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Abstract

The work presented in this thesis was carried out at the Robotics division of NASA
JPL, with the main objective of improving and developing mathematical and computa-
tional models for the electrostatic flight of nanosatellites. The reference project for the
activity was the E-Glider concept, developed by Dr. Marco Quadrelli in the context of
the NASA Innovative Advanced Concepts (NIAC) Program.

The large-scale exploration of airless bodies, such as asteroids, moons, and comets,
is becoming of great interest, however it is limited by mobility issues both for tradi-
tional landers and orbiters.
The E-Glider is an advanced concept for small satellite mobility and propulsion, which
relies on the electric fields and the solar wind plasma naturally present around these
bodies in order to generate manoeuvering forces and torques.
It does so by extending electrically charged appendages (or electrodes), which allow
it to electrostatically levitate above the surface, or control its attitude if differentially
charged. It is a mostly propellant-less system, which ideally only requires electric power
to re-emit the neutralizing current collected from the plasma.

After an extensive review of the existing literature and the previous work performed
by Dr. Quadrelli and its collaborators, three main areas of work for the modeling ac-
tivity were identified:

• The refinement and expansion of models concerning the E-Glider interaction with
the electric environment.

• The definition and validation of an active position/attitude charge control strategy.

• The development of an orbital and attitude dynamics simulator, valid for arbi-
trary spacecrafts and main bodies, including modeling of gravitational, radiation
pressure and electrostatic interaction.

The electrostatic environment analysis highlighted the necessity of PIC simulation data
for the plasma environment simulation, which was provided by prof. Joe Wang and
William Yu of USC.
With the support of this data, a detailed analysis of the electrical requirements for var-
ious mission scenarios was performed, and a study on optimal electrodes geometry was
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built upon the results. Thin, long, wire electrodes were found to be the most power-
efficient, albeit sometimes requiring very high potentials, the feasibility of whose will
have to be carefully evaluated in future analyses, especially from a technological per-
spective.

The active control study aimed at developing and simulating a position and attitude
controller in a simplified 2D model. A PIC controller, based on linearized dynamics,
was realized and tested, with excellent results. This result proves the applicability of
the E-Glider technology as an attitude control and stationkeeping system.

Finally, a multifield dynamics simulator, AMOSPy, was developed in Python, to become
in the future a software testbench for E-Glider concepts, and allow the verification of
active charge control algorithms, trajectory stabilities, and the calculation of power re-
quirements. It can also easily be applied to study all kinds of other small satellites
mission.
Some strong points of this simulator consist in fast, nonsingular gravity models, a very
accurate and robust raytracing algorithm to calculate solar radiation pressure effects,
and a proximity dynamics model which is valid also for eccentric orbits of the target
body (while most standard models are only valid for quasicircular orbits).
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Chapter 1

Introduction

1.1 Nanosatellites space exploration
While a few years ago nanosatellites were mainly thought of as cheap small-scale tech-
nology demonstrators or academic didactic instruments, the industry has quickly caught
on, and nowadays small satellites of all scales find more and more applications in serious
commercial or scientific missions.
Many new companies, such as GomSpace, Planet Labs, Terran Orbital, ISIS now focus
on this new sector of the space industry, while also launcher manufacturers develop
new, small, platforms aimed at this segment, such as Electron, SS-520, PLD ARION
and others.

While commercial Earth-observation and communications payloads are becoming a new
norm for nanosatellites, the "new frontier" is represented by interplanetary missions,
large-scale space exploration and high-level scientific missions.
For all of these scenarios, there is a need for new, advanced technologies to be developed
for these small satellites, especially in three aspects:

• Propulsion, an aspect which constitutes both a challenge and an opportunity
due to the small sizes and masses available: the constraints are very limiting,
however some unusual propulsion systems such as FEEPs or solar sails, which
were impractical on larger spacecrafts, can now be employed.

• Communications, which is not exceptionally critical while in LEO, but becomes
a great concern for deep space missions, especially due to the low power available,
the need for complex, directional antennae, and the pointing requirements.

• Navigation and control, in particular for autonomous navigation and for ac-
curate pointing, both for communication (see previous point) and especially for
complex scientific payloads.

The research on new enabling technologies for mobility and control solutions in nanosatel-
lites is therefore paramount for the succesful development of this growing sector of the
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CHAPTER 1. INTRODUCTION

space industry.
If properly developed, these technologies could bring about a new season of scientific
space exploration with unprecedented possibilities of relatively cheap, large-scale oper-
ations.
One such technology could be the E-Glider concept, developed at NASA JPL by Dr.
Marco Quadrelli.

1.2 The E-Glider concept
The large-scale exploration of airless bodies, such as asteroids, moons, and comets, by
means of small satellites, is becoming of great interest; it is however often limited by
mobility issues: the lack of an atmosphere, low gravity, and unknown soil properties
pose a difficult challenge for many forms of traditional locomotion.
The space environment in proximity of these bodies is electrically charged due to inter-
actions with the solar wind plasma and UV radiation.

The E-Glider is an advanced concept for small satellite mobility and propulsion, which
relies on these electric fields and the solar wind plasma naturally present around airless
bodies, in order to generate forces and torques useful to its manoeuvering and its mis-
sion.
It does so by extending electrically charged appendages (or electrodes), which allow it,
for instance, to levitate over the similarly charged surface of an asteroid. By charging
differently different electrodes it can also produce torques in order to control its attitude
and orientation in space.
The charges are maintained by continuous ion or electron emission (as necessary) from
the spacecraft, by means of small particle guns or similar devices, in order to cancel out
the neutralizing influx of charges from the surrounding plasma. The power expenditure
needed to accomplish this could virtually be the whole "cost" of the E-Glider propulsion
system, thus enabling it to perform long duration missions without the issue of propel-
lant exhaustion.
Another key advantage of the E-Glider is its ability to operate in a controllable manner
very close to asteroid surfaces, in an environment which is challenging both for tradi-
tional spacecrafts (due to the very low gravity stable orbits are hard to achieve) and
landers, which rely on friction properties of the soil which cannot be determined a priori.

1.3 Previous work and objectives
A large body of work was already available on the E-Glider concept [21][22], and in
particular several models of the spacecraft orbital and electrostatic dynamics had been
realized. The objective of this study was to build upon these existing studies and
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CHAPTER 1. INTRODUCTION

Figure 1.1: Artist rendering of an E-Glider spacecraft in the proximity of Itokawa,
sporting thin wire electrodes (four looped and two linear)

improve the available models.
Three main areas of work can be identified:

• The refinement and expansion of models concerning the plasma physics and elec-
trostatics of the E-Glider interaction with the electric environment.

• The definition of an active position/attitude charge control strategy and its vali-
dation through simulation.

• The development of a complete orbital and attitude dynamics simulator, valid for
arbitrary spacecraft geometries and main body properties, including modeling of
gravitational, radiation pressure and electrostatic interaction.

The electrostatic environment analysis highlighted the necessity of PIC (Particle-In-
Cell) simulation data for the plasma environment simulation, some of which was kindly
provided by prof. Joe Wang and William Yu of USC (University of Southern California).

1.4 Work organization
In the following three chapters the work performed in each one of these three areas of
work will be presented.

• In Chapter 2 the electric environment around an airless body will be analyzed,
also through the results obtained by the PIC analyses. An analysis of the electrical
requirements for various mission scenarios will follow, and the obtained results will
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CHAPTER 1. INTRODUCTION

lead into a study on optimal electrodes geometry. Finally, a possible adaptation
of the E-Glider technology to planetary atmospheres will be considered.

• Chapter 3 will be concerned with the definition of the active position/attitude
charge control strategy and its validation.

• Chapter 4 will present the developed multifield dynamics simulator, AMOSPy, start-
ing from the high-level structure and then delving into the details of the dynamics
models and the various forces modeling (gravitational, SRP and electrostatic). An
overview of the testing campaign and the simulator performance will conclude this
section.

A few appendices also provide further insights into some technical mathematical as-
pects.
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Chapter 2

Electrostatic Flight

2.1 Plasma basics
Before delving into the details of the electrostatic Spacecraft/Asteroid/Plasma interac-
tions, a short foreword on some basic concepts of plasma physics is presented.

Plasma is defined as a quasineutral ionized gas; it is therefore a gas whose particles
are at least to some extent ionized, thus exhibit net electric charges, however over large
scales the net charge tends to zero.
Particles in a plasma are unbounded, like they would be in a gas, however besides the
kinetic interactions which are present in a gas, they also interact with each other and
with the environment through the Maxwell equations, generating and responding to
electromagnetic fields and electrical currents.

An important parameter in plasma physics is the Debye length, which is the charac-
teristic length of the plasma and depends on particle density and temperature:

λD =

√
ε0kBq2e∑

nx
Tx

(2.1)

ε0 and kB are respectively the vacuum permittivity and the Boltzmann’s constant, qe is
the elementary charge, nx and Tx are the number density and temperature of species x.
The Debye length indicates the spatial scale of electric fields decay in a plasma. Charges
in a plasma are free to move, and in the presence of an external electric field, positive
charges will be attracted "downstream" along the field lines, while negative charges will
be attracted "upstream" in the opposite direction1. This creates localized space charges

1It is important to note that this is only a large-scale and time-averaged effect, due to an average
deflection of trajectories. The kinetic energy of particles in a plasma far outweights the potential
energy introduced by an electric field, thus the single particle will still freely buzz around, its motion
only minimally (but on the whole, not insignificantly) perturbed. Electric fields in a plasma work much
like pressure gradients in a standard gas
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CHAPTER 2. ELECTROSTATIC FLIGHT

which induce a shielding electric field, opposite to the external one.
Suppose, for instance, that a positively charged spherical electrode, of radius R and
voltage V0, is immersed in a plasma. While in a vacuum its electric field would decay
with an inverse square law [2.2a], in a plasma it would decay exponentially [2.2b]. The
space near the electrode would be depleted of cations and attract anions, creating a sort
of virtual electrode which shields the bulk of the plasma from the field of the original
electrode. This charged volume is called the plasma sheath or Debye sheath.

V (r) = V0

( r
R

)2
in a vacuum (2.2a)

V (r) = V0e
− r−R
λD in a plasma (2.2b)

Figure 2.1: Simplified representation of Debye shielding of two electrodes

Generally speaking, the electric field of the electrode can be neglected beyond a few
Debye lengths.
This may not be true when the electrode potential is very high, in which case the Debye
sheath expands due to saturation effects and may transition into what is known as a
Child-Langmuir sheath [12].

The Debye shielding can be advantageous, at least in the scope of this work, since
it increases the capacitance of the electrode (thus reducing the required potential for a
given charge) and "hides" the electrode from the bulk of the plasma (possibly reducing
collection currents).
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CHAPTER 2. ELECTROSTATIC FLIGHT

2.1.1 Plasma modeling

Plasmas can assume incredibly different characteristics and typical behaviours depend-
ing on composition, ionization, thermodynamical properties, magnetization etc. Since
it can exist in a huge array of conditions, it sometimes seems improper to talk about it
as if it were a single state of matter. Different kinds of plasmas can act as differently as
a gas and a liquid, or more.
For this and other reasons, there is not one single way to approach plasma model-
ing, however one could identify two general strategies, which can then be attuned and
adapted to a wide array of specific cases [10].

Analytical modeling

Analytical modeling of plasmas usually combines the Maxwell equations with some kind
of kinetic or continuum theory, depending on the plasma and the scales considered.
Most "classical" plasmas are weakly coupled, that is the long-range interactions due
to distributed space charges dominate wrt the short-range particle-particle interaction.
This behaviour is reminiscent, in a sense, of the gravitational force, which is usually
very weak between small, near objects, but very significant over large scales.
This usually holds if Λ ∼ nλ3D � 1, that is if a volume with dimensions in the order of
the Debye length contains a great number of particles. Λ is called the plasma parameter.

A widely applied equation which is valid for weakly coupled plasmas and is based on a
kinetic theory is the Vlasov equation:

∂f

∂t
+ v ·∇ · f − q

(
E +

v

c
×B

)
(2.3)

The Vlasov equation describes the evolution of the particle distribution function f(x,v, t),
which indicates the probability density for finding a particle in a certain point in the
phase space at time t.
If complemented with the Maxwell equations, the new system is called the Vlasov-
Maxwell equations, and it can be used effectively to model most standard plasmas,
often with some simplifying assumptions (e.g. one can derive the MHD equations from
these). It can be said that the Vlasov-Maxwell equations are the de-facto starting point
for most analytical plasma modeling theories [10].

The general downside of the analytical approach is the daunting task of solving the
equations for non elementary cases, even by employing numerical methods.
Unfortunately the plasma modeling considered in this work belongs to the group of
problems which are not easily approachable with an analytical approach, if one doesn’t
want to commit gross simplifications [27].
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PIC simulation

The alternative to analytical modeling is direct simulation using some sort of discretiza-
tion scheme, much like CFD for aerodynamics.
The PIC approach (Particle In Cell) is one of these methods. It is based on the direct
simulation of motion of "macroparticles", representing often many millions of particles
at once, and their relative interaction.
Computing the electrical interaction between each two pair of macroparticles would lead
to a complexity O(N2), with N being the number of macroparticles, which is usually
impractical even with the current processing power (N is often in the millions).
In the PIC approach, instead, at each computational step the macroparticles charge and
currents are "spread" on an underlying discrete mesh (from which the name "particle
in a cell"); the electromagnetic field is then computed over this mesh from the Maxwell
equations and reinterpolated on the various macroparticles. This allows to lower the
complexity to O(N +M) where M is the number of nodes in the mesh [3].

Figure 2.2: Simplified PIC method scheme

2.2 Plasma environment

2.2.1 Overview

Most asteroids (and, more generally, airless bodies) can be modeled as high-resistivity
spheroidal bodies immersed in the solar wind plasma stream. The side facing the in-
coming solar wind is also illuminated by the Sun.
Both the solar wind and the solar radiation interact with the surface to generate or
exchange charges. Due to the high resistivity, neutralizing currents within the celestial
body are limited, and local charges accumulated on the surface are mostly maintaine;
thus, high potential gradients can be present on the asteroid surface [13] [16].
The main actors in charge extraction and transfer are [24]:
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CHAPTER 2. ELECTROSTATIC FLIGHT

• Ions usually positively charge surfaces upon impact, with the following mecha-
nisms according to their energy:

– T < 105 eV - low energy ions tend to extract electrons from the surface and
depart as neutral atoms (charge exchange);

– T > 105 eV - high energy ions also induce secondary electron emission, that
is more than one electron is ejected from the surface for each impacting ion,
effectively enhancing the charging effect.

• Electrons usually negatively charge surfaces upon impact, with the following
mechanisms according to their energy:

– T < 102 eV - low energy electrons are simply absorbed by the surface;

– T > 102 eV - high energy electrons also induce secondary electron emission,
which reduces the effectiveness of the charging mechanism; it can be said
that the surface gains a positive "electrical albedo", since the phenomenon is
analogous to a partial reflection of the incoming electrons.

• Photons in high energy bands (UV, X-ray or above) extract electrons from the
surface by the photoelectric mechanism.

The average properties of the solar wind and solar illumination at a distance d [AU]
from the Sun, calculated assuming a polytropic expansion, is summarized in the table
below [13]:

Parameter Value

SW ion density ni0 5 · 106/d2 #/m3

SW electron density ne0 5 · 106/d2 #/m3

SW ion temperature Ti0 10/d2/3 eV
SW electron temperature Te0 15/d2/3 eV

SW drift speed @1 AU vs 350/d2 km/s
SW ion Mach number @1 AU Mi 10

Solar constant Ps 1350/d2 W
Photoelectron current jp0 5 · 10−6/d2 A/m2

At the representative distance of 1 AU the solar wind is therefore composed of ions
(mainly protons) end electrons, with a density of 5 particles per cm3 and temperatures
around 10÷ 15 eV, while the basic photoelectron emission current is 5µA/m2.
The solar wind at 1 AU is mesosonic: the ions are supersonic, i.e. their drift velocity is
much greater than their thermal velocity, while the electrons are subsonic, since their
lower mass and greater mobility mean they have much higher thermal velocities.
For this reason, the ions streaming past the asteroid form a significant wake behind it,
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CHAPTER 2. ELECTROSTATIC FLIGHT

in which only the mobile electrons can penetrate (Figure 2.3).
Only electrons can therefore impinge on the dark side of the body, which negatively
charges until the local electric field is strong enough to reflect all incoming electrons.
At equilibrium, the potential on the dark side can thus reach negative values of tens to
several hundreds of volts (Figure 2.4) [13] [16].

On the sunlit side, both ions and electrons strike the surface in almost equal proportion.
Actually slightly more electrons are collected, again due to their higher mobility in the
plasma.
However, photoelectron emission due to the UV radiation from the Sun can significantly
influence the equilibrium potential in this region. The emitted electrons cause the sur-
face to accumulate positive charges, until its potential is high enough to impair the
emission itself, that is when the emitted photoelectron energy is not high enough to
escape the local potential well.
The equilibrium voltage on the sunlit side (neglecting the solar wind effect) will there-
fore be in the order of the photoelectron thermal voltage, i.e. a few volts.

This differential charging of the sunlit and dark emispheres generates appreciable elec-
tric fields in proximity of the surface, and especially in the terminator zones, where its
intensity can reach tens of V/m.

2.2.2 PIC analysis

A PIC simulation of the plasma environment around an asteroid was performed by
William Yu and prof. Joe Wang at USC [27]. The body considered is a 28 m diameter
sphere at 1 AU from the Sun. These preliminary results confirm many of the theoretical
hypotheses presented above.
The species density distribution (Figure 2.3) in particular shows very clearly the pres-
ence of a marked and well defined ion wake.
The solar wind electrons present a slight wake as well, consistent with the negative po-
tential of the dark side. The general rarefaction in proximity of the asteroid surface can
be attributed to the overall negative net charge acquired by the body.
Finally, the photoelectrons show a typical diffusion pattern from the sunlit side, and
their density rapidly decays to zero with increasing heights.

While the species densities of course determine the whole plasma environment and
electrostatic fields, per se they only come into play in the E-Glider model when cal-
culating current collection and power expenditure. The electrostatic potential, on the
other hand, directly influences the spacecraft dynamics, and it is therefore perhaps the
most important result of the simulations.
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Figure 2.3: Plasma species density from a PIC simulation.
From top to bottom: solar wind ions, solar wind electrons and photoelectrons
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Figure 2.4: Electrostatic potential
As shown in Figure 2.4, the near-surface field resembles that of a dipole, which is con-
sistent with the differential charging phenomenon, while the far field decays radially
(except in the wake region). The surface potential is in the range of −20 V on the dark
side and slightly negative on the sunlit side. This relatively low and negative potential
on the sunlit side indicates that, at least for this size of asteroid, the increased solar
wind electron flux is sufficient to offset the positive charge generation caused by the
photoelectrons.

Figure 2.5: Obsolete electrostatic potential calculated with Nitter model

The potential profile obtained from the simulation also shows that the Nitter model
implemented in the past [19] [11] does not provide accurate estimates, especially for
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small asteroids, being derived from an infinite planar surface 1D model.
Tthe main drawbacks of this model are the inability to correctly capture the wake and
its underestimation of the radial decay (Figure 2.5). Both inaccuracies lead to an ex-
cessively optimistic and non-conservative estimate of the electric fields.

The electrostatic field intensity, of which the PIC derived data is shown in Figure 2.6,
offers virtually the same data as the potential, but in a more easily readable form.

Figure 2.6: Electrostatic field magnitude

It is evident that the highest values are found at low altitude over the terminator, as
expected. Also, higher field strength is found over the dark side rather than the sunlit
side, again consistently with the more significant potentials in that region.
This is not optimal for the E-Glider operation, since the regions of interest are the sunlit
ones, and a weaker electric field there implies the necessity for higher spacecraft charges,
potentials and consequently power consumption.

It must also be noted that these PIC results might not be easily scalable to different
asteroid geometries and dimensions, since while some phenomena (e.g. the ion wake) are
scale-dependent, others depend on scale-invariant quantities such as the Debye length
of the plasma.
They are however extremely useful in confirming and defining with good confidence the
actual qualitative electrostatic environment around an airless body.
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2.3 Electrostatic dynamics analysis

2.3.1 Hovering on the subsolar axis

This first PIC data provided by William Yu and prof. Joe Wang can also be used to
revisit the equilibrium analysis performed in the past by Shota Kikuchi [21] with the
Nitter model.
The objective is to find equilibrium points for hovering operations along the Sun-asteroid
axis and perhaps discuss their stability and spacecraft charge requirements, at least qual-
itatively.

The main forces at play are:

• Asteroid gravitational force

• Asteroid/plasma electrostatic force

• Solar radiation pressure

• Apparent forces in the non-inertial Hill frame

Of these, the apparent forces are several orders of magnitude smaller than the others,
and introduce periodic motions with long characteristic times of approximately 1 yr.
They could be thus safely neglected for a first approximation analysis such as the one
presented here.
While the relative terms were nevertheless included in the equations used for the simu-
lation scripts, they will be left out in the following presentation for the sake of brevity
and clarity.

It is assumed, due to the symmetry of the problem, that all external fields acting on the
spacecraft can be expressed as a function F (x, r) of the coordinate along the subsolar
axis (x) with origin at the asteroid center, and a radial coordinate (r) perpendicular to
said axis.
On the subsolar (x) axis, it can also be assumed that for any external field F its radial
component Fr must be null.
The equilibrium to translation along the axis can therefore be written as:

gx +
Q

m
Ex +

A

m
px = 0 (2.4)

Where g represents the gravitational acceleration, E the electric field and p the solar
radiation pressure vector2. Q

m
and A

m
are respectively the charge-to-mass and surface-to-

mass ratios of the spacecraft.
For the surface-to-mass ratio a tentative value of 0.1 m2/kg was assumed. 0.01 m2/kg
would be characteristic of cubesat-like spacecrafts, but this higher value provides a more

2The SRP effect is obviously only considered over the sunlit side of the asteroid.
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conservative estimate considering the effect of lightweight and large (albeit thin) elec-
trodes.
An asteroid uniform density of 2200 kg/m3 was also assumed to compute the gravita-
tional acceleration.

Solving [2.4] for Q/m one can calculate the required charge-to-mass ratio needed for
hovering at any given height.
The results obtained from the PIC analysis are presented in Figure 2.7 below.

Figure 2.7: Hovering conditions along the subsolar axis. Red asterisks indicate stable
positions with negative spacecraft charge

Two important conclusions can be drawn from this analysis.
Firstly, virtually all equilibrium conditions are met with a negative spacecraft charge,
except in the nominal (1 Debye length) photoelectron sheath, i.e. below 1.5 m over the
surface. This is actually convenient, since a negatively charged spacecraft collects ion
currents, which typically turn out to be less intense than electron currents (due to effects
related to ion inertia and lower density).
Secondly, there are some stable equilibrium points over the sunlit side (which are the
most interesting ones from a mission perspective), i.e. assuming that the charge is kept
constant, the spacecraft would not experience drift either towards or away from the as-
teroid. This may relax some requirements for the charge control system to be employed.

The maximum charge to mass ratio required for levitation over the sunlit region seems
to be in the order of 10−5 C/kg, which is a reasonably achievable value, while still need-
ing very high electrode potentials, but especially at great hights this is not as high as
the values calculated in previous analyses [21].
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It seems that hovering at altitudes in the order of ≈ 101 ÷ 102 m would be possible,
assuming that voltage and power issues are properly addressed.

2.3.2 Electrostatic orbiting

Another option for E-Glider operations is to adopt electrostatic orbiting trajectories
rather than performing station-keeping in hover. These trajectories exploit the elec-
trostatic forces to cancel out the x-axis force components, while radial components are
opposed by a centrifugal component introduced with a tangential spacecraft velocity. It
is the same principle used for passive terminator orbits.
This approach eliminates the constraint of operating along the subsolar axis, and could
allow to exploit areas of more intense electric fields in order to reduce the spacecraft
charge needed.

Figure 2.8: Illustration of subsolar hovering and both passive and active terminator
orbiting trajectories (above); Electrostatic orbiting forces diagram (below) - courtesy of
Shota Kikuchi.
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Even though the axial force is not required to be null along the entirety of an electro-
static orbit, if the apparent forces due to the Hill frame are neglected, in at least one
point along the trajectory the axial force must be null (due to the intermediate value
theorem). Equation [2.4] is therefore still valid for this analysis, with the only difference
that the domain can be extended to r 6= 0. The results are shown in the graphs in
Figure 2.9:

Figure 2.9: Charge-to-mass ratio required for orbiting (above) and axial electric field
(below) in the x− r plane

Apparently few regions over the sunlit area allow for charge-to-mass ratios smaller than
the ones needed for hovering.
The terminator region is one of these, as expected, being the one with the strongest
electric fields. In the same region one can also find the neutral charge equilibrium for
terminator orbits, which is however quite a bit offset towards the dark side (visible as a
dark blue arc in the upper half of Figure 2.9).
A moderate spacecraft charge would therefore allow to "push" the passive terminator
orbit towards the sunlit side and greatly increase the coverage of illuminated areas on
the surface (albeit still at low illumination angles).

A few pockets of strong electric fields and relatively low required charge can be found
very near the surface closer to the subsolar point, however operations in these areas might
be tricky, due to the proximity of both unfavourable low-field, high-charge requirement
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boundaries and of the asteroid surface, which especially for irregular asteroids might
impair this kind of low altitude operation or cause strong field irregularities.

Electrostatic orbiting is therefore mainly feasible in the terminator region, with a slight
reduction in the required spacecraft charge compared to hovering.

2.3.3 Spacecraft-induced effects

The analysis until now has neglected the effect that the spacecraft would have on the
surrounding plasma. This is a valid approximation assuming that the sheath surround-
ing the spacecraft is thin enough. However the high charge-to-mass ratios required
imply very high spacecraft potentials, and consequently the plasma sheath (be it ionic
or electronic) could significantly expand [12] (see also section 2.1).
This is due to the fact that the spacecraft sheath would be in the current saturation
regime. This means that the sheath would contain only one kind of electrical species (the
other being completely reflected little after the border), and it would need to expand
far enough to collect sufficient current (and therefore maintain sufficient space charge
inside it) to counteract the strong electric field generated by the spacecraft.

Let’s suppose that a highly charged spacecraft is in the proximity of an asteroid. Should
its plasma sheath extend significantly, it could reach the surface, effectively merging with
the surface photoelectron sheath.
This interaction, as well as the deflection and disturbances in the solar wind flow already
caused by the spacecraft, could modify the particle flows enough to significantly alter
the surface charging state of the asteroid, and perhaps modify the conditions required
for hovering or orbiting.
This influence, if present, could be compared to the "ground effect" phenomenon that
aircrafts experience when their wings are close to the ground (e.g. in landing) and the
airflow gets modified significantly.

Preliminary calculations indicated sheaths engorgement even up to hundreds of meters,
according to some models. This would have certainly rendered obsolete the previous
analysis, so William Yu and Dr. Wang kindly performed new analyses specially aimed
at studying the effect of a highly charged spacecraft on the plasma environment.
Apart from a new plasma wake, however, the growth of the spacecraft sheath was found
to be modest, and the Debye length could still be used as a reference scale length for it
(Figure 2.10). Furthermore, after removing the self-electric field generated by the space-
craft, it was found that the asteroid-generated field was only very slightly perturbed if
compared to the one without the biased spacecraft influence.
Overall, this constitutes very good news: the capacitance of the spacecraft is not hin-
dered by an expanded sheath, and the first analysis is still valid (at least for the ter-
minator orbiting scenario, in which the spacecraft ion wake does not interact with the
asteroid directly)
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Figure 2.10: PIC simulations with orbiting spacecraft biased to 1 kV.
From top to bottom: solar wind ions (with new wake), and two differently scaled versions
of the potential; the plasma sheath is large but not more than a few Debye lengths

23



CHAPTER 2. ELECTROSTATIC FLIGHT

2.4 Spacecraft charging dynamics

2.4.1 Charge collection in a plasma

Any electrically biased object immersed in a plasma will be subject to a current from the
plasma which tends to bring it to the equilibrium potential (typically slightly negative
wrt. the plasma bulk potential).
Since the E-Glider must maintain and control its charge state, these return currents
must be precisely re-emitted, by means of electron or ion guns. Since the emitted
charges must have at least sufficient energy to escape the potential well of the space-
craft, a good indicator of the power needed for charge-keeping is the product of collected
current and spacecraft voltage.

A range of current collection analyses were performed to study this effect, assuming
different electrode geometries and plasma conditions.
All these analyses are decoupled from the previous ones concerning the actual plasma
environment around the asteroid, for simplicity’s sake; different conditions (such as
species densities and temperatures) can be set, but the plasma is from now on supposed
to be uniform, and the charge-to-mass ratio is the only spacecraft parameter input used.

Since voltage is dependent on charge by means of the capacitance, and the capacitance
in a plasma depends on the local sheath (a thin sheath boosts the capacitance), and
again the local sheath depends on the electrode voltage, an iterative process is usually
required in order to find the correct electrode voltage:{

C = C(R, λD) = C(R, V )

V = V (Q,C)

(2.5a)
(2.5b)

The iteration used generally started from an assumed capacitance in a vacuum (thus
neglegting the sheath enhancement factor) to obtain an initial conservarive estimate of
the bias voltage V0. Then equations [2.5] were looped, calculating C from V and vicev-
ersa, until convergence, measured with a default tolerance on the voltage residuals.

Some useful parameters for these analyses are the adimensional potential X and the
thermal current Jth:

X
.
= V/T (2.6)

Jthx = nxe

√
eTx

2πmx

(2.7)

V is the potential, T is the plasma temperature in eV.
nx, Tx and mx are respectively particle density, temperature and mass for the species x.

Generally speaking there are two main regimes of current collection in a plasma:
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• Sheath limited regime is valid when the sheath thickness is low compared to
the electrode dimension. This is for instance the case for the analyzed spherical
or cuboid electrodes. In this regime basically all particles which enter the Debye
sheath are then captured by the electrode, therefore the current density is mostly
limited to the thermal current incident on the sheath surface (since outside the
sheat there are no fields which can attract other particles). The net collected
current is therefore limited by the sheath dimensions.

• Orbit motion limited or OML is valid when the electrode dimensions are far
smaller than the Debye length. This is often the case for thin wire electrodes.
In this regime, only a small fraction of the particles which enter the sheath are
collected, while most are simply deflected without getting close enough to the
electrode to be captured (following a trajectory resembling an hyperbolic orbit).
In this case the current is therefore limited by the electrode dimensions, and by
the distance of minimum approach of each particle trajectory, hence the name.

Figure 2.11: Comparison of trajectories in the SL and OML current collection regimes.

2.4.2 Spherical and cuboid electrodes

The analysis for current collection on spherical and cuboid electrodes was performed
for electron sheaths only, i.e. for positive spacecraft potentials, according to the models
developed by I. Bell [2].

According to Bell, the current density to a positively biased spherical electrode in a
plasma is given by:

JS = Jthe(1 + γa)

(
1.0 + 0.83

(
λD
R

) 2
3 √

X

)2

(2.8)
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γa is a corrective factor accounting for plasma flow current collection enhancement ef-
fects, and it is ≈ 3, while λD and R are respectively the local Debye length and electrode
radius.
The current density to a cuboid electrode is instead:

JC = Jthe(1 + γa)

(
1 + λD

a+ b+ c

(ab+ bc+ ca)
π5/4

√
2

9
X3/4

)
(2.9)

In which a, b, c are the cuboid dimensions.

The general advantage of these kind of electrodes is their high capacitance, which allows
for reduced potentials. Low potentials are very desirable, because as it can be inferred
from the formulae above, they imply lower currents, thus lower power and less sec-
ondary parasitic effects such as sputtering, secondary electron and radiation emissions,
and heating.
On the other hand, a big drawback of these electrodes is their high surface area, and
therefore their high current collection and often prohibitive power consumption.
Mitigation options for this issue exist and consist in using a relatively high number of
electrodes with a certain optimal dimension. Spreading the charge over more than one
electrode reduces the required potential, while increasing the collection area. Overall,
however, the power surface density decreases faster than the increase in area and this is
why using more electrodes can turn out to be convenient.

Figure 2.12: Power required for hovering at a hypotetical charge of 3·10−5 C for different
electrode dimensions and number. Blue lines: spherical electrodes, red lines: cubic
electrodes.
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Limitations of this analysis include neglecting the inter-electrode influence (which mod-
ifies the overall capacitance) as well as the electrodes mass, which was assumed to be
negligible wrt the spacecraft mass (this is true if ultra-thin electrostatically inflatable
electrodes are used).

Even with optimal conditions the required power for hovering with these kind of elec-
trodes turns out to be in the order of 102÷104 W (Figure 2.12), which is still impractical.
However, the milder conditions presented by ionic sheaths, and eventual ground effect
phenomena could reduce these values enough to make them a feasible option.

2.4.3 Wire electrodes

The analysis for current collection on wire electrodes was performed for both ionic and
electronic sheaths, i.e. for both positive and negative spacecraft potentials.
Since the electrodes are assumed to be lines or loops of thin wire, the characteristic di-
mensions of which are much smaller than one Debye length, the OML (Orbital Motion
Limited) current collection theory was adopted. This theory has very good accuracy in
this thick-sheath regime [4][8].

The currents to a wire electrode (respectively, ion current and electron current) are:

JW = Jthi
2√
π

√
Ti+ F − V (2.10)

JW = Jthe
2√
π

√
1 +X (2.11)

These electrodes have opposite pros and cons wrt the spherical/cuboid ones: while they
have very little surface area (and therefore current collection), their capacitance is rel-
atively low, and they require higher potentials.
The reduction in power consumption is however proportionally much more significant
(more than 3 orders of magnitude decrease in power with the same charge and plasma
conditions), and assuming that the necessary potentials can be achieved, this can easily
bring the system power budget in the nanosatellite range of feasibility.

While this analysis still did not include inter-electrode influence, the variability of the
spacecraft mass due to the electrodes was considered.

Figure 2.13 shows the electrode potential and spacecraft power needed for hovering
over the subsolar point, assuming a basic spacecraft mass of 3 kg (without electrodes).
The required power levels are very easily achievable, being mostly below 1 W for a wide
range of electrode dimensions.
The limiting factor would probably be, as anticipated, the required potential. This
is mostly influenced by the electrode length, and more than 50 m of equivalent length
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would be needed if the potential is to be kept below 100 kV. This would be bulky
but not unachievable, especially if multiple loop electrodes3 are arranged all around the
spacecraft (e.g. 8 loops 2 m in diameter could be enough).

Figure 2.13: Electrode potential (above) and power consumption (below) in hover with
varying wire radius and length

3Loop electrodes behave almost exactly as a straight electrode with length equivalent to their cir-
cumference.
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2.4.4 Mass and environments sensitivity analysis

Other auxiliary analyses that were performed include a mass sensitivity analysis and
a comparison among operations in different plasma environments in the Solar System,
both for a selected plausible geometry based on wire electrodes.
Some of the results are summed up by the plots here below.

Figure 2.14: Power consumption vs mass in various conditions

Figure 2.15: Power consumption in various Solar System plasma environments
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As already noted, wire electrodes are able to provide lift with very reduced power con-
sumption, well below 1 W/kg, which is totally achievable with current smallsat technol-
ogy (state-of-the-art CubeSats can already achieve 10 W/kg peaks).
This kind of electrostatic propulsion could allow increased mobility and mission oppor-
tunities not only around asteroids, but also moons and perhaps planets, as long as the
plasma densities aren’t too high (e.g. not in LEO, as shown by the last plot).

Levitation in the wake of an airless body can be accomplished with virtually no power
expenditure, even in close proximity to the surface. It must be noted, however, that
this also offers penalties for optical payloads operating in the visible spectrum and most
importantly for power generation (solar power would be unavailable).

2.4.5 Challenges and future perspectives

There are still some issues to be considered in later stages of the system analysis, con-
cerning the high electrode potentials. Having ions impinge on a thin wire with energies
of several keV or even MeV produces a wide array of secondary effects:

• Secondary electron emission

• X-ray and other hard radiation emission

• Cathode/Anode sputtering and erosion

• Cathode/Anode heating

• Thermionic emission

Of these effects, only heating and thermionic emission were estimated in this first anal-
ysis, and were both found to be negligible for virtually all the possible operating condi-
tions. Most of the overtemperature due to heating would not be more than a few 10s of
Kelvins, and definitely not enough to induce significant thermionic emission, especially
for negative spacecraft potentials.
The other phenomena could however be more severe and possibly degrade the system
performance if not accounted for.

Apart from this, to date, thin wire electrodes seem to constitute a very promising
option, especially in terms of power consumption, enabling the E-Glider concept to be
applied to self-sufficient solar electric powered nanosatellites.

2.5 Extension to planetary atmospheres: Mars
While the E-Glider concept has been developed as a mobility enhancement technology
for missions around airless bodies, one of its early inspirations actually stemmed from
an atmospheric application: some spiders on Earth, in fact, use electrified silk threads
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to lift themselves into the air, exploiting the natural planetary electric field.
It seems therefore interesting to at least evaluate the feasibility of a similar application
for the E-Glider in a planetary atmosphere.
Mars was chosen for a simple case study, and this section illustrates the requirements for
electrostatic levitation of an E-Glider "blimp" in the martian atmosphere, at an altitude
of 10 km.

2.5.1 Requirements for levitation

Atmospheric electric field

The martian atmosphere, much like that of the Earth, acts as a giant spherical capacitor,
with the planetary surface and the ionosphere acting as the two electrodes.
On the Earth the charge of this planetary capacitor is maintained by the powerful effect
of thunderstorms, which act as generators, while calm weather regions are permeated
by a very small leakage current. The equilibrium field is in the order of 100 V/m.
Dust storms on Mars are thought to act in a similar way, however they are much
more seasonal (while on Earth, at any given time, in the order of 1000 storms are
active). Therefore while in the calm season the martian atmospheric field is very small
(≈ 0.15 V/m), during the storm season it can reach values of 475 V/m in fairweather
regions (directed away from the surface) [7].

Figure 2.16: Atmospheric electric circuit of the Earth.
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Charge/mass ratio

The gravitational acceleration at 10 km on Mars is ≈ 3.69 m/s2.
Assuming this best-case scenario of Ez ≈ 475 V/m the minimum charge/mass ratio
required for levitation can be calculated as follows:

QE = gM =⇒ Q

M
=

g

E
≈ +7.8 mC/kg (2.12)

2.5.2 Plasma interaction

Atmospheric environment at 10 km

According to NASA’s Mars Atmosphere Model [25], the martian atmosphere at 10 km
has the following thermodynamic properties:

p ≈ 284 Pa ≈ 2.13 torr
T ≈ 228 K ≈ 0.02 eV

The most abundant ionic species are [17]:

• positive hydronium hydrates (H3O
+(H2O)n)

• negative carbonate ion hydrates (CO−3 (H2O)n)

• negative nitrate ion hydrates (NO−3 (H2O)n)

At 10 km the average ion densities and masses are as follows [17]:

Positive ions: n+ ≈ 2.5 · 109 /m3 m+ ≈ 64 u

Negative ions: n− ≈ 2.5 · 109 /m3 m− ≈ 77 u

Plasma parameters

This data allows to calculate the Debye length, through equation [2.1]: λD ≈ 15 mm.
Since the ion temperature is so low, and the E-Glider potential will easily be much
higher, the collected current will be equal to the negative ion saturation current (the
positive ions will be completely reflected). The saturation current density in these
conditions can be calculated as:

J−sat =
1

4
qen−

√
8kBT−
πm−

≈ 2.5 · 10−8 A/m2 (2.13)

2.5.3 System sizing

The charge/mass ratio required is quite high, therefore a very high electrode capacitance
will be needed in order not to have excessively high electrode potentials.
Let’s therefore assume for now a spherical electrode geometry, so that the capacitance
is maximised and the boosting factor due to the Debye sheath acting as a spherical
capacitor is maximised.
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Electrical parameters

The capacitance of a spherical electrode of radius R immersed in a plasma can be
approximated as such:

C(R) = 4πε0 (R|| − (R + λD)) ≈ 4πε0
R2

λD
(2.14)

Where || is the parallel operator and the approximation is valid if λD � R (which will
definitely be the case here).
The electrode potential can thus be calculated as a function of R and mass M :

V (R,M) =
Q

C
= M

(
Q

M

)
1

C
≈ M

R2

(
Q

M

)
λD

4πε0
(2.15)

The total current can also be written as the integral of J−sat over the sheath surface:

I(R) = 4π(R + λD)2J−sat ≈ 4πR2J−sat (2.16)

Now the minimum total power needed to counteract the current collection can be ex-
pressed as the product of collected current and electrode potential:

P (R,M) = I(R) · V (R,M) ≈ M

(
Q

M

)
λD
ε0
J−sat ≈ M · 0.33 W/kg (2.17)

This result indicates that, as long as all the assumptions made hold true, the power to
mass ratio of the E-Glider blimp is independent of its physical dimensions, and can be
achieved with available technology such as solar electric power generation.

Breakdown voltage constraint

Since the required power is low and independent of the dimensions, the main concern for
electrode sizing will probably be the limitation imposed by the atmospheric breakdown
threshold.
This is the threshold electric field intensity over which the low-power Townsend dis-
charge driven by the ion saturation current can cause an ionization avalanche in the
neutral atmosphere molecules, and trigger a much more intense glow or arc discharge.
The electric field in the Debye sheath can be very intense, and should the breakdown
threshold be crossed, these high-current discharge could greatly increase the required
power to maintain equilibrium, or even cause serious damage to the electrode.

Paschen’s law allows to calculate the breakdown voltage for a given gap length and
gas pressure. In this case the gap length is determined by the Debye length, and the
pressure is the local atmospheric pressure reported in the previous section.
For a CO2 atmosphere such as that of Mars, the breakdown voltage across the Debye
sheath at 10 km is [23]:

pd = pλD ≈ 3.17 torr cm =⇒ VBR ≈ 1 kV (2.18)
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Other sources [7], however, report breakdown fields of 20 kV/m, that is ≈ 0.3 kV across
the Debye gap. It must be noted, though, that the breakdown voltage depends on the
gap length, and this figure was not associated with a relative gap length, therefore the
experimental result [23] will be used as the reference.
In order not to exceed the breakdown voltage the following must hold:

V (R,M) < VBR =⇒ M

R2

λD
4πε0

< VBR =⇒ M

R2
< 7.5 · 10−6 kg/m2

This equates to an electrode surface density σ < 0.6 mg/m2. This is not likely to be
achieved with a full thin film surface (0.2 mils aluminized Mylar weights 7000 mg/m2),
but could be achievable with a wire mesh.
If the wire spacing in this configuration weren’t much greater than a Debye length, the
capacitance wouldn’t also be much decreased, thus avoiding even higher potentials that
would require even thinner meshes.
A mesh of 100µm (human-hair width) strands of 0.5 mils thick aluminized Mylar, spaced
3 cm apart, if at all technically feasible, would achieve the required surface density limit.

2.5.4 Conclusions

Supposing a total mass of 1 kg, the E-Glider would have to deploy this extremely
lightweight mesh in a spiderweb-like spheroidal surface with an equivalent radius of
more than 300 m (a size comparable to the largest airships of the last century).

The technical challenges that such a design would impose are certainly daunting, even
though not necessarily unachievable in the future. However careful research evaluation
of options aimed at mitigating the breakdown constraint might drastically increase the
feasibility of this concept.

One such option is to choose a different levitation altitude. Let’s assume that
reasonably strong atmospheric electric fields could be found at higher altitudes (this
hypothesis should be verified, however the ionosphere should extend for several tens of
kilometers), where the pressure is much lower.
With decreasing pressure, the breakdown voltage at first decreases until reaching a min-
imum, then very rapidly increases: high current discharges at very low pressures become
practically impossible.
In these high altitude regions (e.g. 30 km to 50 km) the Debye length would be larger,
and consequently the required potential would be higher as well. The breakdown voltage
would however be far higher still, and the surface density constraint could be signifi-
cantly relaxed.

Another option to explore is to allow the glow discharge to happen. Since required
power is so low, it may well be possible that glow discharge could actually be manage-
able in terms of power (assuming the electrode was not damaged by the discharge) and
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the breakdown threshold could be ignored.
However the variation in electrode capacitance would also have to be carefully evalu-
ated, since a drop in capacitance would imply higher electrode voltages and perhaps a
discharge runaway phenomenon.

It must also be noted that, while a martian application may prove unfeasible, it may
very well be that with different conditions in other atmospheres the potential prob-
lem might be overcome.
Afterall, it is extremely encouraging that the required power is so low even though Mars
already presents a significant gravity (surely far greater than an airless body). The
advantage of exploiting atmospheric fields is that they can be very strong, while the gas
ionization can be low enough that the collected current is not unbearably high.
The main limitation is once again due to high electrode potentials, but could be over-
come if the atmosphere presented a high enough breakdown voltage. While data on the
atmospheric electric properties of gas giants, Titan or Venus is scarse or absent, it could
be that one of these may support E-Glider operations.
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Active Charge Control

3.1 Active electrostatic orbit control
One of the key features of the E-Glider concept is the ability to perform both orbit/-
trajectory control and attitude control with the same (and virtually propellant-less)
method of charge control.
Net and differential surface charging enables the E-Glider to generate forces and torques
not only to maintain static equilibrium, but also to contrast disturbances and actively
modify its trajectory or attitude to navigate around an airless body.

While past works have already modeled the effects of both net and differential charging,
these analyses were focused on passive stability. A first demonstration model of the
active control capabilities was therefore realized, in order to confirm and illustrate the
concept validity.

3.1.1 Reduction to 2D problem

Since most electrostatic fields and plasma data available to date is referred to a spherical
asteroid model, an axial symmetry about the Sun-asteroid axis can be assumed for the
electrostatic environment. If the gravity field is also axial-symmetric, the dynamics can
be in first approximation reduced to a 2D space, with axes X (axial) and R (radial),
and origin in the asteroid center.

Rigorously, this should be treated as a section of a cylindrical coordinate system. How-
ever, since all available data and dynamics models were obtained assuming a cartesian
frame, and are not easily transported in a cylindrical frame, a further assumption that
the reference frame can locally be treated as though it was cartesian is made.
Should the spacecraft dimensions be small if compared to the asteroid size, this could
be a good approximation (especially in the terminator orbiting scenario). In any case
it must also be noted that this is merely a validation of the envisioned approach to
active control, not of the actual algorithms or simulation results, therefore some degree
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of coarse approximation can be tolerated.

Figure 3.1: Simplified spacecraft model for the active control analysis

A simplified 2D spacecraft model is used (Figure 3.1), with four symmetrical electrodes
around a central bus. The charge is only localized at the tip of the four appendages,
each with length L/2, and its distribution is described by three variables:

• Q, the "common mode" net spacecraft charge, equally distributed on the four
electrodes.

• q1, the first "differential mode" charge, on the x axis electrode pair: +q1 on the
electrode with positive x coordinate and −q1 on the electrode with negative x
coordinate.

• q2, the second "differential mode" charge, on the y axis electrode pair: +q2 on
the electrode with positive y coordinate and −q2 on the electrode with negative y
coordinate.

3.1.2 Dynamics and control model

The position of the spacecraft is s, while θ represents the angle between the spacecraft
x axis and the global X axis. These (s, θ) are the state variables.
The controller receives a certain commanded reference state (s0, θ0) and acts based on
the error between this and the current state.
A PID controller is employed and translates the error in desired accelerations along the
three state axes (s̈X , s̈R, θ̈).
These acceleration commands are then translated with a custom fitting model into the
actual control charges variables, i.e. (Q, q1, q2).
Finally the system responds to the control variables following the dynamics equations.
Figure 3.3 illustrates the control system in block diagram form.
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Figure 3.2: Reference frame and control variables for the active control analysis

Figure 3.3: Block diagram of the active control system

Physical process

The equations of motion can be adapted from those of [??] or [??] and [??], presented
in the following chapter about full dynamics modeling. For simplicity’s sake, the XR
system is assumed to be inertial, and all terms due to the heliocentric orbital motion
are discarded.

An angular moment LX along X is assumed in order to simulate the centrifugal force fc
due to electrostatic orbiting. This angular momentum is calculated for the equilibrium
condition and kept constant, since no forces perpendicular to the XR plane are assumed
to act on the spacecraft.{

ms̈ = fg + fp + fe + fc

Imz θ̈ = Tg + Tp + Te

(3.1a)

(3.1b)

For the gravitational force a point-mass model is used. Torque around the θ axis is null,
because the inertia components Imx and Imy are equal due to symmetry, and assuming
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that x, y are principal axes the moment about that axis is only due to (Imy − Imx) (see
equation [4.44]).
For the SRP, a simple cannonball model is assumed and basically a constant acceleration
ap directed along X is imposed on the spacecraft.
As for the electrical effects, equations [4.58] and [4.61] apply. Torque around the θ axis
is null, because the inertia components Iqx and Iqy are equal1, and Iqxz = Iqyz = Iqxy = 0
(see equation [4.62]).

The [3.1] can now be rewritten in more detail as follows:s̈ = − µ
s3

s + apX̂ +
Q

m
E(s) + Ge(s)

Sq

m
+
LX

r3
R̂

θ̈ = (Sq × E(s)) · (X̂× R̂) / Imz

(3.2a)

(3.2b)

NB: In this analysis, E and Ge are assumed to be bidimensional, i.e. only referred to
X and R axes.

Charge control actuation

In order to account for the charge which must be maintained at the static equilibrium
condition and decouple that from the control variables, Q is split into two components:

Q = Q0 + dq | s̈(s, Q, q1, q2) = s̈(s0, Q0, 0, 0) = 0 (3.3)

That is, Q0 is the net charge that must be maintained at equilibrium, and dQ is the
control component.
Now, assuming that s ≈ s0, [3.2] can be rewritten to directly link the control variables
to the state accelerations:s̈ =

dQ

m
E(s) + Ge(s)

Sq

m

θ̈ = (SqREX(s)− SqXER(s)) / Imz

(3.4a)

(3.4b)

Or, more efficiently, in matrix form:[
s̈

θ̈

]
=

[
E(s)/m Ge(s)/m
0 I×E(s)/Imz

] [
dQ
Sq

]
(3.5)

In which I× is the unity skew-symmetric matrix.
The command vector (Q, q1, q2) can thus easily be derived from (dQ , Sq): dQ

SqX

SqR

 =

 1 0 0
0 L cos θ −L sin θ
0 L sin θ L cos θ

 dQ
q1
q2

 (3.6)

1

This can be easily demonstrated by calculating the moments:
Iqx = [(Q/4 + q2) + (Q/4− q2)]L

2/4 = QL2/8
Iqy = [(Q/4 + q1) + (Q/4− q1)]L

2/4 = QL2/8
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Therefore the [3.5] can be rewritten as: dQ
q1
q2

 =

[
E(s)/m Ge(s)/m
0 I×E(s)/Imz

]−1  1 0 0
0 cos θ/L sin θ/L
0 − sin θ/L cos θ/L

[ s̈

θ̈

]
(3.7)

Along the X axis, however, the first matrix is singular and therefore non-invertible.
This is because along that axis, due to symmetry, ER = GeXR = GeRX = GeRR = 0, i.e.
s̈R = 0 and can’t be controlled.
To counter this issue, a deadband is set for values of |R| < RDB and in these cases a
simplified control law is used: dQ

SqX

SqR

 =

 ms̈R/EX

0

Imz θ̈/EX


 dQ
q1
q2

 =

 1 0 0
0 cos θ/L sin θ/L
0 − sin θ/L cos θ/L

 ms̈R/EX

0

Imz θ̈/EX

 (3.8)

Since charges can’t be chosen as arbitrarily large, saturation limits are imposed both on
Q and q1, q2. If one of the latter saturates, however, the other is scaled as well in order
to preserve the direction of Sq, so as not to produce accelerations whose direction is too
far off from the commanded one: an error in direction can be more detrimental than a
simple decrease in magnitude.

It must be noted that throughout this process the local values of the electric field and
gradient must be known in order to calculate the control vector. This, in a real E-Glider
application, would be accomplished by means of auxiliary sensor electrodes acting as
Langmuir probes.

3.1.3 PID Controller

The actual controller core, which commands the required accelerations given the state
vector error is composed of three parallel PIDs which act independently on each axis.
A PID is a simple controller whose output is formed by three components, respectively
proportional to the input error itself (P), its integral in time (I) and its derivative (D).

The tuning of the PID coefficients can be tricky, and for this activity a combination
of the Ziegler-Nichols method and trial and error was employed in order to achieve a
satisfactory performance, however there’s certainly room for improvement with more
careful an precise tuning.

The integral component was only applied on the X axis, the other controllers turned
out to be more properly PDs.
An anti-windup saturation limit was imposed on the integral component.
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Controller performance

Even with the raw controller tuning, the results indicate that it is indeed possible to
control both position and attitude by means of active charge control.
The plots in the following pages display the response of the system to a starting condition
severely offset from equilibrium.
The system converges to equilibrium with few to no oscillations along every axis.
The net charge required for the control, apart from some initial saturation spikes, is
never too far from the equilibrium values, therefore the increase in power consumption
for this kind of active operation can be considered negligible or anyway manageable,
especially if the errors are kept small and the controller far from saturation (such as in
a stationkeeping or slow sweeping situation).

3.1.4 Future work

Future work in this area would concern the expansion of the current model to a full
6-DOF control (three translations, three rotations), and perhaps test the expanded con-
trol algorithms in AMOSPy, which is well equipped to support this kind of controller.

It must be noted that in order to control the full 6-DOF state, another electrode pair
perpendicular to the first two would not be sufficient, since it would only introduce 1
new control in spite of 3 new axes to be controlled.
Some other kind of pluri-electrode geometry, possibly with at least 5 or 6 electrode pairs
should be implemented, in order to leverage not only the net charge Q and first moment
of charge Sq, but also the second moment of charge Iq.
The control law for such a system would probably be quite complex, and it could be also
worth investigating whether control over one or more axes could be safely relinquished,
for a simplified configuration, or maybe substituted by other, passive stabilization means
(e.g. gravity gradient based).
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Figure 3.4: Time-history of active control errors and controls in a subsolar hovering
scenario
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Figure 3.5: Time-history of active control errors and controls in a terminator orbiting
scenario
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Chapter 4

Dynamics Modeling and Simulation

4.1 Overview
A spacecraft dynamics simulator was developed with the objective of performing accu-
rate trajectory and attitude simulations of an arbitrarily defined simple spacecraft (such
as E-Glider concepts) in the proximity of an arbitrarily defined main body. It is named
AMOSPy, for Airless-body Multifield Orbital Simulator in Python.
The "Multifield" attribute is to signify that not only gravitational, but also electrical
and solar radiation pressure interactions are modeled, for both trajectory and attitude
propagation (that is, forces and torques are calculated for each interaction).

AMOSPy is completely realized in Python 2.7. No modules except for those already
included in the Fedora Anaconda distribution and the simulator own ones are needed.
AMOSPy is mostly programmed in an object-oriented style. Spacecrafts and main bod-
ies are objects whose methods allow to simulate their interactions.
This makes the code more easily readable, easier to maintain and improve, and also
allows to easily extend a single-spacecraft analysis to a multi-spacecraft one without
having to radically change the code structure.

Some key features that were kept in high priority in the software development are
flexibility, portability and maintainability. For instance, it is not mandatory to define
electrical characteristics of the spacecraft if these are not needed. In this case AMOSPy
will simulate a more "traditional" mission, only using gravitational and SRP interac-
tions. As another example, the spacecraft is defined starting from elementary parts, so
that arbitrarily shaped spacecrafts can be simulated.

Two simple auxiliary scripts are provided for Spacecraft and Main Body definition.
Through a simple text UI the user can define step-by-step a new Spacecraft or Main
Body instance, which is then saved to file. This allows to decouple the simulation objects
definition from the simulation itself, and makes testing various spacecraft configurations
very easy.
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4.1.1 Code structure description

Figure 4.1: AMOSPy high-level structure.
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Spacecraft constructor

The Spacecraft constructor script allows to define a spacecraft through the addition of
"parts", in a similar fashion to many multibody codes. Each part is based on a simple
reference geometry, such as sphere, cuboid, plate or cylinder.
For each part, geometry, mass, electrical and SRP properties can be defined in detail.
None of the properties is compulsory, in order to allow for high decoupling and flexibility.
If one wishes to model a spherical part with a cuboidal electode model, for instance,
it can be done, simply by using a duplicate part with a cuboid geometry and only the
desired electrical properties (while mass and SRP properties are only included in the
original part).

Main Body constructor

The Main Body constructor script allows to input main body parameters such as mass,
geometry, gravity model (e.g. spherical harmonics), rotational and orbital parameters,
and local plasma field data.
The orbital parameters can be directly obtained from the JPL Small Bodies Database
[26].
The plasma data can be directly read from PIC simulations output, by means of specially
formatted text files.

Main Simulator core

The main simulator script simply contains some initialization sections (such as Space-
craft and Main Body loading routines), the main equation of motion and control model
functions, and the ODE solver used to perform the simulation.
All other functions and routines are contained in the auxiliary modules described in
the following paragraph, so as to declutter the main script and only leave the top-level
functions.

Once provided with the simulation parameters (Spacecraft, Main Body, initial con-
ditions and simulation time), the simulator propagates the equations of motion and the
control functions.
The simulation results are both plotted and saved to disk in a MATLAB-compatible for-
mat. This data dump can later be used to produce high quality graphical outputs with
the help of a MATLAB postprocessor.

As far as execution time is concerned, the simulator can easily perform in the real-
time domain (i.e. the simulation is much faster than the simulated phenomenon).
By precalculating all spacecraft parameters (such as mass and charge inertia) and some
external forces (SRP mesh, electric field mesh), good performance can be achieved. Par-
ticular attention was dedicated to implementing the fastest and most efficient algorithms
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for those calculations which do not rely on precalculated data (such as gravitational in-
teraction and keplerian propagation).

Auxiliary Modules

Four main Python modules contain all the main classes and methods needed for the
execution of AMOSPy, aside from the main simulation core.

The bodies module mainly contains the SpaceCraft and MainBody classes definitions.
These define the object instances whose attributes are all the properties of the spacecraft
or main body needed for the simulation.
Both classes contain propagator methods which are called by the main integrators and
refresh various parameters.
For the MainBody, a fast keplerian orbit integrator is provided for the revolution motion
[18]. The rotation motion, about any desired axis, is also implemented.
The SpaceCraft class also contains all the methods needed to compute the local gravi-
tational, electrical and SRP forces and torques acting on the spacecraft itself.
A Part class used by the constructor scripts is also available in this module.

The gravity module is an appendix of the bodies module, and contains the keple-
rian orbit fast integrator as well as all the necessary gravity models calculators (for now,
a point mass model and a fast nonsingular spherical harmonics model [?] are available).

The attitude module provides ad-hoc quaternion and rotation matrix classes for atti-
tude representation and propagation.

The graphics module provides some graphical routines for output generation.

4.2 Reference Frames
A first topic that must be addressed concerns the various reference frames used, in order
to understand the dynamics models and to correctly write the equations of motion.
In order to express different vectorial quantities in the various available frames, the
following notation is used:

• ax indicates the vector or tensor x expressed in the a frame.

• aωbc indicates the angular velocity of frame c wrt frame b expressed in the a frame.

• aRb indicates the rotation matrix (tensor) which converts bx into ax.

It is worth spending some further words on these rotation matrices and their generation,
since it will be useful in defining the reference frames relative orientations.
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4.2.1 Rotation Matrices

The rotation matrix aRb is a tensor which can convert vectors among the frames a and
b. It is defined as such:

aRb | ax = aRb
bx (4.1)

To define a rotation matrix, it is often useful to combine elementary rotations about
the frame axes. Generally speaking, in R3 three such rotations are able to describe the
relative orientation of any two frames.
Two classical conventions based on this principle are the Euler and Tait-Bryan angles
[5], of which the former is widely used in spaceflight dynamics while the latter is usually
adopted in atmospheric flight dynamics.

Let’s suppose that reference frame a can be overlapped over frame b by means of a
sequence of n rotations of entities αi about axes ki.
It must be noted that ki is intended to be an axis of the rotated frame reached at the
step i− 1, and not of the original a frame. That is to say:

• a is rotated into a1 by a rotation of α1 about axis k1 of a;

• a1 is rotated into a2 by a rotation of α2 about axis k2 of a1;

• ...

• an−1 is rotated into b by a rotation of αn about axis kn of an−1.

Then the rotation can be written as:

aRb = [αn]kn . . . [α2]k2 [α1]k1 =
n∏

i=1

[αi]ki (4.2)

Depending on the value of ki there are three kinds of possible elementary rotation
matrices (one for each rotation axis). These are:

[α]1 =

 1 0 0
0 + cosα − sinα
0 + sinα + cosα

 (4.3a)

[α]2 =

 + cosα 0 + sinα
0 1 0

− sinα 0 + cosα

 (4.3b)

[α]3 =

 + cosα − sinα 0
+ sinα + cosα 0

0 0 1

 (4.3c)

(4.3d)
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With this notation, the Euler (3,1,3) and Tait-Bryan (3,2,1) conventions can be ex-
pressed respectively as:

bRa = [γ]3 [β]1 [α]3 (4.4a)
bRa = [φ]1 [θ]2 [ψ]3 (4.4b)

(α, β, γ) are the Euler angles (e.g. precession, nutation and spin).
(ψ, θ, φ) are the Tait-Bryan angles (e.g. yaw, pitch and roll).

4.2.2 Heliocentric Frames

Figure 4.2: Heliocentric reference frames

ICRS Frame - i

The fundamental frame used in this work, from which all other frames are ultimately
derived, is the International Celestial Reference System (ICRS). This is a quasi-inertial
frame (inertial for the purposes of this work).
It is based on 212 extra-galactic radio sources, the position of which is known with an
accuracy of 1 milliarcsecond or better. Since these sources are so far away, their intrinsic
motion is assumed to be negligible, and this makes the ICRS "as inertial as possible".
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The ICRS orientation approximates the equatorial system. A raw definition can thus
be expressed as such:

• O origin at the Solar System Barycenter;

• X axis approximately pointing towards the vernal equinox at J2000;

• Y axis parallel to the Earth’s Equator and completing the right handed frame;

• Z axis perpendicular to the Earth’s Equator, pointing towards the North Pole.

PQW Frame - p

Another heliocentric pseudo-inertial frame used is the Main Body perifocal reference
frame. This is used to define the Main Body heliocentric orbit.
The Main Body orbit is assumed to be Keplerian in this work; the definition could
however be extended to perturbed orbits, by assuming the osculating Keplerian orbit at
the reference epoch.
It is defined as follows:

• O origin at the Solar System Barycenter;

• X axis pointing towards the periapsis;

• Y axis lying on the orbital plane and completing the dextral orthogonal system;

• Z axis parallel to the orbital angular momentum vector.

It can be derived from the ICRS frame by an Euler rotation based on the classical orbital
elements of the Main Body:

pRi = [ω]3 [i]1 [Ω]3 (4.5)

In which:

• Ω is the right ascension of the ascending node (RAAN);

• i is the orbital inclination;

• ω is the argument of periapsis.
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4.2.3 Main Body Centered Frames

Figure 4.3: Main Body centered reference frames

RIC Frame - r

The Radial/In-track/Cross-track is a non-inertial frame, and it is the one used to write
the translation equations of motion.
It is defined as follows:

• O origin at the Main Body center of mass;

• X axis directed away from the Solar System Barycenter (i.e. approximately away
from the Sun);

• Y axis lying on the orbital plane and completing the dextral orthogonal system;

• Z axis parallel to the orbital angular momentum vector.

It can be derived from the PQW frame (translated to the Main Body) by simple time-
dependent rotation due to the orbital motion:

rRp = [ν(t)]3 (4.6)

In which ν(t) is the true anomaly (i.e. orbital angular position) at time t.
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Figure 4.4: ACI reference frame definition

ACI Frame - a

The Aster-Centered Inertial is another pseudo-inertial frame, which is mainly used to
define attitudes and rotations of the Spacecraft and the Main Body itself.
Indeed, the only non-inertial components are due to translation (since the origin is fixed
on the Main Body), therefore no errors are introduced by considering it as inertial when
referring attitudes to it.
It is defined as follows:

• O origin at the Main Body center of mass;

• X axis lying on the equator and pointing towards the prime meridian at the ref-
erence epoch;

• Y axis lying on the equator and completing the dextral orthogonal system;

• Z axis directed like the Main Body rotation angular momentum vector.

It can be derived from the ICRS frame (translated to the Main Body) by an Euler
rotation based on the rotational elements [1]:

aRi = [W0]3 [δ′]1 [α′]3
= [W0]3 [90o − δ0]1 [90o + α0]3 (4.7)

In which:
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• α0 is the right ascension of the positive pole;

• δ0 is the declination of the positive pole;

• W0 indicates the position of the prime meridian at the reference epoch.

Figure 4.5: AF reference frame definition

AF Frame - f

The Aster-Fixed is a reference frame fixed to the Main Body. The analogue for Earth
would be the ECEF frame.
It is defined as follows:

• O origin at the Main Body center of mass;

• X axis lying on the equator and pointing towards the prime meridian;

• Y axis lying on the equator and completing the dextral orthogonal system;

• Z axis directed like the Main Body rotation angular momentum vector.

It can be derived from the ACI frame by a simple time-dependent rotation about the
rotation axis:

fRa = [W (t)−W0]3 (4.8)

In which W (t) is the position of the prime meridian at time t.
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4.2.4 Spacecraft Centered Frames

Figure 4.6: Spacecraft centered reference frames

BF Frame - b

The Body-Fixed is a is a reference frame fixed to the Spacecraft. It is used in defining
parts placement during the Spacecraft definition, with one caveat: when a spacecraft
design is finalized this frame is re-centered on the spacecraft center of mass, and the
parts positions are recalculated as needed.
The Body Frame is used to propagate the attitude equations of motion: the attitude
and rotation rates considered are intended to be between the BF and ACI frames, and
are expressed in the BF frame.
It is defined as follows:

• O origin at the Spacecraft center of mass;

• Axes as defined by the user placement of parts.

Its otientation with respect to the ACI frame is defined with an attitude quaternion bqa.

PF Frame - p

The Part-Fixed is a is a reference frame fixed to a single spacecraft elementary compo-
nent, or part. It is used in defining parts dimensions, orientation and properties during
the Spacecraft definition.
It is defined as follows:

• O origin at the Part center of mass;

• Axes parallel to the BF frame.
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Figure 4.7: Overview of the definition of the main reference frames for the integration
(ACI and RIC)

4.3 Integrator core
The core of AMOSPy is of course its numerical integrator of the equations of motion.
Most other functions and modules are entirely built around it.
A real-valued variable-coefficient ODE solver is used, which provides automatic switch-
ing between implicit Adams method and a backwards differentiation formulation in case
of problem stiffness.

AMOSPy’s integrator can operate in several configurations: considering the Spacecraft
either a point or an extended body (basically switching on or off the attitude propaga-
tion), and using either the Clohessy-Wiltshire equations or a more exact "full model"
for the three-body dynamics.
In this section only the extended body version of the equations of motion will be pre-
sented, since the point body can simply be obtained by removing the attitude propaga-
tion equation.
The state vector used for this full integration is:

(rr, rv, bqa,
bωab) (4.9)

That is, position, velocity, attitude quaternion and angular rates. The indices r, b, a,
indicate respectively the Hill reference frame (Radial/In-track/Cross-track), the Aster-
Centered Inertial frame (used as inertial frame for attitude reference) and the Spacecraft
Body Frame, as described in section 4.2.
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4.3.1 First cardinal equation

Clohessy-Wiltshire formulation

The Clohessy-Wiltshire equations describe the relative motion of two bodies, a target
and a chaser, orbiting a third one. These equations are formulated in the Hill, or RIC,
reference frame, fixed on the target.
Considering the typical case of this study of an E-Glider orbiting an asteroid on an
heliocentric trajectory, the asteroid would be the target, the E-Glider the chaser and
the Sun the third body.

The strong hypothesis assumed by the Clohessy-Wiltshire equations is that the tar-
get is in an unperturbed circular orbit around the third body, with angular velocity
(mean motion) ν̇ = n. In this case the RIC frame moves in a simple circular uniform
motion, inducing centrifugal and Coriolis effects on the chaser spacecraft. The first
cardinal equation of dynamics can be written like this:

rv̇ =
rf

m
+ 2n

 +vi
−vr

0

+ n2

 +3rr
0

−rc

 (4.10)

rṙ = rv (4.11)

In which rr, rv are respectively the position and velocity of the chaser in the RIC
frame, expressed in RIC coordinates. The single components are rr = (rr, ri, rc) and
rv = (vr, vi, vc).
rf represents the active forces on the spacecraft, again expressed in the RIC frame. In
this case they could be the gravitational attraction of the Main Body, the solar radiation
pressure force and the electrostatic force. Derivations for all these components can be
found in the sections 4.4, 4.5, 4.6.

Full model formulation

This version of the equations of motion gets rid of the strong hypothesis imposed by the
Clohessy-Wiltshire equations, allowing for arbitrary orbits around the third body.
The RIC frame motion is locally approximated to the second order (i.e. with a constant
acceleration). In order to do this, the instantaneous orbital angular velocity and accel-
eration, as well as the distance from the third body, must be calculated.
For this reason, the orbit of the target (Main Body) must be propagated with a keple-
rian solver. A fast, third-order, orbit integrator [18] is therefore implemented in AMOSPy.
This allows to calculate the true anomaly as a function of time ν = ν(t).
Let d be the Sun to Main Body distance (or Sun to Spacecraft distance, they can safely
approximated to be equal), ν̇ and ν̈ respectively the instantaneous asteroid orbital an-
gular velocity and acceleration.
Furthermore, let p be the semilatus rectum, h the angular momentum and e the eccen-
tricity, of the Main Body keplerian orbit around the Sun. These are all constants that
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can be precalculated during the Main Body definition.
Then for this keplerian orbit, knowing ν = ν(t) from the propagator, one can obtain:

d =
p

1 + e cos ν
(4.12)

ν̇ =
h

d2
(4.13)

ν̈ =
−2e sin ν

1 + e cos ν
ν̇2 (4.14)

In order to write the first equation of motion in the RIC frame the acceleration of the
Spacecraft in that frame must be calculated, taking into account the apparent acceler-
ations due to the frame motion, as previously noted.

Figure 4.8: Vector definitions for the full model

Let r be the position of the Spacecraft referred to the Main Body, while ds and da are
respectively the Sun to Spacecraft and the Sun to Main Body position vectors, as shown
in Figure 4.8.
The PQW frame will serve as the inertial reference frame. Ω is the angular velocity of
the RIC frame with respect to the PQW frame. From the relations among the reference
frames detailed in section 4.2 it can be shown that:

rΩ = (0, 0, ν̇) (4.15a)
rΩ̇ = (0, 0, ν̈) (4.15b)
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Now the absolute acceleration of the spacecraft can be expressed as follows:

ds = da + r

d̈s = d̈a + r̈

d̈s = d̈a + a + 2Ω× v + Ω× (Ω× r) + Ω̇× r (4.16)

In which r, v, a are respectively the position, velocity and acceleration relative to the
RIC frame, which appear in the equation of motion. The terms derived from r̈ are
respectively the local acceleration, the Coriolis and centrifugal terms and lastly a term
due to the angular acceleration of the frame (from the second order expansion of orbital
motion).
Solving for a the resulting equation is:

a = d̈s − d̈a − 2Ω× v −Ω× (Ω× r)− Ω̇× r (4.17)

It can now be noted that d̈a is the inertial acceleration of the Main Body, which is only
due to the Sun’s gravitational acceleration. Another term due to the Sun’s gravitational
acceleration can be extracted from d̈s, with the remainder being accelerations due to
the Main Body gravity, local electric field, and SRP.
Letting µ be the Sun’s gravitational parameter, the [4.17] now becomes:

a =
f

m
− µ

d3s
ds +

µ

d3a
da − 2Ω× v −Ω× (Ω× r)− Ω̇× r (4.18)

a =
f

m
− µ

d3
r− 2Ω× v −Ω× (Ω× r)− Ω̇× r (4.19)

The [4.17] assumes that ds ≈ da, which is a valid assumption, since for proximity
operations r � ds, da.
As the final step, the equations [4.15] (and implicitly [4.12], [4.13], [4.14]) are substituted
into the [4.19].
The first cardinal equation for the full model, in RIC components, then turns out to be:

rv̇ =
rf

m
+
µ

d3
rr + 2ν̇

 −vi+vr
0

+ ν̇2

 +rr
+ri

0

+ ν̈

 −ri+rr
0

 (4.20)

rṙ = rv (4.21)

In which rr, rv are respectively the position and velocity of the chaser in the RIC
frame, expressed in RIC coordinates. The single components are rr = (rr, ri, rc) and
rv = (vr, vi, vc).
rf represents the active forces on the spacecraft, again expressed in the RIC frame. In
this case they could be the gravitational attraction of the Main Body, the solar radiation
pressure force and the electrostatic force. Derivations for all these components can be
found in the sections 4.4, 4.5, 4.6.
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4.3.2 Second cardinal equation

The attitude propagation equation is derived from classical rigid body theory. The only
quirk of this formulation is that attitude is represented as a quaternion in order to avoid
singularities (for further details see appendix A1).

bω̇ab = bI−1m (bT− bωab× bIm
bωab) (4.22)

˙bqa =
1

2

[
0

bωab

]
⊗ bqa (4.23)

bωab is the ACI to BF angular velocity in BF coordinates, while bqa is the ACI to BF
attitude quaternion. bIm is the Spacecraft moment of inertia. ⊗ is the quaternion prod-
uct (see A1).
bT represents the active torques on the Spacecraft. In this case they could be the due
to the gravitational attraction of the Main Body, the solar radiation pressure and the
electrostatic interactions. Derivations for all these components can be found in the sec-
tions 4.4, 4.5, 4.6.

It must lastly be noted that the attitude quaternion must be normalized at each integra-
tion step to avoid divergence. A check is performed anyway and should the quaternion
norm grow through a certain threshold, an exception is raised by the software.

4.3.3 Control equations

A control function call is present in the integrator core, and a "plug-and-play" control
function space is reserved for future implementation and testing of active charge control
functions. This function has access to the current simulation time and state vector as
well as all the properties of the Spacecraft and the Main Body, refreshed at the current
simulation time.

4.4 Gravitational forces modeling

4.4.1 Point-Mass model

Perhaps the simplest way to model the gravitational field of a massive body is the point-
mass model; this assumes that all the body mass is concentrated in its barycenter. The
gravitational acceleration in this model is purely radial, and expressed by the following
equation:

fg = − µ
r3

r (4.24)

In which µ .
= GM is the gravitational parameter of the main body and r is the position

vector with origin in the main body barycenter.
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The gravity gradient tensor can be calculated as follows [9]:

Gg
.
=∇fg = − µ

r3

(
I− 3

r2
r⊗ r

)
(4.25)

Where ⊗ indicates the outer product.

Point-Mass pros and cons
The point-mass model is a mathematically exact equivalence for bodies with a spher-
ically symmetrical mass distribution, and therefore acceptably accurate as a first ap-
proximation for large bodies such as planets, however it is generally largely inaccurate
for asteroids, comets and other such small bodies, whose geometries and density distri-
butions are often very irregular.
Its advantages in the field of dynamics modeling are however its extremely low compu-
tational cost and its intrinsic absence of singularities. Thus, while not a good choice
for precise mission simulations (in which a specific main body and its properties are
given), it can still be a valid option for general analyses and feasibility studies. In the
case of this work, for instance, the reference asteroid for the PIC plasma data is in fact
spherical, and a point-mass model can be applied without much concern.

4.4.2 Spherical Harmonics model

Another widely used method to model a gravitational field is the expansion in spherical
harmonics. In this case a gravitational potential function Ug |∇Ug = ag, where ag is
the gravitational acceleration, can be written as:

Ug =
µ

r

∞∑
n=0

n∑
m=0

(
R

r

)n

Pn,m(sinφ) (Cn,m cosλ+ Sn,m sinλ) (4.26)

In which R is a reference radius, while Cn,m and Sn,m are the spherical harmonics
coefficients which parametrize the expansion. φ, λ are respectively the latitude and
longitude of the considered point r in spherical coordinates. Pn,m are the Legendre
polynomials, defined as follows:

Pn,m(sinφ) = (1− sin2 φ)m/2 1

2nn!

dn+m

d sinφn+m
(sin2 φ− 1)n (4.27)

Assuming that the reference system is centered in the main body barycenter, the fol-
lowing relations are valid:

C00 = 1 C10 = 0 C11 = 0 Cn0
.
= −Jn

S00 = 0 S10 = 0 S11 = 0

Often C and S coefficients are given in a normalized form, in order to avoid too large a
span in orders of magnitude: they tend to become very small with increasing order n.
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These normalized forms, Cn,m and Sn,m are defined as follows [6]:

Cn,m
.
=
Cn,m

Nn,m

Sn,m
.
=
Sn,m

Nn,m

Nn,m
.
=

√
(n−m)!

(n+m!)
(2n+ 1)(2− δ0,m) (4.28)

The formulation given in [4.26], however, presents an issue when used to calculate the
gravitational acceleration, because ag = ∇Ug and the ∇ operator in spherical coordi-
nates presents a singularity at the poles (φ = ±π/2). Since the terminator region is of
particular interest for the E-Glider concept, and this includes the poles, such singularity
cannot be neglected.
A nonsingular formulation of spherical harmonics is therefore required; several of these
exist, with the main ones proposed by Pines (1973), Lear (1986) and Gottlieb (1990).
The one presented here and implemented in AMOSPy is that of Pines [20], with a cor-
rected Legendre polynomials recursion (the original one proposed by Pines is unstable
[6][14]).
Pines’ formulation uses a redundant set of 4 coordinates based on a cartesian reference
frame and defined as follows:

(r, s, t, u) | r = r ·

 s
t
u

 , ‖r‖ = r (4.29)

Equation [4.26] thus becomes:

Ug =
µ

r

∞∑
n=0

n∑
m=0

(
R

r

)n

An,m(u) (Cn,mrm(s, t) + Sn,mim(s, t)) (4.30)

The rm and im terms replace the goniometric functions of the longitude and are defined
as:

rm(s, t) = Re ((s+ it)m) im(s, t) = Im ((s+ it)m) (4.31)

The terms An,m are instead derived from the Legendre polynomials and are called Leg-
endre functions:

An,m(u) =
1

2nn!

dn+m

dun+m
(u2 − 1)n (4.32)

An efficient and stable recursion algorithm used to calculate these functions is presented
in [14] (variant II):

An,n = 2(n− 1)An−1,n−1 (4.33a)

An,n−1 = uAn,n (4.33b)

An,m =
1

(n−m)(n+m+ 1)

[
2u(m+ 1)An,m+1 + (u2 − 1)An,m+2

]
(4.33c)
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The values of Am,n can be stored in a N ×M matrix, in which N , M are the maximum
orders of the model used. The first formula is then used to populate the main diagonal,
the second one for the first subdiagonal and the last one for all the remaining values,
by rows.

In order to calculate the gravitational force, the [4.30] must be differentiated as fol-
lows:

ag =∇Ug =

(
1

r

∂Ug

∂s

)
î +

(
1

r

∂Ug

∂t

)
ĵ +

(
1

r

∂Ug

∂u

)
k̂+

+

(
∂Ug

∂r
− s

r

∂Ug

∂s
− t

r

∂Ug

∂t
− u

r

∂Ug

∂u

)
r̂ (4.34)

By redefining the versor coefficients respectively as a1, a2, a3, a4 one can write:

ag =∇Ug = a1î + a2ĵ + a3k̂ + a4r̂ (4.35)

Gg =∇ag =
∂

∂r
(a1î + a2ĵ + a3k̂ + a4r̂) (4.36)

Pines [20] presents in his paper computationally efficient methods for calculating these
quantities in software, and these are implemented in AMOSPy, however they are not
detailed here for coinciseness reasons.

Spherical Harmonics pros and cons

The spherical harmonics expansion guarantees convergence to any possible gravitational
potential, however the convergence is usually quite slow and very high orders are re-
quired to accurately model complex fields and fine details. Moreover the expansion
diverges at radii smaller than the reference radius, so it’s usually not ideal to use spher-
ical harmonics for bodies with large concave features (such as asteroids, incidentally).
Nevertheless, spherical harmonics allow to capture tangential components of the gravita-
tional field, and can provide an accuracy orders of magnitude greater than a point-mass
model with a modest increase in computational power (if compared to more sophisti-
cated methods such as FE MASCON).

4.4.3 Forces and Torques

Whatever the gravitational model assumed, the simulator must be able to calculate
forces and torques applied on the S/C given the local gravitational acceleration ag and
gravity gradient Gg.

62



CHAPTER 4. DYNAMICS MODELING AND SIMULATION

Force

Since the spacecraft is treated as an extended body, the force due to gravity is calculated
as follows:

fg =

∫
S/C

ag(r) dm (4.37)

The spacecraft can either be considered as an extended body characterized by a mass and
a moment of inertia, or as a collection of parts, the masses of which are approximated
to be concentrated in their centers of mass.
In the former case a linear approximation of the local gravitational field is assumed:

∆r
.
= r− r0 (4.38)

ag(r) = ag(r0) + Gg(r0)∆r (4.39)

In which r0 is the position of the spacecraft center of mass. Equation [4.37] can then be
expressed as follows:

fg =

∫
S/C

[ag(r0) + Gg(r0)∆r] dm

= ag(r0)

∫
S/C

dm + Gg(r0)
��

�
��

��*
0∫

S/C
∆r dm

= ag(r0)m (4.40)

The second integral can be canceled out since it represents the first moment of mass
about the center of mass, and is therefore by definition null.
In the latter case [4.37] can be expressed as the sum of the forces on each part k (rk is
the center of mass of the part):

fg =
∑
k

(∫
part k

ag(rk) dmk

)
=
∑
k

(
ag(rk)

∫
part k

dmk

)

=
∑
k

(ag(rk)mk) (4.41)

This variant is more intensive from a computational cost standpoint, but it can be more
precise for very extended bodies, over which the gravity gradient can’t be assumed to
be constant and the linear field approximation is unacceptably imprecise.
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Torque

The torque due to gravity on an extended body about its center of mass is calculated
as follows:

Tg =

∫
S/C

∆r× ag(r) dm (4.42)

Where ∆r is defined as in [4.38]. Again, the spacecraft can either be considered as an
extended body characterized by mass and moment of inertia, or as a collection of point
masses, one for each part.
In the former case the same linear approximation of the local gravitational field as in
[4.39] is assumed. Equation [4.42] can therefore be expressed as follows:

Tg =

∫
S/C

∆r× [ag(r0) + Gg(r0)]∆r dm

=

∫
S/C
��

���:0
∆r dm× ag(r0) +

∫
S/C

∆r×Gg(r0)∆r dm

=

∫
S/C

∆r×Gg(r0) dm (4.43)

The first integral is again the first moment of mass and can be canceled. The second
integral involves the moment of inertia, however it can’t immediately be expressed in a
simple equation. A solution is found in [9], and is as follows:

Tg =

 Gyz(Izz − Iyy) +GxzIxy −GxyIxz +Iyz(Gzz −Gyy)
Gxz(Ixx − Izz) +GxyIyz −GyzIxy +Ixz(Gxx −Gzz)
Gxy(Iyy − Ixx) +GyzIxz −GxzIyz +Ixy(Gyy −Gxx)

 (4.44)

In which Iij and Gij are the components of, respectively, Gg(r0) and the mass inertia
tensor of the body Im.
In the latter case [4.42] can be expressed as the sum of the torques generated by the
forces on each part k (rk is the center of mass of the part):

Tg =
∑
k

(∫
part k

∆rk× ag(rk) dmk

)
=
∑
k

(
∆rk× ag(rk)

∫
part k

dmk

)

=
∑
k

(∆rk× ag(rk)mk) (4.45)

A more precise (but computationally costly) alternative to these two methods would be
to apply the former to each individual part, and then to sum forces and torques over the
whole spacecraft. At this time, however, this alternative is not implemented in AMOSPy.
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4.5 SRP forces modeling
A generic surface stricken by EM radiation can be roughly characterized by 4 coefficients,
indicating which fraction of the radiation will be reflected, absorbed or transmitted:

• Ct for the transmitted fraction

• Ca for the absorbed fraction

• Crd for the diffusively reflected fraction

• Crs for the specularly reflected fraction

The sum of this 4 coefficients must be equal to unity, therefore actually only 3 (the last
3 in the case of AMOSPy) are required to determine the surface properties:

Ct + Ca + Crd + Crp = 1 (4.46)

EM radiation carries moment. Given a certain energy flux Φ, the pressure generated by
a complete absorption is given by Φ/c. For instance, since the solar constant at 1 AU
is ≈ 1350 W/m2, the solar radiation pressure (SRP) in the proximity of the Earth is
≈ 4.5µPa.

4.5.1 Force components on an illuminated surface

In order to compute the SRP force on an elementary planar surface it is necessary to
sum the force components due to the various fractions of light.
An area dA, with normal versor n̂ is stricken by a ray incoming at an angle θ with said
normal. The versor ŝ points to the origin of the ray (i.e. it is opposite to the ray itself).
The incident momentum flux will be Φ/c dA cos θ.
The objective is to calculate the total force dfp due to radiation pressure [15].

Specularly reflected component

The momentum of the specularly reflected component is due to two contributions: the
incident ray and the re-emitted ray (Figure 4.9). Both rays have the same intensity
and form the same angle with the surface normal, thus the resultant will be directed
along the normal versor (in the opposite direction) and only due to the perpendicular
component of the ray.

dfps = −Φ

c
dA cos θ (2Crs cos θ n̂) (4.47)
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Figure 4.9: Force diagram for specularly reflected component

Figure 4.10: Force diagram for diffusively reflected component

Figure 4.11: Force diagram for absorbed radiation component
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Diffusively reflected component

The momentum of the diffusively reflected component is due to two contributions: the
incident ray and the re-emitted rays (Figure 4.10). The re-emitted rays are symmetri-
cally distributed around the normal vector, and their resultant momentum is 2/3 that
of the incident ray [15].

dfpd = −Φ

c
dA cos θ

(
Crd ŝ +

2

3
Crd n̂

)
(4.48)

Absorbed component

The momentum of the absorbed component is completely transferred to the surface
(Figure 4.11), therefore this force component can be written as:

dfpa = −Φ

c
dA cos θ (Ca ŝ) (4.49)

Resultant force

The total force on the surface element can therefore now be obtained by summing these
3 contributions:

dfp = dfps + dfpd + dfpa

= −Φ

c
dA cos θ

[(
2Crs cos θ +

2

3
Crd

)
n̂ + (Crd + Ca) ŝ

]
(4.50)

4.5.2 Computation of SRP forces and torques

In order to obtain the net force on the spacecraft, equation [4.50] should be integrated
over the whole surface, and then again used in another integral to calculate torque:

fp =

∫
surface

dfp (4.51)

Tp =

∫
surface

∆r× dfp (4.52)

In which ∆r is defined as in [4.38] as the position of a given point wrt. the spacecraft
center of mass.

Cannonball model

Closed, analytical solutions to the [4.52] do indeed exist for some convex spacecraft
geometries. One example is the cannonball model, which approximates the spacecraft
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with a sphere. The result of this model is very simple:

fp = −Φ

c
πR2

(
Crs +

13

9
Crd + Ca

)
ŝ (4.53)

Tp = 0 (4.54)

This formulation, however, is overly simplified and often unsuitable to model certain
phenomena. For instance, no torque can be modeled with this approach, while in some
cases torque might indeed be the primary concern of a SRP analysis.

Forward ray-casting model

A more flexible SRP model, assuming that an accurate enough spacecraft geometry
model is available, employs forward ray-casting. Ray-casting is a technique widely used
in computer graphics, which relies on generating a large number of light "rays" (e.g.
one per pixel) and computing their interception or reflection by objects in a scene in
order to generate an image of said scene.
The same can be applied to SRP modeling, by casting a dense array of parallel rays orig-
inating from the Sun, large enough to completely "illuminate" the spacecraft, and then
calculate for each ray its eventual impact point on the spacecraft, and the elementary
force locally generated by this interaction; the integrals of [4.52] are thus transformed
in a sum over the set of rays.
If the rays are picked randomly it’s basically a Monte Carlo method which samples
light-spacecraft interaction.

While this method can work very well for compact spacecrafts, geometries such as the
E-Glider, with its thin, long appendages constitute a problem, for two reasons:

• The array of incoming rays must be wide enough to "illuminate" the whole space-
craft, whatever the spacecraft attitude might be: for instance, if the rays are
generated randomly on a disc perpendicular to the Sun-spacecraft direction, the
disc radius must be at least as large as the largest spacecraft dimension, which in
the case of the E-Glider can be several meters. However, only a tiny fraction of
incoming rays will actually strike the spacecraft, since the E-Glider electrodes can
be very long but also very thin. Therefore, in order to ensure than a statistically
significant number of rays will be cast on the spacecraft, an extremely large num-
ber of rays must be generated and analyzed in the first place, even though the
vast majority won’t be useful for the calculation.

• If the rays are not picked randomly, but over a regular grid (perhaps to reduce
computational load), the issue of aliasing may arise: a thin, long feature (such as
an electrode) might align with the grid and be right between two rows of rays,
and never be illuminated, or conversely be exactly aligned with a row and get
oversampled wrt. other equal surfaces. This wouldn’t constitute a big issue if the
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total area of the feature was small if compared to the total spacecraft surface, but
for the E-Glider case a 10 m, 1 mm diameter wire has the same projected area as
a 10 × 10 cm CubeSat U face. Moreover, being far from the center of mass, its
contribution to torque can be very significant.

It is therefore necessary to have very precise force computations even on these thin
features, and forward ray-casting can’t easily provide this kind of performance, not
without excessive computational costs.

Backwards ray-casting model

An alternative ray-casting model overturns the perspective by generating the rays di-
rectly on the surface, and then propagating them backwards to check for intersections
and shadowing.
The spacecraft surface is approximated with a large number of small plane "facets", and
a ray is generated on each one; the integrals of [4.52] are then transformed in a sum over
all these elementary areas.
As for shadowing effects, a preliminary check can discard those facets which are cer-
tainly in shadow (if ŝ · n̂ < 1, i.e. the ray comes from behind the surface), while the
ray-casting intersection algorithms filter out the contributions from rays which would
have been blocked by other surfaces (cfr. Figure 4.12)
This ensures an arbitrary degree of precision (the number of facets can simply be in-
creased), while guaranteeing that all surfaces are represented and sampled equally. Alias-
ing and related phenomena can still occur (e.g. a thin feature might not be intersected
by many "glancing" rays, however these errors are usually very minor (the shadow of a
thin wire is hardly significant, unless it is perfectly aligned with another thin wire, in
which case the ray-casting would detect it).

4.5.3 Implementation in the code

AMOSPy implements the backwards ray-casting model. Efficient ray-intersection algo-
rithms are provided for each available part geometry (cylinder, cuboid, plate and sphere)
and allow for a relatively quick computation.
While certainly possible for slow enough dynamics, it is generally still impractical to
perform these computations in real-time in every scenario without a significant loss of
precision.

Fortunately SRP external influences are limited to the solar energy flux, which can
be applied as a multiplier a posteriori, and whether the spacecraft is in sunlight or
shadowed by the main body.
Therefore forces and torques can all be precalculated in a number of points over a map
of possible attitudes, and then interpolated as necessary during the real-time integration
and corrected with the actual local solar flux.
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Figure 4.12: Depiction of ray-casting in AMOSPy. Some facets’ contributions are discarded
due to shadowing, the other components are summed over the whole surface to calculate
net force and torque

AMOSPy performs this computationally costly sampling and force/torque/attitude map
generation only once, when a spacecraft file is finalized, so that it doesn’t need to perform
it later on during the actual simulation.

4.6 Electrical forces modeling
Since all analytical models examined in the past have proven to be unable to adequately
capture all phenomena and aspects of the plasma environment around small airless bod-
ies, as of this day AMOSPy is only equipped to receive information on the electrostatic
potential and field from external data. In defining the main body, a routine is available
to read electrostatic potential and electric field data, sampled over a 3D cartesian mesh
of points, from file. These files must be provided in the format used by William Yu
and Dr. Joe Wang of USC for their PIC analyses (since these results will be at the
base of the future investigations). The origin of the data, however, is not important:
for instance, an ad-hoc preprocessor could easily compile these data files in the required
format using a new analytical model.

Potential and field data are assumed to be defined in the RIC reference frame and
static (i.e. time-invariant). Implementing dynamic electrostatic fields, for example tak-
ing into account the rotation of an irregular main body, represents a tough challenge
with the current method, both due to the computational load and most importantly
due to the quantity of data which would have to be collected beforehand (e.g. a great
number of runs to map every possible asteroid-Sun attitude). This simpler approach
with static fields was deemed sufficient for the time being, moreover it is already ac-
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curate for the spherical test bodies which are currently under investigation (even with
irregular gravity).

4.6.1 Forces and Torques

Whatever the electric model assumed, the simulator must be able to calculate forces
and torques applied on the S/C given the local electric field E and electric field gradient
Ge.

Force

Since the spacecraft is treated as an extended body, the force due to the electric field is
calculated as follows:

fe =

∫
S/C

E(r) dq (4.55)

The spacecraft can either be considered as an extended body characterized by net charge
and first and second moments of charge, or as a collection of point charges localized at
the center of each part.
In the former case a linear approximation of the local electric field is assumed:

∆r
.
= r− r0 (4.56)

E(r) = E(r0) + Ge(r0)∆r (4.57)

In which r0 is the position of the spacecraft center of mass. Equation [4.55] can then be
expressed as follows:

fe =

∫
S/C

[E(r0) + Ge(r0)∆r] dq

= E(r0)

∫
S/C

dq + Ge(r0)

∫
S/C

∆r dq

= E(r0) q + Ge(r0) Sq (4.58)

The second integral cannot be canceled out as it was done with the gravitational forces,
since the center of charge might not coincide with the center of mass. That term repre-
sents therefore the first moment of charge about the center of mass Sq.

In the latter case [4.55] can be expressed as the sum of the forces on each part k (rk is
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the center of the part):

fe =
∑
k

(∫
part k

E(rk) dqk

)
=
∑
k

(
E(rk)

∫
part k

dqk

)

=
∑
k

(E(rk) qk) (4.59)

This variant is more intensive from a computational cost standpoint, but it can be more
precise for very extended bodies, over which the electric field gradient can’t be assumed
to be constant and the linear field approximation is unacceptably imprecise.

Torque

The torque due to the electric field on an extended body about its center of mass is
calculated as follows:

Te =

∫
S/C

∆r× E(r) dq (4.60)

Where ∆r is defined as in [4.56]. Again, the spacecraft can either be considered as an
extended body characterized by mass and moment of inertia, or as a collection of point
masses, one for each part.
In the former case the same linear approximation of the local gravitational field as in
[4.57] is assumed. Equation [4.60] can therefore be expressed as follows:

Te =

∫
S/C

∆r× [E(r0) + Ge(r0)]∆r dq

=

∫
S/C

∆r dq× E(r0) +
∫

S/C
∆r×Ge(r0)∆r dq

= Sq × E(r0) +

∫
S/C

∆r×Ge(r0) dq︸ ︷︷ ︸
TeG

(4.61)

The second integral involves the second moment of charge, and can be calculated in a
similar manner as for the gravity gradient torque in [??]:

TeG =

 Gyz(Izz − Iyy) +GxzIxy −GxyIxz +Iyz(Gzz −Gyy)
Gxz(Ixx − Izz) +GxyIyz −GyzIxy +Ixz(Gxx −Gzz)
Gxy(Iyy − Ixx) +GyzIxz −GxzIyz +Ixy(Gyy −Gxx)

 (4.62)
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In which Iij and Gij are the components of, respectively, Ge(r0) and the second moment
of charge of the body Iq (it is calculated in much the same way as the inertia tensor,
with charge instead of mass).
In the latter case [4.60] can be expressed as the sum of the torques generated by the
forces on each part k (rk is the center of mass of the part):

Te =
∑
k

(∫
part k

∆rk× E(rk) dqk

)
=
∑
k

(
∆rk× E(rk)

∫
part k

dqk

)

=
∑
k

(∆rk× E(rk) qk) (4.63)

A more precise (but computationally costly) alternative to these two methods would be
to apply the former to each individual part, and then to sum forces and torques over the
whole spacecraft. At this time, however, this alternative is not implemented in AMOSPy.

4.7 Testing and Future work
AMOSPy has recently undergone its preliminary integration testing phase, to make sure
that all the modules are integrated correctly and produce sensible outputs, and that the
performance is satisfactory.
Some analytical results have been compared to previous analyses and have been found to
be in very good matching, with relative errors well below 1%� (Figure 4.13, Figure 4.14).

Future work will include more extensive testing and validation, the definition of an
operational set of main bodies and test spacecrafts, with other PIC-derived plasma field
data, and finally the implementation and testing of charge control laws and algorithms.
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Figure 4.13: Comparison of MATLAB results (previous analyses, blue) and AMOSPy
results (red) for a particular run. The results are almost perfectly overlapping. The
relative errors (shown in the two lower graphs) are well within 10−3.

Figure 4.14: Comparison of MATLAB (previous analyses, left) and AMOSPy (right) tra-
jectory output for the same run as the figure above.

74



Chapter 5

Conclusions

The purpose of this work was to both improve the existing models and to develop new
models and simulation tools to study the E-Glider dynamics.

Three main areas of work were identified:

• The refinement and expansion of models concerning the plasma physics and elec-
trostatics of the E-Glider interaction with the electric environment.

• The development of a complete orbital and attitude dynamics simulator, valid for
arbitrary spacecraft geometries and main body properties, including modeling of
gravitational, radiation pressure and electrostatic interaction.

• The definition of an active position/attitude charge control strategy and its vali-
dation through simulation.

Perhaps the most important result concerning the electrostatic interactions is the greatly
reduced power requirement (if compared to the previous analyses) obtained by employ-
ing thin wire electrodes, which brings the E-Glider concept into the feasibility range of
power-to-weight ratio even for solar powered nanosatellites.
Elevated electrode potentials are now probably the main limiting factor for the system
design, and determining more precisely the feasibility limits for these (taking into ac-
count all kinds of secondary aspects such as sputtering, secondary emission, thermionic
emission, hard radiation, vacuum discharge...) will be useful in the future for determin-
ing more precisely the design constraints.
Concerning the plasma environment, another important result was the realization that
simplified analytical models can’t provide accurate enough data for a reliable modeling
of the electrostatic interaction, therefore data derived from PIC simulations and similar
approaches should be the main source for future analyses.

As for the active control dynamics, the results obtained in the simple 2D model are
greatly encouraging and suggest that an extension to the full 3D model may very well
be achievable. This could be a task for the future activities on the E-Glider dynamics
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modeling.
This result also proves the applicability of the E-Glider technology as a precision atti-
tude control and stationkeeping system. Should it turn out that the requirements for
the use of the E-Glider technology as a main propulsion system (hovering, levitation, ...)
were impractical or unfeasible, it could still easily be repurposed as a precision manoeu-
vering or attitude control system. Moreover, this kind of application could possibly be
performed in a wider variety of environmental conditions. If the required forces/torques
were limited, even the use in LEO could perhaps be feasible (e.g. as an intermediate
solution between magnetorquers and reaction wheels, with modest torques and no sat-
uration).

Lastly, the developed multifield simulator, AMOSPy, has all the necessary capabilities
for becoming in the future a valid software testbench for E-Glider concepts, and can
allow the verification of active charge control algorithms, or trajectory stabilities, or the
calculation of power requirements.
Some strong points of this simulator consist in fast, nonsingular gravity models (4.4),
a very accurate and robust raytracing algorithm to calculate solar radiation pressure
effects (4.5), and a proximity dynamics model which is valid also for eccentric orbits
of the target body (while most standard models are only valid for quasicircular orbits)
(4.3.1).
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Quaternions

Quaternions are traditionally used for representing spacecraft attitudes, since they don’t
present the singularity issues exhibited by Euler angles in computing the angular velocity
[5].
A quaternion, in the mathematical sense, can be thought as the extension of a complex
number to four dimensions. Their definition was introduced by irish mathematician
William Rowan Hamilton in 1843:

q
.
= q0 + iq1 + jq2 + kq3

i2 = j2 = k2 = ijk = −1

When using quaternions for representing attitude, however, one can simply think of a
quaternion as a vector of four components, albeit with a peculiar algebra.
A quaternion represents a rotation about an arbitrary versor. The first component (the
real part of the quaternion) represents the rotation angle θ, while the other three identify
the versor û:

q =

[
q0

q1:3

]
.
=

[
cos(θ/2)

û sin(θ/2)

]
(A1.1)

The inverse quaternion represents the inverse rotation:

q−1 =

[
q0
−q1:3

]
.
=

[
cos(θ/2)
−û sin(θ/2)

]
(A1.2)

Suppose that aqb (with inverse bqa) represents the rotation which overlaps reference
frame b to reference frame a. Then, one can use this quaternion to convert vectors
among these reference frames as follows:[

0
ax

]
= aqb ⊗

[
0
bx

]
⊗ bqa (A1.3)

The operator ⊗ in this context represents quaternion multiplication:

p⊗ q =

[
p0

p1:3

]
⊗
[

q0
q1:3

]
=

[
q0p0 − p1:3 · q1:3

q0p1:3 + p0q1:3 − q1:3 × p1:3

]
(A1.4)
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Even with proper optimization, using quaternions for these kinds of calculation is more
computationally intensive than using simple rotation matrices (in fact it is often conve-
nient to convert the quaternion to a rotation matrix and then use that for the calcula-
tions).
It is therefore advisable to use monolithic rotation matrices whenever necessary, e.g.
for static reference frame conversions, and Euler angles derived rotation matrices for all
transformations which are certainly nonsingular and whose variation law is known.
However a quaternion is still the most practical choice for attitude propagation and in
case of singularities.

The quaternion rates can instead be obtained from the angular velocity as follows:

˙aqb =
1

2

[
0

aωba

]
⊗ aqb (A1.5)

As used in the second cardinal equation of motion [4.23]
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Fast Keplerian Solver

The Kepler problem is the calculation of the position law ν(t) along a keplerian orbit.
One can define three "anomalies" (i.e. angular positions along an orbit):

• ν, the true anomaly, defined as the angle between the periapsis and the orbiting
body, centered on the parent body;

• E, the eccentric anomaly, defined as the angle between the periapsis and the
orbiting body, centered on the orbit center;

• M , the mean anomaly, defined as the eccentric anomaly of an ideal body orbiting
on a circular orbit with the same semi-major axis as the real one (and same epochs
at periapsis tP ).

Of these, the mean anomaly M has a known law M(t), while the others are bound to
each other by two equations:

M(t) = n(t− tP ) =

√
µ

a3
(t− tP ) (A2.1)

E(t) = M(t) + e sinE(t) (A2.2)

ν(t) = arccos

(
e− cosE(t)

e cosE(t)− 1

)
(A2.3)

Of these, equation [A2.2] is trascendental, therefore it must be solved numerically.

Initial value

Equation [A2.2] itself can be used as an iterative method:

Ek+1 = M + e sinEk (A2.4)

Assuming E0 = M , which is the limit in the case e→ 0, one can write an explicit third
order approximation as follows:

Ei = M + e sinM + e2 sinM cosM +
1

2
e3 sinM(3 cos2M − 1) (A2.5)
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Convergent iteration

While the previous iteration is valid for a first, quick approximation, a more sophisticated
method is then required to quickly reduce the residual error.
A residual error function f is defined:

f(x)
.
= x− e sinx−M (A2.6)

Per definition, f(E) = 0. The error on the eccentricity value can be defined as ε .
= x−E.

One can then write a Taylor expansion about E = x− ε as:

f(x− ε) = (x− e sinx−M)− (1− e cosx)ε+
1

2
(e sinx)ε2− 1

6
(e cosx)ε3 . . . (A2.7)

In Horner form one could write:

f(x− ε) = (x− e sinx−M)− (1− e cosx)ε

f(x− ε) = (x− e sinx−M)− (1− e cosx− 1

2
(e sinx)ε)ε)

f(x− ε) = (x− e sinx−M)− (1− e cosx− (
1

2
(e sinx)− 1

6
(e cosx)ε)ε)ε)

. . .

(A2.8a)

(A2.8b)

(A2.8c)

For each equation, one can force the LHS to 0 and solve for the external ε to obtain a
new iterative method of order n.

εk+1 =
xk − e sinxk −M

1− e cosxk

εk+1 =
xk − e sinxk −M

1− e cosxk − 1
2
(e sinxk)εk

εk+1 =
x− e sinx−M

1− e cosx− (1
2
(e sinx)− 1

6
(e cosx)ε)ε

. . .

(A2.9a)

(A2.9b)

(A2.9c)

Finally, one can substitute the εk+1 from the LHS of each equation into the εk of the
RHS of the following one, in order to build a direct iteration in the form εk+1 = g(xk)
of order n (since in the first equation εk is not present in the RHS). This can then be
used to refresh x (the eccentricity estimate):

x0
.
= Ei [A2.5] =⇒ εk+n = g(xk) =⇒ xk+n = xk+n − εk+n . . . (A2.10)

For AMOSPy the third order iteration was chosen, as it is shown in [18] that, when
combined with the third order initial estimate, it constitutes the fastest algorithm of
this family.
The iteration is stopped when ε becomes smaller than a certain arbitrarily imposed
threshold.
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Code

A snippet of simplified code from AMOSPy, containing a computationally optimized ver-
sion of the algorithm described above, is presented here:
def propagate(self , t, output=’ni’, tol=1e-12, maxiter =1e2):

# Calculate mean anomaly
M = self.M0 + (t-self.t0)*self.n
M = M % (2*np.pi)
if output.upper() in (’M’ ,):

return M
# Calculate eccentric anomaly
# 3rd order iterative method from Murison 2006
loop = True
iter = 0
s = np.sin(M)
c = np.cos(M)
E = M + self.e*s + (self.e**2)*s*c + 0.5*( self.e**3)*s*(3*(c**2) -1)
while loop:

iter = iter+1
if iter > maxiter:

raise RuntimeError("Kepler solver failed to converge")
x1 = np.cos(E)
x2 = self.e*x1 -1
x3 = np.sin(E)
x4 = self.e*x3
x5 = x4+M-E
x6 = x5 / (x5*x4/x2/2+x2)
dE = x5 / ((x3/2-x1*x6/6)*x6*self.e + x2)
if abs(dE) < tol:

loop = False
E = E - dE

E = E % (2*np.pi)
if output.upper() in (’E’ ,):

return E
# Calculate true anomaly
ni = np.arccos ((self.e-np.cos(E))/( self.e*np.cos(E)-1))
if E > np.pi:

ni = 2*np.pi - ni
ni = ni % (2*np.pi)
if output.lower() in (’ni’ ,):

return ni
else:

raise ValueError("Unrecognized or unsupported output request")
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