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Thesis Outline

The aim of this project is to apply Model Predictive Control (MPC) techniques for

the position control of a DC permanent magnet linear actuator. It could be used

in valve control, especially in internal combustion engines. The position response

should follow the reference trajectory, and has good disturbance rejection capabil-

ities. The control scheme is implemented in MATLAB Simulink to create FPGA

code, using the HDL coder package. In the MPC control technique, at every time

step, an optimization problem based on a cost function is solved. Since solving

optimization problems takes a lot of processing times, Finite Set MPC (FS-MPC)

can solve this issue. In FS-MPC, the possible voltage vectors are evaluated and the

one that leads to minimal cost is chosen to be applied in the next time step. This

modern approach allows the customisation of the cost function and the minimum

criteria, on the other hand the hardware required for the calculations performed

must be much faster in respect to the traditional microcontrollers for PI, or similar,

controls. Another challenge in MPC is the necessity of an accurate model of the

system to be controlled to obtain good response and results. The system will use

an observer (Extended Kalman Filter, EKF) to estimate both speed of the actuator

and load applied on it, measuring position and current.

In the first chapter a brief review of the theory behind Model Predictive Control

is carried out.

In the second chapter the control scheme is explained in its every part.

The third chapter presents the simulated control results.

In the fourth chapter the implementation procedure is analysed.

Finally in the fifth chapter, a summary in presented.

XIX



Chapter 1

Theoretical Background of MPC

In this first chapter, the theory behind the Model predictive control is presented.

Moreover, a comparison with PID controllers is carried out, to highlight the most

significant differences between these two control strategies. A good description of

this topic has been made by Arne Linder [1, 2] and his approach is also followed in

this thesis.

1.1 Classical PID Control

Before going deeper into the details of the MPC, it may be useful to make a brief

summary of the widespread PID controller, which is probably the most used classical

control technique, underlining its pros and cons. Its story dates back to the 1920s

and since then it found wide usage in many different applications. This solution

presents many advantages, starting from the simplicity of implementation, in fact

it can be implemented in both analog and digital way without much effort. In

analog solutions the reduced number of components and the not needed knowledge

of the model of the system to be controlled during the operation represented a key

factor in the early implementations. When digital controllers were introduced, the

reduced computational effort allowed them to keep their privileged role in the control

engineering.

On the other hand, PIDs have mainly two limitations. First of all, they are SISO

controllers, so they only manage to control one physical quantity (e.g. current) at

1
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the same time. This leads to cascaded structures, such as in Figure 1.1.

PID PID
xref

x

xe
PID

vref

v

ve iref

i

ie

Figure 1.1: Cascaded PID structure example.

The second disadvantage are the poor performances in controlling non linear sys-

tems or systems with variable parameters. For these reasons the basic PID structure

has been modified and upgraded in time, adding for example feed forward control.

1.2 Predictive Control

Moving into more recent times, after the introduction of digital devices and control

techniques, the idea of using the plant model to pre calculate the inputs to the system

came out. [2] Starting from the work of Emeljanov (1969), and then especially in the

1980s the first predictive control techniques were introduced, such as Direct Torque

Control. Finally in the 1990s the first applications on electric drives were developed.

The base principle of the predictive control is shown in Figure 1.2 and it is common

to every predictive control technique.

Model states

MotorCalculation
Prediction/ Power

Electronics

Figure 1.2: Predictive control base structure.
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The machine states are measured (or observed) and then fed to the machine

model block, which calculates the present state of the device and sends this infor-

mation to the core component of the control: the prediction and calculation block.

This part takes care of choosing the optimal actuating variable to send to the system

(e.g. reference voltage for the power converter) according to the reference value and

the desired optimization criteria.

Subsequently a further classification can be done based on three categories: [2]

• basic functional principle

• prediction horizon

• inverter control

The first classification is done on the basic functional principle:

• Hysteresis-based predictive control

• Trajectory-based predictive control

• Model-based predictive control

In this thesis only the latter is analysed and implemented.1

1.2.1 Model-based Predictive Control (MPC)

MPC are a family of controllers, all based on the same principle of optimizing the

actuating variable, using a mathematical model of the plant and a cost function. The

first applications date back to the 1970s, but only in the recent years applications

to electric drives came out.

In Figure 1.3 the basic working principle is shown; the predicted behaviour of

the system is calculated using the model. The response can be divided into two

terms, free and forced. The free response is the predicted behaviour of the system,

if the actuating variable are supposed zero. The forced response is an additional

1For a wider description this book by Linder [2] can be read.
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Optimiser

Model

Model

Reference
Future
Error

Future
Response Forced

Response

Response

Free

Control
Variables

System

Future

Control
Variables

Past

Outputs
Past

Figure 1.3: MPC working principle. Adapted from [1].

component calculated using the future actuating variables. As it is known, the

global response for linear systems can be calculated via superposition of these two

terms. The prediction of the future response is worked out up to the prediction

horizon N , which represents the final prediction time of the control. For each of

those predictions, a predicted error is calculated, knowing the future reference (set

by the user). Then the future actuating variables are chosen by the optimiser block,

knowing the cost function formulation (which means the optimisation criteria) and

respecting the constraint applied to the control (i.e. maximum current). As it can

be seen in Figure 1.3, the past values of actuating variables and outputs are used in

the calculation. This way, a feedback from the system is obtained.

Since the prediction and optimization phases require high calculation resources, the

control horizon Nu can be introduced. The idea behind it is that the controller out-

put remains constant when steady state is reached, and this equilibrium is supposed

to be gained after Nu steps. Figure 1.4 illustrates this concept.

0 time1

Reference
Output

variable
Actuating

Nu N

FuturePast

Figure 1.4: Control and prediction horizon. Adapted from [1].



1.2 Predictive Control Page 5

Unfortunately, even with these simplifications the computational requirements

are still demanding. For this reason the MPC has been widely utilized in the control

of chemical or other slow process plants, where the settling times are in the order

of minutes or hours and there is plenty of time for every calculation.

In the electrical engineering field, this is still an open topic and a lot of research is

carried on, not only in electrical drives, but also in power electronics. [3–5]
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Chapter 2

Control Scheme Design

In this chapter the control scheme design is explained and every element is described

and analysed in detail.

The scheme proposed is presented in Figure 2.1 is divided if four parts: first on

the left the FS-MPC, the brain of the system. Its role is to send the control signal

to the switches of the H-Bridge. The controller receives the reference position from

the user, as well as the measured current i and position x values. Moreover speed

v and the load applied on the actuator FL are observed by an Extended Kalman

Filter (bottom right) using the voltage U applied to the machine and the measured

quantities.

MPC
Xref

S1

S2 H-Bridge Actuator

EKF

i x

U

v FL

Figure 2.1: Global control scheme.

7
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All the system components will be described in detail in the following sections.

2.1 Actuator Model

The first element to present is the electromagnetic actuator, in order to describe its

model, which is then used by both the EKF and the FS-MPC. The actuator used

in this project is the model 6033 SP011, produced by Magnetic Innovations. The

datasheet characteristics are shown in Table 2.1. It must to be noted that the values

of the back e.m.f. and force constant are the same. The centre position is assumed

2.5 mm, in an operating region between 0 mm and 5 mm.

Table 2.1: 6033 SP011 actuator parameters.
Parameter Value
Stroke 8 mm
Force constant Kf Kf (x) = −0.12 · x2 + 8.3 N

A
, x in mm

with x = 0 at the centre position
Back e.m.f constant Ke Ke(x) = −0.12 · x2 + 8.3 Vs

m
, x in mm

with x = 0 at the centre position
Reluctance force 3.5 N
Coil resistance R 1.4 Ω
Coil inductance L 1.1 mH
Max. operating voltage 48 V
Mass m 0.13 kg
F continuous (middle position) 38.4 N
F peak (middle position) 259 N (Force applied during 5 s)

2.1.1 Continuous Time Model of the Actuator

An electromagnetic actuator has a structure very similar to a DC motor: a DC

winding at stator and a moving iron with a magnet, instead of the rotor.

The well known stator electrical equation is

us(t) = R · i(t) +
∂λ

∂t
, (2.1)

where us is the voltage applied to the stator winding, R the winding resistance, i

the stator current and λ the magnetic flux concatenated by the winding.
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It is possible to write the magnetic equation of the flux as

λ = L(x) · i(t) + Λpm, (2.2)

where L is the inductance of the coil, dependant on the position x of the moving

iron and Λpm the permanent magnet flux. Substituting it in (2.1),

us(t) = R · i(t) + L · ∂i
∂t

+
∂L

∂x
· ∂x
∂t
· i (2.3)

is obtained.

The last term of (2.3) represent the speed dependant back e.m.f. With the back

e.m.f. expressions described in the datasheet it becomes

us(t) = R · i(t) + L · ∂i
∂t

+Ke · v, (2.4)

where v is the speed of the mover.

Then the force applied by the actuator can be expressed as

F (x, t) = Kf (x) · i(t) (2.5)

and the mechanical equation of the system is

F (x, t)− FL(t) = m · d
2x

dt2
, (2.6)

where FL represents the force load applied externally to the actuator.

Since Ke = Kf = −0.12 · x2 + 8.3, the system is non linear. This leads to use

more complex structures in the observer and in the control.

After having taken some measurements, the expression of Ke = Kf was corrected

to

Ke = Kf = kq · x2 + ks · x+ k, (2.7)

with kq = −0.3335, ks = −0.3652 and k = 8.165. These coefficients were obtained

from the interpolation of the measured characteristic, which can be seen in Figure
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2.2.

Figure 2.2: Back e.m.f. and force constant characteristic.

The equations can be summarised as follows:

d

dt


i

v

x

 =


f1

f2

f3

 +


g1

g2

0

 =


−R

L
· i−Ke · v
Ke

m
· i

v

 +


U
L

−FL

m

0

 (2.8)

In Figure 2.3 the block diagram of the actuator is presented.

+

-
V I v x

FL

F1

R +s L
K(x)

K(x)

+

-
1

s m
1
s

Figure 2.3: Actuator block diagram.

2.1.2 Discrete Time Model of the Actuator

Since the control is digital, and so is the EKF, a discrete time formulation of the

actuator model is necessary. To obtain it, the forward Euler discretization method



2.1 Actuator Model Page 11

is used.

The derivatives are substituted with:

dX

dt
=
Xk+1 −Xk

Ts
,

where k is the time index and Ts is the sample time of the discrete time system.

Since the model is non linear, it is described by the equations f(i, v, x) and g(U, FL)

as follows:


ik+1

vk+1

xk+1

 =


f1d

f2d

f3d

 +


g1d

g2d

0

 =


(1− R

L
) · ik −Ke · Ts

L
· vk

Kf · Ts

m
· ik + vk

xk + Ts · vk

 +


Ts

L
· Uk

−Ts

m
· FLk

0

 (2.9)
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2.2 H-Bridge Model

The second element described is the H-Bridge. In the actual system the inverter

model SWM048 is connected to the FPGA control board optically [6]. The H-Bridge

circuit is visible in Figure 2.4. In the simulation it was considered as ideal, and a

logic model of the device was constructed.

Load

SaH

SaL

SbH

SbL

Vdc

Figure 2.4: H-Bridge structure.

In Table 2.2 is possible to see the switching states of the inverter.

Table 2.2: H-Bridge switching states.
Switch states [Sa,Sb] VLoad
[1,0] +Vdc
[0,1] −Vdc
[0,0] 0
[1,1] 0

The model used receives the Sa and Sb leg state and produces a voltage according

to the table presented. No voltage drops, switching delays, dead times and other

real characteristics are considered.
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2.3 FS-MPC

Finite Set MPC is a particular variant of Model Predictive Control. In case the

system inputs are limited to a finite number, then it is possible to decide which one

is the optimal by trying all of them. In this case three voltages can be applied:

+Vdc, 0, −Vdc. An interesting analogy to explain the logic behind the FS-MPC

can be made with the game of chess: at every move the player takes a look at the

present situation, having a certain goal in mind, and tries to predict the possible

future moves, knowing the rules of the game. Then he decides which move is the

best: the one bringing him closer to win the game. Next turn, he repeats the

process, considering the new positions of the pieces. In a similar way the controller

receives the states of the actuator at a certain time. Knowing the target position

and the possible voltage to apply, it predicts the future behaviour of system using

the mathematical model and chooses the voltage which leads the machine closer to

the reference. In Figure 2.5 it is possible to see a visual example of this process.

The three voltages lead to different positions and the controller chooses the sequence

leading closer to the set target.

Reference

t0 t1 t2 t3

Starting

Point

Vdc

Vdc

Vdc

0

0

0

-Vdc

-Vdc

-Vdc

Figure 2.5: FS-MPC working principle.



Page 14 Chapter 2

2.3.1 Voltage List Creation

The list of possible applicable voltages depends on the chosen prediction horizon, the

number of steps predicted and analysed by the controller. In this thesis a prediction

horizon N = 3 was chosen, as a good compromise between computational effort,

prediction precision 1 and quality of the control decision2.

The process of creation of the lists of the possible applicable voltages follows

these rules:

• The lists depend on the previously applied voltage.

• The only possible voltage transitions are: Vdc to 0 and reverse, −Vdc to 0 and

reverse. Vdc to −Vdc is not allowed, in order to decrease the ripple on the

current.

In Figure 2.6 it is shown an example of the tree of possible voltages.

-Vdc 0 Vdc

-Vdc 0 Vdc

-Vdc 0 Vdc -Vdc 0 Vdc -Vdc 0 Vdc

-Vdc 0 Vdc-Vdc 0 Vdc -Vdc 0 Vdc -Vdc 0 Vdc -Vdc 0 Vdc -Vdc 0 Vdc

Figure 2.6: Voltage tree example. The previous voltage is supposed 0.

As it is clear from the picture, there are 17 different voltage sequences, when the

previous voltage is 0. If the previous voltage is Vdc or −Vdc, then the possible paths

are only 12.

2.3.2 FS-MPC to Control the Electromagnetic Actuator

In this subsection the implemented FS-MPC algorithm is discussed.

The block diagram of the algorithm can be seen in Figure 2.7.

1Since the model proposed has some uncertainties, the wider the prediction horizon, the bigger
the chain effect on uncertainty becomes.

2With a narrow horizon the different voltage sequences may not be much different from one
another, hence the importance of a longer horizon.
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Create voltage paths

Predicts future states

Cost calculation

Optimal path

Previous voltage

Voltage to apply

For each 

possible path

Figure 2.7: FS-MPC algorithm.

At every calculation step the list of possible voltage sequences, according to the last

applied voltage, is fed to the prediction section of the algorithm.

The prediction involves the calculation of the current, speed and position in the

following time instants, up to the chosen prediction horizon N . This calculation

is carried out for all the possible voltages combinations3. Then the cost of every

single analysed sequence is calculated. The formula to quantify the cost is called

cost function and it is as follows:

J =
NX
j=1

λx · (xref − xj)2 + λv · vj2 + λi · ij2 (2.10)

The λ coefficients weight the different contributes of the system states. These coef-

ficients are constant in time, their values were chosen heuristically, since not much

literature is available on this topic. N is again the prediction horizon, chosen equal

to 3. Moreover a restraint on the current is applied:

Jj =

λx · (xref − xj)
2 + λv · vj2 + λi · ij2 if − Imax ≤ ij ≤ Imax

∞ if ij < −Imax ∨ ij > Imax

3The algorithm to calculate the possible voltage sequences was explained in section 2.3.1
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The prediction equations are those already obtained in section 2.1.2:

ik+1 = (1− R

L
) · ik −Ke ·

Ts
L
· vk +

Ts
L
· Uk

vk+1 = Kf ·
Ts
m
· ik + vk −

Ts
m
· FLk

xk+1 = xk + Ts · vk

2.3.3 Integral Action in the FS-MPC

Since the goal is to track the position reference without any error at steady state, it is

necessary to include an integral action in the system. In the standard control theory

it is usually granted by the integral part of the PI, or equivalent, controllers. The

literature about this topic in FS-MPC is not rich, but some interesting approaches

have been tried [7]. In this thesis three different control structures are proposed:

• FS-MPC without any integral action. The cost function is as described in

equation 2.10.

• Speed FS-MPC cascaded with a position PI controller.4 The MPC cost func-

tion in this case is:

J =
NX
j=1

λv · (vref − vj)2 + λi · ij2

• FS-MPC with a modification of the position reference according to:

XrefMPC
= Xref +Kp · (Xref −Xm) +Ki ·

Z
(Xref −Xm)

The cost function is similar to the one of the first case:

J =
NX
j=1

λx · (xrefMPC
− xj)2 + λv · vj2 + λi · ij2

4This solution was proposed and verified in [8].
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The choice of the coefficient Kp and Ki was made according to the simulation

results.

The behaviour comparison between these structures will be presented in the Chapter

3, along with the simulation results.
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2.4 Extended Kalman Filter

To reduce the overall sensor complexity of the system, and to reduce the final cost

of the control, an observer is used. The observer allows to calculate the values of

the system states. In this case the measured current i and position x are used.

From these two measurements and the known value of the voltage U applied to the

actuator is possible to observe the speed v of the moving iron in quite an accurate

way. Moreover, in order to observe the disturbance load, an augmented model of

the system is implemented, including the load force FL as a state of the system.

The observer chosen is the Extended Kalman Filter (EKF)5, which is a non

linear extension of the Kalman Filter. Since the Kalman Filter can be only applied

to linear system, a linearisation using a Taylor expansion around a nominal point

has to be done. To linearise the system the Taylor expansion is truncated at the first

order. In this case the point, around which the system is linearised, is the estimated

operating point x̂. The linearisation for a multivariable system uses the Jacobian of

the system’s equations. It is possible to use a Kalman Filter like observer, since the

process and measurement noise are supposed to be white, Gaussian distributed and

with a zero mean value. Considering a non linear system described by these generic

equations:

xk+1 =


x1k+1

x2k+1

...

xnk+1

 =


f1(x1k , x2k ...xnk

)

f2(x1k , x2k ...xnk
)

...

fn(x1k , x2k ...xnk
)

 +


g1(u1k , u2k ...unk

)

g2(u1k , u2k ...unk
)

...

gn(u1k , u2k ...unk
)

 (2.11)

Yk = Hk · xk (2.12)

Where uj represents the input of the system and Y the outputs of the system, the

algorithm to implement an EKF is:

1. At every time step, compute the following derivative matrices:

5A theoretical description of this observer may be found in many books and texts. Practical
references are [9] [10] [11]
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• Fk = J


f1(x1k , x2k ...xnk

)

f2(x1k , x2k ...xnk
)

...

fn(x1k , x2k ...xnk
)

 + J


g1(u1k , u2k ...unk

)

g2(u1k , u2k ...unk
)

...

gn(u1k , u2k ...unk
)


• Ck = J(Hk)

Where the derivatives are computed for Xk = X̂k, the observed states of the

system.

2. Apply the Kalman filter equations:

• Kk = Pk ·Ck
T · (Ck ·Pk ·Ck

T + R)−1

• x̂k+1 = f(x̂k,uk) + Kk · [Yk −H(x̂k)]

• Pk+1 = Fk · (I−Kk ·Ck) ·Pk · Fk
T + Q

Where Kk is the Kalman Gain matrix, Pk is the covariance matrix, R and Q

are the measurement and process noise covariance matrices. I is the identity

matrix.

This algorithm has been applied to the electromagnetic actuator model, augmenting

by adding the force load as an extra state. In Figure 2.4 an overview of the algorithm

is shown.

Prediction

Correction

Measurements

System inputs

A priori states Observed states

Figure 2.8: EKF algorithm.

2.4.1 EKF Applied to the Electromagnetic Actuator

As mention before, the system model described in equation 2.9 has to be augmented

with an extra state. That allows to observe the load applied on the actuator, con-

sidered as a disturbance of the system. This method is known as Unknown Input
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Observer (UIO) and it has been chosen because its simple to implement and lets

both the states and the disturbance be observed at the same time.6 The applied

load value is supposed to be constant over a sample time, assuming its slow variation

(dFL/dt = 0). Under these hypothesis, the discrete system becomes:


ik+1

vk+1

xk+1

FLk+1

 =


f1

f2

f3

f4

 +


g1

0

0

0

 =


(1− R

L
) · ik −Ke · Ts

L
· vk

Kf · Ts

m
· ik + vk − Ts

m
· FLk

xk + Ts · vk
FLk

 +


Ts

L
· Uk

0

0

0

 (2.13)

Since the measured quantities are current and position, and the gain of the sensors

used is 1, the output matrix Y is:

Yk =

1 0 0 0

0 0 1 0

 ·

ik

vk

xk

FLk


Substituting the equations in the EKF algorithm:

Fk =


∂f1
∂i

∂f1
∂v

∂f1
∂x

∂f1
∂FL

∂f2
∂i

∂f2
∂v

∂f2
∂x

∂f2
∂FL

∂f3
∂i

∂f3
∂v

∂f3
∂x

∂f3
∂FL

∂f4
∂i

∂f4
∂v

∂f4
∂x

∂f4
∂FL

 =


1− R

L
· Tse −Tse

L
· (kq · x2 + ks · x+ k) (ks+2·kq ·x)·Tse

L
· v 0

Tse
m
· (kq · x2 + ks · x+ k) 1 Tse·(ks+2·kq ·x)

m
· i −Tse

m

0 Tse 1 0

0 0 0 1


(2.14)

6A brief reference about the theoretical aspects can be found in [12], two practical implemen-
tations in [13] and [14].
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Ck = Hk =

1 0 0 0

0 0 1 0

 (2.15)

As it is possible to notice, the Fk matrix depends on the position of the moving

iron. The position xk has to be expressed in mm, with x0 = 0 mm at the centre

position. The Q and R matrices are diagonal, and their coefficients are chosen

heuristically, since no information is available on the actual system and measurement

noise. The starting values at k = 0 are P0 = 0 and x0 = 0. The coefficient Tse is

the sample time of the filter, which was chosen Tse = 1
100 kHz

7.

2.4.2 Scaling of the System

Foreseeing the digital implementation of the system, it was chosen to use per unit

quantities. This way the numbers used in the calculations are always between−1 and

+1, allowing the choice of the same fixed point data type during the implementation.

The details of the data type choice will be discussed in section 4.2, here the scaled

system equations are presented.

To scale the system the following transformations have been applied:

Su = Umax; Sx =


Imax 0 0 0

0 vmax 0 0

0 0 xmax 0

0 0 0 Fmax



xs
k+1 = S−1

x ·A · Sx · xs
k + S−1

x ·B · Su · us
k

us
k = S−1

u · uk =
uk

Umax

The mark s indicates the scaled values. The following values were chosen as base

values, according to the simulation process and datasheet specifications: Imax =

7This time step was decided according to the ADC data acquiring frequency. The ADC produces
a filtered data stream at 1 MS

s , so the Kalman operating frequency has to be necessarily lower.
During the tests this frequency was proven effective.



30 A, vmax = 3 m
s
, xmax = 5 mm, Fmax = 8.3 · Imax ≈ 240 N, Umax = Vdc = 48 V.

As =


1− R

L
· Tse −Tse

L
· vmax

Imax
· (ksq · x2 + kss · x+ k) 0 0

(ksq · x2 + kss · x+ k) · Tse
m
· Imax

vmax
1 0 −Tse

m
· Fmax

vmax

0 Tse · vmax

xmax
1 0

0 0 0 1


(2.16)

Bs =


Tse
L
· Umax

Imax

0

0

0

 (2.17)

The value ksq is the coefficient of the back e.m.f. constant, scaled: ksq = −0.3335 ·

106 · x2max, kss = −0.3652 · 103 · xmax and k does not change.

And therefore also the Jacobian is modified accordingly. Kepu = ksq ·x2pu +kss ·xpu +k

for simplicity.

Fs =


1− R

L
· Tse −Tse

L
· vmax

Imax
·Kepu −2vmax

Imax
· Tse

L
· vpu · (kqs · xpu) 0

Imax

vmax
· Tse

m
·Kepu 1 2 Imax

vmax
· Tse

m
· ipu · (kqs · xpu) −Tse

m
· Fmax

vmax

0 Tse · vmax

xmax
1 0

0 0 0 1


(2.18)



Chapter 3

Simulation Results

In this chapter the implemented control structure is presented and a comparison

between different possible solutions is made. Both the FS-MPC and the EKF are

implemented in Simulink. The EKF can be easily implemented using Simulink

blocks, but in some cases, such as the Jacobian calculation, it is easier to implement

some calculations using a MATLAB function. The diagrams of the EKF, which may

be of interest, are available in appendix B.

Before presenting the results, some hypothesis have to be presented. In the follow-

ing simulations a prediction horizon N = 3, as explained before, was chosen. White

noise is assumed affecting the measurement and its variance is set to: 5 mA for the

current and 9 ➭m for the position. These values were obtained analysing the output

of the two sensors when measuring a constant value.

The three variants already described in paragraph 2.3.3 were simulated and com-

pared:

1. FS-MPC without any PI controller.

2. Speed FS-MPC with a cascaded position PI controller.

3. FS-MPC providing integral action with a correction of the position reference.

The EKF parameters Q and R were tuned according to these criteria:

23
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• R matrix, representing the measurement noise covariance has been chosen

according to the added white noise. The two measurements are assumed in-

dependent, then the R matrix is diagonal.

R =

5 · 10−3 0

0 9 · 10−6


• The Q matrix has been chosen as diagonal, which is a common choice in

Kalman filter implementation. The values have been chosen heuristically,

knowing that too large values lead not only to a faster convergence in the

observation, but also to more oscillations and noise on the results.

Q =


0.25 0 0 0

0 10−6 0 0

0 0 10−8 0

0 0 0 2.5 · 10−7


In the following subsections these solutions are presented and analysed.

3.1 FS-MPC Without PI

FS-MPC without PI is the simplest solution possible, but the main disadvantage of

this structure is the absence of integral action. This leads to an error in the position

reference tracking at steady state if any load is applied to the system.

The cost function weighting factors are shown in Table 3.1.

Table 3.1: FS-MPC with no integral action structure: weighting factors.
Factor Value
λx 60 · 106

λv 0.7
λi 1 · 10−6

As it is possible to see in the following Figures the system behaviour is satisfac-

tory under no load conditions (Figure 3.1), but it worsen if a load is applied.
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The EKF prove itself effective, providing quite accurate speed and load observation.

The load observation has a much bigger than the speed observation error (Figure 3.2)

due to the simplified model of the disturbance observer, but is on average correct.

In a subsequent simulation, the system was simulated with a constant load F =

60 N applied on the actuator. As it can be seen in Figure 3.3 the position is not

reached without error fast enough. The EKF proves effective and the observation

errors, after a first settling phase, rapidly go to the same values as the case with no

load applied.
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Figure 3.1: FS-MPC simulation results, without PI. No load is applied.
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Figure 3.2: EKF errors of speed and load observation. No load is applied.

Finally a spring load ( Kspring = 1.4310 N/mm ) was simulated. The small load

generated by the spring does not affect significantly the position tracking. More

interesting is the load observation, which shows its limits, linked to the assumption

of a constant load (over a time step): as the load moves to a more variable profile,

the observation quality decreases. The speed observation though maintain a good

quality.

It is interesting to compare the three load situation:

• the position response worsen depending on the magnitude of the load applied.

• the speed observation does not change significantly, apart from the first in-

stants, where the EKF has to adapt to the sudden change of the system. At

steady state the error is comparable in all three situations.

• The force observation is strongly dependent on the load profile. If the load

varies in time, the observer is not fast enough to adapt to it. The behaviour

may be different and improved with different disturbance observer equations

(for example inserting a model of the load, if known).
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Figure 3.3: FS-MPC simulation results, without PI. Constant load F = 60 N is applied.
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Figure 3.4: EKF errors of speed and load observation. Constant load F = 60 N is ap-
plied.

In this section the effectiveness of the EKF was shown. The specific results for

the speed and load observation errors are omitted when discussing the other control

strategies, since they would be identical.
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Figure 3.5: FS-MPC simulation results, without PI. Spring load Kspring = 1.4310 N/mm
is applied.



3.1 FS-MPC Without PI Page 31

Figure 3.6: EKF errors of speed and load observation. Spring load Kspring =
1.4310 N/mm is applied.

Figure 3.7: FS-MPC without integral action. Comparison.
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3.2 FS-MPC with Position PI

The speed and current FS-MPC with a cascaded position PI tries to mix the advan-

tages of the PI integral action with the MPC structure.

The first advantage is the behaviour under load, in fact the error at steady state

is erased, thanks to the integral action provided by the position PI controller. A

second advantage is the simplified MPC algorithm, and therefore the smaller com-

putational burden. In Table 3.2 the used factors and coefficients are presented. The

Table 3.2: FS-MPC with position PI: factors values.
Factor Value
Kp 500
Ki 2000
λv 500
λi 1 · 10−3

simulations were run in the same load configuration as the past structure.

As it can be seen in the comparison Figure 3.11, the under load behaviour greatly

improved, reducing the steady state offset to almost zero. The speed of the controller

is almost unchanged, maintaining the same settling time.
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Figure 3.8: FS-MPC simulation results, with position PI. No load is applied.
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Figure 3.9: FS-MPC simulation results, with position PI. Constant load F = 60 N is
applied.
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Figure 3.10: FS-MPC simulation results, with position PI. Spring load Kspring =
1.4310 N/mm is applied.
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Figure 3.11: FS-MPC without position PI: Position response comparison.

3.3 FS-MPC with Position Reference Modifica-

tion

This last proposed structure was already described in section 2.3.3. Its functioning

principle is rather simple (works in a similar way as a PI controller), and has good

position tracking performance and it is robust in terms of quick response and distur-

bance rejection. The correction parameters were chosen to guarantee no overshoot

and the fastest settling time of the system. The settling time is acceptable and

shorter than the previously presented structures, around 10 ms, and similar to other

control structures described in literature [15] [16] [17].

Table 3.3: FS-MPC with position reference modification: Factors values.
Factor Value
Kp 0.7
Ki 5
λx 60 · 106

λv 0.8
λi 1 · 10−6
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Figure 3.12: FS-MPC simulation results, with position reference modification. No load
is applied.
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Figure 3.13: FS-MPC simulation results, with position reference modification. Constant
load F = 60 N is applied.
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Figure 3.14: FS-MPC simulation results, with position reference modification. Spring
load Kspring = 1.4310 N/mm is applied.
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Figure 3.15: FS-MPC with position reference modification: Position response compari-
son.

3.4 Performance Comparison

After having presented thoroughly the three structures, it is possible to compare the

position response in the three described load situations.

Figure 3.16: FS-MPC position response comparison. No load is applied.
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Figure 3.17: FS-MPC position response comparison. Constant load F = 60 N is applied.

Figure 3.18: FS-MPC position response comparison. Spring load Kspring =
1.4310 N/mm is applied.
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As it can be clearly seen in Figures 3.16, 3.17 and 3.18, the FS-MPC without

any integral action is the worst system. Its settling time is barely sufficient to track

the position reference and it does not even reach it in the under load case. The

system with position PI and position reference modification are comparable, both

under the settling time and the steady state error point of view. The only relevant

difference can be seen in the under load case, Figure 3.17, around t = 0.02 s, when

the position reference goes back to 0. In this case the MPC with the position PI is

slightly slower than the other one.

Summing up, it can be stated that the best structure is the FS-MPC with the

modification of the position reference, which provides short settling times and good

disturbance rejection, even though the cost function calculation is more resource

demanding.
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Implementation

The central processing unit of the control system is a FPGA Altera Cyclone-III

EP3C40Q240C8. [18] Both the FS-MPC and the EKF are implemented on this

board. The VHDL code of the control system was generated using the HDL Coder

tool available in Simulink. This tool is capable of converting a block diagram into

VHDL code directly. In order to make it work some conditions have to be respected:

• The diagram has to be in discrete time, with a fixed time step.

• No matrices or calculations using matrices are allowed.

• Only fixed point or boolean data types can be used in the diagram.

The first step was already done, since the controller was designed as a digital system,

dealing with the discrete model of the actuator. In the following sections the other

steps of the conversion process are analysed in detail.

4.1 Elimination of Matrix Operations

The first task was to avoid the usage of matrices inside the design.

While the FS-MPC does not need to use matrices, since all the calculations can be

carried out in separate equations, the Kalman Filter presented some problems, since

the variance matrix P and the gain matrix K have to be calculated multiplying

matrices at every iteration. This problem has two possible solutions:
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1. Transform the matrices multiplications into scalar operations, obtaining long

and complicated equations

2. Try to eliminate the variance matrix update and use a constant gain matrix

The second solution has the great advantage of reducing both the complexity of the

system and the computational effort, moving the gain calculation to the simulation

phase. On the other hand, it can lead to a loss of performances.

In order to choose the best solution, the values of the gain matrix were analysed

during the simulation. In Figure 4.1 it is possible to see how the eight coefficients

vary in time. This analysis was carried out under the simulation parameters pre-

sented in Chapter 3, which can be assumed as valid under the normal operation

conditions.

Figure 4.1: Kalman gain matrix coefficients

As it is clear from the picture, the coefficients rapidly converge to a fixed value,

that can be chosen as constant and implemented in the EKF scheme. This way

the linearisation of the system and the calculation of the P and K matrices is

avoided. The prediction phase is still using the non linear model. Moreover, many

coefficients are much smaller than the others, and can therefore be approximated as
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0. The chosen values for the K matrix are:

K =


0.9808 0

0 0.3654

0 0.06132

0 −0.1615

 (4.1)

The simulation performances obtained with this simplification are identical to

the ones obtained with the full calculation and confirm the validity of the solution.

4.2 Conversion Using Fixed Point Tool

The second step in the preparation for VHDL code generation is the choice of fixed

point data types for every value in the system. This process is necessary, since

FPGAs don’t support floating point data values.

The word length was chosen according to:

• The valued measured from the sensors are converted to 28 bits values.

• A pre-existing control used 32 bits values.

• Resources available on the FPGA.

4.2.1 EKF Conversion

For the EKF a default word length of 32 bits was chosen. Then, using the Fixed

Point Tool the data types were chosen and applied to the single blocks of the system.

After this process the system was simulated again to be sure of the functionality

and then it was ready to be processed by the HDL Coder tool.

4.2.2 FS-MPC conversion

The conversion of the FS-MPC was a longer process, because a compromise between

resource utilization on the FPGA and accuracy of the results had to be found. After

some tests, it became clear that it was impossible to fit the 3 steps prediction system,
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because of the limited resources available. Therefore a simpler system, with only

one step prediction (N = 1) was implemented. In order to make this system fit into

the board, a 26 bits word length was chosen after an iterative process.

4.3 FPGA in the Loop

Before implementing the code on the real hardware, an intermediate simulation step

was done. Simulink offers the possibility to interface the FPGA with the model in

the so called “FPGA in the loop” using the HDL Verifier tool. This way the control

algorithm runs on a real FPGA board, while the physical system is simulated inside

Simulink, as it is possible to see in Figure 4.2.

Figure 4.2: FPGA in the loop principle.

Only some FPGA boards are supported by Simulink, and in this case the DE2-115

development kit was used. This board comes with an Altera Cyclone IV FPGA,

along with some peripherals to interface it (e.g. Ehernet and USB connections).

To successfully set up the system these steps were followed:

1. The first step was to configure the connection between the board and Simulink,

which was established following the wizard available in Simulink itself. Both

Ethernet and JTAG communications are available and equivalent.
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2. Then it was necessary to provide the VHDL code previously generated to the

HDL Verifier, in order to allow the creation of the program file to upload on

the FPGA.

3. After the compilation process, a new Simulink block, representing the FPGA

is available and can replace the control block.

Running the software on the DE2-115 some timing issues, related to the propagations

delays inside the physical board, which aren’t considered in the Simulink blocks by

default were noticed. The consequence of those delays is the de-synchronisation

between signals and thus the presence of random spikes on the signals. In Figure

4.3 the nature of those disturbances on the cost function values is shown. This issue

also lead to wrong numerical values of the voltage reference sent to the H-bridge.

Adding some ”Memory” blocks before the cost function calculation circuit solved the

problem and the software running on the FPGA behaved exactly as the simulated

control algorithm.

Figure 4.3: FPGA in the loop: errors due to bad timing.

4.4 Final Implementation

Last step in the implementation process was to interface the control and EKF code

with the pre existing VHDL code for the Cyclone III board. The communication
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between the FPGA and both an external processor, the power elements and the user

interface were already available. [6]

The code generated by Simulink was then added into the existing Quartus II1 project

and added to the main program entity.

Since the board is a FPGA it is impossible to use the conventional debugging tech-

niques, but instead it is necessary to deal with the low level signals inside the board.

Quartus II also provide the ”Signal-Tap” tool to record the values of some signals

and then send them to the PC. This tool provide the logic state of every bit (in case

of fixed point numbers) and also includes a converter to read directly the numeric

value of the recorded signal.

The graphs were then drawn using MATLAB, after having exported a .csv file with

the recorded values. It has to be noted that the recorded values must be then di-

vided by the bit length of the fractional part of the number analysed.2

The signal tap is also a practical way to acquire the position and current data from

the sensors when the control is running without using additional measurement or

logging tools.

It is of interest to compare the resource usage of the different solutions, as shown in

Table 4.1.

Table 4.1: FS-MPC with position reference modification: Factors values.
Resource type Position PI Position ref. correc-

tion
Total logic elements 23,822/39,600 (60%) 34,956/39,600 (88%)
Total combinational
functions

23,307/39,600 ( 59 % ) 34,434/39,600 (87%)

Dedicated logic registers 2,825/39,600 (7%) 2,916/39,600 (7%)
Total registers 2841 2932
Total memory bits 8,192/1,161,216 (1%) 8,192/1,161,216 (1%)
Embedded Multiplier 9-
bit elements

252/252 (100%) 252/252 (100%)

Total PLLs 2/4 (50%) 2/4 (50%)

1This is the IDE provided by Intel/Altera to develop the code for their boards. In includes an
editor a synthesiser, a compiler and an optional FPGA simulator, ModelSim.

2For example: a signal coded as 16.8, so with a fraction length of 8 bits, is exported as two
complement’s integer value. This value has to be divided by 28 to get the decimal representation
of this signal.
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The usage is presented in both absolute value and relative to the total resources

available on the Cyclone III. As it can be seen, the solution with the position ref-

erence correction needs more resources, due to the more complex cost function and

prediction part.

4.5 Early Testing

Before trying the complete control system on the board, some tests were carried out

with the EKF and a simple cascaded PI controller for position and speed, without

applying any load. The measurements were taken with a software included in Quar-

tus II: the SignalTap II Logic Analyzer. [19] Since the FPGAs are similar to electric

circuit, no real time debugging tool, like those for microcontrollers, are available.

The only possible solution is analysing and logging the logical values of some signals

in the board. Then these values can be converted from the binary codes into the

corresponding numerical value and eventually plotted using MATLAB. This tech-

nique has a limit, which depends on the built-in memory bits available. These bits

are used to store the logged data and are in limited number, so not all the quantities

can be recorded at the same time.

The quality of the position observation is quite high, and as it’s possible to see in

Figure 4.4, the error is negligible.

The current observation is not as good, since a lot of disturbance is present in

the observation. The control uses the measured values, so it is not affected.

Both speed and load observation can’t be compared with the actual physical

values, since no sensor was available. From a qualitative point of view, the values

make sense and are comparable with those predicted in the simulations.

Unfortunately, after these first tests, the H-Bridge broke due to a shorted com-

ponent and it was not possible to use it any more, so no further experimental tests

could be carried out.
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Figure 4.4: EKF measurements: position.

Figure 4.5: EKF measurements: current.
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Figure 4.6: EKF measurements: speed.

Figure 4.7: EKF measurements: load observation.
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4.6 Intel Processor

A new H-Bridge, using the module PM100RL1A060 [20], was found and put into

operation using a control board EVBL1S1 [21]. These switches cannot be operated

at a switching frequency greater that 20 kHz, so it was decided to run the PWM

signal at 10 kHz and run the algorithm at twice this frequency. At this point a

FPGA is not needed any more and a sequential processor programmed in C was

used.

The processor used is a 64-bits Intel Pentium 4 CPU running at 3.40 GHz, mounted

on a PC-104 board and connected with an ISA socket to the FPGA sending the

optical signals to the board. The complete setup is shown in Figure 4.8.

The processor runs a Linux Ubuntu operative system and uses the RTAI library to

operate as a real time system.

The implementation in C loses the benefits of parallel calculation, that are present

on the FPGA, but, on the other hand, the coding and the debugging are much

easier.

PC104
Board

CPLD
Board

FPGA
Board

ISA bus

Control
Board

Optic Fiber

Figure 4.8: Setup of the processor board.

4.6.1 Code stucture

The code is divided into two main modules, as shown in Figure 4.9: one real time

and one running inside Linux.

The real time module executes both the control and the EKF function when triggered

by an interrupt signal coming from the FPGA. The Linux module takes care of

logging the measured (or calculated) data into a csv file, using the shared memory
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functions provided by the RTAI library. The csv file can be later imported in

MATLAB (or any other custom software) and the results analysed.

Linux

Process
Real Time

Process

Shared
Memory

Csv Log FPGA

Figure 4.9: Processor code structure.

The significant sections of the RTAI and Linux code are available in appendix B.

4.6.2 Experimental Results

After the implementation several tests were carried out, with different tuning and

structures. In this section, the behaviour of all the three control structures is pre-

sented and the differences highlighted.

4.6.2.1 FS-MPC Without PI

The first test was carried out with the base FS-MPC structure, without any integral

action provided. The cost function weighting factor were tuned after an iterative

process of trial and error. Both tests with a prediction horizon of one and three

were carried out.

First the one step prediction horizon algorithm was tested. The optimal weighting

factors are shown in Table 4.2.

Table 4.2: FS-MPC with no integral action structure: weighting factors. Experimental
case.

Factor Value
λx 1 · 106

λv 1
λi 0

As it can be seen in Figure 4.10, the position target is reached quickly, but

overshoot is present both in rising and falling position transitions.
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Figure 4.10: Experimental results: FS-MPC, one step prediction horizon.

As for the weighting factors choice, the weighting factor for the current was set

to 0, otherwise the system would recover slower from the overshoot; the other two

are lower than those obtained in the simulations, because the disturbances on the

actual measurements were higher than expected. A bigger factor would lead to more

oscillations, as the controller would try to compensate to much any small deviation

from the reference.

Then the three steps prediction horizon was also tried. The factors were the same.

As it is possible to see in Figure 4.11, the overshoot is much smaller than in the one

step case. That should prove the benefits of having a longer horizon, even though

the computational error increases exponentially.

4.6.2.2 FS-MPC with Position PI

The second test was carried out with the speed and current FS-MPC with cascaded

position PI. The cost function weighting factor were again tuned after an iterative

process of trial and error. In this case the performance with only one step prediction

horizon was too poor to be mentioned, so only the results with three steps are

presented. The optimal parameters are shown in Table 4.3.

As it can be seen in Figure 4.12, the dynamical behaviour is comparable to the

case presented before. The overshoot though could not be avoided and it is quite
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Figure 4.11: Experimental results: FS-MPC, three steps prediction horizon.

Table 4.3: FS-MPC with cascaded position PI: parameters. Experimental case.
Factor Value
λv 250
λi 1
kp 600
ki 0.8

large. The only advantage of this structure is the less sensitivity to disturbances,

in fact the controller, when it reaches the reference, remains idle. In the previous

case it could be seen that even at steady state, the controller was setting the voltage

reference to non zero values.

It has to be noted that without the integral part of the PI controller the system

does not work at all, not reaching the reference value.

4.6.2.3 FS-MPC with Position Reference Modification

Finally the FS-MPC with position modification was tested. The cost function

weighting factor were tuned after an iterative process of trial and error in this case

too. Both tests with a prediction horizon of one and three were carried out.

First the one step prediction horizon algorithm was tested. The optimal weighting

factors are shown in Table 4.4.

As it can be seen in Figure 4.13, the position target is reached quickly, but a
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Figure 4.12: Experimental results: FS-MPC with cascaded position PI, three steps pre-
diction horizon.

Table 4.4: FS-MPC with position reference modification: weighting factors, one step.
Experimental case.

Factor Value
λx 1 · 105

λv 5
λi 0
kp 100
ki 50

significant overshoot is present both in rising and falling position transitions.

Then the three steps prediction horizon was also tried. The factors were changed to

those in Table 4.5. As it is possible to see in Figure 4.14, the overshoot is eliminated.

The overall dynamic is though slower, due to the reduce position weighting factor.

From the experimental tests, a general behaviour of the system, depending on

the weighting factors choice can be inferred.

The current factor is not significant neither in the FS-MPC nor in the Position

Reference Modification structures: changing it only brings minor modifications and

mostly unfavourable. On the other hand, in the Position PI solution, it is a term

necessary to ensure a proper operation of the machine, since the control of the speed

alone would not lead to a sufficient stability and to too big oscillations.

The speed factor can never be neglected, since it is necessary to eliminate an unsta-
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Figure 4.13: Experimental results: FS-MPC with position reference modification, one
step prediction horizon.

Table 4.5: FS-MPC with position reference modification: weighting factors, three steps.
Experimental case.

Factor Value
λx 1 · 104

λv 5
λi 0
kp 200
ki 80

ble response, caused by an overcompensation of the position error by the system.

Unfortunately this cost function coefficient depends on the observed speed, so it

would be interesting to reduce its importance in the control’s dynamics.

Finally, the position factor is the most important. It is necessary to set it to a large

value, both because the position is expressed in meters and because the response

is supposed to be fast. A too large factor is to avoid, since it would cause too a

sensitive system, reacting even to small disturbances or measurement errors.

The proportional and integral terms are less difficult to tune, but nevertheless cru-

cial to the system. In the solution with the position PI they are both essential for

the correct operation of the machine. In the position modification structure the

integral part may be omitted, but a worse quality of the operation is then obtained.

The proportional gain is set to large values to get a quicker transient response.
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Figure 4.14: Experimental results: FS-MPC with position reference modification, three
steps prediction horizon.
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Conclusion

In this thesis, three FS-MPC control structures with a EKF observer for an elec-

tromagnetic actuator are presented and simulated. The code generation of the

algorithm is also discussed and tested in a FPGA in the loop configuration, showing

that a good performance algorithm can fit into even a low cost FPGA, such as the

Cyclone III.

The results show that a stand-alone FS-MPC structure is not suitable to react to

disturbances applied to the system, even when a load observer is implemented. The

usage of a PI structure can greatly improve the overall performance of the system,

not only by assuring a zero error steady state position reference tracking, but also

a faster transient behaviour.

In either solution, the tuning of the cost function parameter is not an easy task and

requires a trial and error process.

The pros and cons of the FS-MPC structures can be summarised as:

Table 5.1: FS-MPC structures comparison summary.
Pros Cons
Multivariable control in one single
structure

Long design time, especially in compar-
ison to a PI controller

Variable constraints easy implemented Need of a good knowledge of the system
to be controlled

Good dynamical behaviour Difficult tuning
- Hardware requirement
- Need an observer to estimate speed

59
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Finally, in Table 5.2 a more detailed comparison between the three experimentally

tried structure is presented.

Table 5.2: FS-MPC structures comparison summary.
FS-MPC Position PI Pos. ref. correction

Transient response Quick Mediocre Quick
Steady state behaviour Mediocre Good Mediocre
Computational effort High Medium High

Parameters to be tuned 3 2 + 2 3 + 2

5.1 Personal Contribution

My personal contribution can be summarised as:

• Literature review about MPC and FS-MPC.

• Design of a suitable FS-MPC based control structure.

• Choice and design of a state observer with load estimation.

• Comparison between the different control structures.

• Conversion of the block diagram into VHDL code.

• Implementation of the observer on an FPGA with a simple cascaded control

structure.

• Integration of the control in C language into the Pentium system.

• Implementation of the three MPC based controllers with the state observer on

the Intel processor.

5.2 Future Work

Several are the future possibilities: a first step may be make the FPGA and the

processor working together, running the EKF on the FPGA at a higher sampling

time and the controller on the processor, as it is already programmed.
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Moreover, in case a new H-bridge is available, capable of working at higher switching

frequency, it would be interesting to test the functionality of the controller running

directly on the FPGA.

Also it is necessary to test the behaviour of the system when an external load is

applied.

Finally, a performance comparison with other predictive structures, such as LQR,

can also be carried out.
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Appendix A

List of Symbols

Observed value ˆ

Scaled quantity, in per unit s

Per unit value pu

Value at time instant k k

Jacobian matrix J

R Coil resistance [Ω]

L Coil inductance [H]

m Moving mass of the actuator [kg]

Ts Time step of actuator discrete time model [s]

Tse Time step of the EKF [s]

Ke Actuator back e.m.f. constant [V s
m ]

Kf Actuator force constant [NA ]

x0 Zero stroke position [m]

Imax Actuator current base value [A]

vmax Actuator speed base value [ms ]

xmax Actuator position base value [m]

Fmax Load base value [N ]
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Umax Voltage base value [V ]

Vdc DC supply voltage [V ]

x Actuator position [m]

i Actuator current [A]

v Actuator speed [ms ]

FL Load applied on the actuator [N ]

U Stator voltage of the actuator [V ]

A State matrix of the actuator

B Output matrix used in the EKF

C Output matrix of the actuator

x State vector of the actuator

y Output vector of the actuator

u Input vector of the actuator

F Jacobian matrix used in the EKF

P Variance used in the EKF

K EKF gain matrix

I Identity matrix

Q Systems noise variance matrix used in the EKF

R Measurements noise variance matrix used in the EKF

J FS-MPC cost function

N FS-MPC Prediction horizon

λx Position error weighting factor in FS-MPC cost function

λv Speed weighting factor in FS-MPC cost function

λi Current weighting factor in FS-MPC cost function
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Appendix B

Simulink diagrams and C codes

B.1 EKF diagrams

Figure B.1: EKF main block.
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Figure B.2: EKF prediction section.

Figure B.3: EKF correction section.

B.2 RTAI and Linux codes

Code of the Linux module to log data.

#inc lude <s t d i o . h>

#inc lude <uni s td . h>

#inc lude <sys / types . h>

#inc lude <sys /mman. h>

#inc lude <sys / s t a t . h>

#inc lude < f c n t l . h>

#inc lude <s i g n a l . h>

// This l i b r a r y i s used by the shared memory f u n c t i o n s
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#inc lude <r ta i shm . h>

//Time l i b r a r y to add the date to f i l e name

#inc lude <time . h>

// General d e f i n i t i o n s . The used ones are the shared data d e c l a r a t i o n s .

#inc lude ” . / . . / wc1/ d e f i n i t i o n s . h”

// Here the shared memory data type i s dec l a r ed :

/∗

typede f s t r u c t {

char p r i n t ;

f l o a t time ;

f l o a t V;

f l o a t imeas ;

f l o a t vmeas ;

f l o a t xmeas ;

f l o a t Flmeas ;

f l o a t xRef ;

} SHMEM;

∗/

s t a t i c i n t end ;

//To end the program : h i t Ctr l+c (SIGINT)

s t a t i c void endme( i n t dummy) { end=1; }

i n t main ( void )

{

// This i s the shared data s t r u c t u r e dec l a r ed in parameters . h . I t

conta in s the data logged

SHMEM ∗data ;

// Pointer to l og f i l e

FILE ∗ fp ;

//Name o f the log and format

char Name [ ] = ” . / . . / Log PC104” , Format [ ] = ” . csv ” , fName [ 2 5 6 ] = ”” ;

t ime t timeAbs = time (NULL) ;

s t r u c t tm LogDate = ∗ l o c a l t i m e (&timeAbs ) ;

// F i l e name i s in format Log PC104 DAY MONTH YEAR HOUR MINUTE. csv
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s p r i n t f ( fName , ”%s %d %d %d %d %d%s ” , Name, LogDate . tm mday , LogDate .

tm mon + 1 , LogDate . tm year + 1900 , LogDate . tm hour , LogDate . tm min

, Format ) ;

// Connects the SIGINT s i g n a l ( Ctr l+c ) to the func t i on endme to c l o s e

the program

s i g n a l (SIGINT , endme) ;

//Open the r e s u l t s f i l e in wr i t i ng mode

i f ( ( fp = fopen ( fName , ”w” ) ) == NULL)

{

f p r i n t f ( s tde r r , ” Error in wr i t i ng the r e s u l t s f i l e . ” ) ;

r e turn −1;

}

e l s e

{

f p r i n t f ( s tde r r , ” F i l e c r ea ted \n” ) ;

// Writes the f i r s t l i n e , with the header ( q u a n t i t i e s logged ) .

Remember to put every s t r i n g between ” i f sav ing a . csv , so the

so f twar e s can t e l l i t ’ s a s t r i n g .

f p r i n t f ( fp , ”\”Time\” ;\”V\” ;\” i \” ;\” v \” ;\” x \” ;\”F\” ;\” xRef \” ;\n” ) ;

// Reserve a memory area f o r the datas from the RTAI app .

data = r t a i m a l l o c (nam2num(SHMNAM) , s i z e o f (SHMEM) ) ;

i f ( data == NULL)

{

f p r i n t f ( s tde r r , ” Error in r t a i m a l l o c . ” ) ;

r e turn −1;

}

f p r i n t f ( s tde r r , ”Shared memory i n i t i a l i z e d \n” ) ;

}

//Loop fo r eve r , u n t i l c t r l+c i s pre s sed .

whi l e ( ! end ) {

// I f the re i s a va lue to p r i n t

i f ( data−>pr in t )

{
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// I t i s p r in ted in the format NUMBER;NUMBER and so on . I t i s

p o s s i b l e to change the p r i n t i n g format modifying t h i s func t i on .

f p r i n t f ( fp , ”%1.5 f ;% f ;% f ;% f ;% f ;% f ;% f ;\n” , data−>time , data−>V, data

−>imeas , data−>vmeas , data−>xmeas , data−>Flmeas , data−>xRef ) ;

// Resets the p r i n t f l a g

data−>pr in t = 0 ;

}

}

// Clos ing ope ra t i on s .

r t a i f r e e (nam2num(SHMNAM) , &data ) ;

f c l o s e ( fp ) ;

f p r i n t f ( s tde r r , ” Clos ing . . . \ n” ) ;

r e turn 0 ;

}

Code of the RTAI module. Part of it was written by Peter Stolze.

//System f i l e s

#inc lude <l i nux /module . h>

#inc lude <l i nux / i n i t . h>

#inc lude <l i nux / ke rne l . h>

#inc lude <l i nux / p r o c f s . h>

#inc lude <l i nux / s t r i n g i f y . h>

#inc lude <r t a i s c h e d . h>

#inc lude < r t a i f i f o s . h>

#inc lude < r t a i p r o c f s . h>

#inc lude <r ta i math . h>

#inc lude ” r t a i p r o g . h”

#inc lude ” r t a i . h”

#inc lude <r ta i shm . h>

#inc lude <rtai nam2num . h>

// User c rea ted header f i l e s

#inc lude ” inout . h”

#inc lude ” too lbox . h”

#inc lude ” C o n t r o l l e r s . h”
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MODULE LICENSE( ”GPL” ) ;

MODULE DESCRIPTION( ”PICMG 1.0 FPGA RTAI” ) ;

MODULEAUTHOR( ”Fabio Mandrile ” ) ;

SHMEM ∗data ;

f l o a t a ;

long long t0 , t = 0 ;

i n t i s a r t i r q ( void )

{

i n t i ;

f l o a t I , x ;

f l o a t xRef , xErr , K;

f l o a t Ap, An;

s t a t i c long h f s in samp l e = 0 ;

i s r s t a r t ( ) ;

// Beginning o f RTAI code

// Enable PWM

PWM enable ( ) ;

// Acknowledge In t e r rup t

Interrupt Ack ( ) ;

//Get the time when the r e a l time opera t ion s t a r t s

i f ( ! s t a r t )

{

s t a r t = 1 ;

t0 = r t g e t c p u t i m e n s ( ) ;

}

// Generation o f a square wave r e f e r e n c e s i g n a l . Frequency 1 Hz .

xRef = blockwave ( 3 . 0 , 0 . 0 , 0 . 5 , 0 . 0 , &hfs in sample , 20 e3 ) ;

// Sensor read ing and conver s i on

I = ( f l o a t ) (ReadADC(6) − 2067) / 2 6 3 . 1 6 ;
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x = ( f l o a t ) (ReadADC(7) − 2069) / −393.16;

//Any FSMPC func t i on goes here

Vref = FSMPC PosMod 1S( I , x , vh ∗ vm, Flh ∗ Flm , xRef , Vref ) ;

// Sca led system

x = x / 5 . 0 ;

I = I / Im ;

//Kalman

xErr = x ;

//A constant back emf value i s used

//K = kq s ∗ xErr ∗ xErr + k s s ∗ xErr + k ;

K = k ;

ip = Ts / L ∗ Vref ∗ Vm / Im + (1 − R/L∗Ts) ∗ ih − Ts/L ∗ K ∗ vh ∗ vm

/ Im ;

vp = Ts / mass ∗ K ∗ ih ∗ Im / vm + vh − Ts/mass ∗ Flh ∗ Flm/vm;

xp = Ts ∗ vh ∗ vm / Xm + xh ;

Di = I − ip ;

Dx = x − xp ;

ih = ip + 1 .0 ∗ Di ;

vh = vp + 0.3388 ∗ Dx;

xh = xp + 0.04371 ∗ Dx;

Flh = Flh − 0 .1602 ∗ Dx;

Ap = Vref / 50 .0 ∗ MAXDUTY2 + MAXDUTY2;

An = −Vref / 50 .0 ∗ MAXDUTY2 + MAXDUTY2;

// ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗Data log ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

// This counter can be used f o r data dec imation .

i f ( cont % 1 == 0)

{

// Sets the p r i n t data f l a g

data−>pr in t = 1 ;

//Time stamp . The time i s g iven from c o n t r o l s t a r t

t = r t g e t c p u t i m e n s ( ) ;
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a = ( f l o a t ) ( t − t0 ) / 1E9 ;

data−>time = a ;

data−>V = Vref ;

data−>imeas = I ∗ Im ;

data−>vmeas = vh ∗ vm;

data−>xmeas = x ∗ Xm ∗ 1 0 0 0 . 0 ;

data−>Flmeas = Flh ;

data−>xRef = xRef ;

}

e l s e

// Nothing to p r in t . I t avo ids r e p e t i t i o n s o f the same value .

data−>pr in t = 0 ;

cont++;

i f ( cont >= 20000)

cont = 0 ;

//End o f RTAI code

i s r e n d ( ) ;

SetPWMDutycycle (0 , ( i n t ) Ap) ;

SetPWMDutycycle (1 , ( i n t ) An) ;

r e turn (IRQ HANDLED) ;

}

//RTAI i n i z i a l i z a t i o n func t i on . Run once at the beg inning

i n t in i t modu l e ( void )

{

pr in tk ( ” Star t %s !\n” , c f i l e ) ;

// Enables i n t e r r u p t func t i on

r t r e q u e s t g l o b a l i r q ( n r i r q , ( void ∗) i s a r t i r q ) ;

r t e n a b l e i r q ( n r i r q ) ;

// Enable PWM

PWM enable ( ) ;

// Set PWM mode and max . duty c y c l e
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Set PWM mode(PWMMODE, MAX DUTYCYCLE) ;

Inter rupt Ack ( ) ;

// Set AD f i l t e r usage

ADToSend(AD FILTERED VALUES) ;

// A l l o ca t e shared memory f o r data l ogg ing

data = r t a i k m a l l o c (nam2num(SHMNAM) , s i z e o f (SHMEM) ) ;

re turn (0 ) ;

}

// Cleanup func t i on . Runs when r e a l time opera t ion i s d i s ab l ed .

void cleanup module ( void )

{

// Reset hex d i s p l a y to 0x000

WriteHex (0 ) ;

// Set i n v e r t e r sw i t ch ing s t a t e to ”000”

Set3LNPCSwitchingState (1 , 1 , 1) ;

// Disab le PWM

PWM disable ( ) ;

// Disab le i n t e r r u p t

r t d i s a b l e i r q ( n r i r q ) ;

r t f r e e g l o b a l i r q ( n r i r q ) ;

// Free shared memory

r t a i k f r e e (nam2num(SHMNAM) ) ;

re turn ;

}

// Begin and end o f i n t e r r u p t func t i on .

void i s r s t a r t ( void )

{
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s a v e c r 0 a n d c l t s ( cr0 ) ; //To save Linux cr0 s t a t e . Always to be

done .

save fpenv ( l i n u x f p e ) ; //To save Linux FPU environment

i f ( i s r f i r s t t i m e )

r e s t o r e f p e n v ( t a s k f p e ) ; //To r e s t o r e your FPU environment

e l s e

i s r f i r s t t i m e = 1 ;

}

void i s r e n d ( void )

{

save fpenv ( t a s k f p e ) ; //To save your FPU environment . Needed

only i f the r e

r e s t o r e f p e n v ( l i n u x f p e ) ; //To r e s t o r e the p r e v i o u s l y saved Linux

FPU environment

r e s t o r e c r 0 ( cr0 ) ; //To r e s t o r e Linux cr0 . Always to be

done .

r t a c k i r q ( n r i r q ) ;

}




		Politecnico di Torino
	2017-10-05T12:53:15+0000
	Politecnico di Torino
	Iustin Radu Bojoi
	Tesi 231244




