POLITECNICO
DI TORINO

Corso di Laurea Magistrale in Ingegneria Aerospaziale

Tesi di Laurea Magistrale

External Aerodynamics Optimisation
using the Adjoint Method

Supervisore Aziendale
Ing. Laura Maria Lorefice

Relatore
Ing. Domenic D’ Ambrosio

Corelatore

Prof. Gaetano Iuso
Candidato
Gianluca Francesconi

Marzo 2018






Sommario

Questa tesi, svolta presso il dipartimento Aerothermal di FCA ad Orbassano, si propone di
studiare le potenzialita del solutore Adjoint implementato in STAR-CCM+ applicandolo
ad un problema di ottimizzazione dell’aerodinamica esterna. Nel caso in esame ’obiettivo
¢ ridurre la resistenza aerodinamica della Fiat Tipo 5 porte. Il metodo Adjoint consente
di studiare l'influenza di un certo numero di parametri di progetto, in questo caso le
forme della vettura, su una determinata funzione obiettivo da minimizzare o massimizzare,
indirizzando le modifiche della geometria al raggiungimento di una configurazione ottimale.

Sono state seguite due diverse procedure di ottimizzazione, utilizzando gli strumenti
di morphing forniti dal software CFD STAR-CCM+ ¢ dal software CAE ANSA Pre-
processor, al fine di determinare quale potesse garantire risultati migliori in termini di
qualita e di costo computazionale ed eventualmente essere implementata in un processo
automatizzato.

Le simulazioni fluidodinamiche alla base dell’analisi di ottimizzazione sono condotte
utilizzando i modelli di turbolenza k-¢ e k-w associati alle RANS, attualmente le sole
equazioni con cui il solutore Adjoint fornito puo essere eseguito. Una simulazione stazionaria
per l'aerodinamica esterna rappresenta un compromesso tra il costo computazionale e
laccuratezza dei risultati. In tutte le casistiche analizzate si € riusciti a ridurre la re-
sistenza aerodinamica del veicolo di circa il 4% tramite modifiche di dettaglio, essendo il
modello in produzione gia vicino alla configurazione ottima.

I metodo Adjoint ha pero evidenziato diversi limiti. Una discretizzazione al primo
ordine delle equazioni aggiunte, a fronte del secondo ordine impiegato per le equazioni
fluidodinamiche, e stata utilizzata per garantire la convergenza, preferendo una maggiore
robustezza a scapito dell’accuratezza. Questo si e reso necessario a causa della complessita
del problema di natura industriale. Futuri studi potrebbero prevedere di eseguire simu-
lazioni al secondo ordine su modelli semplificati per valutare eventuali differenze con il
primo ordine nella soluzione. Elevati tempi di calcolo abbinati alle simulazioni condotte
con il modello k-w, associati ad un’estrema sensibilita del solutore alle imperfezioni della
mesh, rendono al momento questo modello incompatibile con le tempistiche dei processi
di sviluppo. Una ricerca sul setup piu adatto alla k-w potrebbe consentire di sfruttare
la maggior accuratezza del modello di turbolenza per i casi di aerodinamica esterna, in
attesa di riuscire ad eseguire ’Adjoint anche su simulazioni DES.
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Chapter 1

Introduction

1.1 Background

Nowadays, Computational Fluid Dynamics (CFD) is an essential tool across automotive
industries for the assessment and the optimisation of vehicle resistance in the design phase.
It is applied not only for vehicle external acrodynamics, but also for ducted flows, cooling
and ventilation, internal combustion engines, aero-acoustics and many other applications.

One of the main objectives of the aerodynamic design is the reduction of the drag,
in order to maintain fuel consumption and pollution emissions as low as possible. This
scope can be pursued in two ways: using the so called ”aerodynamic add-on” and with
the research of a suitable external shape. However, the former is constrained by costs and
industrial development processes and the latter is subjected to aesthetic considerations
and ergonomics, limiting the design exploration space.

The standard design procedure consists in a collaboration between designers and aero-
dynamicists, with an iterative trade off between different modified configurations to find
the best compromise. Thanks to CFD it is possible to evaluate several aspects in the early
stage design; moreover there is no need to build several models for wind tunnel testing,
reducing development costs. However, wind tunnel is still used for fine tuning purposes
and to confirm the performance of the final configuration before road test.

Traditional approaches to CFD optimisations involve the generation of a DOE (Design
of Experiments) and the application of different optimisation algorithms, requires a lot of
time and a great effort of computational resources for the evaluation of the influence of
many design parameters involved in the optimisation loop.

For these reasons gradient-based methods have been developed for aerodynamic opti-
misation, and the adjoint method is among them. Its main advantage is that the com-

putational cost is independent from the number of design variables, allowing to explore a
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potential infinite number of geometrical parameters performing only a primal flow solution
and a single adjoint solution.

The adjoint method has been studied since 70’s by Pironneau, who solved the adjoint
system for design purposes [1]. Jameson was the first to study the adjoint in aeronautical
field, developing also a complete formulation for Navier-Stokes equations [2]. In auto-
motive industry it has been introduced especially during the last decade, thanks to the
increasing contribution and power of CFD. Many papers on the topic explore the possi-
bility to use adjoint method for external aerodynamics. Othmer for Volkswagen Group
proposes applications on RANS (Reynolds Averaged Navier-Stokes) and DES (Detached
Eddy Simulation) turbulence models [3].

There are two different approaches: discrete adjoint and continuous adjoint. In the
former the partial differential equations are discretized before the adjoint differentiation,
while in the latter the adjoint equations are formulated by differentiating the governing
PDEs. Then adjoint equations are discretized and solved [4]. There are several differences
between these two approaches, in particular respect to the complexity of implementation
and the computational cost; see references [5] and [6] for details.

The adjoint method allows to predict the influence of the design parameters - i.e. mesh
nodes displacement - on an objective function that must be minimised or maximised; in
this case the drag of the car must be reduced. The computation of surface sensitivity gives
indications on critical areas where it is convenient to change the geometry. One of the
main issues in the application of adjoint methods on actual automotive problems is due
to the complexity of the geometries, indeed the adjoint equation system is influenced by
the quality of the computational mesh, that requires a high quality in order to reach an

adequate level of convergence.

1.2 Scope

This work, carried on at FCA Aerothermal PCC Department in Orbassano, has the aim
to verify the possibility to implement the adjoint method into the design process and
determine what is the most efficient procedure for an aerodynamic optimisation in terms
of accuracy, robustness and computation time, using different tools. An application is
performed on Fiat Tipo 5 Porte (Hatchback), showed in Figure 1.

From a solver point of view it has been decided to test the adjoint solver and the
optimisation process of the commercial code STAR-CCM+®. This solver has been devel-
oped throughout the years and now it permits to compute surface sensitivity and mesh
sensitivity of the cost function with regard to position of some control points or physical

quantities in the flow field and to perform mesh deformation.

2
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To achieve our scope two different methodologies are followed, performing the shape
optimisation using both the capabilities of the CFD software and the morphing tool of
Beta CAE ANSA Pre-processor. A first simulation to visualize the results in terms of drag
and drag coefficient Cp is performed. All the results are defined as a percentage of the first
Cp. Then a run with the adjoint solver provides the sensitivity of the objective function.
We focus our attention on parts with the major contribution on drag and on others that are
essential to control flow separation, positioning control points where the mesh sensitivity
is computed. STAR-CCM+ morphing tool will be used to deform mesh iteratively with a
first-order steepest descent algorithm until a satisfactory result is reached, without losing
volume mesh quality.

Considering the possibility to employ an external optimisation tool, after the primal
simulation results in terms of surface sensitivity maps are imported into ANSA to perform
direct morphing of the critical areas of the model. The modified geometry is imported
again in STAR-CCM+ to run a primal simulation and verify the reduction of the acrody-

namic drag.

Figure 1.1. Fiat Tipo 5 Porte.



Chapter 2
Theory

In this chapter there is an overview on Navier-Stokes equations and RANS equations in
order to explain the physics setup of the simulations performed in this work. As RANS
equations form an unclosed system, the Boussinesq hypothesis is introduced to model
the unknown Reynolds stress tensor. A brief presentation of two of the most famous and
reliable turbulence models used in industrial application is proposed. For any details about

modelling turbulence and the models showed in this chapter, see references [7] and [8].

2.1 Navier-Stokes equations

Fluid Dynamics is governed by three fundamental physical laws: the conservation of mass,
momentum and energy. The Navier-Stokes equations, coupled with boundary conditions,
represent the mathematical model of these physical principles and they come from a model
of flow, that can be in the Eulerian or Lagrangian approach, depending respectively on
the choice of a control volume fixed in space or moving with the observed fluid particles.
In the first approach the equations are expressed in conservation or divergence form, in
the latter the mathematical form is defined as non-conservative. Equations can be in
differential form, if the control volume is infinitesimally small, or in integral form if the
control volume is a finite region of the fluid. All these forms can be obtained with some
manipulation one from the other.

As Navier-Stokes equations can not be solved exactly, in Computational Fluid Dynam-
ics they are discretised to be converted from a closed-form, where the functions have an
infinite continuum of values throughout the entire domain, into a set of algebraic equations
where the values of the functions are known only at a finite number of discrete points in
the domain [9]. There are three discretisation methods: finite difference for differential

equations, finite volume or finite element for integral equations.

4
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For an unsteady incompressible flow the continuity equation and the momentum equa-

tions in differential conservation form, written with the Einstein notation, are

;.
8$i N

0 (2.1)

6Ui (9 8p (9 (OUl 8U3> (2 2)

P10+ an, VD = T o, T s
As the continuity equation is independent from the time, it represents a kinematic con-
straint that must be satisfied by the momentum equations. When the flow is incompress-
ible, temperature variations are negligible and the energy equation is uncoupled from the
others. In this case, where only the external aerodynamics has to be studied and so any
kind of thermal exchange is excluded, the energy equation is not solved, thus for the sake
of simplicity it is not introduced.
As STAR-CCM+ discretises the Navier-Stokes equations using the Finite Volume

Method, we have to write them in integral conservation form as follows

/SpU -ndS =0 (2.3)

/ a(pU)dV-l—/pU(U-n)dS: —/pndb'+/7'nd5 24
v Ot s o o

The term 7 in the last integral in the momentum equation represents the viscous stress
tensor and it is related to the velocity gradients. For incompressible flows its expression
is the same shown in the last term of equation (2.2), where the divergence comes from the

Gauss theorem applied to the surface integral.

2.1.1 Finite Volume Discretisation

In the finite volume discretisation the fluid domain is divided into a finite number of
control volumes, defined as cells, where the solution is known at the centroid of each
cell. This discrete representation of the domain is defined as numerical or computational
grid, or more simply mesh. For finite volume methods the grid is generally unstructured,
resulting in a more complex matrix of the equation system. The conservation laws have
to be fulfilled locally for each control volume and globally in the entire domain. Volume
and surface integrals have to be approximated in some manner to be discretised. Surface
integrals, that represent convective and diffusive fluxes, are expressed in terms of known
variable values at cell centres. For surface integrals the midpoint rule assumes that the

flux has its mean value at the center of the cell face and it is multiplied for the face area.

5
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Instead for volume integrals the discretisation is equal to the product of the mean value
of the function at the cell centre and the cell volume. The numerical method chosen to
solve the equation system has the property of consistency when the difference between the
exact and the discretised equations, and thus the discretisation, tends to zero as the grid

spacing tends to zero.

2.2 RANS

Though the Navier-Stokes equations describe completely all the aspects of turbulence, for
industrial cases doing a direct numerical simulation (DNS) is quite impossible, because
the computational cost and the number of mesh cells increase with the third power of the
Reynolds number, that for a car is in the order of 10°.

In most cases for external aerodynamics simulations knowing the mean flow field can
be sufficient and solving the RANS (Reynolds Averaged Navier-Stokes) equations is a
good compromise between the computational time and the accuracy of results. While
turbulence is always unsteady and three-dimensional, mean flow field can be statistically
steady. For a steady flow, the mean is simply a time averaging process.

For the velocity field and all other physical quantities the Reynolds decomposition is
applied, dividing each term into its mean and the fluctuation. To obtain the equations we

consider a general unsteady flow, where velocity and pressure fields are respectively

U(x,t) = U(x,t) + u'(x, 1) (2.5)

p(x,t) = P(x, 1) + p'(x, 1) (2.6)

These expressions are substituted into the Navier-Stokes equations and then the mean of
them is taken. Remembering that mean is a linear operator, and so it can be exchanged
with derivatives, and that the mean of fluctuations is zero, the continuity equation for the
mean velocity field maintains the same expression
oU;
ox; B

0 (2.7)

Taking the mean of the momentum equation is more complicated because of the convective
term, that is non-linear. In fact we have the velocity covariances U;Uj, but we would have
the product of mean velocities. The term is rewritten with respect to fluctuations using

the Reynolds decomposition in this manner

U,‘Uj = (U; + u;)(Uj + ug) = U@U] + U,u; + Uju; + Eﬂj = U@U] + u;u; (2.8)

6
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Therefore substituting this expression into the divergence term on the left-hand side of

(2.2) and reordering, the momentum equation in conservative form becomes

0T, 0
8t 8:0 5

ap | 0 (aﬁi an>_

9 T
T on Mo —— (puld 2,
ox; + 'u&cj oz, + oz, (pulu]) (2.9)

p 5':1:j

The term — pm is the Reynolds stress tensor. It is symmetric and therefore there are six
independent terms. Physically it represents the momentum transfer due to the fluctuating
velocity field. If the Reynolds stress tensor were equal to zero, RANS and Navier-Stokes
equations would be identical, therefore it represents a crucial term in modelling turbulence
[7].

Equations (2.7) and (2.9) form a system that is not closed, because in 3D problems
there are four equations and ten unknowns: three velocities, the pressure and six Reynolds
stresses. This is defined as the closure problem, so we need to find a way to write Reynolds
stresses with respect to the mean flow quantities. This is possible only with a turbulence

model.

2.3 Boussinesq hypothesis

Most turbulence models use the Boussinesq hypothesis, introduced in 1877, to model
Reynolds stress tensor like a gradient-diffusion term. This hypothesis is based on the idea
that eddies in turbulence behave with respect to the mean flow field as molecules behave
with respect to the macroscopic motion. In fact as the diffusive terms in the Navier-Stokes
equations describe the momentum transfer by molecular agitation so vortices transport
momentum by fluctuations. For this reason the Reynolds stress tensor can be modelled
with the same mathematical form of diffusive terms introducing a turbulent viscosity, or
eddy viscosity, pr.

The Reynolds stress tensor, unlike the viscous stress tensor, has a non-zero trace that

is proportional to the double of the turbulent kinetic energy &
—puiul, = —=2pk (2.10)

Therefore Reynolds stresses can be divided into an isotropic part, i.e. the trace, and an

anisotropic one, simply by adding and subtracting the expression (2.10), obtaining
R 1 — —_ 11—
Ti(j ) _ _gpuzu;cdij - p(u;u; - §u;€u;€(5l]> (2.11)
where d;; is the Kronecker delta and with the subscript £ we refer to the summation over

7
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repeated index. Only the anisotropic part is responsible for transporting momentum. Now
the Boussinesq hypothesis gives the relation between fluctuations and the mean field: the
assumption is that the anisotropic part of the Reynolds stress tensor, defined as a;j, is

determined by the mean velocity gradients

0U; | 0U; ) (2.12)

1] KT ur < 89@- 8$L
where E’j is the mean rate-of-strain tensor. Indeed assuming that a;; and gij are aligned
is a strong hypothesis, because this is not true even for most simple turbulent flows.
However the Boussinesq hypothesis is accepted because it provides a convenient closure
to the system. Reynolds stresses become

(R)

1 —
Tij = _gpuku;c(sij + Q,UJTS,‘J' (2'13)

Substituting them into the equation (2.9) and rearranging similar terms we obtain

ou; . 0 ——. 10 [ 2 0 ou;  oU;
5 +3_xj(UlUJ)__;_)8wi <p+ §pk>+6_scj[(y+yﬂ<8xj + 83%)] (2.14)

The first thing which can be noted is that the term in the gradient on the right-hand
side is a modified mean pressure. It accounts for the isotropic part of the Reynolds stress
tensor, represented by the turbulent kinetic energy, and generally for an incompressible
flow it is computed without separating two contributions. In fact the turbulent part of the
modified pressure is often negligible with respect to the variations of the mean pressure.
Equation (2.14) has the same form of (2.2), but the system is still not closed because there
is another unknown, i.e. the turbulent viscosity vy and it must be modelled somehow.
This is not easy, because the turbulent viscosity is not a property of the fluid like the
kinematic viscosity v, but it depends on the structure of fluctuations and thus it is a
property of the flow and function of space and time. With dimensional considerations,
the turbulent viscosity can be modelled as the product between a characteristic velocity

and a characteristic length
vr(x,t) = velocity - length  [m?/s] (2.15)

The algebraic models are based on this idea, for example the Prandtl’s mixing-length

model, that is the simplest one. Prandtl defined the turbulent viscosity as proportional
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to the gradient of mean velocity in the following way

2
mix

vp = l (2.16)

dy

el

where ., function of space, is the characteristic dimension of the biggest eddies. This
model works well in the log-law layer of the boundary layer and for quasi-parallel flows,
because the mixing-length is proportional to the wall distance, but it is poor for other
turbulent flows, in which [,,;, has to be determined with a guesswork and probably bad
accuracy. Therefore the problem of determining the turbulent viscosity is only moved on

determining ;-

2.4 Two-equation models

Knowing the value of the two characteristic quantities everywhere in the flow field is
quite difficult, therefore other models were developed linking velocity and length to other
quantities described by one or more transport equations. Spalart-Allmaras is the most
known one-equation model, in which an empirical equation for the turbulent viscosity is
written. Two of the most used two-equation models are k- and k-w. Both these model

have in common the transport equation for the turbulent kinetic energy k.

2.4.1 k- model

First Kolmogorov (1942) and then Prandtl (1945) suggested that the characteristic velocity

v could be linked to the turbulent kinetic energy per unit mass k introduced in (2.10)
v = ck? (2.17)

where c¢ is a constant. As the turbulent kinetic energy is a physical quantity, a model

transport equation for it can be defined
A Ujr =P—c+ o2 (2.18)

On the left-hand side there is the substantial derivative of k and on the right-hand side
there are three general terms of production, dissipation and transport, defined as the flux
of I;. The production term represents the rate at which kinetic energy is transferred
between mean flow and fluctuations and it is defined as

——0U;

Py = —uju; D (2.19)
J
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The term ¢ is the dissipation per unit mass due to the molecular diffusion on the smallest

scales of turbulence and it has the following expression

oul; ou,
= 2.20
c V@mk ka ( )
Finally I; is modelled as
ok l—— 1——

where the first term is the molecular diffusion of the turbulent kinetic energy and the
others represent the turbulent transport due to fluctuations and their correlation with
pressure. The resultant equation is still exact, but the problem remains unclosed. In fact
we have new unknowns in the turbulent transport term, i.e. the triple correlation and the
correlation between fluctuations velocity and pressure. Therefore it is modelled with a
gradient-diffusion hypothesis introducing the coefficient oy, that accounts for the different
behaviour of all the eddies in turbulence. The model transport equation for the turbulent

kinetic energy is rewritten as follows

oz = Tl Ox; et ox; [(V + ) ] (2.22)

a o) 7,

This equation is the base for the most common turbulence models. Also the the dissipation
remains unknown, because it is function of fluctuations. If we consider homogeneous
isotropic turbulence, we can use Kolmogorov scales to find a relation between the turbulent
length scale [ and the turbulent energy. In fact Kolmogorov defines the rate of dissipation

of turbulence energy ¢ as

W3 k32
N = 2.23
ER ;i (2.23)
Inverting this relation and remembering (2.17), the turbulent viscosity can be written as
follows
k2
vp = C,— (2.24)
€

At this point the second model equation for ¢ is introduced and it closes the system. In
this manner, the length scale and the characteristic velocity can be obtained respectively
from the dissipation and the turbulent kinetic energy to compute the eddy viscosity vr.
The second model equation stems from empirical considerations. In fact, it is possible to
write an exact equation considering e as the responsible for the processes in the dissipation
range, but it is more useful referring to it as the energy flow rate from the large eddies

in the energy cascade, where ¢ is independent of the kinematic viscosity at high Reynolds

10
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number. Therefore, without entering in any details, the model equation is the following

Oe — Js sﬁﬁﬁi g2 0 v\ Oe
ot +U; Ox; N Cﬂkuiuj oz Cer k + O [<y+ 0‘5) ij] (2.25)

Thus there are five closure coefficients, whose values, also implemented in STAR-CCM-+,

were defined by Launder and Sharma in 1974 and they are
C,=009, Co=144, (=192, op=1, o0.=13 (2.26)

This is the standard k-¢ model, the most popular model in industrial applications for
its robustness and good level of convergence. However it has several limitations and it does
not work very accurately for flow fields with adverse pressure gradients, strong curvature,
separation or recirculating zones because of the nature of the equation for € and because
the Boussinesq hypothesis loses its validity. To achieve good results for different flow
fields, this model has been revisited with many modifications, also adding wall functions

to resolve the boundary layer.

2.4.2 k-w model

As the flow field around the car is quite complex because of separation at the rear, wheels’
wake and other issues, an optimisation study requires a high level of accuracy, therefore
a k-w model would be suitable for the primal simulation, in particular Menter’s SST k-w.
Among its main advantages over the other models, there are a better performance in com-
putation of boundary layer flows under adverse pressure gradients even in the logarithmic
region and its application throughout the viscous sub-layer without any modifications.

Like the one showed in the previous section, it is composed by two equations, one for
the turbulent kinetic energy and the other one for the specific dissipation rate w, defined
as

€

~ — 2.2
we s (2:27)

This quantity has the same dimension of the vorticity, i.e. [s~!], so it represents a sort of
characteristic frequency of fluctuations and its reciprocal is the time scale of the turbulent
dissipation.

In the technical memorandum [10] and in the paper [11] Menter derives its SST model
starting from the k-¢ model and k-w model proposed by Wilcox. In the outer region of
the boundary layer Wilcox’s model shows a strong sensitivity to the arbitrary values for
w in the free-stream, and this is a relevant problem in particular for the inlet boundary

conditions that have to be imposed. To avoid this problem and to implement a model with
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all the advantages guaranteed by the others, Menter proposed to unit the standard k-w
model and the standard k- model manipulating them in some manner using a blending
function Fy. This function is equal to one in the inner region of the boundary layer,
activating the k-w model, while it gradually becomes equal to zero in the outer region
where the k-e model is valid, overcoming the sensitivity of w to free-stream conditions.

The following equations form the SST k-w model

ok  — 0k  ——0U; 0 Ok

o +U; 2 = —u;uj oz, Bwk + oz, [(V—l—akVT) x]—] (2.28)
ow | — Ow w——0U; a2, 0 Ow )
5 +U; o, Vg Ui P, Bw* + oz, [(V‘FO‘UJI/T) x{j] + D, (2.29)

where the production term P, is defined as

1 0k Ow
P =200 = F)ow 5 e
J J

(2.30)
A peculiarity of this model is the presence of a new term represented by the dot product

between the gradients of k£ and w, defined as the cross-diffusion term.

A detailed presentation of the general formulation of this model with all the coefficients
is showed in STAR-CCM+ documentation [12].

The acronym SST stands for Shear Stress Transport, in fact this model accounts for the
transport of the principal component of the Reynolds stress tensor, i.e. —pu/v/, allowing
to predict in a better way the anisotropy of turbulence. This expedient requires a new
definition for the turbulent viscosity, which is proportional to the turbulent kinetic energy

and is defined as follows
alk

vr = ou
max <a1w, Fg—)
dy

where a; is a constant and F5 is a function that is one for boundary-layer flows and zero

(2.31)

for free shear flows.

Thanks to these features, Menter’s model is widely used in aerospace applications and
it would be preferable for complex aerodynamic simulations. However generally it is more
difficult to converge than the k-c model and it requires a very refined mesh in the viscous

sub-layer.
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2.5 Near-wall treatment

As the walls are a source of vorticity in most flow fields, the computation of the boundary
layer flows in proximity of this zone must be as accurate as possible. The boundary layer
can be divided into an inner region and an outer region. Moreover the inner region can
be split up into three sublayers, with different features: the viscous sublayer, the buffer
layer and the log-law layer.

At this point two variables are introduced to represent the characteristic scales of
viscous fluctuations in the boundary layer; they are the so called friction velocity w, and
the length scale [,,, defined as follows

up =2 =2 (2.32)

p Ur
where 7, is the viscous stress at wall computed with the Newton’s law. Thus in the inner
region of the boundary layer these two variables can be used to form two non-dimensional
velocity and length scales, respectively defined as vt and y™, with the latter representing

the non-dimensional wall distance and it is used to compute the extent of each sublayer.

L (2.33)
Ur v
They are called inner variables or wall variables. It is interesting noting that y has the
same form of the Reynolds number.

The viscous sublayer is the closest to the wall. IHere the viscous stresses dominate
over the Reynolds stresses and the flow is almost laminar. The velocity profile is linear
according to the wall law

ut =yt (2.34)

For high Reynolds numbers the extent of this sublayer is independent from the external
flows and it spreads from the wall to a non-dimensional distance of about y* ~ 5.
In the log-law layer, where Reynolds stresses dominate the turbulent flow, the relation

between the two wall variables is expressed by the following logarithmic law

1
ut = = In(y™) +C (2.35)
where K = 0.41 is the Von Karman constant and C' is another constant equal to 5. The
extent of the log-law layer is dependent from the Reynolds number, and it increases as
the Reynolds number increases. Generally it spreads from 3 ~ 30 to a distance equal to

0.20, where ¢ is defined as the boundary layer thickness.
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The buffer layer is a transitional layer between the others where both viscous stresses
and Reynolds stresses are important and there isn’t a valid universal law. For this reason
is preferable to create a mesh where no cell centres fall into this layer. The Figure 2.1

shows the structure of velocity profile in the inner boundary layer.

20 T T T

sl viscous sublayer buffer layer | log-law layer

ut=1/kIn(yH+C
12r .

10 - 1

107 10° 10"+ 102 10°

Figure 2.1. Wall laws in the inner layer.

STAR-CCM+ provides three types of wall treatment: low-y™. high-y™ and all-y™.
The latter resolves the viscous sublayer where the mesh is fine as the low-y™ treatment
does and it behaves like the high-y* treatment for coarse mesh where the first cell falls at
yT > 30. It uses blending functions where cells lie in the buffer layer; however it would be

worthwhile avoiding this situation.
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Chapter 3

Adjoint method

In this chapter a brief discussion on the adjoint method is proposed, without entering too

much in mathematical details because it is beyond the purpose of this thesis.

3.1 Analysis workflows

In Figures 3.1 and 3.2 the differences between a traditional approach to design and the
adjoint approach are showed. Traditional approach to aerodynamic optimisation considers
the generation of a DOE (Design of Experiments) during the early design phase and by
means of several algorithms the influence of many parameters on the initial design is
evaluated in order to reach a specific objective. Therefore by varying the input conditions
it is possible to examine the cause-effect relationship and determine the optimal solution.
When the number of parameters is high, this process can be very time consuming and the
computational effort grows dramatically. Even simulating and comparing many different
model configurations can lead to unacceptable development times and limit the design

exploration space.

Setup Geometry,| | RunFlow - Analyze
Physics e Solver " Results
Update
Model
Setup Geometry,| | RunFlow R Analyze
Physics " Solver " Results

Figure 3.1. Traditional analysis workflow.
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The adjoint method is a useful tool to predict the influence of a certain number of
design parameters or boundary conditions on specific quantities of interest, defined as
objective or cost functions. An adjoint simulation requires the computation of the steady-
state solution that represents the so called primal solution, and the computation of the
gradient or sensitivity of the cost function. The results provide the starting point for
an optimisation cycle, that can be performed on the same simulation workflow, without
preparing different cases.

The main advantage of the adjoint approach is the method’s cost independence from
the number of design variables, so it is possible to explore a potentially infinite design
space. With respect to traditional optimisation approaches, fewer design iterations are
needed to reach the best configuration, saving a lot of time, fundamental in the product
development. The adjoint method offers a guidance towards the improvement of the inter-
ested performance by a shape optimisation, thanks to the sensitivity analysis computed
with respect to the mesh node displacement. Even computing the adjoint with regard to
physical quantities such as continuity and momentum is possible, allowing to evaluate how
the cost function is sensitive to local changes in mass and in momentum in each spatial

direction within the domain.

Setup Geometry, Run Flow Analyze Set Cost
Physics Solver Results Function
1 v
Morph Compute Run Adjoint
Model Sensitivity Solver

Figure 3.2. Adjoint method workflow.

3.2 Mathematical formulation

Adjoint methods are formulated following two different approaches, continuous and dis-
crete approach. From the mathematical point of view they differ only in the way to obtain
the same final system of equations. Figure 3.3 summarizes the steps followed in two

approaches. Both formulations start from the system of the governing PDEs. In the dis-

crete approach these equations are first discretise and then the discrete adjoint equations
are obtained with some operations; in the continuous approach the adjoint equations are

formulated directly from the governing flow equations and then discretised together with
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DISCRETE CONTINUOUS
ADJOINT ADJOINT

Differential State Equations

Discretization Adjoint Operation
Discrete State Differential Adjoint
Equations Equations
'Adjoint Operation v Discretization

Discrete Adjoint Equations

Figure 3.3. Difference between adjoint approaches.

their boundary conditions and solved. Their mathematical formulation is very challeng-
ing with respect to traditional gradient-based methods, but when the number of design
parameters involved is high, the initial effort is justified by the cost independence of the
adjoint. For simple cases the computational effort is similar for both approaches, but for

industrial cases relative advantages and disadvantages should be evaluated.

3.2.1 Continuous Approach

We recall the RANS equations in steady-state and non-conservative form for incompress-

ible flows. The average sign is omitted for the sake of simplicity

ou;
5. =0 (3.1)
8Ui ap 6 3U1 OUJ -

where U; and p, neglecting the turbulent kinetic energy contribution, are respectively
the primal velocity and the primal pressure. Before deriving the adjoint equations, a cost
function must be defined. It is a combination of a surface integral on the domain boundary

and a volume integral in the entire domain 2

F:/gw+/mm (3.3)
S Q
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For each cost function to optimise, an adjoint equation has to be formulated. With some

manipulations, the adjoint equation system is the following one, from reference [4],

oV, OF

oz, ap 0 (3.4)

oV, 0U;  0g D av; v\ oF r
Uj Oz +Vj 92; | Omi oz, [(V-i-I/T) (axj + 8951;)] tom = 0 (3.5)

where V; and q are respectively the so called adjoint velocity and the adjoint pressure.
The second term in equation (3.5) is defined as Adjoint Transpose Convection and it is
a source of instability in the computation. The shape sensitivity with regard to normal
displacement of each cell node can be computed after solving both primal and adjoint
systems of equations. The surface sensitivity map can be exported and used in an external
software as deformation parameter. Instead if the optimisation loop is performed using a
grid of control points, the sensitivity of the cost function with regard to these points is

computed applying the chain rule as follows

OF _ OF Oy
b~ Orn  Ob

(3.6)

where b are the coordinates of the points and z,, are the coordinates of the mesh nodes.
In this derivation turbulence model equations are not considered, in fact the turbulent
viscosity is assumed to be constant with regard to variations in the design variables and

it is treated as passive quantity, according to the frozen turbulence assumption.

3.2.2 Discrete Approach

In our case the cost function, defined as L, is the aerodynamic drag that has to be min-
imised. In general it is a non-linear function of a set of flow variables computed at discrete
grid points, representing the solution Q = [p, V]? of the governing equations, and of a set
of design parameters D that define the coordinates of the mesh by means of a function
X (D). What we want to study is how the cost function is influenced by a perturbation
in the design variables D, in this case the external shape of the vehicle, and so in the
flow field and to find a set of them that minimises the cost function. The cost function
is computed following a sequence of operations, (X(D), Q(X), L(Q,X)). The adjoint
simulation follows the reverse sequence, because starting from the sensitivity of the cost
function it has to determine a new mesh depending on the design parameters.

In order to minimise the cost function with design modifications instead of boundary
conditions change, the total derivative in the following expression provides the sensitivity

of L with regard to the design parameters and it is obtained with the chain rule applied
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to the previous operations,

dL [GL 6L8Q]dX

aD _ |oX T 9qax| D (3.7)

The term dX/dD is the Jacobian of the function X(D), defined as Jx and each row of
the matrix represents the gradient of each mesh coordinate with respect to all the design
parameters. For a large number of design parameters the adjoint operation requires a
great effort in terms of memory, therefore a different approach is followed to reduce the

computation time, taking the transpose of the derivative of the system for the given L

arL™ _dxTroL™  oQToL”

D ~ab |3Xx TxX 9q (3.8)

This gradient is used to solve the shape optimisation problem and it is the starting point to
define the new values of the design parameters. In other words, the morpher tool deforms
the mesh coordinates according to these values. The terms in square brackets represent
the sensitivity of the cost function with regard to the coordinates of the volume mesh
vertices. This function is computed after the determination of the sensitivity of L with
regard to the flow solution LT /0Q. that is the input for the adjoint solver. This approach
is valid even when the cost functions are more than one, the gradient is computed for each

specified cost function.

3.2.3 Advantages and disadvantages of two approaches

The final aim of the adjoint method is to compute the gradient of a specified cost function
with regard to design variables. There are conceptual differences between the discrete
and continuous approach and each one has its own advantages and disadvantages that are
summarized in this section.

With the discrete approach the gradient of any discrete cost function is computed
exactly, but the computational cost can be considerably higher than the primal solution
and this could make preferable the other approach [4]. The continuous approach requires
less memory and because one is theoretically free to chose any discretisation scheme for the
adjoint equations, it would have a simpler implementation [6]. The greater challenge can
be obtaining the final equations depending from the complexity of the primal equation
system [4]. With this approach the cost function is analytically exact, starting from a
continuous formulation, but the discrete gradient is an approximation strictly depending
on the discretisation scheme [13]. Therefore there is a slight inconsistency between two

approaches. However, if the mesh is sufficiently refined, both approaches can lead to the
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same result [6].

Another drawback common to gradient-based methods is that if the cost function has
more than one minimum, then the gradient approach will generally converge to the nearest
local minimum. In the case of study it could be reasonable thinking that the aerodynamic

configuration of the vehicle is already near to the best shape.

3.3 Adjoint solver

The discretisation scheme used to obtain the equation system can be first-order or second-
order. Though a second-order scheme provides a better accuracy it can be very unstable
for industrial problems, therefore a first-order scheme is chosen in order to guarantee
robustness and convergence.

The adjoint equations form a linear system solved with an iterative defect-correction
algorithm. The default algorithm implemented within the solver doesn’t guarantee an
adequate convergence for this case, in fact an adjoint analysis requires that residuals ap-
proach machine precision. As alternative, the software provides two acceleration drivers:
Restarted GMRES and Flexible GMRES, where the acronym stands for ” generalized min-
imal residual”. These are modern iterative methods based on the Krylov subspace to find
eigenvalues of large sparse matrices and solve large linear systems. Enhancing the conver-
gence using the Restarted GMRES solver is verified to be the suitable practice, resulting
in an increase of robustness but also of computation time and memory requirements. With
these features the adjoint method has a computational effort approximately double with
respect to the primal simulation.

Table 3.3 shows the setup followed in all the simulations. For the Krylov space dimen-
sion the number between brackets refers to that used for simulations running with k-w

model, that requires a more robust setup.

Table 3.1. Adjoint solver setup.

Adjoint Acceleration Selection Restarted GMRES

Krylov Space Dimension 30(50)
Number of correction sweeps 5
Courant Number 100
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Chapter 4

Case description

4.1 Fiat Tipo

The model chosen as subject of this thesis is the Fiat Tipo 5 Porte, whose 3D geometry
is shown in Figure 4.1. It falls in the category of those cars defined as ”hatchback”.

Figure 4.1. Fiat Tipo Hatchback, 3D model.

In general one of the major contributes to drag generation is due to the flow separation
and the complex flow field in the wake at the rear. The main aerodynamic problem related
to an hatchback vehicle is the formation of vortices depending on the inclination of the
slanted surface of the rear window with respect to a horizontal line. Vortices rise in

consequence of local shear, pressure or velocity difference in the flow field. A typical

21



4 — Case description

situation of vortex-dominated flow is displayed in Figure 4.2 and it is evident for a slant-
angle range of 10°-30°, [14]. In this condition the flow separates only at the rear base and
the velocities induced by the vortices on slant surface generate an intense suction force,
increasing dramatically the lift. Moreover, approaching to 30°, that represents the critical
angle, there is a remarkable source of drag because the force normal to the slanted surface
has a component parallel to the flow and in the opposite direction of the car motion.

About above 30° vortices break down and the flow separates, resulting in a quasi-uniform

7

Figure 4.2. Slanted rear.

pressure distribution on the whole trunk and in a recirculating wake configuration as

shown in Figure 4.3, with an improvement in drag. Therefore the design of an hatchback

Figure 4.3. Wake vortices.

model has to take into account this phenomenology and the rear window would have an
inclination at least equal to 35°. The typical solution concerns the installation of a spoiler,
that forces the flow to separate at the trailing edge, as though the rear window has an

inclination close to 90°.
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Also the inclination of the spoiler has to be taken into account, because a good com-
promise has to guarantee an adequate reduction of rear-axle lift without increasing drag
too much. For all these reasons during the optimisation process a particular attention is
focused on the spoiler configuration and on C pillars, essential to control flow separation
at the rear.

The geometry on which simulations are performed consists of the entire vehicle, includ-
ing all external details and all the mechanical parts like the engine, brake and suspension
systems. For time reasons it was not possible to verify the practicability of the adjoint on

other vehicles.

4.2 Mesh setup

Finding the right mesh setup to ensure the convergence of the adjoint solver is not easy.
The complexity of the geometries and the adjoint sensitivity to potential imperfections of
the computational grid require a volume mesh with very high quality, more than that pre-
pared for only primal simulations. Therefore the realized mesh for our adjoint simulation
is different from that generally used for external aerodynamics simulations. Two meshing
models are used, the Trimmer Mesher and the Prism Layer Mesher, but it is necessary to
customize them to improve mesh quality in zones with very fine details.

From the point of view of the Prism Layer Mesher, a low-y™ mesh is generated on the
external surfaces where it is necessary to resolve the boundary layer with high accuracy,
in order to compute also the correct contribution of viscous stresses on drag generation.
Even the tyres are discretised with a refined mesh, but rims, caps and MRF have a high-y™
mesh, because of the complexity of the geometries of these regions.

A high-y™ mesh is chosen for baffles, that are surfaces with zero-thickness, air intakes
that have a complex geometry and it is difficult to generate a detailed boundary layer
on them, and for the underbody. Because of the complex geometry of the underbody, to
avoid the generation of a great amount of drag due to a disturbed flow, most of parts of
this component are within the wake of the front dam, thus it is not necessary to refine
too much the boundary layer. Figure 4.4 shows the wall y*, that is the non dimensional
distance of the first cell center from the wall, on the vehicle.

The resultant mesh has more than 100 millions of cells. Table 4.1 provides the complete
setup of the surface controls expressed as percentage of the base size. A custom mesh
control allows to refine or coarsen the mesh applying it to several surfaces or volumes.

Though in the standard procedure for the primal simulation some bad cells within a

certain target are removed, when an adjoint run has to be performed, they have to not be
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vZ wall v+ z wall v+
<X 0.00000 6.0000 12.000 18.000 24.000 30.000 Jx 000000 6.0000 12.000 18.000 24.000 30.000

(a) Fzternal surfaces. (b) Underbody.

Figure 4.4. Wall y™ on the vehicle.

Table 4.1. Mesh custom controls as percentage of the base size.

Target Surface Size Minimum Surface Size

External 100 o0
Underbody 100 25
Underhood 100 25
Tyres 50 50
Rims and caps 50 25

deleted because numerical errors would spread to the adjacent cells causing problems dur-
ing the computation. Therefore only cells with negative volume, if any, must be removed.
In fact while the primal simulation can be more tolerant to imperfections of the mesh,
the adjoint solver is much more sensitive to them. This is true in particular for complex
geometries and for detached flows. Because of this weakness of the solver, robustness in
computation is preferred despite a certain loss of accuracy [3].

In Figure 4.5 is shown the mesh at the symmetry plane of the vehicle. On the car there
are several refinement blocks, with lower mesh size, to compute accurately the flow field.
Wheels, mirrors, spoiler’s wake has to be well captured by the mesh and also A pillars,
where vortices born and C pillars where the flow can separate, have to be refined both in
surface and volume mesh.

The volume mesh is a trimmed one. It is an unstructured grid composed by hexahedral
cells, cut with the geometry surface and characterized by low skewness. This mesher allows
the realization of a high-quality grid also for complex problems. Growth rates can be set

to control the transition of cell sizes from small to large. In STAR-CCM+ one of its
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Figure 4.5. Trimmed mesh at the symmetry plane.

advantages is the possibility to use more parallel cores to generate it with respect to a

polyhedral mesh.

4.3 Boundary conditions

The fluid domain for external aerodynamics simulations is defined as ”Open Air”. It must
represent as well as possible the real conditions in which the vehicle operates on the road,
therefore its dimensions are big enough to avoid any sort of blockage. The mathematical
model is completed specifying the boundary conditions on the domain, depending on the
flow situations. The boundary conditions allow to define where the flow enters or leaves
the computational domain and its behaviour on the walls.

The inflow condition is a velocity inlet, where the velocity magnitude and direction of
the flow are specified. In our case the air velocity is uniform and it is equal to 38.89 m/s.
The outlet is a pressure outlet, where the pressure is specified and its value is constant
and equal to the reference one. On the walls of the domain a slip condition is imposed,
therefore the flow slides along the wall without any shear forces. The entire floor slips at
the same velocity of the air entering from the inlet at 38.89 m/s. A tangential velocity
specification is imposed to each wheel in order to simulate their rotation, creating a Moving
Reference Frame (MRF).

4.4 Solvers

As at speed of 38.89 m/s the Mach number is less than 0.3, compressible effects are
negligible, therefore the simulations are performed using a constant density model for the
air, neglecting the energy equation. The air has the density equal to p = 1.225 kg/m?> and
the dynamic viscosity is i = 1.79-107° Pa - s.
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The integral conservation equations of mass and momentum are solved in a coupled
manner. While the segregated flow solver uses a pressure-correction equation to compute
the right velocity field that fulfils the kinematic constraint imposed by the continuity
equation, solving the equations iteratively, the coupled solver provides a converged solution
in terms of velocity field and pressure solving conservation equations simultaneously.

From the point of view of the time discretisation, the coupled system of equations is
solved with an émplicit time-integration scheme. For steady-state simulations the time-
stepping is performed until a quasi steady-state solution is obtained. When an explicit
approach is followed, the discrete equations provide the value of the fluid dynamic quan-
tities at a certain time level n + 1 knowing the values at time level n, and this holds for
each grid node, solving the equations by marching in steps of time. The solution in this
case is immediate. The implicit approach requires the solution of a system of algebraic
equations, where all the quantities at time level n 4+ 1 are expressed in terms of other
unknown quantities at both time levels n and n + 1. Solving the system provides the
solution at all the grid points simultaneously. Clearly this approach is more complicated
and it would require more computational and implementation effort with respect to the
explicit one. However its main advantage is that it is unconditionally stable, therefore
a larger time step can be used if the steady-state solution is researched, without losing
stability and timewise accuracy. For this reason the Courant number, that represents the

stability condition, can be very high reducing computing time.

4.5 Optimisation Methodologies

Two different ways are followed to morph the external shapes. The aim is finding the best
procedure in terms of quality and computational time. Results of the primal simulation in
terms of drag coefficient are the starting point for the optimisation loop, performed using
both ANSA and STAR-CCM+ morphing tools and capabilities. The robustness of the
adjoint solution relies on the fidelity of the primal flow field, therefore also a comparison
between k-e and k-w model is carried out, in order to establish what model is the most

reliable.

4.5.1 Design guidelines via surface sensitivity

After the primal simulation and the adjoint run, computing the surface sensitivity of the
cost function is the first step in an optimisation cycle. It provides the information necessary
to individuate those areas that are the most sensitive to geometry modifications and that

can have the major impact on the aerodynamic drag. Though there are some zones for
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which the experience can suggest qualitatively how to intervene, surface sensitivity is a
useful tool not only for those parts that are difficult to change only looking at the primal
results, but also because it provides a quantitative information about the impact of shape
changes on the drag. However, in this case the optimisation is a fine-tuning operation
because probably the vehicle is already close to its optimal shape, therefore it is difficult
to expect substantial variations in the final result.

In order to explain how results have to be interpreted, Figure 4.6 shows the surface
sensitivity with regard to the normal displacement of the spoiler, computed for each node
of the surface mesh. Remembering that the normal vector is considered positive if it enters
into the fluid domain, negative values, corresponding to blue areas, indicate that pulling
outwards the surface, i.e. in the direction of the normal, the drag would decrease. Positive
values, corresponding to red areas, suggest that the surface has to be pushed inwards to
reduce drag. For the example in figure, sensitivity drives to a reduction of the spoiler

inclination.

Surface Sensitivity of drag w.r.t. Normal Displacement (N/m)
Z -0.10000 -0.060000 -0.020000 0.020000 0.060000 0.10000

Figure 4.6. Surface Sensitivity [N/m] of Drag with regard to Normal Displacement for spoiler.

4.5.2 Morphing with ANSA

A practicable methodology concerns the possibility to perform the morphing using an
external software. In this case the morphing procedure is carried out with ANSA Pre-
processor, a computer-aided engineering software developed by Beta CAE Systems, that
associates the CAD geometry with a FE (Finite Element) mesh. It is widely used in
automotive industries to provide a detailed surface mesh as basis for CFD purposes. The
procedure takes advantage of the powerful morphing tool of ANSA, in this case morphing
operations are performed directly on the surface mesh using the results in terms of surface

sensitivity as a deform map. Other methods allow a parametric control of the shape
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changes using the Direct Fit Morph function or morphing boxes, as explained in [15] and
[3].

Surface sensitivity is extracted from STAR-CCM+ as a table of values with respect to
the three spatial directions. ANSA uses these values as a deform map of nodal displace-
ments, translating them into changes of the geometry surfaces. The software allows to
control the morphing operation choosing the maximum displacement and the number of
displacement vectors involved. Selecting entities which have to be morphed and elements
in their proximity would guarantee a good quality result avoiding intersections.

Though ANSA provides a good quality result, the main drawback of this method-
ology is the time consuming in reimporting the morphed geometry into STAR-CCM+
and remeshing it before performing a new primal simulation to verify the effect of the

modifications.

4.5.3 Morphing with STAR-CCM+

In order to overcome this drawback and to take advantage of the capabilities of STAR-
CCM+, an entire optimisation cycle in the same simulation file is experimented. In this
case, after the solution of the primal flow field and the adjoint system, the computation
of the surface sensitivity has only the aim to indicate where the cost function is more
sensitive to changes in volume mesh and thus in shapes.

Taking into account this indication, several control points are inserted close to surfaces
that have to be morphed. The software uses these points to deform the volume mesh.
Control points have to be close enough to the boundary to be deformed in order to have
a sufficient influence on it, but with enough offset from the surface to ensure smooth
deformations. An example is provided in Figure 4.7, where two bi-dimensional lattices are
located respectively about 5 cm and 10 cm over the spoiler. The deformation is applied to
the closest points, whereas the displacement associated with the highest lattice of points
is forced to be zero to avoid excessive deformations of the mesh, losing quality.

On these control points the software computes the mesh sensitivity, providing the cost
function gradient defined as Adjoint of drag with regard to position and it has the following

expression
dL” _ dx’ ar’”
dD  dD dX

where D are the design parameters that define the mesh coordinates X(D) and L is

(4.1)

the cost function. The morpher deforms the mesh according to the values provided by
this sensitivity. These values are always positive because they indicates the required
deformation to increase the cost function. Therefore, in order to reduce the aerodynamic

drag, the displacement function associated with each set of control points has to generate

28



4 — Case description

YX

Figure 4.7. Lattice of control points on the spoiler.

a negative displacement. An example of this vector field is shown in Figure 4.8 and
it represents the gradient computed on the first lattice of points over the spoiler. A
similarity with the advice given by the surface sensitivity can be noted, in fact also the

mesh sensitivity indicates that the trailing edge has to be bent down.

Adjoint of drag w.r.t. Position (N/m)
Zz 0.73379 38.504 76.274 114.04
Y

151.81 189.58

Figure 4.8. Mesh sensitivity computed on control points.

A simple first-order steepest descent algorithm, with a low computational cost, is used

to morph the mesh with the following formulation

dr”
X=X 4.2
“aD (42)
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where X9 is the first or, in general, the previous mesh and « is the step size that defines
a fraction of the gradient. The surface geometry is modified by changes in the design
parameters. In STAR-CCM+ all the deformations are stored in a function defined as
Cumulative Morpher Displacement.

As the morpher acts directly on the volume mesh, there is no need to remesh the model,
so the verification of the performance of the new shape can be performed running again
the primal solver. On the other hand this feature represents also the main disadvantage

of this workflow, in fact volume mesh tends to lose quality for each optimisation cycle.
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Chapter 5

Results

In this chapter the results of both optimisation methodologies are collected. The atten-
tion is focused on the drag coefficient, that represents the non-dimensional form of the

aerodynamic drag

op— D
5 pVZA

where V., is the air velocity and A is the frontal area of the car. The first primal simu-
lation provides the reference value of Cp; all the subsequent coefficients are expressed as
percentage of it. When we talk about the aerodynamic drag we refer to the total rate of
decrease in momentum in the direction of the motion. A global measurement of the drag
includes contributes of both pressure and viscous drag. Pressure drag, also defined as form
drag, is the integral of the pressure forces acting normal to surfaces and it is the major
contribute. Viscous drag represents the surface integral of the shear stress components

aligned with the undisturbed flow and for a car it is about one tenth of the total drag.

5.1 Primal simulation results

The following results refer to the fluid dynamic simulation based on the Standard k-e
model, that for our case it has proved as the most robust. A first overview on the flow field
around the car is provided by the pressure coefficient. It represents in non-dimensional
form the difference between the pressure acting on vehicle surfaces and the one of the

undisturbed flow, defined as poo

C, = =P (5.1)
§PV020
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Figure 5.1 shows the C), distribution on the external surfaces and on the underbody,

clipping it at zero, when p = pso. Clearly the front end of the car is a stagnation zone,

véx Pressure Coefficient
-1 -0.50000 -0.40000 -0.30000 -0.20000 -0.10000 0.00000

(a) Ezternal surfaces.

Z

£ Pressure Coefficient
vyl x -0.50000 -0.40000 -0.30000 -0.20000 -0.10000 0.00000

(b) Underbody.

Figure 5.1. Pressure coefficient on car surfaces.

where the coefficient reaches its maximum value, equal to one. Other overpressure zones
are on the mirrors, on part of the bonnet and the windscreen where the flow slows down,
and at the trailing edge of the spoiler. Negative values represent suction zones, and these
have to be reduced at the trunk, where the pressure distribution is shown in Figure 5.2,
in order to decrease the drag. Also most of the underbody exhibits low pressure, because
the front dam forces the flow to separate in order to avoid complex turbulent structures

due to the exposure of mechanical components. Moreover the low pressure zone caused
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by detached flow helps to generate a certain amount of negative vertical force.

Pressure Coefficient
IZ -0.50000 -0.40000 -0.30000 -0.20000 -0.10000 0.00000
X Y

Figure 5.2. Pressure coefficient at the rear of the car.

In Figure 5.3 the velocity magnitude in the symmetry plane is shown, highlighting
how the flow separates immediately at the trailing edge of the spoiler, creating a wide low
pressure zone in the wake, that displays a behaviour like that described in the previous

chapter, with a big recirculating zone where the mean velocity is very low. Separation

Velocity: Magnitude (m/s)
20.000 30.000

7 0.00000 10.000
i

o ST Tm

40.000 50.000

Figure 5.3. Velocity magnitude in the symmetry plane y = 0 of the baseline.

is evident also looking at the skin friction coefficient distribution on the rear surfaces in
Figure 5.4, where its value approaches zero. The skin friction coefficient is defined as

follows
Tw

Cy= T
§pVoo

(5.2)
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where 7, is the shear stress magnitude at wall, therefore C; depends on the velocity

gradients. If the flow is separated, the mean gradients are zero or close to zero.

Skin Friction Coefficient
£ 0.00000 0.0010000 0.0020000 0.0030000 0.0040000 0.0050000

Figure 5.4. Skin friction coefficient at the rear.

In Figure 5.5 the velocity at z = 900 mm from the ground is displayed, the section
plane is just above the mirrors. The disturb caused to the flow by them is noticeable,
with their wake extending beyond the trunk of the car. Moreover, the flow accelerates in

proximity of the A pillars and it separates immediately downstream of the C pillars.

Velocity: Magnitude (m/s)
20.000 30.000

Y
7z x 0.00000 10.000 40.000 50.000

Figure 5.5. Velocity magnitude at z = 900 mm.
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5.2 Optimisation via surface sensitivity maps

The first optimisation procedure takes advantage of the capabilities of ANSA Pre-processor
in translating the surface sensitivity results into a map of nodal displacements. The first
adjoint run demonstrates that the spoiler, C pillars and mirrors are the parts with the
highest values of surface sensitivity, highlighted in dark blue and dark red in Figure 5.6.

For the spoiler, results suggest to reduce its incidence in order to accelerate the flow and

Surface Sensitivity of Drag w.r.t. Normal Displacement (N/m)
-0.10000 -0.060000 -0.020000 0.020000 0.060000 0.10000

2z
Lx

(a) Spoiler and C pillars.

</ \ B

Surface Sensitivity of Drag w.r.t. Normal Displacement (N/m)

Z
v X -0.10000 -0.060000 -0.020000 0.020000 0.060000 0.10000

(b) Mirrors.

Figure 5.6. Surface Sensitivity w.r.t. Normal Displacement after the first adjoint run.

close the wake. With the same intent the C pillars are pushed inwards. The mirrors are
modified to reduce the extension of their wake. Sensitivity of the left and right mirror has
different values because they are mounted in an asymmetric manner, therefore the flow
around and behind them is slightly different.

For each part, after importing into ANSA the surface sensitivity maps, a maximum
displacement has to be specified for every node vectors; they are indicated in Table 5.1.
These values are decided as trade-off between an appreciable displacement and good qual-
ity of the surface mesh, depending on the modified component. Figure 5.7 shows the
outline of the original spoiler and the morphed one.

The verification of the morphed geometry running a new primal simulation confirms
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Table 5.1. Maximum displacement for modified parts in ANSA at the first optimisation cycle.

Modified part Maximum displacement [mm]

Spoiler 10
C Pillar 5
Mirrors 3
Q\\_‘:\
M Original \\\\\\\—\\
B Morphed /\\\\
/ﬁl(
: _—

Figure 5.7. Spoiler inclination change after the optimisation with respect to the
original configuration.

the correctness of the sensitivity indications. The drag coefficient Cp is reduced by 3.9%.
Figure 5.8 shows the pressure coeflicient distribution at the rear. Now the suction zone
displays higher values with respect to the model in production, especially on the rear
window and on the boot door, therefore, as the front end of the car has not experienced
any change, the pressure difference between rear and front is reduced, decreasing the
pressure drag. It is worthwhile to note also that the overpressure zone on the spoiler
trailing edge is no longer evident. Figure 5.9 displays the velocity magnitude in the
symmetry plane. The change of the spoiler inclination has reduced the extension in height
of the wake, resulting in a minor loss of momentum. An interesting effect of the morphing
is provided in Figure 5.10, where the mirror wake at z = 900 mm is reduced with respect
to the original configuration, especially for the left mirror. Moreover, now the wake closes

immediately at the C pillars and the recirculating zone is reduced in length.

In the second optimisation cycle the surface sensitivity suggests to increase the in-
cidence of the spoiler: its intent is to find the right value of the displacement, that is
arbitrarily defined by the user. However in this case, as the first shape change has reduced
the drag, only the mirrors and the C pillars are modified in the same direction of the
previous morphing, following the sensitivity indication. New displacement values are dis-
played in Table 5.2. Figure 5.11 shows the outline of the car at the left C pillar, providing

a comparison with the original shape at different sections in the XY plane.
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Pressure Coefficient
Z -0.50000 -0.40000 -0.30000 -0.20000 -0.10000 0.00000

Figure 5.8. Pressure coefficient at the rear of the first modified model.

Velocity: Magnitude (m/s)
20.000 30.000

Z 0.00000 10.000 40.000 50.000
X

Figure 5.9. Velocity magnitude in the symmetry plane y = 0.

Table 5.2. Maximum displacement for modified parts in ANSA at the second
optimisation cycle.

Modified part Maximum displacement [mm)]

C Pillar 3
Mirrors 3

Once again the morphing has produced a reduction in the Cp value, though only
by the 0.3% with respect to the previous configuration. Indeed these modifications are

limited on details of the car, therefore we can’t expect noticeable improvements. The
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Velocity: Magnitude (m/s)
20.000 30.000

Y
Z X 0.00000 10.000 40.000 50.000

Figure 5.10. Velocity magnitude at z = 900 mm.

M Original curves
M Morphed curves

z=1010 mm_
Z=960 mm
z=900 mm

z=835 mm

Figure 5.11. Outlines of the C-pillars region at different sections in XY plane.

pressure coefficient distribution displayed in Figure 5.12 doesn’t differ too much from the
first morphed model, with higher values only on the rear window where the effectiveness
of the new C pillars is good. In Figure 5.13 a further improvement of the mirrors wake is
clear. At the left side the wake is no longer visible at z = 900 mm and at the right side

the influence of the mirror is dramatically reduced with respect to the original model.
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Pressure Coefficient

z -0.50000 -0.40000 -0.30000 -0.20000 -0.10000 0.00000

X

Figure 5.12. Pressure coeflicient at the rear of the second modified model.

Figure 5.13. Velocity magnitude at z = 900 mm.

A clear evidence of the goodness of the modifications is provided by the scene rep-
resenting the so called micro drag, a measurements of the local contribute to the drag
in the flow field [16]. It stems from the integral form of the momentum equation. The

non-dimensional coefficient is expressed as follows

‘/m 2 V2 + ‘/22
CMD = (1 - Cptot) - (1 - V_) + ( yV2 ) (53)

The first term represents the local losses in the flow in terms of total pressure; the second
term concerns the local losses in longitudinal velocity and the third term is the drag

contribution due to the other components of velocity. The total pressure coefficient is
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defined as
bt — D
Cptot -1 = (5'4)
§PV<>2<>

where p; is the local total pressure. The micro drag coefficient at the free stream is equal to
zero. Figure 5.14 shows at different Y Z plane sections the wake generated by the mirrors

in the original model and in the last model with a minor extension.

microdrag

v “Z X 0.10000 0.24000 0.38000 0.52000 0.66000 0.80000

(a) Original model.

Z microdrag
Y I X 0.10000 0.24000 0.38000 0.52000 0.66000 0.80000

(b) Second morphed model.

Figure 5.14. Micro Drag.

In the third cycle the morphing is applied again to mirrors and C pillars, keeping the
same values of maximum displacement as shown in Table 5.3. The last primal simulation

does not provide appreciable differences in the flow field and the difference in the C'p value
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Table 5.3. Maximum displacement for modified parts in ANSA at the third optimisation cycle.

Modified part Maximum displacement [mm]

C Pillar 3
Mirrors 3

remains less than 0.1%, therefore we can consider that convergence is reached.

Table 5.4 summarizes the results of the process in terms of Cp/Cp,,, and it highlights
the delta with respect to the baseline. The overall reduction in drag coefficient is by 4.2%.

Figure 5.15 shows the convergence after three optimisation cycles.

Table 5.4. Results in terms of normalized drag coefficient and delta.

Optimisation cycle CD/CDTef Delta

0 1.000

1 0.961 -3.9 %
2 0.958 -4.2 %
3 0.958 -4.2 %

1 T T
—e— Normalized Drag Coefficient
0.995 - .

0.965

0.96 [ 4

0.955 L L
0 1 2 3

Optimisation cycle

Figure 5.15. Reduction of normalized drag coeflicient with morphing in ANSA.
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5.3 Optimisation via mesh sensitivity

In this section the results of the process entirely performed within STAR-CCM+ are
collected. Starting from the primal simulation with the Standard k-¢ model, several steps
are performed using the morphing tool available in the software. It uses the results in
terms of mesh sensitivity to act directly on the volume mesh and the following primal
simulations interpolate the previous results on the new computational grid. As the solver
computes the sensitivity on the control points, they have to be insert in a manner as
regular as possible in order to avoid asymmetric modifications.

Figure 5.16 shows the cost function gradient with respect to the position of the control
points for the spoiler and it has the highest values at the trailing edge, whose inclination has

to be reduced. The scale provides the indication to decide the step size in the deformation

Adjoint of drag w.r.t. Position (N/m)
0.73379 38.504 76.274 - 114.04 151.81 189.58

z
AP

Figure 5.16. Adjoint of Drag w.r.t. Position for the spoiler.

algorithm, it multiplies the gradient computing the nodal displacement. Its value is chosen
to perform a change in position in the order of centimetres. Table 5.5 shows the step size
associated to the mirrors and the spoiler, the only parts subjected by the morphing in this
procedure. The first cycle leads to a lower normalized Cp by 2.9%, obtained again with a
new geometry of the mirrors and a reduction of the wake extension, thanks to a different
separation of the flow behind the spoiler.

In this case the spoiler is modified also in the following steps in order to reach the
optimal configuration, difficult to obtain with one shot. In particular after the second
adjoint run the sensitivity suggests again to reduce its inclination at the trailing edge, as

displayed in Figure 5.17, hence the previous step size was too conservative. The mesh
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Table 5.5. Step size associated to the Adjoint of Drag w.r.t Position at the
first optimisation cycle.

Modified part Step size

Spoiler 1-1074
Mirrors 1-1074

2 Adjoint of drag w.r.t. Position (N/m)
?Y 0.058361 20.381 40.704 61.027

81.351 101.67

Figure 5.17. Mesh sensitivity after the second adjoint run.

sensitivity has now lower values, the new configuration is closer to the optimum and thus
the step size is reduced as shown in Table 5.6. Also the mirrors are morphed in the

same sense of the previous cycle in order to reduce their disturb to the flow. After these

Table 5.6. Step size associated to the Adjoint of Drag w.r.t Position at the
second optimisation cycle.

Modified part Step size

Spoiler 8.107°
Mirrors 6-107°

modifications the normalized drag coefficient is equal to Cp = 0.964, with an overall
decrease by 3.6%.

Two further optimisation cycles are performed acting on the same parts. The global
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reduction in terms of drag is slower than the previous procedure because here the C pillars
are not modified for symmetry reasons, therefore the control of the flow separation at the
rear relies only on the spoiler. From time to time the surface sensitivity shows lower
values, therefore all the modifications can lead to very slight differences in the flow field.
Table 5.7 and Table 5.8 display the step size for the third and the fourth optimisation

cycle. In the fourth cycle also an attempt to morph the C pillars is done, inserting some

Table 5.7. Step size associated to the Adjoint of Drag w.r.t Position at the third
optimisation cycle.

Modified part Step size

Spoiler 5.1074
Mirrors 1-1074

control points in line, but the values in table show that the sensitivity is not completely
symmetric, therefore they are different in order to obtain possibly the same change in

shape.

Table 5.8. Step size associated to the Adjoint of Drag w.r.t Position at the
fourth optimisation cycle.

Modified part Step size

Spoiler 2.107*
Right C Pillar 1.5-1073
Left C Pillar 1.2-1073

The fifth and last cycle is performed changing slightly only the shape of the spoiler,
with the step size equal to 4 - 107°. To modify the C pillars in a significant manner
many control points have to be inserted with the risk to degrade the volume mesh in the
morphing. Even the spoiler would need to find the exact value for the displacement step
by step, but it is difficult to manage by hand the decision of a suitable step size every
time.

Figure 5.18 and Figure 5.19 show the final configuration of the spoiler and the mirrors
respectively with respect to the same parts of the baseline. For the spoiler the reduction
of the trailing edge inclination is evident, but the surface is quite flat in the initial part,
moreover the new shape is different with respect to the optimised shape of the previous
section. In fact it is worthwhile to remember that STAR-CCM+ and ANSA deform the
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mesh according to different functions, mesh sensitivity and surface sensitivity respectively,
therefore though both methodologies drive to a decrease of the cost function, the results

in terms of morphing and thus in the resultant flow field are slightly different.

I —
\\\\\
\
M Original \ “——"\

B Morphed

Figure 5.18. Spoiler inclination change after the final step with respect to the
original configuration.

A‘

4
Yy X

(a) Original right mirror. (b) Optimised right mirror.
T‘Z X VZ X
(¢) Original left mirror. (d) Optimised left mirror.

Figure 5.19. Mirrors.

Figure 5.20 shows the absolute magnitude of the cumulative morpher displacement,
i.e. the total movement of every mesh node after the complete optimisation cycle, for the
spoiler, C pillars and mirrors. The trailing edge of the spoiler, that displayed the highest

values of sensitivity, has experienced the major deformation, less than 2 cm.
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/
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Cumulative Morpher Displacement: Magnitude (m)
34
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(a) Spoiler and C pillars.

(b) Mirrors.

Figure 5.20. Cumulative morpher displacement.

In this part only the aerodynamics of the last morphed model is displayed, as the
optimal configuration. Figure 5.21 shows the pressure coefficient distribution at the rear
of the last model, recalling the one of the original model for a better comparison. Except
for the rear window where there isn’t an actual improvement, the suction on the other
parts is dramatically reduced, especially on the boot, displaying values closer to zero. It
is interesting to note also that the mirrors show a little zone with higher C), values. The
overpressure zone at the trailing edge of the spoiler is reduced.

The wake in the symmetry plane at y = 0 is displayed in Figure 5.22. Here the
downwash effect provided by the new spoiler can be noted, with a reduction of the wake
extension. The wake tends to close downstream, instead in the original model it seems to
expand, resulting in a greater loss of momentum, whose balance between upstream and
downstream determines the global drag.

Figure 5.23 shows the velocity magnitude at z = 900 mm to compare the influence of
the mirrors with respect to the primal simulation. Their wake, visible at the beginning,

now is completely absent at this section. Also the zone at velocity near to zero at the rear
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Pressure Coefficient
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(a) Original model.

Pressure Coefficient
IX v -0.50000 -0.40000 -0.30000 -0.20000 -0.10000 0.00000

(b) Optimised model.

Figure 5.21. Pressure coeflicient distribution at the rear.

is considerably reduced.

As in the previous section, the scene representing the micro drag can show the reduced
disturb of the mirrors. Not only the core of the wake is smaller, but also the values of

micro drag at the plane section in proximity of the mirrors are lower. This features are

displayed in Figure 5.24.

In conclusion, Table 5.9 summarizes all the results of these five optimisation cycles in
terms of normalized drag coefficient and the overall reduction in percentage of the first
coefficient. With different intervention and modifications, the global decrease in drag is
the same of that reached morphing the model in ANSA. Figure 5.25 shows the plot of the
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Velocity: Magnitude (m/s)
Z 0.00000 10.000 20.000 30.000 40.000 50.000

fx

Figure 5.22. Velocity magnitude in the symmetry plane y = 0 of the optimised model.

Figure 5.23. Velocity magnitude at z = 900 mm.

Table 5.9. Drag coefficient reduction.

Optimisation cycle Cp/Cp Delta

ref
0 1.000
1 0.971 29 %
2 0.964 -3.6 %
3 0.961 -3.9 %
4 0.958 -4.2 %
5 0.958 -4.2 %
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7 microdrag
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(a) Original model.

microdrag
0.

Z
Y] X 0.10000 0.24000 0.38000 .52000 0.66000 0.80000

(b) Optimised model.

Figure 5.24. Micro Drag.

results.
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Figure 5.25. Reduction of normalized drag coefficient with morphing in STAR-CCM+.

5.4 k-w results

Here a brief discussion over a run with the SST k-w model, using the same mesh of the
previous case, is provided. In this case the optimisation process is performed entirely using
STAR-CCM+. As this model should be more accurate in resolving the boundary layer,
the numerical results of the primal simulation, and even the cost function sensitivities,
are slightly different compared to the k- solution. Therefore even the starting value of
the drag coeflicient is different. However, clearly, the flow around the car has globally the
same behaviour. Figure 5.26 shows a wide part of the boot with higher values of C), with
respect to the k-¢ pressure distribution.

The adjoint run provides the surface and mesh sensitivity, the former is displayed
for the spoiler in Figure 5.27. Though the indication is the same provided by the k-¢
simulation, the lighter colours of the surface sensitivity scene highlight a minor influence
on the drag. Once again the shape changes are applied only to the spoiler and the mirrors
with the step size reported in Table 5.10.

Figure 5.28 displays the outline of the spoiler before and after the morphing. Now
the variation of the shape is not very accentuate. The cumulative morpher displacement
associated to the spoiler and the mirrors in this case represents the global displacement
after the single adjoint run. A very slight modification is applied to geometries in this
procedure, in fact the reduction of the drag coefficient after the verification is by 1.9%.

In Figure 5.30 is showed the pressure coefficient distribution at the rear of the car
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Pressure Coefficient
Z -0.50000 -0.40000 -0.30000 -0.20000 -0.10000 0.00000

Figure 5.26. Pressure coefficient distribution at the rear.

Surface Sensitivity of Drag w.r.t. Normal Displacement (N/m)
TZ -0.10000 -0.060000 -0.020000 0.020000 0.060000 0.10000
Yx

Figure 5.27. Surface sensitivity of drag w.r.t. Normal displacement for the spoiler.

Table 5.10. Step size associated to the Adjoint of Drag w.r.t Position.

Modified part Step size

Spoiler 1-1074
Mirrors 1-107*

after the morphing phase. The overpressure at the trailing edge of the spoiler is partially
reduced but it isn’t eliminated as in the previous optimisations. In fact here the spoiler

maintains a shape that forces the flow to separate, reducing the downwash effect caused
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Figure 5.28. Inclination change of the spoiler after an optimisation cycle.
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(a) Surface sensitivity.

Cumulative Morpher Displacement: Magnitude (m)
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(b) Mesh sensitivity.

Figure 5.29. Cumulative Morpher Displacement after the optimisation cycle.

by the considerable change in its inclination. It is also interesting to note that on the
rear window, just under the spoiler, the pressure coefficient is reduced, therefore in this
part the modification was harmful. However on the boot and on the bumper the suction is

remarkably reduced, with a general improvement in the overall pressure difference between

the front and the rear end of the vehicle.
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Pressure Coefficient
Z -0.50000 -0.40000 -0.30000 -0.20000 -0.10000 0.00000
X Y

Figure 5.30. Pressure coeflicient distribution at the rear of the improved model.

Table 5.11 shows the normalized drag coeflicient of the original vehicle and the im-
proved one, respectively. Here the first coeflicient is taken as reference, without comparing
it to the result of the k- primal simulation. Indeed the difference between the two initial
drag coefficients relies in the order of magnitude of the deltas that are obtained with the

optimisation. It isn’t a negligible difference.

Table 5.11. Drag coefficient reduction.

Optimisation cycle C’D/CDTef Delta

0 1.000
1 0.981 -1.9 %

A unique cycle is performed for this simulation because the k-w turbulence model has
shown a greater sensitivity to the quality of the mesh and going on with the optimisation
produces worse results or cells with negative volume. Moreover an adjoint run requires a
significant amount of computation time to reach convergence, making this model unsuit-

able to design purposes.
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Conclusion

In this thesis the potentiality of the adjoint solver of STAR-CCM+ was explored in order
to reduce the aerodynamic drag of a passenger car. A practical methodology for reshaping
the geometry of the vehicle was researched, in order to verify the possibility to implement it
in the design phase. Here the adjoint was applied to an already optimised model, therefore
the optimisation process was limited to fine tuning. Probably the adjoint could be more
useful in the early design stage, providing a guidance towards the optimal configuration
and the improvement of the selected cost function. Implications on other aspects were
not considered, like the actual practicability of the morphed shapes. The shape of the
mirrors, linked to the dimension of the glass for visibility reasons, is an examples of these
neglected aspects.

The attention was focused only on few strategic parts (spoiler, mirrors, C pillars), with-
out changing more complex geometries or less sensitive ones. All the performed changes
were often predictable, because they concern the vast experience of the engineers in the
design, but this approach was useful in order to verify qualitatively the correctness of the
adjoint results. Other parts, like the underbody, were not subjected to the morphing be-
cause of failed convergence or difficulty in maintaining a good volume mesh quality after
the procedure.

Two different methodologies were followed to find the best one in terms of accuracy
and computational time and to manage the optimisation workflow automation. Using the
results in terms of surface sensitivity in ANSA has provided morphed geometries with
good surface mesh and the global process has reached convergence with only two cycles.
The main drawback relies on the use of two software to accomplish the morphing opera-
tion and the verification by means of CFD, with the need to remesh the new model when
imported into STAR-CCM+. However this methodology is relatively easier to automatise

if a default maximum displacement is setted up at the beginning of the process for each
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part to morph. The methodology based on the use of STAR-CCM+ to accomplish the
entire optimisation has showed a more difficult control of the quality of modified geometry
and mesh, depending on the position, the number and the regularity of the inserted con-
trol points. Moreover this procedure is difficult to make automatic, because it would be
interrupted to visualize every time the results of surface sensitivity to decide where points
have to be inserted and the results of mesh sensitivity to create the displacement functions
with a suitable step size for each part to morph. In general, it is difficult to establish a
priori values of displacement or step size that can be correct for each cycle, because they
are subjected to the results of the sensitivities that change every time.

Two different turbulence models were compared to obtain the solution of the primal
flow field, the Standard k- and the SST k-w model. The former is largely used in industrial
application thanks to its robustness, instead the latter should be more accurate. For
this reason the k-w model would be preferable for an aerodynamics optimisation problem.
However it has showed a greater sensitivity to mesh imperfection, making difficult to reach
a sufficient convergence for the adjoint solver. Moreover, when convergence is reached, the
computational time is considerably larger than the same case running with k- model,
and this can be a noticeable drawback for the development process. Future works could
consider a more deepened study on the k-w model in order to customize it to accomplish
correctly the adjoint simulation, taking advantage of its potential better accuracy.

Another current limitation of this adjoint solver relies on the possibility to be performed
only for steady-state simulations with one of the RANS models. For external aerodynamics
problems solving the steady-state flow field is a compromise between computational time
and accuracy, but indeed the flow around a vehicle have sources of unsteadiness. The car
is a typical bluff bodies. For this reason the steadiness is forced using RANS, and probably
this could lead to obtain a not completely accurate solution. It would be worthwhile to
be able to perform the adjoint using at least URANS, or better a DES, as explained in

reference [3].
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