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Abstract
In many real world applications the resolution of optimization
problems involving the evaluation of costly functions is needed
and sometimes the evaluation process is contaminated by noise.
This case has been widely studied in literature, but the case of
robust optimization, requiring the evaluation of many different
functions, has been neglected. In this work we propose a variant of
standard Bayesian optimization methods that in some cases
achieve better performance with the same amount of observations.
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Chapter 1

Introduction to Optimization

1.1 Mathematical Optimization

In many fields of mathematics, computer science or real life applications a problem that
commonly arises is to find the best element between a set of candidates with respect to
some criterion. Usually a function, mapping from the set of candidate solutions to real
numbers, is used to indicate the “goodness” of a solution, since real numbers induce a
partial ordering on the set of candidate solutions. A common example is the maximization
of some measure of utility, such the profit, depending on some decision variables, i.e. the
things that we can directly influence. The details of each problem can be very different and
so the procedures used to find a solution, but here we try to present a brief introduction
to the general terminology.

Indicated with X the set of possible choices, also called search space, and given the
criterion of choice defined by the function f : X — R, generally called objective function,
we want to find z,, € X such that f(x,,) has the greatest possible value (or the least
one if we want to minimize the objective function) between all the elements of X'. Often
the search space is defined starting from a simple and wider set (for example R™ or N")
and then it is refined adding conditions that have to be satisfied by z,,, called constraints.
Constraints are generally expressed as an equation or an inequality defined by a functions
X — R and are generally distinguished in

e equality constraints, such as g(x) = 0
e inequality constraints, such as h(z) >0

A simple and quite general optimization problem can be expressed as follows

max f(z)
gi(r)=0Viel (1.1)
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where {g; }ies is the set of equality constraints and {h;};c; is the set of inequality con-
straints.

The strategies to solve this kind of problems are various and in many cases it is not
possible to assure that the optimal point has been found in the given time, but often a
good approximation is sufficient; in some cases it is even possible to find an upper bound
on the difference between the value of the objective function of current solution and the
optimal one, to assure that the current solution differs not too much from the optimal
one. However the solver method has to be chosen carefully since the search space in many
applications is huge and the wrong approaches could not give any result with the available
resources.

1.2 Robust Optimization

Sometimes solutions found by standard methods are not satisfactory in practice, even if
the optimal one with respect to the objective function has been found; this affirmation
could seem contradictory, but more often than not the objective function is not something
to take for granted and its definition is as important (or even more important) than the
solver methods itself. This could happen for example if the solution found by a method
can not be exactly replicated in the real application and noise is “injected” in the solution
itself, as in the case of numerical errors or physical measurement tolerances. Based on this
consideration, we would like to find more “robust” criterion of choice. The word robust can
have many different meanings and therefore many different kinds of “robust optimization”
have been proposed, for example resilience to implementation noise, stochastic constraints
and uncertainty in the definition of the optimization function. In this work we will focus
on robustness with respect to uncertainties in the objective function.

As previously exposed, the objective function is not always given so we could be un-
certain on which objective function to use. At a first level, the uncertainty could arise
from the fact that the value we want to maximize could be a random variable. In this
case we could use some statistic of the random variable and the most obvious possibility
is its expected value. This approach has the advantage to be simple, but it also has some
limitations: it doesn’t consider the variance of the variable and higher moments, therefore
it doesn’t account for the risk of bad outcomes and the benefits good ones. A common al-
ternative is the value at risk, defined as the a-quantile of the distribution of the considered
random variable, where o € (0,0.5) in the case of maximization. This can be interpreted
as “Our random variable as 1 — a probability of being smaller than the value at risk”. Also
this approach as known limitations, for example it ignores the values at the tails of the
distribution, but it is a useful alternative.

A second level of uncertainty could arise from other kinds of ambiguity in the objec-
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tive function, for example it could depend on parameters that have to be estimated with
numerical and/or statistical methods and are subjected to not negligible errors. Examples
are the correlation matrix of financial assets or the sales forecast on a granular level that
are notoriously hard to correctly estimate, but innumerable other cases are possible. The
uncertainties could also arise from distributional uncertainties: for example “Is the demand
of blue hats distributed according a Poisson or negative binomial distribution?” has not an
obvious answer if we have too few historical data.

The set indexing the possible objective functions when varying the parameters estima-
tions, the distributional hypothesis and the other sources of uncertainty is called uncer-
tainty set and is usually indicated by /. Therefore we will indicate the set of possible
objective functions as {f,}uey. How can we handle many, possibly indexed by a infinite
set, objective functions? This answer is not trivial, since it is not obvious how to define an
ordering on the search space.

We could use a Bayesian approach, imposing a prior distribution on the uncertainty
set, and then we could use the expected value as objective function to define a classical
optimization problem. In some cases this approach could work, but not always. Sometimes
the costs of a negative outcome are much more relevant than the benefits deriving from
positive ones and we would like to avoid them as much as possible. Moreover it is not
obvious how to place the prior and even a flat one could be too strong as an hypotheses.
We should try to find a method that doesn’t require a probabilistic distribution over the
uncertainty set.

Another idea could be to use the concept of Pareto efficiency: an element x of the
search space X is said to be Pareto efficient with respect to a set of objective functions
{fuuer if V& € X Ju € U such that f,(z) > f.(Z); this is equivalent to saying that x
can not be beaten contemporaneously by another solution in all the criterions defined by
the objective functions. This definition doesn’t require a probabilistic distribution over the
uncertainty set and it should always avoid solutions that are particularly bad with respect
to some criterion. A potential drawback of this method is that there is no guarantee that
the Pareto efficient solution is unique, in fact, as shown in figure 1.1, in the vast majority
of cases it is not, therefore we would need an ulterior criterion in order to choose between
the efficient solutions. Moreover if the uncertainty set is large, or even infinite, find this
kind of solutions could be really difficult.

Another possibility could be to use a worst case scenario, trying to find a solution that
is quite good with respect to each objective function and it is never too bad. This can be
written as follows

Dey S 2

If f(x,u) is a random variable, i.e. if f is a stochastic process (see 2.2 for the definition),
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Figure 1.1: An example of some Pareto efficient points and some inefficient ones. The
feasible area is shaded in red. The set of all efficient points defines an efficient
frontier that separates feasible and unfeasible points.

we could use the expected value to define the objective function of our optimization problem
as follows:

max min E[f,(z)] (1.3)

zeX ueld

Other approaches are also possible rather than using the expected value, such as pre-
viously described, but for simplicity we only discuss this case.

It should be noted that this problem is quite different from the maximization of
E[rmbr} fu(-)]. In fact minimizing the expected value means that we want to impose a
ue

lower bound as a precautionary measure to the value that we could obtain in order to
avoid bad situations, while considering expected value of the minimums means that each
time the worst scenario between all the possible ones is realized.

1.3 Discretizing the Uncertainty Set

Many methods cannot handle a continuous or mixed discrete-continuous uncertainty set,
so it is useful to find a way to discretize it. Fortunately it is not always necessary to keep
all the points of the uncertainty set to retain the accuracy of the results, in fact in many
cases some values u € U cannot lead to a minimum of f, and therefore doesn’t influence
the behavior of the objective function.
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Figure 1.2: An example of a robust optimization problem in the sense of robustness with
uncertain objective function, defined by three functions. The dashed lines
represent the value of the fys, the red line represents their minimum, while
the red dot is the optimal point.
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Figure 1.3: An example of the results of three different Latin Hyper-cube Sampling and
a random uniform sampling strategies. Each sample consists of 100 points.

Knowledge of the underling function can be useful, in fact it can lead to simplifications
of the uncertainty set. For example if the underling function is monotonic it is sufficient
to consider points on a subset of the exterior part of the uncertainty set.

It is not always possible to exclude completely some points from the uncertainty set,
so we could need to choose a more or less arbitrary subset of points to use as a simplified
version of the uncertainty set. A couple of simple methods are the use of a homogeneous
grid of points or randomly sampled of points from U, for example according to a uniform
distribution. A first improvement on the sampling strategy could be to use sampling meth-
ods that avoid to over-sample some regions while under-sampling other ones, such as the
Latin Hyper-Cube sampling method. An example of the results given by different sampling
methods can be seen in figure 1.3.

It could even be possible to dynamically change the sample points of the uncertainty
set but we leave it to future development.



Chapter 2

Optimization via Response Surface

It is not always possible to directly evaluate the objective function and/or its derivatives.
In fact in many real world applications the objective function can be evaluated with a
combination of: high economic cost, high latency, high computational complexity, non
negligible errors. In some cases the empirical evaluation is not even possible, so we have to
rely on computer simulations. An example is the design of complex buildings that requires
long periods of time to be completed and can collapse if the choices are not sufficiently
accurate; the simulations used in this cases can require up to days, or even weeks, but this
is nothing compared to the time necessary to complete the building itself and the costs of
a potential collapse.

This kind of complexity vastly reduces the number of evaluations of the objective func-
tion that we can reasonably require in order to estimate the optimal solution. This problem
is even more evident in the case of the maximization of the minimum of the expected value
of many noisy functions, indeed to correctly estimate the minimum we have to estimate
the expected value of all of them, so in theory many evaluations are required. Smart ap-
proaches to the approximation can reduce the total number of observations required, but
the problem persists.

We need a method to guide the optimization process in ways that don’t require too
many function evaluations. But how can we optimize a function without knowing its value?
We have to made some reasonable hypothesis on its behavior and then use the available
observations to infer characteristics of the function (for example the value in a point not
sampled yet) to decide if we need more sample, for which function and in which point of
the search space.

A common approach is to substitute the objective function with a surrogate function,
often called response surface, that is much cheaper to evaluate and exhibits nice analytic
properties. Various kind of regressions can be used as surrogate model, such any kind
of linear or non-linear regression, but non parametric model are often preferred for their
flexibility.

13
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2.1 Lipschitzian Model

The first step to build a surrogate model for a function is to explicitly define our assump-
tions. For example, how smooth is it? How fast can its value change? This kind of
information are fundamental to define the strategy we will use to explore the search space.

The simplest (and probably most important) characterization of a function is describing
how steep it can be; if the function is differentiable this is equivalent to impose an upper
bound to the norm of the gradient, but we can do something very similar without requiring
the function to be differentiable. A simple way to do so is to suppose that the function is
Lipschitzian with constant L. A function between metric spaces f : (X, d;) — (Y, ds) is
said to be Lipschitzian with constant L if

dg(f(l‘l), f(l’g)) S Ldl(l’l,$2) \V/l'l,xg c X (21)

If we are working with functions from R™ to R we can easily use the norm L;, Ly or
L., to characterize the spaces as metric, and so the definition of Lipschitzian function is
meaningful.

The main advantage of supposing an objective function to be Lipschitzian is that it
let us exclude big regions of X surrounding examined points, with larger regions around
points associated with lower values. This can be done computing the upper bound (or the
lower one if we want to minimize the function) of the values that the objective function can
assume and then examining only the points than can potentially lead to an improvement.
For example, if we consider f : ([0,1]7,] - [lo) = (R,]| - |l) We can proceed with a grid
search that requires at most [L/€]? function evaluations. This could be excessive in many
cases, in fact even for relatively “good” values as L =1, € = 0.1, D = 10 we could need as
much as 10'° function evaluation, but in many cases this is a good starting point.

Other limitations of this method are

e it does not account for non deterministic values
e it does not give additional information to guide the search
e it could be hard to find a good value for the Lipschtiz constant

e if we underestimate the Lipschtiz constant, we could permanently exclude the optimal
point

2.2 (Gaussian Processes

The previous Lipschitzian hypothesis is not always sufficiently good to guide the search,
also because it lacks flexibility and a probabilistic interpretation. Moreover the hard bound
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Figure 2.1: Example of Lipschitzian function sampled in three points, and the relative
upper bound for I = 1. The portion in red is the area where an improvement
can happen, therefore only = values relative to it have to be evaluated.

imposed by the choice of the Lipschitzian constant can potentially lead to the exclusion of
potentially good solutions.

An idea to solve this issue could be to relax the Lipschitzian hypothesis from a deter-
ministic rule to a probabilistic one, to model not only some bound, but the distribution of
the function values in all the space points. To do so we need to define a stochastic process

Definition 1 (Stochastic process). A stochastic process is a collection of random variables
defined on the same probability space (2, F,P) indezed by a set I, all taking values in a
common space S, that has to be measurable with respect to a o-algebra X.

We will refer to the value at the points z of the stochastic process g as g, or g(z).

If we want to describe the behavior of a function f : X — R from a probabilistic point
of view we can use a stochastic process with values in R indexed by X. This let us to de-
scribe the probabilistic distribution of the value of the function in a given point and also to
characterize the correlation between the value in different points; the latter is especially use-
ful to describe the link between the known data and the unknown values not yet evaluated.

It is possible to define an immense variety of stochastic processes but we will focus on
subset that exhibits nice properties, Gaussian processes.
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Definition 2 (Gaussian process). A Gaussian process g is a stochastic process with values
on R indexed by X such that for each finite number of values Xy, ..., Xn, € X, [Gxyy - Ix, )" 08
distributed according to a multivariate normal with mean [m(x1), ..., m(x)]T and variance-
covariance matric K such that K;; = k(x;,%;), where m : X — R is called mean function
and k : X* — R is called covariance function. k must be chosen in such a way that the
matriz K is always symmetric and positive definite.

Gaussian processes derive many nice properties from the multivariate normal distribu-
tion, for example is possible to compute the conditional distribution using the following
lemma.

Zl] with mean p = {ul} and

Lemma 1. Let z be a multivariate normal partitioned in {z I
2 2

Y1 22
Y1 Yo
of 2o given z; = a), where a € R, is a multivariate normal with mean pg + Y2137 (@ — 1)
and variance-covariance matric gy — 22121’11212.

variance-covariance matric ¥ = [ 1, then (z2|z; = a) (the conditional distribution

For simplicity in the following part we will work with matrices containing the data,
in particular an observation on each row. We will also use a similar notation for random
variables representing unobserved quantities.

The lemma 1 let us to infer the value of the Gaussian process given some observations.
For examples, supposing X C RP, if we have a set of n observations D = (X,Y) of a
Gaussian process g, where X € R™? and Y € R™ ! (they are matrices with observations
on each row) for each set of points defined by a 15 X p matrix x, we can infer the distribution
of g(x). In fact, with a slight abuse of notation the mean and the variance-covariance matrix
can be expressed as follows

poip (%) = m(x) + k(x, X)k~H (X, X)(Y — m(X))
ogp(x) = k(x,x) — k(x, X))k (X, X)k(X, x)

In theory, if we know m and k this is all we need to know to make inferences from
observations. Actually computing the value of ji5p and ogp is not trivial for data set that
are not really small or that exhibit strongly correlated data (as a point of X sampled more
than once); this difficulty arises since it is necessary to compute the inverse of k~(X, X).
To solve this issue techniques of linear algebra such as the Choleski or singular value de-
composition (or the truncated SVD [4]) can be used, but we omit the details. However for
the resolution on big amounts of data custom methods are necessary, such as presented in
[25].

The process of inference can be seen as defining a new Gaussian process with different
mean and covariance functions, where mp(-) = pgp(-) and kp(-) = ogp(-). This new
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process encodes the data in the modified mean and covariance functions and can be seen
as a standard Gaussian process.

The inference method defined so far is enough in many cases, but often we cannot di-
rectly sample from the objective function; for example the result of a computer simulation
could depend on a set of pseudo-random number. In many circumstances we can suppose
the randomness of the sampling to be equivalent to additive normal noise. In this case
our data set is not directly composed of values assumed by the Gaussian process but their
noisy version. We can express the new model as

y ~ N(g(x),0%(x))

g~ GP(m. k) (2.2)

Often the noise is supposed to be independent homoscedastic, i.e. independent from x.

Obviously in many cases the noise can also be non Gaussian or non additive. Common
alternatives are the Bernoulli, binomial and Poisson distributions for the discrete cases, or
student-t for the continuous ones. In this case the Gaussian process is used as a latent pro-
cess that model the parameter of the distribution, similarly to a generalized linear model.
In this situation it is not obvious how to do inference and usually approximated method
have to be used. In literature many methods have been proposed to approximate the pos-
terior distribution of the model; the most widely used are Laplacian approximation, KL
minimization, expectation maximization and Monte Carlo sampling. Each method gives
different results with different characteristics; for example the Laplacian approximation
tries to match the maximum of the true posterior with a multivariate normal likelihood.

In the case of a Gaussian process with additive Gaussian noise direct inference can be
used, in fact is sufficient to modify the covariance function in order to include the noise.
Again this result directly descents from an analytic property of the Gaussian distribution,
the additivity. In fact if the noise has zero mean and variance o2 the prior distribution of
the i*" observation ; is

yi ~ N(m(x;), 0% + k(z;, ;) (2.3)

Since the noise is distributed with zero mean the prediction mean for y; and g(x;) is the
same but the variance is generally different, in fact the variance of the distribution of y; is
greater or equal than the variance of the distribution of f;. This let us define two kinds of
posterior intervals, predictive intervals and credible intervals.

For a € (0, 1) the a-credible interval is the interval of R centered in the prediction value
such that the integral of the posterior distribution of the Gaussian process has a a value of
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«. Since the posterior distribution is normally distributed this is equivalent to the interval
defined by pigp(-) £ waogp(-) where w, is an opportune coefficient € (0, 0o).

For a € (0,1) the a-prediction interval is the interval of R centered in the prediction
value such that following the posterior distribution a new sample y would have a probabil-
ity of a of being inside of. Again, since the posterior distribution is normally distributed
this is equivalent to the interval define by pgp () & wa(ogp(-) + o(-)).

Now we know how to make inference from data given a Gaussian process defined by
a mean function, a covairance function and eventually a sample noise variance (supposed
constant across all the space X'). This is a good result, but in the vast majority of ap-
plications, we know none of the precedents. Usually the mean function can be supposed
to be identically zero, since the method will adapt to different values (at least locally)
even with few observations; this is especially true if the data are normalized. We could
do something similar with the covariance function and the sample noise variance but this
could lead to bad performance of this method, over or underestimating both the spatial
variance of the function and the noise scale. A better approach could be to estimate the
covariance function and the noise level from the data.

2.3 The Choice of the Covariance Function

In the majority of practical application the exact nature of the covariance function is un-
known, even if some degree of prior knowledge could be available; generally we don’t know
the expression but we only expect certain qualitative characteristics, so usually parametric
functions are used. The parametric functions used to model the covariance function are
generally called kernel function (from the Middle English word kernel, meaning core or
seed) since they are the central part of a Gaussian process from which the characteristics
of the samples arose.

From certain points of view the quality of the results doesn’t depend too much on the
kernel function, since a Gaussian process always tries to fit the data points. This statement
should not let us underrate the importance of selecting the correct kernel function, since
the quality of the interpolation, particularly in areas of the space not yet explorated, can
depend much on the covariance function, especially in term of variance. Other character-
istics that the covariance function can give to the process are periodicity, smoothness (or
lack of) and spatial trends, such as linear or quadratic ones.

Obviously the kernel function has to be chosen in such a way that the resulting co-
variance matrix is symmetric and positive definite, so not any function can be used. In
literature a vast number of kernel functions has been proposed; we briefly introduce some
of the classical choices:
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the Gaussian kernel (or quadratic exponential)

k(z,y) = o exp(—pllz — y|13) (2.4)

with parameters ¢ > 0 and p > 0;

the exponential kernel

k(z,y) = o” exp(—pllz — yl|2) (2.5)

with parameters ¢ > 0 and p > 0;

the periodic exponential kernel

k(z,y) = 0% exp(—p1sin®(p2]|z — y]2)) (2.6)

with parameters o > 0, p; > 0 and py > 0;

the dot-product kernel

k(z,y) =0y +oy(x—c) (y—c) (2.7)

with parameters o, > 0, 0, > 0 and ¢ € R";

the Matérn kernel

k(z,y) = o

2171/ _ v _

(,/QVH:]C—y”2> K, (,/QVM) (2.8)
I'(v) p p
with parameters o > 0, v > 0 and p > 0 and where Gamma is the gamma function and
K, is the modified Bessel function of the second kind.
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(a) (b)

(c) (d)

(e) (f)

Figure 2.2: Some samples from the prior distribution given by: a Gaussian kernel (2.2a);
a Matern kernel with v = 1.5 (2.2b); a dot product kernel (2.2c¢); a Matern
kernel with v = 2.5 (2.2d); a sum kernel obtained from a Gaussian kernel
and a dot product kernel (2.2e); a product kernel obtained from a Gaussian
kernel and a dot product kernel (2.2f).
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There are many possible ways to insert prior knowledge in the kernel function. A first
way is to impose a prior distribution over the parameter space to encourage some char-
acteristics of the kernel. Another approach is to hand craft special kernel to incorporate
the expected structure of the space. For example is possible to combine different kernels
to increase the complexity and join their characteristics; possible binary operator between
kernels are the addition, the multiplication and the exponentiation. Another possibility
is to choose on which dimensions of the input space each kernel has effect. Using these
operations we can obtain arbitrarily complex kernel function combining the characteristics
of many simpler kernel, furthermore we can let the inference method chose the one that is
more adapted to the data, decreasing the magnitude or augmenting the length scale of the
less suitable.

Now the only thing that we have to do is to estimate the parameters of the covariance
function.

2.4 Hyperparameters Estimation

Once we have chosen a kernel function to model the covariance function we have to find a
way to translate the data in the posterior distribution. In other words, we have to find a
way to estimate the distribution of the process in a point given the data observed so far.

A fully Bayesian approach to make predictions is to compute the posterior distribu-
tion of the process including the uncertainty of the kernel’s parameters. This method is
generally expensive because it can not be treated analytically and approximated methods
such as Monte Carlo must be used. The loss of the analytic properties is given by the fact
that generally the posterior distribution is no more normal and therefore closed form infer-
ence is not possible; there are exceptions, for example in [11] is proven that in some cases
the posterior distribution is distributed along a student-t and therefore exact inference is
possible. The main advantage of this kind of methods is that it isn’t necessary to chose
a single set of parameters and therefore there is not the risk of getting stuck in a local
maxima of the kernel coefficients or to underestimate the uncertainty of the prediction due
to a non well localized likelihood distribution when the data don’t bring much information.

However if we want to make predictions faster or in a simpler way, we could drop the
fully Bayesian approach using another common method, the maximum likelihood estima-
tion (MLE). We could use a maximum likelihood estimation method to find a suitable
set of parameters for the kernel, fix them and then computing the posterior distribution.
In this way the value of parameters can be found just once, while the predictions can be
made for arbitrarily many points, requiring less computation time. Moreover the posterior
in this way is tractable and normally distributed, so the inference is relatively fast. The
optimal set of parameters can be found using standard optimization techniques, sometimes
derivative free optimization methods such as the Nelder-Mead algorithm [18] are used, but
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since the derivative of the likelihood with respect to the parameters are generally available
is also possible to use optimization algorithms that require the derivative of the objective
function such as the BFGS algorithm.

In the case of a standard Gaussian process the likelihood with observations D = (X,Y)
the likelihood can be derived directly from the equation 2.3

LO]X,Y) = det(2n[,) " exp{—%(Y —m(X)TKy(Y — m(X))} (2.9)

where Ky = k(X, X|0) is the covariance matrix obtained computing the kernel function
with parameters 6 for each pair of points in X and m(-) is the mean function.

We can consider the log-likelihood to simplify this expression
1
log £L(0]1X,Y) = —g log(2m det(Ky)) — §(Y —m(X) ' Ky(Y — m(X)) (2.10)

where n is the number of observations. Evaluating log £ can be relatively costly and nu-
merically difficult due to the determinant and the inverse of Kjy.

In other cases these methods are not feasible or even possible, for example in the case
of non normally distributed noise. Other methods that have been used in the literature
are for example based on variational inference, expectation maximization and Laplace ap-
proximation, but the analysis of this methods exceed the aim of this work.

2.5 Multivariate Gaussian Processes

Is possible to extend the Gaussian Process to functions with multiple outputs. In the
simplest case we can fit a model for each dimension but this does not consider correlations
between one dimension and another, leaving out some potential information.

The main idea of a multivariate Gaussian process is that a multivariate function can be
converted into a univariate one if we add an ulterior input, the index of the desired output
dimension; for example f : R — R” can also be seen as a function f R x{l,...,n} = R.
Since we have never required the input space to be continuous the new function is suited to
be used for a Gaussian process. This can be implemented using an appropriate covariance
function, such that it takes into account the index of the desired output, i.e. we want
to use a kernel in the form k(xq,x9,41,42) where i; and iy are the indexes of the output
dimensions we are considering. This kind of kernel can be hard to work with, so simplified
versions are often used.
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A relatively general approach is the “Linear Model of Coregionalization”. The main
idea of this method is to see each dimension of the target multivariate process as a linear
combination of a set of latent independent stochastic processes, i.e.

X) = Zazuk(x) (2.11)
k=1

where g, is the 7" dimension of the target process and uy, is the k" latent process. Each
latent process is supposed to be distributed according to a Gaussian process, and often the
same covariance function is shared between different latent function, therefore considering
the independence of the processes the covariance function can be expressed as

(2.12)

— Z kakCOU[Uk(X1)> ur(Xs)]

k=1

If the latent processes can be grouped in () groups with the same covariance function
in each group it can be simplified as

Q
Kij(X1,Xa) = ) bkg(X1, Xz) (2.13)
q=1

where bfj is an opportune coefficient and k, is the ¢ kernel function.

Once that for a given set of points the variance-covariance matrix is defined, the infer-
ence process works in the same way as in the basic case.

2.6 Heteroschedastic Gaussian Process

Previously we supposed the noise to be independent and identically distributed with con-
stant variance across all the space, but this is a strong hypothesis and in many appli-
cations it is simply not true, so if the approximating deriving from supposing the noise
homoschedastic is too onerous we could need a model describing how the variance of the
noise varies across the space.
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In many cases the predictive results with the homoschedastic hypothesis are sufficiently
good in term of punctual estimation, but may greatly fail in estimating the distribution of
the posterior probability. However it is possible to generalize the model to take in account
the heteroschedasticity of the data modeling the variance of the noise with an ulterior
Gaussian process. The solution of the new model is more complicate that the solution in
the homoschedastic case, but many strategies have been proposed in literature, for example
in [19], [20], [21] and [22].

y ~ N(g(x), h(z(x)))
g~ GP(m,k) (2.14)
z~GP(m,, k)

where h : R — R" is a function that map R to the positive numbers; common examples
are exp(-) and (-)2.

2.7 Gaussian Processes with Non-Gaussian Noise

In many cases the available data are not normally distributed, so the hypothesis of Gaus-
sian noise is not applicable; an example could be a spatial counting problem where the
observations of the process are distributed according a Poisson distribution, therefore in

N.

Similarly to what append in a generalized linear model, we can suppose that our Gaus-
sian process is a latent factor influencing the distribution of the observations; in the case of
Poisson observations we could try to use a Gaussian process to model the behavior of the
unobservable parameter of the Poisson distribution A(-) that varies depending on the space
point on which the observation is made. As we did in the case of the standard deviation
of a heteroschedastic Gaussian process, we need a non-linear link function to map from R
to R+. Again, common choices are exp(-) and (-)2.
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Figure 2.3: Example of the result obtained with maximum likelihood estimation with
2 standard deviation bar (2.3a), expectation propagation with 2 standard
deviation bar (2.3b), Laplace approximation with 2 standard deviation bar
(2.3c), Monte Carlo Bayesian inference method showing 100 observations
(2.3d)
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Figure 2.4: A Gaussian process (the mean, the 0.025 and 0.05 quantiles) fitted with
a Laplace method on 50 observations obtained from a Poisson distribution
with parameter varying with respect to the space position; in blue the true
function (2.4a).



Chapter 3

Application to Worst Case
Optimization

In this chapter we present some of the methods that use Gaussian processes to guide the
optimization process of a function that is, in some sense, expensive to evaluate. This is
the case of numerical simulations, physical experiments etc. In many cases the evaluation
process is possible only with a non-negligible noise, so it is necessary to take it in account.

The main objective of the fitted Gaussian process is to provide a strategy to choose the
point were we want to draw the next function evaluation; a secondary one is to provide a
way to approximate the expected value of the function even when only one or few obser-
vations are available for a given point.

Often the branch of optimization that uses this kind of methodologies is called Bayesian
optimization, since the Gaussian process can be interpreted as a prior distribution of the
objective function over an opportune space of functions.

3.1 Efficient GGlobal Optimization

Efficient global optimization (EGO) is the name given to the iterative method of optimiza-
tion that uses a Gaussian process, or a variant of it, as a surrogate model.

Suppose that we want to maximize a function f : X C R®™ — R; note that we are not
requiring X to be continuous and therefore, for example, N? x R"~2 fits our requirements
if n > 2. This function is supposed to be expensive (in some arbitrary meaning) to eval-
uate or even completely impossible to. In fact, sometimes, only a noisy version of it can
be evaluated; a classical example is the presence of additive noise with zero mean. We
will generally suppose the noise to be additive and independently identically distributed
according to a zero mean normal distribution.
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Given a set of p observations D = (X,Y), where X € R™*? is the matrix containing
the predictor variables and Y € RP is the response variable vector, we want to find the
observation point that correspond to the best value of the objective function. In the matrix
of observations, we suppose to have each observation on a different row and we will indicate
with X; or X;. the i observation of the predictor variable. Analogously Y; correspond to
the i*" observation of the response variable.

Now, how can we choose which observation maximize the objective function? If the
sampling method is noiseless, we can simply choose the observation that maximize Y;,
otherwise we need a method to estimated the objective function. In fact, if the response
variable doesn’t identically correspond to the value of the objective function point by point,
we have no guarantee that the point maximizing one is also the point maximizing the other.
The method have to be carefully chosen and should consider some kind of correlation be-
tween different observations, since we could have one or few ones for each point. A possible
approach can be to fit a Gaussian process g|D on the observations, then its predictions can
be used as an approximation of the objective function. Once that one of the observations is
chosen as current solution, we can do two things: choose to take another sample in a query
point in the hope of finding a better solution, or stop the optimization process. The latter
possibility doesn’t need many explanations, but the former is not obvious. What we need is
a strategy to choose a sampling point given the current observations; some methodologies
even use more than one query point per time. After that another observation is taken, the
process can restart.

There are many possible approaches to this phase of the process, since it is not com-
pletely clear how should be chosen the next query point. Ideally, we would like the next
point to be the optimal one, but we also need to know that this point is optimal, or at least
good, otherwise we could take the risk of ignoring it. Moreover focusing only on the value
of the query point in the next step could be too greedy and could lead to bad performance.
Ideally we would like to choose a point that improve both the objective function in cor-
respondence of the current solution and our insight of the characteristics of the function.
This duality define a general trade-off between the exploration of the search space and the
exploitation of good areas of it.

While some approaches try to maximize some information-theoretic measure of our
knowledge of the function ([16]) or resort in heavy simulation of the simulation process
itself ([24]), but the vast majority of the methods used in the literature define an auxiliary
function called acquisition function that quantifies, based on some metric, the “goodness”
of a particular point and then chooses the point which maximizes such metric as the candi-
date point to be examined. Some metrics just search a point that has a good probability of
improving the current solution, while other look many steps ahead; the former are usually
called non-myopic.
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Many techniques have been proposed, with even more variations depending on the
specific case of use, but we will present three of the most common ones. At first we need
to the find the current solution point and value as the point associated to the best value
of the objective function. This can be generally expressed as

Xes = ArgMax fLgp(X;)
xeX (3.1)
Yes = ,ug\D(Xcs)

where figp(-) is predictive mean of the Gaussian process fitted on the observations. It
could also be possible to choice a point that has not been sampled (yet), but sometimes is
safer to choose only between sampled points to larger avoid estimation errors associated
with unexplored ares.

A first criterion for the acquisition function is the Probability of Improvement:
the idea is to search the point that, according to the Gaussian process model, has the
maximum probability of being associate with a value of the objective function greater than
the current one. Therefore the acquisition function is defined as follows

api(x) :=Plg|D(x) > fes] (3.2)

The idea beyond this method is pretty simple and at first sight it could seem to be the
best possible criterion, but it has the tendency to propose points that are near to the cur-
rent solution, so it is necessary to couple it with techniques that encourage the exploration
of the search space.

A second method is the Upper Confidence Bound:
in this case the idea is to maximize the a-quantile of the posterior distribution of the
Gaussian process, where a € (0,1) is a parameter that handles the trade-off between the
exploration and the exploitation of the search space. In case of maximization it can as-
sume a value between 0.5 and 1, because otherwise the quantile would be smaller than the
mean (in the case of a normal distribution). Greater values favor the exploration over the
exploitation.

A third approach is the Ezpected Improvement:
the acquisition function is the expected value of the improvement of the Gaussian process
between the analyzed point and the current solution. In case of maximization it can be
expressed as:

() = E[[gID(x) — fur]] (33)

where [-|T represent the positive part function. In the case of Gaussian processes the
posterior is normally distributed, therefore the expected improvement can be expressed as
follows
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Ug\D(X) Og|D

(%) = (g x) — ycs>¢<w> ' ogm<x>¢<w><;)y“> (3.4

where figp(-) and ogp(-) are the mean and the variance respectively of the posterior
distribution of the Gaussian process, and ® and ¢ are CDF and the PDF of a standard
normal respectively.

Often the expected improvement is generalized adding a parameter to handle the trade
off between exploration and exploitation. One of the most widely known case is the weighted
expected improvement, where the second term of the equation 3.4 is multiplied by a param-
eter w € (0,00). Higher values of w move the trade-off toward the exploration, favoring
larger potential gains over small but certain ones.

After that the acquisition function is defined, in order to find the next point to be eval-
uated is sufficient to find the maximum of the acquisition function itself with any standard
optimization method. Many acquisition functions are differentiable, but often the compu-
tation gradient is relatively complex, so, depending on the details of the case, it could be
better to simply numerically approximate the gradient or to use gradient-less optimization
techniques. The latter is also the case if the search space is discontinuous.

A common and quite general approach to emphatize the exploration of the search space
over the exploitation is to add a small positive number ¢ to the value of the current solution;
this mean that we are interested only in solutions that improve of at least § the current
one, therefore zones that have been widely explored will be more easily discarded. This
method has the tendency to concentrate the augmentation function in few zones, while the
weighted expected improvement generally diffuses it in larger areas.

This method can not be directly applied to a noisy worst case optimization problem
without gross approximations, since the distribution of the minimum of the observations
for a fixed point is not normally distributed, even if it is normally distributed for each value
of the uncertainty set. We would need to approximate at each step the minimum of the
expected values sampling from each function, till reaching a prefixed precision, in this way
we can reduce the variance of the estimation of the mean of each function and therefore
the distribution of the minimum is approximately normal. While there could be smarter
methods than simply sampling each function many times, this requires many function
evaluations and could be computationally expensive. If there are many functions to be
evaluated or if the noise level is particularly high a method that requires less evaluation
could be preferable.
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Figure 3.1: An example of the iterative process of optimization using the expected im-
provement methodology. The vertical line represents the current solution,
while the green area is the (normalized) expected improvement augmenta-
tion function.
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Figure 3.2: 3.2a a Gaussian process with a one standard deviation band (red) obtained
sampling three times the target function (blue). 3.2b the relative augmenta-
tion functions, normalized on the interval: upper confidence bound (blue);
probability of improvement (green); expected improvement (red).
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Figure 3.3: The modified expected improvement functions obtain in the case of:
weighted expected improvement (3.3a) ; adding delta the current solution
value (3.3b). Both the cases refers to the Gaussian process shown in (3.2a).
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3.2 Worst Case Efficient Global Optimization

In the framework of the EGO algorithm we need to directly evaluated the objective func-
tion, or at least we need to gather noisy observations of it. In the case of worst case
optimization this is not easy, because we need to evaluate the minimum of the expec-
tations for each value in the uncertainty set, so various sample are necessary to obtain a
correct estimation. Moreover even if the noise on each function is normally distributed, the
estimation of the minimum is not normally distributed itself and could be highly skewed,
therefore a particular attention is needed. To improve the EGO algorithm we could try
to reduce the number of evaluations necessary at each step decoupling the functions for
different values of the uncertainty set.

For example we could fit a multivariate Gaussian model or n independent Gaussian
processes (or even many multivariate Gaussian processes of reduced size, grouping the el-
ements of the uncertainty set in blocks) and then analyze the behavior of the minimum
between the models. The inference phase is identical to the standard case (simply repeated
many times), but the posterior distribution of the minimum can not be trivially evaluated.
The main problem of making inference in this case is that the distribution of the minimum
(or maximum) of n dependent or independent Gaussian random variables is not generally
known; there are analytic expressions for the PDF and CDF, but the mean and the variance
can only be estimated. So we could extend the augmentation functions only by sampling
on both the current solution and the query point. This could be sub-optimal, since it would
be more costly and in many cases the derivative of the augmentation function would be
not available.

We suppose to have a set of functions { f, }uecy, where U is a set indexing the function
set; clearly in our case it is the uncertainty set. We want to maximize micl} fu(:). We also
(s

suppose to start with a set of observations for each function D = {(Xu, Yu) }uew, with m,
observation for the u'" function. Moreover we denote with g|D our model (a multivariate
Gaussian process or many standard Gaussian processes) and with g|D, its u'* dimension.
Note that in both the cases ¢g|D, is a stochastic process indexed by X.

At first we need to define the current solution. We can simply use the minimum of the
prediction value of the Gaussian process(es) as follows

X.. = argmaxmin b'e
CS g xeX ueld :uu( )

. (3.5)
Yes = 0in P (Xes)

where p, is the v dimension of the prediction of our model. In the case of a mul-

tivariate Gaussian process, it is the u!” dimension of the prediction; in the case of many

standard Gaussian processes, it is the prediction of the u'* Gaussian process. Note that

we don’t necessarily have a sample for each function in this point, but maybe there is not
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Figure 3.4: A comparison of the results obtained by the standard EGO algorithm (3.5a)
and by the Worst-Case-EGO algorithm (3.4b) with the same number of
observations. In this case the standard EGO algorithm uses 5 evaluations
per point to estimate the minimum, while the Worst-Case-EGO algorithm
uses independent processes. All the sample points are randomly chosen.
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such a point.

Similarly to what we did in the standard EGO algorithm, we could try to find the point
that maximizes the expected improvement. Is important to underline that in this case the
expected improvement cannot be analytically computed, even supposing y.s to be constant
and the independence of g|D,, so approximated methods, like Monte Carlo, have to be used.

Another possibility is to extend the “probability of improvement” criterion to the mul-
tivariate case. If we suppose each dimension of our model to be independent, we can write
the probability of improvement as:

P[melg{l 9|Du > Yes + 0] = H[l = P(Yes + 6| pu(@), 0u())] (3.6)
“ ueld
where 1, and o, are the mean and the standard deviation respectively of the posterior
distribution of the u** dimension of our model.

Another idea could be to use an augmentation function for each output dimension,
then summarize all the obtained values in a single number. Since we are considering the
minimum, we are searching a point such that the minimum of the functions is better than
the current solution, so we could search the point that maximize the minimum of the
augmentation functions. This idea can be summarized as follows

max min ay () (3.7)

where q; is the augmentation function applied on the i*" dimension. The main advan-
tage of this method is that it can extend almost all the methods used in the standard case.

In figure 3.5 it is possible to see a direct comparison between different augmentation
functions, in particular: probability of improvement; minimum expected improvement; ex-
pected improvement approximated with a Monte Carlo technique. The qualitative behavior
is similar for all of them, but the sample expected improvement seem to be somewhere in
the between of the other two.
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Chapter 4

Numerical Experiments

In the previous chapters we have shown how is possible to use Gaussian processes to guide
the exploration of the state space in a robust optimization problem. Now we will present
some numerical results to test the efficacy of those methods.

4.1 A Simple Benchmark

Suppose that we want to sell a perishable product (for example blueberries) with an un-
known stochastic demand. We can buy the product at the start of each day to match a
prefixed inventory level (optionally depending on the day/week/moth...) at a fixed price,
then we sell as many as we can depending on the demand at a fixed price. The demand
in different days is supposed to be independent and generally not identically distributed.
We want to find the optimal values of the inventory levels that maximize the net revenue.
This replenishment strategy is usually called TSL (target stock level).

There are many possible scenarios, depending on how many days the goods maintain
their proper form, the distribution of the demand (possibly varying seasonally or weekly),
how long is the period considered and so on.

We can simulate the behavior of this model with a simple program, in our case imple-
mented in Python 3.

We could approach this problem in a robust fashion for at least a couple of reason: we
could have non negligible uncertainty in the estimation of the demand, that is difficult to
properly estimate; we can not afford the cost of a potential failure and we are willing to
sacrifice some of the potential gains in exchange of the reduction of the risk.

Clearly the decision variables for the optimization problem are the target inventory
levels.
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Figure 4.1: Some sample from the presented simulation for various combination of pa-
rameters. In this case the demand is normally distributed with parameters
u = 10 and different values of o; the life of the product is d days.
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Figure 4.2: The results of the optimization process of the simulation exposed in 4.1. In
this case we used an uncertainty set with size 10.

4.2 More Benchmarks and Comparisons

In this section we want to present some numerical comparison of the two methods proposed
so far. The total number of possible variations of the methods in terms of characteristics
of the problem, choice of the kernel, optimization methods, inference methods, strategies
to choice the points to sample etc.., is gargantuan, so we will focus on some simple cases
with the objective of illustrating the general behavior of the methods.

The first benchmark is obtained using a parametric version of the Rastrigin function,
defined as follows

fRastrigin(x) = ¢+ 10n + Z[(a + bx;)? — 10 cos(27(a + bx;))] (4.1)

=1

where n is the dimension of the domain and a, b, ¢ are the parameters of the function.

Randomly sampling the parameters from a normal distribution we can easily build an
arbitrary uncertainty set and so we can use the obtained problem to test our methods.
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Gaussian noise is added at each sample. Since we always discussed the maximization prob-
lem, in the tests we multiplied the function for —1.

A second benchmark function that we used is the Styblinski-Tang function, defined as
follows

fstybinski—Tang(T) = ¢ + Z[(a + b))t — 16(a + bx;)* + 5(a + bx;)] (4.2)
i=1
where n is the dimension of the domain and a, b, ¢ are the parameters of the function,
sampled as previously discussed.

The results in figure 4.5 show that, for the same number of observations, the multivari-
ate method achieves a better mean results with lower variance, especially for very small
samples. It has to be specified that the computational cost of the multivariate method is
significantly greater, so it is opportune to use it only if the cost o a sample is sufficiently
big to justify the investment.



4.2. MORE BENCHMARKS AND COMPARISONS

0 04 5] ... — o oy
oo Ll [}
‘.o :.o. o % © ° ° )
e 9 ° o ®
-'g o ? o o ©°
10+ o ¢ 00 ". 0o o
o] ° & 00 o® @ o ®o
e o ®0
! o @ K ®o0 - @ @° © ©
) , s o e@ o % o
° od @ ° °
-20 20{ o°¢° ¢ o0 °
° 09 o [}
8§ %o ® ° ®
0 A © ° o
- > S o e o
°
-30 5] o ¢ ® o
&
° °
°
-404 -401 o
-501 &
—5‘.0 —2‘.5 OTO 2?5 5f0 —5{0 —2{5 070 275 5f0
X X
(a) (b)
101 10
Vo ,
! L o
b I o® ° ‘.O.o
b ;) o® 0..3 L
o P VR S TR N ° ° )
0+ o T ’ [N pa 0+ ° ® o8 © ° °
' | N 1 o ¢ o e © oe@ [}
) )
Lot ) o °F ." o ° po% 8o
. e @ 0 © 4 e ©
© o o, °© ° o °
-104 -104 .. e © °
° ° o ° ()
© ° : ° © e ® &
> - ® ‘ o ° % o
°
J °
20 204 . ..: JR o o !
o o ° % )
o (6]
° ° !
° °
-301 304 ® PR | .
°© ° gooe
o 0
o _§& @
0%e
4 @ o0 o
-40 40 °ge
50 25 0.0 25 50 5.0 25 0.0 25 50
X X

Figure 4.3:

(c) (d)

An example of a worst case optimization benchmark problems build with:
4.3a 1-D Rastrigin function and a discrete uncertainty set with 5 elements;
4.3c 1-D Styblinski-Tang function and a discrete uncertainty set with 5 el-
ements. Figures 4.3b and 4.3d show samples for a total of 200 points with
additive Gaussian noise with standard deviation 3; each color represents one
of the functions.
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Figure 4.4: The results for the Rastrigin function benchmark obtained using the stan-

dard univariate Gaussian process model and the multivariate Gaussian pro-
cess using expected improvement and minimum expected improvement re-
spectively. The lines represents the mean trend while the shaded area rep-
resents the quantiles of the distribution of the results (0.025 and 0.05). The
horizontal dashed line represent the true global maximum.
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Figure 4.5: The results for the Styblinski-Tang function benchmark obtained using the
standard univariate Gaussian process model and the multivariate Gaussian
process using expected improvement and minimum expected improvement
respectively. The lines represents the mean trend while the shaded area
represents the quantiles of the distribution of the results (0.025 and 0.05).
The horizontal dashed line represent the true global maximum.
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Figure 4.6: The results for the Rastrigin function benchmark (4.6a) and the Styblinski-
Tang one (4.6b) with different augmentation functions for the multivariate
model (minimum expected improvement and probability of improvement

respectively).



Chapter 5

Conclusions

In the first chapter we presented a family of robust optimization problems, which aim is to
avoid the risk of bad outcomes deriving from uncertainties in the objective function coming
from parameters estimation, distributional uncertainties, constituent hypothesis or, more
generally, from our lack of full understanding of the real process that we want to optimize.
Usually, to represent our nescience, an uncertainty set is used to index an ensemble of
possible objective functions. Many methods are possible, but we focused on a max-min
approach.

This kind of problems can vary much on the details and issues case by case, but at least
four different levels of difficulties are quite common: the global optimization of a (possibly)
highly non-linear, non-convex function; the uncertainties of the objective function given by
our lack of understanding of the mechanisms of the real problem; the uncertainties of the
evaluation of the objective function, deriving from the stochastic nature of the numerical
simulations or the empirical experiments used in the optimization process; the high cost
in term of time and/or money of the sampling method.

Given the described difficulties, direct methods could fail to find good solutions for
this kind of problems with reasonable amounts of resources, so we preferred methods that,
instead of directly optimize the objective function, use a much cheaper surrogate model for
handle both the high cost and the stochastic nature of the sampling process. In particular,
we used Gaussian processes to model the objective function and to guide the choice of
both the current solution and the next query point. This branch of optimization is usually
called Bayesian optimization.

We proposed a novel class of variants of methods present in literature of Bayesian op-
timization capable of handling multivariate functions. The idea behind these methods is

quite general and can be combined with almost all the standard techniques.

We showed that these methods often find better solutions given the same amount of
observations and can therefore drastically increase the efficiency of Bayesian optimization
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strategies in the case of stochastic max-min problems where the sampling function is non-
trivial.

Some limitations of our method are the greater computational burden given by the
necessity of fitting more models or a bigger one, that can be justified only if the sampling
cost is sufficiently high, and, in some cases, an higher sensitivity to the initial sampling
scheme and the choice the hyper-parameters of the model.

A more detailed analysis of the results given by different kernels, multivariate models
and different augmentation functions is left for future works. Future development could
also focus on an extension of the max-min scenario to more complex objective function
structures, for example those defined by tree-like hierarchies.
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Appendix A

Implementation notes

All the numerical experiments present it this work have been built in Python 3.6 with the
extensive usage of various packages, in particular:

o GPy: A Gaussian process framework in python,
version 1.9.2 (http://github.com/Sheffield ML /GPy)

e SciPy: Open source scientific tools for Python,
version 1.0.0 (http://www.scipy.org)

GPy is a nice package built appositely for defining and fitting an enormous variety
of different Gaussian (and non-Gaussian) processes with many different techniques. Its
flexibility permit to explore many different approaches to the same problem changing only
a couple of lines of code.

SciPy offers a vast collection of standard local and global optimization methods, that
have been used in various parts of the code.

The vast majority of the plot present in this work have been produced with the use of
the R’s package ggplot2 (http://ggplot2.org).
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