carpinteri et al., 2016): the total released energy (i.e. the total elastic energy stored 

in the body) is equal to the sum of the energy dissipated by material damage (area D 

in Figure 1.35a) and the energy emitted through propagation of elastic waves (area E 

in Figure 1.35a). As a matter of fact, the dissipated energy on the fracture surface 

(area    under the load-displacement curve: see also Figure 1.20) is generally 

smaller than the total elastic energy supplied to the specimen by the testing machine: 

the remaining part of energy that is not absorbed by material, is emitted in various 

forms, mainly by AE waves. Important AE activity occurs in correspondence of snap-

back instabilities. Nevertheless a global snap-back (Figure 1.35a) can happen only in 

very brittle structures. Generally a globally stable response (softening branch) is 

observed, in which, however, local snap-back instabilities can be present (Figure 

1.35b): in these cases, the acoustic emission is related to these local phenomena. 

The local snap-back instabilities are caused by material heterogeneities or, 

eventually, by the presence of fibers or reinforcement steel bars, that produce a 

discontinuous damage propagation. 

 

Figure 1.35: Simplified load-displacement curves obtainable with a quasi-brittle material: distinction 
between Dissipated and Emitted energy in case of (a) global or (b) local snap-back instability  

After the acquisition of signals, it is convenient to perform a frequency analysis in 

order to eliminate the unwanted components, due to the environmental noises, 

characterized by frequencies lower than 50 kHz: it can be done by means of the FFT 
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algorithm (Fast Fourier Transform). A typical AE signal is represented in Figure 1.36 

(Grosse, Ohtsu, 2008). The conventional parameters used to describe an AE signal 

are pointed out in the figure. Grosse, Ohtsu (2008) and the Recommendation of 

RILEM TC 212-ACD (2010) give the definitions of the principal technical terms used 

in AE analysis (Figure 1.36): 

 AE signal: “the electrical signal detected at a sensor, which is converted 

through the detection of AE wave (elastic wave)”; 

 Hit: a waveform that, exceeding the threshold, is recorded and stored in 

memory; the threshold represents a “pre-set voltage level, which has to be 

exceeded before one AE signal is detected and processed”: it depends on the 

monitored material (for concrete it is usually 30-50 dB);   

  AE ring-down counts: “the number of times within the duration, where one 

signal (waveform) exceeds a pre-set threshold”; 

 Event: “a group of AE hits received from a single source by two or more 
channels”;    

 
Figure 1.36: AE waveform parameters 

 Duration ( ): time interval between the first and the last threshold crossing 

by the waveform; 

 Amplitude ( ): the peak voltage of the signal waveform; it depends on the 

magnitude of source event. It is usually expressed in Decibel: 

 [  ]          (
 

  
) (1.82) 
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where    is the maximum amplitude in Volt of the background noise; 

 Rise Time (  ): time interval between the beginning of the signal and the 

time of the peak amplitude; 

 Energy ( ): it is generally defined as “a measured area under the rectified 

signal envelope”; an approximate way to evaluate this area is: 

  
 

 
     (1.83) 

  

Thus the energy is generally expressed in [    ]; 

 Average Frequency (  ): referring to one hit,    is equal to the count 

divided by the duration. 

A typical AE measuring system consists of the following devices (RILEM TC 212-

ACD, 2010): 

 Sensors: piezoelectric sensors are generally used to detect AE waves; two 

kinds of AE sensors can be distinguished: 

 Resonance-type sensors: they are the most sensitive around the 

resonant frequency; 

 Broad-band sensors: they are less sensitive than the resonance 

ones, and so the energy of the signals captured by this kind of 

sensors is smaller; however, they are able to capture signals 

characterized by frequencies within a large bandwidth.  

 Amplifiers: AE signals captured by the sensors are amplified by a pre-

amplifier and then by a main amplifier before being processed; in concrete, 

for instance, the gain due to amplification can reach 40-60 dB.  

 Filters: it is necessary to choose a frequency range of interest, in order to 

eliminate the noises, i.e. components within the captured signal related to 

causes other than AE phenomena. 

 

1.2.2 Parametric AE Analysis: Crack classification 

In concrete, AE technique can be used also in order to classify the active cracks.  

In fracture mechanics, the following fundamental modes of crack loading are 

distinguished: 

 Mode I cracks: opening mode (Figure 1.37a) 

It happens when the crack is symmetrically loaded by tensile normal stresses. 

These stresses tend to increase the distance between the fracture surfaces in 

the direction perpendicular to the plane of the crack; 

 Mode II cracks: sliding mode (Figure 1.37b) 

It happens when the crack is anti-symmetrically loaded by in-plane shear 

stresses, that cause a displacement of crack surfaces in the plane of the 

crack, perpendicularly to the leading edge; 
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 Mode III cracks: tearing mode (Figure 1.37c) 

It happens when the crack is subjected to a three-dimensional stress field; 

this mode is in fact produced by out-of-plane shear. 

 

Figure 1.37: The three elementary modes of cracking: (a) opening, (b) sliding, (c) tearing 

A simple crack type classification method using AE technique was proposed by 

Ohtsu (Grosse, Ohtsu, 2008). It is based on two AE parameters: 

 the average frequency (  ) (expressed in kHz); 

 the Rise Angle (  ) (expressed in ms/V). 

This latter is defined as the ratio of the Rise Time  (  ), expressed in millisecond, to 

the peak amplitude ( ), expressed in Volt: 

   
  

 
 (1.84) 

  

 

Figure 1.38: Different values of RA parameter in case of tensile and shear events 
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Figure 1.38 (Carpinteri et al., 2016) shows the reason why RA parameter can be 

considered a useful tool  for a crack classification. Remembering that P-waves 

(compressional waves) are faster than S-waves (shear waves) and consequently are 

the first to be captured by sensors, it is possible to observe that:  

 low RA values correspond to signals with a prevalence of P compressional 

waves; it means that they correspond to opening cracks, caused by normal 

stresses  ; 

 high RA values correspond to signals with a prevalence of S shear waves; it 

means that they correspond to sliding cracks, caused by tangential stresses  . 

In concrete specimens or structures, the classification of crack types proposed by 

Ohtsu uses a combination of the Average Frequency and Rise Angle values. Each 

signal can be represented by a point in the       diagram (Figure 1.39): if the 

point is placed above the bisector of this diagram (high frequency and low RA), it 

represents a mode I crack; if the point is below this bisector (low frequency and high 

RA), it corresponds to a mode II crack. 

 

Figure 1.39: Crack type classification proposed by Ohtsu 

 

1.3 Dynamic Identification 

In addition to AE analysis, a further non-destructive technique of damage monitoring 

has been used in the present thesis: the Dynamic Identification. It consists in the 

analysis of the free response signals, captured during the test, in order to reveal 

variations in natural frequencies and modal shapes. These variations are caused, in 

fact, by a stiffness reduction of specimen consequently to the progress of damage. 

Through an inverse procedure, it is possible to obtain information about the damage 
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severity (e.g. the advancement of a crack), for example by using a finite element 

model.  

1.3.1 Non-destructive control based on vibrations 

In general, in the monitoring of real structures, it is usually necessary to use more 

than one method in parallel, because each non-destructive technique presents both 

pros and cons. For instance,  AE analysis represents a valid technique to identify the 

presence of a damage and to receive an alarm when it is evolving. However, this 

technique presents also practical limitations when it is necessary to identify the 

number of defects in the structure, their position and their entity (Ruotolo, 1997). 

Furthermore, if the AE sensors are placed in points remote from the location of the 

damage, this technique becomes inefficacious. For this reason, in practical situations 

there is a need for a technique able to recognize the presence of a damage in the 

structure using a limited number of sensors. Dynamic Identification technique 

possesses this requirement. In fact, even with just one sensor, if positioned in a 

strategic point of the structure, it is possible to estimate the reduction of natural 

frequencies  and, consequently, to reveal the presence of a damage, though it is very 

distant from this unique sensor. 

In other words, the analysis of the dynamic response of the structure represents a 

global inspection technique.  

The development of damage in a structure implies, as expected, a decrease of 

stiffness, and so a grater deformability for a fixed load. This change of structural 

behaviour is connected to the decrease of the natural circular frequency, equal to (for 

a multi degree of freedom discrete system):  

   √
  
  

 (1.85) 

  

Eq.(1.85) shows that a decrease of stiffness    (i.e. an increase of compliance of the 

structure) implies (supposing that the mass    does not change) a decrease of 

structure natural frequencies. Furthermore, even the modal curvatures/shapes and 

the modal dumping will vary.  

For these reasons, the Dynamic Identification is based on the correlation between 

the variation of the dynamic response of the structure (decrease of natural 

frequencies, changes in modal shapes, etc.) and the severity of damage. Using this 

technique it is possible, for example, to estimate the crack depth. In the second part 

of this work, a finite element model of the specimen is used to run a modal analysis 

for different values of the crack depth. If the real natural frequencies are evaluated 

during the tests with the Dynamic Identification procedure, it is possible to associate, 

for a given variation in natural frequencies, the approximate entity of crack 

propagation.  
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In real structures monitoring, therefore, a first acquisition of free response signals is 

performed when the structure has just been completed and so it is intact; it can be 

done using a low number of sensors (e.g. accelerometers) well positioned on the 

structure. If a finite element model is used, it can be calibrated (model updating) 

using this first acquisition of natural frequencies. At that point it is necessary to 

measure periodically the natural frequencies of the structure, in order to understand if 

they are changed; alternatively, if AE monitoring is also present, a second acquisition 

of the dynamic response of the structure can be performed when AE analysis points 

out an alarm situation. Knowing the variation of natural frequencies, it is possible, 

using the finite element model, to estimate the damage entity by the inverse 

procedure above described. Furthermore, the Dynamic Identification permits also to 

localize the damage within the structure, by the observation of localizations in modal 

curvatures.    
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2 Experimental campaign and results 

2.1 Outline of experiments 

In order to study scale effects on fracture energy and tensile strength in a quasi-

brittle material, a set of three-point bending tests was performed on pre-notched plain 

concrete specimens. These  tests were conducted in the MASTRLAB laboratory of 

Politecnico di Torino, following the RILEM procedure described in Section [1.1.1.4] 

(RILEM TC 50-FMC,1985). Therefore, specimen sizes prescribed by this 

Recommendation were taken into account (Table 1). Overall, nine TPB tests will be 

considered for the purpose of the present thesis. Among these, two tests were 

already analysed in the article by Carpinteri, Lacidogna, Corrado, Di Battista (2016): 

those results, in terms of load-displacement curves, will be used also in this work. 

This is possible because those tests were also conducted following the above 

mentioned RILEM Recommendation.   

Specimens with a depth of 10 cm were tested using a servo-hydraulic MTS universal 

testing machine (Figure 2.1), while the tests on the other three larger sizes were 

conducted using a Baldwin testing machine of 500 kN produced by Zwick/Roell  

(Figure 2.2). 

 

Figure 2.1: Testing machine used for 10 cm specimens 
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Figure 2.2: Testing machine used for 20 cm, 30 cm, 40 cm specimens 

All the specimens were tested until the final failure was reached. 

AE analysis was applied in all the tests (except for 20 cm specimen size, for which it 

is possible to use the results reported in the article by Carpinteri, Lacidogna, 

Corrado, Di Battista (2016)) in order to execute a damage monitoring. In addition, 

during two tests, Dynamic Identification technique was also applied and free 

response signals, in different steps of these tests, were captured.  

2.1.1 Test set-up (RILEM TC50-FMC Recommendation) 

The Recommendation of RILEM TC 50 –FMC provides a method to estimate the 

fracture energy of a concrete, that is a purpose of the present work in order to 

discuss the scale effects on this parameter. For this reason, the tests were performed 

following these standardized procedures.  

Only one test, on a 10 cm specimen, was conducted by controlling the crack mouth 

opening displacement (CMOD), while all the others were conducted by imposing a 

constant velocity to the vertical displacement   of the hydraulic jack. In all cases, a 
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stable behaviour was obtained; this allows to use Eq.(1.45) for the evaluation of 

fracture energy.    

2.1.1.1 Specimens characteristics 

Figure 2.3 shows in scale the specimen sizes recommended by RILEM (Table 1). 

Table 2 summarizes the TPB tests which are considered for the scope of the present 

thesis.  Test_100_3 and Test_200_2, marked with an asterisk in Table 2, were taken 

from the article by Carpinteri, Lacidogna, Corrado, Di Battista (2016); all the others 

are analysed for the first time in this work. 

Actually, the present experimental campaign was initially planned to test three 

samples for each size recommended by RILEM. Nevertheless, the missing tests in 

Table 2 are due to the extreme fragility of the bigger specimens, which fractured 

already during handling. 

All the specimens presented a central pre-notch extended for one half of the beam 

depth (       ), with a width of 4 mm in 10 cm specimens, and of 6 mm in the 

others. 

 
Figure 2.3: Specimen sizes recommended by RILEM TC 50-FMC 
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Depth ( ) [mm] Number of specimens Name of the test 

100 3 

Test_100_1 

Test_100_2 

 Test_100_3* 

200 2 
Test_200_1 

 Test_200_2* 

300 1 Test_300_1 

400 3 

Test_400_1 

Test_400_2 

Test_400_3 

Table 2:Number and name of TPB tests considered for each size 

Test_100_1,  Test_100_3, Test_200_2 were conducted by controlling the CMOD rate 

(2·10-3 mm/s). All the others were performed by increasing the vertical displacement 

  of the hydraulic jack with a constant velocity; this was set differently in the various 

tests (it depended by the specimen brittleness) and the values are indicated in Table 

3.  

Name of the test Constant velocity of the hydraulic jack 

Test_100_2 2·10-3 mm/s 

Test_200_1 2·10-3 mm/s 

Test_300_1 1·10-3 mm/s 

Test_400_1 1·10-3 mm/s 

Test_400_2 2·10-3 mm/s 

Test_400_3 2·10-3 mm/s 

Table 3: Feed rate of tests performed by controlling the vertical displacement of the hydraulic jack 

2.1.1.2 Material properties 

The specimens were made with different concrete mixes, containing aggregate with 

different sizes. Each specimen size recommended by RILEM TC 50-FMC is 

characterized by a different maximum diameter of aggregate, according to Table 1: 

the larger is the beam, the larger is the maximum aggregate size. For example, in 

specimens with a depth of 40 cm, the aggregate diameter can reach 64 mm: this can 

be observed in Figure 2.4, in which a photo of a cracked ligament of those 

specimens is reported.  

Nevertheless, the four concrete mixes were designed in order to have the same 

nominal average compression strength. In particular, the average values of mass 

density   and characteristic compression strength     of these concretes were 

estimated by laboratory tests performed on five cubic specimens of side 160 mm. 

The remaining mechanical properties were evaluated according to the Italian 
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technical regulations (NTC 2008); they are reported in Table 4 (Lacidogna, Piana, 

Carpinteri, 2017). 

 

Figure 2.4: Cracked ligament area in a 40 cm specimen  

 

Mass density    [kg/m3] 2310 

Cubic compression strength     [MPa] 26.4 

Cylindrical compression strength     [MPa] 21.9 

Average tensile strength      [MPa] 2.4 

Average Young’s modulus     [MPa] 30570 

Table 4: Average mechanical properties of concretes 

 

2.1.2 Sensors and instruments 

The loading apparatus consisted of two cylindrical rollers that supported the 

specimen, and a cylindrical roller centred at the top, used to apply the load (Figure 

2.1 and Figure 2.2). Actually the testing machines work by raising the base upwards 

(hydraulic jack) and maintaining the central point fixed. During the tests on 10 cm 

specimens, CMOD was measured using a clip-on gage applied to the mouth of the 

notch, while the vertical displacement of the mid-section is taken equal to the 

displacement of the hydraulic jack. During the tests on the other larger specimens, 
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instead, the CMOD was measured by an extensometer (Figure 2.5a), while, in order 

to measure the correct displacement of mid-span section, three transducers were 

applied on the sample: two in correspondence to the supports (Figure 2.5b), the 

other one in the mid-span section (Figure 2.5a). However, in order to be consistent 

with the measures considered for smaller specimens, also in these cases the vertical 

displacement of the mid-section will be taken equal to the stroke of the hydraulic jack.   

  
(a) (b) 

  

Figure 2.5: (a) Extensometer for the measure of CMOD and transducer in the mid-span section; (b) 
transducer in correspondence of the support  

As already said, the Acoustic Emission (AE) and Dynamic Identification (DI) were 

applied simultaneously in order to study the damage progress.  

Two or three piezoelectric resonant AE sensors were applied on the specimens 

during all the tests in order to captured AE signals. The main features of these 

transducers, produced by Leane Net S.r.l. (Sarzana, Italy), are reported in Table 5. 

Resonance frequency 160 kHz 

Active element Ceramic 

Case material Anodized Aluminium 

Case shape Circular:   x   = 50 x 35 mm 

Weight 110 g 

Table 5: Main characteristics of AE sensors 

The connection between sensors and acquisition device was realized by coaxial 

cables (BNC female) to reduce the effects of electromagnetic noise (Lacidogna, 

Piana, Carpinteri, 2017). The data were acquired by an 8-channel national 

instruments digitizer, setting the acquisition threshold to 2 mV and adopting a 

sampling frequency of 1Msample/s. The registered signals were amplified of 60 dB 

before to be processed.  
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On the other hand, Dynamic Identification technique was applied only in Test_100_2 

and in Test_400_3. Therefore, during these two tests the displacement of the 

hydraulic jack was monotonically increased with a constant velocity, but in a 

discontinuously way. In other words, these two tests were performed in several steps: 

the hydraulic jack was stopped in correspondence of different values of load or 

displacement, in order to apply impulsive forces on the specimen and capture in this 

way the free response signals. These latter were acquired by means of four 

piezoelectric pickups (piezo-ceramic buzzers): two positioned on the upper face of 

the specimen, the other two on the lower one. The adopted sensors are the JPR 

Plustone 400-403 disks, whose main characteristics are resumed in Table 6 

(Lacidogna, Piana, Carpinteri, 2017). 

External diameter 20 mm 

Frequency range 0 to 20 kHz 

Resonant frequency 6.0 ± 0.5 kHz 

Operating temperature -20 to +50 °C 

Weight 1 g 

Table 6: Main characteristics of piezoelectric pickups for the Dynamic Identification 

The data were collected by an 8-channel Audiobox 1818VS1 acquisition device by 

PreSonus (Baton Rouge, LA, USA); the sampling frequency was set equal to 44.1 

kHz. 

2.2 Numerical (FEM) models 

For each specimen sizes considered in the present thesis (Table 1), a Finite Element 

Model (FEM) was implemented in LUSAS software using plane stress elements.  

The use of these models is related to three different purposes:  

i. to perform a modal analysis (linear elastic constitutive law) in order to obtain 

the first three natural bending frequencies of specimens on which Dynamic 

Identification technique was applied; 

ii. to perform a modal analysis of a fixed specimen, but with different notch 

depths, in order to evaluate numerically the decrease of natural frequencies 

with the increase of crack propagation, so that an inverse procedure can be 

performed using the experimental results obtained with the Dynamic 

Identification technique (see Section [1.3.1]); 

iii. to compare the experimental load-deflection curves with numerical ones, 

obtained by using a non-linear constitutive law of the material, and to evaluate 

numerically the stresses and the strains in the different steps considered in the 

non-linear analysis. 
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2.2.1 Numerical bending modes and related natural frequencies 

Two Finite Element Models were implemented in LUSAS software in order to obtain 

the first three bending modes and related frequencies for the unloaded pre-notched 

beams on which Dynamic Identification technique was applied. They are the 

specimens used in Test_100_2 and in Test_400_3, respectively with a depth of 10 

cm and 40 cm. These two models, with the relevant mesh, are represented in Figure 

2.6 and in Figure 2.7. 

 
Figure 2.6: Finite Element Model used to perform the eigenvalue analysis for the 10 cm specimen   

 
Figure 2.7: Finite Element Model used to perform the eigenvalue analysis for the 40 cm specimen   

Quadrilateral plane stress elements were used: the QPM8 (Figure 2.8). This 2D 

isoparametric element with 8 nodes (quadratic element)  belongs to the serendipity 

family. In the model of the 10 cm specimen, the ligament was vertically divided into 

10 equal parts, in order to simply modify the model a sufficient number of times when 

the decrease of natural frequencies during the crack growth will be numerically 

evaluated (Section [2.2.2]); in the model of the largest specimen, instead, only 5 

elements are vertically present along the ligament. Horizontally, in both cases the 

mesh becomes thicker near the notch. The constraint conditions concern only the 

vertical displacements: these are prevented on the two extremity faces and in 

correspondence of the mid-span section, where there is the third contact point during 

the TPB test.  

 
Figure 2.8: QPM8 element 
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The material is linear elastic (values of Young’s modulus and mass density are in 

Table 4). An Eigenvalue Analysis was performed in order to obtain the first three 

bending modes and related natural frequencies. In Figure 2.9 e in Figure 2.10 the 

three modal shapes are represented for the unloaded specimens of 10 cm and 40 

cm, respectively. The corresponding natural bending frequencies are reported in 

Table 7. 

 

1st  
(Asym1) 

 

2nd  
(Sym) 

 

3rd  
(Asym2) 

Figure 2.9: The first three bending modes for the 10 cm specimen   

 

1st  

 

2nd  
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3rd  

Figure 2.10: The first three bending modes for the 40 cm specimen   

For what concerns the smaller specimen (Figure 2.9), the first and the third modal 

shapes are antisymmetric; on the contrary the third one is symmetric. In the case of 

the 40 cm specimen (Figure 2.10) the modal shapes are the same, but the first and 

the second result exchanged with respect to the previous case.  

 10 cm specimen 40 cm specimen 

1st  natural bending frequency [Hz] 992 741 

2nd natural bending frequency [Hz] 1102 774 

3rd  natural bending frequency [Hz] 3263 2052 

Table 7: The first three natural bending frequencies, numerically obtained (FEM), for the specimens with a 
depth of 10 cm and 40 cm 

 

2.2.2 Numerical evaluation of the modal frequency variation during the crack 

growth 

The Finite Element Model implemented for 10 cm specimen (Figure 2.6), described in 

the previous paragraph, was used also to evaluate numerically the variations of the 

first three natural bending frequencies following the crack propagation. To this 

purpose, the model was modified increasing the notch depth. In particular, ten 

different models were considered, each of them obtained eliminating one by one the 

10 finite elements that divided the ligament in equal parts. For each of these models, 

the modal analysis implemented by LUSAS software was repeated. At the beginning 

of the test          (initial notch). The last situation considered is          , in 

which the adopted model has only one finite element along the uncracked ligament. 

The purpose of this analysis is to apply an inverse procedure in order to estimate the 

depth of the fracture during the test, using the values of the natural frequencies 

experimentally evaluated in the different loading steps.  

Table 8 contains the values of the first three natural frequencies numerically 

evaluated by the ten models corresponding to different relative crack depths.  
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Figure 2.11 and Figure 2.12 show the modified models and the first three bending 

modal shapes  in correspondence of a relative crack depth respectively equal to      

and     . 

The decrease of the first three natural frequencies with the crack growth, 

experimentally determined and described in Table 8, is graphically represented in 

Figure 2.13. 

It is important to note that, with the increase of the damage, the symmetric modal 

shape becomes the fundamental bending mode. For this reason, in Table 8 the 

natural frequencies are related to the correspondent modal shape denominated as in 

Figure 2.9.  

      

  0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 
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Asym1 992 991 989 986 983 979 975 969 962 951 

Sym 1102 1074 1046 1017 989 959 930 898 861 813 

Asym2 3263 3245 3222 3194 3159 3116 3062 2995 2908 2794 

Table 8: The first three natural bending frequencies (1
st

: green; 2
nd

: blue; 3
rd

 red) for the 10 cm specimen 
with different relative crack depths  

 

 

1st 

 

2nd 

 

3rd 

Figure 2.11: Finite Element Model and the first three bending modes related to a crack depth          
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1st 

 

2nd 

 

3rd 

Figure 2.12: Finite Element Model and the first three bending modes related to a crack depth          

 
Figure 2.13: Decrease of the first three natural bending frequencies for the 10 cm specimen with the 

increasing of the relative crack depth     
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Table 9 shows the percentage decrease of the three natural frequencies due to a 

relative crack depth          with respect to the initial configuration         . 

Modal shape Decrease of natural frequency 

Asym1        

Sym         

Asym2         

Table 9: Percentage decrease of the first three natural bending frequencies, for the 10 cm specimen, in 

correspondence of a relative crack depth          with respect to the initial configuration 

 

2.2.3 Numerical load-displacement curves 

A non-linear Finite Element Model was implemented in LUSAS software for each 

specimen size described in Table 1 in order to obtain the load-deflection curve. The 

variation of stresses and strains along the uncracked ligament in the different loading 

steps was also investigated. 

A non-linear constitutive law was used to describe the concrete behaviour. In 

particular, among the models available in the material library of LUSAS software, the 

Smoothed Multi Crack Model (or Model 102) was chosen (Figure 2.14); it takes into 

account the softening behaviour of concrete described in Section [1.1.1.2] and 

already represented in Figure 1.10.  

 

Figure 2.14: Constitutive law for concrete adopted in the numerical analysis (Model 102) 

This constitutive law requires the values of the uniaxial compressive and tensile 

strengths (see Table 4), and the value of fracture energy. This latter was taken equal 

to the average of the values experimentally determined, for a certain specimen size, 

using the RILEM procedure; these values will be reported in the next section. In this 
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case triangular plane stress elements were used: the TPM3 (Figure 2.15). It is a 2D 

isoparametric element with 3 nodes (linear element). The ligament was vertically 

divided into equal parts, of 1 cm height each; for example in the model of 30 cm 

specimen, the ligament is divided in 15 equal parts. The mesh is refined near the 

notch. The constraint conditions concern only the vertical displacements: these are 

prevented only in the two extreme points.  The “Nonlinear and Transient” analysis 

implemented in LUSAS software was used. An incremental vertical displacement 

(downwards) is imposed in correspondence of the mid-span section; the increment 

for each step of the analysis was set equal to 0.005 mm. Taking as an example the 

30 cm specimen, Figure 2.16 shows the model and the mesh realised.   

 
Figure 2.15: TPM3 element 

 
Figure 2.16: FEM of 30 cm specimen used to determine the numerical load-deflection curve 

Considering only the 30 cm specimen as an example, in Figure 2.17 the deformed 

shape in correspondence of the peak load is shown, whereas Figure 2.18 shows the 

numerical load-displacement curve. In Section [2.3.1] it will be compared with the 

experimental one.    

 
Figure 2.17: Deformed shape of the 30 cm specimen FEM in correspondence of the peak load 
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Figure 2.18: Numerical load-displacement curve for the 30 cm specimen 

If the values of the strains are plotted using different colours, it is possible to 

underline the crack propagation in the different steps of the non-linear analysis. This 

is shown in Figure 2.19, where four different steps are considered, each of them 

corresponding to a certain point of the curve in Figure 2.18 and so to a certain value 

of displacement  . 
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Figure 2.19: Strain values in the 30 cm specimen model with respect to four different steps of the analysis 
(crack propagation) 

 

As results of this non-linear analysis, it is possible to obtain also the stresses along 

the uncracked ligament, for example in the same steps considered in Figure 2.19. 

This is done in Figure 2.20, where the values of the longitudinal stresses are 

associated to different colours (negative stresses indicate compression, positive 

stresses indicate tension).    

 

 

           

 

           

 

           



Experimental campaign and results 69 

 

 

 

           

Figure 2.20: Longitudinal stress values in the 30 cm specimen model with respect to four different steps 
of the analysis 

It is possible to represent in a diagram the values of the longitudinal stress in the 

different nodes of the mesh along the ligament, in correspondence of different steps 

of the analysis. In Figure 2.21 are considered again the previous four steps 

(coordinate zero in the diagram corresponds to the tip of the initial pre-notch).   

 
Figure 2.21: Longitudinal stress in the nodes of the mesh along the ligament of the 30 cm specimen FEM 

in four different steps of the analysis 

Observing Figure 2.20 and Figure 2.21 it is possible to localize the crack tip in the 

different considered steps of the numerical analysis: it corresponds to the point in 

which the tensile stress reaches the material strength. In particular, the curve related 

to the pre-peak phase (          ) is almost linear along the ligament (elastic 

distribution), while, after the peak load,  the region subjected to tensile stresses lower 

than the material strength corresponds to the cracked ligament. Furthermore, it can 

be observed also how the compressive stresses in the extrados increase during the 
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simulation, because the reagent part of the ligament  is getting smaller due to the 

crack growth.  

2.3 A scale-independent fractal cohesive law for bending 

In this section the experimental results will be presented. Particular attention will be 

reserved to bending strength and fracture energy. Scale effects on these two 

characteristics will be discussed, using the mono-fractal scaling laws. Furthermore, 

the load-deflection curves will be proposed in a renormalized form, and the energetic 

brittleness number will be calculated also using a generic definition with the 

renormalized values of fracture energy and bending strength. Finally, the kinematic 

aspect will be treated, taking into account the critical value of the rotation angle of the 

mid-span section in correspondence of the failure. Scale effects on this parameter 

will be interpreted again with a mono-fractal scaling law, and the relation concerning 

the three fractal exponents will be verified. A fractal cohesive law for bending, 

function of the three renormalized values of bending strength, fracture energy and 

critical rotation angle will be derived, likewise to what has already be done for 

uniaxial tensile tests (Carpinteri, Chiaia, Cornetti, 2002) and compression tests 

(Carpinteri, Corrado, 2009).  

2.3.1 Experimental results: Load-deflection curves 

In Figure 2.22 the load-deflection curves obtained with the TPB tests described in 

Section [2.1.1.1] are superimposed in the same diagram. However the curves related 

to Test_100_2 and Test_400_3, in which Dynamic Identification technique was 

applied, are interpolating of the actual curves (Figure 2.23 and Figure 2.24). These 

latter present load drops, due to the fact that these tests were performed 

discontinuously: in order to apply impulsive forces on the specimen and to capture 

the free response signals, the test was stopped in correspondence of different 

displacement or load values. During these acquisitions, the hydraulic jack of the 

testing machine remained fixed, but the load decreased; when the test restarted, the 

load returned to its original value and then the test went on, up to the next step of 

acquisition.  

Figure 2.22 shows a reduction in ductility in the behaviour of larger specimens. The 

peak-loads      are reported in Table 10. If the average tensile strength      of the 

material is considered (Table 4), it is possible to estimate a theoretical value of the 

peak load in order to be compared with the experimental one. This value of       can 

be calculated in two limit cases: supposing a linear elastic stress distribution (using 

Eq.(1.46) with    
   

) or a perfectly plastic stress distribution (using Eq.(2.1) with 

   
   

): 

   
    

   
   
 
(     

   
 )  

 
 

  (   ) 

 

 (2.1) 
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Figure 2.22: Load-deflection curves experimentally obtained with three point bending tests 

 

 
Figure 2.23: Experimental and interpolating curve for Test_100_2 
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Figure 2.24: Experimental and interpolating curve for Test_400_3 
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            (   
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 [kN] [kN] [kN] 

Test_100_1 0.81 

0.40 0.64 Test_100_2 0.88 

Test_100_3 0.67 

Test_200_1 1.79 
1.12 1.80 

Test_200_2 1.73 

Test_300_1 4.74 3.11 5.02 

Test_400_1 6.96 

6.38 10.30 Test_400_2 7.48 

Test_400_3 6.00 

Table 10: Experimental peak-loads for the different tests, compared with the theoretical values related to 
the elastic and the plastic stress distribution on the ligament 

 

Table 10 shows that the real peak loads for the specimens with depths 10, 20 and 30 

cm, are closer to the theoretical values calculated with    
   

, whereas the specimens 

with a depth of 40 cm have reached peak-loads that are closer to the values obtained 

supposing a linear elastic stress distribution along the ligament. This observation 

underlines how a brittle behaviour of the larger specimens is present.  

For each test it is possible to evaluate, following the RILEM Recommendation 

described in Section [1.1.1.4], the fracture energy and the bending strength, using 

respectively Eq.(1.45) and Eq.(1.46). The values obtained are shown in Table 11. 
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[MPa] 

   

[N/m] 

Test_100_1 4.33 150.6 

Test_100_2 4.68 / 

Test_100_3 3.65 118.0 

Test_200_1 3.51 173.0 

Test_200_2 3.40 154.0 

Test_300_1 3.35 160.2 

Test_400_1 2.52 153.2 

Test_400_2 2.68 177.8 

Test_400_3 2.24 / 

Table 11: Experimental values of fracture energy and bending strength 

Test_100_2 and Test_400_3 cannot be used to determine the fracture energy, 

because these tests, in which Dynamic Identification technique was applied, were 

performed in a discontinuous way, not in agreement with the RILEM 

Recommendation. 

Table 11 shows clearly the scale effects on bending strength and fracture energy. 

These will be interpreted with the mono-fractal scaling laws in the next paragraphs.  

Furthermore, the behaviour of the specimens can be described by the energy 

brittleness number (Eq.(1.27)). The values of this parameter are represented, for 

each test (except for Test_100_2 and Test_400_3), in Figure 2.25.  

 
Figure 2.25: Values of the energy brittleness number (  ) for each TPB test 

Considering the energy brittleness number for each test, the brittle behaviour of the 

larger specimens is highlighted.  
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One last consideration concerns the numerical (FEM) load-deflection curves 

discussed in Section [2.2.3]. They can be compared with the experimental curves 

represented in Figure 2.22.  

Figure 2.26 shows, for example, this comparison with respect to the 10 cm 

specimens (Test_100_1 and Test_100_2).  

 
Figure 2.26: Comparison between the experimental and the numerical (FEM) load-deflection curves for 

the 10 cm specimens (Test_100_1, Test_100_2) 

A good superimposition between experimental and numerical curves is found. In 

Figure 2.26 the numerical curve obtained considering the effect of self-weight is also 

represented. 

 

2.3.2 Scale effects on bending strength  

The values of bending strength determined in each TPB test are reported in Table 

11. They can be graphically represented in a bilogarithmic diagram, in which the 

horizontal axis contains the logarithms of the specimen depths. The mono-fractal 

scaling law, described in Section [1.1.2.2], was used to fit the experimental results. In 

a bilogarithmic diagram this law is represented by a straight line (Eq.(1.67)), whose 

equation provides the values of the renormalized (scale-independent) bending 

strength   
  and the exponent   . It is represented in Figure 2.27. 
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Figure 2.27: Scale effects on bending strength: mono-fractal scaling law 

The best fitting procedure using the mono-fractal scaling law described in Section 

[1.1.2.2] provides a fractal exponent        . Hence, the ligament results to be a 

fractal domain with a dimension 1.64. In the diagram of Figure 2.27 is also introduced 

the value of R, that is the Pearson correlation coefficient. It is a measure of the linear 

correlation between two variables (in this case the logarithms of the specimen depth 

and of the experimental bending strength) and it is defined as the covariance of the 

two variables divided by the product of their standard deviations. This coefficient 

assumes values between -1 and +1, where 1 is the total positive linear correlation, 0 

is no linear correlation, and -1 is total negative linear correlation. In Figure 2.27 it is 

equal to 0.91: it means that the mono-fractal scaling law  is suitable to describe the 

scale effects experimentally observed.  

Considering again Eq.(1.67), it is possible to calculate for each test the value of     
  

in the following way: 

    
              (2.2) 

  

These values are represented in Figure 2.28. They are almost constant. Through a 

linear regression, that presents in fact a slope practically equal to zero, the value of 

the renormalized bending strength  can be derived: it is   
                . 
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Figure 2.28: Renormalized bending strength 

With respect to the results related to uniaxial tensile test (Carpinteri, Ferro, 1994) 

presented in Section [1.1.2.2], in this case, concerning three point bending tests, a 

larger value of    is obtained. A possible explanation of this result concerns the 

stress distribution on the specimen cross-section: while in uniaxial tensile test the 

whole section bears the tensile forces, in TPB test, conversely, there is also a part of 

the ligament subjected to compression stresses. 

 

2.3.3 Scale effects on fracture energy 

As seen in Section [1.1.2.2], another power law can be used for the scale effects on 

fracture energy. If the experimental results concerning this parameter (presented in 

Table 11) are represented in a bilogarithmic diagram (Figure 2.29), this law will be a 

straight line described by Eq.(1.64). With a best fitting procedure, the value of the 

fractal exponent    can be determined. It results        . This means that the 

energy dissipation occurs in a fractal space of dimension 2.19. Starting from 

Eq.(1.64), it is possible to determine, for each test, the value of     
  as follows: 

    
              (2.3) 

  

Also in this case these values, for the different tests, are almost constant, and the 

straight line that is used in Figure 2.30 to fit the experimental results is practically 

horizontal. It provides the renormalized (scale independent) value of the fracture 

energy, that represents the real material property: it results   
                . 
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Figure 2.29: Scale effects on fracture energy: mono-fractal scaling law 

 

 
Figure 2.30: Renormalized fracture energy 
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2.3.4 Renormalized load-deflection curves 

In Figure 2.22 the load-deflection curves obtained experimentally during TPB tests 

were superimposed. The remarkable dispersion between the different curves, due to 

the scale effects, can be minimized by operating a correct renormalization of these 

curves (Carpinteri, Ferro, 1998). In order to express in dimensionless form the 

quantities on the two axis of Figure 2.22, it is necessary to use the renormalized 

bending strength   
  determined in Section [2.3.2], and the characteristic size   of 

specimens rescaled by the fractal dimension of the ligament at the peak load. In 

particular, the dimensionless values of the load will be: 

 ̃  
 

           
 (2.4) 

  

  and   are respectively the width and the depth of the specimen. On the other 

hand, the dimensionless values of the displacements   will be evaluated dividing by 

the rescaled characteristic dimension:  

 ̃  
 

     
 (2.5) 

  

The renormalized load-deflection curves obtained (excluding those related to the 

tests in which Dynamic Identification technique was applied) are represented in 

Figure 2.31. 

 
Figure 2.31: Renormalized load-deflection curves 
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In the elastic branch, when isolated micro-cracks are forming, the curves overlap 

almost perfectly, because in this phase the fractal dimension of the ligament is 

exactly the one obtained in Figure 2.27  through the renormalization procedure. On 

the other hand, the softening branches of the different curves still exhibit 

considerable differences. This happens because during that phase a macro-crack 

propagates, and this causes a decrease of the fractal dimension of the material 

ligament, until it becomes zero in correspondence of the complete failure and two-

part separation. In order to obtain a complete overlap also of the softening branches, 

it would be necessary to use not a constant but a variable fractal exponent to 

renormalize the curves (Carpinteri, Ferro, 1998). In other words, the mono-fractality 

hypothesis is not suitable for the softening phase.  

One last consideration concerns the  generalization of the energy brittleness number 

(  
 ), expressed by Eq.(1.69). Using the fractal exponents and the renormalized 

values of bending strength and fracture energy, it can be evaluated for the different 

specimen sizes in order to give a measure of their brittleness (Figure 2.32). 

 
Figure 2.32: Generalization of the energy brittleness number (  

 ) 

 

2.3.5 Scale effects on the critical rotation angle: Kinematic aspects 
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evidences, such as the results discussed in the present thesis (Sections [2.3.2] and 
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parameter, such as the critical displacement   , is affected by the scale problem. 
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the results of uniaxial tensile tests, performed by Carpinteri and Ferro (1994). They 

determined the cohesive laws for the different specimen sizes (the curves 

represented in Figure 1.30b) and observed that the critical displacement    increases 

with the specimen size. Consequently, it is necessary to introduce also a fractal 

kinematical quantity that, in the case of uniaxial tensile tests, was represented by the 

fractal critical strain   
 . Nevertheless, in case of three point bending tests, it is difficult 

to use the longitudinal strain, because it varies along the ligament; moreover also the 

curvature   is not suitable to describe the damage process in a TPB test, because it 

will present a discontinuity in correspondence of the cracked section. For these 

reasons, the kinematic parameter that was chosen in the present thesis to describe 

the critical situation in TPB tests is the rotation angle of the mid-span section.  In 

order to evaluate the critical value of this angle, i.e. its value in correspondence of the 

final failure, when the applied load is zero and      (see Figure 1.20 for the 

meaning of   ), simply geometric considerations were used, based on the scheme in 

Figure 2.33. 

 
Figure 2.33: Limit situation of final failure in a TPB test  

The rotation angle can be simply evaluated, in a generic instant of the test, as: 

     
 

   
 (2.6) 

  

In correspondence of the final failure (limit situation represented in Figure 2.33), 

Eq.(2.6) can be rewritten in critical terms: 

      
  
   

 (2.7) 

  

The critical rotation angle    can be substituted with its tangent:    

   
  
   

 (2.8) 
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On the other hand, the crack opening displacement  , in a generic instant of the test, 

can be evaluated as: 

 

 
  ̅             (2.9) 

  

where      can be substituted with the angle value because it is small enough. 

Eq.(2.9) can be rewritten in critical terms: 

 ̅       (2.10) 
  

Using Eq.(2.8), it is possible to evaluate the critical value of the rotation angle for 

each TPB test. These values are graphically represented in Figure 2.34 in a 

bilogarithmic diagram. 

 
Figure 2.34: Scale effects on the critical value of rotation angle 

A power law, similar to Eq.(1.71) used for the critical strain in uniaxial tensile tests, is 

now proposed to describe the scale effects on the critical value of the kinematic 

parameter concerning TPB tests: 

     
       (2.11) 

  

Eq.(2.11) represents the mono-fractal scaling law for the critical rotation angle.   
  is 

the renormalized value of the critical rotation angle, i.e. the true material constant. It 

is not a dimensionless value, but it has a non-integer physical dimension [ ]  .    is 

the fractal exponent concerning the kinematic aspect of the TPB problem (it is the 

equivalent of    discussed in Section [1.1.2.2] for uniaxial tensile tests). Eq.(2.11) 

can be rewritten in a logarithmic form: 

         
         (2.12) 
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From the equation of the linear regression used in Figure 2.34 to fit the experimental 

results, it is possible to get the two quantities that characterize the mono-fractal 

scaling law (Eq.(2.12)):         and    
             .  

The result that must be underlined is the experimental validation of the fundamental 

relation between the three fractal exponents (Eq.(1.76) for the uniaxial tensile test): 

                               (2.13) 
  

At this point, a fractal cohesive law can be derived, starting from the fracture energy 

definition proposed by RILEM Recommendation (Eq.(1.45)). Disregarding the term 

related to the weight of the specimen, the fracture energy in a TPB test is (referring to 

Figure 1.20 and to Figure 1.13): 

   
 

    
 ∫     

  

 

 
 

  (   )
 ∫     

  

 

 (2.14) 

  

The external load   can be expressed as a function of the stress  ; supposing a 

linear elastic distribution of stresses along the ligament: 

  
 

   
 

     

  (   ) 

 

 (2.15) 

  

the load will be: 

  
     

   
 (2.16) 

  

On the other hand, using Eq.(2.6) and Eq.(2.9), the displacement   can be expressed 

as a function of  ̅ : 

 ̅    
 

   
 (2.17) 

  

Consequently: 

   
 

   
   ̅ (2.18) 

  

Substituting Eq.(2.18) and Eq.(2.16) in Eq.(2.14), and remembering that for      

Eq.(2.10) provides  ̅   ̅  , it is possible to write: 

   
     
      

 ∫     ̅

 ̅ 

 

 
 

 
 
(   )

 
 ∫     ̅

 ̅ 

 

 (2.19) 

  

The specimens recommended by RILEM TC 50-FMC, that are the object of the 

present work, present a notch depth (   )      ; consequently: 
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 ∫     ̅

 ̅ 

 

 (2.20) 

  

Using Eq.(2.9) and Eq.(2.11), the power law concerning the crack opening 

displacement can be deduced: 

 ̅    
        (2.21) 

  

Introducing Eq.(2.21) and Eq.(1.77) into Eq.(2.20), the fracture energy will be 

expressed as: 

   
 

 
 ∫                   

  
 

 

         
 

 
 ∫       

  
 

 

 (2.22) 

  

Comparing Eq.(2.22) with the mono-fractal scaling law defined for fracture energy 

(Eq.(1.63)), the fundamental relation between fractal exponents is found again:  

           (2.23) 
  

Furthermore: 

  
  

 

 
 ∫       

  
 

 

 (2.24) 

  

Eq.(2.24) represents the definition of the renormalized fracture energy as the area 

under the fractal cohesive law   (  ), that is the real material property, function of 

the renormalized values of fracture energy, bending strength and critical rotation 

angle. 

 

2.4 Damage monitoring by Acoustic Emission and modal frequency 

analysis 

In addition to the study of scale effects on mechanical properties of concrete, another 

purpose of the present thesis is to apply Acoustic Emission and Dynamic 

Identification techniques. 

In the first part of this section, AE results will be presented and discussed; particular 

attention will be reserved to the Rise Angle analysis, in order to perform a 

classification of the cracks corresponding to the acquired AE signals. Finally, scale 

effects on the AE energy per unit ligament area will be underlined and interpreted in 

the context of the fractal theory. 

In the second part the decrease of natural frequencies of the specimens with a depth 

of 10 cm and 40 cm (Test_100_2 and Test_400_3) will be shown. Furthermore, for 

the 10 cm specimen, an attempt to apply an inverse procedure, in order to correlate 

the decrease of natural frequency experimentally observed with an approximate 
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value of crack propagation, will be proposed, using the numerical (FEM) results 

presented in Section [2.2.2]. 

In the third part the correlations between the two damage monitoring techniques will 

be shown, pointing out their benefits and cons. 

  

2.4.1 AE Analysis 

AE sensors were applied in all the tests, except in Test_200_1: AE results 

concerning a 20 cm specimen can be found in the article by Carpinteri, Lacidogna, 

Corrado, Di Battista (2016), with respect to Test_200_2.  

In this section the main results obtained with AE analysis will be presented in terms 

of emitted energy, cumulated AE events, Average Frequencies (AF) of signals and 

Rise Angle (RA) values. For this purpose, a test for each specimen size will be taken 

into account. 

Each signal, captured by AE sensors during the tests, was analysed by an algorithm 

implemented in LabVIEW (National Instruments), which is able to calculate the Fast 

Fourier Transform (FFT). Observing the FFT, it is possible to identify the frequency to 

which most of the signal’s energy is associated. In Figure 2.35 a typical recorded AE 

signal is represented, while the FFT of an AE signal is shown in Figure 2.36.    

 
Figure 2.35: A typical AE signal recorded by piezoelectric sensors 

 

 
Figure 2.36: FFT (Fast Fourier Transform) of an AE signal 
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The amplitudes of recorded AE signals were amplified of 60 dB before being 

processed. Using Eq.(1.83) the energy of each AE signal was calculated, so that it 

was possible to obtain the cumulated value of the emitted energy at the end of each 

test.  

In the following, the results related to only one AE sensor will be presented, also if 

during the tests more than one resonant sensors were applied to the specimens.  

 

2.4.1.1 Cumulated AE energy 

The tests that will be considered to discuss the AE results are: Test_100_1 (  

     ), Test_300_1 (       ) and Test_400_2 (       ). The cumulated AE 

energy vs. time diagrams for these tests are represented respectively in Figure 2.37, 

Figure 2.38 and Figure 2.39, where they are superimposed to the correspondent 

load-time curve of the test.  

 

 

 
Figure 2.37: Load and cumulated AE energy vs. time diagrams for 10 cm specimen (Test_100_1) 
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Figure 2.38: Load and cumulated AE energy vs. time diagrams for 30 cm specimen (Test_300_1) 

 

 
Figure 2.39: Load and cumulated AE energy vs. time diagrams for 40 cm specimen (Test_400_2) 

0

100

200

300

400

500

600

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 200 400 600 800 1000 1200

C
u

m
u

la
te

d
 A

E 
en

er
gy

 [
m

s·
V

] 

F 
[k

N
] 

t [s] 

0

100

200

300

400

500

600

700

800

900

1000

0

1

2

3

4

5

6

7

8

0 100 200 300 400 500 600 700

C
u

m
u

la
te

d
 A

E 
en

er
gy

 [
m

s·
V

] 

F 
[k

N
] 

t [s] 



Experimental campaign and results 87 

 

 

Sudden increases of AE energy correspond to local snap-back instabilities (micro-

cracking). The same can be observed by looking at the cumulated AE events vs. time 

diagrams in Figure 2.40.  

 
(a) 

 
(b) 

 
(c) 

 

Figure 2.40: Load and cumulated AE events vs. time diagrams for (a) 10 cm specimen (Test_100_1),  
(b) 30 cm specimen (Test_300_1) and (c) 40 cm specimen (Test_400_2) 

 

2.4.1.2 Characterization of the fracture mode by Rise Angle value and Average 

Frequency 

In Section [1.2.2] the simple method, proposed by Ohtsu, to classify the cracks using 

the results of AE analysis was described. It is used in the present work: for each 

signal, the Rise Angle (RA) value was evaluated, using the Rise Time and the 

amplified peak amplitude (Eq.(1.84)); from the FFT, the Average Frequency of each 

signal was determined. Consequently, it is possible to represent each captured AE 

signal by a point in the AF vs. RA field. Considering again Test_100_1 (       ), 

Test_300_1 (       ) and Test_400_2 (       ), this representation  of AE 

signals is presented respectively in Figure 2.41, Figure 2.42 and Figure 2.43. The 
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method consists in tracing the bisector of  this diagram: if the point  associated to an 

AE signal is placed above this bisector,  that signal is related to a mode I crack; if the 

point is below, it corresponds to a mode II crack. 

 
Figure 2.41: RA values of detected AE events in Test_100_1 (D=10 cm) 

 

 

 
Figure 2.42: RA values of detected AE events in Test_300_1 (D=30 cm) 
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Figure 2.43: RA values of detected AE events in Test_400_2 (D=40 cm) 

The frequencies of the captured AE signals are almost the same and equal to about 

75 kHz; this happens because the AE sensor used is a resonant one. As expected in 

a bending test, the prevalent cracking mode is the Mode I, i.e. the opening mode 

(Figure 1.37a). 

  

2.4.1.3 Scale effects on the specific AE energy: A fractal explanation 

In Section [2.4.1.1] the cumulated AE energy and AE events vs. time diagrams are 

shown for three different specimen sizes. Obviously, the absolute values of AE 

energy and AE events increase with the specimen size. It is resumed in Table 12 and 

represented graphically in Figure 2.44 and Figure 2.45.  

 
Figure 2.44: Absolute values of AE energy for three specimen sizes (Test_100_1, Test_300_1, Test_400_2) 
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Figure 2.45: AE events for three specimen sizes (Test_100_1, Test_300_1, Test_400_2) 

 

  
        
(Test_100_1) 

        
(Test_300_1) 

        
(Test_400_2) 

          [ms·V] 164.0 544.8 915.1 

           43 62 89 

         

             
 [ms·V/m2] 32800 24213 22878 

Table 12: Absolute AE energy, AE events and AE energy per surface unit for three different beam sizes 

In Table 12, the values of AE energy divided by the ligament area of the 

corresponding specimen are also reported. It is clear how this specific value of the 

emitted energy decreases with the increase of specimen size. The same result was 

obtained also in the article by Carpinteri, Lacidogna, Corrado, Di Battista (2016). 

Thus, the AE energy per unit area exhibits an opposite trend with respect to the 

fracture energy (see Table 11). It is a further demonstration of the complete 

independence between the emitted and the dissipated energy. 

The values of the specific AE energy presented in Table 12 are graphically 

represented in a bilogarithmic diagram in Figure 2.46. An attempt to apply a mono-

fractal scaling law even for the emitted energy is now proposed. Actually, Figure 2.46 

shows that a linear regression in the bilogarithmic diagram fits well with experimental 

data. This straight line should be represented by the following equation:  

   ̅      ̅  
          (2.25) 

  

where   ̅   represents the total AE energy measured in a test divided by the ligament 

area of the specimen.  ̅  
  is instead the renormalized specific AE energy, that should 

represent the true material constant, independent from the scale;     is the fractal 

(lacunar) exponent for the emitted energy. Practically the hypothesis proposed in this 

paragraph is that the AE energy is emitted during the damage in a lacunar fractal 
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domain with physical dimension lower than 2. Consequently, dissipated energy 

(fracture energy) and emitted energy (AE energy) are released on two different 

fractal domains: the former is invasive, the latter is lacunar.  

 
Figure 2.46: Scale effects on AE energy per unit area: mono-fractal scaling law 

From the equation of the linear regression shown in Figure 2.46, in light of Eq.(2.25), 

it is deduced that          while  ̅  
                   . 

Thus the AE energy seems to be emitted on a lacunar fractal domain with a physical 

dimension [ ]    . Eq.(2.25) can be rewritten as a power law: 

 ̅    ̅  
        (2.26) 

  

 

2.4.2 Modal frequency variation 

During Test_100_2 and Test_400_3 the Dynamic Identification technique was 

applied: these two tests were stopped several times, in order to excite the specimens 

by impulsive forces and to capture, by means of four piezoelectric pickups, the free 

response signals.  

The recording of the free vibration signals allowed the extraction of the natural 

frequencies of the two specimens in correspondence of each step in which the tests 

were stopped. In fact, using a FFT (Fast Fourier Transform) algorithm implemented in 
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MATLAB, it was possible to evaluate the PSD (Power Spectral Density). This latter 

contains different peaks, in correspondence of the frequencies related to the vibration 

modes of the specimen that reacted with greater energy to the impulsive force. 

However, these modes could concern all the possible motions of the specimen in the 

space (axial modes, torsional, lateral or vertical bending etc.). In order to individuate 

the peaks of interest, corresponding to the vertical bending modes, a modal analysis 

was performed with LUSAS software using a Finite Element Model for the 10 cm and 

40 cm specimens (the results are presented in Section [2.2.1]).  

First of all, the electrical signals captured by the four PZT pickups are acquired by an 

audio device (8-channel Audiobox 1818VS1 acquisition device by PreSonus) and 

recorded as audio tracks (.WAV extension) by the software StudioOne2 produced by 

PreSonus. In each step of the test, five acquisitions (due to five impulsive forces) 

were made. In Figure 2.47 one of these signals is represented. Using the already 

mentioned algorithm implemented in MATLAB, it was possible to perform the 

frequency analysis of each signal by evaluating the PSD (an example is in Figure 

2.48). Knowing the frequencies of interest (those related to the first three vertical 

bending modes) from the numerical analysis, it was possible, using the PSD, to 

evaluate the bending natural frequencies of specimens in each step, in order to 

estimate their decrease with the crack growth. The final values of those frequencies 

in each step were obtained evaluating for each sensor the average of the five 

acquisitions; finally the average of these values related to the four sensors were 

considered. Table 13 contains the so evaluated frequencies with respect to the 10 

cm specimen (Test_100_2).  

 
Figure 2.47: Free response signal due to an impulsive force 
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Figure 2.48: Power Spectral Density (PSD) of a free response signal due to an impulsive force 

 

 

 

  

 

[mm] 

Natural bending 

frequency related 

to Asym1 mode 

[Hz] 

Natural bending 

frequency related 

to Sym mode 

[Hz] 

Natural bending 

frequency related 

to Asym2 mode 

[Hz] 

Step I 0.170 1018.9 1145.8 3279.5 

Step II 0.236 1015.5 1141.2 3284.9 

Step III 0.361 1006.1 1124.3 3270.9 

Step IV 0.462 990.9 1060.8 3236.5 

Step V 0.561 972.6 1021.1 3214.9 

Step VI 0.763 969.4 917.3 3146.2 

Step VII 0.974 962.9 885.9 3088.1 

Step VIII 1.160 946.6 878.5 3017.2 

Step IX 1.512 934.8 854.8 2918.4 

Step X 1.762 928.2 840.7 2846.3 

Total decrease 8.9% 26.6 % 13.2 % 

Table 13: Values of the first three natural frequencies of 10 cm specimen experimentally evaluated in each 
step of Test_100_2 and their total observed decrease in percentage (the names of the modes are referred 

to Figure 2.9) 

The experimentally evaluated decrease of the first three natural bending frequencies 

of the 10 cm specimen is represented in Figure 2.49 in a unique diagram, together 
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with the load-deflection curve of Test_100_2, and separately in Figure 2.50, Figure 

2.51 and Figure 2.52. 

 
Figure 2.49: Experimentally evaluated decrease of the first three natural frequencies of the 10 cm 

specimen with the imposed vertical displacement during Test_100_2 

 

 
Figure 2.50: Experimentally evaluated decrease of the natural frequency related to asym1 mode of the 10 

cm specimen during Test_100_2 
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Figure 2.51: Experimentally evaluated decrease of the natural frequency related to sym mode of the 10 cm 

specimen during Test_100_2 

 

 
Figure 2.52: Experimentally evaluated decrease of the natural frequency related to asym2 mode of the 10 

cm specimen during Test_100_2 
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symmetric mode: it results the second frequency at the beginning of the test; then, 

with the damage progress, it becomes the first one.  

The experimental results are in agreement with the numerical ones presented in 

Section [2.2.2]: comparing Table 13 with Table 9 it is possible to observe that the 

total decrease of the three natural frequencies, expressed as a percentage, is almost 

the same in the experimental and numerical (FEM) evaluation. In particular, in the 

numerical analysis it was determined as a function of the relative crack depth (Figure 

2.13). Consequently, an inverse procedure can be applied, in order to associate the 

decrease of natural frequencies experimentally observed with an approximate value 

of the crack depth and so of the damage severity. Since the mode associated to final 

stages and collapse is the symmetric one, the corresponding frequency was selected 

to apply this inverse procedure. Overlapping the variation numerically (FEM) 

determined (Figure 2.13) with the experimental one (Figure 2.51), an approximate 

value of relative crack depth can be obtained.  This combination is presented in 

Table 14. Figure 2.53 shows the overlap of experimental and numerical curves in 

dimensionless terms (dividing by the initial value of the natural frequency).     

 
Figure 2.53: Overlap of dimensionless experimental values with the dimensionless numerical (FEM) curve 

describing the variation of the natural frequency, related to the symmetric mode of the 10 cm specimen 
(Test_100_2), as a function of the relative crack depth 
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[mm] 

Natural bending 

frequency related 

to Sym mode 

[Hz] 

Estimated relative 

crack depth 

    

[-] 

Step I 0.170 1145.8 0.500 

Step II 0.236 1141.2 0.510 

Step III 0.361 1124.3 0.535 

Step IV 0.462 1060.8 0.645 

Step V 0.561 1021.1 0.710 

Step VI 0.763 917.3 0.870 

Step VII 0.974 885.9 0.910 

Step VIII 1.160 878.5 0.915 

Step IX 1.512 854.8 0.940 

Step X 1.762 840.7 0.952 

Table 14: Estimated values of the relative crack depth in the different steps considered in Test_100_2 with 
the 10 cm specimen, using the natural frequency related to the symmetric mode 

The Dynamic Identification technique was applied also in Test_400_3 on the 40 cm 

specimen. Table 15 contains the experimental values of the first three natural 

frequencies corresponding to the bending modes of the beam represented in Figure 

2.10. The decrease of these three natural frequencies is shown in a unique diagram 

in Figure 2.54 together with the load-deflection curve of Test_400_3, and separately 

in Figure 2.55, Figure 2.56 and Figure 2.57. 

 

 

 

  

 

[mm] 

1st natural 

bending 

frequency  

[Hz] 

2nd  natural 

bending 

frequency  

[Hz] 

3rd  natural 

bending 

frequency  

[Hz] 

Step I 0.044 693 815 2102 

Step II 0.187 693 816 2106 

Step III 0.383 694 816 2106 

Step IV 0.500 689 811 2065 

Step V 0.550 683 808 2038 

Step VI 0.600 674 799 2022 

Step VII 0.650 674 795 1998 

Step VIII 0.700 660 793 1969 

Step IX 0.800 657 787 1930 

Step X 1.000 644 770 1872 

Step XI 1.200 641 758 1835 

Total decrease 5.8% 5.7% 12.7% 

Table 15: Values of the first three natural frequencies of 40 cm specimen experimentally evaluated in each 
step of Test_400_3 and their total observed decrease in percentage  

(the modal shapes are represented in Figure 2.10) 
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Figure 2.54: Experimentally evaluated decrease of the first three natural frequencies of the 40 cm 

specimen with the imposed vertical displacement during Test_400_3 
 

 
Figure 2.55: Experimentally evaluated decrease of the first natural bending frequency of the 40 cm 

specimen during Test_400_3 
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Figure 2.56: Experimentally evaluated decrease of the second natural bending frequency of the 40 cm 

specimen during Test_400_3 

 

 
Figure 2.57: Experimentally evaluated decrease of the third natural bending frequency of the 40 cm 

specimen during Test_400_3 
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In this case an acquisition of the free response signals was made also before the 

peak load; it is evident, however, that the natural frequencies in that step are 

practically the same of the ones measured in correspondence of the peak load.  

 

2.4.3 Correlations between the two monitoring techniques 

In Figure 2.60 and Figure 2.61 a correlation between AEs and natural frequency 

variation is proposed, respectively for 10 cm and 40 cm specimens. In Figure 2.58 

and in Figure 2.59 are represented the load and cumulated AE energy vs. 

displacement diagrams respectively for Test_100_2 and Test_400_3, since they 

were not presented in Section [2.4.1].  

 
Figure 2.58: Load and cumulated AE energy vs. time diagrams for 10 cm specimen (Test_100_2) 

 
Figure 2.59: Load and cumulated AE energy vs. time diagrams for 40 cm specimen (Test_400_3) 
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Figure 2.60: Experimental natural frequencies and AE energy vs. displacement in Test_100_2 (       ) 

 
Figure 2.61: Experimental natural frequencies and AE energy vs. displacement in Test_400_3 (       ) 
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It is evident that, as the damage progresses, the cumulated AE energy increases 

while the natural frequencies decrease. These two parameters are used in the 

present work as two independent damage indicators: AEs related to the emitted 

energy due to the crack formation and propagation in the bulk of material, and the 

modal frequency variations related to the loss in stiffness due to the crack 

propagation and cross-section reduction.  

However, these two non-destructive techniques can be combined in the practical 

situations concerning the damage monitoring of full-scale structures: AE signal 

analysis is available as damage precursor and alarm instrument, while the analysis of 

the variations in modal parameters can be used to recognize a decrease of the 

structural global stiffness and to evaluate the damage severity by inverse procedure. 

A possible combined system of damage monitoring is described in the article by 

Lacidogna, Piana, Carpinteri (2017):  

- installation of AE and DI sensors on the structure; 

- evaluation of the most important natural frequencies of the integer structure; 

- identification of possible variations in natural frequencies or localizations in 

modal curvature with periodical acquisition of the dynamic response of the 

structure, especially when many AE signals are captured; 

- implementation of a numerical (e.g., FEM) model of the damaged structure in 

order to determine, by an inverse procedure, the damage level, knowing the 

decrease of natural frequencies. 

 

2.5 Comparison between three and four point bending results 

In the article by Lacidogna, Piana, Carpinteri (2017), four-point bending tests are 

considered, on specimens with a depth of 10 cm and the same geometrical and 

material properties of the specimens used for the present thesis. In Figure 2.62 the 

three load-deflection curves obtained in these tests are represented in dimensionless 

form (dividing the loads by the peak value of one test, and the displacements for the 

value in correspondence of the peak of the same test); they are superimposed on the 

load-displacement curves of two TPB tests analysed in the present thesis 

(Test_100_1 and Test_100_2), also represented in dimensionless form (using the 

same criteria). 

In both kinds of tests, the failure of specimens was reached due to plastic collapse 

and not unstable crack propagation. In other words, the final rupture occurred due to 

the overcoming of the tensile strength, and not due to the overcoming of the fracture 

toughness (   ). Nevertheless, observing the dimensionless load-deflection curves 

of Figure 2.62, it is clear that the four-point bending tests manifested a more brittle 

behaviour with respect to the TPB ones. In two of the three performed tests, in fact,  

a global snap-back instability occurred after the peak-load. It can be explained also 

by using the LEFM concepts presented in Section [1.1.1.1]: in the elastic phase of 

the tests, the stress intensity factor calculated for four-point bending tests (Eq.(1.10) 
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and Eq.(1.12)) is (for the same load value) lower than the stress intensity factor 

evaluated for TPB tests (Eq.(1.10) and Eq.(1.11)).  

 
Figure 2.62: Comparison between the dimensionless load-displacement curves obtained in three and 

four-point bending tests on 10 cm specimens 

A final observation concerns the Dynamic Identification. The reduction of natural 

frequencies with the damage progress in four-point bending test (Lacidogna, Piana, 

Carpinteri, 2007) is greater than the decreases measured in three-point bending tests 

(Section [2.4.2]). It happens because the section in which the crack occurs is free to 

vibrate in the case of four-point bending, while it is bounded in TPB tests. 
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Conclusions 

Three-point bending tests on plain concrete pre-notched specimens were performed 

in this work. Four different specimen sizes were considered, in order to investigate 

the scale effects on the material fracture energy and bending strength.  

In addition, two non-destructive damage monitoring techniques were used during 

TPB tests: Acoustic Emission (AE) and Dynamic Identification (DI). The geometric 

characteristics of the specimens and the testing procedure were chosen according to 

RILEM TC 50 – FMC. This Recommendation provides an experimental method for 

the evaluation of the fracture energy of plain concrete. 

Two mono-fractal scaling laws, proposed by Carpinteri and his collaborators, were 

applied to interpret the experimental results concerning the fracture energy and the 

bending strength.  

Considering also kinematic aspects and, in particular, the scale effects on the critical 

rotation angle, a scale-independent cohesive law was determined for bending 

problem. This law is a function of the three renormalized values of fracture energy, 

bending strength and critical rotation angle, and it represents the true material 

property. 

This law can be considered as an extension of the fractal cohesive laws already 

obtained in the case of uniaxial tensile tests (Carpinteri, Chiaia Cornetti, 2002) and 

uniaxial compression tests (Carpinteri, Corrado, 2009).  

A further fractal scaling law was proposed in this work for the AE energy per unit 

area. Unlike the fracture energy, which is released on an invasive fractal domain, the 

AE energy resulted to be released on a lacunar fractal domain. 

Finally, the advantages of the combined use of AE and DI techniques in the 

monitoring of full-scale structures are remarked. While the AE analysis provides 

damage precursor data and represents a useful alarm instrument, the DI analysis 

concerning the modal frequency variations allows to evaluate reductions in global 

rigidity of the structure and, by inverse procedure, the damage entity. In this work, an 

estimate of the crack advancement under loading was obtained by comparing the 

material frequencies measured in the lab with those obtained by a finite element 

model. 
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