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Abstract

The aim of this work is the development of a time domain ship simulator called FloBoS � Floating Bodies

Simulator.

Starting from the shape of an object, discretized by strips and de�ned by points, and the state of the sea,

the simulator integrates the motion dynamical equations and reproduces the response in time domain.

The advantage with respect to a pure frequency domain simulator consists in being able of capturing non

periodic and transient motions.

FloBoS is structured in two sub-simulators:

� SeaBoS � Seakeeping Bodies Simulator, for seakeeping, which means to analyze the free response

of a vessel trying to keep his path, or while it is at rest, in a wavy sea;

� ManBoS � Maneuvering Bodies Simulator, for maneuvering, i.e. simulating a controlled vessel,

evaluating its capabilities to move above the free surface of a wavy sea.

After an in-depth theoretical overview on classical hydrodynamics mathematical and physical methods,

these very models have been implemented in Matlab. The complexity of the equations governing these

phenomena is notable and the hypothesis of linearity has been assumed.

The work includes both the implementation of known vessel motion models and the development of

independent variations of these methods, designed ad hoc for the purpose and the nature of FloBoS.

The simulator reproduces the behavior of the vessel under the action of the waves hydrodynamics and

excitation forces. The output comprises plots of the position, velocity and acceleration response; further-

more, a realistic graphic animation feature is present in the simulator, in order to help to have a good

analysis, interpretation and understanding of the dynamics results.

FloBoS is also supported by other toolbox and software like PDSTRIP, MSS and WAFO: the �rst, based

on potential theory, solves a set of bidimensional boundary values problems and provides data ready to

be processed by FloBoS ; the second, the Marine Systems Simulator � MSS, is a Matlab/Simulink library

and simulator for marine systems; the last one, WAFO, is another Matlab toolbox able to generate, inter

alia, realistic sea states and waves spectra: his integration in FloBoS allows to recreate more accurate

vessels operational conditions.



The possible applications of FloBoS are:

� to evaluate the response of a vessel � with its dimensions, geometry and inertia characteristics, to

a certain sea state;

� to evaluate the maneuvering capabilities of a vessel under certain environment conditions;

On the other hand, the restrictions to be applied to the simulations, in order to trust the results, are:

� slender bodies;

� small angles approximation;

� small wave amplitude;

� convex hull;

� speed range limited by a low Froude number.



Nomenclature

A (ω) and B (ω) � Frequency-dependent Added Mass and Potential Damping matrices

A∞ and B∞ � In�nite frequency Added Mass and Potential Damping constant matrices

Ã (jω) and B̃ (jω) � Complex matrices for alternative description of the radiation forces

As, Bs and Cs � State-space Model matrices

Awp � Vessel water plane area

β � Wave heading direction

D (θ) � Directional waves spectrum

δ � Sideslip angle

η and ξ ≡ δη � Generalized Position vectors

ϕ � Velocity Potential function

Fr � Froude number

G � Restoring matrix

g � Gravity acceleration

GMT/L � Transverse and Longitudinal Metacentric heights

Hm0 � Signi�cant waves height

j � Imaginary unit

k � Wave number

K (t) and K (s) � Retardation matrix in time and frequency domain

Lpp, B and d � Vessel Length, Beam and Draft

MRB � Generalized Mass matrix

µ (t) � Retardation convolution forces matrix

ν and δν � Generalized Velocity vectors

ω � Wave frequency

Ω � Fluid displaced volume

p and ρ � Fluid pressure and density

Q̂ � Approximated value of the variable Q

s � Frequency variable

S+ (ω) � JONSWAP waves spectrum

t and t′ � Time variables

Tp � Peak period

τrad and τres � Generalized radiation and restoring force vectors

τexc ≡ τFK+Diff � Froude-Krilov and Di�raction (or Excitation) force vector

θ0 � Waves main direction

U � Vessel velocity

ua � Coordinate form of the coordinate free vector ~u, expressed in the {a} frame of reference
x and y � State variables

ζ � Wave elevation
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Part I

Introduction

In the past few years the number of applications of surface marine vessels simulators has seen a grow-

ing interest, thanks to the increasing of computational power and the improvement of mathematical

models for ship dynamics. Indeed, simulators reliability continues to rise, against the always expensive

acquisitions of experimental data.

Nevertheless, reliability of simulators models is usually a crucial and di�cult point. The reason is

that a hydrodynamics model can �t just a limited range of operational conditions, and de�ning the limit

of a mathematical model is never a simple task. Each condition of the vessel is associated with particular

physical phenomena and, at the same time, with other negligible ones. One should emphasize the right

interactions in order to manage simple equations, but, at the same time, be capable to describe properly

the motion of the vessel.

Nowadays many commercial seakeeping codes, most of whom based on potential theory, are usable for

the prediction of loads and responses of a ship. Results are often provided in frequency domain, so, to

implement a time domain simulation, they are just a starting point.

During my time at JPL, I developed FloBoS � Floating Bodies Simulator � a time domain simula-

tor for ships, vessels and slender bodies in general. The purpose is to obtain the dynamical response in

position, attitude, velocity and acceleration, given a certain sea state.

To de�ne the state of the sea, it is possible to add manually a certain number of simple harmonics �

specifying each amplitude, period and direction, or to exploit the integration with WAFO, a toolbox of

Matlab routines for statistical analysis and simulation of random waves. The �rst option is useful in the

validation process; if we have some available data concerning a particular ship, we can act on the ship

with just one harmonic, i.e. a frequency well de�ned periodic force vector, and easily check if the results

agree or not. If we see a good correlation, the particular analyzed case �ts all the model constraints and

we can trust more complicated simulation of the same ship too. Indeed WAFO creates a whole realistic

spectrum of the sea, starting from the signi�cant wave height Hm0, the peak period Tp and the main

direction of the waves.
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FoBoS is a user setting routine which can run two di�erent simulators, depending of the aim of the

simulation: SeaBoS � Seakeeping Bodies Simulator, or ManBoS � Maneuvred Bodies Simulator. The

di�erence is about the reference frames where the equations of motions are expressed in; it depends if

we want to analyze his free response to a particular sea state or to control the ship and validate his

performance in maneuvering.

In this work we want to illustrate the process we carried out to design FloBoS and to implement every

features in his framework, as well as outline the mathematical and physical apparatus the simulator is

based on.

1 Ship operational condition and reference frames

The bearing hypothesis of the simulator's mathematical model is the linearity of the problem, which is,

of course, a very strong assumption in this kind of context. However, with a ship shape slender enough,

the experimental data show that the above one is a good working approximation for small to moderate

oscillations.

The motion of marine vessels is traditionally studied splitting the physical problem in two di�erent areas:

a ship-controlled motion in the absence of wave excitation � maneuvering � and a motion at a uniform

speed with wave excitation � seakeeping �. This separation allows making di�erent assumptions speci�c

for each case, simplifying even more the analysis. We start describing these two fundamental type of

motion.

In maneuvering the ship motion is considered developed in a horizontal plane, due to the action of

control devices (propulsion systems and control surfaces) in calm water. The mathematical models one

obtains from this assumption are aimed at assessing the ship capabilities to change attitude and velocity

by the action of the control system. The main application �nds place in ship simulators �eld, with the

purpose of determining the ship's directional stability and designing autopilots.

On the other hand, in seakeeping the dynamics of a vessel trying to keep its course and its speed

constant, in presence of wave excitation, is studied; that naturally includes the case of zero speed. In

seakeeping the control surfaces may be used to stabilize the vessel while sailing, reducing the motion

induced by the waves. The aim is to analyze the ship response and the consequent motion when the

sea state is no longer considerable calm. Performing these analysis, six degrees of freedom are often

considered.
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Splitting the problem this way leads to the de�nition of two operation regions for the ship, based on the

speed of the ship itself and on the state of the sea.

Figure 1: Sea state and range of speed covered in maneuvering and seakeeping.

Three regimes are also de�ned by the means of the Froude number, that characterizes a ship with a length

L in a particular speed condition U : Fr = U√
gL
. The behavior of a hull is strongly dependent on this

number, which ponders the hydrodynamic e�ects � dictated by the speed U , with the hydrostatic ones

� driven by the gravity g . For Fr < 0.3 the buoyancy e�ect is primarily due to the hydrostatic force:

vessels operating in this regime are called displacement vessels. For 0.3 < Fr < 1 hydrodynamic pressure

acting on the bow of the hull generates a no longer negligible lift; this regime is for semi-displacement

vessels. Finally, operating at Fr > 1 the �ow under the hull becomes really complex and neither vorticity

nor viscosity are negligible; this regime's name is planning vessels.

1.1 Reference frames

For convenience, maneuvering and seakeeping use di�erent reference frames and coordinate systems to

express the equations of motion, to make them easy to manage. In maneuvering the equations of motion

are written relative to a body-�xed coordinate system.

To describe motion in seakeeping it's common to de�ne a particular frame of reference, �xed to a

virtual vessel in steady equilibrium and moving at the average speed and heading of the real vessel.

Equations are formulated by means of the instantaneous waves-induced perturbations with respect to

this equilibrium frame.
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Since this frame follows an uniform path, corresponding to the average real motion, it's usable only if

the ship has a zero-mean acceleration.

Most hydrodynamics programs compute the forces due to the interaction with the sea in the seakeeping

equilibrium frame. When time domain simulations and motion control system designs are considered, it

is necessary to use a uni�ed framework and a body-�xed coordinate system is the natural choice. This

calls for kinematic models that characterize the transformation of variables and forces among di�erent

coordinate systems. An overview on these reference frames and transformations models is therefore nec-

essary, and it can be done recalling the work of [Perez&Fossen] and [Perez&Fossen2007].

Marine craft dynamics provides for a complete motion in six degrees of freedom. Indeed, a ship can

experience interdependently three displacements and three rotations with respect three axes. The longi-

tudinal displacement is called surge, the one who goes from starboard to port is sway and the one from

the deck to the hull is called heave. The corresponding rotations are called: roll, pitch and yaw.

Figure 2: De�nition of motions with respect to all degrees of freedom.

To express position and orientation of a ship, the following dextral orthogonal coordinate systems are

commonly used:

� North-East-Down: {n};

� Body-�xed: {b};

� Seakeeping: {s};
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The North-East-Down coordinate system {n} ≡ {On, ~n1, ~n2, ~n3} is a system �xed to the Earth

and based on the local geographic properties. The origin On of this system lies on a plane tangent to

the geodetic reference ellipsoid (WGS84 ) at a point of interest. The �rst unit vector ~n1 points towards

the true North, ~n2 points towards the East and ~n3 points towards the interior of the earth perpendicular

to the tangent plane, de�ning a dextral orthogonal system. This frame is considered inertial, which is

a justi�ed assumption thanks to the relative small velocity of a ship: hydrodynamic forces are preva-

lent with respect the �ctitious ones like Coriolis and centrifugal forces, caused by the rotation of the Earth.

The Body-�xed coordinate system {b} ≡
{
Ob, ~b1, ~b2, ~b3

}
is �xed to the vessel, with ~b1 pointing

towards the bow, ~b2 towards starboard and ~b3 downwards, completing the dextral orthogonal system.

The typical convention for marine vehicles wants the origin Ob located at a half of the vessel along ~b1,

(amidships), and at the intersection of the longitudinal plane of symmetry
(
~b1 −~b3

)
and the design water

line. It's important to point out that the equations of motion are typically formulated with respect this

frame of reference.

The Seakeeping coordinate systems {s} ≡ {Os, ~s1, ~s2, ~s3} moves at the average speed of the vessel

in linear motion. One can de�ne and use this particular coordinate system only when the vessel sails with

a straight average path at a constant average speed. Indeed, this frame moves �xed to a virtual vessel

which reproduces the average motion of the real one. The hydrodynamics interaction with the water and

the waves displaces the vessel with respect this equilibrium.

For the nature of this reference frame, it needs to be just a translation of the body-�xed system, when

the instantaneous vessel position coincides with the equilibrium one. Because of that, the unit vector

~s! points forward and is aligned with the average velocity vector, ~s2 points towards starboard and ~s3

downwards completing the dextral orthogonal system. The origin Os is usually located such that the

~s3 axis passes through the center of gravity of the vessel at the equilibrium position and the horizontal

plane ~s1 − ~s2 coincides with the mean free surface of the water.

Moreover, in a �at Earth approximation, this coordinate system position with respect the NED one is

identi�ed just by a translation on the N-E plane and a rotation about the D axis.
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Figure 3: Reference frames used in classic ship motion theory

2 Mathematical background

It's important to specify the mathematical notation used to describe vectors, equations and models,

and then report some basic notions and results before getting to the heart of the matter. Concerning

the kinetic models, and their formalism and notation, we exploit the work done by [Perez&Fossen2007];

furthermore Einstein notation is used, which implies summation over a set of same-indexed terms in the

same formula.

A vector is a physical entity, totally independent form a particular choice of a frame of reference: to

refer to a vector itself, without considering its expression in a coordinate system, we will use the notation

of a coordinate free vector ~u.

When this vector is expressed by the means of a set of independent unit vectors ~aj , forming a generic

reference frame {a}, one can write ~u = uaj~aj , where u
a
j are the measures of ~u along ~aj , and u

a
j~aj are the

components of ~u in {a}. The coordinate form of the vector ~u in {a}, which is the sorted collection of uaj ,

is represented by a column vector whom notation will be:

ua ≡ [ua1 , u
a
2 , u

a
3 ]
T

One should remember that the coordinate form is an expression of a vector quantity relative to a

particular basis, that enables to manipulate and make operations with other vectors or matrices expressed

in the same basis. On the other hand, the physical properties of vectors are basis-independent; when

managing operations that hold whatever basis, one can simply use u. For example ~u·~v = uTv = (ua)
T

va,

independently form the basis {a}.

Given a certain coordinate vector u = [u1, u2, u3]
T
, one can de�ne a matrix S (u) which represents his
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skew-symmetric form:

S (u) ,


0 −u3 u2

u3 0 −u1

−u2 u1 0


such that one can write a cross product as u× v = S (u) v.

The same vector can be expressed in di�erent frames of reference: one can consider the problem to

describe it in a certain coordinate system, knowing its expression in another one. In order to perform

that, one needs to use an appropriate transformation matrix. The construction of these kind of matrix

can be derived in di�erent ways. For example, given two orthogonal basis {a} and {b}, one can write:

~r = raj~aj = rbj
~bj

Expressing every unit vector ~aj forming the basis {a}, relative to the other basis {b}, like ~aj =(
~aj ·~bk

)
~bk, one can compute the frame transformation straightforward:

∑
j

raj

[∑
k

(
~aj ·~bk

)
~bk

]
=
∑
j

rbj
~bj

Manipulating the last expression one can write for every index i:

∑
j

raj

(~aj ·~bi)~bi +
∑
k 6=i

(
~aj ·~bk

)
~bk

 = rbi
~bi +

∑
j 6=i

rbj
~bj =⇒

∑
j

raj

(
~aj ·~bi

)
= rbi

So, de�ning the rotation matrix that takes the expression of ~r relative to {a} into {b} as

Rb
a ,

[
Rij = ~aj ·~bi

]
, (1)

one founds the fundamental relation:

rb = Rb
ar
a. (2)

Rotation matrices are elements of the special orthogonal group: RRT = I, and ||R|| = 1, so that

R−1 = RT .
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Another way to derive the rotation matrix between two reference frames is considering Euler angles, a

set of consecutive rotations around the main axes of a continuously transformed frame, until that one

will coincide with the second one. The overall rotation matrix is created by means of simple rotation

matrices, whose form is known, multiplied together.

These rotations can be performed in a di�erent order, and each triplet is a di�erent set of Euler

angles. The set most commonly used in navigation is that of roll, pitch and yaw, which corresponds to

the rotations performed in the following order:

1. Rotation about the z-axis of {b} with a yaw angle ψ, resulting in the frame {b′}. The corresponding

simple rotation matrix is:

Rz,ψ =


cosψ − sinψ 0

sinψ cosψ 0

0 0 1


2. Rotation about the y-axis of {b′} with a pitch angle θ, resulting in the frame {b′′}. The correspond-

ing simple rotation matrix is:

Ry′,θ =


cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ


3. Rotation about the x-axis of {b′′} with a roll angle φ, resulting in the frame {a}. The corresponding

simple rotation matrix is:

Rx′′,φ =


1 0 0

0 cosφ − sinφ

0 sinφ cosφ


and de�nes the relative attitude vector Θab , [φ, θ, ψ]

T
.

The positive angle convention corresponds to a righthanded screw advancing in the positive direction

of the axis of rotation. Using these consecutive single rotations, the overall rotation matrix can be

expressed as:

Rb
a = Rz,ψRy′,θRx′′,φ =


cψcθ −sψcφ + cψsθsφ sψsφ + cψcφsθ

sψcθ cψcφ + sφsθsψ −cψsφ + sψcφsθ

−sθ cθsφ cθcφ

 (3)

with sx ≡ sinx and cx ≡ cosx. The two forms 1 and 3, derived with these two di�erent approaches,
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of course coincide.

Another important topic, with useful applications, is the one concerning the relative angular rate be-

tween two frames of reference. Given two frames {a} and {b}, one can notice that, since the rotation

matrix Ra
b is orthogonal, the time derivative of Rb

a

(
Rb
a

)T
= I must be zero. Computing the derivative

0 =
d

dt

[
Rb
a

(
Rb
a

)T ]
= Ṙb

a

(
Rb
a

)T
+ Rb

a

(
Ṙb
a

)T
= Ṙb

a

(
Rb
a

)T
+
[
Ṙb
a

(
Rb
a

)T ]T
it's evident that the matrix Ṙb

a

(
Rb
a

)T
is skew-symmetric. Thanks to that, all its properties can be

described by a column vector and by the already mentioned linear operator S.

The vector ωaab of angular velocity of the frame {a} with respect the frame {b}, with coordinates in

{a}, is indeed de�ned as:

ωaba : S (ωaba) = Ṙb
a

(
Rb
a

)T
A physical interpretation of the former relation is that Ṙb

a = S (ωaba) Rb
a.

Given two frames {a} to {d} rotating one with respect the other, it may be useful is to �nd the relationship

between the angular velocity ωad and the Euler angles time derivatives. In order to achieve this objective,

let us consider three simple rotations from {a} to {d}:

Ra
b = Rz,ψ, Rb

c = Ry,θ, Rc
d = Rx,φ

The three corresponding angular velocities are


ωaab =

[
0, 0, ψ̇

]T
ωbbc =

[
0, θ̇, 0

]T
ωccd =

[
φ̇, 0, 0

]T

Thanks to linearity of the operator S, the overall angular velocity is ~ωad = ~ωab+~ωbc+~ωcd ([WAFO2017]).

Expressing this relation in the frame {a} one obtain:

ωaad = ωaab + Ra
bω

b
bc + Ra

bR
b
cω

c
cd

Computing the multiplication and isolating the vector Θ̇ad ,
[
φ̇, θ̇, ψ̇

]T
one can �nally reach the
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following expression:

Θ̇ad = Ta (Θad)ω
a
ad , Ta (Θad) =


cψ
cθ

sψ
cθ

0

−sψ cψ 0

cψtθ sψtθ 1

 . (4)

Expressing the former in the {d} frame, the analogous relation is:

Θ̇ad = Td (Θad)ω
d
ad , Td (Θad) =


1 sφtθ cφtθ

0 cφ −sφ

0
sφ
cθ

cφ
cθ

 . (5)

Note that neither Ta (Θad) nor Td (Θad) are orthogonal. Further details can be found in [Perez&Fossen2007].

3 Kinematic models

To indicate relative position and velocity coordinate vectors among frames of reference it's necessary

to use a three-script notation. Indeed, given two frames {a} and {b}, the relative position coordinate

vector have to bring both the information of the orientation and the system where it's expressed. If ~rab

is the vector from {a} to {b}, which indicates the position of {b} relative to {a}, the coordinate form

raab, indicates the same vector expressed in {a}. That is, the upper script indicates in which coordinate

system the vector is expressed, while the order of the lower scripts indicate the orientation of the relative

position. If one needs this relative position expressed in {b}, with the rotation matrix the computation

is immediate: rbab = Rb
ar
a
ab.

Concerning the velocity, the notation is similar: vaab indicates the velocity of {b} relative to {a}, expressed

in {a}. This notation should be used only if the frame with respect to which the derivative is taken is

inertial. If that is veri�ed, then

vaab , ṙaab ≡
ad

dt
~rab = ṙaj~aj

One must always specify with respect to what coordinate system a derivative of a vector is taken. The

well known coordinate-free relationship between the derivatives of a vector in two coordinate systems is:

ad

dt
~r =

bd

dt
~r + ~ωab × ~r



3 KINEMATIC MODELS 17

It is possible to derive the same relation in coordinate form, expressing every vector in {b} for example,

reaching the following one:

aṙb = bṙb + S
(
ωbab
)
rb

where the upper-left script indicates the coordinate system with respect to which the derivative is

taken.

3.1 Maneuvering theory

In maneuvering theory, the position of a ship is given by the position of the origin of {b} relative to {n}

~rnb. When expressed in coordinate form in {n}, this vector gives the North, East and Down positions:

rnnb , [N, E, D]
T

The attitude of the vessel will be given by the angles or roll, pitch and yaw that take {n} into {b},

Θnb , [ψ, θ, φ]
T

The linear velocities are usually expressed in the body-�xed frame: the linear velocity in {b} is given by

vbnb , [u, v, w]
T

= Rb
nṙnnb = Rb

n

[
Ṅ , Ė, Ḋ

]T
whose component are called surge, sway and heave speeds.

On the other hand, the angular velocity in {b}, formed by surge, sway and heave rates, is given by

ωbnb = [p, q, r]
T

Exploiting the relation 4, the dependence of ωbnb from the time derivative of the Euler angle can be

written as

Θ̇nb = Tb (Θnb)ω
b
nb

Please note that the trajectory of the vessel can be computed only with the velocity in an inertial frame,

like {n}:

rnnb (t) = rnnb (t0) +

tˆ

t0

Rn
b vbnbdt

′
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Before writing the kinetic model, one can join linear and angular variables, de�ning the generalized

coordinate position and velocity vectors, as suggested by [Fossen2002]:

η ,

 rnnb

Θnb

 = [N, E, D, ψ, θ, φ]
T

ν ,

 vbnb

ωbnb

 = [u, v, w, p, q, r]
T
. (6)

From relations already derived, the maneuvering kinematic model follows:

η̇ =

 Rb
n 03×3

03×3 Tb

 ν = Jnb (η) ν (7)

3.2 Seakeeping theory

In seakeeping the motion of the vessel is described relative to the inertial seakeeping coordinate system

{s}. As long as the sea is calm and there are no waves, the vessel remains in equilibrium condition, with

zero relative linear and angular velocity with respect to {s}. However, in presence of waves, excitation

forces are experienced by the marine vehicle and it oscillates with respect to this equilibrium. The virtual

equilibrium vessel state is de�ned by a constant heading ψ̄ and speed U :


vnns = ṙnns =

[
U cos ψ̄, U sin ψ̄, 0

]T
ωnns = [0, 0, 0]

T

Θnb =
[
0, 0, ψ̄

]T
That means that the velocity of {s} relative to {n} expressed in {s} is vsns = [U, 0, 0]

T
.

For the analysis of the motion of a vessel, a {b} to {s} kinetic model derivation is required; the linear

and angular velocity of the vessel {b} relative to {s} and expressed in {b} are:


vbsb = Rb

sṙ
s
sb , [δu, δv, δw]

T

ωbsb , [δp, δq, δr]
T

They represent instantaneous perturbations of the vessel position and attitude with respect the average

trajectory. To identify the instantaneous attitude of {b} we can use, as usual, Euler angles that take {s}

to {b}, related with ωbsb thanks to the 5:
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
Θsb , [δψ, δθ, δφ]

T

Θ̇sb = Tb (Θsb)ω
b
sb

Merging the variables, as done for maneuvering, we can de�ne the perturbation generalized position and

velocity vectors:

δη ,

 rssb

Θsb

 δν ,

 vbsb

ωbsb

 . (8)

It's common to �nd the notation ξ ≡ δη in hydrodynamics literature. From the de�nition we gave,

the kinetic model became:

δη̇ =

 Rs
b 03×3

03×3 Tb

 δν = Jnb (δη) δν (9)

Another useful model are the one that relates velocities ν and δν and accelerations ν̇ and δν̇. With small

angle approximations and linearization, the following relations can be derived (see [Perez&Fossen2007]):


ν = ν̄ + δν

ν ≈ U (−Lδη + e1) + δν

ν̇ ≈ −ULδν + δν̇.

(10)

with

L =



0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 −1 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


e1 = [1, 0, . . . , 0]

T
.
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Part II

Sea loads and Equations of motion

Before formulating the laws of motions and the models through which a ship simulator can be imple-

mented, an overview about the nature of the interactions between a moving vessel and a rough sea is

required.

The total interaction can be written as a generalized vector τ , by assembling both force and torque

components. The �uid �eld around the hull of a moving vessel creates a time dependent vector τ , which

can be seen as the superposition of di�erent e�ects.

The physical phenomena of sea waves excites the ship with a time dependent force, because of the

change in pressure of the �uid �eld around the hull. The ship starts moving and oscillating under their

action, producing a feedback reaction which perturbs in turn the water, changing the momentum of

the �uid. This reaction has a conservative part, proportional to the accelerations of the vessel, and a

non-conservative part proportional to the velocities. The former re�ects the loss of energy carried away

from the hull, becoming itself a source of radiated waves.

Thanks to linearity, we can consider separately these e�ects. Therefore we are assuming that the system

behaves as if the simple linear superposition of all these kind of forces di�ers from the overall e�ect

when they act at the same time, interacting each other, by a negligible factor, if the sea condition is not

extreme.

So one can identify multiple contributions which compose the global problem:

� The �rst is the zero mean linear excitation contribution: the waves encounter a vessel bound to

be at rest, which experiences a time dependent force τexc, called �rst order waves excitation force or

load, caused by the changing of the pressure �eld. This e�ect can, in turn, be splitted in two more

basic interactions: Froude-Krilov forces, the pressure �eld the sea would generate without ship, and

di�raction force, due to the fact that the ship behaves as an obstacle against the incoming waves,

modifying the conformation of the waves structure.

� The second is the radiation contribution: as mentioned, this e�ect is equivalent of the forced

oscillation of the ship, in the same way as it would do in presences of the waves, but in calm

water. By setting in motion the sea, these oscillations cause radiation forces τrad on the vessel.



21

The total reaction can be splitted in the in-phase and out-of-phase components. The �rst one is

due to the added mass phenomena, i.e. the mass of �uid bounded to the hull that accelerates

with it, because of the adherence condition; this component results proportional to the linear and

rotational accelerations of the vessel. On the other hand, the out-of-phase component is the damping

force, proportional to the instantaneous velocities. This force includes a memory e�ect term: the

instantaneous changing in momentum a�ects the force in future. In other words, the radiation

forces at a particular time depend on the whole history of the velocity of the vessel up to that time.

Due to the fact that we are not considering viscous and rotational e�ects, the damping e�ect is

also called in literature potential damping ; the reason is to specify that this force comes just from

potential theory.

� Finally, the last e�ect is the static pressure �eld contribution: the hydrostatics reaction. It's pro-

portional to water displaced volume and it's caused by the gravity acting on the �uid. The change

in position of the center of buoyancy, caused by the action of the other time dependent forces on

the vessel, implies the variation of this hydrostatics e�ect. This tends to re-establish the stable

static position of the vessel: that's why this force is called restoring force, τres. A problem that

can arise, concerning the stability of the ship dynamics, is that this restoring force is not present

in every degree of freedom. To avoid the possibility to manage unstable dynamics equations, some

mathematical manipulations are needed; as shown by [Cummins1962], one have to set the right

initial conditions, exploiting the asymptotic limit of the response function, in order to rewrite an

equivalent stable di�erential problem.

Hence, the following separation of the generalized force vector τ is considered:

τ = τexc + τrad + τres. (11)

The non-linear e�ect of viscous force τvisc, generated by friction and vortex shedding phenomena, is not

directly computed. In our models we will use empirical formulas, accepting the consequent approximation

error that will a�ect the results.

Another non-linear contribution due to second order excitation forces is also present. This contribu-

tion is composed both by non-oscillatory forces, mean wave drift forces, and oscillatory forces. The
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oscillatory components act at lower and higher frequencies than the linear wave loads one. The force

acting at lower frequencies is known as slow wave drift load, which constitutes with the mean wave drift

and the �rst order wave load the main disturbances for the ship control system. On the other hand the

high frequencies forces can result in structure oscillation of the ship; this phenomena is named springing.

4 Hydrostatic reactions

When a body is partially or completely submerged in a �uid, it experiments buoyancy forces and moments,

which are also called restoring forces. Indeed the external gravitational �eld induces a pressure gradient

in the �uid, and the pressure �eld is not constant along the local gravity vector direction. It holds the

Stevino law, that, in the simple case of �at Earth approximation, considering a NED reference frame,

can be written as p = p0 + ρgz, where p0 is the atmospheric pressure on the free surface and z is the

vertical coordinate: pressure increases linearly with the depth of the �uid, because of its own weight.

This non uniformity of the pressure �eld generates a non-zero net force and moment when integrating it

on the surface of a partially or completely submerged body. The buoyancy center does not correspond

in general with the center of mass of the body, that leads to the net moment. The force depends only on

the position of the body, and in particular it's proportional to the volume of displaced �uid Ω. Indeed,

using Gauss theorem, the net force due to the pressure �eld acting on a body Ω, with a surface Σ and

external normal vector ~n, is written as:

~F = −
ˆ

Σ

p~ndσ = −
ˆ

Ω

∇pdΩ = −
ˆ

Ω

(0, 0, ρg) dΩ = −ρgΩ~k

where ~k is the unit vector pointing downwards and ρ is the density of the �uid. To assure �oating

equilibrium it must holdsW = ρgΩ, withW indicating the weight of the body. For a partially submerged

body, the mathematical surface Σ, where the integration is carried out, is the wet hull and the water

plane area, where the static pressure is considered identical to the constant atmosphere one. Note that

for a surface integral on a closed surface, the component p0 of the pressure does not a�ect the result,

because its integration is identical null. By its de�nition, Σ is the boundary of the volume of the �uid

displaced, in general di�erent with respect to the one of the whole body.

For the static analysis we need to identify the hydrostatic derivatives, which give the static reaction of

the �uid due to displacements in the 6 degrees of freedom.
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Considering surface vessels, static stability, also known as Metacentric stability, is an important re-

quirement: the vessel should respond to any inclination with an opposite moment, naturally generated

by its weight.

For surface vessels, the restoring forces will depend on the vessel's metacentric heights (transverse GMT

and longitudinal GML), the location of the center of gravity � CG, the center of buoyancy � CB, as well

as size of the water plane Awp.

The metacenter is de�ned as the theoretical point of intersection between a vertical line through the

center of buoyancy of a �oating body and a vertical line through the new center of buoyancy when the

body is tilted, as shown in �gure.

Basically, when the vessel heels the buoyancy force gets shifted towards the most submerged side of

the hull; its displacement generates a rolling moment with respect to the center of mass. If the sub-

merged volume increasing appears at the same side of the hull which rolls down, with respect to the

center of mass, the consequent moment will restor the initial equilibrium, otherwise it will amplify the

tilt. That means that, in order to have static stability, the center of mass must be placed low enough.

Figure 4: Transverse metacentric stability
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As long as the load of a ship remains stable, G is �xed. For small angles MT can also be considered

to be �xed, while B moves as the ship heels. In order to assure static stability, MT must be above the

center of gravity. The distance GMT , dynamically equivalent to a spring sti�ness, measures the stability

capacity of the ship and remains constant for small angles. Indeed, the restoring moment K, due to the

integration of the static pressure on the wet hull surface, is linear with the roll angle φ when the former

is small enough: K (φ) = Kφφ. The restoring moment, on the other hand, can be also written as the

product of the buoyancy force F and a certain arm b; furthermore F must be always equal to the weight

W for the static equilibrium analysis, so it's constant. From the equality |Kφ|φ = Wb and the small

angle approximation, simple considerations lead to:

Wb

|Kφ|
= φ ≈ sinϕ ,

b

GMT

which means

GMT =
|Kφ|
W

.

Same considerations may be carried out for the longitudinal static stability, reaching a similar relation

for GML:

GML =
|Mθ|
W

.

In literature more classical ways to calculate the metacenter heights can be found, with formulas that

exploit the second moments of area of the water plane JT , JL: the distance of the metacenter from

the buoyancy center is determined by the ratio between the inertia resistance of the boat and the �uid

displaced volume of the boat

BMT/L =
JT/L

Ω

So, knowing the vertical position of the center of buoyancy, which is the one of the center of mass of the

displaced volume, one can compute:

GMT/L = (zb − zg) +BMT/L

Starting from the equilibrium position, any vertical displacement of the vessel z implies a variation of

the displaced volume of the �uid Ω (z) = Ω (0) + δΩ (z), being the equilibrium volume Ω = Ω (0) = W
ρg .
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A displaced volume changing re�ects on the hydrostatic force:

Z = W − ρgΩ (z) = −ρgδΩ (z)

Indicating as Awp (ζ) the water plane area of the vessel as a function of the vertical coordinate, the volume

variation δΩ (z) is written as δΩ (z) =
´ z

0
Awp (ζ) dζ; however, for conventional vessel, the assumption

Awp (ζ) ≈ Awp (0) is a good approximation for small perturbation. Hence the approximated restoring

force is linear in z:

Z ≈ −ρgAwp (0) z = Zzz.

The hydrostatic derivative Zz is correctly negative, meanings that for a positive (downwards) displacement

z, the buoyancy force becomes larger than the equilibrium one, since the submerged volume is increased.

If the body is non symmetrical with respect to the y − z plane, other static restoring forces appear: we

modelise them with the same linear approximation by the means of the hydrostatics derivatives Zθ and

Mz.

When a pitch angle θ appears, the submerged volume increases because of the part of the vessel who

pitch down and decrease for the part who pitch up: the net change δΩ (θ) can be computed integrating the

function of every single in�nitesimal volume h · dAwp = θx · dAwp all over the wet area. The hydrostatics

force will change proportionally to δΩ (θ):

Z = −ρgδΩ (θ) = −

ρg ˆ
Awp

x · dAwp

 θ = Zθθ

That means Zθ = −ρg
´
Awp

x · dAwp.

The last hydrostatic derivative to identify is Mz, which will result identical to Zθ. The resulting pitch

moment M , caused by a perturbation in heave z, can be computed by integrating every single change in

force Z multiplied by the arm, which is x; at every station x, the force depends on the local submerged

volume, which is z · dAwp, and the resulting moment is ρg · z · dAwp · x. Hence

M =

 ˆ
Awp

ρg · x · dAwp

 z = Mzz
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The whole linear restoring force vector can be written as

τres = −G · η =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 Zz 0 Zθ 0

0 0 0 Kφ 0 0

0 0 Mz 0 Mθ 0

0 0 0 0 0 0





x

y

z

φ

θ

ψ


with:

Zz = −ρgAwp (0)

Kφ = −ρgGMT

Mθ = −ρgGML

Zθ = −ρg
ˆ

Awp

x · dAwp

Mz = ρg

ˆ

Awp

x · dAwp

5 Hydrodynamic interactions

5.1 Frequency Domain formulation

Assuming a ship sailing at a forward speed U in a pure sinusoidal regime of the waves, radiation force

can be expressed in the frequency domain, as shown by [Newman1997, Faltinsen1990], as follows:

τrad (jω) = −A (ω, U) η̈ (jω)−B (ω, U) η̇ (jω) (12)

The matrices A (ω) and B (ω) are the frequency dependent added mass and potential damping matrices

respectively. The motion of the ship will be a combination of oscillations in every degree of freedom,

carried out at the same frequency ω of the waves: η (jω) = η̄ejωt. That leads to the following formulation:

τrad (jω) =
[
ω2A (ω, U)− ωB (ω, U)

]
η (jω) (13)
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Concerning the excitation force τexc, we can express it as: τ̄exc

τexc (jω) = τ̄KF (ω, U, β) ejωt + τ̄Diff (ω, U, β) ejωt = τ̄exc (ω, U, β) ejωt (14)

where β the sideslip angle between ~U and the x body axis. The approach to achieve this formulation

is to �nd the velocity potential for the �uid �eld of the excitation sub problem, identifying then the

contributions. A deeper analysis of the derivations of 12 and 14 will be given in the next section, after

treatig the potential theory.

To conclude, we recall the restoring forces, only function of the position and the attitude of the ship

with respect his point of stable equilibrium. The linear approximation of the hydrostatics e�ects may be

written, as we saw, as:

τres (jω) = −Gη (jω) (15)

As explained in [Faltinsen1990], when Fr < 0.3 the only important terms are G33, G35 = G53, G44, and

G55.

These expressions of the interaction forces can be directly used in the equations of motion, implementing

a frequency domain model for solving the dynamics of a vessel.

5.2 Time Domain formulation

The former formulation can correctly describe ship motion only under a pure sinusoidal regime of waves;

that is because of the frequency dependent coe�cients. If the sea state is representable only as a spectrum,

i.e. if there is no a well de�ned frequency, a Fourier analysis must be performed to make the mathematical

model �t the reality. This approach leads to a large number of equations, required to describe the motion

properly. In this context, the development of a time domain mathematical model becomes very desirable.

That was the main reason who encouraged W. E. Cummins to accomplish his famous work, writing a

fundamental paper concerning ship motion, [Cummins1962], which has been, is and probably will continue

to be the basis of every linear time domain model. The crucial points of his work were:

� To be able to represent the response of a ship in six degree of freedom, to an arbitrary forcing

function in all the degree of freedom, avoiding the use of any frequency dependent parameter;

� To separate and identify in an explicit way all the factors governing the response.
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In addition, during the last years, an increasing interest for linear time domain models, based on fre-

quency domain data, became widespread. The strength of this modus operandi is the possibility to

develop models for the dynamics of a ship by necessitating of a limited amount of data. The key ele-

ment of these models is the so-called Cummins equation, presented in his paper. The peculiarity of this

integro di�erential equation is that, expliciting the waves radiation forces, it appears a convolution term

imputable to the �uid memory e�ect, that takes into account the variations of the �uid momentum at

every instants, along all the time history of the motion.

The starting point to derive Cummins equation is the assumption of linearity. Under this hypothe-

sis, one can exploit the theory of the Green function to state that, given the response of a linear stable

system to a unit impulse, the computation of the response to an arbitrary time dependent force is also

directly available. That means that if R (t) is the impulse response, then the response x (t) to a general

excitation f (t) is:

x (t) =

tˆ

−∞

R (t− t′) f (t′) dt′ =

∞̂

0

R (t′) f (t− t′) dt′

The other fundamental assumption is that the �uid �eld is rotational free, so that one can use potential

theory to model and describe the behavior of the sea water.

Using impulses in the components of motion, the �rst step is to �nd the potential function of the �uid

�eld ϕ. Cummins approached the problem dividing the time in two intervals, one during the impulses

and one other after the impulses are extinguished. De�ning the right boundary conditions, both on the

water free surface and on the moving or still hull, as well as the initial physical condition about the state

of the pressure, Cummins wrote the function ϕ. Once that is done, the linearized dynamic pressure is

straight calculable as:

p = −ρ∂ϕ
∂t

Integrating this function over the surface of the hull, one can �nd the hydrodynamic action, a force

and a moment.

By proceeding with all the mathematical apparatus and manipulations, the following form for the radi-

ation force is found:
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τrad = −A∞ξ̈ −B∞ξ̇ −
tˆ

0

K (t− t′) ξ̇ (t′) dt′ (16)

with

K (t) =

∞̂

0

(B (ω)−B∞) cos (ωt) dω (17)

A∞ is the added mass matrix, which takes into account the amount of mass accelerating with the ship

during the motion. B∞ is the damping matrix, the out-of-phase reaction force of the water: during the

ship oscillations the water follows the hull, but the inertia of the �uid, obviously not rigidly bound to

the ship, causes a certain delay to the change in his direction. The convolution term represents the

�uid memory e�ect that incorporate the energy dissipation due to the radiated waves, consequent of

the motion of the hull. The kernel of the convolution, K (t), is the retardation matrix, function of the

hull geometry and the forward speed. The �uid memory e�ect appears due to the free surface: waves

generated by the motion of the hull will persist at all subsequent times, a�ecting the motion of the ship.

By the way, the convolution term is really inconvenient concerning simulations. Hence an interest in

parametric models for its replacement has grown up. Indeed, thanks to the linearity and the nature of

the convolution operator, it can be approximated with a linear-time invariant state-space model:

µ (t) =

tˆ

0

K (t− t′) ξ̇ (t′) dt′ ≈


ẋ = Asx + Bsξ̇

µ = Csx

(18)

[Taghipour2008] provides an overview on the various methods to implement such a model. It concludes

that a state-space model for a time domain simulation gives comparable results of the same quality of

a direct computation of the convolution term. However, this work indicates also a potential simulation

speed gain of the order of 40 times, when using state-space models.

Indeed, the computation of the memory convolution term implies the need to store and process at each

time step a large number of past response data. On the other hand, the state-space model incorporates

all the time history in the state variable, making possible the computation of the subsequent state just

by processing the former.

For zero input, the state-space formulation indicates that the dynamic variables are expressed as a

linear combination of exponential functions of time. On the other hand it's been proved that the free
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vertical motion of a �oating body, immersed on deep water, decays slower, more like the inverse of a

power of time. However, in many cases, the di�erence of these solutions is negligible, and the state-space

system represent an excellent approximation.

5.3 Ogilvie relations

By applying the Fourier transform, [Ogilvie1964] found the following relationships between the frequency

dependent added mass and damping matrices the and time domain model invariant ones:


A (ω) = A∞ − 1

ω

´∞
0

K (t) sin (ωt) dt

B (ω) = B∞ +
´∞

0
K (t) cos (ωt) dt

(19)

The notation for A∞ and B∞ is now understandable: evaluating the limit ω → ∞ in 19, from the

Riemann-Lebesgue lemma it follows that:

A∞ = lim
ω→∞

A (ω)

B∞ = lim
ω→∞

B (ω)

In frequency domain, the former relations allow to write:

K (jω) =

∞̂

0

K (t) e−jωtdt =

∞̂

0

K (t) cos (ωt) dt− j
∞̂

0

K (t) sin (ωt) dt =

= B (ω)−B∞ + jω [A (ω)−A∞] (20)

5.4 Alternative representations of the radiation force

When we will face the problem of the approximation of the convolution term, it will be useful exploiting

other representations of τrad (jω). From the relation 12, the total hydrodynamic radiation force vector

can be expressed in the frequency domain as:

τrad (jω) = −A (ω) η̈ (jω)−B (ω) η̇ (jω)
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Taking the derivative of the velocity vector, η̈ (jω) = jωη̇ (jω), it also holds:

τrad (jω) = − [jωA (ω) + B (ω)] η̇ (jω) = −B̃ (jω) η̇ (jω)

= −
[
A (ω) +

B (ω)

jω

]
η̈ (jω) = −Ã (jω) η̈ (jω) (21)

From 20:

jωA (ω) + B (ω) = B̃ (jω) = K (jω) + B∞ + jωA∞,

so it follows:

τrad (jω) = −A∞η̈ (jω)− [K (jω) + B∞] η̇ (jω) (22)

6 Potential theory

For our analysis we will consider potential theory applicable, by assuming that the �uid �eld around

the vessel is incompressible, inviscid and irrotational. That allows to de�ne the function of the velocity

potential ϕ such that, for every point of the �uid domain, it holds:

V (t, x) = ∇ϕ (t, x) (23)

Euler's equation for the conservation of momentum of incompressible �uids, with the irrotational hy-

pothesis ∇× V (t, x) = 0, is written as:

∂V

∂t
+ (V · ∇)V =

∂V

∂t
+

1

2
∇
(
V 2
)

= −∇
(
p

ρ

)
+ g (24)

Using a �at earth approximation, one can write the gravitational �eld in a gradient form, g = (0, 0, −g) =

−∇gz, and by replacing 23 in 24, it turns into:

∇
(
∂ϕ

∂t
+

1

2
∇ϕ · ∇ϕ+

p

ρ
+ gz

)
= 0

which becomes the unsteady Bernoulli's equation, the �rst integral for the potential �ow:

∂ϕ

∂t
+

1

2
∇ϕ2 +

p

ρ
+ gz = f (t) (25)
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where f (t) is an arbitrary function of time. This function can be put equal to zero without loss of

generality, because of the non-uniqueness of the potential function: if ϕ (t, x) satis�es 23 then ϕ (t, x) +

δ (t) does it to, and we can always impose δ′ (t) = f (t).

Morover, expressing the conservation of mass by the continuity equation

∂ρ

∂t
+∇ · (ρV ) =

Dρ

Dt
+ ρ∇ · V = 0

the incompressible hypothesis ρ = const on the �ow means also ∇ · V (t, x) = 0; that can be inter-

preted stating that for any given closed volume inside the domain, the net amount of �uid mass which

instantaneously enters is zero. Being the velocity �eld divergence free, the potential must also satis�es

the Laplace equation:

4ϕ = 0 (26)

6.1 Incident wave potential �ow

In our case we want to �nd the potential function for a perturbed ideal sea. We will call this function the

incident waves potential ϕI . Let's consider a �uid with a free surface in equilibrium with the gravitational

�eld. If any perturbation occurs and the surface is moved from its equilibrium state, the motion is

propagated. Under the same assumption of linearity, we will consider small waves which can be superposed

to de�ne a general spectrum.

If the waves amplitude is small compared to the wavelengths, the term ∇ϕ2 can be neglected in

comparison with ∂ϕ
∂t : the velocity varies more rapidly at a �xed point with the time than spatially at a

�xed moment. Putting f (t) = 0, equation 25 becomes:

p = −ρ∂ϕ
∂t
− ρgz = pdyn − ρgz (27)

De�ning a reference system with the vertical z−axis pointing upwards and the x − y plane coincident

with the equilibrium surface of the �uid, we will denote as ζ = ζ (t, x, y) the vertical coordinate of a

point on the surface, so its displacement during the oscillations from the equilibrium position z = 0.

The physical condition of the free surface is that the pressure must be the same everywhere and equal

to the atmospheric p0: p (t, x, y, ζ) = p0. Equation 27 becomes

p0 = −ρ∂ϕ
∂t
− ρgζ
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We can easily eliminate the constant p0 rede�ning the potential as ϕ − p0
ρ t, which can be also seen as

putting f (t) = p0
ρ t. We obtain the condition on the surface as:

gζ +
∂ϕ

∂t
= 0 (28)

For small oscillations, with the same degree of approximation, we can say that the vertical velocity ∂ϕ
∂z

on the surface is simply the time derivative of ζ:

∂ϕ

∂z
=
∂ζ

∂t
(29)

The derivatives in 29 should be taken in z = ζ, but since the displacements are small we can take

them at the equilibrium point in z = 0.

Combining together 28 and 29, we reach the following system for the potential function:


4ϕ = 0, z < 0;

∂2ϕ
∂t2 + g ∂ϕ∂z = 0, z = 0;

∇ϕ→ 0, z → −∞.

Where the condition ∇ϕ → 0 for z → −∞ is valid for in�nitely deep �uid. Note that the hypothesis of

in�nite depth is equivalent to consider small enough wavelengths. Moreover, considering an unlimited

free surface, we can omit boundary conditions. Solving the system for a general pure sinusoidal wave,

with frequency equal to ω0 and wave number k, traveling in a direction dictated by the heading angle

β = arctan
(
− yx
)
, brings to the function:

ϕI (t, x, y, z) =
ζg

ω0
ekzejk(x cos β−y sin β)ejω0t (30)

with the dispersion relation

ω2
0 = kg

One have to consider only the real part of 30, and after �nding the velocity components ∇ϕI , it results

that the trajectories of the particles are circles about �xed equilibrium points, with a radius which

exponentially decreases with the depth.
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Figure 5: Inertial reference frame and de�nition of heading angle β

For the analysis of �oating bodies moving at a constant speed on the free surface, it can be useful

to apply to 30 a transformation. De�ning a moving right-handed coordinate system, that will be our

seakeeping reference frame {s} = O′ x′ y′ z′, which traslates with respect to the �rst inertial one {n} =

Oxy z with a constant speed U along the x direction, we want �nd the expression of the potential with

respect to {s}.

The origins of the frames are located in the plane of the undisturbed free surface, the z-axes are

positive vertically upwards, the x-axes point towards the stern and the y-axes complete the dextral

coordinate systems. The x− z plane of the moving frame is assumed to be a symmetry plane for the ship

in its mean oscillatory position.

Figure 6: The seakeeping frame {s} traslates parallel to the inertial one {n}
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The linear transformation between the two frames is:

Λ =


x′ = x− Ut,

y′ = y,

z′ = z.

The velocity �eld, both seen and expressed with respect to {n}, V nn , and his potential ϕn are:


ϕnI (t, x, y, z) = ζg

ω0
ekzejk(x cos β−y sin β)ejω0t

V nn = ∇ϕnI (t, x, y, z)

The time derivative of the transformation Λ leads to the kinetic relation V ns = V nn −~Un, ~Un = (U, 0, 0),

which is the velocity �eld seen by {s} expressed in the {n} frame of reference; by the means of the potential

function one can write:

V ns = ∇ϕnI − ~Un

Applying Λ−1 to the former relation we can �nd the velocity �eld both seen and expressed with respect

to {s}, obtaining:

∇ϕsI = V ss = Λ−1 (V ns ) = ∇
[
Λ−1 (ϕnI )

]
− ~Un

i.e.:

ϕsI =
ζg

ω0
ekz
′
ejk(x

′ cos β+Ut cos β−y′ sin β)ejω0t − Ux′ =

=
ζg

ω0
ekz
′
ejk(x

′ cos β−y′ sin β)ej(ω0+kU cos β)t − Ux′

The gradient in (x′, y′, z′) of this function give us the velocity �eld of the wave seen by the {s}. The

physical meaning is studying the equivalent behavior of a body at rest in the same �ow with also an

opposite speed −U . We can de�ne the encounter frequency of the wave as ωe = ω0 +kU cosβ, describing

the fact that if the body moves against the waves, it experiences a higher impact frequency.
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We showed that it is possible to reduce the seakeeping analysis to a steady body analysis. Renaming the

variables of {s} as (x′, y′, z′)→ (x, y, z), and calling ϕsI just as ϕI , i.e. the incident waves potential, we

can �nd the velocities and the accelerations of the �ow:

ϕI =
ζg

ω0
ekzejk(x cos β−y sin β)ejωet − Ux = ϕ∗I − Ux (31)



v = ∂ϕI
∂y = −iζω0 sinβekzejk(x cos β−y sin β)ejωet

w = ∂ϕI
∂z = ζω0e

kzejk(x cos β−y sin β)ejωet

ay = ∂v
∂t = ζωeω0 sinβekzejk(x cos β−y sin β)ejωet

az = ∂w
∂t = iζωeω0e

kzejk(x cos β−y sin β)ejωet

Please note that ∇2ϕI can not be considered negligible anymore, because of the presence of the speed

U , and the linearized dynamic pressure requires a better analysis; indeed ∇ϕI =
(
∂ϕ∗I
∂x − U,

∂ϕI
∂y ,

∂ϕI
∂z

)
and ∇2ϕI ≈ −2

∂ϕ∗I
∂x U + U2.

So, starting from the 25, we should modify the pressure equation 27 as:

p = −ρ∂ϕI
∂t
− 1

2
ρ∇2ϕI − ρgz ≈ −ρ

∂ϕI
∂t

+ ρ
∂ϕ∗I
∂x

U − ρgz = −ρ
(
∂

∂t
− U ∂

∂x

)
ϕ∗I − ρgz (32)

thanks to the fact that ∂ϕI
∂t =

∂ϕ∗I
∂t ; furthermore we included, as usual, the constant term

1
2ρU

2 in the

function f (t).

6.2 Potential �ow around a vessel

Assuming a ship traveling at a constant speed U and heading β with the presence of waves, we want to

solve the problem of �nding the overall potential of the resulting �ow.

We can reformulate the problem in a reference frame where with the ship is at rest and experiences

a �ow with an opposite velocity −U . The total potential can be expressed as the sum of a steady part

and an oscillatory one:

Φ (t, x) = ϕS (x) + ϕT (t, x)

The steady part ϕS is caused only by the presence of the ship, which perturbs the �ow incoming with a

velocity −U , creating a time-independent sea structure around the hull; on the other hand, the unsteady
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part ϕT is due to the incoming waves. The former ϕT can be decomposed in three contributions:

ϕT (t, x) = ϕI (t, x, β, ω0) + ϕDiff (t, x, β, ω0) +
∑
k

ηkϕk (t, x, U, ωe)

where ϕI is the potential of the incident waves, the one we already found in 31, ϕDiff is the potential

of the di�racted waves and ϕk and ηk are the radiation potential and the complex amplitude.

To �nd the potential function Φ, we have to add the right boundary conditions: for a rigid body advancing

on the free surface of the �uid, which is in�nite in all horizontal directions, the conditions to impose are:

� Incompressibility condition: velocity �eld is divergence free in all the �uid domain and every po-

tential component must satisfy

4{ϕS , ϕI + ϕDiff , ϕk} = 0

so, evidently

4Φ = 0

� Tangential condition on the body wet surface: no �uid can �ows through the body. Concerning

the steady potential ϕS , referred to the �ow generated by the ship when it is at rest, this condition

is equivalent to zero normal velocity on the hull surface: ∂ϕS
∂n = 0 on Σhull. The incident and

di�racted potential ϕI +ϕDiff , representative of the wavy sea perturbed by a steady vessel, must

satisfy the same condition. On the other hand, the radiation potential is caused by the oscillations

of the hull, so for each ϕk the tangential condition is more complicated: it implies the oscillations

of the potential too.

The mathematical conditions, for x ∈ Σhull, are written as:
∂ϕS
∂n = 0

∂(ϕI+ϕDiff )
∂n = 0

For the radiation potential, in regular sinusoidal waves, every component ϕk must satisfy:
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

∂ϕk
∂n = jωnk − Umk

(n1, n2, n3) = ~n

(n4, n5, n6) = ~r × ~n

mj = 0, j = 1, . . . 4;

m5 = n3m6 = −n2

m6 = −n2

with ~r and ~n are respectively the position vector with respect to the origin of the coordinate system

and the outward unit normal vector, pointing into the �uid.

� Free surface condition: the pressure must be the same on it, so Dp
Dt = 0. Equation 32 is valid for

each potential part {ϕS , ϕI , ϕDiff , ϕk}, so calling the generic component just as ϕ and computing

the total derivative, the following is reached

1

ρ

Dp

Dt
=

D

Dt

(
−∂ϕ
∂t

+ U
∂ϕ

∂x
− gz

)
=

=
∂

∂t

(
−∂ϕ
∂t

+ U
∂ϕ

∂x
− gz

)
+∇ϕ · ∇

(
−∂ϕ
∂t

+ U
∂ϕ

∂x
− gz

)
=

= −∂
2ϕ

∂t2
+ U

∂2ϕ

∂t∂x
+

(
∂ϕ

∂x
− U, ∂ϕ

∂y
,
∂ϕ

∂z

)
·
(
− ∂2ϕ

∂t∂x
+ U

∂2ϕ

∂x2
, − ∂2ϕ

∂t∂y
+ U

∂2ϕ

∂x∂y
, − ∂2ϕ

∂t∂z
+ U

∂2ϕ

∂x∂z
− g
)

=

= −∂
2ϕ

∂t2
+ U

∂2ϕ

∂t∂x
+ U

∂2ϕ

∂t∂x
− U2 ∂

2ϕ

∂x2
− g ∂ϕ

∂z
+O

(
d3ϕ

)
≈

≈ −∂
2ϕ

∂t2
+ 2U

∂2ϕ

∂t∂x
− g ∂ϕ

∂z
− U2 ∂

2ϕ

∂x2

For each potential term the former must be satis�ed in z = ζ, but with the small oscillation hypothesis

the derivative can be taken in z = 0. This condition is clearly satis�ed also by the overall potential Φ, so

one can shortly write

∂2Φ

∂t2
− 2U

∂2Φ

∂t∂x
+ U2 ∂

2Φ

∂x2
+ g

∂Φ

∂z
= 0, z = 0.

but always bearing in mind that this condition must be satis�ed by each potential contribution, not

just by their sum.

� Bottom condition: velocity must be tangential in z = −h, if the depth h is �nite, or zero as

z → −∞, for in�nitely depth sea; so for ϕ ∈ {ϕS , ϕI , ϕDiff , ϕk} one the following conditions also
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holds

∂ϕ

∂z
= 0, z = −h

or

∂ϕ

∂x
=
∂ϕ

∂y
=
∂ϕ

∂z
= 0, z → −∞

� Radiation condition: the �ow is undisturbed far away from the moving body. Hence

∇ϕ→ 0, ‖x‖ → ∞, t <∞

6.2.1 Hydrodynamic forces and moments

After �nding the potential, the linearized time-dependent pressure on the hull is:

p = −ρ
(
∂

∂t
− U ∂

∂x

)
ϕT (t, x) , x ∈ Σhull

The integration of the pressure over the mean position of the hull leads to the hydrodynamics forces

H1,2,3 and moments H4,5,6. Considering each simple sinusoidal harmonics of the sea, with a well de�ned

frequency ω, we can write ϕT (t, x) = ϕ̃T (x) ejωt, so consider just the amplitudes of the forces and

moments:

Hj =

ˆ

Σhull

ρ

(
∂

∂t
− U ∂

∂x

)
ϕ̃T (x)njdσ

with (n1, n2, n3) = ~n and (n4, n5, n6) = ~r × ~n.

The vector H can be divided into two parts: the exciting forces and moments F and the ones due to the

body motions G:

Hj = Fj +Gj

Fj =

ˆ

Σhull

ρ

(
∂

∂t
− U ∂

∂x

)
(ϕ̃I + ϕ̃Diff )njdσ

Gj =

ˆ

Σhull

ρ

(
∂

∂t
− U ∂

∂x

)(∑
k

ηkϕ̃k

)
njdσ =

∑
k

Tjkηk
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Fj can be clearly divided into two components, the Froude-Krilov and the di�raction terms:

Fj = FFK, j + FDiff, j

FFK, j =

ˆ

Σhull

ρ

(
∂

∂t
− U ∂

∂x

)
ϕ̃I njdσ

FDiff, j =

ˆ

Σhull

ρ

(
∂

∂t
− U ∂

∂x

)
ϕ̃Diff njdσ

Finally, Tjk denotes the hydrodynamic reaction in the jth direction per unit oscillatory displacement in

the kth mode, and for each harmonic can be separated in his real and imaginary part:

Tjk =

ˆ

Σhull

ρ

(
∂

∂t
− U ∂

∂x

)
ϕ̃k njdσ

Tjk = ω2Ajk − jωBjk

where Ajk and Bjk are the added mass and damping coe�cients.

6.2.2 Linearization of the hydrodynamic problem: Strip Theory

The numerical solution of the nonlinear boundary value problem is possible, but very complex and

computationally expensive. To simplify the problem resolution, one can carry out the linearization of the

boundary conditions. In order to proceed, some restrictions on the nature of the problem are necessary:

� The wet hull must be slender;

� The speed of the ship can't be too high;

� Waves amplitude must be small;

� Motions amplitude of the ship must be small.

Di�erent combinations of restrictions result on di�erent linear formulations; the adequacy of the sim-

pli�cation depends on the physical problem intended to represent. In our case we will use the Strip

Theory.
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Indeed, for slender bodies, a good approximation is that the �uid motion �eld varies much slower

in the longitudinal direction of the ship than in the cross-directional plane. Hence, the problem can be

reformulated bidimensionally.

The principle of strip theory, a low Froude number theory, is to divide the submerged part of the vessel

into a �nite number of strips and analyze each one separately. After solving a set of bidimensional

boundary value problems, one can compute the frequency dependent bidimensional coe�cients of added

masses and damping for each strip.

Hence, integrating the action of each 2D coe�cient along the length of the vessel, one can estimate

the overall tridimensional coe�cients of the whole hull.

For more details see for example [Faltinsen1990].

One of the problem of the strip theory is that we can not trace back to the surge force, because is not

present in the bi-dimensional problems from which we obtain the tridimensional quantities.

To add the drag force we will use empirical formulas, based on the geometry of the ship, the operational

conditions and the characteristic Reynolds number.

Moreover, in FloBoS, the steady part of the potential ϕS is neglected. The steady perturbation due

to the presence of the hull at rest is considered negligible with respect to the sea waves , or of the same

approximation degree of the linear hypothesis: this approach is also called of the ghost vessel.

Figure 7: Strip Theory � discretization example of a 10% scaled container ship S175
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7 Rigid-body equation of motion

In order to implement kinematics and dynamics models in a time domain marine vehicles simulator, by

having seakeeping data from PDSTRIP, a transformation of the equations of motion used in seakeeping

theory to body-�xed coordinates is required. The following transformations are the ones derived by

[Perez&Fossen2007].

The vessel rigid-body generalized mass matrix, computed with respect the origin of {b}, is of the form

Mb
RB =

 mI3×3 −mS
(
rbbg

)
mS

(
rbbg

)
Ibb/b

 ,
where m is the mass of the vessel, Ibb/b is the inertia tensor about {b} and rbbg gives the coordinates

of the center of gravity in {b}. From the conservation of the angular momentum, one can demonstrate

that the inertia tensor will not be constant in an inertial frame if the vessel rotates with respect this

frame. Therefore, it is always convenient to formulate the equations of motion in a body-�xed rather

than inertial coordinate system (see [Perez&Fossen2007]).

Expressing in {b} the Newton's fundamental second law for rigid bodies, the 6 degrees of freedom motion

is governed by the following equation:

Mb
RB ν̇ + CRB (ν) ν = τ b (33)

where τ b is the generalized external force vector, which includes both the interaction forces with water

and the control and propulsive forces; lastly, CRB (ν) is the Coriolis-Centripetal matrix, which appears

because the body-�xed frame is not inertial. The terms of this matrix are:

CRB (ν) =

 03×3 −mS (ν1)−mS
(
S (ν2) rbbg

)
−mS (ν1)−mS

(
S (ν2) rbbg

)
mS

(
S (ν1) rbbg

)
− S

(
Ibb/bν2

)


7.1 Seakeeping equation of motion

Describing the motion by the means of perturbations of {b} with respect to {s}, using 9, leads to the

following kinetic model for the seakeeping equation:
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
δη̇ = Jsb (δη) δν

Mb
RBδν̇ + CRB (δν) δν = δτ

One should notice that for small angles both Rs
b and Tb tend to the identity matrix, and therefore

also Jsb (δη). It follows that a linear approximation of the former model is


δη̇ ≈ δν

MRBδν̇ ≈ δτ

which results simply in

MRBδη̈ = δτ (34)

Changing notation and splitting the forces in the two main contribution, the equation (11) can be written

expressed in {s}, with a same order approximation, as:

MRB ξ̈ = τsrad + τsexc + τsres (35)

By writing the forces in the frequency domain, this equation is:

[MRB + A (ω)] ξ̈ + B (ω) ξ̇ + Gξ = τsFK+Diff (36)

Exploiting Cummins work, radiation force can be rewritten achieving the linear seakeeping vector equa-

tion of motion in time domain, called Cummins Equation:

(MRB + A∞) ξ̈ + B∞ξ̇ +

tˆ

0

K (t− t′) ξ̇ (t′) dt′ + Gξ = τsFK+Diff (37)

7.2 Maneuvering equation of motion

When treating the design and the implementation of an autopilot and a control system, it becomes indis-

pensable to treat equations written with respect to an inertial reference frame. Indeed, in maneuvering

theory, a ship changes his attitude and position and an equilibrium inertial frame does not exist and can
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not be identi�ed. Furthermore, to control the ship trajectory, control forces (propulsive system thrust or

forces and moments due to the de�ection of a control surface like the rudder) are applied directly on the

body

That leads, in summary, to the necessity of writing the dynamics equations in an inertial �xed reference

frame, for example the NED one, but express them in the body frame, in order to apply easily control

forces.

Following [Fossen2005], we can express the relation between ν ,

[ (
vbnb
)T
,
(
ωbnb
)T ]T

= ν̄ + δν,

where ν̄ = [U, 0, 0, 0, 0, 0]
T
, and ξ as:


ξ̇ = J∗δν − U

ω2
e
L∗δν̇

ξ̈ = J∗δν̇ + UL∗δν

with:

L∗ ,



0 · · · 0 0

0 · · · 0 1

0 · · · −1 0

...
. . .

...
...

0 · · · 0 0


J∗ ,



1 0 0 0 zw 0

0 1 0 −zw 0 xw

0 0 1 0 −xw 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



Applying the former transformation to the 36, premultiplicating it for J∗T , changing notation for the

rigid body inertial tensor MRB → J∗TMRBJ∗ and adding the control forces, we reach:

[MRB + MA (ω)] δν̇ + N (ω) δν + CRBδν + Gξ = τ bFK+Diff + (τPID − τ̄) (38)

with:

MA (ω) = J∗T
[
A (ω)− U

ω2
e

B (ω) L∗
]

J∗

N (ω) = J∗T [B (ω) + UA (ω) L∗] J∗

CRB = UMRBL∗
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The time domain solution of the 38 is:

[MRB + MA,∞] δν̇ + N∞δν + CRBδν +

tˆ

0

K̃ (t− t′) δν (t′) dt′ + Gη = τ bFK+Diff + (τPID − τ̄)

with:

MA,∞ = J∗TA∞J∗

N∞ = J∗T [B∞ + UA∞L∗] J∗

CRB = UMRBL∗

and where the impulse response matrix is

K̃ (t) =
2

π

∞̂

0

[N (ω)−N∞] cos (ωt) dω

Using δν = ν − ν̄ and setting the constant control input τ̄ = [CRB + N∞] ν̄, which corresponds to the

steady state u = U , the �nal dynamical model is:


η̇ = Jnb (η) ν

[MRB + MA,∞] ν̇ + N∞ν + CRBν +
´ t

0
K̃ (t− t′) δν (t′) dt′ + Gη = τ bFK+Diff + τPID

In order to simulate the dynamical behavior of a ship in maneuvering, these are the equations to

implement and solve.
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Part III

Time domain simulation

Time domain models based on frequency domain data are useful both for simulation and control sys-

tems design. Furthermore, adding non linear e�ects for higher accuracy is easier with a time domain

formulation.

8 Linear systems representation

The means to analyze the convolution term are based on his linearity, so we will present a brief overview

about how to represent linear dynamics systems. A stable linear dynamics system, with a scalar excita-

tion u (t) and a scalar response y (t), can be characterized in di�erent equivalent ways: by the means of

an ordinary di�erential equation with high-order derivatives, by a convolution or a state-space represen-

tation.

For example, if one writes the relation between the dynamical response and the excitation with an

ODE :

dny (t)

dtn
+

n−1∑
k=1

qk
dky (t)

dtk
+ q0y (t) =

m∑
k=1

pk
dku (t)

dtk
+ p0u (t) (39)

by applying the Laplace transform it results:

Y (s) = H (s)U (s) (40)

where H (s) is a transfer function de�ned by:

H (s) =
pms

m + pm−1s
m−1 + · · ·+ p1s+ p0

sn + qn−1sn−1 + · · ·+ q1s+ q0

By taking the inverse Laplace transform of 40 the relation is led back the convolution operator:

y (t) =

tˆ

0

h (t− t′)u (t′) dt′ (41)

where h (t) is the simple impulse response of the system.

On the other hand, an equivalent state-space formulation is written as:
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
ẋ (t) = A′x (t) + B′u (t)

y (t) = C′x (t) + D′u (t)

(42)

with the following relationship between the matrices of the system and the transfers function:

H (s) = C′ (sI + A′)
−1

B′ + D′. (43)

The former relation is reached by taking the Laplace transform of the system 42.

Nevertheless, the equation 39 can be reduced to a system of the type of 42 by simply adding auxiliary

variables. For example, with the assumption of pm = · · · = p1 = 0, one can de�ne the components of the

state vector x as :

x1 (t) = y (t) , x2 (t) =
dy

dt
(t) , · · · xn (t) =

dn−1y

dtn−1
(t) .

With these de�nition, using the same notation of 42, the matrices are de�ned by:

A′ =



0 1 0 · · · 0

0 0 1 0

0 0 0
. . . 0

...
...

...
...

0 0 0 · · · 1

−q0 −q1 −q2 · · · −qn−1


, B′ =



0

0

...

p0


, C′ =



0

0

...

1



T

, D′ = 0.

The state-space formulation is a good alternative for simulations because of the simple form of the general

solution of the system 42:

y (t) = C′

x (0) eA
′t +

tˆ

0

eA
′(t−t′)B′u (t′) dt′

+ D′u (t) (44)

The last observation is that, from the comparison of the former solution with the convolution operator

41, it follows that the response of the system to the impulse u (t) = δ (t), with zero initial condition, is:

h (t) = C′eA
′tB′ + D′δ (t)
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For more details [Taghipour2008] presents a good summary of the linear system representation forms.

9 Seakeeping simulation

Evaluating seakeeping simulation techniques, Cummins equation expressed in the seakeeping frame is the

starting point:

(MRB + A∞) ξ̈ + B∞ξ̇ +

tˆ

0

K (t− t′) ξ̇ (t′) dt′ + Gξ = τsFK+Diff

In order to design and code a simulator, one have to face two problems:

� The convolution term is not e�cient for time domain simulations; it implies the storage of a big

amount of data to compute the integral at each time step. For this reason, di�erent methods have

been proposed in the literature as approximate alternative representations of the convolutions. Be-

cause the convolution is a linear operator, di�erent approaches can be followed to obtain an equiv-

alent linear system in the form of either transfer function or state-space models. For an overview

on the main methods for replacing the convolutions and a comparison of the di�erent methods in

terms of complexity and performance, please see [Taghipour2008] or [Perez&Fossen2008bis].

� The second problem is to approximate the in�nite-frequency added mass and damping matrices A∞

and B∞, due to the fact that the bidimensional hydrodynamic code PDSTRIP does not provide

such estimation.

A method to identify both the convolution term and the in�nite added mass matrix in one fell swoop

has been proposed by [Perez&Fossen2008]; we are going to develop a method starting from their work,

to �nd also the matrix B∞ and then implement it in our simulator.

9.1 Convolution term properties

Before exposing the previously mentioned method of [Perez&Fossen2008], we will focus on the properties

of the convolution term, useful to impose the conditions for building its estimation. The expressions both

in time and frequency domain are:
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K (t) =

∞̂

0

(B (ω)−B∞) cos (ωt) dω

K (jω) = B (ω)−B∞ + jω [A (ω)−A∞]

� For t→ 0+ it results:

K
(
0+
)

=

∞̂

0

(B (ω)−B∞) dω 6= 0 <∞ (45)

because the functions Bik (ω)−B∞ik are all bounded.

� From the Riemann-Lebesgue Lemma it follows that, for t→∞:

lim
t→∞

K (t) = lim
t→∞

∞̂

0

(B (ω)−B∞) cos (ωt) dω = 0 (46)

That implies the important input-output stability property of the convolution term: indeed, in order

to have each term
´ t

0
Kij (t− t′) ξ̇j (t′) dt′ bounded for any bounded excitation ξ̇j (t), it is necessary that

´ t
0
|Kij (t) |dt <∞, which holds provided 46.

� Using the Riemann-Lebesge Lemma, it is also veri�ed that for ω → 0:

lim
ω→0

K (jω) = 0

� For ω →∞, B (ω)→ B∞, and from the same Lemma:

lim
ω→∞

ω [A (ω)−A∞] =

∞̂

0

K (t) sin (ωt) dt = 0

so it holds also:

lim
ω→∞

K (jω) = 0

� The last important property is the passivity of K (jω). Passivity establishes that there is no gen-

eration of energy within physical system, i.e. the system can either store or dissipate energy. In

our case it derives from the fact that radiation forces are dissipative. To re�ect this property in

the mathematical model, thanks to the linearity, we have just to assure positive realness: the real

part of the frequency response function must be non zero. The damping matrix is symmetric and



9 SEAKEEPING SIMULATION 50

positive-semi de�nite � B (ω) = BT (ω) >= 0, [Newman1997] � so K (jω) is positive real and thus

passive. This implies that the diagonal elements of the matrix K (jω) are positive real and the

o�-diagonal terms needs only to be stable, [Taghipour2008].

Expression 20, given A∞ and B∞, allows to compute the values of the frequency response function K (jω)

for a �nite set of available data. Thanks to linearity, one can seek a transfer function approximation K̃ (s),

using these values for the identi�cation method:

K̂ik (s) =
Pik (s)

Qik (s)
=
prs

r + pr−1s
r−1 + . . .+ p0

sn + qn−1sn−1 + . . . q0
, i, k = 1, . . . , 6 (47)

In order to carry out a good estimation of the approximations K̃ik (s), one have to exploit both the

non parametric data Kik (jω) from 20, and the properties previously listed. The following table from

[Perez&Fossen2008] summarizes these properties and their implications on the transfer function 47:

Properties Implication on Parametric Models K̃ik (s)

1 � limt→0+ K (t) 6= 0 <∞ Relative degree between Pik (s) and Qik (s) is 1

2 � limt→∞K (t) = 0 Bounded-input, bounded-output (BIBO) stability

3 � limω→0 K (jω) = 0 Pik (s) has zeros in s = 0

4 � limω→∞K (jω) = 0 deg (Qik (s)) > deg (Pik (s))

5 � Passivity of K (jω) K (jω) is positive real

Table 1: Properties of retardation functions

Using these informations to set constraints on the model's structure is fundamental to �t a transfer

function which will assure a good estimation.

9.2 Frequency domain identi�cation problem

From property 3 of Table 1, it is know that Pik (s) must have the form slP ′ik (s), so that:

K̂ik (s) =
slP ′ik (s)

Qik (s)
=
sl
(
pms

m + pm−1s
m−1 + . . .+ p0

)
sn + qn−1sn−1 + . . . q0
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Furthermore using property 1 and 4, the orders of the polynomials must satisfy the relation l+m+1 =

n. Since in general A (0) 6= A∞, from 20 it follows that there is a unique zero of Kik (s) in s = 0, so

l = 1 and n −m = 2. That also means that the lowest possible order of approximation is m = 0 and

n = 2. The �nal form of the rational approximation is:

K̂ik (s)

s
=
P ′ik (s)

Qik (s)
=
pms

m + pm−1s
m−1 + . . .+ p0

sm+2 + qm+1sm+1 + . . . q0
(48)

The problem is now reduced to �nd the vector of parameters θ = [pm, . . . , p0, qm+1, . . . , q0], which

perfectly de�nes the (i, k) element of the approximated transfer function K̂ (s).

In order to exploit the avaiable data A (ωl) and B (ωl), which give the exact values K (jωl) from 20, we

can de�ne the auxiliary function

K̃ik (jωl) =
Kik (jωl)

jω
(49)

to shape the data in a similar manner of 48, and set the identi�cation problem to �nd P ′ik (s) and

Qik (s). One can think to a complex least square curve �tting problem, to minimize the overall displace-

ment of 48 with respect to the points de�ned by 49. The vector of parameters to choose is the argument

of the result of the following minimization problem:

θ∗ = arg min
θ

∑
l

wl

∣∣∣K̃ik (jωl)− ˆ̃Kik (jωl)
∣∣∣2 = arg min

θ

∑
l

wl

∣∣∣∣K̃ik (jωl)−
P ′ik (s; θ)

Qik (s; θ)

∣∣∣∣2 (50)

The weights wl can be chosen in order to emphasize a particular range of frequencies. This kind of

parameter estimation is non linear in the parameters: it can be solved with Gauss-Newton algorithms or

by linearization, as proposed by [Levy1959].

For other identi�cation methods, both in time and in frequency domain, in order to analyze other ways

to estimate K̂ (t) or K̂ (s), [Taghipour2008, Perez&Fossen2008bis] provides a exhaustive summary of the

state of the art.

9.3 Identi�cation of A∞ and Fluid Memory E�ect

The minimization problem can not be accomplished in the absence of the In�nite Added Mass matrix:

that's because it's not possible to proceed with the computation of the discrete values of K (jωk) through

20, so no set of available data can be generated for the �tting problem.

The method proposed by [Perez&Fossen2008] overcomes this limit by de�ning another minimization



9 SEAKEEPING SIMULATION 52

problem that allows to �nd both terms. Indeed, it provides an extension of the previous results, putting

the two identi�cation problems into the same framework.

First of all we have to recall the relation 21:

τrad,i (jωl) = −
[
Aik (ωl) +

Bik (ωl)

jω

]
η̈k (ωl) = −Ãik (jωl) η̈k (ωl) (51)

On the other hand, taking the Laplace transform of 22 in the case of zero speed, which implies B∞ = 0,

with the same rational approximation of the convolution term analyzed previously, we obtain:

τ̂rad,i (s) = −
[
sA∞,ik +

Pik (s; θ)

Qik (s; θ)

]
η̇k (s)

= −
[
A∞,ik +

P ′ik (s; θ)

Qik (s; θ)

]
η̈k (s) = − ˆ̃Aik (s; θ) η̈k (s)

We can now follow the general identi�cation problem approach, using a Least Square Optimization to

�nd θ∗. The error to globally minimize is de�ned by the deviations of ˆ̃Aik (jωk, θ) to Ãik (jωk). The new

parametric identi�cation problem is:

θ∗ = arg min
θ

∑
l

wl

∣∣∣Ãik (jωl)− ˆ̃Aik (jωl; θ)
∣∣∣2

The rational function one have to �nd from the minimization problem is:

ˆ̃Aik (s; θ) =
Qik (s; θ)A∞,ik + P ′ik (s; θ)

Qik (s; θ)
=
Rik (s; θ)

Qik (s; θ)
(52)

Therefore, the optimization problem is set to �nd the polynomials Rik (s; θ) and Qik (s; θ) such that

θ∗ = arg min
θ

∑
l

wl

∣∣∣∣Ãik (jωl)−
Rik (s; θ)

Qik (s; θ)

∣∣∣∣2 (53)

Being the order of Qik (s; θ) higher then P ′ik (s; θ), Rik (s; θ) and Qik (s; θ) have the same degree n;

furthermore Qik (s; θ) is de�ned as monic. These two observations imply:

Â∞,ik = lim
ω→∞

Rik (jω; θ∗)

Qik (jω; θ∗)

that is: the estimated in�nite-frequency added mass term Â∞,ik is the coe�cient of the highest

order term of Rik (s; θ∗). After obtaining the rational approximation 52, the memory e�ect polynomial
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P ′ik (s; θ) is also deduced straightforwardly:

P ′ik (s; θ∗) = Rik (s; θ∗)−Qik (s; θ∗)A∞,ik

and also K̂ik (s; θ∗) is found.

This algorithm to solve the optimization problem has been implemented in the Marine Systems Simulator,

so we will integrate a MSS routine in FloBoS to �nd the polynomial rational function which minimize

the argument of 53.

9.3.1 Order choice of K̂ik (s), Model quality and Passivity

As mentioned before, to remain consistent with the properties of thde Table 1, the order of the polynomials

P ′ik (s; θ∗) and Qik (s; θ∗) have to be related by

n = deg (Qik (s; θ∗)) = deg (P ′ik (s; θ∗)) + 2

It implies that the minimum order transfer function is a second order one:

K̂min
ik (s; θ) =

sp0

s2 + q1s+ q0
.

The correct order to select is based on the particular hull shape considered. The algorithm can start

with the minimum order, n = 2, increasing it until a chosen maximum one. After having all the errors,

related with the corresponding degree, we can choose the best trade o� between a low error and a low

order. Indeed, if the order is too high, the over-�tting would increase the computational cost.

Once the approximated transfer function K̂ik (s) = Pik(s)
Qik(s) is found, to compute the error a compari-

son among the frequency dependent coe�cients Aik (ω) and Bik (ω), available from the set of data, and

the estimated ones can be performed. Indeed, from the function K̂ik (s), one can exploit the equation 20

to compute:

B̂ik (ω) = Re
{
K̂ik (jω)

}
Âik (ω) = Â∞,ik +

1

ω
Im
{
K̂ik (jω)

}
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A low deviations of these coe�cients give con�dence in the �tted K̂ (s) and Â∞, [Perez&Fossen2008].

To assure passivity, another control must be carried out. The diagonal terms K̂ii (jω) are passive because

the real parts of Bii (jω) are positive for all frequencies. For the o�-diagonal terms this can be not always

satis�ed, because the Least Square �tting does not enforce passivity. That means that the correct order

to choose is also the one which ensure:

Re

{
Pik (s; θ)

Qik (s; θ)

}
> 0

Until the approximation passivity is not satis�ed, on should continue changing the order.

9.4 Alternative identi�cation method for non-zero forward speed

Starting from the previous work of [Perez&Fossen2008], we can develop a method to identify also the

matrix B∞: indeed, in the case of a moving vessel, the in�nite frequency damping matrix does not vanish.

The Laplace transform of 22 in the general case is:

τ̂rad,i (s) = −A∞,ikη̈k (s)−
[
B∞,ik +

Pik (s; θ)

Qik (s; θ)

]
η̇k (s) = −

[
A∞,ik +

B∞,ik
s

+
Pik (s; θ)

sQik (s; θ)

]
η̈k (s)

We can write the former parenthesis as a polynomial fraction Rik(s; θ)
Sik(s; θ) , such that:

Rik (s; θ)

Sik (s; θ)
=
sQik (s; θ) Â∞,ik +Qik (s; θ) B̂∞,ik + Pik (s; θ)

sQik (s; θ)
(54)

By the means of the coe�cients 51, computed using the set of data, we can set the same minimization

problem

θ∗ = arg min
θ

∑
l

wl

∣∣∣∣Ãik (jωl)−
Rik (s; θ)

Sik (s; θ)

∣∣∣∣2 (55)

in order to �nd the polynomials of the rational function 54.

Once 55 is solved, we have both Rik (s) and Sik (s), and we can trace back to the unknowns Â∞,ik, B̂∞,ik

and Pik(s)
Qik(s) , to reconstruct the radiation force τ̂rad,i (s).

The polynomial function Qik (s) is given simply by Sik(s)
s ; to continue the identi�cation, we have to

exploit the information a priori about Pik (s) and Qik (s). We know that, calling n the degree of Qik (s),
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then the degree of Pik (s) is n − 1, and, obviously, the degree of sQik (s) is n + 1. That means that we

easily �nd Â∞,ik as the highest degree coe�cient of Rik (s).

The last unknowns to �nd are the value of B̂∞,ik and the polynomial Pik (s). We can write the general

form of the polynomials as:

Rik (s) = rn+1s
n+1 + rns

n + · · ·+ r1s+ r0,

Qik (s) = qns
n + qn−1s

n−1 + · · ·+ q1s+ q0,

Pik (s) = pn−1s
n−1 + pn−2s

n−2 + · · ·+ p1s+ p0.

From 54 we know that these polynomials are related by:

sQik (s; θ) Â∞,ik +Qik (s; θ) B̂∞,ik + Pik (s; θ) = Rik (s; θ) (56)

which, extending, turns into:

s
[
qns

n + qn−1s
n−1 + · · ·+ q0

]
Â∞,ik + [qns

n + · · ·+ q0] B̂∞,ik +
[
pn−1s

n−1 + · · ·+ p0

]
=

= rn+1s
n+1 + · · ·+ r0

Furthermore we know that Pik (s) has a zero in s = 0, which means p0 = 0, and Qik (s) is monic, so

qn = 1. That leads to:

[
sn+1 + qn−1s

n + · · ·+ q0s
]
Â∞,ik +

[
sn + qn−1s

n−1 + · · ·+ q0

]
B̂∞,ik +

[
pn−1s

n−1 + · · ·+ p1s
]

=

= rn+1s
n+1 + · · ·+ r0
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Comparing term by term, we reach n+ 2 relations:



rn+1 = Â∞,ik,

rn = qn−1Â∞,ik + B̂∞,ik,

rn−1 = qn−2Â∞,ik + qn−1B̂∞,ik + pn−1,

...

rk = qk−1Â∞,ik + qkB̂∞,ik + pk,

...

r1 = q0Â∞,ik + q1B̂∞,ik + p1,

r0 = q0B̂∞,ik

where the coe�cients rj , qj and the value of Â∞,ik are all known. Calling
∑
j rj = R,

∑
j qj = Q and∑

j pj = P , we can sum the former relations, reaching the new one:

R = Q · Â∞,ik +Q · B̂∞,ik + P (57)

With the two 56 and 57, we can set an iterative process to �nd both B̂∞,ik and Pik (s). Indeed the system


[Pik (s; θ)]l = Rik (s; θ)− sQik (s; θ) Â∞,ik −Qik (s; θ)

[
B̂∞,ik

]
l

Pl =
∑
j [pj ]l[

B̂∞,ik

]
l+1

= Â∞,ik + R−Pl
Q

can eventually converge to the unknowns. The �rst step is to initialize a value: due to the fact that

we do not have any prior information about the polynomial Pik (s), we have to choose
[
B̂∞,ik

]
0
; from

the data set of Bik (ωl) we can take the value corresponding to the maximum frequency ωmax = max
l
ωl

as a good initial approximation of B∞,ik, so
[
B̂∞,ik

]
0

= Bik (ωmax).

The complete algorithm becomes:
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Aik (ωl) , Bik (ωl) → Ãik (jωl) ;

Ãik (jωl) →
Rik (s; θ)

Sik (s; θ)
;

Sik (s)→ Qik (s) ;

Rik (s)→ Â∞,ik;[
B̂∞,ik

]
0

= Bik (ωmax)

[
B̂∞,ik

]
l
→ [Pik (s; θ)]l

[Pik (s; θ)]l → Pl

Pl →
[
B̂∞,ik

]
l+1

At the end we �nd Â∞,ik, B̂∞,ik and K (s) = Pik(s)
Qik(s) . The evaluations about the transfer function

order and the model quality check are the same described in the previous sections, exception for that, if

the speed is not zero, the inverse relations to re-compute the approximated Âik (ω) and B̂ik (ω) are:

B̂ik (ω) = B̂∞,ik +Re
{
K̂ik (jω)

}
Âik (ω) = Â∞,ik +

1

ω
Im
{
K̂ik (jω)

}

Once we have the approximated transfer functions of Kik (s), we can �nd the memory e�ect term in the

time domain, exploiting the relation 43. Indeed, by taking the Laplace transform of

µ (t) =

tˆ

0

K (t− t′) ξ̇ (t′) dt′

we obtain

µi (s) = Kik (s) ξ̇k (s) ≈ Pik (s)

Qik (s)
ξ̇k (s) (58)
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but the Laplace transform of the state-space formulation

µ (t) ≈


ẋ = Asx + Bsξ̇

µ = Csx

(59)

leads to

µ (s) = Cs (sI−As)
−1

Bsξ (s) (60)

Hence, a correlation between 58 and 60 can be made to �nd the constant matrices As, Bs and Cs of

the state-space formulation, starting form the frequency domain transfer functions Pik(s)
Qik(s) ; then, As, Bs

and Cs can be used in 59 for the time domain approximation of µ (t).

9.5 Cummins equation resolution

Once we found a time domain approximation of the memory e�ect term µ (t) and the constant matrices

A∞ and B∞, we can proceed with the numerical resolution of the Cummins equation

(MRB + A∞) ξ̈ + B∞ξ̇ + µ (t) + Gξ = τsFK+Diff

From potential theory we can compute the dynamic pressure due to incident and di�racted waves

and, after the integration over the wet surface of the vessel, we can �nd the Froude-Krilov and di�raction

force vector τsFK+Diff .

Writing the equation as

ξ̈ = − (MRB + A∞)
−1

Gξ − (MRB + A∞)
−1

B∞ξ̇ + (MRB + A∞)
−1 (

τsFK+Diff − µ (t)
)

we can reduce the order of the problem de�ning the following state vector

y (t) =

 ξ (t)

ξ̇ (t)


Indeed, the time derivative of y (t) can be written in a linear system form as:

ẏ (t) = W · y (t) + l (t) = f (t, y (t)) (61)
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where W is the constant matrix

W =

 06×6 I6×6

− (MRB + A∞)
−1

G − (MRB + A∞)
−1

B∞


and l (t) the time dependent vector

l (t) =

 06×1

(MRB + A∞)
−1
(
τsFK+Diff − µ (t)

)


As we can see, in order to integrate the motion equation 61, we need the initial condition y (0), so the

starting position and the velocity of the ship with respect his equilibrium position. For the memory e�ect

term, a parallel update can be performed separately each time step, initializing the state vector x to zero

x (0) = 0.


ẋ (t) = Asx (t) + Bs

˙ξ (t)

µ (t) = Csx (t)

x (0) = 0

(62)

Finding the excitation forces, by integration of the pressure on the hull, implies the computation of

τFK+Diff at each step; indeed, the computation must be carried out on the actual position of the hull,

so it's possible only after updating it, integrating the motion equation.

We can apply several numerical methods to integrate both 61 and 62, for example a Runge-Kutta

method.

The general algorithm to proceed with the integration is:

ξ (0) , ξ̇ (0)→ y (0)

ξ (0)→ τFK+Diff (0)

x (0)→ µ (0)
y (0)

τFK+Diff (0)

µ (0)

→ y (∆t)
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ξ (k∆t)→ τFK+Diff (k∆t)

x (k∆t)→ µ (k∆t)
y (k∆t)

τFK+Diff (k∆t)

µ (k∆t)

→ y ((k + 1) ∆t)

The possibility to add a forward speed U is implemented. To add the drag force due to the relative

motion, we can use empirical formulas: after �nding the instantaneous relative velocity Ui of the vessel

with respect to the water � adding to the forward speed the surge �uctuation and the water velocity � we

can compute the Reynolds number and the global resistance coe�cients CDrag, expressed as a percentage

of the friction coe�cient Cf :

Re =
ρUiLpp
µ

Cf = Cf (Re)

CDrag = αCf , α > 1

For example, we can use the Gabers formula to estimate the friction coe�cient:

Cf =
0.02058

8
√
Re

and consider the pressure resistance as the 50% of the friction one, so CDrag = αCf with α = 1.5.

To compute the drag force we can consider an equivalent plate with a wet surface of Seq = 2Lppd, so it

results

D = ρU2
i LppdCDrag

The steady part of the resistance, due only to the forward speed U , is taken o� from the overall

resistance: for seakeeping simulations, the hypothesis that the propulsive system balances at each instant

this component, to assure equilibrium, is assumed.
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10 Maneuvering simulation

To perform ship maneuvering simulations, we have to change reference frames. Unable to de�ne any

equilibrium position the ship �uctuates around, every kinematics quantity must be referred with respect

to an inertial frame {n}: η and ν are the generalized position and velocity vectors of the ship with

respect of the origin of {n}, but while η is also expressed in the inertial frame, ν is expressed in the body

coordinate system.

The frequency domain dynamical model for maneuvering is:

[MRB + MA (ω)] δν̇ + N (ω) δν + CRBδν + Gξ = τ bFK+Diff + (τPID − τ̄)

with

MA (ω) = J∗T
[
A (ω)− U

ω2
e

B (ω) L∗
]

J∗

N (ω) = J∗T [B (ω) + UA (ω) L∗] J∗

CRB = UMRBL∗

On the other hand, the related time domain version is:

[MRB + MA,∞] δν̇ + N∞δν + CRBδν +

tˆ

0

K̃ (t− t′) δν (t′) dt′ + Gη = τ bFK+Diff + (τPID − τ̄)

with

K̃ (t) =
2

π

∞̂

0

[N (ω)−N∞] cos (ωt) dω

MA,∞ = J∗TA∞J∗

N∞ = J∗T [B∞ + UA∞L∗] J∗

CRB = UMRBL∗
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The di�culties to overcome to implement the resolution are the same of the seakeeping case:

� Find a transfer function for K̃ (t) and approximate the convolution term;

� Find A∞ and B∞ to compute MA,∞ and N∞.

10.1 Identi�cation of MA,∞, N∞ and Fluid Memory E�ect

All the considerations we already made about the memory e�ect terms still hold; the di�erence in ma-

neuvering is that the argument of the convolution operator is di�erent: it's a linear combination of the

frequency dependent matrices A (ω) and B (ω).

The method is similar to the seakeeping one. We start correlating the following expression

MA (ω) δν̇ + N (ω) δν =

[
MA (ω) +

N (ω)

jω

]
δν̇ (63)

with the related time domain one:

MA,∞δν̇ + N∞δν +

tˆ

0

K̃ (t− t′) δν (t′) dt′

Taking the Laplace transform of the former, we can write an equivalent form in the frequency domain:

[
MA,∞ +

N∞ + K̃ (s)

s

]
δν̇ (64)

Considering each term of 63 and 64 separately, and approximating the retardation matrix with a rational

function:

Kik (s) ≈ K̃ik (s) =
Lik (s; θ)

Gik (s; θ)

we de�ne

MA,ik (ω) +
Nik (ω)

jω
= Tik (jω)

MA∞,ik +
N∞,ik
s

+
Lik (s; θ)

sGik (s; θ)
= T̂ik (s; θ)
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We can form a discrete data set for each Tik (jω), by having available the matrices A (ωl) and B (ωl).

Indeed, both MA (ω) and N (ω) are simple combinations of them:

MA (ωl) = J∗T
[
A (ωl)−

U

ω2
e,l

B (ωl) L∗

]
J∗

N (ωl) = J∗T [B (ωl) + UA (ωl) L∗] J∗

so

T (jωl) =

[
MA (ωl) +

N (ωl)

jωl

]
To �nd MA∞,ik , N∞,ik and the polynomial functions of Lik(s; θ)

Gik(s; θ) , we can solve an optimization problem:

starting with the de�nition of the degree of approximation of the retardation function, i.e. the degree

of the functions Lik (s; θ), or Gik (s; θ), we try to �nd θ∗ such that T̂ik (s; θ∗) will �t in the best way

possible � in the least mean square sense � the data Tik (jωl):

θ∗ = arg min
θ

∑
l

wl

∣∣∣Tik (jωl)− T̂ik (s; θ)
∣∣∣2

the resulting T̂ik (s; θ∗) has a rational form too:

T̂ik (s; θ∗) =
MA∞,iksGik (s; θ∗) +N∞,ikGik (s; θ∗) + Lik (s; θ∗)

sGik (s; θ∗)
=
Rik (s; θ∗)

Sik (s; θ∗)
(65)

Therefore, after the �tting problem, we have Rik (s; θ∗) and Sik (s; θ∗).

As we already discussed, for the properties of the retardation functions, the relative degree between

Lik (s; θ∗) and Gik (s; θ∗) is one and the former has the higher order. That means that we can directly

�nd both M̂A∞,ik and Gik (s; θ∗): the former is simply 1
sSik (s; θ∗) and, on the other hand, MA∞,ik is

the highest degree coe�cient of Rik (s; θ∗), having sGik (s; θ∗) the highest order in the numerator of 65.

As already done, we can iterate until �nding also N̂∞,ik and Lik (s; θ∗): N∞ can be initialized with

the highest available frequency N (ωmax) and from the following

MA∞,iksGik (s; θ∗) +N∞,ikGik (s; θ∗) + Lik (s; θ∗) = Rik (s; θ∗)
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the �rst iterative step is

[Lik (s; θ∗)]1 = Rik (s; θ∗)−MA∞,iksGik (s; θ∗)−Nik (ωmax)Gik (s; θ∗)

Then, de�ning the sum of the coe�cients of the polynomials Gik (s; θ∗), Lik (s; θ∗) and Rik (s; θ∗) as∑
j gj = G,

∑
j lj = L and

∑
l rj = R, we can add the relation

MA∞,ikG+N∞,ikG+ L = R

which means

(N∞,ik)l+1 = MA∞,ik −
R− Ll
G

to continue the iteration process, similarly as we already discussed. Clearly, the notation Ll represent

the sum of the coe�cients of the polynomial Lik (s; θ∗) at the lth iteration.

As we found every components we needed, we can compute the error, i.e. evaluating the quality of the

order. We will exploit the following properties: in analogy of the seakeeping motion equation, it holds

K̃ (t) =
2

π

∞̂

0

[N (ω)−N∞] cos (ωt) dω = − 2

π

∞̂

0

ω [MA (ω)−MA,∞] sin (ωt) dω

from which it derives


N (ω) = N∞ +

´∞
0

K̃ (t) cos (ωt) dt

MA (ω) = MA,∞ − 1
ω

´∞
0

K̃ (t) sin (ωt) dt

and the Laplace transform leads to

K̃ (jω) =

∞̂

0

K̃ (t) e−jωtdt = [N (ω)−N∞] + jω [MA (ω)−MA,∞] (66)

Having found N̂∞,ik and M̂A∞,ik , using 66 we can compare the points from the data set Nik (ωl) and

MA,ik (ωl), with the approximated ones


N̂ik (ωl) = N̂∞,ik +Re

{
Lik(jωl; θ

∗)
Gik(jωl; θ∗)

}
M̂A,ik (ωl) = M̂A∞,ik + 1

ω Im
{
Lik(jωl; θ

∗)
Gik(jωl; θ∗)

}
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After computing the error, we can increase the order of Lik(s; θ)
Gik(s; θ) and, at the end, choose the best trade

o� between a low error and a low order.

To convert this formulation in a state-space one, we proceed as before:

µi (s) = K̂ik (s) δνk (s) ≈ Lik (s)

Gik (s)
δνk (s)

µ (s) = Cs
′ (sI−As

′)−1
Bs
′δν (s)

and after the correlation we can �nd the constant matrices As
′, Bs

′ and Cs
′.

10.2 Cummins equation resolution

The approach to integrate the maneuvering equation is the same of the seakeeping one: having the

dynamical model


η̇ = Jnb (η) ν

[MRB + MA,∞] ν̇ + N∞ν + CRBν + µ (t) + Gη = τ bFK+Diff + τPID

Rearranging the motion equation, the acceleration results:

ν̇ = − [MRB + MA,∞]
−1

Gη−[MRB + MA,∞]
−1

(N∞ + CRB) ν+[MRB + MA,∞]
−1 (

τ bFK+Diff + τPID − µ (t)
)

De�ning the state vector y (t) and the matrices W (t) and l (t) as follows:

y (t) =

 η (t)

ν (t)



W (t) =

 06×6 Jnb (η)

− [MRB + MA,∞]
−1

G − [MRB + MA,∞]
−1

(N∞ + CRB)



l (t) =

 06×1

[MRB + MA,∞]
−1
(
τ bFK+Diff + τPID − µ (t)

)

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the motion equation turns into:

ẏ (t) = W (t) · y (t) + l (t) = f (t, y (t))

This time the matrix W (t) is time dependent, because of the presence of Jnb (η (t)).

The algorithm for integrating numerically the dynamics equation, are perfectly analogous to the seakeep-

ing ones. The main di�erence is that the matrix W (t) must be computed each time step, after updating

the position η and consequently Jnb (η). After setting the initial conditions for position and velocity η (0)

and ν (0) we proceed in the following way:

η (0) , ν (0)→ y (0)

η (0)→ Jnb (η (0))

Jnb (η (0))→W (0)

η (0)→ τFK+Diff (0)

x (0)→ µ (0)

y (0)

W (0)

τFK+Diff (0)

µ (0)

→ y (∆t)

η (k∆t)→ Jnb (η (k∆t))

Jnb (η (k∆t))→W (k∆t)

η (k∆t)→ τFK+Diff (k∆t)

x (k∆t)→ µ (k∆t)

y (k∆t)

W (k∆t)

τFK+Diff (k∆t)

µ (k∆t)

→ y ((k + 1) ∆t)
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10.3 Sideslip stability

During maneuvering, ship experiences important sideslip angles, that is the misalignment between the

velocity and the x body axis. The vessel response is opposite and it tends to realign itself with the velocity.

In seakeeping that means static stability, but in maneuvering that can make the rudder capabilities

ine�cient.

According to the regression analysis of [Lee&Shin1998], we can add to our model the hydrodynamics

derivatives in sway force Y and yaw moment N due to a sideslip δ.

De�ning k = 2d
Lpp

and the block coe�cient Cb = Ω
LppBd

, where d is the mean draft, Lpp the lenght of

the ship and Ω the �uid displaced volume, [Lee&Shin1998] found:

Yδ = −9.5114 + 30.278Cb − 36.8419k − 22.1929C2
b + 20.3124k2 + 40.3232Cbk

Yδ|δ| = 31.3506 + 3.622Cb + 318.2181
B

L
+ 29.1844C2

b − 290.0526

(
B

L

)2

− 262.1299Cb
B

L

Nδ = 0.0024 + 1.0272k

Nδ|δ| = −0.2149 + 4.6127k − 22.53k2

Ultimately, we add the forces:

Y = Yδδ + Yδ|δ|δ|δ|

N = Nδδ +Nδ|δ|δ|δ|

In our model we neglect the cross derivatives with the yaw angular velocity, i.e. Yδr and Nδr.

10.4 PD Controller

In a similar way we already did for seakeeping, we can add the resistance of the ship, starting from the

instantaneous Reynolds number and using empirical formulas. Then, the steady resistance, required to

assure a constant speed U , is balanced by the propulsive force and the remaining part acts autonomously.

Furthermore, to control the ship, in order to achieve simple maneuvering actions, a PD controller

has also been implemented in the simulator. Selecting one or more target positions to reach, the error is

computed by the means of the di�erence ∆ψ between the heading attitude the ship should have and the
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one the ship actually has. Indeed, the x body axis of the ship should be aligned with the target point

and, controlling a rudder, a yaw moment is generated to correct the attitude.

Figure 8: Error ∆ψ to correct by the PD controller

Once the error has been computed, the angle to command to the rudder is found by the means of the

constant Kp and Kd:

δrudder = Kp∆ψ +Kd
d

dt
(∆ψ)

The surface of the rudder Srudder is assumed to be 2.5% of the longitudinal surface of the ship Lppd, with

a classic aspect ratio of λ ∼ 2/2.5. The normal force coe�cient is computed as:

CFn =
6.13λ

λ+ 2.25

To �nd the normal force generated by the rudder, the e�ective angle of attack αrudder must be considered.

Neglecting all the interaction with the hull, this angle is just the sum of the rudder de�ection and the

sideslip angle of the ship:

αrudder = δrudder + δ
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Considering the instantaneous relative velocity of the vessel with respect to water, sum of the cruise �

with respect to the inertial frame � and the sea one, the resulting normal force is found to be

Fn =
1

2
ρU2

i SrudderCFn sinαrudder

The projection of Fn along the y body axes gives the sway force Yrudder and the one along the x axis

an added resistance; the sway component Yrudder causes the yaw moment Nrudder, aimed to control the

attitude of the ship, and also a reaction roll moment Krudder due to the vertical distance of the rudder

from the center of gravity ∆zrudder. Those forces, computed in the body reference frame, are respectively:

Xrudder = − |Fn sin (δrudder)|

Yrudder = −Fn cos (δrudder)

Nrudder = −Y Lpp
2

Krudder = Y∆zrudder

11 Integration with WAFO

To create more realistic sea states we integrated WAFO, a Matlab toolbox for analysis of random waves

and loads, with FloBoS.

This toolbox, created by a mathematical and engineering group of the University of Lund, can perform

accurate and detailed statistical analysis about sea states and fatigue analysis; however we exploited very

few features of this powerful software.

Using WAFO routines we can obtain a realistic wave spectrum just with three informations about the

sea state:

� Signi�cant waves height Hm0, de�ned as four times the standard deviation of the surface elevation;

� Peak period Tp, de�ned as the wave period associated with the most energetic waves in the total

wave spectrum;

� Main direction of the waves θ0, with respect to our inertial frame.
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11.1 Wave Spectrum

Waves on the sea surface are not simple sinusoidal but, with some simpli�cations, we arrive to the concept

of the spectrum of ocean waves. A waves spectrum, statistically de�ned from a general sea surface, gives

the distribution of the energy among di�erent wave frequencies. There are many models for sea spectra,

coupling both experimental data and theoretical concepts, and the state of art requires a good knowledge

of the characteristics of the particular sea one wants to simulate to choose the best one. In FloBoS

the main used spectrum is the JONSWAP; the former can also lead to a more so�sticated one, the

Torsethaugen specturm, by combining two of them. In what follows we will describe the main features

of both.

JONSWAP spectrum

The JONSWAP (JOint North Sea WAve Project), by [Hasselmann1973], is a result of a program to

standardize wave spectra of the Southeast part of the North Sea.

This spectrum is particularly well suited for not fully developed sea states, but it can be used also to

represent fully developed ones. His best validity range is when 3.6
√
Hm0 < Tp < 5

√
Hm0.

This spectrum is given in the form of

S+ (ω) =
αg2

ωM
exp

(
−M
N

(ωp
ω

)N)
γ

exp

(
− (ω−ωp)2

2σ2ω2
p

)

where

σ =


0.07, ω < ωp

0.09, ω > ωp

M = 5

N = 4

α ≈ 5.061
H2
m0

T 4
p

(1− 0.287 ln (γ))

γ = exp

(
3.484

[
1− 0.1975

T 4
p

H2
m0

(
0.036− 0.0056

Tp√
Hm0

)])

The value of γ, the peakedness parameter, is limited by 1 ≤ γ ≤ 7; a standard value that can be

taken for it is γ = 3.3.
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Torsethaugen spectrum

Torsethaugen proposed in [Torsethaugen1993] to describe a bimodal spectrum by the sum of two JON-

SWAP spectra:

S+ (ω) =

2∑
j=1

S+
j (ω; Hm0j , Tpj)

Hm0j and Tpj are the signi�cant wave height and the angular peak frequency for the primary and

secondary peak, respectively.

For more information about the de�nition of those spectra please consult the WAFO guide [WAFO2017].

The �gure shows how an example of spectrum can appear:

Figure 9: Example of Torsethaugen spectrum with parameters Hm0 = 6 m and Tp = 8 s

11.2 Directional spectrum

The wave train is also characterised by a main direction along it travels: the overall spectrum should also

consider that. The way to describe the waves direction on the equilibrium water plane is the directional

spectrum D (θ), a probability density function. It statistically describes the possible direction of a single

harmonic of the whole spectrum. The resulting spectrum is simply the product of the energy spectrum



11 INTEGRATION WITH WAFO 72

and the directional one:

S (ω, θ) = S (ω)D (θ)

A function that can be used is a cos-2s type, that for a mean direction of θ0 is:

D (θ; θ0) =
Γ (s+ 1)

2
√
πΓ
(
s+ 1

2

) cos2s

(
θ − θ0

2

)

where Γ(s) is the gamma function, the extension of the factorial function. We can see that D (θ) has

a maximum centered in θ0 and, as a probability density function, it holds

π+θ0ˆ

−π+θ0

D (θ) dθ = 1

One way to visualize S (ω, θ) is a polar plot, which represents both the contour lines of the sea waves

energy and their main directions in one fell swoop:

Figure 10: Example of polar plot: Hm0 = 6 m and Tp = 8 s



11 INTEGRATION WITH WAFO 73

11.3 Spectra sampling

To integrate in FloBoS the spectra generated by WAFO, we need to extrapolate simple harmonics: that

can be made by a sampling of S (ω, θ). Indeed, after choosing a resolution number Nres, an approximated

sea surface is de�ned by:

ωi = i
ωmax − ωmin
Nres + 1

ζ (t, x, y) =

Nres∑
i=1

√
2S (ωi, θi) ∆ω cos [ki (x cos θi − y sin θi) + φi]

where
√

2S (ωi, θi) ∆ω is the amplitude of the ith harmonics, ki = 2π
λi

its wave number � equal to
ω2
i

g

for in�nite depth, θi is its direction and φi the phase.

The value of θi is chosen following the probability density function D (θ) and the phase is randomly

sampled in the interval [0, 2π)

There are many possibility of carrying out the sampling: the discretization in Nres harmonics can be

uniform along all the frequency range, as we saw, or not: in the former case we can choose smaller

intervals where the spectrum function changes more sharply, i.e. near the peaks. In the case of uniform

discretization, ∆ω = ωmax−ωmin
Nres+1 = const.
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Part IV

FloBoS - An overview

The simulator assembles all the theoretical and technical apparatus mentioned before, implementing it

in Matlab.

The �rst part of SeaBoS and ManBoS has been written starting from the seakeeping frequency domain

Ship Response Simulator of [Musci2015]: the data pre-processing section of it has been adapted to new

needs and recoded to make it more easily transferable in Python. Then, the time domain features has

been added, as the optimization algorithms, the time integration of the motion equations, the manouver-

ing simulator (possible only in time domain) with the related equations and the graphic part.

Starting from the shape of the vessel, given as a series of cross sections de�ned by points, every needed

geometrical property is extrapolated: length of each strip element, mean and maximum draft, beam

and freeboard, actual wet hull, normal and tangent unit vectors, each section's area, water plane area,

area moments, buoyancy center, �uid displaced volume etc. To accomplish these tasks, the work of

[Musci2015] has been adapted.

The software PDSTRIP solves a bidimensional boundary value problem for each jth cross section, which

are globally nsec, �nding its bidimensional added mass and potential damping matrices, aj (ωk) and

bj (ωk), for each of 52 frequencies ωk that PDSTRIP chooses for each vessel, based on its dimension.

After an integration along the ship length, the tridimensioal frequency dependent matrices of the whole

hull, A (ωk) and B (ωk), are computed.

Once the vessel is completely de�ned with all the needed geometrical data, a static stability analysis

is carried out: both longitudinal and transverse metacentric stability are evaluated and the restoring

coe�cients are computed.

To proceed with the real time domain simulation, the in�nite frequency matrices A∞ and B∞ must

be computed, as the de�nition of the state-space model matrices for the �uid memory e�ect term µ (t).

In order to do that, specifying what simulator is intended to run, SeaBoS or ManBoS, is needed. The

di�erences are in the algorithm to �nd A∞ and B∞ and in the motion equation integrated during the

simulation.
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Moreover, to start a maneuvering analysis with ManBoS, a set of target points must be inserted: the

vessel will be controlled with the rudder, by the means of the PD controller, with the objective to reach

the target positions in the selected order.

Concerning the sea state, the waves harmonics can be de�ned manually or by uniform sampling of a

Torsethaugen spectrum, which requires as inputs Hm0, Tp and θ0; with the harmonics data, the compu-

tation of the excitation forces can be made during each time step of the simulation.

After the simulation, performed until the �nal time speci�ed by the user, a post-processing phase starts.

The dynamical responses are plotted and a vessel animation is shown.

In what follows we will give a more detailed description of FloBoS, taking a look in each of his part.

A scheme of how SeaBoS works is presented:
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Figure 11: SeaBoS block diagram
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12 Simulation setting

Before starting a simulation, a number of settings must be arranged. First of all, after choosing the

case to simulate, PDSTRIP has to have the right input �les to run. Then, the user has to set other

simulation properties directly on the FloBoS script. The reference frames considered in FloBoS have the

z vertical coordinate axis pointing upward, the x longitudinal one pointing from the stern to the bow, as

the velocity, and the last cross one, the y axis, points from starboard to port:

Figure 12: FloBoS frame of reference

Before going into the details, knowing how the simulator code is structured is suitable.

12.1 FloBoS folders structure

In the main FloBoS folder we can �nd three Matlab scripts � FloBoS.m, SeaBoS.m and ManBoS.m, and

three sub�oders � FloBoS routine, PDSTRIP and WAFO.

Among the scripts the user dedicated one is FloBoS.m, which is the one that, after setting in it all the

simulation's properties, will launch one of the others, SeaBoS.m or ManBoS.m.

Concerning the subfolders, FloBoS routine contains routines to compute the excitation forces, to solve

the optimization problem, to create the sea spectrum from WAFO results, the PD controller and some

animation and graphic properties.

WAFO is the original December 2017 WAFO version folder, that can be downloaded from their o�cial

website http://www.maths.lth.se/matstat/wafo/download/index.html. Sea spectrum data are generated

with these routines and then integrated in the simulator.
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Finally, the folder PDSTRIP is where a subfolder for each case to simulate must be created, in order to

specify the geometry of the hull.

In what follows, a more detailed section for PDSTRIP is dedicated.

12.2 PDSTRIP folder and cases subfolders

PDSTRIP is originally coded in FORTRAN 90, but a Windows-executable �le, pdstrip.exe, is present

in this subfolder. As we said, to allow FloBoS to run PDSTRIP, a folder for the case must be created

and it must contain two input �les and a post processing Matlab script, SectionResuls.m. This script

will take the output �les of PDSTRIP and will make them compatible with the next step simulator

elaboration � it is a routine of [Musci2015].

The �rst input �le is the geometry one. The user can decide to write his own �le, creating a personal

hull, or to load a .mgf �le from ShipX VERES list; in the former case it will be su�cient to specify it in

FloBoS.m, as we will show below.

To write a geometry �le, which must be called geometry.out, the structure to follow is:

n_s T d

x_1 n_p1 0

y_1 ... y_(n_p1)

z_1 ... z_(n_p1)

.

.

.

x_j n_pj 0

y_1 ... y_(n_pj)

z_1 ... z_(n_pj)

� First line: ns, the number of the sections, indicates in how many sections the vessel has been

discretized in; T refers to symmetrical sections � the only supported type by FloBoS, and d is the

mean draft of the vessel.

� Second line: it refers to the �rst section, so x1 is its x-coordinate, np1 is the number of points of

this section and the zero stands for simply connected sections � again, the only supported type by

FloBoS.
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� Third and Fourth lines: the lists of y and z coordinates of all the o�set points of the section, from 1

to np1. It's fundamental to know that only half section must be identi�ed, because the symmetrical

sections hypothesis is always made. The order is from the bottom hull point to the port point.

Then, a block similar to the one formed by the 2nd, 3rd and 4th lines has to be repeated for each section,

so ns times. An important note is that the order of the sections must be from the stern to the bow, so

that xj+1 > xj .

Figure 13: Generic j th section

The second input �le, called pdstrip.inp, has this form:

0 t f f

// General description text

9.81 1.000 0 -1e6 999.

0

geomet.out

0/

The second line is irrelevant for PDSTRIP; the third one is composed by the following data: gravity

acceleration g; �uid density expressed in ton/m3 (i.e. with respect to water density); z coordinate of the

waterline, which is set to zero; the z coordinate of the sea bottom, which must be put to 106 to simulate

in�nite depth; the last number is irrelevant for us.
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12.3 FloBoS.m settings

Once the case subfolder has been created, the �nal settings have to be made on the main script FloBoS.m.

There are eight sections to be completed, each one with speci�c information and data about the simulation

the user wants to perform. Any numerical value required to be inserted by the user must be expressed

according to the International System of Units SI.

These sections are called:

� %% SET CASE NAME AND ROOT DIRECTORY. There are 6 variables to be assigned:

1. Simulator: the user has to choose between 'SeaBoS' for seakeeping simulations or 'ManBoS' for

maneuvering;

2. ispdstrip: this variable must be set to 1 if the geometry �le is structured for PDSTRIP, or 0 if

the model follows the ShipX one, that is a �le .mgf;

3. pwd: it is the path of the main FloBoS folder, for example 'C:\Users\...\FloBoS';

4. casename: this is the name the user gave to the case subfolder, in the PDSTRIP folder;

5. namegeom: this variable must contain the name of the geometry �le in the 'casename' subfolder,

which is 'geometry.out' for PDSTRIP or a generic 'vessel.mgf' otherwise.

6. scaling: this last variable allows to scale the hull geometry; if the user wants to simulate a vessel

de�ned by the geometry �le namegeom, but scaling it of a certain factor, this variable changes

proportionally all the geometry. For example, to simulate a vessel which is a half of the one de�ned

by namegeom, it will be su�cient to set scaling = 0.5;

� %% SIMULATION SETTING: There are 2 variables to be assigned, concerning possible user's manual

tasks:

1. Man_Order: if this variable is set to 1, it enables the manual check of the order of the approximated

�uid memory e�ect's transfer function. Otherwise, if it is set to 0, an algorithm will proceed with an

automatic evaluation of the order. If the speed is non zero, it's recommended to check the �tting,

setting the manual control on: 'Man_Order = 1';

2. Man_Spec: setting this variable to 0, a realistic Torsethaugen sea spectrum will be generated and

sampled, to de�ne the corresponding sea surface. Setting it to 1, the user can create a personalized

sea surface, by adding manually each harmonics directly in the 'Simulator' script, under the
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section '%% 1. CREATE THE SEA SPECTRUM'. In this former case, the vectors to insert, which will

de�ne the sea and will be used for the computation of the excitation forces, are: zeta, containing

each harmonics amplitude; T, for the corresponding periods; beta, for their heading angles with

respect to the vessel.

� %% Ship There are 3 variables to be assigned:

1. U: the velocity of the vessel;

2. zg: the vertical position of the center of gravity, relative to the mean sea surface;

3. d: the mean draft of the vessel. In the geometry �le the sections are entirely de�ned; then, specifying

the draft, the actual wet part of the hull will be determined too. Please note that this variable is

also the one in charge of the de�nition of the vessel load: a greater draft implies a greater displaced

volume of �uid, which, in turn, corresponds to a grater mass.

� %% Fluid and environment properties There are 3 variables concerning physical properties of

the environment:

1. rho: the density of the �uid where the vessel is supposed to �oat;

2. visc: the dynamic viscosity of the �uid;

3. g: the gravity experienced by the vessel. Please note that if the user wants to simulate a di�erent

gravity, it should be changed also in the PDSTRIP input �le.

� %% Sea State - Waves spectrum There are 4 variables needed to de�ne the Torsethaugen spec-

trum and the sampling:

1. Hm0: the signi�cant waves height;

2. Tp: the peak period;

3. Beta: the primary direction of waves, expressed in radiant;

4. Nres: this variable indicates the resolution the user wants to sample the energy Torsethaugen

spectrum with. In other words, it de�nes the number of harmonics used to approximate the sea

surface. Increasing Nres means having a higher precision of the sea surface de�nition, implying a

more accurate excitation forces computation; on the other hand, the computational cost and the

simulation time will be strongly a�ected by this parameter. Suggested values range between 15 and

25.
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� %% Time data of simulation There is just one variable to insert in this section, that is the �nal

time of the simulation: T_fin;

� %% Set initial conditions There are two vectors of dimension 6 to insert: they represent the

initial conditions for the generalized position and velocity vector.

In the case of a seakeeping simulation, these vectors are xi and xi_dot ; for maneuvering they are

eta and ni.

If there is a non zero vessel forward speed U , for seakeeping it does not have to be added at the

vector of initial velocity, because xi_dot represents a perturbation from the equilibrium state, and

the speed is considered part of this state; indeed, the problem is reduced to an equivalent one,

where the vessel is at rest and the sea moves in the opposite direction, with a velocity −U .

For maneuvering, a non zero U should be taken into account too in the vector ni, because in this

case velocities are taken with respect to an inertial frame. Nevertheless, this is done automatically;

that means that the user has to set this vector di�erent to zero just if there is an initial perturbation.

In general these four vectors can remain null.

� %% Target position This vector has to be set only if a maneuvering simulation is going to be

performed. In this case, its size must be ntarget × 2, where ntarget is the number of consecutive

target points the ship should reach. The general j th row represents the (xj , yj) position of the j th

target point, taken on the mean sea surface plane.

13 Code Logic description

A brief summary of the simulator code is now presented. Only SeaBoS is considered; indeed, for a

qualitative description, the two simulators structures are similar, except for small details.

SeaBoS is composed by 16 sections; we are going to quickly analyze each one

1. Create the Sea Spectrum

This �rst part of the code is dependent on the variable Man_Spec: if its value is 0, WAFO routines

will be called to generate the sea spectrum, by the means of the variables speci�ed in the section

Sea State - Waves spectrum of FloBoS ; then the discrete simple harmonics will be de�ned by

a sampling. Otherwise the harmonics can be de�ned in this section by the user. Independently

by Man_Spec, at the end of this �rst section the vectors zeta, T and beta will be assigned and

therefore available to represent the approximated sea.
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2. Time simulation Data

The variables concerning the simulation time are created: the size of the time step is set by default

to 0.05 seconds; so the number of steps is computed as the ratio between the �nal time imposed

by the user and this time step. A time vector is also de�ned, containing all the values from zero to

the �nal time, all spaced by the size of the time step.

3. Prepare Input Data

Geometry data are extracted by the �le namegeom and the �rst variables concerning the vessel are

created. There is, of course, the dependence of the �le format, that is if the �le is structured for

PDSTRIP or the if it's .mgf. Having the length of the ship, a check about the Froude number can

be e�ectuated: the value should not be greater then 0.4.

4. Geometrical Properties of the Ship

The few geometrical data inserted by the user are processed to deduce all the other needed quanti-

ties. After all the other mentioned operations (like computing the strips spacing, the vessel draft,

beam and center of buoyancy, the elements lengths, area moments and unit vectors) a deck is also

added and the actual wet hull is obtained. A �rst plot of the vessel is showed, where the mean sea

surface is visible too.

5. Run PDSTRIP

The software PDSTRIP is launched and the bidimensional added mass and damping matrices are

found. If the �le namegeom format is .mgf, a conversion must be carried out �rst. The results are

elaborated by the function SectionResuls and made ready to be elaborated.

6. 2D Added Mass and Damping Coe�cients

The data from the 2D matrices are saved in dedicated variables. The matrices aj (ωk) and bj (ωk),

j = 1, . . . , nsec and k = 1, ..., 52, are all 6 × 6 and sparse matrices; that's why it's convenient to

save these data in structures containing the same element of each matrix, for all the vessel sections

nsec and for all the 52 frequencies.

For example, a non zero element of the matrices aj is the (2, 2) one: we can create a matrix

a22 which contains all these elements (the added mass term in the second degree of freedom, the

sway, due to a sway oscillation) for the all the strips and for all the simulated frequencies, so that

a22 ∈ Rnsec×52.
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7. 3D Added Mass Coe�cients

The vessel overall matrices are now computed. That is possible by integrating the contribution

of the single sections ones along all the vessel length: in this way we will found one Added Mass

matrix A (ωk) for each frequency. The formulas used for the integration, dependent also by the

speed of the vessel, are the ones proposed by [Faltinsen1990].

8. 3D Damping Coe�cients

For the Damping matrices the same integration process is carried out, �nding the global ship

matrices B (ωk).

9. Moments of Inertia

In this section, the moments of inertia in roll I44, pitch I55 and yaw I66 are computed. The evaluation

is made by the means of gyration radii, following the approximated formulas of [Faltinsen1990].

Indeed, the values of Ijj are computed as Ijj = mr2
jj , where

r44 = 0.35 · Lpp

r55 = 0.25 · Lpp

r66 = 0.25 · Lpp

10. Transverse Metacenter � Static Stability

To evaluate the static stability in roll, the hull is tilted until a maximum of 10 degrees, by steps

of 0.5 degrees. At each iteration, the static pressure is integrated all over the wet surface, which

changes as the vessel rolls, and the resulting reaction moment K is computed. For the small angles

range considered during this process, the hydrostatics moment is basically linearly dependent on

the roll angle φ. After the evaluation of K at each roll angle φ, the derivative Kφ in φ = 0 is found

by an interpolation of the computed curve K (φ). Thanks to the linear behaviour in this range,

this value could also be found simply by a ratio. If this value is positive, then the vessel is unstable

and the simulation is interrupted. Otherwhise, the value Kφ < 0 is also equal to the oppostie of

the term G44.

From the derivative Kφ it is also possible to �nd the value of GMT , as we saw. The inverse

procedure is not really feasible, because the trasverse second water plane area moment JT is not

easy to calculate: indeed the discretization in strips is carried out in the longitudinal dierction. The

direct tilting simulation to compute the roll moment at each angle is simpler.
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11. Longitudinal Metacenter � Static Stability

Concerning longitudinal static stability, the geometrical data make possible a easy calculation of

the longitudinal second moment:

JL =

ˆ

Aw

x2dA ≈
nsec∑
j=1

Bjx
2
j∆xj

where Bj is the beam, i.e. the length along y direction, of the j th section, xj is its distance from

the centroid of the water plane and ∆xj is the spacing along x with the (j + 1)th section. Then,

by exploiting the relations of the hydrostatics physics:

GML = (zb − zg) +
JL
Ω

The longitudinal static stability is basically always assured for conventional slender vessels.

12. Restoring Coe�cients

The coe�cients of the restoring matrix G are computed following the formulas already seen:

G33 = ρgAwp

G35 = ρg

ˆ

Awp

x · dAwp ≈ ρg
nsec∑
j=1

Bjxj∆xj

G44 = ρgGMT

G53 = G35

G55 = ρgGML

For slender moving vessels, a particular correction have to be made about yaw stability. If a yaw

perturbation ψ appears, with respect to the equilibrium state, of course no hydrostatics reaction is

manifested. Nevertheless, if the vessel has a forward speed U, and the velocity is not aligned with

the x body axis, a stabilizing moment shows up. Indeed, in the seakeeping reference frame, a yaw

angle ψ coincides also with a sideslip angle δ.

The former statement is completely true if the main direction of waves is zero. By contrast, if the

waves are crashing on the vessel hull with a certain heading angle β, the correct approach would

be to evaluate the sideslip angle δ0 by a vectorial sum of the vessel velocity U , which is along the

x seakeeping direction, and the sea one usea. Then, the e�ective sideslip angle δ would be the sum
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of δ0 and the eventual yaw angle ψ

Figure 14: E�ective sideslip angle δ = δ0 + β if waves income with a heading angle β

We can see that if the sea velocity is aligned with the x direction of the seakeeping frame, δ0 = 0

and we come back to δ = ψ.

To simplify the analysis, we assume that usea is always negligible with respect to U , and tha

approximation δ ≈ ψ is assumed. Indeed, from potential theory we know that the sea surface speed

usea, which exponentially decreses with the depth, is limited by the value ζω0:

usea = Re


√(

∂ϕI
∂x

)2

+

(
∂ϕI
∂y

)2
 =

= ζω0Re

{√
− cos2 βe2jk(x cos β−y sin β)e2jωet − sin2 βe2jk(x cos β−y sin β)e2jωet

}
≤ ζω0

Neglecting usea amounts to saying ζω0 � U , that for small amplitude waves with peak periods long

enough can be a good approximation. In future versions, that can be treated with higher accuracy.

For considering yaw stability and to point out the opposite reaction moment N and the cross force Y

caused by the presence of a non zero sideslip angle δ, two coe�cients are taken into account. Indeed,

in order to compute the exact values of N and Y , one should solve the potential �ow around the ship

water plane section. But, to simplify, we will use the results of [Lee&Shin1998, Inoue et al. 1981] on

this argument; de�ning a overall vessel aspect ratio kL = B̄
L and the block coe�cient Cb = Ω

LppBd
,
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the following approximated derivatives are evaluated

Nδ = −0.0024− 1.0272 · k

Yδ =
π

2
k + 1.4 · Cb ·

B

L

The reaction moment in yaw is stabilizing, so the derivative is negative; on the other hand, if a

sideslip angle appears, the sway force has its same sign. From these values, we can compute the

following terms

G16 = −1

2
ρU2Lppd · Yδ

G55 = −1

2
ρU2Lppd ·Nδ

Let us remember that the matrix G is de�ned positive on the �rst side of the Cummins equation:

that explains the opposite sign with respect the real forces. Furthermore, it is important to notice

that these former two terms are not restoring coe�cients due to hydrostatics physics, but they

are dynamical coe�cients, which appear in presence of a forward speed. They are just linearly

dependent on an element of the generalized position vector, ψ ≈ δ, so that they can be incorporated

in G.

13. In�nite Frequency Matrices A∞ and B∞ and Transfer Function

The optimization problem is solved for a certain range of orders of the memory e�ect term approx-

imated transfer function � from 2 to 20, and for each pair (i, k) of degrees of freedom separately;

then the order choice will fall on the best trade o� between a good �tting and a limited order.

Fixing the pair (i, k), for every order in the range {2, ..., 20}, the optimization problem will �nd

K̂ik (s), Â∞,ik and B̂∞,ik; in order to do that, the minimization algorithm is chosen in function of

the speed � if it is zero or not, and according to what simulator is running, SeaBoS or ManBoS.

We saw how, after solving the problem for a certain approximation order, it is possible to carry out

a quality control to evaluate the �tting; that is made by comparison of the data set discrete values

for the 52 frequencies ωl, Aik (ωl) and Bik (ωl), with the approximated ones:

B̂ik (ω) = B̂∞,ik +Re
{
K̂ik (jω)

}
Âik (ω) = Â∞,ik +

1

ω
Im
{
K̂ik (jω)

}
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This weighted comparison is e�ectuated by computing both the mean relative distance of the points

of the data set with the correspondent values of Âik (ωl) and B̂ik (ωl) and the di�erence of the trend

� i.e. the �rst derivative:

errA =
1

52

0.4 ·
∑
l

∣∣∣∣∣ Âik (ωl)−Aik (ωl)

Aik (ωl)

∣∣∣∣∣+ 0.6 ·
∑
l

∣∣∣∣∣∣
[
Âik (ωl+1)− Âik (ωl)

]
− [Aik (ωl+1)−Aik (ωl)]

[Aik (ωl+1)−Aik (ωl)]

∣∣∣∣∣∣


errB =
1

52

0.4 ·
∑
l

∣∣∣∣∣ B̂ik (ωl)−Bik (ωl)

Bik (ωl)

∣∣∣∣∣+ 0.6 ·
∑
l

∣∣∣∣∣∣
[
B̂ik (ωl+1)− B̂ik (ωl)

]
− [Bik (ωl+1)−Bik (ωl)]

[Bik (ωl+1)−Bik (ωl)]

∣∣∣∣∣∣


The overall error is computed as the sum of the two former terms, multiplied by the order of the

�tting:

err = (errA + errB) · order

That will weight both the precision and the degree of the �tting function: for low orders a greater

distance errA + errB is found, but for higher orders the heaviness of the transfer function leads to

other disadvantages. The algorithm will choose the order with the lowest accumulative error err.

If the variable Man_Order is o�, the simulator will proceed with all the degrees of freedom. Otherwise

the user will be demanded each time for checking the �tting and the algorithm choice.

14. Time Simulation

This is the simulator core: after each time step ∆t, the equation integration leads to the generalized

position and velocity vector update. At �rst, there is a routine called force_exc.m responsible of

the excitation forces computation: given the time and the vessel position and velocity, Froude-Krilov

and di�raction forces are calculated on the body �xed frame, and then rotated in the seakeeping

one.

We know that the motion equation can be written in the following linear form:

ẏ (t) = W · y (t) + l (t) = f (t, y (t))

where y (t) =

 ξ (t)

ξ̇ (t)

, the constant matrix W is:

W =

 06×6 I6×6

− (MRB + A∞)
−1

G − (MRB + A∞)
−1

B∞


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and the time dependent vector l (t) is:

l (t) =

 06×1

(MRB + A∞)
−1
(
τsFK+Diff − µ (t)

)


To integrate this equation, a standard 4th order Rounge-Kutta method (RK4) is applied; calling

tj = j∆t and yj = y (j∆t) = y (tj), this method operates as follows:

k1 = ∆t · f
(
tj , yj

)
k2 = ∆t · f

(
tj +

∆t

2
, yj +

k1

2

)
k3 = ∆t · f

(
tj +

∆t

2
, yj +

k2

2

)
k4 = ∆t · f

(
tj+1, yj + k3

)

yj+1 = yj +
1

6
(k1 + 2k2 + 2k3 + k4)

We can notice that in order to apply this method, l
(
tj + ∆t

2

)
and l (tj+1) must be computed, which

means to evaluate τsFK+Diff and µ at the instants tj + ∆t
2 and tj+1.

The variable µ is updated by the means of another independent RK4 method, about the state vari-

able x (t), and it is di�cult to couple both integration: the approximation µ
(
tj + ∆t

2

)
≈ µ (tj+1) ≈

µ (tj) is used.

Concerning the vector τsFK+Diff , the routine force_exc.m allows to compute it giving as input

only the time t and the vector y. To compute τsFK+Diff at tj + ∆t
2 and tj+1, the following process

is carried out: approximating ỹj+1 = yj + ∆t · f
(
tj , yj

)
, τsFK+Diff (tj+1) is calculated giving(

tj+1, ỹj+1

)
as input to force_exc.m; then

τsFK+Diff

(
tj +

∆t

2

)
=

1

2

(
τsFK+Diff (tj) + τsFK+Diff (tj+1)

)
The iterations go on until the �nal time T_fin is reached, that is after

Tfin
∆t = 20Tfin steps.

15. Post-Processing

After completing all the iterations, the dynamical responses are plotted: position, attitude, velocities

and angular velocities in function of time.
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16. Plot Vessel Dynamics � Time animation

To give a better physical sense of the results and of the vessel behavior, a 3D animation is available.

It shows the vessel dynamics, while �oating on the wavy �uid free surface

14 Examples

Now we will show some examples of results of FloBoS. More than standard simulations, we will also try

to stress the code, pushing to the limit the cases concerning the validity range of the hypothesis.

Container S175 - SeaBoS

We present a set of simulation performed with the container ship S175, scaled di�erently in each case to

decrease the computational cost. The data of the container and the hull geometry are presented below:

� Length Lpp = 175 m

� Beam B = 25 m

� Draft d = 7.5 m

� Free board FB = 3.5 m

Figure 15: Container S175 with water free surface
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Non-zero forward speed

This simulation has been performed with the 10% scaled container, so with a length Lpp = 17.5 m. The

speed of the ship is U = 2.5ms , so the Froude number is Fr ≈ 0.19, in the limit of theory validity. The

imposed sea state has been characterized by Hm0 = 0.6m, Tp = 6 s and main direction θ0 = 0°.

Figure 16: Container S175 and physical domain

After a 60 seconds simulation, the results of the vessel dynamics are:

Figure 17: Position and attitude with respect to the seakeeping frame

We can see how sway and heave displacements are relatevely small, while along the x direction there

is a backwards drift caused by the resistance of the ship (friction and pressure) and by the excitation

forces. However, the ship is moving forward: ξ1 represents the displacement with respect the seakeeping
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frame, which is moving along x with a positive speed of U = 2.5 m
s in this case. Angular responses are

limited enough to consider the linear small angles approximation valid.

Concerning velocities, linear ones are all small and with a zero mean. The most important dynamics

contribution is due to pitch angular velocity, beacuse of the incoming waves at zero heading.

Figure 18: Velocities with respect to the seakeeping frame

The computed excitation forces are:

Figure 19: Waves excitation forces
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Zero speed � green water

Trying to evaluate the simulator reaction to a rough sea condition, we imposed a spectrum with Hm0 =

2m and Tp = 8 s, corresponding to a sea state Beaufort number 4, and main waves direction of β = 20°.

The container, at zero speed U = 0, has been scaled at 33% :

� Length Lpp = 57.75 m

� Beam B = 8.38 m

� Draft d = 2.47 m

� Free board FB = 1.15 m

After simulating one minute, the results are:

Figure 20: Position and attitude with respect to the seakeeping frame

Angles are small enough to consider them in the validity range of small oscillations theory. We can

notice a drift both in surge (for the same reason as the �rst case) and in sway, becuse of the heading

angle β. On the other hand, yaw angle increases in time, also if β > 0: in FloBoS a yaw stabilizing

moment apperears only if there is a speed U > 0, because the action of the sea is neglected � also if in

this case of zero speed, it can not be treated as negligible. Therefore, the only e�ect acting on yaw is

due to the excitation forces: this can be con�rmed by noticing the oscillatory trend of the yaw response.

The integration of the dynamic pressure on the hull leads, evidentely, to an increasing yaw angle.
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For the velocities, as before, the most accentuated is the pitch one; the heading angle is too small to lead

to important roll angular rate.

Figure 21: Velocities with respect to the seakeeping frame

The computed excitation forces are:

Figure 22: Waves excitation forces

Four frames of the animation are showed below, to relate the sea state to the vessel dimensions:
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Figure 23: Container S175 scaled at 33% in a sea state Beaufort number 4
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Container S175 - ManBoS

A similar simulation can be performed to evaluate how e�cient is a solo rudder maneuver. The vessel is

now scaled at 25% and the rudder geometric properties are:

� Surface equal to 5% of the longitudinal Lppd;

� Aspect ratio of 2.5;

� Maximum angle of de�ection δmax = 30°

With relatively calm sea conditions, Hm0 = 0.1m and Tp = 5.5 s, the vessel will try to reach two target

points, one after the other: P1 = (150, 25) and P2 = (300, −15).

Figure 24: Container S175 with the �rst target point

After simulating, we can see how the rudder controls the vessel and it consequently follows and reach

the target points. The results are good and the PD controller is funcitonal; however the physical model

of the controller is not realistic: it does not take into account neither the operaional time of the actuator

nor the hydrodynamics feedback. In spite of this, we can say that the PD controller design, based on the

computation of the heading angle error, can be considered a good solution.

Looking at the dynamical responses, both the velocities and the positions are a�ected by the discon-

tinuity after about 30 seconds, because of the sea lane change. The responses are pretty smooth, but

after the second maneuvering action, with the purpose of reaching the second point, the roll response

increases forcefully, remaining however in an accetable range.
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Figure 25: Vessel path

Figure 26: Position and attitude with respect to the seakeeping frame
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Figure 27: Velocities with respect to the seakeeping frame

The computed excitation forces are:

Figure 28: Waves excitation forces
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TiME - SeaBoS

Another set of simulations has been run with a �oating capsule for space exploration: the TiME �

Titan Mare Explorer, a proposed design for a lander for Saturn's moon Titan. The capsule is essentially

composed by two truncated cones and, also if the hull is not conform with the hypothesis of slender body,

the aim of simulating it has been to evaluate how strict the slender body assumption is.

Figure 29: TiME capsule geometry

The simulation concerns the capsule response in a Titan hydrocarbons sea, composed by methane

and ethane, to a simple harmonic wave excitation.

The results are compared with the analysis made by [Lorenz&Mann2015].

The density of the sea has been chosen as ρ = 570 kg
m3 and the gravity on Titan is approximately g = 1.35ms2 .

Concerning the wave, the amplitude is ζ0 = 0.1m with a period of T = 5.5 s. With a deep sea approxi-

mation the wave length should be λ = 2π
k = 2πg

ω2 = gT 2

2π = 6.5 m, but to reproduce the same conditions

of [Lorenz&Mann2015], the wave length is set to λ = 2 m.

The capsule is in the �gure below: the diameter at the cones interface is 2m, while the other smaller

diameters are about 1.7m, for the upper truncated cone, and 0.75m for the lower one. The entire height

is about 1.1m. The mass is 700 kg and the center of gravity is located at the interface.

These conditions imply a �oating equilibrium position with the free liquid surface at the level of the cones

interface.

It is important to notice that to evaluate oscillations caused by a simple harmonics, it is necessary to

impose the sea direction to 90°. In a real situation, it would have been irrelevant, because of the symme-

try of the capsule. However FloBoS is well suited for slender bodies: the strip theory does not allow to
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analyze surge motion and the sway and roll dynamics are better captured. This means that, in order to

increase the reliability of the simulation, it is more appropriate to choose β = 90°.

Figure 30: TiME capsule reproduction

The simulation is a�ected by an initial transitory phase, when the capsule starts to interact with the

sea; after about 45 seconds the oscillations are periodic and stable. In the following �gure the regime

response is showed:

Figure 31: TiME capsule reproduction in the wavy sea
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Figure 32: TiME regime response � FloBoS results

In the following �gure the results of [Lorenz&Mann2015] are reported:

Figure 33: Simulation results of [Lorenz&Mann2015]

We can see that the response amplitude is comparable: 12° for [Lorenz&Mann2015] and around 14°

obtained with FloBoS.
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15 Conclusions

The simulator has been designed and tested, but a more intense validation process is needed. In order to

make the results more reliable, a wide set of experimental data should be used for a cross control with

the results, to improve and re�ne the simulator code. Moreover, viscous and non linear e�ect can be

added in the model.

Concerning ManBoS, a more accurate controller can be implemented, both for the actuator physical

model and a PD automatic tuning, by the means of the hydrodynamic derivatives of the vessel � see for

example the well known autopilot model proposed by [Nomoto et al. 1957].

Finally, a possible future extension of FloBoS can implement a solver for the inverse problem, i.e.

estimate the sea state from on-board measurements of the ship.

In conclusion, FloBoS is a starting point for the design of a more accurate simulator, which can give

reliable feedback about vessel dynamical responses.
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