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Introduction 

 

This thesis aims at evaluating the seismic reliability of isolated multi-span bridges, with 

the intent to providing design criteria and design abacuses, respecting the seismic engineering 

philosophy based on performance objects. 

Bridges are structures of high importance in transport systems. Structural damage due to 

seismic events and induced to these structures, and the significant cost of their reconstruction, 

have revealed the need for the assessment of their seismic vulnerability based on 

performance-based design concepts. This method requires an accurate prediction of the 

seismic capacity of the bridges and of the seismic demand associated to them. 

In the last forty years, earthquakes have caused severe damage to civil infrastructure 

around the world, with a growing trend. Many important bridges have collapsed, even if 

designed to resist seismic actions: this is mainly due to their usual structural simplicity, which 

makes them very vulnerable to seismic events. Seismic damage in bridges occurs mainly in 

the piers, and then it may cause the collapse of the deck. Although the concepts of Capacity 

Design have been widely accepted for the seismic design of buildings, they may not be 

appropriate for bridges, since they usually do not show structural redundancy due to their 

simply supported static scheme. 

Among the design strategies aimed to the limitation of the earthquakes effects, seismic 

isolation has emerged as the most promising. With this technique, by special bearings, a 

structural discontinuity is created that allows large relative horizontal displacements between 

the superstructure and the substructure, so that the mass of the superstructure is separated 

from the seismic movements of the ground. and the energy transmitted by the earthquake to 

the superstructure is reduced. 

The (FPS) are types of seismic isolators, which allow relative displacements by spherical 

surfaces. The dissipation of energy is provided by the friction encountered during the 

movement of the sliding surfaces. Thus, the dynamic response of these devices is closely 

related to their frictional behavior. Moreover, they provide a restoring force, thanks to the 

curvature of the surfaces, which also allows the devices to return to their initial position after 

a seismic event. In this way, the isolation system allows to obtain an extension of the natural 

period of the structure, towards frequency values lower than those typical of earthquakes, and 
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allows to dissipate the energy of seismic input, thanks to its frictional behavior. Experimental 

studies have attested the intrinsic randomness of the dynamic behavior of FPS devices, due to 

the dependence of the friction coefficient on non-controllable parameters, such as sliding 

speed, contact pressure and temperature. As a result, the modeling of these devices has been 

set through a probabilistic approach. 

In the structural modeling phase, it was considered a system with multiple degrees of 

freedom, modeling the bridge, in the MATLAB-Simulink® environment, with a linear 

behavior and isolators with non-linear behavior characterized by a model dependent on speed. 

Consequently, extensive parametric analysis was performed, considering different structural 

models of the bridge, varying the fundamental period of the pier, the fundamental period of 

the deck, the mass ratio and the dynamic friction coefficient of the devices. The latter was 

taken as a random variable and the values of this parameter were obtained through a statistical 

sampling process, of stratified type, using the Latin hypercube method. Finally, the seismic 

response of the structural system was evaluated considering a set of natural seismic 

recordings, scaled for different values of a spectral displacement taken as intensity measure. 

Through an incremental dynamic analysis (IDA), the relationship between the seismic 

demand and the capacity of the structure has been obtained and the structural performances 

are carefully evaluated. Finally, the IDA results allowed to evaluate the seismic vulnerability 

of the bridges and to develop their fragility curves, which were integrated with the hazard 

curves of the L'Aquila (Italy) site to evaluate the seismic reliability of the structure, to define 

a reliability criterion to support the design of the dimensions of the Friction Pendulum in plan. 
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CHAPTER 1 

1. STRUCTURAL AND SEISMIC SAFETY 

 

 

The structures, during their life, may be subject to the application of seismic actions, 

which, depending on their intensity, can cause multiple damages to the structural and non-

structural elements belonging to the building organism. 

Particularly, in recent decades, many earthquakes of varying intensity, registered in Italy, 

have shown that most of the buildings and bridges, designed according to obsolete regulations 

and in the absence of specific seismic regulations, are inadequate to resist totally or partially, 

to actions seismic. Therefore, there has been a growing interest in a performance approach to 

seismic design, and nowadays it is widely recognized that it must be an essential reference for 

the drafting of the latest generation technical regulations. From all this, arises the need to 

study and to protect the existing assets, as to reduce seismic risk and its consequences, both in 

terms of human lives and in economic terms. For this purpose, therefore, it is necessary to 

define specific methods to evaluate this risk and possibly intervene. 

From this point of view, by now, it has been customary to tackle the structural problem by 

determining a distinct number of states (called "Limit States"), which allow to quantify the 

resistant capacity of the structure with respect to the corresponding level of damage. It is, 

therefore, evident that the assessment of structural reliability under seismic conditions is 

currently one of the most interesting topics of seismic engineering and is the objective of this 

work. 
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1.1 Performance Based Seismic Design (PBSD) 

In the paper [1] some important terms typical of the project performance philosophy are 

specified and are listed below. 

- Performance Based Engineering (PBE): a design approach, of performance type, 

that consists in the identification of design criteria, appropriate structural systems, 

dimensional and constructive choices for a construction. Therefore, consist in the 

indication of control and maintenance procedures, in such a way that it is not damaged 

beyond certain pre-set Limit States and if subject to specific levels of the actions that 

are deemed to be effective during its useful life. It is a design process that "follows" 

the construction from its first conception and throughout its life. 

 

- Performance Based Seismic Engineering (PBSE): it is the application of the PBE in 

case of the seismic action. It, therefore, deals with the design, construction, control 

and maintenance of a building to ensure that it resists the effects of earthquakes of 

different intensities without exceeding pre-set Limit States. 

 

- Performance Based Seismic Design (PBSD): it is the PBSE step focused only on the 

design phase, concerning the seismic risk identification, the selection of performance 

levels and project performance objectives, the verification of suitability of the 

construction site, the structural concept, the general and definitive structural 

verifications, as well as the definition of control and monitoring specifications to be 

carried out during the life of the building. 

 

The basic concept of Performance Based Design is, in essence, the definition of a 

multiplicity of Performance Objective (PO) obtained from the coupling of (structural and non-

structural) performance requirements with prefixed levels of actions intensity: we can then 

define the performance objectives, that a structure in the seismic field must meet, as the 

achievement of certain Performance Levels in correspondence of expected levels of seismic 

intensity, defined in terms of frequency of exceeding (Seismic Hazard Level). The (Figure 

1.1), from the Vision2000 technical document [2], illustrates this design philosophy 

significantly: on one side, four reference seismic inputs are defined conventionally based on 
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the Return Period (Frequent 43 years, Occasional 72 years, Rare 475 years, Very Rare 975 

years), on the other side, four Performance Level are identified: 

• Fully Operational: damage to non-structural components and systems must be 

avoided in the case of minor seismic events, with a high probability of occurrence, 

during the useful life of the structure; 

• Operational: damage limited to non-structural components is allowed, whereas 

they must be completely avoided in structural ones in the case of medium-low 

intensity earthquakes that can occur less frequently; 

• Life Safe: damage to persons must be avoided and the structure must be repairable 

after the earthquake if the intensity of the seismic event is medium-high; 

• Near Collapse: structural collapse is avoided even in case of severe earthquakes 

with a low probability of occurrence. 

 

 

Figure 1.1: Performance Objectives in the Performance Based Design. 

 

In the performances listed above, it is easy to recognize the performance levels required in 

the Limit States introduced by the “Norme Tecniche per le Costruzioni”, D.M. 14/01/2008 

[3], in particular: the "Fully Operational" level is associated with the operating limit state 

(SLO), the "Operational" level is associated with the state limit of damage (SLD), the levels 

of “Life Safe” and “Near Collapse” are associated with the homonymous limit states (SLV 

and SLC). The POs are appropriately matched with the seismic actions of reference and, 

therefore, the performance objectives are defined, generally different depending on the 

importance of the work ("Basic Objective" for the structures of ordinary importance, 

"Essential Objective" and "Safety Critical Objective" for the increasingly important structures 
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such as schools, hospitals, barracks, power stations, etc.). However, while the definition of 

acceptable levels for the structural response and the service limit status damage is an 

exclusively engineering task, the conventional definition of the Performance Level 

Exceedance Probabilities goes beyond the strictly engineering-structural field, necessarily 

requiring also the involvement of financial, social and urban aspects. The design process must 

therefore place greater emphasis on the prediction of structural performance; this, however, 

given the numerous intrinsic uncertainties in the seismic analysis, can be carried out only in a 

probabilistic sense [1]. 

POs can also be represented with a curve within the "Performance Space". An example of 

Performance Space for fixed-base structures is represented in (Figure 1.2), where the 

exceedance probability (for a useful life of 50 years), in logarithmic scale, is represented on 

the vertical axis and on the horizontal axis is instead reported the measure of the structural 

response, that for buildings corresponds to the Interstory Drift Index (IDI). 

 

 

Figure 1.2: Performance space for fixed-based structures [1]. 

 

The definition of the performance limit states, from which the evaluation of structural 

reliability is followed, is a complex problem and must be resolved through the identification 

of suitable variables to describe the state of the structural system, that is, the damage 

parameter. In buildings seismic design, one of the most relevant parameters, often used in 

seismic design, corresponds to the maximum displacement of inter-storey (dr), divided by 

inter-storey height (hi). This parameter, corresponds to the previously mentioned “Inter-story 

Drift Index” (IDI). In (Table 1.1) are represented the values of IDI, for the four Limit States 
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used in the seismic evaluation and in the design of fixed-base structures, recommended by 

different authors [1], [4], [5] just like the national regulations. 

 

Table 1.1: Inter-story Drift Index of fixed-base structures for the four Performance Level. 

Limit State Inter-story Drift Index 

Fully Operational IDI = 0,3% 

Operational IDI = 0,6% 

Life Safety IDI = 1,5% 

Near collapse IDI = 2,0% 

 

In bridges seismic design, instead, one of the most important parameters is the ratio 

between the maximum pier displacement and the pier height, also known as “Pier Drift 

Index”, (PDI) (Table 1.2). This parameter strictly depends on the structural typology and may 

be inferred from both experimental surveys and inspections on earthquake-damaged 

structures. 

 

Table 1.2: Pier Drift Index for no isolated bridges, for the four Limit States. 

Limit State Pier Drift Index 

Fully Operational PDI=0,7% 

Operational PDI=1,5% 

Life Safety PDI=2,5% 

Near collapse PDI=5% 

 

 

1.2 Evaluation Elements of Seismic Risk 

After a seismic event, the seismic risk is defined in economic terms as the possible loss of 

functionality of structures. In other words, the risk is defined as the probability that in a 

certain time interval a predetermined loss level is reached. The variable that characterizes the 

level of loss is represented by an index that indicates all the possible levels of loss, that go 

from full functionality to collapse. Loss is usually identified in the cost to be incurred, to 

bring back the damaged system to the conditions it had before to the seismic event. From a 
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quantitative point of view, the risk can be expressed with a relationship that correlates seismic 

hazard, vulnerability and exposure: 

Seismic Risk = Seismic Hazard x Vulnerability x Exposure 

Where: 

- Seismic Hazard of an area is defined as the probability, that in a certain period, an 

earthquake will occur with a given intensity; or even as: the expected number of 

events that in a unit of time exceeds a certain intensity threshold.  

- Vulnerability, is defined as the tendency for people or goods to suffer damage or 

modification due to a given earthquake with a given intensity measure. Such damages 

can lead to the momentary loss of functionality or even to total irrecoverability.  

- Exposure indicates the quality and quantity of the goods exposed to the seismic 

hazard, the number of people involved and their ability to react. 

Another definition of Seismic Risk can be considered going to neglect the issues related to 

Exposure, related to urban and infrastructural risk that are the responsibility of urban planning 

matters. In fact, if we consider the Exposure unitary and if with the loss levels we indicate the 

aspects related to the structural damage, and therefore to the limit states that can be reached 

following a seismic event, then the seismic risk can be defined as the probability of collapse 

in a time interval (e.g. the useful life of the structure), whose limit state function Z is not 

positive if the corresponding limit condition is reached or exceeded. 

From a seismic and structural point of view, the function of state Z can be expressed by 

comparing the seismic demand (D), which represents the required performance to the 

structure by the seismic action, and the capacity (C) of the structure itself, which in general 

can be represented in terms of displacement or resistance. According to these definitions, by 

indicating the probability function of failure with Pf, the risk can be expressed by the 

following formulation: 

𝑃𝑓 = 𝑃[𝑍 ≤ 0] = 𝑃[𝐶 ≤ 𝐷]            (1.1) 

The way to evaluate this probability consists in separating the estimate of the structural 

answer from the probabilistic one of the question [7]: 

𝑃𝑓 = 𝑃[𝑍 ≤ 0] = 𝑃[𝐶 ≤ 𝐷] = ∑ 𝑃[𝐶 ≤ 𝐷|𝐼𝑀 = 𝑖𝑚] ∙ 𝑃[𝐼𝑀 = 𝑖𝑚]𝑖𝑚      (1.2) 
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The first term of the (1.2) indicates the Fragility (Vulnerability) that represents the 

probability of failure conditioned at a given IM seismic intensity, while the second term 

indicates the Seismic Hazard at the site of interest, which represents the probability of 

occurrence of an earthquake of intensity IM equal to im, and that IM is a synthetic parameter 

wherewith the intensity of the earthquake is measured. In common engineering practice, 

generic parameters of peak are used to evaluate the intensity, such as the PGA and the 

response spectrum. Integral parameters such as duration are used but play a secondary role in 

structural performance. The equation (1.2), whose graphical interpretation is shown in (Figure 

1.3), can ultimately be read as follows: "The Seismic Risk is the Vulnerability to each level of 

intensity weighed for the Seismic hazard". 

 

 

Figure 1.3: Graphical interpretation of the probability function of failure. 

 

Assigned a site of interest, subjected to n genetic sources, the average number of events 

that cause the collapse of the structure, usually indicated with 𝜆𝑓, is calculated as the sum of 

the occurrence rates of the earthquakes on each source, multiplied by the probability that the 

seismic demand D is greater than the structural capacity C. By applying the Total Probability 

Theorem, we can write the following equation, which is a mathematically more correct 

expression with respect to (1.2): 

𝜆𝑓 = ∑ 𝜆𝑖 ∙ ∫ 𝑃[𝐶 < 𝐷|𝐼𝑀 = 𝑖𝑚] ∙ 𝑓𝐼𝑀𝑖
∙ 𝑑(𝑖𝑚)

𝐼𝑀𝑖           (1.3) 
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where: 

• 𝜆𝑖 is the rate of occurrence of earthquakes on the i-th source; 

• 𝐼𝑀𝑖 is the Intensity Measure of ground motion relative to the i-th source; 

• 𝑓𝐼𝑀𝑖
 is the probability distribution function (PDF) of IM relative to the i-th source. 

The term 𝑓𝐼𝑀𝑖
 is calculated by means of hazard studies that consider seismic parameters such 

as magnitude M and the seismic-site source distance of interest R. This, can be written in 

symbols through the following mathematical formula: 

𝑓𝐼𝑀𝑖
= ∫ ∫ 𝑓𝐼𝑀|𝑀,𝑅(𝑖𝑚|𝑚, 𝑟)𝑓𝑅(𝑟)𝑓𝑀(𝑚)𝑑𝑟 𝑑𝑚

𝑀𝑚𝑎𝑥

𝑀𝑚𝑖𝑛

𝑅𝑚𝑎𝑥

𝑅𝑚𝑖𝑛
       (1.4) 

Where 𝑓𝐼𝑀|𝑀,𝑅  represents the distribution of the IM intensity given the magnitude M and the 

distance R. 

Making the product between the occurrence rate of the earthquakes at the i-th source, 𝜆𝑖, and 

the distribution 𝑓𝐼𝑀𝑖
, is equivalent to calculating the Integral of Hazard; then we obtain the 

curve that, when the IM changes, shows how the rate of occurrence of IM at the site of 

interest varies. 

Known the rate of events 𝜆𝑓 causing structural collapse, the probability of collapse in any 

time interval [t, t+Δt] is then calculated using the following formula: 

𝑃𝑓[𝑡, 𝑡 + 𝛥𝑡] = 1 − 𝑒−𝜆𝑓𝛥𝑡            (1.5) 

which allows to evaluate the seismic reliability as the probability that in the time interval [t, 

t+Δt] it may take at least one seismic event that causes the collapse of the structure under 

examination; since at least one event that causes collapse is the complementary of 1 of zero 

events that cause collapse, remembering that the earthquake occurrence process is modelled 

as a Stationary Stochastic Process of Poisson with random selection [8] of the type: 

𝑃[𝑁𝑓(𝑡, 𝑡 + 𝛥𝑡) = 𝑛] =
(𝜆𝑓𝛥𝑡)

𝑛

𝑛!
𝑒−𝜆𝑓𝛥𝑡          (1.6) 

where 𝑁𝑓 is the number of seismic events that cause the collapse and it is simple to derive the 

expression (1.5). 
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1.3 Evaluation Elements of Seismic Hazard 

The seismic hazard represents a measure of the destructive potential of the earthquake. A 

more correct definition can be given in probabilistic terms by defining the hazard as the 

probability of overcoming a prefixed spectral order (or PGA) for a fixed period in a reference 

time frame. From this point of view, the study of the seismic hazard leads to the construction 

of the hazard curves that for a given period, or peak acceleration at the ground, correlate the 

acceleration spectral ordinate with a certain probability of exceedance that is generally given 

in a time frame of 50 years. 

The evaluation of the hazard curves is carried out through statistical studies based on the 

databases of past earthquakes and is the subject of geophysics studies. Currently in Italy, 

accessing the site of the INGV (National Institute of Geophysics and Volcanology) exists the 

ability to view the interactive maps of seismic hazard of the entire national territory [9] 

(Figure 1.4). This site also provides, as a function of longitude and latitude, the 9 annual 

exceeding frequencies, defined as the inverse of the return period, TR, of the same values of 

the spectral acceleration (as a function of the structural periods) and of the PGA, referring to a 

probability of exceedance in 50 years. In any case, obtain the hazard curves and set a 

probability of exceedance, the acceleration spectrum, and subsequently the displacement 

spectrum, can be calculated. 

 

 

Figure 1.4: Map of seismic hazard of the Italian territory. 
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1.4 Evaluation Elements of Seismic Vulnerability 

The seismic vulnerability represents the propensity of people, goods or activities to suffer 

damage following the occurrence of the seismic event. It consists of three components, that 

are: 

• Direct vulnerability: defines the propensity of a single (or complex) physical element 

to be damaged by an earthquake; 

• Induced vulnerability: it is defined according to the crisis that is induced by the 

collapse of a single physical element or complex of goods; 

• Deferred vulnerability: defines the effects that occur after the seismic event and the 

first emergency. 

In this thesis, we want to study the seismic vulnerability applied to the bridges and we will 

refer to the direct vulnerability only. The seismic vulnerability of a bridge is therefore 

considered as a measure of the greater or lesser propensity of the bridge itself to suffer 

damages due to an earthquake of assigned characteristics. The vulnerability therefore relates 

the seismic action on the one hand, and on the other hand the damage caused on the physical 

system. 

Regarding the measurement of the seismic IM, different parameters can be chosen to 

identify it, including peak ground acceleration (PGA), the spectral pseudo-acceleration 

evaluated at the fundamental vibration period of the structure and so on; in fact, it is important 

that any IM is chosen, it is possible with it to describe the capacity of an earthquake to 

damage a structure. 

For the choice of the damage parameter, a possible aspect may be correlating the damage 

to the economic costs to be incurred for restore the structure that has been invested by the 

seismic action. In a structural analysis the damage can be linked to certain limit states defined 

through the achievement of specific levels of displacement or resistance of the structures. 

However, at the end of the vulnerability assessment process it is possible to construct a 

fragility curve (vulnerability curve) that correlates the damage of a structure or a class of 

structures with the IM intensity chosen to represent the seismic action. 

In particular, the fragility (vulnerability), in probabilistic terms, represent the probability 

of exceeding a predetermined limit state for a fixed seismic IM; another definition that can be 

given is that the fragility curves represent the probability of exceeding a predetermined level 
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of damage, caused in correspondence with an appropriate control parameter. Using such 

curves, it is therefore possible, to determine in probabilistic terms the intensity of the seismic 

action necessary to bring a structure to a determined level of seismic or damage response. 

For each structure, or for each class of structures, it is possible to construct multiple 

fragility curves, each corresponding to a predetermined level of damage. An example of 

fragility curves constructed as a function of peak ground acceleration (PGA) is shown in 

(Figure 1.5):  

 

 

Figure 1.5: Fragility curves for prefixed levels of damage. 

 

For the construction of seismic fragility curves, currently there are different approaches; 

these approaches can be grouped into three categories: 

• Methods based on expert judgment; 

• Empirical methods; 

• Analytical methods. 

A detailed description of the three approaches is reported. 

 

Methods based on expert judgment 

These methods are based on the attribution to each structure of a vulnerability index (v), 

determined through some rules based on indicators not interpreted with typological meaning 

but based on their suitability to withstand earthquakes (for example efficiency of connections, 

resistance of materials, morphological regularity); in a second time, a vulnerability curve or a 
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damage probability matrix is associated with each value of the vulnerability index. Normally 

the vulnerability index is calculated based on partial indices corresponding to each indicator 

and attributable following qualitative examinations of the structure. This type of method, 

semi-quantitative, or even diagnostic-type, implements qualitative or quantitative assessments 

of the factors that govern the seismic response and the related knowledge-based elaborations, 

while retaining the characteristics of rapidity of use and economy, allow to introduce 

information on regularity, ductility, resistances, geometry, etc., obtaining the evaluation of a 

vulnerability index. The problem with these methods is that they are not mechanical-

analytical and therefore consider the behavior of typologies of structures based on experience 

and knowledge. 

Surely, among all the methods based on the judgment experts, the most widespread and 

that currently used in Italy is that based on the first and second level vulnerability maps 

prepared by the National Group for the Defence of Earthquakes (GNDT) of the INGV [10]. 

 

Empirical methods 

This type of approach, which is certainly the most widespread, is based on the statistical 

analysis of the damage caused by earthquakes [11]. However, the accuracy of the method may 

not always be appropriate due to the lack of a sufficiently large database. These (typological) 

methods evaluate the vulnerability of each class of structures. These classes are characterized 

by typological or functional indicators [12], [13]. For example, in the definition of a class, 

factors such as construction type, plant morphology, height, year of construction etc., are 

involved. To each class is associated a matrix of probability of damage or a curve of 

vulnerability. The verification of the hypotheses formulated during the construction of 

vulnerability curves or damage matrices is entrusted to the statistical processing of damage 

caused by past earthquakes, to structures. Assigning a certain class to a structure means 

assigning the vulnerability curve, or the damage probability matrix, that belongs to the class. 

 

Analytical methods 

The damage is evaluated totally in mechanical and analytical way. We then proceed to an 

analysis of the structure usually of the non-linear type. The damage is associated with the 

achievement of a limit state that can be identified by the setting of a limit rotation or a 
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collapse mechanism of the structure, while the action is generally expressed in terms of 

spectral quantities, such as the Sa(T) or Sd(T). For the analytical mechanical generation of 

seismic fragility curves, structural analyzes can be implemented with different levels of 

sophistication: linear, non-linear, pseudo-static or dynamic. The most commonly used 

analytical approaches, in fragility studies, are nonlinear dynamic step analysis or, otherwise, 

nonlinear static analysis. 

 

 

1.5 Structural reliability 

Structural reliability, or probability of success, can be defined as the probability that the 

structure will continue to perform the functions for which it was conceived, designed and 

constructed during a pre-established period ("useful life"), and below pre-established loading 

conditions. The uncertainties in the prediction of the loads and the characteristics of the 

materials make that one can never be certain (in a "deterministic" way) that a structure is safe. 

It is necessary to compare the stresses "S", linked to the loads applied to the structure, with 

the "R" resistances, linked to the characteristics of the materials used. Therefore, a 

construction can be considered reliable if the probability of success, Ps, that continues to 

perform its functions throughout its useful life, will be greater than a pre-set P* acceptability 

value. 

 

 

1.5.1 Methods for evaluating structural reliability 

The evaluation of the structural (or seismic) reliability of a structural system in the seismic 

area, has had considerable changes over time, passing from a deterministic approach (in 

which attention was focused solely on resistances) to a modern probabilistic approach (as 

described in the NTC08 and EC2 Regulations). Considering, in fact, the probabilistic nature 

of the phenomena involved in the design, which in this case is constituted by the randomness 

of the seismic actions, it is necessary to consider that the level of protection in respect of 

performance limit states can only be expressed in probabilistic terms, i.e. through the 

probability that each predefined limit state is exceeded, at least once, during the useful life of 
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the structure. The evaluation of the level of protection, with respect to a given limit state, can 

be carried out by checking that the relationship is satisfied: 

𝑃𝑓𝑎𝑖𝑙 ≤ 𝑃𝑓𝑎𝑖𝑙
∗                (1.7) 

where 𝑃𝑓𝑎𝑖𝑙
∗  is a limit value of the probability of collapse, representative of the risk accepted in 

relation to the consequences deriving from the achievement of the limit state taken into 

consideration. 

To the structures are required to have a high degree of security, and this translates into a 

relatively low probability of collapse. To minimize the value 𝑃𝑓𝑎𝑖𝑙
∗ , means to design more 

important and therefore more expensive structures, so that the costs could be incompatible 

with the function of the structure, as well as with the economic and development conditions of 

the country. The determination of an acceptable value of the probability of collapse, therefore, 

involves political and socio-economic as well as structural competences, and for this reason it 

is not so simple.  

The different methodologies for the evaluation of structural reliability can be grouped into 

the following categories: 

• Allowable stress design method (ASD) (Zero Level Method); 

• Semi-probabilistic method to limit states (First-level probabilistic method); 

• Simplified probabilistic approach (Second-level probabilistic method) 

• "Exact" probabilistic approach (Third-level probabilistic method). 

In this thesis, however, we will consider only the "Exact probabilistic approach", as required 

by the Regulations. 

 

Third level probabilistic method 

This method involves the modeling of random variables, such as material resistances and 

permanent and variable actions, acting on the structure, which intervene in the definition of 

safety through the respective probability density functions. The probability of failure is 

represented by the following numerical formulation: 

𝑃𝑓𝑎𝑖𝑙 = 𝑃[𝑋 ∈ 𝑈]                (1.8) 
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where X is the vector of the variables that define the system and U is the failure domain, 

defined as the subspace of the variables X, in which the condition that the stresses S are not 

higher than the resistances R (S ≤ R) is not verified. Using the JPDF (joint probability density 

function) of the X vector representing the random variables characterizing the problem under 

examination, the probability of collapse is expressed as: 

𝑃𝑓𝑎𝑖𝑙 = ∫ 𝑓𝑥(𝑋)
𝑈

𝑑𝑥             (1.9) 

while the probability of success is expressed as: 

𝑃𝑆 = ∫ 𝑓𝑥(𝑋)
𝑆

𝑑𝑥                    (1.10) 

where S is the complementary subspace of U with respect to the space of the variables X for 

which the condition that the stresses are less than or equal to the resistances S ≤ R is verified. 

Furthermore, given the vector of the project variables X = (X1, X2, …., Xn) (loads, 

geometry, etc.) a function G=G(X) can be defined such that: 

• G > 0 if the limit state is not exceeded; 

• G = 0 if the limit state is reached; 

• G < 0 if the limit state is exceeded. 

this function is called performance function and its simplest form is G (R, S) =R-S. Once the 

function G has been introduced, the probability of collapse can be rewritten in the following 

form: 

𝑃𝑓𝑎𝑖𝑙 = ∫ 𝑓𝑥(𝑋)
𝐺(𝑋)≤0

𝑑𝑥                   (1.11) 

The problem of structural reliability is apparently reduced to the solution of this 

multidimensional integral. Solving this integral analytically in a closed form, is possible, 

however, only when the two functions (performance and joint probability density JPDF) are 

expressed in a very simple way, under very restrictive assumptions; in all other cases the 

integral is solved only by numerical means, thanks to the simulations performed with the 

Monte Carlo method. However, if we assume a two-dimensional nature of the problem of 

structural reliability, with independent variables, then for example a space resistance (R) - 

stress (S), in which we assume the functions of probability density PDF of the two variables, 

fR(r) and fS(s), the probability of collapse can be formulated as follows: 



1. STRUCTURAL AND SEISMIC SAFETY 

32   

𝑃𝑓𝑎𝑖𝑙 = ∫ 𝑓𝑥(𝑋)
𝐺(𝑋)≤0

𝑑𝑥 = ∬ 𝑓𝑅,𝑆(𝑟, 𝑠)[𝑅−𝑆<0]
𝑑𝑟𝑑𝑠               (1.12) 

and having made the hypothesis of independent variables, we can write: 

𝑓𝑅,𝑆(𝑟, 𝑠) = 𝑓𝑅(𝑟)𝑓𝑆(𝑠)                    (1.13) 

and replacing them in the previous integral we have: 

∬ 𝑓𝑅,𝑆(𝑟, 𝑠)[𝑅−𝑆<0]
𝑑𝑟𝑑𝑠 =  ∫ 𝑓𝑆(𝑠)[∫ 𝑓𝑅(𝑟)𝑑𝑟

∞

0
]𝑑𝑠 = ∫ 𝑓𝑆(𝑠)𝐹𝑅(𝑠) 𝑑𝑠

∞

0

∞

0
           (1.14) 

therefore, 𝑃𝑓𝑎𝑖𝑙 is given by the convolution integral of two functions of s, whose geometrical 

interpretation is represented in (Figure 1.6), where 𝑓𝑆(𝑠) is the JPDF of S and 𝐹𝑅(𝑠) = P[R<S] 

is the CDF (Cumulative Distribution Function) of R. 

 

 

Figure 1.6: Geometric meaning of Pfail. 

 

This procedure quickly becomes impracticable as the number of random variables increases. 

To overcome this problem, very effective simulation methods have been developed over the 

years, such as "Monte Carlo" simulations, methods based on import sampling, stratified 

methods, etc. 

 



 1.5. Structural reliability 

  33 

1.5.2 Monte Carlo Method 

With the term "Monte Carlo method" or "MC method", are called all those techniques that 

use random variables for solving mathematical problems. Their main characteristic is to 

evaluate a certain quantity through parameters such as mean, variance and correlation of a 

certain probability distribution known (or that can be hypothesized) to obtain an estimate, by 

randomly generating a sample from the corresponding population. Certainly, this is not a very 

efficient way to find a solution problem, because the simulated sampling procedure leads to a 

result that is always affected by the statistical error. In practice, we are often faced with 

situations where it is too difficult, or impossible, to use traditional numerical or analytical 

procedures and in all these cases the Monte Carlo method becomes the only alternative 

available. The application of this method is not restricted only to problems of a statistical 

nature, as it may perhaps seem from the use of probability distributions but includes all those 

cases in which a connection can be found between the problem under examination and the 

behavior of a prefixed random system: the value of a definite integral is certainly not a 

random quantity, but it can, for example, also be calculated using random numbers.  

This method, therefore, allows to evaluate the probability of failure in the case of explicit 

and implicit limit state functions. The initial step is to define the problem by considering all 

the random variables, followed by the quantification of these by the PDF; in this sense, a 

sufficiently large set of values of the considered standard variables is generated, through 

statistical sampling techniques, according to the corresponding probability distributions. The 

process is repeated n times, to obtain n sets of values based on which to obtain the solution 

sought, based on the number of samples. 

In the case of the structural reliability problem, in the limit state function seen in the 

previous paragraph, G(X) = G (X1, X2, ..., Xn), the Xi variables represent the random project 

variables such as resistances, stresses and displacements. A set of values of X, according to 

their PDF, is then generated numerically through a generator of random numbers. This set is 

replaced in the limit state G function and its value is verified, positive (no collapse) or 

negative (collapse). Repeating the process n times (with n very high), it is possible to simulate 

the PDF of G. The probability of collapse can therefore be estimated through the following 

formulation: 

𝑃𝑓𝑎𝑖𝑙 = 𝑃[𝐺(𝑋) ≤ 0] = lim
𝑁→∞

𝑛𝑓

𝑁
                  (1.15) 
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where N is the total number of simulations and nf represents the number of times when 

collapse occurs (G (X) < 0). The probability so obtained, however, has an intrinsic 

uncertainty, depending on the value of N used. In fact, the variance of the ratio nf /N, and 

therefore the uncertainty of the evaluation of the probability, decreases with the growth of N. 

The above procedure demonstrates how the evaluation of 𝑃𝑓𝑎𝑖𝑙 is approximated by means of 

the integral above, then through an approach based on the frequency of probability. 

 

 

Sampling method 

In the Monte Carlo probabilistic simulations, the statistical sample generation method is of 

particular importance. The sampling method used, directly affects the goodness of the results 

obtained and especially the computational efficiency of the whole process. In fact, the 

sampling method requires to produce a statistically representative sample of the statistical 

population examined and to optimize the computational efficiency of the probabilistic 

simulation, to maintain a good representation of the sample as its size decreases. The simplest 

and most intuitive sampling method, commonly called “Brute force sampling”, is based on 

purely random or more properly pseudo-random generation of the elements of the sample 

itself. Unfortunately, it is also the least efficient as to maintain an adequate statistical 

representativeness requires a high sample size and is, therefore, so inefficient from the 

computational point of view that it is inapplicable to the study of complex problems in which 

several random variables are involved. To improve the efficiency of the MC method, thus 

making it applicable to the study of complex problems, it is necessary to use a more refined 

sampling method that generates the individuals which constitute the statistical sample, 

following appropriate criteria that ensure their representativeness even for small dimensions. 

 

 

Generation of continuous random variables 

The basic method for all MC simulations is to use the cumulative or cumulative 

probability density CDF of a random variable x. It is necessary to define immediately what is 

meant by uniform probability density. A continuous variable x, which assumes values in the 
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finite interval [a, b], is said to be uniform in [a, b] when it has a constant probability density, 

called uniform or flat, shown in (Figure 1.7), given by: 

𝑢(𝑥) = {
1

𝑏−𝑎
, 𝑎 ≤ 𝑥 ≤ 0

0, 𝑥 < 𝑎 𝑜 𝑥 > 𝑏
                   (1.16) 

The normalization condition is satisfied by: 

𝑃[𝑎 ≤ 𝑥 ≤ 𝑏] = ∫ 𝑢(𝑥)𝑑𝑥
𝑏

𝑎
= 1                  (1.17) 

while, mean and variance are given by: 

µ =
1

𝑏−𝑎
∫ 𝑥 𝑑𝑥

𝑏

𝑎
=

𝑏+𝑎

2
                       (1.18) 

𝜎2 =
1

𝑏−𝑎
∫ (𝑥 −

𝑏+𝑎

2
)2 𝑑𝑥

𝑏

𝑎
=

(𝑏−𝑎)2

12
                 (1.19) 

 

 

Figure 1.7: Uniform probability density function of a random variable that assumes values included in [a, b]. 

 

For a random variable (a ≤ x ≤ b) with uniform density, the probability of localization in (x1, 

x2) is proportional to the amplitude of the interval: 

𝑃[𝑥1 ≤ 𝑥 ≤ 𝑥2] = ∫ 𝑝(𝑥)𝑑𝑥 =
(𝑥2−𝑥1)

(𝑏−𝑎)

𝑥2

𝑥1
                 (1.20) 

On the other hand, if a continuous random variable satisfies the previous one, it is distributed 

uniformly. It is also shown that, if x is a random variable having a continuous density p(x), 

the cumulative random variable C: 
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𝐶(𝑋) = ∫ 𝑝(𝑥)𝑑𝑥
𝑥

−∞
                     (1.21) 

is uniform in [0,1]. In fact, the probability that a value x is included within [x1, x2] is identical 

for construction to the probability that the cumulative variable C is included within the values 

[c1 ≡ c (x1), c2 ≡ c (x2)]. Then, we have: 

𝑃[𝑐1 ≤ 𝐶 ≤ 𝑐2] = 𝑃[𝑥1 ≤ 𝑥 ≤ 𝑥2] = ∫ 𝑝(𝑥)𝑑𝑥 = ∫ 𝑝(𝑥)𝑑𝑥 −
𝑥2

−∞ ∫ 𝑝(𝑥)𝑑𝑥 =
𝑥1

−∞

𝑥2

𝑥1
 𝑐2 − 𝑐1       (1.22) 

from which it is seen that C is uniform in [0,1], satisfying Equation (1.19) for (b – a) = 1. The 

conceptual and practical importance of what we have just seen should not escape: the variable 

cumulative is always uniform, regardless of the origin distribution.  

If the integral  𝐶(𝑥) = ∫ 𝑝(𝑥)𝑑𝑥
𝑥

−∞
  is known analytically, then the values of the 

cumulative variable C can be expressed as a known function C=F(x). If this function is 

invertible, then the variable: 

𝑥 = 𝐹−1(𝐶)                     (1.23) 

has density p(x). Having a generator of uniform variables in [0,1], variables with probability 

density can be generated using the equation: 

𝑥 = 𝐹−1(𝑟𝑎𝑛𝑑𝑜𝑚)                    (1.24) 

This procedure is identified as the “Inverse Transformation Algorithm”. 

The previous report has a convincing graphic interpretation, shown in (Figure 1.8). 

Considering the probabilities p [x1 ≤ x ≤ x2] and p [x3 ≤ x ≤ x4] defined within the values [x1, 

x2] and [x3, x4]: they are represented by the areas subtended by the density function p(x). 
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Figure 1.8: Graphic interpretation of the properties of the cumulative. The functions p(x) and F(x) are, 
respectively, a generic probability density and its corresponding cumulative. 

 

The area related to the least probable values included in [x1, x2] is less than that relating to the 

most probable values included in [x3, x4]. The value of these two areas is identical to the 

length of the intervals [c1, c2] and [c3, c4], obtained from the cumulative F(x). A variable C 

comprised in [0, 1], will fall more frequently in [c3, c4] than in [c1, c2] with probabilities given 

exactly by the amplitude of these intervals. Therefore, at a value c0 assumed by uniform 

variable C, we obtain the corresponding value x0; repeating the procedure several times we 

obtain a sample of values of the random variable x of density p(x).  

Based on the “Inverse Transformation Algorithm”, it would seem possible to solve all 

random generation problems. This situation, is not so simple, because the function p(x) to be 

integrated can only be known numerically, or the integral (1.21) it may not be solvable or 

result in an analytically non-invertible function. 

 

 

Generation of Gaussian variables 

The Gaussian density is the most important distribution of the probability calculation. For 

the Central Limit Theorem, we have seen that it represents the limit density of the linear 

combination of several random variables. The cumulative probability distribution of a 

Gaussian is given by the following function: 
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𝐹(𝑥) =
1

√2𝜋𝜎
∫ 𝑒

[
−1

2
(
𝑥−𝜇

𝜎
)
2
]
𝑑𝑥

𝑥

0
                  (1.25) 

This integral is usually evaluated with numerical methods, by developing in series the 

exponential, and numerically calculating the limit of the integrated series; this is done because 

the primitive of F(x) is not known analytically. This complication is solved by using a 

standard Gaussian, which is obtained by defining the standard variable: 

𝑡 =
𝑥−𝜇

𝜎
                      (1.26) 

which measures the deviation of a value x from its average in units of standard deviation. By 

operating a change of variable in the previous integral, we obtain: 

𝛷(𝑥) =
1

√2𝜋
∫ 𝑒(

−𝑡

2
)
2

𝑑𝑡
𝑥

0
                   (1.27) 

this primitive, being independent of µ and σ, can be calculated once and for all by developing 

the exponential in series, it is found tabulated in all the statistical texts and is available in 

many scientific software. 

The standard Gaussian density is then governed by the following equation: 

𝑔(𝑥) =
1

√2𝜋
𝑒−𝑥2/2𝑑𝑥                    (1.28) 

characterized by mean zero and unitary standard deviation. By operating the previous change 

of variables, an ordinary Gaussian, it can always be traced back to the standard one. 

Wanting to generate a random variable from a Gaussian distribution, we encounter, as we 

have seen, a difficulty linked to the fact that the cumulative function is not invertible. In these 

cases, we resort to the appropriate algorithms, that among the most used, the simplest is that 

based on the Central Limit Theorem. 

Suppose that we generate N numbers (𝜉1, 𝜉2, ..., 𝜉n) uniformly distributed in the interval [0,1]; 

from the Central Limit Theorem, for N quite high, the mean: 

𝑀 =
1

𝑁
∑ 𝜉𝑖

𝑛
𝑖=1                      (1.29) 

it is a Gaussian variable of average 1/2. The variance of M is given by the variance of the 

uniform distribution for the number of events generated: 
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𝑉𝑎𝑟[𝑀] =
1

12𝑁
                     (1.30) 

Introducing the standard variable of M, we have: 

𝑡 =
𝑀−1/2

𝜎[𝑀]
=

√12

√𝑁
∙ ∑ 𝜉𝑖 −

√12𝑁

2

𝑁
𝑖=1                   (1.31) 

Generally placing N = 12, we already get a distribution close to the Gaussian one; the variable 

x searched will therefore be the following: 

𝑥 = (∑ 𝜉𝑖
𝑛
𝑖=1 − 6)𝜎 + 𝜇                   (1.32) 

 

 

1.5.3 Latin Hypercube Sampling Method 

The high N number of simulated events, required by the Monte Carlo method, depends 

essentially from the sampling technique. In its basic definition, the method MC uses for the 

choice of input values the “Simple Random Sampling”, and to better estimate the function of 

distribution of the probability of the output, it would be necessary to carry out a considerable 

number of analyses. It is certainly the most intuitive, but also the least efficient in case it is 

necessary to reduce the number of analyses to be performed. In fact, there is a risk of 

obtaining a false sampling, which does not cover the entire range of variation of the random 

variable.  

In this regard, if the computational burden in terms of time for each "launching" of the 

calculator is limited, then it is reasonable to increase the sample size to reduce the error 

related to sampling: if, instead, the time for each analysis begins to be high, we must 

necessarily reduce the size of the sample, trying to reduce the resulting percentage of error by 

intervening on the sampling method, using for example, methods of stratified sampling, more 

or less sophisticated. 
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Stratified Sampling 

This is an evolution of the Simple Random Sampling, since it is proposed to avoid the 

possibility of having an unallocated sampling over the whole range of the random variable. 

Specifically, the sampling space is subdivided ("stratified") into n intervals not overlapped 

each other, from each of which a value of the relative random variable is randomly extracted. 

 

Latin Hypercube Sampling 

Was developed by Mckay et al. [14], represents a further evolution of the basic Stratified 

Sampling, always aimed at increasing statistical efficiency with a reduced computational 

burden. It is part of those so-called "smart" methods, which basically allow to "drive" the 

simulations to reach the collapse faster. The input range, consisting of the cumulative 

probability function, is appropriately divided into n disjoint intervals having the same 

probability equal to 1/n (equal intervals). For each interval, a value is randomly extracted 

between 0 and 1 which, depending on the interval considered, leads to a precise value of the 

cumulative probability, which reverses, produces the value of the random variable (Figure 

1.9).  

 

 

Figure 1.9: Generation of two random variables using LHS sampling. 

 

The cumulative probability for each of the n intervals can then be calculated through a linear 

transformation expressed by the law: 
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𝑃𝑚 =
1

𝑛
𝑈𝑚 +

𝑚−1

𝑛
                    (1.33) 

where, m is a number between 1 and n; Um is the value generated randomly between [0, l] and 

Pm is, as mentioned above, the value of the cumulative probability valid for the m-th interval. 

The equation also shows how one, and only one, of the generated values falls within each of 

the n intervals: 

𝑚−1

𝑛
< 𝑃𝑚 <

𝑚

𝑛
                     (1.34) 

where (𝑚−1

𝑛
) and (𝑚

𝑛
) are respectively the lower extreme and the upper extreme of the m-th 

interval. 

Finally, after having obtained the values for each interval and notes the analytical expression 

of the accumulated interest, we obtain the values of the random variable searched for by the 

following expression: 

𝑋𝑘,𝑚 = 𝐹𝑥
−1(𝑃𝑚)                     (1.35) 

In this relation, 𝑋𝑘,𝑚 is the m-th value generated for the k-th variable aleatory and 𝐹𝑥
−1 is the 

inverse of the cumulative probability distribution representative of the random variable k-th; 

the values generated for each variable can then be coupled to each other, through a still 

random permutation. 
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CHAPTER 2 

2. SEISMIC DAMAGE IN BRIDGES AND SEISMIC 

ISOLATION 

 

 

In the latest forty years, earthquakes caused severe damages to civil infrastructures all over 

the world, with an increasing trend. Lots of important bridges collapsed, even if designed to 

resist seismic actions: this was mainly due to their usual structural simplicity, which makes 

them be very vulnerable to seismic damaging. For these structures, evaluating their damage is 

fundamental, to assess that of road and highway systems: the related risk is actually calculated 

with specific reference to the direct damage of bridges and to the delay on travelling time due 

to bridges’ closure. 

 

 

2.1 Frequent seismic damages in the bridges 

The damage due to earthquakes can affect all the structural components of a bridge: in 

particular, damage to the bridge, which usually does not have a primarily anti-seismic 

function, are linked to errors in the kinematic concept, which lead to different mechanisms of 

collapse (dissociation, pounding); on the other hand, the various types of damage observed on 

the piers are generally caused by flexural ductility and shear resistance defects. 

 

 

2.1.1 Deck collapse 

Deck collapse caused by relative displacement of spans in longitudinal direction was very 

recurrent, especially in simply supported multispan bridges: in most cases seats and corbels 

resulted in a scanty length, so that spans became unseated and collapsed. 
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The following (Figure 2.1) show some examples of this type of failure: it is worth noting 

how the deck remained perfectly intact, as the seismic action does not specifically harm this 

structural component of the bridge. Conversely, seats would need to be oversized: in (Figure 

2.2) is depicted the hinge of a new arc bridge, that was cleanly cut due to horizontal seismic 

actions. In this case there were inadequate seismic restrainers, consisting of bolts connecting 

the arch end plates to the transverse beam of the collapsed span. 

 

   

Figure 2.1: Kobe earthquake, Japan, 1995: Unseating, Nishinomiya-ko Bridge a); Loma Prieta earthquake, 
California, USA, 1989: Viaduct approaching the East Bay Bridge b). 

 

 

Figure 2.2: Kobe earthquake, Japan, 1995, Bearing failure, Higashi-Kobe Bridge. 

 

When bridges are built on soft or liquefiable soils, their vulnerability exponentially 

increases. This because, soft soils generally yield the structural response amplification, so that 

the loss of support becomes more probable (Figure 2.3). In the case of saturated sandy silt or 

silty sand soils, liquefaction may occur, and the induced soil movements may push the 

foundations out of place; if the bridge foundation system is made of piles, their carrying 

capacity may cease. 
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Figure 2.3: Loma Prieta earthquake, California, USA, 1989. West Grand Viaduct: Soil liquefaction effects. 

 

When adjacent structural components have different stiffness and the distance among 

them is not enough to allow their differential displacements, damage may occur due to cyclic 

pounding (Figure 2.4). Moreover, as the fundamental frequencies may result in out of phase, 

shear forces and consequent pounding are amplified. 

 

     

Figure 2.4: Pounding damage: a) Kobe earthquake, Japan, 1995, Near Nishinomiya Port; b) Sichuan 
earthquake, China, 2008, Miao Zi Ping Bridge. 

 

 

2.1.2 Piers collapse 

The piers of the bridges often failed after a progressive flexural yielding followed by a 

cyclic deterioration of the cross section due to insufficient confinement and, consequently, by 

a decrease of the shear resistance. This collapse mechanism reveals a flexural ductility 

depletion (Figure 2.5), usually combined with exceeding the shear resistance. 
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Figure 2.5: Northridge earthquake, California, USA, 1994, Gothic Avenue Viaduct: Plastic hinge collapse. 

 

These failures lead to high residual deformations and so, especially if the deck is very 

broad and supported by a single line of piers, a complete collapse caused by the loss of 

equilibrium may occur, also due to the high moment of inertia generated by the deck rotation 

(Figure 2.6). 

 

 

Figure 2.6: Kobe earthquake, Japan, 1995, Hanshin Viaduct: collapse due to loss of equilibrium. 

 

A further vulnerable element in framed piers is represented by the inadequate 

dimensioning of the beam-pier joints, which are very sensitive to shear failure (Figure 2.7). 
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Figure 2.7: Kobe earthquake, Japan, 1995, Shinkansen Viaduct. 

 

 

 

2.2 Vibration control system 

Today, the approaches currently used for structure protection are all oriented towards a 

common line of thought, which could be defined as "Vibration control". This approach is 

based on a philosophy that consists mainly in regulating "dynamically" the vibrations induced 

by the wind or by the earthquake, through devices that are not properly structural. The control 

systems can be classified in topological terms into two distinct categories [16]: 

• Systems with open loop control laws: this is a system in which the control action is 

independent of the output, as shown in (Figure 2.8). As can be seen, the control 

law consists in filtering the input signal in the primary system. Therefore, in the 

base isolated systems, a type of "open loop passive control" is realized, in fact, the 

excitation is filtered by the level of isolation, that assumes the role of controller as 

it regulates the transmittance of the excitation to the superstructure. For a fixed 

base system instead, the excitation is transmitted directly to the structure. 

 

 

Figure 2.8: Open loop control system. 
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• Systems with closed loop control laws: this is a system in which the control action 

depends in some way on the output and is therefore said to be feedback because it 

arises from a closed sequence of return between effect and cause as shown in 

(Figure 2.9). 

 

 

Figure 2.9: Close loop control system. 

 

From the application point of view, it is possible to distinguish the following control 

methods: 

• Passive control of the dynamic of the structure, which acts through forces that are 

developed in response to the motion of the structure and, therefore, does not require 

energy input from the outside. Seismic isolation, Supplementary Energy Dissipation 

and Mass Damping are the fundamental passive systems; 

• Active control of the vibrations, however, includes the whole of those systems 

endowed with the ability to intervene in the dynamic process through the contribution 

of external energies, according to the dynamic state in which, moment by moment, the 

building is found following the seismic actions, to precisely adjust the structural 

response in a more favourable way; 

• Hybrid Control, is the application of an active control system to a system already 

equipped with passive control. With this methodology, there is the advantage that, 

with the same performance, the regulation forces and energies are less than those 

necessary for the regulation of a system without passive control. 

 

Focusing attention on the technique of passive control of a structure, it can be achieved 

using two systems: 
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• passive energy dissipation system (dissipators), which absorb part of the transmitted 

energy and limit the excursion in the elastic field of the structure; 

• base isolation system (isolators), which achieve a decoupling of the motions of the 

superstructure and the ground, to reduce the energy transmitted by the earthquake to 

the construction and consequently the magnitude of the stresses and structural 

deformations. 

This thesis focuses mainly on the base isolation system, in which the operating principles 

and the main devices used for its practical realization will be seen below. 

 

 

2.3 Seismic base isolation in the structures 

The technique of seismic base isolation of a structure [15] consists in interposing between 

the ground (S), on which the foundations are placed, and the structure in elevation (B) a series 

of elements (I) of low horizontal, high rigidity vertical stiffness, and high dissipative 

capacities, which greatly reduce the acceleration perceived by the structure. In this way a 

dynamic decoupling of the horizontal motion of the structure and of the ground is thus 

created, which drastically reduces the energy transmitted by the earthquake to the 

superstructure. Considering now a Z system composed of the three sub-systems (S) - (I) - (B) 

arranged in series, it is easy to understand how the seismic waves coming from the bed-rock 

are first "filtered" during their propagation by the layers of ground crossed, with a consequent 

change in the amplitude and frequency characteristics of their harmonic components; at the 

interface (S) - (I), the incident seismic waves are partly transmitted to the superstructure and 

partly reflected due to the fact that the crossed vehicles have different mechanical 

characteristics.  

Since the seismic excitations generally have a high energetic content in correspondence 

with the harmonics with a frequency close to that which characterizes the dynamics of 

medium-low constructions (Frequencies 1-10Htz), the main function of the seismic isolation 

is to filter this type of frequencies. A correct use of the isolation devices will have to consider 

the dynamic characteristics of the superstructure and of the foundation to avoid unwanted and 

dangerous resonance phenomena. 
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The general philosophy of the seismic isolation strategy, however, remains to increase the 

fundamental period of construction, to take it from the typical range of fixed base structures 

(0.3-1.5s) to values above 2s and even up to 4s, entering therefore in the field of the response 

spectrum characterized by lower accelerations and, therefore, by lower base shear forces 

(Figure 2.10a). On the contrary, the displacement spectra present small displacements in the 

field of the low periods, but they grow rapidly as the periods grow; the greater demand in 

terms of displacement will therefore have to be absorbed by the isolators, which will have to 

present as mentioned above a high horizontal deformability such as to allow it the wide 

excursions required (Figure 2.10b). 

 

 

Figure 2.10: Effect of the seismic isolation on the base shear forces (a) and on the displacements (b) when 
the damping varies. 

 

The isolation performance can then be improved through the dissipation by the system of 

an aliquot of mechanical energy transmitted from the ground to the structure. 

From the seismic isolation derive two important benefits for the structure: there is a 

significant reduction of the accelerations transmitted to the superstructure (also to the last 

floors in case of very high constructions) and a significant reduction of inter-floor 

deformations. The isolators, in fact, accumulate most of the deformations and the 

superstructure behaves like a rigid block under the seismic action. From this, there are some 

constructive advantages that can be summarized as follows: 

• the structure remains substantially in the elastic field, thus avoiding any damage of a 

structural nature that could compromise a loss of load-bearing capacity for vertical 

loads; 
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• damage to non-structural elements, such as infill walls, is avoided; 

• you have complete functionality of the building in the post-seismic period: the greatly 

reduced accelerations cause little damage even to everything that is contained inside 

the building (for example: falling paintings, overturning of furniture, damage to 

electronic equipment); 

• there is greater psychological safety of the occupants, whose perception of the seismic 

event, given the poor accelerations transmitted to the superstructure, is truly 

acceptable and not the harbinger of panic, anxiety and fear in the unfortunates. 

To get a visual idea of the behavior difference between a fixed base structure and an 

isolated structure at the base, the deformation of a building in the two respective cases is 

shown below (Figure 2.11). 

 

 

Figure 2.11: Difference of behavior, in terms of deformation, of a conventional building with a fixed base 
and one isolated at the base under seismic excitation. 

 

The objective of the project of an isolated structure at the base is to obtain a behavior of 

the isolated system governed by a single modal component, with a frequency close to that of 

the isolated system, considered rigid with respect to the isolation plane: the first vibration 

mode, to which almost the whole mass is associated, is configured in a slow translation. From 

this derives, a concentration of displacements in correspondence with the isolated plane, and 

these must be absorbed by the isolators located at the base of the system. 

The effectiveness of the isolation at the base is obtained from the ratio between the 

fundamental frequency of the superstructure ωs and that of the overall system rigidly 

oscillating on the isolators ωis, and this ratio is defined “Degree of Seismic Isolation” [15]: 

𝐼𝑑  =  
𝜔𝑠

𝜔𝑖𝑠
 =  

𝑇𝑖𝑠

𝑇𝑠
              (2.1) 
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moreover, the reduction of the seismic response of the superstructure increases with the 

increase in the degree of seismic isolation; at the same time the movements of the base plane 

tend to grow considerably more markedly at the low values of this parameter. 

 

 

2.3.1 Seismic base isolation in the bridges 

Now we want to go on to a more detailed analysis for what concerns the seismic isolation 

in bridges, always taking into consideration the basic principles of seismic isolation in 

structures, seen in the previous paragraph. 

The superstructure of a bridge generally consists of a continuous multispan deck, 

supported by the isolation system. The bridge substructure consists in piers and abutments. 

The first are structures, generally made of reinforced concrete, with a prevalent vertical 

development that support the girder in intermediate points, while the second are structures 

that support the deck at its ends and which constitute a transition element between the bridge 

and the sections of adjacent road. By inserting a seismic isolator between the elements of the 

substructure and the deck, the horizontal damping and flexibility characteristics are exploited, 

so that only a portion of the seismic force impinging on the bridge is transmitted. In this way, 

a part of the incoming energy is substantially dissipated, and the displacement of the deck is 

thus reduced. 

Having said that, we can therefore make some important hypotheses in the study of bridge 

isolation: 

• The bridge superstructure (deck) and the bridge substructure (piers and abutments) 

must remain in the elastic field during the earthquake, in this way the basic isolation 

reduces the seismic response; 

• The deck remains straight and is supported along its longitudinal axis through 

transverse diaphragms; 

• The contributions of stiffness of non-structural elements (such as parapet walls, coat, 

sheaths) are neglected, but to be in favour of safety, inertial forces are considered; 

• The force - deformation behavior is considered linear. 
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2.4 Types of seismic isolation devices 

The anti-seismic isolators are classified according to the way the high deformability is 

obtained in a horizontal direction at the foot of the structure, and two main categories can be 

considered: Elastomeric isolators and Sliding isolators. Furthermore, for each category there 

are different types of devices, which are reported and described below. 

 

2.4.1 Elastomeric isolators 

Armed elastomeric isolators are currently the most diffused devices. They base their 

behavior on the deformation of the rubber used and then realize the dissipation of energy at 

the expense of large plastic deformations, through large cycles of hysteresis. They are 

characterized by the alternation of layers of elastomer (thickness of 5 ÷ 20mm) and steel 

sheets (thickness of 2 ÷ 3mm) solidarized by hot vulcanization processes. The presence of the 

laminations is fundamental, as it allows to confine the elastomer limiting its vertical 

deformability to a few millimeters (1-3mm) and generally they are shorter than the rubber 

layers, to be completely incorporated into the latter and be protected from corrosion. The 

performance of this type of device also depends on the characteristics of the rubber used and 

we can highlight two sub-categories:  

• natural rubber elastomeric isolators;  

• synthetic rubber elastomeric isolators. 

The rubber is a hydrocarbon and is described by the chemical formula (C5H8) n. C4H8 is 

called isoprene and natural rubber consists of regular isoprene sequences arranged in such a 

way as to configure a chain that gives high elasticity to the material. In the natural rubber 

there are few links between the chains and when there is the action of an external force such 

chains stretch out to break the connections. Macroscopically, the material is subjected to 

deformations such as to be able to withstand large displacements, at least until the above links 

are broken. With specific treatments, further connections can be created. The synthetic rubber 

elastomeric isolators are based on the use of neoprene instead of isoprene. Neoprene has some 

advantages over natural rubber: it has greater fire-retardant capacity, gas impermeability and 

is less prone to aging. 
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Regardless of the type of rubber used, we can have elastomeric isolators with low or high 

damping rubber. In fact, rubber, whether natural or synthetic, has non-high damping 

capacities that must therefore be increased. The main elastomeric isolators are shown below. 

 

Low Damping Rubber Bearings (LDRB) 

This type of devices can be made either with natural rubber or with neoprene. Both types 

of rubber have very stable properties and do not exhibit creep for long-lasting loads. The 

behavior exhibited is substantially elastic as deformation increases (Figure 2.12). 

The advantages associated with these devices are: simple production, low production 

costs, mechanical properties independent of temperature and aging. On the other hand, they 

have the disadvantage of having a low damping value (order of 2-4%) and not small 

displacements for horizontal operating loads (such as wind), which is why it is advisable to 

add auxiliary systems. 

 

 

Figure 2.12: LDRB elastomeric isolator (a) with its relative hysteretic loop (b) (Bridgestone catalog). 

 

 

Lead Rubber Bearings (LRB) 

LRB devices are like LDRBs but contain one or more lead inserts in a hole in the centre of 

the isolator. The function of the insert is to dissipate energy by yielding. The constitutive 

force-displacement bond is of the bilinear type and their behavior is a combination of the 

linear elastic behavior typical of the elastomeric bearings and of the elastic-plastic behavior 

due to the lead core (Figure 2.13). 
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The deformation regime to which the insert is subjected, is of the cutting type, thanks to 

the confinement due to the steel plates. The equivalent viscous damping associated with the 

hysteresis cycles of the device is between 15% and 35%. The comparison between the 

hysteresis cycles recorded for LRB and LDRB isolators shows how the dissipated energy is 

greater for the first, which also shows greater stiffness. 

 

 

Figure 2.13: LRB elastomeric isolator (a) with its relative hysteretic loop (b) (Bridgestone catalog). 

 

 

High Damping Rubber Bearings (HDRB) 

These devices were developed in 1985 by Prof. Kelly at the University of California at 

Berkeley. They allow to have sufficient damping to eliminate the need for auxiliary devices 

and therefore constitute a complete system. The addition of special additive charges to the 

rubber, such as carbon black and silicon, allows to achieve a high damping, variable between 

10% and 20% in correspondence of a 100% deformation. This damping reduces 

environmental vibrations; the isolators, in fact, act as a filter for high-frequency vibrations 

due to traffic.  

Observing a force-displacement diagram, we notice a greater initial stiffness, which allows 

to resist the operating loads (like the wind), a lower and constant rigidity for a certain stretch 

and a consequent increase of the same for high loads (to avoid excessive deformations). 

Generally, therefore, non-linear behavior is exhibited with high initial stiffness and damping 

due to shearing deformations of less than 20%. In the 20-120% shear deformation range, the 

module is kept low and constant. For high deformations the module grows thanks to the 
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process of crystallization of the rubber, which is accompanied by energy dissipation (Figure 

2.14). 

 

 

Figure 2.14: HDRB elastomeric isolator (a) with its relative hysteretic loop (b) (Bridgestone catalog). 

 

 

2.4.2 Sliding isolators 

The sliding isolators can be of two types: 

• unidirectional (generally used for bridges); 

• multi directional (generally used for buildings). 

 

Flat surface sliding device (SD) 

They are multi-directional support devices and in their simplest form the SD are made up 

of two different diameter discs that slide one on the other (Figure 2.15). The materials used 

are generally stainless steel and PTFE (Teflon), since they are materials capable of developing 

low friction resistance. The dynamic friction coefficient is generally between 5% and 20%, 

but also reduces to 1-2% in case of lubrication. Because of the variability of the coefficient 

and the uncertainties on the environmental conditions (temperature, humidity, cleaning), it is 

generally decided to neglect the dissipation of energy by friction and then resorted to 

lubricated devices, thus zeroing the dynamic friction coefficient and renouncing explicit 

action. In practice, the movements are left free. For the reasons outlined above, the SDs are 

never used alone, unless they present elements capable of increasing initial stiffness, 

providing dissipative capacity and providing capacity for re-centering.  
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Moreover, about the dynamic friction coefficient, it is a function of the contact pressure, 

the sliding speed, the temperature of the environment in which the device is inserted and the 

number of cycles. It can be said, therefore, that it: 

• shows a very variable trend with respect to the speed, which for very low speeds is 

rapidly decreasing and subsequently, for higher speeds, increases until it becomes 

practically constant in the speed range that is typically reached in seismic conditions 

(200-800 mm/s); 

• reduces almost linearly as the temperature increases; 

• decreases as the temperature increases; 

• is strongly influenced by the lubrication status of the contact surfaces. 

 

 

Figure 2.15: SD isolator (a) with its relative hysteretic loop (b) (Fip Industriale catalog). 

 

 

Friction Pendulum System (FPS) 

FPS are devices with curved sliding surfaces, that allow relative displacement between the 

superstructure and the substructure and are the only (sliding) isolators that incorporate the 

recentring and dissipative function (Figure 2.16). Their operation is based on the friction 

pendulum.  

During the earthquake, the articulated steel and Teflon shell moves along the spherical 

concave surface, thus causing the supported mass of the superstructure to rise. The centering 

function is obviously given by the curved surface, which allows the device to return to 

position when the external action ceases. The vertical load, in fact, gives rise to a component 

in the tangential direction to the spherical surface allowing the device to re-center. The 
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elevation achieved by the pendulum converts kinetic energy into potential energy and the 

latter recalls the oscillating mass in its initial position of stable equilibrium. The dissipative 

function, on the other hand, is due to an unlubricated surface, and therefore to non-zero 

friction. 

In the following chapter we will go into more detail on all the characteristics of this type 

of isolators, and insert below only the essential characteristics of these devices: 

• The radius of curvature of the spherical surface determines the proper period of 

vibration of the structure; 

• The proper period is practically independent of the mass of the structure; 

• The friction of the equivalent surface determines the equivalent viscous damping. 

 

 

Figure 2.16: Single curved sliding isolator (FPS) (Fip Industriale catalog). 
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CHAPTER 3 

3. THEORY AND MODELING OF ISOLATED 

SYSTEMS WITH FPS 

 

 

The following chapter will deal with the theory of seismic isolation through the FPS 

devices, explaining at the beginning the bases that outline it, then we will continue with the 

study of dynamic behavior and experimental investigations on isolators. All this will be 

expressed not directly considering the application to bridges, as this modeling is a 

consequence of the theory developed for the buildings. In the following chapters, therefore, 

we will pass, to the development of the application to the bridges. 

 

 

3.1 Theory of base isolation 

The linear theory of seismic isolation is provided in detail by James M. Kelly in [17] 

which will be referred to below.  

Similarly, to what happens for the fixed base structures, where the study of the dynamic 

behavior starts from the study of the simple oscillator, the characteristic aspects of the 

dynamic behavior of the isolated structures at the base can be derived from the analysis of a 

simplified model, at just two degrees of freedom (DOF), which represent the isolation system 

and the superstructure. 

The study of the simple two-degree freedom system (2 DOF) (Figure 3.1), with linear 

springs and viscous linear damping, is developed with the modal analysis technique, which 

allows to identify the changes to the dynamic characteristics, vibration frequencies and modal 

forms determined by the isolation system on the superstructure. Let's remember, before going 

into more detail the dynamic study of the isolated systems, that, since many of the isolation 

systems are intrinsically non-linear, a linear analysis of these structures, as Kelly himself 

points out, will be considered only an approximation of the real dynamic behavior of the 
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structure, and the actual parameters of stiffness and damping must be estimated with the 

different linearization techniques proposed in the literature. 

 

 

Figure 3.1: 2DOF model of a building isolated with FPS [17]. 

 

The mechanical and kinematic parameters that characterize the absolute motion of a two-

degree freedom system are: 

• ms - mass of the superstructure; 

• ks, cs - stiffness and damping of the superstructure; 

• mb - mass of the deck above the isolation system; 

• kb, cb - stiffness and damping of the isolation system; 

• ug - displacement to the ground; 

• us - absolute displacement of the superstructure; 

• ub - absolute displacement of the isolation system. 

We then consider the equations of motion, written using the D'Alembert's Principle, which 

assert that any problem of dynamic equilibrium can be tackled as a problem of static 

equilibrium, provided that in writing the equations of balance between all the forces involved 

also consider the forces of inertia; the equilibrium conditions between the forces acting on the 

2 DOF system in terms of absolute displacements are as follows (respectively for the 

superstructure and the isolation level): 

𝑚𝑠�̈�𝑠 = −𝑐𝑠(�̇�𝑠 − �̇�𝑏) − 𝑘𝑠(𝑢𝑠 − 𝑢𝑏)         (3.1) 

𝑚𝑠�̈�𝑠  +  𝑚𝑏�̈�𝑏 = −𝑐𝑏(�̇�𝑏 − �̇�𝑔) − 𝑘𝑏(𝑢𝑏 − 𝑢𝑔)       (3.2) 
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The displacement parameters with which it is more convenient to work are relative 

displacements, that is the relative displacement of the mass of the superstructure with respect 

to the isolation level and the relative displacement of the isolation level with respect to the 

motion of the ground: 

𝑣𝑠 = (𝑢𝑠 − 𝑢𝑏)             (3.3) 

𝑣𝑏 = (𝑢𝑏 − 𝑢𝑔)             (3.4) 

Operating, therefore, with these new lagrangian coordinates the equations of motion become: 

𝑚𝑠(�̈�𝑏 + �̈�𝑠 + �̈�𝑔) + 𝑐𝑠 �̇�𝑠 + 𝑘𝑠 𝑣𝑠 = 0         (3.5) 

𝑚𝑏(�̈�𝑏 +  �̈�𝑔) + 𝑚(�̈�𝑏 + �̈�𝑠 + �̈�𝑔) + 𝑐𝑏 �̇�𝑏 + 𝑘𝑏  𝑣𝑏 = 0      (3.6) 

By observing the two equations, the quantities related to ground acceleration can be 

highlighted, obtaining: 

𝑚𝑠 �̈�𝑏 + 𝑚𝑠 �̈�𝑠 + 𝑐𝑠 �̇�𝑠 + 𝑘𝑠 𝑣𝑠 = −𝑚𝑠 �̈�𝑔        (3.7) 

(𝑚𝑏 + 𝑚𝑠)�̈�𝑏 + 𝑚𝑠 �̈�𝑠 + 𝑐𝑏 �̇�𝑏 + 𝑘𝑏 𝑣𝑏 = −(𝑚𝑏 + 𝑚𝑠)�̈�𝑔     (3.8) 

It is easy to notice that if within the second equation the term, which represents the relative 

motion of the superstructure relative to the isolation level, was suppressed, the second 

equation returns the classical equation of equilibrium valid for one-degree system of freedom; 

same reasoning can be repeated if within the first equation the term vb was substituted. 

At this point the presented equations system of motion can be solved by direct integration or 

by exploiting the principles of modal analysis, which allows to determine the modes of 

vibration, the participation factors and the modal frequencies of the described system. 

We then rewrite the equation system using a matrix notation: 

[
𝑀 𝑚𝑠

𝑚𝑠 𝑚𝑠
] {

�̈�𝑏

�̈�𝑠
} + [

𝑐𝑏 0
0 𝑐𝑠

] {
�̇�𝑏

�̇�𝑠
} + [

𝑘𝑏 0
0 𝑘𝑠

] {
𝑣𝑏

𝑣𝑠
} =  − [

𝑀 𝑚𝑠

𝑚𝑠 𝑚𝑠
] {

1
0
} �̈�𝑔   (3.9) 

or even, in a more compact form: 

[𝑀]�̈� + [𝐶]�̇� + [𝐾]𝑣 =  −[𝑀]𝑟�̈�𝑔        (3.10) 
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where [M] indicates the mass matrix of the system, [C] is the damping matrix of the system 

and [K] is the stiffness matrix of the system, while 𝑣 indicates the vector of the relative 

displacements. Defining now: 

• 𝜔𝑠  =  √
𝑘𝑠

𝑚
  frequency of the fixed base structure;             (3.11) 

• 𝜔𝑏  =  √
𝑘𝑏

𝑀
  frequency of the isolation system of stiffness 𝑘𝑏;           (3.12) 

• 𝜉𝑠  =  
𝑐𝑠

2 𝑚 𝜔𝑠
  damping of the structure in elevation;             (3.13) 

• 𝜉𝑏  =  
𝑐𝑏

2 𝑀 𝜔𝑏
  damping of the isolation level.              (3.14) 

 

Where the mass M is equal to the total mass of the isolation system plus the mass of the 

superstructure. 

Assuming 𝜔𝑠  ≫ 𝜔𝑏 , if we indicate with 𝜀 =  (
𝜔𝑏

𝜔𝑠
)
2

 the ratio between the two newly 

defined pulsations, it becomes clear that if the isolated system is well designed, it will have 

dimensions of the order of 10-2. Also, defining the mass ratio γ: 

𝛾 =  
𝑚𝑠

𝑚𝑠+𝑚𝑏
= 

𝑚𝑠

𝑀
< 1                    (3.15) 

because it is implicitly assumed that mb < ms, we can rewrite the system of equations of 

motion in a dimensionless way, dividing the first equation for ms, and the second for (ms + 

mb) = M: 

𝑚𝑠

𝑚𝑠
�̈�𝑏 + 

𝑚𝑠

𝑚𝑠
 �̈�𝑠 +

𝑐

𝑚𝑠
 �̇�𝑠 + 

𝑘

𝑚𝑠
 𝑣𝑠 = − 

𝑚𝑠

𝑚𝑠
 �̈�𝑔        (3.16) 

(𝑚𝑏+𝑚𝑠)

𝑀
�̈�𝑏 + 

𝑚𝑠

𝑀
 �̈�𝑠 +

𝑐𝑏

𝑀
 �̇�𝑏 + 

𝑘𝑏

𝑀
 𝑣𝑏 = − 

(𝑚𝑏+𝑚𝑠)

𝑀
 �̈�𝑔      (3.17) 

Obtaining: 

�̈�𝑏 + �̈�𝑠 + 2 𝜉𝑠 𝜔𝑠 �̇�𝑠 + 𝜔𝑠
2 𝑣𝑠 = − �̈�𝑔        (3.18) 

�̈�𝑏 +  𝛾 �̈�𝑠 + 2 𝜉𝑏 𝜔𝑏 �̇�𝑠 + 𝜔𝑏
2 𝑣𝑠 = − �̈�𝑔       (3.19) 

Inverting the two equations described above and using the matrix notation: 
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[
1 𝛾
1 1

] {
�̈�𝑏

�̈�𝑠
} + [

2 𝜉𝑏 𝜔𝑏 0
0 2 𝜉𝑠 𝜔𝑠

] {
�̇�𝑏

�̇�𝑠
} + [

𝜔𝑏
2 0

0 𝜔𝑠
2] {

𝑣𝑏

𝑣𝑠
} =  − {

1
1
} �̈�𝑔    (3.20) 

A system of differential equations of the second order is obtained coupled which represents 

the starting point for development of the modal analysis. Before continuing, however, it is 

instructive to point out that the variables ωb, Tb, ξb and ωs, Ts, ξs are the pulsation, the period 

and the damping ratio of two elementary oscillators, respectively, the first consisting of the 

whole mass constrained by the system of isolation, the other by the single superstructure 

assumed fixed at the base. Next to the pulsation ratio, can be introduced the ratio (or degree) 

of isolation, equal to the ratio between the periods Tb / Ts, and therefore equal to the square 

root of the inverse of ε: 

𝑇𝑏

𝑇𝑠
=  Ω =  √

1

𝜀
                     (3.21) 

If we assume ε << 1, that is equivalent to hypothesizing a much stiffer superstructure of the 

isolators (situation found in many ordinary cases), the problem of modal analysis is greatly 

simplified; let's start then from defining the main ways of the system: 

𝜙𝑛 = (𝜙𝑏
𝑛, 𝜙𝑠

𝑛)𝑇     𝑐𝑜𝑛 𝑛 = 1,2                  (3.22) 

of pulsations equal respectively to ω1 and ω2, calculated through the following equation 

characteristic: 

(1 −  𝛾)𝜔𝑛
4 − (𝜔𝑏

2 + 𝜔𝑠
2)𝜔𝑛

2 + 𝜔𝑏
2𝜔𝑠

2 = 0                 (3.23) 

The smallest value of the roots of this equation, which will be indicated with 𝜔𝑏
∗ , represents 

the pulsation of the isolation system, while the bigger value of the roots, indicated with 𝜔𝑠
∗, 

represents the pulsation of the superstructure, modified by the presence of the isolation. 

It could be demonstrated, based on the assumptions made on 𝜀, and therefore considering  

𝜔𝑏 ≪ 𝜔𝑠, that the values of 𝜔1
2  ≡  𝜔𝑏

∗ 2 and 𝜔2
2  ≡  𝜔𝑠

∗2 coincide with the following 

expressions: 

𝜔1
2  ≡  𝜔𝑏

∗ 2
= 𝜔𝑏

2(1 − 𝛾𝜀)                    (3.24) 

𝜔2
2  ≡  𝜔𝑠

∗2 =
𝜔𝑠

2

(1−𝛾)
(1 + 𝛾𝜀)                    (3.25) 
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In many cases it is sufficiently accurate to consider for 𝜔𝑏
∗ 2 and 𝜔𝑠

∗2 the following 

approximations: 

𝜔𝑏
∗ = 𝜔𝑏                       (3.26) 

𝜔𝑠
∗ =

𝜔𝑠

√1−𝛾
                       (3.27) 

The expressions just found make it possible to observe that the frequency of the isolation 

system (𝜔𝑏) is only slightly modified (the variation is of the order of magnitude of ε) from the 

deformability of the structure, while the frequency of the structure in elevation (𝜔𝑠) is 

significantly increased by the presence of the mass at the base. The initial difference between 

the frequency of the fixed base structure and the frequency of the isolation can be increased 

by suitably combining the 2 elements. 

The pulsations thus found represent the eigenvalues of the problem, while the eigenvectors 

coincide with the modal forms, which if we ignore orders of magnitude greater than those 

present the following simple mathematical expressions: 

𝜙1
𝑇 = {1, 𝜀}                      (3.28) 

𝜙2
𝑇 = {1,− 

(1−(1−𝛾))𝜀

𝛾
}                    (3.29) 

As shown in (Figure 3.2), the first vibration mode of the 2 DOF system, φ1, is roughly a rigid 

motion of the superstructure relative to the isolation system, unless a displacement at the top 

of the superstructure of the order of magnitude of ε. Unlike the 1st mode, the 2nd vibration 

mode, φ2, causes deformations both in the isolation system and in the superstructure. 

 

 

Figure 3.2: Modal forms of the 2 DOF system [17]. 
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The pulsation of the 1st mode, as expressed by equation (3.24), can be considered as the 

variation, due to the elasticity of the superstructure, of the pulsation of the isolated system at 

the base with an infinitely rigid superstructure; however, the order of magnitude of this 

variation remains extremely low if one considers that the superstructure has a certainly greater 

stiffness than the isolation system.  

The 2nd mode of vibrating, on the other hand, is very similar to the motion of two masses, 

m and mb, which oscillate independently in the space around the center of mass of the overall 

2 DOF system. The pulsation of the first mode, indicated above with (3.24), undergoes 

variations due to the stiffness of the isolation system. 

Having passed to the space of the modal coordinates, we can now return to the space of 

the geometric coordinates indicated above with vb and vs, through the following equations: 

𝑣𝑏 = 𝑞1𝜙𝑏
1 + 𝑞2𝜙𝑏

2                    (3.30) 

𝑣𝑠 = 𝑞1𝜙𝑠
1 + 𝑞2𝜙𝑠

2                    (3.31) 

Therefore, through a linear combination of the modal forms with a coordinate qi, with i = 1,2, 

known as the i-th principal or normal coordinate, function of the time t and thanks to the 

introduction of vibration modes, we can write equation (3.10) in the following way: 

�̈�1 + 2𝜔𝑏
∗𝜉𝑏

∗�̇�1 + 𝜔𝑏
∗2

𝑞1 = −𝐿1�̈�𝑔                  (3.32) 

�̈�2 + 2𝜔𝑠
∗𝜉𝑠

∗�̇�2 + 𝜔𝑠
∗2𝑞2 = −𝐿2�̈�𝑔                  (3.33) 

that representing the equations of the motion of 2 simple oscillators, of angular frequency and 

relative damping respectively equal to 𝜔𝑏
∗ , 𝜉𝑏

∗ and 𝜔𝑠
∗, 𝜉𝑠

∗, subject to an earthquake �̈�𝑔 reduced 

once by the participation coefficient L1, and once from L2. The hypotheses made on ε are 

assumed to be valid once again, and therefore: 

𝐿1 = 1 − 𝛾𝜀                     (3.34) 

𝐿2 = 𝛾𝜀                       (3.35) 

this shows how L2, or the way that induces deformations in the superstructure, being the order 

of magnitude of ε, is very small if the vibration frequencies ωb and ωs assume sufficiently 

different values between them. 

The dissipation of energy by the isolation system is certainly an aspect of primary 

importance. Up to now, in the model described, the energy absorption has been considered 
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through the introduction of the damping force, proportional to the damping constants cb and cs 

through the velocities �̇�𝑏, �̇�𝑠 . Now let's see how to evaluate the relative damping factors ξb
∗ , 

ξs
∗ associated this time with the modal analysis here described: if they are considered the 

equations (3.24) and (3.25), then we will indicate the damping on the first and second modal 

forms respectively with ξb
∗ , ξs

∗ and we will assume them equal to: 

𝜉𝑏
∗ = 𝜉𝑏 (1 −

3

2
𝛾𝜀)                    (3.36) 

𝜉𝑠
∗ = 

𝜉𝑠

√1−𝛾
+

𝛾𝜉𝑠𝑏√𝜀

√1−𝛾
                    (3.37) 

As can be seen, the structural damping is increased by the presence of the damping in the 

isolator of the order of ε1/2. The product between 𝜉𝑏 and ε1/2 could result in a significant 

increase in structural damping, which assumes greater importance if it does not reach very 

high values. Remember in this regard that the structural damping is usually in the order of 2-

3%, while the damping provided by the isolation system stands at values of 10-30%. 

A linear analysis of the isolated structures at the base, as mentioned at the beginning of the 

chapter, is independent of a real modeling of isolation devices, many of which have a 

markedly non-linear behavior, and therefore, if we do not want to give up to a solution in the 

closed form of the problem, it remains to choose one of the different linearization techniques 

proposed in the literature. 

The FPS (Friction Pendulum System), of which the present work aims to study the 

physical and dynamic characteristics, are among those devices, so-called attritives, which 

have numerous sources of non-linearity linked, as will be better shown below, to a close 

correlation between the dynamic coefficient of friction and quantities such as velocity, 

pressure acting on isolators and temperature. The dynamics of a structure isolated at the base 

with FPS will be addressed based on the considerations made by [17], and therefore 

opportunely modifying, due to the specific characteristics of the isolators, the equations of 

motion of the 2 DOF system presented above, however resolved given the non-linearity of 

these devices, through a dynamic integration to the step. 
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3.2 Friction Pendulum Devices 

In the last thirty years, seismic engineering has made considerable progress, developing 

modern seismic protection strategies, such as seismic isolation. 

The seismic isolation between the base and the superstructure in the case of buildings, or 

between the piers and the deck in the case of bridges, represents a seismic protection 

technique with which it is possible to guarantee, through the concentration of deformations in 

the devices, an adequate limitation of structural damage, governing the proper period of 

oscillation of the superstructure. The use of an isolation system, thanks to the abatement of 

the seismic force transmitted to the superstructure, compared to what happens for a traditional 

non-isolated structure, shows increasing technical and economic efficiency with the increase 

of the maximum acceleration level expected on the ground for the site of construction. 

Furthermore, it foresees that the almost elastic behavior of the superstructure is assured also 

for a seismic event in the last conditions; this involves a limited request for structural ductility 

in the face of a displacement demand concentration at the isolators, with a consequent very 

low post-earthquake expected damage picture for the structures. 

Among the modern isolation devices there are the sliding pendulum isolators, so called 

because they exploit the physical law of the pendulum motion to lengthen the natural period 

of the isolated structure [19], [20], [23]. From a technological point of view, as shown in 

(Figure 3.3), with reference to simple curvature devices, the decoupling between the 

horizontal motion of the superstructure and that of the substructure, takes place thanks to the 

possibility of sliding between a spherical concave dish, made of steel and integral with one of 

the two parts of the isolated structure and a articulated slider, bound to the opposite portion. 

 

 

Figure 3.3: Motion decoupling through the sliding mechanism, in single curved FPS. 
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There is also the possibility of adopting two equal hemispherical surfaces, united 

respectively with the superstructure and substructure, with the interposition of an articulation; 

in this case we speak of devices with a double sliding surface (Figure 3.4), where the 

displacement capacity is twice compared to traditional friction pendulum system [21]. For 

devices with a double sliding interface, the adoption of a radius of curvature of the spherical 

surface equal to half the radius of a hypothetical single-curved isolator, leads to an 

equivalence in the geometry of the oscillatory motion of the two systems.  

 

 

Figure 3.4: Motion decoupling through the sliding mechanism, in double curved FPS. 

 

The behavior of the sliding pendulum isolator is governed by the characteristics of the 

interface between the spherical concave dish and the articulated slider (Radius of curvature, 

static and dynamic friction), from which flow the fundamental properties of the sliding 

devices: the ability to dissipating energy through friction, which is generated by the motion 

induced by seismic attack and which determines the birth of a side action that opposes the 

forces of solicitation; the possibility of generating the return force for the re-centering of the 

structure through the action of gravity and the curved geometry (Bending Radius), which 

allows precisely the device to return to position when the external action ceases. Specifically, 

with reference to the dissipation properties of energy through the attracting phenomenon, in 

the case of sliding isolators there are: a friction of first detachment or initial, which 

determines the resistance to be overcome to start the movement, and the dynamic friction, 

which instead determines the mechanism by which the energy introduced by the seismic event 

is dissipated, and in this respect it should be as high as possible, even if this could increase the 

horizontal stiffness and hinder the device's recentering movement. It is clear then how energy 

dissipation and recentering, are two functions of the isolator which have diametrically 

opposed coefficients of friction and their relative importance depends on the specific case 

being examined. 
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At the state of the art, the sliding surfaces in the pendulum isolators are made by coupling 

a metal surface, in stainless steel or chromium and a plastic material, mainly unlubricated 

Polytetrafluoroethylene (PFTE or Teflon®) or its composites, giving rise to a coefficient of 

friction between 0.03 and 0.12; the friction that develops as a result of the PFTE-steel 

coupling has been the subject of numerous studies over the years (Constantinou et al 1987), 

(Mokha et al.1990a-b, 1993), which showed that it is incorrect to consider the latter as 

obedient to the Coulomb law (constant friction during the oscillator movement), since the 

macroscopic behavior at the interfaces is strongly influenced by quantities such as the sliding 

velocity, the pressure between the surfaces and the temperature. The dynamic friction 

coefficient is also influenced by the number of cycles performed by the contact surfaces in the 

relative sliding, due to the deterioration of the surfaces themselves (Hwang et al, 1990). 

In the following, we will speak more specifically of the non-linear character of the 

coefficient of friction associated with the above parameters, but in general it can be assumed 

that it increases more than linearly with the increase of the sliding velocity, while decreasing 

with the increase of apparent pressure.   

 

 

3.2.1 Dynamic behavior 

The constitutive relation of the FPS-type isolation devices in motion conditions, and with 

reference to the horizontal plane response, is usually idealized as bi-linear, based on three 

parameters K1, K2 and Q, according to the scheme reported in (Figure 3.5), and defined by the 

following formula: 

𝐹 = 𝑀𝑔𝜇 + (
𝑀𝑔

𝑅
)𝑑                    (3.38) 

where (𝑀𝑔) represents the vertical action N, resulting from the product of mass M and the 

acceleration of gravity g, R is the curvature radius of the spherical surface, 𝜇 is the bearing 

friction coefficient, and d is the displacement of the spherical joint on the sliding surface.  
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Figure 3.5: Bilinear cyclic behavior of the FPS. 

 

With reference to the equation written above, the second term, (𝑀𝑔

𝑅
) 𝑑, represents the 

recentering force due to the mass raising during the motion, which therefore offers a 

horizontal stiffness equal to: 

𝐾2 =
𝑊

𝑅
                      (3.39) 

It is shown that for the isolated structure the period T is equal to: 

𝑇 = 2𝜋√
𝑅

𝑔
                       (3.40) 

that result, therefore, independent of the mass carried. 

The stiffness K2 is often defined as secondary stiffness, to distinguish it from the initial 

stiffness or K1, that the device has before developing the motion and can be estimated both by 

the hysteresis cycles and empirically, as a multiple of the K2 stiffness. Kelly [18] suggested 

for example K1 = 51K2; the isolators present in fact a theoretically infinite rigidity until the 

breaking of the friction bonds, or at the beginning of the sliding and this is why, many times, 

the first part of the hysteresis cycle is assumed pseudo-vertical, just to recall the idea of K1 

stiffness tending to infinity before the start of the motion. Until the condition of detachment 

then, the superstructure and the substructure are rigidly linked to one another and the behavior 

is identical to that of a not isolated structure. Upon the exceeding of the separation friction 

threshold, the pendular motion is triggered and the stiffness is expressed by equation (3.39). 
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In (Figure 3.6) a typical hysteresis diagram is shown for a sliding isolation system, where 

the total force developed by the isolator is shown on the ordinate axis, (which as already 

explained above, if the isolator is in conditions of motion is equal to F = fp + fh, where there is 

a superposition of two different actions, one resulting from the pendulum effect associated 

with the recentering action produced by the weight W, fp, and the other resulting from the 

frictional force that develops at the interface, fh), and on the abscissas axis the displacements 

induced on the isolation system; the image shows in particular the typical parallelogram shape 

determined by a first phase, called "sticking", in which the behavior of the system is similar to 

a body rigidly connected to the ground. After this phase of high stiffness, in which the motion 

evolves on an almost vertical straight line and exceeded the maximum frictional force 

available, the pendulum movement is triggered, characterized by a lower stiffness (the straight 

line is inclined); when the motion is reversed, there is an instantaneous zeroing of the friction 

coefficient, and therefore of the force associated with it, the pendulum in this phase, in order 

to resume the motion in the opposite direction, must recover the friction that had already 

passed in the phase initial and consequently, in the hysteresis cycle before traveling the 

inclined section in the opposite direction to the initial one, a vertical stretch equal to twice the 

maximum available frictional force is considered, which is usually indicated in the literature 

as a characteristic force Q.  

 

 

Figure 3.6: Hysteresis diagram of an FPS isolator. 

 

The operating scheme in motion regime of the isolator, through which it is possible to 

derive the secondary horizontal stiffness K2 and the period associated with it T, is presented in 

(Figure 3.7), as originally described in [22]. 
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Figure 3.7: Theoretical sliding concave behavior and equilibrium of the forces involved during the motion. 

 

In this configuration, the forces acting on the slider are: 

• The vertical load, W, which weighs on the isolator; 

• The lateral force, F, acting on the cursor; 

• The friction force, Ff = μW, acting along the sliding surface; 

• The contact force, S, normally acting at the sliding interface due to the mass of the 

superstructure; 

• The tensile forces acting along the surface of the cursor t1, whose effect is part of the 

frictional force Ff and, therefore, not appear explicitly in the equilibrium equations. 

 

From the presented scheme we can obtain the equations of vertical and horizontal 

equilibrium, and we obtain: 

𝑊 − 𝑆 𝑐𝑜𝑠𝜗 + 𝐹𝑓 𝑠𝑖𝑛𝜗 = 0                   (3.41) 

𝐹 + 𝑆 𝑠𝑖𝑛𝜗 − 𝐹𝑓 𝑐𝑜𝑠𝜗 = 0                    (3.42) 

and, through geometrical considerations, the displacement of the spherical joint on the sliding 

surface is: 

𝑑 = 𝑅 𝑠𝑖𝑛𝜗                     (3.43) 
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with R representing the effective radius of curvature, evaluated as distance of the center of the 

spherical surface of the cap, from the point of articulation of the cursor. By combining 

equations (3.41), (3.42) and (3.43), the horizontal recall force is obtained: 

𝐹 = 𝑊 𝑡𝑔𝜗 + 
𝐹𝑓

𝑐𝑜𝑠 𝜗
= 

𝑊

𝑅 𝑐𝑜𝑠 𝜗
𝑑 +

𝐹𝑓

𝑐𝑜𝑠 𝜗
                     (3.44) 

For the hypothesis of small oscillations, we can put: cos 𝜗 ≅ 1, sin 𝜗 ≅ 𝜗 ≅  𝑡𝑔 𝜗 ≅ 1
𝑅⁄ . 

Thus, the two components of the vertical force W, become W cos 𝜗 ≅ W, and W sin 𝜗 ≅

 𝑊 𝑅⁄ , and (3.44) it is simplified as follows: 

𝐹 = 
𝑊

𝑅
𝑑 + 𝐹𝑓                     (3.45) 

where, the friction force, Ff, acts along the tangent to the sliding surface with a sign 

corresponding to the tangential component of the vertical force, W, and is a function of the 

coefficient of friction, μ, and of the component of W orthogonal to the sliding surface. 

Therefore, we can write: 

𝐹𝑓 =  𝜇 𝑊𝑐𝑜𝑠𝜗                       (3.46) 

which, as already mentioned at the beginning of the paragraph, is not constant but varies with 

the variation of different quantities, among which the most significant are certainly the sliding 

velocity and the contact pressure. By replacing the attractive law in (3.45) we can write: 

𝐹 =
𝑊

𝑅
𝑑 +  𝜇 𝑊𝑠𝑔𝑛(�̇�)                   (3.47) 

Where, W is the weight that weighs on the isolator, R is the radius of curvature, d is the 

horizontal displacement, μ is the coefficient of friction, 𝑠𝑔𝑛(�̇�) denotes the signum function 

of the sliding velocity �̇�. 

The expression of the displacement along the sliding surface can also be obtained as a 

function of the coefficient of friction: 

𝑑 =  − 
𝐹𝑓

𝑊
𝑅 =  𝜇 𝑅                    (3.48) 

From this formula, we also obtain the admissible domain in which a stable equilibrium is 

achieved: 

𝐹𝑓  ≥  𝐹𝑒 → 𝑑 ≤ 𝜇 𝑅                    (3.49) 



3. THEORY AND MODELING OF ISOLATED SYSTEMS WITH FPS 

74   

that is, for shifts below μR the system will not be able to re-center itself, being in a stable 

equilibrium configuration, while it will re-center for higher displacements. This concept is the 

reason why we use low friction coefficients such as Teflon to make re-centering more likely. 

Following this introduction on the dynamic behavior of sliding isolators, we must analyse 

in more detail the aspects that govern the phenomenon of friction. The following paragraphs 

will examine the dependence of friction and the numerous experimental investigations [19], 

[20] conducted on devices with a Teflon stainless steel-PTFE interface that have shown a 

strict dependence on the same coefficient of friction from the velocity flow and apparent 

pressure. 

 

 

3.2.2 Basic Principles of the Friction 

The use of seismic sliding isolation devices, in seismic applications, inevitably requires a 

collection of experimental data on the friction coefficient properties present at the interface 

between the sliding surfaces, and this both under low velocity of motion conditions (service 

conditions) and in high-velocity conditions.  

Friction is a dissipative force that opposes the relative motion between two bodies in 

contact; in cases of engineering interest we will talk about solid bodies in contact and is due 

to the tangential forces exchanged between the contact surfaces. In all the most important 

theories of friction, the importance of superficial topography is emphasized because no 

surface, in practice, is flat and smooth at the microscopic level. However, attention will be 

focused on the interpretation of the phenomenon at the macroscopic level, which is the most 

interesting in relation to frictional seismic isolation devices, and in general in engineering 

applications. 

The value of the frictional force, Ff, at the sliding interface, is given by the following 

relation: 

𝐹𝑓 =  𝜇 𝑁                      (3.50) 

where 𝜇 is the friction coefficient and N is the normal action at the interface. The frictional 

force that occurs between surfaces in a quiet position is called static friction, whereas between 

surfaces in relative motion it is called dynamic friction (or sliding). The classical law of 
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friction used in many cases of engineering interest is certainly Coulomb's law (constant 

friction during sliding), which, however, is inapplicable in the case of sliding isolators, whose 

friction coefficient value is strongly dependent on the parameters: flow velocity and apparent 

pressure [21]. 

 

Basic Mechanisms 

It is interesting to understand what are the phenomena that govern the friction relative to 

the scale of interest, i.e. the macroscopic one. The following phenomena are based on the 

studies by [21]: 

 

Adhesion 

When two solid bodies come into contact one with the other, they form atomic bonds 

through the contact interfaces. These contact regions are called junctions, and the sum of their 

areas constitutes the real contact area: "effective area", which is significantly smaller than the 

"apparent area", (Figure 3.8). The junctions are characterized by interface forces, that 

represent the adhesion, due to the creation of interfacial bonds steel-carbon, which are 

established between the clean metal surfaces and the Teflon. Therefore, the friction force is 

given by the product of the effective area, Ar, for the shear strength of the junctions, s: 

𝐹𝑎 =  𝑠 𝐴𝑟                      (3.51) 

The mechanism of adhesion is dominant for interfaces that flow on top of each other 

characterized by clean surfaces. 

 

 

Figure 3.8: Schematic illustration of an interface, showing the apparent and real areas of contact. 
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Plowing 

All surfaces are characterized by roughness which, when in contact, undergo elastic or 

plastic deformations. The plowing component of friction is due to the dissipation of energy 

that occurs during the plastic deformations of the bumps. This phenomenon can be more 

easily understood considering a hard and spherical roughness over a soft and flat surface. If an 

axial action is applied to the bumps, these attach themselves to the underlying surface and at 

the same time contact areas are created, the “junctions”. Then inducing a tangential action, the 

bumps move horizontally, dragging with it part of the softer material below and creating a 

sort of groove along the trajectory traveled. The plowing component of friction results from 

the drag effect caused by the roughness of the underlying soft material. 

 

Viscoelastic Effects 

Polymers, like PTFE, exhibit a viscoelastic behavior: this is because if a harder material 

tends to flow on a material with viscoelastic characteristics, additional energy dissipation is 

achieved by those same characteristics. 

 

The Stick-Slip phenomenon 

The stick-slip movement is a succession of blocking and slipping phases, very common in 

many ordinary situations and responsible for phenomena such as the squeaking of doors, the 

squeaky chalk, the sound of the violin, etc. It occurs in lubricated mechanisms and is due to 

two causes (Figure 3.9): 

• the coefficient of kinetic friction is lower than that of static friction; 

• the system can store energy in an elastic form. 

In fact, the nature of the phenomenon consists in discharging from time to time in the 

dynamic phase the elastic energy stored in the static phase due to the forces acting on the 

system, to establish a cycle of jerky oscillations. It is an oscillatory behavior typical of elastic 

mechanical systems that contain friction forces and can occur only in the presence of a natural 

variation of the friction coefficient. 
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Figure 3.9: Stick-Slip phenomenon. 

 

Studies by Yoshizawa and Israelachvili (1993) have shown the possibility of another 

interpretation of the stick-slip phenomenon: when a thin film of polymeric fluid is present on 

an interface, it is possible that the fluid film is affected by a phase transition from liquid to 

solid, resulting in changes in the flow characteristics of the film itself inducing stick-slip. 

 

 

3.2.3 Experimental investigations on Friction Pendulum Devices with curved 

surfaces 

For a complete characterization of the seismic behavior of the pendulum devices it is 

essential to define the properties of the friction phenomenon in correspondence with the 

different phases of motion. A history to distinguish between coefficients of dynamic friction, 

achieved during the sliding phases, which indicates the values of the displacements and 

characteristics characterizing an isolated structure 100-200mm and 0.4-0.5 Hz, are between 

160 mm/s - 400 mm/s; value to the detachment μs, developed in line of the instant 

immediately preceding the beginning of the dynamic phase of oscillation; value to the 

inversion of the μinv motion, i.e. corresponding to the instants in which the direction along 

which the sliding occurs, and which intermediate values between the coefficient of friction 

and the given data in conditions of first detachment. 

A wide series of experimental investigations have allowed to formulate a series of 

analytical expressions, which highlight the dependence of the dynamic friction coefficient on 

the sliding speed, as well as on other parameters, and that now gives a detailed description. 
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Dependency on Velocity of Sliding and Normal Load 

The (Figure 3.10) shows how the coefficient of dynamic friction is characterized by a low 

value immediately after the beginning of the sliding, fmin, and by a progressive increase as the 

velocity increases. At high velocities, it reaches a constant value, fmax. Furthermore, if the 

normal load increases, there is a reduction in the friction coefficient [19], [20] until a constant 

value is reached for a load limit value. The reduction rate is practically constant: doubling the 

contact pressure (from 9.36 to 18.7 MPa) there is a variation of the coefficient of friction from 

25% to -10 °C up to 33.4% at 50 °C [21]. 

 

 

Figure 3.10: Dependency on Sliding Velocity and Normal Load [21]. 

 

The high value of the static friction coefficient, μB, is instead due to the adhesion 

phenomenon: two contact bodies form junctions characterized by high interface forces. 

At the beginning of the sliding, a thin crystalline and oriented PTFE film (of a few 

hundred Angstrom thickness), is deposited on the surface of stainless steel and thus reduces 

the friction value from μB to fmin, all this is caused by the low shear strength that such material 

possesses. As the sliding velocity increases, the value of the friction coefficient increases, 

until reaching a peak threshold equal to fmax, with values up to 5-6 times greater than fmin 

(160-400 mm/sec or more). More precisely, the difference between the maximum and the 

minimum value of the dynamic friction coefficient Δ = μmax- μmin is higher when the contact 

pressure is low, assuming values close to 12% at 9.36MPa and below 7% at 28.1 MP. The 

temperature instead has a low influence on the Δ. In general, for a fixed value of the apparent 

contact pressure, the sliding friction coefficient depends on the velocity, as described by [19], 

[20], [21] and explained in the following equation: 
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𝜇 =  𝑓𝑚𝑎𝑥 − (𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛)𝑒−𝛼|𝑣|                  (3.52) 

where fmax is the friction coefficient attained at high velocities of sliding (200 - 800 mm/s); 

fmin is the friction coefficient attained at very low velocities of sliding; v is the sliding 

velocity; α is a constant for a given pressure, temperature and condition of FPS interfaces and 

presents variable values from 20-30 s/m for devices with a Teflon-PTFE stainless steel 

interface and has the task of controlling the variation of the friction coefficient and therefore 

the passage from the minimum value to the maximum value at high velocity. The curves 

shown in (Figure 3.11), are based on the (3.52) report, which adequately describes the 

previously reported experimental results and shows how the parameter α influences the 

behavior of the adimensionalized friction coefficient with respect to the maximum for two 

different values of fmax / fmin = 2.5 and 5. It is noted that a sliding velocity greater than about 

150 mm/s is sufficient to obtain the maximum value of the sliding friction coefficient of all 

the PTFE-based materials at normal temperatures. 

 

 

Figure 3.11: Effect of the parameter α in the variation of the coefficient of friction with the velocity [21]. 

 

It can ultimately be affirmed that: 

• The friction coefficient increases rapidly with velocity until it reaches a value, after 

which it remains constant. This value is about 150mm/s, regardless of the ambient 

temperature and the pressure on the device; 

• The friction coefficient for devices with a steel-PTFE interface decreases as the load 

applied to the sliding plane increases. The rate of reduction depends on the sliding 
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velocity and the air temperature: there is a maximum variation of 30% for a variation of 

± 50% in the contact pressure (for t = 20°C, p = 18.7 MPa, v ≥ 150 mm/s), regardless of 

the lubrication status of the interfaces; 

• The difference between the minimum value (fmin) and the maximum value (fmax), is the 

greater the lower the agent pressure. 

 

Effect of Temperature 

The effects of temperature on friction devices can be very negative, especially regarding 

the static friction coefficient, μB, and dynamic at low flow rates, fmin. The (Figure 3.12) shows 

the friction of detachment, the sliding friction at low velocities and at high velocities as a 

function of temperature. It highlights the substantial effect that the temperature has on the 

coefficient μB and fmin, and the rather limited effect on the coefficient of dynamic friction fmax. 

The following conclusions can be drawn: 

• the friction of separation is practically the same as the sliding friction at low velocities; 

• the effects of temperature in composite PTFE are, in general, lower than in unfilled 

PTFE; 

• the coefficient of friction decreases with increasing external temperature with a higher 

reduction rate if you switch from low to medium and medium to high temperatures. 

Furthermore, it depends on the sliding velocity, while it is practically independent of the 

contact pressure. At the rates of interest for seismic applications, the reduction rate is of 

the order of 0.15-0.3% /°C. 

 

Figure 3.12: Effect of temperature on the variation of the coefficient of friction with the sliding velocity 
[21]. 

 



 3.2. Friction Pendulum Devices 

  81 

This latter conclusion is to be linked to the heating effects: the heat flow generated by 

friction is proportional to the coefficient of friction itself, to the average pressure and to the 

sliding velocity, also at high velocities (500mm/s), it is many hundreds of times greater than 

the flow that would be generated at modest velocities (<1 mm/s), therefore, this heat flow 

tends to offset the effects that the low temperatures have on the viscoelastic properties of 

PTFE: in this way a temperature variation of 20 °C to -40 °C leads to an increase in the fmax 

coefficient of only 50%. The values reported by Constantinou are in line with those of 

Campbell et al., (1991). 

 

Effect of the permanence of loads 

Since PTFE is a material with viscoelastic properties, it would be expected that the effect 

of the permanence of the loads on the effective contact area and, therefore, on the friction is 

greater the longer the time spent under the action of such loads (Bowden and Tabor, 1964). 

What emerges from experiments conducted [19], [20] is that the value of the static friction 

coefficient is substantially the same for a load applied for 0.5 hours or 594 days. Many other 

tests have been conducted, and all have shown that fluctuations in the value of the friction 

coefficient cannot be traced back to the duration of application of the load. Rather, tests 

carried out on samples subjected to previous test cycles showed a markedly lower coefficient 

of static friction coefficient following a first loading cycle, reflecting the existence of a PTFE 

film which is deposited on the surface in steel after a first cycle. 

The experimental data presented in [19], [20], [21] indicate that when considering the 

natural variability of the friction properties, obtained from different samples or from different 

tests on the same sample, and the probable measurement errors are considered, the static 

friction between surfaces in polished-PTFE stainless steel is not influenced by the 

permanence of the load. 

 

Effect of Cumulative Movement 

A review of the literature Campbell and Kong (1987), Kauschke and Baigent (1986), Long 

(1969, 1974), on the effect of cumulative movement (travel) on the coefficient of friction of 

PTFE-stainless steel interfaces produced conflicting results. 
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The results of a test conducted on unfilled PTFE specimens, at apparent pressure of 20.7 

MPa [21], (Figure 3.13) demonstrate that the coefficient of dynamic friction at high velocities 

(fmax) decreases as the distance traveled increases, from an initial value of 12.5% to 10% 

already after 40 m of distance traveled; on reaching a threshold of about 300 m, it shows 

instead a new increase. The dynamic coefficient at low velocities (fmin) has fluctuations in the 

range 0-40 m. The initial value of the high velocity coefficient of sliding friction (fmax) is 

0.125 but drops to 0.100 after 40 m of travel (this value is also attained after a travel of 510 

m), the low velocity coefficient of friction (fmin) shows a sharp increase for a travel of less 

than 15 m. 

 

 

Figure 3.13: Effect of Cumulative Movement (Travel) on the Sliding Coefficient of Friction of Unfilled 
PTFE in Contact with Polished Stainless Steel [21]. 

 

 

Effects of the variation of the axial action on the seismic behavior of the devices 

The FPS isolators, with reference to the behavior towards vertical actions, are born as 

vertical constraint devices of the single-latero type (compression only) and this must be 

considered in the design phase, this because the device, if subjected to actions of traction 

design, it could be damaged at the sliding and/or exit interface of the articulation from its 

housing seat. The permanence in compression is, among other things, a necessary condition 

for the use of linear analysis methods. 
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While the period T depends only on the radius of curvature adopted for the hemispherical 

cap on which the relative sliding occurs between the two parts, the equivalent period Teff and 

the horizontal force F developed by the isolation system, are a direct function of the axial 

load, N, at level of the devices. Equivalent period and shear are both subject to the continuous 

variations of the N load, following the force system that opposes the overturning moment due 

to horizontal actions and the simultaneous seismic action in the vertical direction. Variations 

in the axial action involve irregularities in the force-displacement bonding of the isolators. 

 

 

3.2.4 Modeling criteria 

For a correct evaluation of the isolation properties of the devices, a distinction must be 

made depending on the stiffness value used. As already pointed out, if we consider the slope 

of the plastic response branch, corresponding to the oscillating state along the spherical 

surface, the period T (isolated) is a function of the radius of curvature R of the spherical cap 

and is in fact equivalent to that of a pendulum: 

𝑇 = 2𝜋√
𝑀

𝐾
=  2𝜋√

𝑀
𝑀𝑔

𝑅

=  2𝜋√
𝑅

𝑔
                  (3.53) 

Assuming instead as a reference the value of secant stiffness Keff, defined as the ratio between 

the maximum horizontal force at the maximum lateral displacement exhibited by the isolator 

and the displacement itself, is obtained: 

𝐾𝑒𝑓𝑓 = (
1

𝑅
+

𝜇

𝑑
)𝑊                    (3.54) 

Combining the (3.53) and the (3.54) we reach the individuation of the effective period: 

𝑇𝑒𝑓𝑓 = 2𝜋√
𝑀

𝐾𝑒𝑓𝑓
=  2𝜋√

𝑀

(
1

𝑅
+

𝜇

𝑑
)𝑀𝑔 

=  2𝜋√
𝑅𝑑

(𝑅+𝜇𝑑)𝑔 
               (3.55) 

If the system can be represented by an equivalent linear model, the value of the period 

obtained as a function of secant stiffness at the maximum displacement differs from the 

corresponding tangent value by no more than 14%; therefore, also the deviation, in terms of 

dynamic response parameters, between linear and non-linear model is not very significant. In 

the absence of the necessary requirements for the use of an equivalent linear model, according 
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to (NTC08) for the evaluation of the dynamic response, it is necessary to resort to non-linear 

analysis, able to capture the associated phenomena to the transition, from states characterized 

by different stiffness. 

Another important parameter that defines the behavior of the friction isolator is the 

equivalent viscous damping coefficient. It identifies the dissipation of energy produced by 

friction, and can be estimated from the formula: 

𝜉𝑒𝑓𝑓 = 
𝐻𝑦𝑠𝑡𝑒𝑟𝑒𝑠𝑖𝑠 𝑐𝑦𝑐𝑙𝑒 𝑎𝑟𝑒𝑎

4 𝜋𝐾𝑒𝑓𝑓𝑑2
                   (3.56) 

that is an equivalence between energy dissipated by friction and energy dissipated by a 

viscous behavior. Considering that the area of the hysteresis cycle is equal to 4μWd, and 

remembering the first written expression for the Keff, we obtain: 

𝜉𝑒𝑓𝑓 = 
4𝜇𝑊𝑑

4 𝜋(
1

𝑅
+

𝜇

𝑑
)𝑊𝑑2

= 
2𝜇

𝜋(
𝑑

𝑅
+𝜇)

                  (3.57) 

where, it can be seen how the equivalent damping is a function of the friction coefficient, of 

the radius of curvature and of the displacement demand: the latter can be understood as the 

design value of the displacement for the considered limit state. It follows that, the equivalent 

damping to be adopted in an elastic analysis is a function of the limit state considered and 

assumes different values in relation to the demand for moving the system. Generally, the 

value in question refers to the life-saving limit state (SLV), used for the verification of 

isolated structures. 

For the design of the devices, in relation to the fragility of the system with respect to 

breaking mechanisms linked to exceeding the ultimate capacity, in displacement, reference is 

made to the application under collapse conditions (i.e. the ultimate limit state SLC), indicated 

according to (NTC08) with the symbol d2. 

 

Linear modeling 

The idealization of the isolation system as a linear spring, characterized by its own 

stiffness and its own equivalent viscous damping, is an obvious simplification of the modeling 

and analysis phases, and as such, based on the provisions of the (NTC08), can only be applied 

under specific conditions: 
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• the equivalent stiffness of the isolation system must be at least 50% of the secant value 

for cycles with a 20% deformation of the reference displacement. For pendulum 

devices, the above limitation translates into imposing: 
𝑅

𝑑𝑑𝑐
 ≤  

1

3𝜇 
 

where ddc is the displacement of the rigidity center of the considered limit state 

isolation system, R the radius of curvature and μ the dynamic friction coefficient of the 

device; 

• the equivalent linear damping of the isolation system must be less than 30%; 

• the force-displacement characteristics of the isolation system must not be subject to 

deviations of more than 10% due to variations in the deformation velocity, the vertical 

action on the devices; 

• the increase of the strength in the isolation system for displacements between 0.5ddc 

and ddc must be at least equal to 2.5% of the total weight W of the superstructure. This 

request involves the use of a radius of curvature limited to 20 times the value of the 

project shift. 

 

Non-linear modeling 

From the critical analysis of the necessary requisites established in the (NTC 08) for the 

use of an equivalent linear model, it emerges that it is not possible to use an equivalent linear 

model, if not in presence of a vertical seismic component lower than 0.1g. 

In any case, even in the absence of a vertical acceleration component, it must be verified 

that the variation of the axial load on the devices, which originates in opposition to the 

overturning induced by the horizontal forces, is less than 10% compared to the value in 

almost permanent conditions. Otherwise, it is necessary to resort to non-linear analyses, 

adopting a suitable constitutive law and proceeding with an integration to the step of the 

equations of motion. 
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CHAPTER 4 

4. DYNAMICS OF ISOLATED BRIDGES WITH FPS 

 

 

Seismic isolation is today a very widespread anti-seismic protection technique (both in 

new and existing structures, as a technique for improving seismic performance), particularly 

in the context of infrastructural works such as bridges and road and rail viaducts, considering 

the function strategic that generally perform. Although the basic principles of seismic 

isolation have now been well clarified, attention is now focused on the dynamic behavior of 

isolated bridges with continuous girder. 

In this approach the mass of the superstructure is disconnected from the substructure 

through the FPS devices. In the absence of an earthquake, these behave like normal supports, 

but in the event of a strong earthquake, they add flexibility to the bridge, extending its period 

and dissipating in part the input energy. This allows oscillation of the superstructure at a 

lower frequency with respect to the piers, and thus large displacements relative to the 

interface are generated. Such displacements can be controlled by incorporating damping 

elements in the bearing or by adding dampers. 

The aim of this chapter is to study the structural problem through the non-linear modeling 

of isolation devices, understanding the proposed mathematical model and the related 

equations of motion. These, in fact, are at the base of subsequent modeling in the professional 

work environment (MATLAB & Simulink®), that allow to determine the structural response 

varying different parameters and considering different values of these latter, through 

integration of the response in the time domain. 
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4.1 Mathematical modeling of the structural problem 

The structure, object of study of this thesis, is a symmetrical and continuous bridge, with 

respect to the straight line perpendicular to the deck that passes through its midpoint, with 

three spans. The pier in the bridge model has been considered of uniform circular cross 

section throughout the height, and the FPS isolators have identical properties and are arranged 

between the substructure and the superstructure, i.e. on each pier and each abutment (Figure 

4.1). The structural symmetry permits to analyze the abutment-pier interaction, thus 

identifying a more simplified model, from the point of view of computational complexity and 

the system of equations of motion, which goes to study the relative displacements that are 

generated through the installation of the FPS under the deck. 

 

 

Figure 4.1: Three-span continuous deck bridge seismically isolated by the FPS [24]. 

 

The abutment-pier interaction of the bridge, based on the Jangid theory [24], can be 

modeled with any number of degrees of freedom, model (n+1) DOF (Figure 4.3), considering 

however the stability of the model and the convergence of the analysis, to avoid high 

computational times. 

Furthermore, we consider the following modeling hypotheses: 

• the deck is a mass md (equal to 771120 Kg) that rests on the abutment and on the 

pier, but is detached from these through the isolator, and is hypothesized rigid and 

straight; 

• the deck is modeled as a single concentrated mass, and therefore with only one 

DOF; 

• the abutment is modeled as a fixed support above which the FPS is positioned, that 

supports only half the deck, (md/2); 
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• the pier is modeled with n DOF; in particular, is defined as a lumped mass system 

divided into n segments, each segment is connected to a node with a horizontal 

DOF; then the mass of each segment is represented in the form of a mass point 

overlying the segment. In addition, the last segment is connected to the foundation 

and therefore represents a fixed support; 

• The force-deformation behavior of the FPS was considered to be rigid bilinear. as 

shown in (Figure 4.2). 

 

Figure 4.2: Force-deformation of FPS. 

 

The abutment-pier model proposed is shown below: 

 

 

Figure 4.3: Mathematical model of the abutment-pier interaction [24]. 

 

The dynamic analysis that will be carried out is non-linear type, thus allowing the 

evaluation of the seismic response through the direct integration of the equations of motion, 

applying the appropriately chosen ground motion records to the nodes of the substructure. 
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This is the most complex, but also the most complete, method of analysis, that allows to know 

the trend over time of stress and deformation states of the structure components, and therefore 

to verify the integrity of the structural elements in relation to possible fragile behaviors, as 

well as to evaluate the dynamic behavior of the structure in the nonlinear field. 

Once the mathematical model of the bridge structure has been defined, it is possible to 

proceed with the writing of the equations of motion that govern the pier, abutment, isolator 

and deck interaction. In this thesis, however, we consider the isolation of the bridge in the 

longitudinal direction only, and then we will consider the response of the structure, for many 

parameters and making to varying the values of these latter, along this direction. 

 

 

4.1.1 Equations of motion 

The equations that govern the motion of the isolated bridge, according to [24], are: 

𝑚𝑑�̈�𝑑 + 𝐹𝑎 + 𝐹𝑝 = −𝑚𝑑�̈�𝑔            (4.1) 

[𝑚𝑝]{�̈�𝑝} + [𝑐𝑝]{�̇�𝑝} + [𝑘𝑝]{𝑢𝑝} − {𝜓}𝐹𝑝 = [𝑚𝑝]{1}�̈�𝑔       (4.2) 

where: 

• md represents the mass of the deck; 

• [mp], [cp] and [kp] represent the mass, damping and stiffness pier matrix (with 

dimension n x n) based on the number of nodes in which it is divided; 

• Fa and Fp are the recall forces acting on the FPS respectively at the abutment and at 

the pier; 

• ud is the displacement of the deck, while {up} is the displacement vector of the 

various nodes of the pier; 

• {ψ} = {1, 0, 0, ..., n} is a vector that applies the recall force of the FPS; 

• {1} is a unit vector (with dimension 1 x n), which represents the coefficient of 

influence of the seismic acceleration, indicated with �̈�. 

 

The equations above are written in terms of absolute displacements, in this way the 

displacements of each degree of freedom, with respect to the base of the pier and abutment, 
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are calculated. This can be seen from the fact that, by rewriting the two equations in a single 

system, we obtain the masses matrix that are diagonal, while the damping and stiffness 

matrices are symmetrical. However, it is more convenient to work with the damping and 

stiffness matrices that are diagonal, thus obtaining a decoupled system of equations that is 

easier from the computational point of view. To achieve this, the system of equations is 

rewritten in terms of relative displacements, using Kelly's theory [18], and the displacements 

of each degree of freedom, with respect to the underlying one, will be calculated. Rewriting 

the two equations in a single system, we can see as the masses matrix is symmetrical, while 

the damping and stiffness matrices are diagonal. 

The relative displacements are then written: 

�̈�𝑑 = �̈�𝑑 + �̈�𝑝1
+ ⋯+ �̈�𝑝𝑛

            (4.3) 

�̈�𝑝𝑛
= �̈�𝑝1

+ ⋯+ �̈�𝑝𝑛
             (4.4) 

�̈�𝑝1
= �̈�𝑝1

               (4.5) 

and therefore, the equations can be rewritten as follows: 

𝑚𝑑(�̈�𝑑 + �̈�𝑝1
+ ⋯+ �̈�𝑝𝑛

) + 𝐹𝑎 + 𝐹𝑝 = −𝑚𝑑�̈�𝑔        (4.6) 

𝑚𝑝𝑛
(�̈�𝑝1

+ ⋯+ �̈�𝑝𝑛
) − 𝐹𝑎 − 𝐹𝑝 + 𝑐𝑝𝑛

�̇�𝑝𝑛
+ 𝑘𝑝𝑛

𝑣𝑝𝑛
= −𝑚𝑝𝑛

�̈�𝑔      (4.7) 

𝑚𝑝𝑛−1
(�̈�𝑝1

+ ⋯+ �̈�𝑝𝑛−1
) + 𝑐𝑝𝑛−1

�̇�𝑝𝑛−1
+ 𝑘𝑝𝑛−1

𝑣𝑝𝑛−1
− 𝑐𝑝𝑛

�̇�𝑝𝑛
− 𝑘𝑝𝑛

𝑣𝑝𝑛
= −𝑚𝑝𝑛−1

�̈�𝑔  (4.8) 

𝑚𝑝1
�̈�𝑝1

+ 𝑐𝑝1
�̇�𝑝1

+ 𝑘𝑝1
𝑣𝑝1

− 𝑐𝑝2
�̇�𝑝2

− 𝑘𝑝2
𝑣𝑝2

= −𝑚𝑝1
�̈�𝑔       (4.9) 

 

The recall forces Fa and Fp are described by the following generic formula, in terms of 

absolute displacements: 

𝐹𝑖 =
𝑚𝑑𝑔

𝑅
𝑢𝑑 + µ𝑑,𝑖 𝑚𝑑 𝑔 𝑠𝑔𝑛(�̇�𝑑)                   𝑝𝑒𝑟 𝑖 = 𝑎, 𝑝              (4.10) 

that is composed of two terms: the first one elastic, depending on the stiffness of the 

superstructure kd (given by the ratio 𝑚𝑑𝑔

𝑅
=

W

𝑅
), the second one frictional, dependent on the 

dynamic friction coefficient inside the FPS. This friction can be defined by the following 

formula: 

µ𝑑 = 𝑓𝑚𝑎𝑥 − (𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛)𝑒−𝛼|�̇�𝑑|                 (4.11) 
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Where the various terms have all been explained in detail in the third chapter. 

Since Fi and Fp are also dependent on displacements and velocities, we must also rewrite the 

equations according to the quantities in the relative field. It is also necessary to divide, both 

the elastic term and the frictional term for two, since the weight of the deck is distributed 

equally between the two structural parts, and therefore half the weight will be carried from the 

abutment and half from the pier. 

𝐹𝑝 =
𝑊

2𝑅
𝑣𝑑 + µ𝑑𝑝

𝑊

2
𝑠𝑔𝑛(�̇�𝑑)                    (4.12) 

𝐹𝑎 =
𝑊

2𝑅
(𝑣𝑑 + 𝑣𝑝1

+ ⋯+ 𝑣𝑝𝑛
) + µ𝑑𝑎

 
𝑊

2
𝑠𝑔𝑛(�̇�𝑑 + �̇�𝑝1

+ ⋯+ �̇�𝑝𝑛
)           (4.13) 

By combining these equations in one system, the following system can be written: 

[

𝑚𝑑 𝑚𝑑 … 𝑚𝑑

𝑚𝑑 𝑚𝑑 + 𝑚𝑝1
… 𝑚𝑑 + 𝑚𝑝1

⋮ ⋮ ⋱ ⋮
𝑚𝑑 𝑚𝑑 + 𝑚𝑝1

… 𝑚𝑑 + ∑𝑚𝑝𝑖

]

[
 
 
 
�̈�𝑑

�̈�𝑝1

⋮
�̈�𝑝𝑛]

 
 
 
+

[
 
 
 
𝑐𝑑 0 … 0
0 𝑐𝑝1

… 0

⋮ ⋮ ⋱ ⋮
0 0 … 𝑐𝑝𝑛]

 
 
 

[
 
 
 
�̇�𝑑

�̇�𝑝1

⋮
�̇�𝑝𝑛]

 
 
 
+  

 

+

(

 
 

 

[
 
 
 
𝑘𝑑 0 … 0
0 𝑘𝑝1

… 0

⋮ ⋮ ⋱ ⋮
0 0 … 𝑘𝑝𝑛]

 
 
 

+ [

0 1 … 1
1 1 … 1
⋮ ⋮ ⋱ ⋮
1 1 … 1

] (
𝑊

2𝑅
)

)

 
 

[

𝑣𝑑

𝑣𝑝1

⋮
𝑣𝑝𝑛

] + [

𝑊/2𝑅
0
⋮
0

] 𝑢𝑑 + [

1
0
⋮
0

] 𝜇𝑑𝑝

𝑊

2
 𝑠𝑔𝑛(�̇�𝑑) +  

 

+[

𝑊/2𝑅
0
⋮
0

] 𝑣𝑑 + 𝜇𝑑𝑎

𝑊

2
 𝑠𝑔𝑛 ([(

1
0
⋮
0

) �̇�𝑑 + (

0
1
⋮
0

) �̇�𝑑+⋯+ (

0
0
⋮
1

) �̇�𝑑]) =  

 

= − [

𝑚𝑑 𝑚𝑑 … 𝑚𝑑

𝑚𝑑 𝑚𝑑 + 𝑚𝑝1
… 𝑚𝑑 + 𝑚𝑝1

⋮ ⋮ ⋱ ⋮
𝑚𝑑 𝑚𝑑 + 𝑚𝑝1

… 𝑚𝑑 + ∑𝑚𝑝𝑖

] [

0
0
⋮
1

] �̈�𝑔                   (4.14) 

with 𝜇𝑑𝑝
∝ (�̇�𝑑), while 𝜇𝑑𝑎

∝ (|[(

1
0
⋮
0

) �̇�𝑑 + (

0
1
⋮
0

) �̇�𝑑+⋯+ (

0
0
⋮
1

) �̇�𝑑]|) .  

that can be written in compact form as follows: 
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[𝑀]{�̈�} + [𝐶]{�̇�} + ([𝐾] + [𝐾]1){𝑣}  + 𝐹𝑝 + 𝐹𝑎 = −[𝑀]{𝐼}�̈�𝑔             (4.15) 

By dividing the previous equations for the mass of the deck, the following dimensionless 

parameters can be identified: 

• Mass ratio:                         𝜆 =
𝑚𝑝

𝑚𝑑
             (4.16) 

• Relative damping of the deck:                 𝜉𝑑 =
𝑐𝑑

2𝑚𝑑𝜔𝑑
            (4.17) 

• Relative damping of the pier:   𝜉𝑝 =
𝑐𝑝

2𝑚𝑝𝜔𝑝
            (4.18) 

• Natural pulsation of the deck:   𝜔𝑑 = √
𝑘𝑑

𝑚𝑑
             (4.19) 

• Natural pulsation of the pier:   𝜔𝑝 = √
𝑘𝑝

𝑚𝑝
             (4.20) 

 

 

4.2 Modeling in MATLAB & Simulink® 

The simulation of the dynamic system studied in this thesis was possible thanks to the 

Simulink software (an internal application of the Matlab calculation program and produced by 

Mathworks Inc.), which extends the potential of Matlab, adding many specific functions and 

maintaining its general characteristics. Simulink is used in two phases: the first is the 

definition of the model to simulate, the second is the analysis of the system itself. So that the 

model definition is immediate, Simulink uses a windowed environment called “Block 

diagram windows”, through which models can be created simply by using the mouse. The 

analysis of the model takes place either by choosing the options from the Simulink menus or 

by reusing the commands through the Matlab Command Windows. The results of the 

simulation are available during the simulation phase itself and the result available in the 

Matlab Workspace. 

The (Figure 4.4) shows a simple example of a block diagram created in Simulink to solve 

a second order differential equation, that is the basis to implement the step by step integration 

of a n DOF system of dynamic equations. We can identify in the diagram the seismic input 

signal, which represents the history of the induced accelerations to the base of the analysed 

structure, the integrator blocks (in number equal to the order of the differential equation), 

which allow to trace the history of the system displacements, represented by the response 
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block. It is also possible to introduce some “gain” blocks, through which the system’s velocity 

and displacement histories, produced by the various “integrator” blocks, are multiplied by the 

entity set by the user in the respective dialog box: in the present case such entities are 

represented by the damping matrix and the stiffness matrix. In this way, the software package 

performs the step by step integration of the input signal and, at each step, makes that 

integration pass through its respective gains and cyclically comes back to the add block, 

returning the looked-for results. 

 

Figure 4.4: Second order differential equation solving within Simulink®. 

 

Taking into consideration the structure model and the relative equilibrium equations, seen 

in the previous paragraph, we can now describe the modeling of the pier-abutment interaction 

done within the MATLAB & Simulink® environment. In this work of thesis, the pier was 

modelled subdividing it into 5 masses (5 DOF), thus obtaining the total system with (5+1) 

DOF and considering the non-linearity of FPS devices (Figure 4.5). 

 

Figure 4.5: Mathematical model of (5+1) DOF pier-abutment interaction, implemented in a MATLAB & 
Simulink® environment. 
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The first phase of work consisted in writing a calculation code (script) in Matlab. This 

script contains the input data of the problem (variables and parameters), the algorithm for the 

calculation of stiffnesses and, furthermore, the construction and filling of all the matrices 

necessary for the resolution of the motion equations system takes place. Also, in the script are 

recalled and loaded files containing the seisms (ground motion records that are scaled within a 

function called by the script) and the coefficients of friction of the FPS. The second phase 

involved block modeling in the Simulink environment, where input data arrives, are 

processed, i.e. the system of non-linear equations is solved through a step by step integration, 

and finally the results are sent back to the script for final processing and for saving data. The 

analysis has been implemented with fixed input parameters, considering a fixed-step (ode3, 

step 0.0005 s) integration. 

The block model implemented in Simulink is shown in (Figure 4.6) and a brief 

explanation of its operation will be given. 

Starting from the left, there is the first block that represents the input signal, i.e. the 

accelerations (ag), to which a “Gain” block is applied that has the function of dividing it by 

the mass and therefore to make it be dimensionless in relation to it; the result is integrated in 

each cycle, two times in sequence through a step by step integration, obtaining first the 

velocity vector and then the displacement vector which is sent to the Matlab Work Space. At 

this point follow the following steps: 

1. The velocities vector dimensionless by the mass is directed to the Gain 2 block, which 

multiplies it by the damping matrix and directs it back to the starting system ("Add" 

block), and to the Gain 7, 8, 9, 13, 14, 15, 16 blocks, which multiply the velocity 

vector for the vector containing a single unit term (in the position corresponding to 

each DOF) and all the other nulls. These Gains blocks send the vectors to the set of 

blocks that reproduce the mechanics of the frictional behavior of the FPS isolator [25], 

with velocity dependent components. Respectively, the Gain 7 sends it to the first set 

of blocks for determining the frictional force of the pier side FPS, the Gain from 8 to 

16 send it to the second set of blocks for determining the FPS abutment side. Finally, 

the results come back into the cycle, adding to the initial Add block. 

2. The displacements vector dimensionless by the mass enters within the Gain 1 block 

which multiplies it by the total stiffness matrix and makes it re-enter within the cycle, 

and in the Gain 5 and 11 blocks which multiply them by the elastic terms of the forces 
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of the FPS, going therefore to determine respectively the elastic force of the FPS on 

the pier and the elastic force of the FPS on the abutment. 

 

 

Figure 4.6: Model implemented in the MATLAB & Simulink® environment of the 6+1 DOF pier - abutment 
interaction. 

 

 

 

4.3 Parametric study 

In the present study, 172.800 non-linear dynamic simulations were launched in the 

MATLAB & Simulink® environment, obtaining as many different structural responses for the 

superstructure (deck) and the substructure (pier and abutment). To do this, several parameters 

were taken into consideration, both deterministic and random, and a Matlab code was created, 

set up with various “for” cascade cycles. The control parameters used have been selected 

among the various values reported in the literature and are reported in detail below. 
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4.3.1 Sliding friction coefficient as a random parameter 

The experimental data developed by [19], [20], [21] on sheet type Teflon bearings, as 

described in Chapter 3, have pointed out that friction is a complex  phenomenon, not 

complying with the Coulomb friction law (friction constant during sliding) and several 

mechanisms (such as sliding velocity, normal load, temperature effects, number of cycles) 

contribute to its variability and can modify its statistical values under dynamic conditions 

showing a very high uncertainty within the range considered. 

Recalling the formula of friction, rewritten in terms of relative displacements: 

µ𝑑 = 𝑓𝑚𝑎𝑥 − (𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛)𝑒−𝛼|�̇�𝑑|                (4.21) 

in this thesis, it is chosen to model the friction coefficient at high speed, fmax, as a random 

variable with a function of Gaussian probability density (PDF), whose interval chosen for the 

characterization of this parameter is between 0.5% and 5.5% with an average value equal to 

3% (Figure 4.7). Moreover, the friction coefficient at low velocities, fmin, is also a random 

variable, correlated in this study to fmax through the relation fmin = fmax/3, while for α is 

assumed a value of 30, based on regression of the experimental results [19], [20], [21]. 

 

 

Figure 4.7: Gaussian probability density function of the fmax variable. 

 

Starting from the probability density functions of the random variable, the Latin Hypercube 

Sampling (LHS) method, developed by Mckay et al. [14], widely employed in many 

literatures works [26], [27], has been used as a stratified sampling technique to generate the 
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input data samples of the structural models, by sampling 15 values from PDF and perform the 

non-linear dynamic analyses. 

 

 

4.3.2 Deterministic structural parameters 

They have been analysed 720 different types of bridges, obtained by the combination of 

the deterministic structural parameters (Table 4.1) with 15 random values of sliding friction 

coefficient, which characterize the bridge and the isolation level. 

 

Table 4.1: Deterministic structural parameters values. 

Tp [s] Td [s] λ [-] 

0.05 1 0.1 

0.1 2 0.15 

0.15 3 0.2 

0.2 4  

 

It is noteworthy that, from the fundamental period of the pier Tp with top free condition, 

we can obtain the height of the pier, going to invert the following formula [24]: 

𝑇𝑝 = √
�̅�𝑝ℎ4

𝐸𝐼
⋅

2𝜋

(1.875)2
                    (4.21) 

where �̅�𝑝 is the mass per unit length, ℎ is the height and 𝐸𝐼 is the flexural rigidity of the pier. 

Equation (4.21) is based on the fundamental period of a uniform cantilever beam under 

transverse vibrations. 

 

 

4.3.3 Seismic parameters 

An essential necessity for the scientific community is to define models as much as 

possible realistic of the seismic action to be used in the field design; considering the non-

linear dynamic analyses as the only acceptable means to establish the reliability of the 

structures subject to seismic excitations, then the latter must necessarily be representative of 
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the site seismicity, appropriately justified on the basis of the seismogenic characteristics of the 

source, at the site conditions recording, at the magnitude, at the distance from the source and 

at the maximum horizontal acceleration expected at the site. In general, the limit states, as 

evidenced also by NTC08, can be verified using accelerograms, which can be recorded (or 

natural), synthetic (or simulated), or artificial, defined as follows: 

• Recorded or natural accelerograms: are recordings of natural events readily available 

in the databases of recognized research institutions; 

• Synthetic or simulated accelerograms: are generated through a modeling, carried out 

with both deterministic and stochastic methods, capable of simulating the effects of 

connected physical processes to the motion of the ground: genesis of the earthquake, 

wave propagation and surface response of the site under investigation. The evolution 

of this modeling over the years has been remarkable, even if their application is 

complex, as it requires the definition of a number elevated parameters for the 

characterization of ground seismic motion not always easy to determine. 

• Artificial accelerograms, or sample functions (realizations) of a random process based 

for example on "Random Vibration Theory". 

 

In this study, 30 natural ground motion records with only horizontal components, deriving 

from 19 different seismic events, have been taken in consideration (as indicated by NTC08). 

These ground motion records were taken from the banks given online websites: Pacific 

Earthquake Engineering Research Center (PEER, 2016) [28]; Italian Accelerometric 

Company (ITACA, 2016) [29]; Internet Site for European Strong Motion Data (ISESD, 2016) 

[30]. The characteristics of the selected ground motion records are reported in (Table 4.2), 

while the (Figure 4.8) shows the pseudo-acceleration elastic response spectra Spa(T) of the 

unscaled records versus the vibration period T. Their greatest source-to-site distance (R) is 

98.2 km, their moment magnitude (M) varies in the range between 7.6 and 6.0, and their 

PGA, between 0.13 and 0.94 g. 

 

 

 

 

 



4. DYNAMICS OF ISOLATED BRIDGES WITH FPS 

100   

 
Table 4.2: Selected ground motion records characteristics. 

 

 

 

 

Figure 4.8: Pseudo-acceleration response spectrum for the unscaled records. 
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On the other hand, 8 values for the intensity measures (IM) have been assumed and a 

selected spectral parameter coinciding with Sd(Td) has been chosen as IM parameter (Table 

4.3), regarding which to scale the 30 ground motion records. 

 

Table 4.3:Selected intensity measures, Sd(Td) 

Intensity 1 2 3 4 5 6 7 8 

Sd(Td) (m) 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 

 

The IM parameters have been chosen respecting the following three properties: 

1. Efficiency: an IM is efficient if the variability of the structural response, 

expressed by the dispersion of the damage level for each assigned value of 

IM, is lower than a value considered acceptable. The choice of a more 

efficient IM compared to another allows to obtain a reduction in the 

number of analyses to be performed without losing in terms of accuracy of 

the estimate. This is one of the reasons why, generally, the PGA is not used 

as a parameter of seismic intensity IM, especially in the case of very 

flexible structures, preferring instead the spectral ordinate to the period of 

an elastic SDOF system, chosen as representative of the structure, even if 

studied with non-linear dynamic analyses, to obtain a lower dispersion on 

the response. Moreover, in structural analyses, IMs are not used at the 

source, but at the construction site, as they are more efficient than those 

that characterize the signal at great distances from the site. 

2. Scaling robustness: an IM is robust to scaling if the accelerogram scaled to 

that determined intensity measure not observed, produces the same effects 

in terms of structural response that would produce a not scaled 

accelerogram having "naturally" that determined intensity measure. 

3. Sufficiency: an IM is sufficient if, and only if, the information that IMs 

consider in relation to the structural response, does not increase if we add 

information about the magnitude, the distance of the earthquake or any 

other characteristics of the seismic signal that caused that intensity 

measure. The IM must be sufficient with respect to all the variables that 

appear in the integral of hazard: if, for example, we want to evaluate the 
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energy dissipated during a seismic event in a structure, we cannot consider 

in the analysis an intensity measure coinciding with the PGA or with the 

spectral ordinates, since such IMs do not take into account any information 

regarding the duration of the excitation (factor on which the dissipated 

energy strongly depends). 
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CHAPTER 5 

5. SEISMIC RELIABILITY ANALYSIS OF ISOLATED 

BRIDGES WITH FPS 

 

 

Bridges are key elements of transportation systems. Previous seismically induced damages 

to these structures, the significant cost of reconstruction and the need to bridges’ immediate 

operation revealed the necessity of seismic vulnerability assessment of them according to 

performance-based earthquake engineering philosophy. Such methodology requires accurate 

prediction of seismic capacity of the bridges and seismic demand associated to them. To 

achieve this goal, a newly born analysis method, called Incremental Dynamic Analysis (IDA), 

has been proposed by Vamvatsikos and Cornell [31].  

In the current study, IDA is applied to reach the relationship between the seismic capacity 

and the demand of the structure and evaluate the structural performance accurately. IDA 

curves provide appropriate result formats which may be used to estimate the annual average 

frequency of exceeding predefined damage states and develop fragility curves of the bridges. 

Moreover, they may be integrated with hazard curves in order to evaluate the seismic 

reliability of the structure. 

 

 

5.1 Incremental dynamic analysis (IDA) 

The first step in determining the seismic reliability of isolated bridges with FPS is the 

development of incremental dynamic analyses (IDA) [31]. The pier-abutment structural 

systems, with (5+1) degree of freedom (DOF), were analysed combining the deterministic 

structural parameters, Tp, Td and 𝜆, with each value of the statistical sample of the coefficient 

of friction, μd. Furthermore, the damping coefficients for the deck 𝜉𝑑 (coinciding with the 

damping coefficient of the devices) and for the pier 𝜉𝑝, were assumed respectively equal to 

0% and 5%. The damping coefficient 𝜉𝑑 is considered equal to zero, consistently with other 
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works which assume that friction is the only source of damping in the isolators [35], [38]. 

Finally, considering the periods of the pier and the deck listed in (4.3.12), we obtain degree of 

isolation values (𝛱𝜔 = 𝜔𝑝 𝜔𝑑⁄ ) between 5 (rigid superstructure) and 80 (flexible 

superstructure). 

Therefore, non-linear dynamic analyses were performed by subjecting each structural 

model to 30 seismic records in MATLAB & Simulink® [32], scaled to eight intensity measure 

values (spectral displacement corresponding to the fundamental period of the structure) within 

the incremental dynamic analysis, through the following scale factor: 

𝑆𝐹 =
𝐼𝑀𝑡𝑎𝑟𝑔𝑒𝑡

𝐼𝑀
=

𝑆𝑑,𝑡𝑎𝑟𝑔𝑒𝑡(𝑇𝑑)

𝑆𝑑(𝑇𝑑)
            (5.1) 

In this way, we obtained 30 ground motion records having the same "shape" as the starting 

ones, but that in correspondence of the Td period all return the same displacement Sd,target. This 

procedure is not strictly necessary but helps to ensure that the spectra of the individual ground 

motion records are like the reference spectrum, at least around the fundamental vibration 

period of the superstructure. This helps to reduce the variability of the seismic response of the 

structure from record to record, which means to be able to evaluate the behavior of the 

structure, conditioned to the value of the design spectrum at that period, with less uncertainty, 

with the same number of analyses [34]. Moreover, with this procedure, we obtain structural 

responses independent of the seismic hazard in terms of Magnitude (M) and Distance (R) 

[33], i.e. we have separated the uncertainties related to the intensity of seismic input from 

those relative to the characteristics of the records. 

To evaluate the seismic damage, as well as by common design practice and as indicated in 

the literature, it was decided to use the time history of the relative displacements of the 

superstructure, in correspondence of the pier (𝑢𝑑) and of the abutment (𝑢𝑑,𝑎𝑏𝑢𝑡), and the time 

history of the absolute displacement of the pier (𝑢𝑝), taken with their maximum values. In this 

way a cartesian plane was constructed, in which the values of the IM parameter (Sd) on the 

abscissa axis and the values of the EDP (Engineering Demand Parameter) on the ordinate axis 

have been reported, obtaining for each of the 8 values of the IM, 450 different values of the 

EDP, obtained by subjecting each of the 15 μd belonging to the statistical sample to 30 

different ground motion records, scaled from time to time for a precise value of Sd,target. 

For a fixed spectral intensity, we obtain a sample of data that can be thought to be 

extracted from a lognormal distribution. This assumption permits to estimate, with a limited 
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number of samples, the response at different percentile levels, which is very useful for system 

reliability assessment. It also permits to obtain a closed-form analytical estimate of the 

seismic risk [37]. The sample of data, consisting of structural responses, therefore represents 

the request for performance (in terms of displacement) of the superstructure and substructure, 

i.e. the Seismic Demand. The lognormal distribution can be adapted to each response 

parameter by estimating the sample geometric mean, GM(EDP), and the sample lognormal 

standard deviation, or dispersion, σln(EDP). Knowing the sample lognormal mean and the 

dispersion it is possible to determine the values of the 50th, 84th and 16th percentile of each 

lognormal distribution [35]. Therefore, the statistical parameters and each percentile are 

calculated from the results of 450 simulations (15 values of the coefficient of friction 

combined with the 30 seismic records) for each intensity measure level considered. The IDA 

results of the deck (at the pier and abutment) and of the pier are plotted in (Figure 5.1-12) 

versus the intensity measure; each figure contains several curves, corresponding to the 

different percentile and λ values. 

The (Figure 5.1-5.4) show the IDA curves relative to the maximum deck displacement, 

ud,max. For low Tp values the influence of λ is almost nothing, while for medium-high values 

the variability of this parameter causes slight deviations in the structural response, which tend 

to decrease with increasing Td. The lognormal mean of the structural response decreases with 

the increase of Td; this happens because resonance phenomena occur, since the values of the 

pendulum period are very low, which make the structural response result greater for low 

values of the deck period. On the other hand, the dispersion remains approximately constant. 

The (Figure 5.5-5.8) show the IDA curves relative to the maximum deck (abutment) 

displacement, ud,abut,max, which reflect a very similar trend to the previous ones. 

Finally, the (Figure 5.9-5.12) show the IDA curves relative to the maximum pier 

displacement, up,max. In this case, the structural response decreases with increasing Td and λ, 

and there is a higher variability when the latter parameter changes, which decreases with 

increasing Td and Tp, i.e. with increasing structural flexibility. As for the dispersion, instead, it 

tends to increase with increasing of the deck flexibility. 
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Figure 5.1:IDA curves of the deck for p=0.05 and Td =1s (a), Td =2s (b), Td =3s (c), Td =4s (d). 
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Figure 5.2: IDA curves of the deck for p=0.10 and Td =1s (a), Td =2s (b), Td =3s (c), Td =4s (d). 
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Figure 5.3: IDA curves of the deck for p=0.15 and Td =1s (a), Td =2s (b), Td =3s (c), Td =4s (d). 
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Figure 5.4: IDA curves of the deck for p=0.20 and Td =1s (a), Td =2s (b), Td =3s (c), Td =4s (d). 
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Figure 5.5: IDA curves of the deck (abutment) for p=0.05 and Td =1s (a), Td =2s (b), Td =3s (c), Td =4s (d). 
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Figure 5.6: IDA curves of the deck (abutment) for p=0.10 and Td =1s (a), Td =2s (b), Td =3s (c), Td =4s (d). 
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Figure 5.7: IDA curves of the deck (abutment) for p=0.15 and Td =1s (a), Td =2s (b), Td =3s (c), Td =4s (d). 
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Figure 5.8: IDA curves of the deck (abutment) for p=0.20 and Td =1s (a), Td =2s (b), Td =3s (c), Td =4s (d). 
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Figure 5.9: IDA curves of the pier for p=0.05 and Td =1s (a), Td =2s (b), Td =3s (c), Td =4s (d). 
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Figure 5.10: IDA curves of the pier for p=0.10 and Td =1s (a), Td =2s (b), Td =3s (c), Td =4s (d). 
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Figure 5.11: IDA curves of the pier for p=0.15 and Td =1s (a), Td =2s (b), Td =3s (c), Td =4s (d). 
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Figure 5.12: IDA curves of the pier, for p=0.20 and Td =1s (a), Td =2s (b), Td =3s (c), Td =4s (d). 
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5.2 Seismic fragility analysis 

Once the non-linear dynamic analyses have been performed, the second step for the 

evaluation of seismic reliability of seismically isolated bridges with FPS devices, is the 

evaluation of the seismic fragility of the structure. The seismic fragility can be defined as the 

probabilities Pf exceeding different limit states at each level of the intensity measure (IM). For 

this reason, the limit state thresholds need to be defined.  

The Limit States related to the isolation system have been defined, in terms of not 

exceeding of nine different values of the in-plan radius, r, of the FPS devices ud,max = r[m] and 

ud_abut,max = r[m] (Table 5.1). 

 

Table 5.1: Radius in plan values of FPS related to the different limit states. 

Limit State 1 2 3 4 5 6 7 8 9 

r[m] 0,10 0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 

 

While, about the substructure (pier), Pier Drift Index (PDI) have been defined as 

Performance Objectives, starting from the 4 Performance Limit States. As can be seen in the 

tables below, the International Standard (FEMA 274) [6] requires performance for the 

isolated bridges (PDIIB) equal to 1/3 of the performance relative to the non-isolated bridge, 

PDI, (Table 5.2): 

 

Table 5.2: Performance Limit States for isolated bridges (Fema 274). 

Limit State PDI PDIIB 

LS1 Fully Operational PDI=0,7% PDIIB=0,23% 

LS2 Operational PDI=1,5% PDIIB=0,5% 

LS3 Life Safety PDI=2,5% PDIIB=0,83% 

LS4 Near collapse PDI=5% PDIIB=1,67% 

 

In this thesis, all the above-mentioned Limit States, related to both substructure and 

superstructure, are assumed to be deterministic. 
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Once the Limit States have been defined, we can proceed with the calculation of the 

Probability of failure (Pf) of the EDP value, associated to each Limit State, which is 

represented by the complement to 1 of the value of the Cumulative Distribution Function 

FEDP|IM=im* of not exceeding the prefixed limit value, and represents a point in the fragility 

curve relative to that given Limit State. Therefore, the probability of failure, Pf, for an 

intensity measure level, IM = im*, related to the isolation level and the substructure, can be 

defined, respectively, as: 

𝑃𝑓(𝑖𝑚) = 𝑃[𝐷𝑀 ≥ 𝐿𝑆𝑑,𝑖|𝐼𝑀 = 𝑖𝑚∗]          (5.2) 

𝑃𝑓(𝑖𝑚) = 𝑃[𝐷𝑀 ≥ 𝐿𝑆𝑝,𝑖|𝐼𝑀 = 𝑖𝑚∗]          (5.3) 

where DM is the Damage Measure, that corresponds to the radius in plan for the isolation 

system, to the Pier Drift Index for the substructure. 

Considering a level of intensity IM = im** > im*, the probability distribution fEDP|IM=im** 

is shifted to right respect to fEDP|IM=im*, and at the same Limit State remains associated with it 

a greater Probability of failure and a new point in the Fragility plane [Sd-Pf]; continuing this 

process for all the IM≡Sd intensity levels chosen for the analyses and for all the Limit States 

considered, the tracing of the fragility curve is completed. The points that identify the fragility 

curves for each Limit State were then approximated by a lognormal distribution, through the 

following procedure: 

• For each Limit State, the standard normal variable ur was calculated associated 

with the ith point of the fragility curve;  

• On the lognormal plane, in which the logarithm of the seismic intensity in the 

abscissas and the variable ur in the ordinates are reported, the linear regression 

curve is determined, which identifies the fragility curve corresponding to the 

considered Limit State. From this regression the form parameters of the probability 

law are obtained. In fact, the regression equation is of the type: 

𝑢𝑟 = 𝑎 ∙ ln(𝑆𝑑) + 𝑏           (5.4) 

Considering that the lognormal distribution of x is equivalent to a Gaussian 

distribution of variable y=ln(x) of parameters λy and σy, representative respectively 

of mean and standard deviation of y, introducing: 

𝑢𝑟 =
𝑦−λ𝑦

σ𝑦
             (5.5) 
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we can obtain: 

σ𝑦 =
1

𝑎
             (5.6) 

λ𝑦 = −
𝑏

𝑎
             (5.7) 

• With the parameters found, the probability of failure may be calculated: 

𝑃𝑓 = 1 − Ф[
ln (λ𝑦|𝐿𝑆𝑖)

σ𝑦
]           (5.8) 

where Ф is the Cumulative Distribution Function operator. 

 

 

5.2.1 Seismic fragility curves 

The (Figure 5.13-5.24) show the fragility curves of each structural model (therefore with 

the variation of the dynamic characteristics Tp and Td) referring to the isolation level (deck, at 

the pier and abutment) and the substructure (pier), for each State Limit and each value of the 

λ. Generally, the seismic fragility decreases for increasing the limit state thresholds. 

Moreover, it can be seen how these curves reflect the same trend of the IDA curves; fragility 

(vulnerability) decreases as the fundamental period of vibration, Td, increases. 

In the fragility curves of isolation system at the pier (Figure 5.13-16) and abutment 

(Figure 5.17-20), the influence of λ is almost nothing for low values of Tp, while for medium-

high values of this latter the variability of λ causes slight deviations in the structural response, 

which tend to decrease with increasing Td.  

On the other hand, in the fragility curves of the pier (Figure 5.21-24) there is a higher 

variability with the variation of λ , and the pier results less fragile (vulnerable) when this 

parameter increase. Therefore, for low Tp values and medium-high Td values, we can see how 

the probability of failure assume negligible values, due to the high rigidity that characterizes 

the substructure and the low seismic demand of the superstructure. 
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Figure 5.13: Fragility curves of the deck for p=0.05 and Td=1 s (a), Td =2s (b), Td =3s (c), Td =4s (d). 
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Figure 5.14: Fragility curves of the deck for p=0.10 and Td =1s (a), Td =2s (b), Td =3s (c), Td =4s (d). 



5. SEISMIC RELIABILITY ANALYSIS OF ISOLATED BRIDGES WITH FPS 

116   

 
 

 
 

P f
 (d

ec
k)

 [-
]  

 

SD(Td) [m] 

a) 
λ=0.10 
λ=0.15 
λ=0.20 

LS1 

LS9 

 

 
 

 
 

P f
 (d

ec
k)

 [-
]  

 

SD(Td) [m] 

b) 
λ=0.10 
λ=0.15 
λ=0.20 

LS1 

LS9 

 

 
 

 
 

P f
 (d

ec
k)

 [-
]  

 

SD(Td) [m] 

c) 
λ=0.10 
λ=0.15 
λ=0.20 LS1 

LS9 

 

 
 

 
 

P f
 (d

ec
k)

 [-
]  

 

SD(Td) [m] 

d) 
λ=0.10 
λ=0.15 
λ=0.20 

LS1 

LS9 

 

Figure 5.15: Fragility curves of the deck for p=0.15 and Td =1s (a), Td =2s (b), Td =3s (c), Td =4s (d). 
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Figure 5.16: Fragility curves of the deck for p=0.20 and Td =1s (a), Td =2s (b), Td =3s (c), Td =4s (d). 
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Figure 5.17: Fragility curves of the deck(abut.) for p=0.05 and Td =1s (a), Td =2s (b), Td =3s (c), Td =4s (d). 

 
 

 
 

P f
 (d

ec
k,

 a
bu

tm
en

t) 
[-

]  

SD(Td) [m] 

a) 
λ=0.10 
λ=0.15 
λ=0.20 

LS1 

LS9 

 

 
 

 
 

P f
 (d

ec
k,

 a
bu

tm
en

t) 
[-

]  

SD(Td) [m] 

b) 
λ=0.10 
λ=0.15 
λ=0.20 

LS1 

LS9 

 

 
 

 
 

P f
 (d

ec
k,

 a
bu

tm
en

t) 
[-

]  

SD(Td) [m] 

c) 
λ=0.10 
λ=0.15 
λ=0.20 

LS1 

LS9 

 

 
 

 
 

P f
 (d

ec
k,

 a
bu

tm
en

t) 
[-

]  

SD(Td) [m] 

d) 
λ=0.10 
λ=0.15 
λ=0.20 

LS1 

LS9 

 

Figure 5.18: Fragility curves of the deck (abut.) for p=0.10 and Td =1s (a), Td =2s (b), Td =3s (c), Td =4s (d). 
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Figure 5.19: Fragility curves of the deck (abut.) for p=0.15 and Td =1s (a), Td =2s (b), Td =3s (c), Td =4s (d). 
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Figure 5.20: Fragility curves of the deck (abut.) for p=0.20 and Td =1s (a), Td =2s (b), Td =3s (c), Td =4s (d). 
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Figure 5.21: Fragility curves of the pier for p=0.05 and Td =1s (a), Td =2s (b), Td =3s (c), Td =4s (d). 
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Figure 5.22: Fragility curves of the pier, for p=0.10 and Td =1s (a), Td =2s (b), Td =3s (c), Td =4s (d). 
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Figure 5.23: Fragility curves of the pier for p=0.15 and Td =1s (a), Td =2s (b), Td =3s (c), Td =4s (d). 
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Figure 5.24: Fragility curves of the pier for p=0.20 and Td =1s (a), Td =2s (b), Td =3s (c), Td =4s (d). 
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5.3 Site seismic hazard 

The seismic hazard curve of a site λs(s), provides the annual mean frequency of exceeding 

of the s value by a quantity representative of the local seismic intensity S. The seismic 

intensity can be expressed in terms of PGA or a spectral ordinate corresponding to the 

fundamental period of the structure subject of study. 

In the present thesis work, the site considered for the evaluation of the local seismic 

hazard is the L'Aquila city (Italy), with geographic coordinates 42°38’49’’N 13°42’25’’E, 

ID:26306, and the seismic intensity will be expressed in terms of spectral displacement Sd. 

Through the “INPV DPC-INGV-S1” Project of the INGV [36], which considers as a 

representative parameter of the local seismic intensity the PGA, it was possible to detect nine 

values of the latter, respectively at 16th, 50th and 84th percentile. To each value of PGA is 

associated the Probability of exceeding (PVR) in 50 years and an annual mean frequency of 

exceeding (λs) (Table 5.3), therefore nine Periods of Return, TR, since the following relation is 

valid: 

λ𝑠(𝑠𝑖) =
1

𝑇𝑅,𝑖
    with   i = 1, ..., 9         (5.9) 

where 𝑠𝑖 is the value of the S intensity at the ith TR: 𝑠𝑖 = 𝑆(𝑇𝑅,𝑖) 

 

Table 5.3: L’Aquila: PGA values at 50th, 16th and 84th percentiles, in function of the nine return periods 

considered by INGV. 

PVR [-] TR [years] λs [years-1] PGA (16th) [g] PGA (50th) [g] PGA (84th) [g] 

2% 2475 0.0004 0.4098 0.4522 0.5227 

5% 975 0.0010 0.3031 0.3341 0.3674 

10% 475 0.0021 0.2378 0.2608 0.2844 

22% 201 0.0050 0.1736 0.1906 0.2038 

30% 140 0.0071 0.1510 0.1640 0.1754 

39% 101 0.0099 0.1309 0.1424 0.1535 

50% 72 0.0139 0.1111 0.1226 0.1318 

63% 50 0.0199 0.0919 0.1041 0.1115 

81% 30 0.0332 0.0680 0.0789 0.0871 
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The hazard curves, in terms of PGA for each percentile, are represented in (Figure 5.25). 

 

 

Figure 5.25: Seismic hazard curve in terms of PGA for L'Aquila site (Italy). 

 

In addition, the parameters 𝐹0 and 𝑇𝑐
∗ are also provided by the "INPV DPC-INGV-S1" 

Project, which are a function of the Return Period, TR, only and do not vary with the 

percentile used for the PGA. In this way, starting from the hazard curves in terms of PGA it 

was possible to calculate the elastic response spectrum in terms of displacement of the 

horizontal component of the seismic excitation, at the 50th percentile, for the 4 fundamental 

periods of the isolated superstructure (Td = 1,2,3,4 s) and the mean hazard curves �̅�𝑠 (defined 

in 9 points) were also calculated, which are obtained by multiplying the median curve 𝜆𝑠 by 

an amplification factor: 

�̅�𝑠(𝑠) = 𝜆𝑠(𝑠)𝑒𝑥𝑝 (
1

2
𝛽𝐻

2)                   (5.10) 

The parameter 𝛽𝐻   is evaluated with the following expression: 

𝛽𝐻 =
𝑙𝑛(𝑆84%)−𝑙𝑛(𝑆16%)

2
                    (5.11) 

and it allows to estimate the epistemic uncertainty on the hazard. 𝑆84% and 𝑆16% represent the 

spectral displacements evaluated at 84th and 16th percentile respectively. 
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At this point, a quadratic function has been adapted in the logarithmic space ln(�̅�𝑠(𝑠))-ln(S), 

of the type: 

𝑙𝑛 (�̅�𝑠(𝑠)) = 𝑘1(𝑙𝑛 (𝑆)2) + 𝑘2(𝑙𝑛 (𝑆)) + 𝑘3                (5.12) 

and therefore, the relation in the linear space is determined: 

�̅�𝑠(𝑠) = 𝑒𝑥𝑝 ∙ (𝑘1 (𝑙𝑛(𝑆))2 + 𝑘2 𝑙𝑛(𝑆) + 𝑘3)                (5.13) 

Obtaining the hazard curves (Figure 5.26) for the 4 structural periods above. 
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Figure 5.26: Seismic hazard curve in terms of Sd for the four structural periods (Td), for the site of L'Aquila. 

 

 

5.4 Seismic reliability analysis 

According to the Pacific Earthquake Engineering Research (PEER) Center modular 

approach, and with the aim to assess the seismic reliability of both the isolation level and the 

substructure, the mean annual rates exceeding the corresponding limit states, 𝜆𝐿𝑆, have to be 

evaluated through the integration between the fragility curves and the seismic hazard curve, 

expressed in terms of the same IM, related to the reference site: 
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𝜆𝐿𝑆 = ∫𝑃𝑓(𝑠) ⋅ |
𝑑�̅�𝑠(𝑠)

𝑑(𝑠)
| 𝑑(𝑠)                  (5.14) 

Which can be approximated, using the Law of Total Probability, with the following sum: 

𝜆𝐿𝑆 ≅ ∑ 𝑃𝑓(𝑠𝑖) ⋅ |𝜆𝑖|
𝑛
𝑖=1                    (5.15) 

In which the sum is extended to a number n of points such as to make the estimate stable. 

Next, the mean annual rates of both the superstructure and substructure, 𝜆𝐿𝑆, have to be 

transformed into probabilities of exceedance within the time frame of interest (e.g., 50 years) 

by using a Poisson distribution [8] (Table 5.4) 

𝑃𝑓(50𝑦𝑒𝑎𝑟𝑠) = 1 − 𝑒−𝜆𝐿𝑆⋅50𝑦𝑒𝑎𝑟𝑠                  (5.16) 

 

Table 5.4: PDI for isolated bridges, related to the different LSs and with reference to the acceptable Pf
*. 

Limit State Pier drift index (PDI) Acceptable Probability of 
failure (Pf*) 

LS1 Fully Operational 0.23 % 5⋅10-1 

LS2 Operational 0.5 % 1.6⋅10-1 

LS3 Life Safety 0.83 % 2.2⋅10-2 

LS4 Near collapse 1.67 % 1.5⋅10-3 

 

Thus, obtaining the Reliability curves valid for the superstructure and the substructure, which 

show the probabilities of excess of each Limit State over a period of 50 years. 

 

 

5.4.1 Reliability curves of the Pier 

The following (Figure 5.27) show the reliability curves valid for the substructure. These 

curves were derived in the Limit States Pier - Probability of failure LSi plane by fixing the 

vibration period of the deck (Td) and varying the pier period (Tp) and the mass ratio (λ). 

From the results it can be noticed that the last limit state (Life Safety) is not respected; this 

is because the limit states taken into consideration for the pier are very stringent and 

performing (equal to 1/3 of the standard ones). More flexible piers, therefore with medium-

high Tp values, may exceed the limit state due also to the randomness of the friction 
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coefficient. On the other hand, an increase in the vibration period of the FPS devices leads to 

an increase in seismic demand in the pier. 
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Figure 5.27: Reliability curves of the pier for Td =1s (a), Td =2s (b), Td =3s (c), Td =4s (d). 

 

 

5.4.2 Reliability curves of the Deck 

The following figures show the reliability curves valid for the isolation level, pier side 

(Figure 5.28) and abutment side (Figure 5.29). These curves were derived in the Limit States 

Isolation Level - Probability of failure LSi plane by fixing the vibration period of the deck, Td, 

and varying the pier period, Tp, and the mass ratio, λ. 

The reliability analysis results revealed that the isolating system is seismically less reliable 

as its fundamental period, Td, (and thus the curvature radius of the FP isolators) increases, 

since higher and higher failure probabilities correspond to the same limit state. 
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Figure 5.28: Reliability curves of the deck for Td =1s (a), Td =2s (b), Td =3s (c), Td =4s (d). 

 
 

 
 

P f
 [-

] (
50

 y
ea

rs
)  

 

r [m] 

a) 

λ=0.10 
λ=0.15 

λ=0.20 

Tp=0.20s 
 

Tp=0.10s 
 Tp=0.15s 
 

Tp=0.05s 

 

 
 

 
 

P f
 [-

] (
50

 y
ea

rs
)  

 

r [m] 

b) 

λ=0.10 
λ=0.15 

λ=0.20 

Tp=0.20s 
 

Tp=0.10s 
 Tp=0.15s 
 

Tp=0.05s 

 

 
 

 
 

P f
 [-

] (
50

 y
ea

rs
)  

 

r [m] 

c) 

λ=0.10 
λ=0.15 

λ=0.20 

Tp=0.20s 
 

Tp=0.10s 
 Tp=0.15s 
 

Tp=0.05s 

 

 
 

 
 

P f
 [-

] (
50

 y
ea

rs
)  

 

r [m] 

d) 

λ=0.10 
λ=0.15 

λ=0.20 

Tp=0.20s 
 

Tp=0.10s 
 Tp=0.15s 
 

Tp=0.05s 

 
Figure 5.29: Reliability curves of the deck (abutment) for Td =1s (a), Td =2s (b), Td =3s (c), Td =4s (d). 
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5.4.3 Seismic Reliability-Based Design (SRBD) abacuses 

The reliability curves obtained for the isolation level were then processed in a 

semilogarithmic plane and interpolated with a linear regression law. In this way we obtained 

regression lines (with an average coefficient of determination equal to R-square = 0.998 

which demonstrates the goodness of the way in which the observed results are replicated by 

the model), which represent the seismic reliability-based design (SRBD) abacuses, that can be 

used for the preliminary design of the dimensions in plan (i.e., radius in plan, r, of the concave 

surface) of the friction pendulum devices, depending on structural properties in an area with a 

seismic hazard similar to that considered, in order to respect the expected reliability level.  

Following are represented the linear regressions of the reliability curves, valid for the 

isolation level, pier side (Figure 5.30), and abutment side (Figure 5.31), for the 4 periods of 

the deck, Td, used. From the results we can see how the demand for isolation is higher for 

medium-high values of Td; in particular, the exceeding of the probability Pf = 1.5⋅10-3 

(relative to the limit state of collapse) is reached through a radius in plant, r, ranging from 

0.15m (for low Td values) to 0.60 for (for high Td values), depending on the values of 

structural properties. In the design phase, it is therefore convenient to adopt Td values not too 

high. 
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Figure 5.30: FPS Design Abacuses of the deck for Td =1s (a), Td =2s (b), Td =3s (c), Td =4s (d). 

 
 

 
 

P f
 [-

] (
50

 y
ea

rs
)  

 

r [m] 

a) 

λ=0.10 
λ=0.15 

λ=0.20 

Tp=0.20s 
 

Tp=0.10s 
 Tp=0.15s 
 

Tp=0.05s 

 

 
 

 
 

P f
 [-

] (
50

 y
ea

rs
)  

 

r [m] 

b) 

λ=0.10 
λ=0.15 

λ=0.20 

Tp=0.20s 
 

Tp=0.10s 
 Tp=0.15s 
 

Tp=0.05s 

 

 
 

 
 

P f
 [-

] (
50

 y
ea

rs
)  

 

r [m] 

c) 

λ=0.10 
λ=0.15 

λ=0.20 

Tp=0.20s 
 

Tp=0.10s 
 Tp=0.15s 
 

Tp=0.05s 

 

 
 

 
 

P f
 [-

] (
50

 y
ea

rs
)  

 

r [m] 

d) 

λ=0.10 
λ=0.15 

λ=0.20 

Tp=0.20s 
 

Tp=0.10s 
 Tp=0.15s 
 

Tp=0.05s 

 
Figure 5.31: FPS Design Abacuses of the deck (abutment) for Td =1s (a), Td =2s (b), Td =3s (c), Td =4s (d). 
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CHAPTER 6 

6. CONCLUSIONS 

 

 

The seismic reliability of a (5+1) degree-of-freedom bridge model, isolated by single 

concave sliding bearings has been assessed. The evaluation was made through the execution 

of 172,800 nonlinear dynamic parametric analyses, considering 30 natural seismic records, 

scaled to eight intensity measures (IM), and considering the dynamic friction coefficient of 

the Friction Pendulum devices as a random parameter. The parametric analysis has been 

carried out by varying both these variables and the main dynamic characteristics of the 

system, i.e. the vibration periods of the pier, Tp, and of the isolating system Td, and the ratio 

between the pier and deck masses, i.e., mass ratio, λ. 

The structural model has been simulated through an algorithm implemented in the 

MATLAB&Simulink® computing software and the analyses have been implemented 

considering a fixed-step integration. The estimates of the response statistics obtained for each 

parameter combination reflected the effect of the variability of the characteristics of the 

selected records at different intensity levels and they have been used for deriving fragility 

curves and for seismic risk analyses. 

Actually, after selecting a reference site, town of L'Aquila (Italy), relevant limit state 

functions have been derived, according to National and International regulations, in order to 

assess the fragility, i.e. the vulnerability, of the system, by calculating the conditional 

probability of failure of the different limit states considered, given a specific intensity of the 

seismic action. 

In particular, an Incremental Dynamic Analysis (IDA) has been firstly performed to reach 

the relationship between the seismic demand and the capacity of the structure and evaluate the 

structural performance accurately. 

The IDA curves related to the superstructure and the pier show that the seismic demand 

decreases with the increase of the period of the superstructure; this happens because 

resonance phenomena occur, since the values of the pendulum period are very low, which 

make the structural response result greater for low values of the deck period. The influence of 
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the mass ratio, λ, in the IDA curves concerning the superstructure, is almost nothing for low 

values of the pier period, while for medium-high values the variability of this parameter 

causes slight deviations in the structural response, which tend to decrease with increasing Td. 

Regarding the structural response of the pier, instead, there is a higher variability when the 

mass ratio changes, which decreases with increasing Td and Tp, i.e. with increasing structural 

flexibility. 

The structural responses obtained with the non-linear dynamic analyses were then treated 

in a reliability key, thus arriving at the derivation of the vulnerability and reliability curves. In 

fact, IDA curves provided appropriate result formats which allowed estimating the annual 

average frequency of exceeding predefined damage states and developing fragility curves of 

the bridge. 

The fragility curves, referred both to the isolating system and the substructure, have been 

plotted in function of each limit state and for each dynamic characteristic of the bridge, i.e. the 

superstructure and substructure vibration periods and the mass ratio. 

Specifically, the vulnerability analyses are substantially in agreement with the results that 

had already provided the nonlinear dynamic analyses. Fragility (vulnerability) decreases as 

the fundamental period of vibration, Td, increases; for low Tp values and medium-high Td 

values, we can see how the probability of failure assume negligible values, due to the high 

rigidity that characterizes the substructure and the low seismic demand of the superstructure. 

Successively, the site’s hazard curves have been developed in terms of spectral pseudo-

displacement, that is, the average number of events exceeding a definite value of the spectral 

pseudo-displacement.  

Once the annual average frequency of exceeding a specific limit state has been calculated, 

through a convolution process between the system fragility and the seismic hazard of the site, 

the probability of failure, in a time interval of fifty years, has been evaluated. Hence, they 

have been obtained the reliability curves related to the isolation level and to the substructure.  

The reliability curves of the substructure show that the last limit state (Life Safety) is not 

respected; this is because the limit states taken into consideration for the pier are very 

stringent and performing (equal to 1/3 of the standard ones). More flexible piers, therefore 

with medium-high Tp values, may exceed the limit state due also to the randomness of the 

friction coefficient. Furthermore, an increase in the vibration period of the superstructure 

(then an increase in the vibration period of the FPS devices) leads to an increase in seismic 
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demand in the pier. From the reliability analysis results it can be noted that isolating system 

and substructure are seismically less reliable as the fundamental period, Td, increases, since 

higher and higher failure probabilities correspond to the same limit state. 

It is interesting to observe how the reliability of the isolation system decreases with the 

increase of the curvature radius of the isolator, in a manner exactly contrary to what is seen in 

the analysis of the vulnerability, and this happens for any period of the pier and mass ratio 

considered. This circumstance is because an increase in the radius of curvature causes a 

translation, of the isolated structure, on areas of the displacements spectrum with higher 

periods and consequently with higher ordinates. This causes an increase in the local seismic 

hazard (at the same annual exceeding frequencies, higher spectral displacements correspond) 

that in the convolution with the vulnerability results to have a greater weight than the latter 

(which, instead, decreases with the increase of the radius of curvature). 

Finally, the reliability curves of the isolating system have been interpolated by a linear 

regression to obtain, in function of the fixed dynamic characteristics of the substructure and 

the isolator, the friction pendulum design abacuses. These are based on the in-plan radius 

values to be provided for the FP design, so that the probability of failure lies in a range whose 

order of magnitude may be considered acceptable. 
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