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Abstract 

 
 

Abstract 

Nowadays, the power grid is called to face new challenges. The total energy consumption is 

rising steadily by several percent per year, as a consequence of demographical growth and a 

constant process of electrification of devices. Indeed, as fossil fuels become more expensive and 

consumer awareness grows, the rate of use of electric energy will rise accordingly, also in the 

fields of transport and heat production. 

Moreover, as consciousness on environmental risks caused by pollution has risen, Countries 

have become more and more concerned about fostering energy generation from renewable 

sources. All these factors contribute to augment the complexity of the power system 

management, since distribution system operators (DSOs) have to face more variable and less 

predictable power flows.  

A transition towards actively managing, monitoring and controlling the distribution network is 

needed, in order to enhance the integration of the distributed generation capacity and permit 

the steep increase in energy consumption. This process entails the development of reliable 

communication infrastructures, as a real-time coordinated control of demand and supply 

requires. 

Furthermore, a well-designed layer of intelligence necessitates tight integration of smart 

meters, smart devices and distribution transformers, requiring an interoperable communication 

infrastructure that employs standardized protocols . 

In this context, this master thesis targets the design of a test bench that could emulate the 

control and monitoring of smart electrical loads, the aim being to bring benefits to both the 

consumer and the distribution grid. The project include the design of a controller and the 

creation of a communication network.    
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1 Introduction 

1.1 Background 

Environmental concerns, demographical growth and the constantly increasing electrification of 

transports and devices in general, constitute nowadays a call for the exploitation of renewable 

forms of energy.  Indeed, traditional primary resources result unsuitable to accompany the 

foreseen increment of energy demand if, in parallel, the goal is to abate the emission rate of 

polluting agents. Many are the initiatives that various countries are undertaking in order to 

contrast pollution while trying to keep high level of life quality for people [1]. Most of these 

initiatives involve the increase of the adoption of sustainable forms of energy, so renewable 

resources[2].  

However, as well known, renewable sources of energy furnish an highly unpredictable 

generation capability since, for most of them, power production is intimately tied with weather 

conditions. Furthermore, this type of generation necessarily entails that the unities of 

production were distributed all over the territory, and this goes against the traditional vision of 

the power system functioning. Therefore, the integration of such a distributed and 

unpredictable generation represents a great challenge for the power grid administration, which 

needs to be kept safe and reliable even in such an unsettled framework.  

In this sense many studies investigate the benefits can be obtained in terms of efficiency when 

flexibility options are introduced in the power system in order to dynamically match demand 

and generation of electricity [3][4]. Among those, a solution is represented by the adoption of 

Demand Side Management (DSM) programs, above all Demand Response (DR), by which the 

electrical loads become actively involved in the power system balancing operations.  

 

 



Chapter 1 

2 
 

1.1.1 Environment for the EMS 

The EMS works in full synergy with the environment in which it is located. Focusing on a 

domestic framework, EMS coordinates the functioning of the so-called smart appliances (SA) 

and furnishes an user interface to communicate with the residents as well. The SAs are electric 

devices which have been made adapted to be managed remotely by an EMS. The 

communication between them is realized through a Home Area Network (HAN).  

Enlarging the focus outside the house, EMS is supposed to exchange information with the utility. 

This in order to provide useful information for the management of the distribution grid. This 

time the communication requires a wider coverage, and thus it will be a Neighborhood Area 

Network (NAN).  

Further information about the communication protocols will be provided in Chapter 3. The 

working environment of the EMS is depicted in Fig.3:    

 

 

Figure 1: the EMS environment [5] 
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1.2 Thesis objective 

The realization of  DR programs entails a close cooperation between the various element of the 

grid. As complexity of control and management systems of the power grid rises, new, rapid, 

reliable and effective communication structures are needed.  

In this context, this thesis aims the realization of a Test Bench (TB) to support the real-time 

simulation of possible scenarios of smart electrical loads control, in a DSM perspective. The TB 

exploits the optimization formulation previously developed in [6] and gives to it a physical, 

casual and real-time implementation. 

Particularly, the attention is focused on the smart management of charging stations for Electric 

Vehicles (EVs) which, thanks to their characteristics, potentially offer to the DSO opportunity of 

flexibility for the implementation of DR programs. In this regard, the objectives of the 

optimization are two: minimizing the costs of the recharge and flatten the power profile 

delivered by the MV/LV transformer that supplies the charging stations. 

The TB designing involves both a software and a hardware part. The first one focuses on the 

programming of a code that reliably executes the functions of creating the scenarios, handling 

the simulations in real time and performing the optimizations. The second one instead involves 

the physical realization of a communication network that allows robust interoperability between 

the diverse entities of the TB. 

1.3 Thesis outline 

This paper is organized in this way:  

- Chapter 2 introduces the Energy Management System (EMS).  Going through a short 

overview on the state of the art of DSM applications it arrives to a TB structure 

formulation   

- In Chapter 3 it is discussed the creation of the communication network. Firstly they are 

presented the main issues related to the implementation of Smart Grids (SG), and then 

they are discussed the choices of the communication protocol and the radio modules 

for this project. Furthermore, they are illustrated all the countermeasures taken to 
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strengthen the reliability of the communications, in order to contrast the problem of 

the transmission failure. Lastly the network topology chosen for the TB is depicted  

- In Chapter 4 it is deeply described the design of the test bench. The working principle of 

the main entities and their reciprocal interations are delineated. They are stated all the 

assumptions and the algorithms implemented to create the scenario and to reliably 

perform the optimizations in real time. The methods to set the various parameters are 

delineated as well  

- After having justified the choice of the mathematical tool,  Chapter 5 presents the 

formulation of the optimization problem. Therefore it describes the variables, 

parameters and constraints used. Lastly they are shown and commented the results 

coming from a typical day of simulation 

- Finally,  Chapter 6 draws the conclusions of the work and discusses possible future 

developments of the project. 
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2 Energy Management System 

Nowadays, technologies to store electric energy are not yet enough developed to permit a 

practical and cost-effective implementation [7]. As a consequence the electricity produced and 

delivered to the grid has to be consumed instantaneously. Thereby it arises the need to control, 

in real-time, that the balance between the quotas of power injected and withdrawn from the 

grid were respected. The challenging role of managing such a control is responsibility of the 

System Operators (SO), that act both at the transmission (TSO) and distribution levels (DSO). 

As  the complexity of power injections and withdrawals framework increases, the difficulties for 

SOs rise as well (Fig.1). Such a complexity augmentation is highly predictable, since, as 

aforementioned, the production is always more and more oriented towards the exploitation of 

renewable sources.  

 

 

Figure 2: smart grid environment for SOs control [8] 
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 The traditional concept of power grid must be revolutionized in order to permit to these 

unpredictable and distributed generation units the participation to the electricity market [9]. 

Indeed, if historically the power market have been based on the supply-side viewpoint, the 

arising idea nowadays is to get more involved the demand-side in the balancing operations [4]. 

2.1 Demand Side Management 

The studies in literature that investigate the benefits of DSM are already numerous. It is to 

register a general agreement on the fact that when loads provide flexibility on their consumption 

patterns, they can be obtained advantages in optimally scheduling their  functioning.  

It is possible to cluster the main profits attainable with DSM programs as [10]:      

- Load levelling: the electricity dispatch can be performed more easily when the load 

profile is flat. Furthermore, the power system facilities (lines, transformers, etc.) can be 

undersized respect to the present ones, as the possibilities to incur in demand peaks 

decrease 

- Electric transport: the development of electric vehicles can be fostered as the power 

consumption of these can be optimally scheduled 

- Participation on the ancillary service market: the load flexibility can surely constitutes a 

resource for the SOs. Therefore, contrary to the traditional way to conceive the power 

system, they can be provided services also in the opposite direction from the load to the 

grid. Thus, such services can be sold on the regulation market 

- Cut on the electricity cost: when peaks of electricity demand are reached, in order to 

satisfy the request the supplier have to turn on also the less efficient power plants. Since 

these entail higher production costs, this action, although unavoidable, implies an 

increase on the cost of electricity. As the peak demand periods are supposed to be 

drastically shrunk, the electricity price is likely to be diminished consequently. 

Although previsions are florid, a success on the actualization of DSM cannot be attained 

regardless of a change on the behaviour of customers. Indeed, if no profits are foreseeable 

people might be reluctant to switch from the well-established way of energy provision to the 

new one. 
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2.1.1 Dynamic Pricing 

The study conducted in [6] individuates the current structure of the retail market of electricity 

as the main obstacle to the advancement of DSM programs. Indeed, customers are used to 

stipulate contracts with suppliers on a fixed tariff per megawatt hour basis and they are not 

incentivized to modify their habits.   

According to [11] an active involvement of the demand can be achieved by adopting Dynamic 

Pricing (DP) methods, such as Real-Time Pricing (RTP). The latter envisages to make the retail 

prices of electricity dynamically linked to the real-time ones established by the wholesale 

market. This pricing method would allow revealing the underlying cost of electricity, making 

people more concerned about provision costs oscillations. In the meanwhile, also the electricity 

market would improve in efficiency. 

However, two main factors prevent the implementation of DP: 

1) skepticism about the responsiveness of consumers to DP, above all if this is equipoised 

with the implementation costs of such programs 

2) lack of metering, billing and communication systems adequate to support DP [12]. 

2.1.2 Demand Response 

DR is among the DSM programs. It is defined as the consumption behaviour that changes its 

patterns in response to DP structures or payments of incentives, the aim being the efficient and 

reliable operations of the electric system [13].  

Therefore, there exist two groups of DR programs that can be distinguished (Fig.2). They differ 

by the manner the consumer is involved in its consumption patterns modification :  

1) incentive-based: in this group lie those programs that involve payments to the 

consumers for reducing their power consumptions during critical hours. Hence, they are 

involved on the basis of contractual agreements with the supplier  

2) price-based: this category includes those programs that adopt DP. Time-varying tariffs 

pull the consumers shift their energy demand from high price hours (peak demand 

periods) to low price hours (out-of-peak times). In this manner, consumers voluntarily 

adapt their consumptions depending on their rational and economic preferences.   
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Figure 3: DR types of programs[11] 

 

For the purposes of this thesis only price-based DR programs are of interest. Indeed, as it will be 

explained later, one of the optimization performed by the TB entails a rescheduling of the 

electrical loads based on the research of the minimum cost solution. 

2.1.3 Types of DP for price-based DR 

In this paragraph they are listed the possible DP tariff methods [14]. It is worth to remember 

that all of them vary in time reflecting the variations of the wholesale market prices. Therefore 

one has: 

- Real-Time Pricing (RTP): with this method the electricity price of each hour in a day is 

known one hour in advance 

- Time Of Use (TOU): this method is similar to a bi-hourly tariff. It differs because of the 

fact that in TOU the day is divided in more than 2 periods to which different tariffs apply. 

The diverse tariffs are assigned depending on the hours of the day they refer to, the type 

of day (weekend/week), the season, etc. and are normally established for a long time 

period (i.e. several weeks) 

- Critical Peak Pricing (CPP): it is substantially a TOU method but with the difference that 

price during periods of demand peak can be modified in time. Normally, whenever a 

peak is foreseen, the consumer is warned a day in advance that price will be changed 

on a specified peak time. 
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However, these concepts will be taken up in Chapter 4, where it will be more thoroughly 

discussed how electricity prices are formed within the simulations.  

2.2 Home Energy Management System 

The Home Energy Management System (HEMS) is an intelligent system that performs 

monitoring, planning and controlling functions on electricity utilization within domestic 

environment [15]. Therefore, thanks to its functions the HEMS enables the actuation of DR 

programs within premises.  

The TB realized in this thesis performs the same functions of a HEMS but, as it actually refers to 

a numerous set of households, it has been called simply Energy Management System (EMS).  

At this point, it is worth to highlight the difference existing between a real world implementation 

of the EMS and the emulator developed in this thesis.  

Indeed, as a real world implementation was not among the purposes of this work, the entire 

environment the EMS refers to has been created ‘virtually’ within the software.  Then, the only 

physical realization of the TB is the communication network: all the electric loads (the EVs in this 

case) are simulated by computers and are allowed to talk to the EMS by means of radio modules. 

Since all the computers are operating within a household environment, the EMS actually 

operates as a HEMS. 

This implies that all the communication protocols and radio devices have been chosen to 

operate in an in-home environment, as it will be deeper discussed in chapter 3, being the 

application actually a HEMS. Nevertheless the acronym EMS is maintained throughout the paper 

in order to do not lose the viewpoint of the real world implementation. 

2.3 A model of the EMS environment 

In this paragraph it is described the residential area where the EMS is supposed to work. They 

are envisaged three agglomerates of households called block areas, each comprising both 

habitations and a parking station for EVs (Fig.4). In each block area they are present 64 

households and the same amount of vehicles. In this environment a price-based DR program is 
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performed, since it suits well for the adaptation of the consumption patterns in response to 

price signals.  

Indeed, EVs require considerable quantities of energy, and managing their charge by optimally 

scheduling the power delivered is very important .  

 

 

Figure 4: an overview of the block areas [6] 

 

All the agglomerates are supplied by the same MV/LV transformer and managed by the same 

Energy Manager (EM). This controls the entire area and, to fulfill its functions, it can counts on 

information coming from the power grid (electricity prices, emergency signals, etc.), the 

charging stations (energy requests, security signals, etc.) and the households as well.  

Yet, every parking is handled by another entity called Aggregator, which does not have a control 

role but acts simply as a data collector. Its duties are to cluster the energy requests of the EVs 

belonging to the related fleet and to send them to the EMS. The Aggregator behavior has been 

simulated by the software, although its communication with the EM has been physically realized 

via radio. 
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The information exchange between EMS and houses regards the consumptions and scheduled 

power profiles, and it is made possible by the installation of a smart meter on each on them. 

Therefore, it is foreseen that every house in the block areas is managed internally by an own 

HEMS that controls the in-home appliances, whereas externally the EMS, thanks also to the 

support provided by the smart meters, clusters the energy requests of the EVs and performs an 

optimal charge for them. 

The communication patterns between EMS and the smart meters of each house has not been 

investigated in this work, since the behavior of the households has been virtually simulated. The 

communication routing principle is shown in Fig.5: 

 

 

Figure 5: the block area communications routes 

 

2.4 Electric load classification 

To properly apply a DR program it is necessary to define the types of electrical loads can be 

involved on that. First of all, they must be surely smart loads, where the concept of smart 

appliance has been already introduced in 2.2.1. As a remind, they are electrical loads which are 

adapted to be controllable and monitorable remotely. 

However, the concept of ‘smartness’ of this kind of devices can include also other foreseeable 

possibilities, such as the ability to automatically arrange and optimize their operations based on 

information received from the users or other sources. 
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Therefore, depending on their controllability, the electric loads can be categorized in three 

macro groups [6][16] as: 

- Non-Shiftable, Non-Interruptible (NSNI) loads 

- Shiftable, Non-Interruptible (SNI) loads 

- Shiftable and Interruptible (SI) loads. 

2.4.1 Non-shiftable, Non-Interruptible loads 

NSNIs are those loads whose consumption profile cannot be anyhow modified. It includes 

lighting, cooking appliances, IT devices, irons, vacuum cleaners, etc. Managing the scheduling of 

such devices is unthinkable, since it would result highly discomfort for the user, given the fact of 

not being allowed to use these appliances when wished. 

2.4.2 Shiftable, Non-Interruptible loads 

This category contains all those loads whose consumption pattern is composed by a set of 

phases which can be shifted in time, but not interrupted once started. Furthermore, the power 

level of each phase cannot be changed. SNIs for example are washing machines, dishwashers 

and dryers, whose typical power consumption profiles are shown in Fig.6 [17].  
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Figure 6: consumption profiles of a dishwasher (top left), a dryer (top right) and a washing machine(bottom) [6] 

According to [6], the stepwise power consumption profile that characterizes these loads can be 

modelled with a series of parameters (Fig.7) as: number of phases, maximum and minimum 

process time intervals (𝐷𝑚𝑎𝑥 , 𝐷𝑚𝑖𝑛), maximum and minimum delay between two adjacent 

phases (𝑇𝑚𝑎𝑥 , 𝑇𝑚𝑖𝑛) and the energy required by each phase (𝐸𝑖1,𝑗) 

 

 

Figure 7: a model of the power consumption profile for SNI loads [6] 

 

The possibility to opportunely arrange these parameters offers a certain degree of freedom for 

optimal scheduling operations. 
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2.4.3 Shiftable and Interruptible loads 

In these category lie all the types of loads whose power consumption profile can be modified, 

up to a certain extent, both in time scheduling than in power. The loads belonging to SIs are 

basically energy storage devices. Depending on the quality of energy stored we can have electric 

battery loads (e.g. EVs) and thermal loads (e.g. boilers, heat pump, refrigerators, etc).  

As there is not the presence of well-specified working phases, these loads offer the largest 

degree of freedom for the implementation of DR programs. The main constraint they pose is the 

achievement of a desired quantity of energy stored within a specified time interval. 

 

Therefore, the EVs that will be simulated in the test bench fall into this category. We will see 

that all the optimizations performed by the EM are actually the realization of a DR program 

where, thanks to the degree of freedom offered by such a SI load, the charging profile of EVs are 

always rescheduled in order to match the optimization objective.  
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3 Communication network    

In a context of highly unpredictable and distributed generation it has emerged overwhelmingly 

the idea of Smart Grid (SG), a way to conceive the power grid where classical elements of the 

existing systems are supported by completely new components of measurement and control.  

The implementation of the concept of SG necessarily implies a tight interoperability between 

electricity suppliers and users, extended to every level of the generation-transmission-

distribution chain. 

Therefore, a reliable and well-structured communication network results of vital importance for 

the control entities of the system (TSO/DSO), the aim being to provide effective two-ways 

communication channels between the different parts of the grid and the operators in charge for 

controlling them. 

As the focus is enlarged to the whole system, there is no more a unique solution of 

communication network, since each utility presents diverse regulatory regimes, topographies 

and even different communication systems inherited from the classical concept of power system 

[18]. 
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Figure 8: a Smart grid communication environment [19] 

 

Hence, the great challenge of nowadays is to upgrade the existing communication 

infrastructures by adapting them to the wide set of smart grid applications foreseeable.  

In this sense, accordingly with [20] the main issues are: 

- Scarce level of interoperability between power system’s elements communication 

standards   

- Backwardness of existing power grid’s communication networks, based on an old 

fashioned concept of power system 

- Latency on data transmission. 

 

The creation of a communication network has been the only physical realization of this work, 

and so it constitutes the hardware part of the test bench. 

However, before the description of such a creation it is given an overview on the existing and 

implementable networks suitable for SG applications.  
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3.1 Levels of network for SG 

Such a complex and articulated system can only be operated through a multi-layer 

communication network, where several communication technologies coexist in synergy to  

proffer reliable and effective access to each section of the power system, even in different 

environments. 

Whence in [20] and [18] the authors propose a possible hierarchical multi-tier architecture for 

the communication network. The classification is basically made on the data-transmission rate 

and the coverage range most appropriate for each portion of the SG and it is divided in three 

main areas, as depicted in Fig.9. 

 

Figure 9: SG multi-layer communication network [1] 
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3.1.1 Wide Area Network (WAN) 

At the level of transmission/distribution WAN serves to grant the control on the stability of the 

power system, and thus it envisages the monitoring, control and protection of extensive areas. 

It requires an ample data throughput at high frequency, consequently the communication 

technology must support high data rate (10 – 1000 Mbps) and offer considerable coverage 

distance (until to 100 km). Commonly used technologies at this level are fiber optical, cellular 

and WiMAX. 

3.1.2 Neighborhood Area Network (NAN) 

NAN is also called FAN (Field Area Network) where it is used for power grid monitoring. It is 

designed for applications like smart metering (SM), distribution automation (DA) and demand 

response (DR). This network requires data rate between 0,1 to 10 Mbps and a coverage distance 

up to 10 km. Usable technologies are coaxial cables, DSL, cellular, WiMAX but also ZigBee or WiFi 

meshed networks. 

3.1.3 Home Area Network (HAN):  

HAN is used in home, building (BAN) or Industrial (IAN) automation to provide communication 

channels between sensing/actuator/measurement devices and a controller. Conversely to the 

previously discussed networks, HAN are designed to operate in a smaller environment where 

the security of power system is not involved. Thus, in this case electrical signals going to/coming 

from sensors or actuators do not necessitate high performances in terms of data rate and 

coverage distance. It follows that communication technologies such as ZigBee, Bluetooth, Wifi, 

Z-Wave, Ethernet or PLC are sufficient to support these kind of applications. 
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Figure 10: communication range and data rate requirements for SG network hierarchy [20] 

 

It is worth to remark that the structure above descripted aims to allow interactive cooperation 

among the different areas of communication, the aim being to work in synergy to accomplish 

the various requirements of the SG operations. 

Nonetheless, the application studied in this thesis is certainly within the domain of HAN 

networks. 

3.2 ZigBee  

In HAN networks wireless communication is preferable over the wired counterpart, due to its 

flexibility in adding/removing devices, its low cost of installation and its low power consumption. 

Moreover, significant advantages come to light when the nodes present in the network become 

numerous, making the wired choice impracticable. 

3.2.1 ZigBee versus Bluetooth and WLAN 

ZigBee, based on IEEE 802.15.4 standard, is one of the principal wireless communication 

protocols tailored for low-data-rate, short-range networks. It envisages three possible operating 

frequency bands: 868 MHz, 915 MHz and 2.4 GHz.  Compared with other existing standards for 

short-range wireless networking, such us Bluetooth and IEEE 802.11 WLAN, ZigBee has the 

lowest complexity and consequently the lowest data exchanging rate[21] (Fig. 11). Nevertheless, 

due to its cost and power efficiency, it is particularly suitable for applications where the wireless 

communication between nodes involves the exchange of simple commands or measurements 
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from sensing devices. Indeed this protocol finds space in home, industrial and hospital 

applications where the need is for low-cost, low-power consumption and low data throughput 

[22].  

 

 

Figure 11: Comparison between ZigBee, Bluetooth and IEEE 802.11b [21] 

 

Because of the aforementioned features, ZigBee and its compliant XBee modules have been 

chosen to support the operations of the Energy Management System (EMS). 

3.2.2 ZigBee features 

The standard ‘ZigBee’ has been designed by ZigBee Alliance [23]. It is structured in several 

networking layers, each of which is apt to accomplish specific functions and exchange 

data/commands exclusively with the adjacent layers below and above it [24]. Fig.12 illustrates 

schematically the structure of the protocol layers:  
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Figure 12: ZigBee networking layers [21] 

 

As it can be noticed in the precedent figure, the last two layers are compliant with IEEE 802.15.4 

specification. Let us describe briefly the functions each layer fulfills:  

- Physical Layer (PHY): it is in charge of activate the radio when it has to receive or 

transmit a message packet. It performs the selection of the channel frequency, verifying 

as well if this channel is busy or not 

- Medium Access Control Layer (MAC): it serves as an interface between PHY and NWK 

layers. Moreover it accomplishes services of synchronization and 

association/dissociation 

- Network layer (NWK): it constitutes an interface between MAC and APL layers and is 

responsible for the network formation 

- Application layer (APL): it is the head layer and contains the application objects. These 

are in charge of managing and controlling the protocol layers in a ZigBee device 

- Security: this section has the role to assure the confidentiality of the data transmitted 

by operating an encryption.  
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3.2.3 ZigBee devices roles and network topologies 

After having described the ZigBee network structure, let us now describe the devices that are 

part of it, the roles they can take and the way they interact.  The standard IEEE 802.15.4 foresees 

mainly two types of devices: 

- Full function devices (FFD): they are able to perform every role or duty envisaged by the 

IEEE 802.15.4 standard. Furthermore they are allowed to communicate with all the 

devices of the network 

- Reduced function devices (RFD): as the name suggests, they have restricted capabilities 

compared with FFDs. Indeed in the network they cannot talk each other, but the only 

communication allowed is toward an FFD. 

For what regards the roles they can take, in a ZigBee network one can have: 

- Coordinator: it is a FFD device, and its main function is to establish the network and to 

be the principal controller of it   

- Router: it is also an FFD device like the Coordinator, but it is not set to be the controller 

of the network 

- End device: it is an RFD device that, contrary to the first two, cannot relay messages but 

can only talk to an FFD.  

It is worth to remark that between ZigBee and IEEE 802.15.4 standards the terminology about 

these roles slightly differs. Therefore, in IEEE 802.15.4 ‘Coordinator’, ‘Router’ and ‘End devices’ 

become respectively ‘PAN coordinator’ (since what it actually sets is a Personal Area Network), 

‘Coordinator’ and ‘Device’. 

These kind of entities are exploitable in two possible network topologies: star or peer-to-peer, 

as shown in the Fig.13 and Fig.14:  

 

 

Figure 13: star topology [21] 



Chapter 3 

23 
 

 

 

Figure 14: peer-to-peer meshed topology [21] 

 

In a star topology every Routers or End devices can only convey messages to the coordinator. 

Instead, in a peer-to-peer topology FFD devices can communicate each other, while again RFD 

can do it only with an FFD.   

3.2.4 ZigBee collision avoidance method 

Once network is set, problems might arise when different devices have to use the same 

frequency channel to perform their communication. This represents a key issue for the work of 

this thesis since, as it will be explained later, the radios that participate to the network have to 

send their messages to a single coordinator every fifteen minutes ‘almost’ at the same time. 

For this reason, the standard under analysis has developed two simple methods to permit 

several devices to utilize a single channel while avoiding the collision  of messages.  

A first one is called ‘contention-free’ method. It implies that the Coordinator keeps synchronized 

all the radios in the network, giving a specified time interval to each of them to perform 

communication. This method has not been taken into account in this thesis since it is more 

power-consuming.   

The method utilized is instead a ‘contention-based channel access’ and is called Carrier Sense 

Multiple Access with Collision Avoidance (CSMA-CA). It consists in a particular mechanism 

through which before getting access to the channel, a device that wants to transmit operates 

firstly a channel availability assessment. This process is named Clear Channel Assessment (CCA) 

and thus assures that the frequency channel is not currently used by another transmission.  
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There exist two ways to operate CCA. The first one is Energy detection (ED), whereby a device 

measures the spectral energy of the channel it is interested on, without trying to decode the 

signal.  The second way to do a CCA is called Carrier Sense (CS). Again it is done a signal energy 

estimation, but, contrary to what happens in ED, in this case the type of signal is ascertained in 

order to verify if it is compliant with IEEE 802.15.4.  

The difference between ED and CS is that in the former the channel is declared busy everywhen 

signal energy is detected, while in the second it is possible to discern if that signal is an IEEE 

802.15.4 and, in that case, consider the channel as busy. 

The important thing to underline is that in both cases if the channel is declared as ‘not clear’ 

then the device waits for a random time period before trying again the transmission. Afterwards 

it keeps iterating this procedure until the channel turns clear or a maximum number of tries 

(defined by the user) is reached. 

3.3 Test bench network structure 

After having introduced the structure of ZigBee standard and its working principle, in this last 

paragraph a description of the network designed to create the test bench is given. In addition to 

the topology, a brief description of the radio devices chosen to set up the network is provided. 

3.3.1 XBee modules 

XBees are radio modules produced by Digi International [25]. They are based on IEEE 802.15.4 

standard, so they are ZigBee compliant. In the test bench realized in this thesis, XBees have the 

role to support the Aggregators in their operations, by providing them a mean to communicate 

to the Coordinator the energy requests they gather from their respective fleet. The setting of 

every radio module has been done through XCTU, a software made available by Digi 

International that allows either tuning the radios’ parameters and realizing every sort of 

communication. 

Within a PAN XBees operate in conformity with ZigBee standard protocol: there will be a 

Coordinator that forms and controls the network, Routers and End Devices that communicate 
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with it following the procedures discussed in 3.2.4. What is still to be presented is the way these 

modules exchange data.   

These devices have basically two modes of transmitting data: API and AT mode [26]. The latter 

is to be used to send simple commands to the end device (e.g. to change some parameter of the 

end device). API mode instead is helpful to transmit sets of data grouped in packets and called 

‘API frames’. Considering that Aggregators have to send numerous information about the state 

of their fleets, only API mode has been used in this work. 

3.3.2 API frame 

Let us describe the structure of an API frame, with the help of Fig.15: 

 

 

Figure 15: API frame structure [27] 

 

One can recognise: 

- Start Delimiter: it indicates the beginning of the frame and it has always the same value 

0x7E (hexadecimal numeral system) 

- Length: this field specifies the number of bytes forming the data frame. In this count, it 

excludes itself, the start delimiter and the checksum 

- Frame data: in this section they are contained the data to be transmitted and the API 

frame type identifier as well. The packet of data to be sent can have a maximum length 

of 100 bytes    

- Checksum: the last byte serves to test data integrity. Checksum is computed by summing 

only the bytes which are bunched in ‘frame data’.   
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3.3.3 Network topology 

Finally, one has all the means to define the network structure of the test bench. The latter is a 

star topology constituted of 3 End Devices and one Coordinator at the service, respectively, of 

the Aggregators and the Energy Manager (Fig.16).  Radio modules have been mounted on 

specific XBee adapters through which it is possible to handle them from a computer by means 

of an USB connection. So, virtually we have four computers in total, each of which runs a distinct 

code to play the role that has been foreseen for it within the test bench.   

 

 

Figure 16: test bench network topology [28]
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4 The Test Bench 

4.1 Emulator structure 

The emulator has been entirely created in Matlab language. The whole program is articulated in 

several scripts, each concerning a specific part of the same. The code run day by day and the 

user is allowed to choose the electricity price determination method among constant price, day-

ahead pricing, time of use and bihourly tariff.  

The daytime is discretized in intervals of fifteen minutes, during which all the operations of 

communication and optimization are carried out. It is worth to underline that the time scale of 

the emulator could not correspond to the real time: indeed, for the sake of velocity, the time of 

the simulation can be opportunely scaled to make a day last in some minutes, instead of having 

to wait the real time. 

As a first overview of all the scripts we have: 

• ‘Fleet_Characteristics’: it sets up, at the beginning of every day of simulation, the 

schedule all the EVs arrive with and also their energy requests. This is done by following 

criteria of randomness explained later on  

• ‘Aggregator’: as suggested by the name, this script emulates the behavior of the 

aggregator and thus it acts, every fifteen minutes, as an interface between the 

coordinator and the electric vehicles. The aggregators can decide to leave the 

optimization process at the end of the day or to continue with the next date  

• ‘Coordinator’: this is the core script since it emulates the operations performed by the 

EM. It is continuously ready to receive energy requests from the aggregators, by then it 

run the optimization. Hence, it contains all the processing and post-processing parts and 

works as an interface for the user 
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• ‘Optimization_bill’, ‘Optimization_PAR’: at each iteration they operate sequentially the 

optimizations, firstly at the level of single houses (bill optimization) and then at the grid 

level (peak to average ratio optimization). 

• Set parameters: these are a set of scripts called once a day to properly configure the 

electric load profile of all habitations, the electricity price, the time discretization and 

the figure parameters for the current day    

• ‘Plot_Electricity_Price’, ‘Plot_Power’: they are the scripts for the post-processing 

operations. Hence, they show in graphs the electricity price profile for the current day 

and the updates that occur in the transformer power profile at each iteration. 

 

Let us proceed with a deeper insight on the scripts one by one in order.  

4.2 Fleet set up 

The idea behind the fleet generation is to create a scenario which best reflects a realistic 

situation of vehicles arriving/leaving a parking lot. Therefore, they must be simulated all the 

probable features constituting a daily routine of a charging station: arrival times, energy 

requests and charging times made available by every EV. These ones are light duty electric cars, 

and they can charge in a normal home outlet at the typical home power range, although the 

philosophy the test bench is designed with is implementable for vehicles of any size and charging 

method.  

Each of them, once arrived at home and plugged into the network, is allowed to set its own 

preferences about energy it needs and time it is willing to wait to recharge the battery.  

Therefore, every EV communicates to the coordinator four information concerning its status: 

1) Identification number 

2) Start charging time 

3) Time interval allowed to charge  

4) Energy needed 

The number of EVs that constitute a fleet is 64. The latter comes from the following 

considerations: as mentioned in 3.3.2, a packet of data exchanged between two devices through 
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an API frame has a maximum length of 100 bytes. A Coordinator could receive more than one 

message at a time though, and it must store all the requests coming from all the Aggregators 

without losses of messages. If one considers that every EV’s information counts for 1 byte and 

that each EV sends 4 information, by supposing all vehicles communicating simultaneously to 

the Coordinator the maximum number of EVs allowed would have been 

 

𝑁𝐸𝑉,𝑓𝑙𝑒𝑒𝑡 =
𝑃𝑎𝑐𝑘𝑒𝑡 𝑠𝑖𝑧𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑜𝑟𝑠 ∗ 𝐸𝑉 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑠𝑖𝑧𝑒
=

100

3 ∗ 4
= 8,33 

 

However, such a simultaneity of energy requests sent by the 3 Aggregators is unlikely to happen, 

since the start charging time of EVs has been opportunely spread throughout the all day time. 

So, it has been chosen that number of 64 in order to have a considerable number of EVs in a 

fleet, while maintaining still a margin respect to the maximum size of the data packet.  

Let us proceed with the description of how the different features of the EVs’ charging patterns 

have been set in the simulations. As it will be explained, all these settings follow principles of 

randomness. 

4.2.1 Start charging time scheduling   

The choice of the start charging time for the vehicles is made with a random process. By 

considering a normal working day, it has been assumed that people mostly leave home at 8:00 

in the morning and come back at 19:00 in the evening. Another portion of drivers instead could 

arrive and plug his car at around 13:00. Therefore the fleet results as split in 2 portions: 

• a first part (whose number is randomly selected from a normal distribution with 

mean=13 and standard deviation=2) is composed by EVs that start charging at a time 

taken from a normal distribution with mean 13 and a standard deviation of 2 hours; 

• a second part where the remaining number of EVs start charging at a time picked up 

again from a normal distribution, but with mean 19 and standard deviation of 2 hours.   
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At the end of each day, at midnight to be precise, the fleet is updated in order to obtain new 

values of time scheduling and energy requests for the next day of simulation. 

4.2.2 Energy request formulation 

The energy requested by every EV is gotten again in a probabilistic manner. In [29] authors 

estimated an average energy consumption rate (ECR) of 160 Wh/km for mid-sized EVs, while the 

European report [30] shows that the mean daily distance traveled by drivers in the European 

countries ranges from 40 to 80 km. Therefore, as a reference value, it has been assumed an 

average energy consumption of 6,5 kWh per day for the drivers. 

Hence, the energy consumed in a day for each EV of the fleet is drawn from a normal distribution 

with mean 6,5 kWh and standard deviation 3 (Fig.18). 

 

Figure 17: probability of start charging time for the early arriving EVs (left) and for the last arriving EVs (right) 
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Figure 18: daily energy consumption probability curve 

 

4.2.3 Time available to charge 

The last part of the fleet generator script aims the formation of the time interval the drivers 

make available to refill the battery. This process has been implemented again with a certain 

degree of randomness: firstly a minimum time range is computed, by basing the calculation on 

the energy requested and the charger power as follows: 

 

𝑇𝑚𝑖𝑛 =
𝐸𝑛𝑒𝑒𝑑𝑒𝑑

𝑃𝑚𝑎𝑥,𝑐ℎ𝑎𝑟𝑔𝑒𝑟
 

 

Secondly, an extra-time is randomly added (up to 10 hours) to the first amount, to take into 

account the factors listed below: 

-  not always the maximum power of the charger is exploitable at the socket. Other 

appliances may consume power during the EV’s battery refill, reducing in this way the 

margin with respect to the power available by contract in the household; 
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- not necessarily the time a driver is willing to wait to recharge its battery coincides with 

the minimum time achievable by charging at maximum power. It is surely the case, for 

instance, of a typical during-night recharge.     

 

4.3 Aggregator 

The Aggregator is the entity that manages the communication between the Coordinator and the 

electric vehicles of the fleet. It collects and sends every fifteen minutes the requests gathered 

from the EVs arrived during the previous quarter hour. If new EVs have arrived during this time 

range this script activates the ZigBee communication, otherwise it notifies the user that nothing 

has changed.  

In a real implementation this  entity might act as a Router in the network, by actively 

communicating with every EV of the fleet. Its status could be turned on whenever a vehicle 

arrives, plugs in to the charger and requests to receive energy. EVs instead would operate as 

End Devices in this case (Fig.19), giving rise to a tree topology network. 

 

 

Figure 19: real implementation network topology [31] 

 

Nevertheless, since in the test bench the EVs behavior has been entirely virtually created, no 

communications are necessary between Aggregators and related Fleets. Thus, such a node can 

be easily handled as an End Device that wakes up, at every iteration, only if there are new 

requests to be sent.  
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4.3.1 Transmission failure management 

The main problem that has been tackled in this part of code is surely the data transmission 

failure. The purpose was to create a reliable code able to react in case of missed reception, in 

order to guarantee a proper communication between the parts. 

Many are the causes  that can represent an obstacle to a correct radio transmission. These are 

mostly related to the presence of materials in the space which act as electromagnetic shields 

[21] or the proximity of other LAN/PAN networks (e.g. a router WiFi) whose signals may 

represent electromagnetic interferences [32].  

Moreover, it is to be taken into account the issue related to the coordinator’s input channel 

congestion. The way ZigBee protocol counteracts the crowdedness of transmission channels has 

been already discussed in 3.2.4 [22]. 

Because of the way to work of the test bench, channel congestion is likely to occur:  the three 

Aggregators are set to send energy requests every fifteen minutes, and the action of sending 

messages results synchronized for all of them with the internal clock of Matlab. Therefore, after 

having performed CCA, it can happens that more than one Aggregator finds the channel either 

free (and so it start transmitting) or busy (then it delays the transmission). In the first case, to 

avoid information losses, the Coordinator has been designed to be able to store energy requests 

coming from more than  one Aggregator at a time. The code has been implemented to recognize 

if more than one sender is present within the same API frame, then it discerns the sources and 

runs the optimizations separately for each fleet. In the second case instead the CCA procedure 

could be repeated several times up to the maximum number of reiterations set by the user. If 

this border is exceeded then the transmission is erased. 

In order to overcome such a transmission failure, XBee modules make available a helpful 

function that can be asked to the coordinator when setting: a feedback on the state of the 

reception called ‘Acknowledgment frame’ (ACK) (Fig.20). 
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Figure 20: Acknowledgment frame exchange [21] 

 

Thereby, in a bilateral communication, XBee receivers send back to the sender this kind of 

feedback as soon as they receive a message [33].  If an acknowledgement is not received, the 

packet will be resent up to three extra times. After that, if the acknowledgement is still not 

received by the sender, an ACK failure is recorded. 

However, since this procedure could not yet guarantee a successful transmission, it  has been 

created in the code an algorithm on purpose to strengthen the overall probability to attain a 

satisfactory communication. The algorithm is depicted in Fig.21. 
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Figure 21: scheme of the algorithm to enhance the probability of reception success 

 

The working principle of the algorithm follows these steps:  

1) One End Device, after having assessed the channel is free, sends a message to the 

Coordinator.  During the next 400 µs it goes in ‘receiving mode’ waiting for one ACK [21]. 

It is to remember that it resends the message 3 extra-times automatically, so at most 

this procedure takes 1.6 ms. If within 0.1 second the Aggregator does not receive any 

ACK it keeps repeating this procedure up to 10 seconds.  

2) If Coordinator receives the message within 10s then it can either hold or discard it, 

depending if that request has already been received before or not. Indeed, it can also 

happens that  the Coordinator sends an ACK but the End Device doesn’t receive it! Thus, 

from the Aggregator point of view, the message is to be sent again in the next 15 

minutes, as it will be explained later. In any case, as soon as Coordinator receives, it 

sends an ACK. Otherwise it does not. 
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3) If the End Device receives the ACK within 10 s the communication is to be considered as 

successfully accomplished. In the other case the Aggregator behaves like if the message 

has not been received at all by the Coordinator. When this occurs an extra procedure is 

triggered, since the transmission is judged as failed: for every one of the latest-plugged 

EVs contained  in that message, it is verified if there are both enough power capability 

and time slots remaining to complete the charge within the user-defined time. If this is 

possible, the start charging time is shifted to the next 15 minutes, together with the 

following possible requests. If it is not, the user is warned that its desired charge cannot 

be satisfied and it has to change the terms.    

It is worth noting that, although this procedure already yields satisfactory results , this timing so 

narrow has been designed for the time scale of the emulator. In reality such an execution 

velocity is not strictly necessary, since times are wider and one can afford more margin.  So, in 

a real implementation, in case of transmission failure one might think to reiterate the algorithm 

for more than 10 s in order to enhance  the likelihood of success. 

4.4 Coordinator 

The Coordinator is the part of the test bench that emulates the behavior of the Energy Manager. 

Thereby later on we will speak equivalently about Coordinator or Energy Manager by referring 

to the same entity. This script is the principal one, from which the entire test bench can be 

started. 

At the first launch it loads the following data: 

- Whole Sale Price (€/MWh) from Belpex1 website 

- Syntetic Load Profile curves from Synergrid2 

- Irradiance (W/m2) from IRM3 

- Electricity tariffs from Electrabel4 

                                                           
1 Belgian electricity market operator. 
2 Belgian federation for electricity and gas networks. 
3 Institut royal météorologique. It is a Belgian federal institution for meteorological research. 
4 Belgian utility company for electricity. 
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All of these data are referred to the year 2014. They have been gathered for the entire year in a 

discrete time manner, day by day, by samples of 15 minutes each. 

Successively, Coordinator randomly selects a day of the year 2014 and, by exploiting the data 

previously loaded, it calls the scripts that set the parameters needed to run the simulation for 

the current day. These are: 

- Time parameters: essentially this script operates the time discretization of the day. It 

creates all the time vectors and parameters which will be used all throughout the 

program, both in the processing than in the post-processing part 

- Block parameters: this script generates the load profile for all the households which are, 

in a broader perspective, grouped in blocks and take part to the optimization. Indeed, 

every EV’s recharge is considered as a part of the total electricity consumption of the 

respective house. Each fleet corresponds to a block and so to an Aggregator 

- Electricity price parameters: this is the script responsible for the formation of the 

electricity cost vector 

- Figure parameters: this script sets the graphical parameters useful for the post-

processing. 

It is worth to highlight that parameters are not only set for the current day but partially for the 

day subsequent as well. In fact, in a daily optimization they must be included also EVs arriving 

late in the evening, whose scheduled charging power profile might extend to the early hours of 

the successive day.   

The EM keeps continuously open the reception channel during a day. Everywhen it receives a 

message it then triggers sequentially the optimizations.  

4.4.1 Multiple reception management  

As mentioned in section 4.3.1, despite of all the countermeasures taken to prevent the 

congestion of the communication channel to the Coordinator, messages coming from the 3 

Aggregators may arrive almost synchronously or, at least, within a small time interval.   

To properly face these eventualities, the EM has been designed to wait as far as its input channel 

detects the presence of incoming signals  before launching the optimizations. In this way it has 

been enabled to store, one after the other, messages arriving from more than one source. 
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Thanks to the knowledge of the API frames structure (already introduced in section 3.3.2), it has 

been possible to pinpoint within a message the start delimiters and the source identifiers of the 

diverse energy requests. This possibility of discerning has allowed to properly distinguish and 

separate the optimizations for the three fleets of EVs. 

4.4.2 Time organization 

As aforementioned, in DSM applications time is discretized in intervals of 15 minutes. 

Consequently the daytime is subdivided in a number of time slots ( 𝑁𝑠𝑙𝑜𝑡𝑠 ) equal to 

𝑁𝑠𝑙𝑜𝑡𝑠 =
24 ∗ 60

15
= 96 

It is to emphasize that the emulator has been designed to make the Aggregators drive the time 

during the simulations. Whereas in a real time implementation they are supposed to wake and 

transmit synchronously at every 15 minutes, we remember that in the test bench this time 

discretization can be opportunely scaled in order to make the iterations faster.  By default, the 

real and simulation discretization intervals are in the relationship  

15 𝑚𝑖𝑛 ↔ 30 𝑠𝑒𝑐 

even if the user is allowed to tune differently the scaling factor. This means that if in a real 

application each iteration lasts 15 minutes, in the simulations these terminates in 30 seconds. 

It is important to highlight that this operation of scaling must be done carefully in order to 

respect the test bench working times. Indeed, the time slots cannot expire before both 

Coordinator and Aggregators have completed their operations!    

In this regard, if CPU computation time is neglected, the Aggregator operations take at most 

11.1 seconds to be accomplished. This time interval includes also the maximum delay can be 

reached in case of transmission failure, as discussed in section 4.3.1. To facilitate the 

transmission operations by alleviating the communication channel congestion problem, the 

start sending instants of the 3 Aggregators have been delayed of 2.5 seconds each other. So, at 

most, at each iteration the transmissions from Aggregators can last 16.1 seconds. 

For what concerns the Energy Manager instead, this is kept constantly in receiving mode and it 

operates its computations as soon as it receives energy requests. Normally, the optimization 
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processes require no more than 10 seconds to be accomplished, from when the message is 

received until the results are found and shown. 

Hence, if iterations last 30 second there is enough time to complete both operations of 

communication and optimization. Nevertheless, overlapping issues may arise whenever YALMIP 

does not find an optimal solution within a few number of iterations and keeps reiterating the 

calculations. In those cases it has been experimentally observed that the optimizations can take 

even more than a minute to terminate! Then, the scaling factor should be properly regulated in 

order to permit their completion.     

A Coordinator that warns the End Devices that their discretization intervals are too short, with 

respect to the optimization time, has not been implemented yet. Also because the concept of 

time intervals scaling would not apply to reality, where such iterations velocity is not required. 

4.4.3 Baseload formation 

In this work they are considered only Electric Vehicles as SI loads, and only photovoltaic 

production as local generation. To properly conduct the simulations it is also needed an 

estimation about the behavior of single houses in terms of power consumption profiles during 

the day. The latter have to be as realistic as possible in order to validate the model. 

In this regard, on the traces of the work done in [6], the power load profiles have been generated 

on the basis of statistic data of energy consumption, made available by the already cited 

Synergrid.  By means of these data, Synergrid formulates what it calls Synthetic Load Profile (SLP, 

Fig.22)): it is a theoretical model based on measures of electricity consumption conducted on 

thousands of residential meters, which takes into account several variables such as weather 

conditions, irradiance and period of the year. SLP curves are traced for every day of the year and 

they are discretized on a 15 minutes basis. Moreover, they are available on the Synergrid 

website [34]. 
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Figure 22: synthetic load profile for January 1, 2014 

 

Therefore, SLP constitutes a valuable model to estimate a normalized consumption for one 

household. The normalization factor of these curves is W/kWh. To obtain the power 

consumption profile of all the households, SLP curves are multiplied by the annual energy 

consumption of each house. Therefore, if the annual consumption of one household is equal to 

3500 kWh, for a generic day 𝑥 of the year, the power consumption profile of this house (𝑃𝑜𝑤𝑥) 

is computed, as: 

 

𝑆𝐿𝑃𝑥 [
𝑊

𝑘𝑊ℎ
] ∗ 3500[𝑘𝑊ℎ/𝑦𝑒𝑎𝑟] =  𝑃𝑜𝑤𝑥  [𝑊] 

 

The annual energy consumed by each household is obtained in a random way. Indeed, it can be 

extracted from three normal distributions with: 

-  average 2000 and standard deviation 500 

-  average 3500 and standard deviation 500 

- average 5000 and standard deviation 1000. 
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4.4.4 Price formation 

Households involved into the optimizations are obviously to be considered residential 

customers. Most commonly they are charged with flat tariffs by the suppliers [35]. However, 

such a pricing method does not reflect directly the actual cost of electricity and, more 

importantly, it does not allow the implementation of a DR program. In order to be able to 

perform DR taking advantage from load flexibility, it is necessary to adopt Dynamic pricing (DP) 

tariffs, such as Real-time pricing (RTP). Indeed, these ones allow adapting the consumption 

profile on the basis of the knowledge about how electricity prices vary throughout the day [36]. 

Nonetheless, nowadays such forms of DP are not yet existing for residential customers, so there 

is not data availability. In this thesis it has been adopted a method to dynamically define prices 

which has been studied in [11]. 

First of all it is necessary to define which part of the electricity bill is subject to variability. The 

costs charged to the final user are composed of 4 elements, each referring to a specific service: 

transmission, distribution, taxes and energy consumed. Among these, only the energy 

component is directly subjected to variations under DP. 

This variability is linked to the production costs faced by the producers and the subsequent 

market dynamics that lead to the definition of the final wholesale electricity price.  

Therefore, to reflect this variability [11] proposes to link the retail market price to the wholesale 

one. However, price cannot be directly the wholesale market one, since retailers will adjust it by 

adding a quota to protect themselves by the risks of the price instability[16].  

Hence, RTP will be derived from the day-ahead wholesale market prices through a 

proportionality coefficient deduced according to the so-called principle of revenue neutrality: 

under the hypothesis that a consumer maintains unvaried its consumption pattern, the idea is 

that, on a yearly basis, the electricity bill resulting from DP would equals the one ensuing from 

the former pricing method. Thereby, it is supposed that the idea of changing tariff would be 

accepted by customers. 

The above mentioned coefficient (K) is called pricing factor and it is calculated as follows: 

 

𝐾 =
𝐴𝑃

∑ [∑ (𝐶𝐿𝑖𝑗 × 𝑊𝑃𝑖𝑗)𝑗 ]𝑖
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where 𝑖 and 𝑗 are the indices referring, respectively, to the days of the year and to the time 

blocks by which the days are discretized. Yet  

- 𝐶𝐿𝑖𝑗 is the consumption level in the time block 𝑗  of day 𝑖. It is estimated by making an 

average of the SLP 

- 𝑊𝑃𝑖𝑗  is the wholesale price in the time block 𝑗  of day 𝑖. It is calculated by an average of 

the wholesale price of each hour 

- 𝐴𝑃 is the average yearly energy tariff computed with the former electricity pricing 

method. 

Therefore, the calculation of the pricing factor has made possible the generation of valid cost 

vectors, which have been used in the simulations as a reference to perform RTP. 

4.4.5 Tariffs   

As formerly mentioned, the EM asks the user to select the pricing method it wants to adopt in 

the simulations. The tariffs implemented are: 

 

- Constant price (CP): simply, the price is kept fixed to the retailer value. Besides the flat 

electricity price it includes the costs of contract, meter, connection, distribution and 

taxes (DSO,TSO and green energy taxes) as set by Electrabel 

- Day-Ahead Price (DAP): it is generated by multiplying the hourly-based wholesale 

market price by the pricing factor K, as introduced in the previous paragraph. 

Furthermore, they are added the same costs of contract, meter, connection, distribution 

and taxes as in CP (Fig.23) 
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Figure 23: DAP profile for May 2, 2014 

 

- Time of Use (TOU): it is organized in 5 time blocks per day. For each of them the price 

value is obtained by averaging the wholesale price contained into the interval. Again the 

average is then scaled by the pricing factor K and the same extra costs are included as 

in CP and DAP (Fig.24) 

 

 

Figure 24: TOU profile for May 2, 2014 
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- Bihourly: it is split in a during day tariff (valid from 8:00 to 23:00) and in a during night 

one (valid for the remaining hours) (Fig.25). It is computed by adding to the flat 

electricity tariffs the same extra costs as in the previous cases 

 

 

Figure 25: Bihourly profile for May 2, 2014 

 

 

4.5 Bill and PAR Optimizations routine 

As it will be explained more deeply later, the optimizations are organized in two levels. The first 

one is called Bill optimization and it can be considered a local optimization. In this one, they are 

searched solutions for each household to minimize the cost of the total energy needed to refill 

the EV’s battery. These optimizations are executed  only once a day for each EV. They return the 

power profile, which goes from the start to the end charging time selected by the user, that 

minimizes the cost of the recharge. 

The second level instead is called PAR optimization and operates a global optimization. Indeed, 

the results coming from the previous level are handled together and partially adjusted in order 

to flatten the power profile of the MV/LV  transformer that supplies the zone (i.e. Peak to 

Average Ratio minimization). This optimization encompasses all the vehicles currently in charge 
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and corrects their charging profiles from the current up to the latest end charging time. The 

results are updates anytime a new EV makes a request for start charging. 

4.5.1 An example of optimization  

A clearer explanation about how the optimizations are carried on can be furnished with the help 

of the simple scenario created in Fig.26: 

 

 

Figure 26: an example of optimization scheme 

 

Let’s suppose we have only three EVs instead of three fleets. Time is split in 16 slots of 15 

minutes each. The scenario would evolves as follows:  

1) The blue EV arrives in time slot 1 and requests to be charged within 9 slots. The 

Aggregator records this request and sends it to the Coordinator. This one runs the two 

level optimization and authorizes the charge of the blue EV on the basis of the power 

profiles resulted. These refer to the whole time interval made available by the blue EV 

user, so from time slot 2 to 9 

2) Nothing changes until the arrival of the green EV in time slot 4. After having  received 

the request this vehicle sent through its related Aggregator, the Coordinator computes 

firstly the green EV minimum cost power profile. Secondly, it performs the PAR 

optimization which now includes both vehicles blue and green. In particular the green 

profile is rescheduled entirely from time slot 5 to 12, whereas the blue one is possibly 

readjusted only from slot 5 to 9. Indeed power from time slot 2 to 4 has been already 

supplied  
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3)  The same steps are repeated for the orange EV as soon as it arrives in time slot 7. This 

time PAR optimization operates a rescheduling from time slot 8 to 16. In doing so, the 

charging power profiles of blue and green EVs are rearranged respectively from time 

slot 8 to 9 and from 8 to 12, whereas the orange one is entirely rescheduled. 

4.5.2 Two levels of optimization management  

The goals of the two optimizations have internally a contrasting nature. Indeed, the first level of 

Bill optimization tends to concentrate the charging profiles of EVs in the time slots where 

electricity cost is lower. This attitude yields automatically an increase on the PAR, as all vehicles 

are pushed to charge during the hours of minimum electricity cost. 

Conversely, PAR optimization pulls the results towards the levelling of the total power profile, 

and substantially it would disregard the cost optimization problem. 

Hence, the power profiles originated by the Bill optimization must not be altered too much by 

the second level of optimization, otherwise they would have been calculated in vain. For this 

purpose the study in [35] assesses the benefit can be obtained in terms of PAR minimization by 

deviating from the minimum cost solution of a certain value ẟ. Namely the charging power 

profile of each EV can be readjusted in such a way to cause, at most, an increment of the 

electricity bill of a certain delta with respect to the solution of minimum cost.   

This philosophy has been thus implemented on the test bench, although it introduces a 

criticality. Indeed, this ẟ constitutes an additional constraint for the second level of optimization 

and not always the Matlab solver succeeds in finding a solution. Hence, the problem is that if 

delta is excessively enlarged the results might differ too much from the optimal cost solution, 

but, in the other hand, if ẟ is too strict the optimizer could not find a solution. 

Thereby the necessity to opportunely adapt ẟ depending on the case. Then, in the Coordinator 

script it has been included a part of code that, if during an iteration the Par optimization fails, it 

automatically increases  the value of delta in order to relax the constraints of the optimization. 

The initial value of ẟ, as well as the step by which it is increased in case of failure, can be chosen 

by the user before the beginning of the simulation. 

It is worth to remark that if this step is kept short, then finding a solution might require several 

reiterations of Par optimization. Although the possibilities to remain in the neighborhood of the 
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minimum cost solution is higher, this choice may results impractical whenever it is required a 

certain velocity of the iterations (as discussed in section 4.4.2). Therefore, if the Coordinator 

operations have to be accomplished rapidly it is better to make ẟ increase by wider steps, in 

order to enhance the likelihood of finding an optimal PAR solution within few reiterations.    
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5 The optimizations 

The process of optimizing involves the research of a minimum (or equivalently a maximum) of a 

specific function called Objective function. As mentioned before the optimization conducted 

within this work has two goals:  

1) minimizing the price that drivers have to pay to fill their EVs’ batteries 

2) smoothing the load profile curve as seen by the transformer that supplies the area. 

Such a problem has been treated as a bilevel optimization, where the internal level solution 

represents actually a constraint for the upper level. The decision variables are mainly constituted 

by the power to be supplied to the EVs during the daytime, which represent surely time-shiftable 

loads. The type of variables influences the choice of the optimization solving method, since 

depending on it one formulation results more suitable than others. 

An important aspect to highlight is that in this work the optimizations performed are of type 

deterministic, since the future consumption and generation power profiles of each household 

are supposed to be known in advance when starting the optimizations, for the whole time 

interval these refer to. 

5.1 MILP choice for DSM applications 

For what regards the problem formulation, the comprehension of the type of variables involved 

in the case is essential. As the target is to find an optimal schedule for EVs’ charging profiles, 

power will constitute a decision variable for the optimization problem. These power profiles will 

result as curves discretized in time on a basis of 15 minutes (∆𝑇 = 15), which might be as the 

one depicted in Fig.27: 
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Figure 27: typical shape of a charging power profile 

 

At each discretization interval, the action can be taken on the power delivered to the EVs is 

either to set a positive real value or zero. By then the necessity to introduce other decision 

variables to  represent the state of the charge (On/Off), which will take discrete values 0/1 at 

each time slot. 

Several studies in literature propose an optimal power profile scheduling either for DSM 

[37][38][35][39] or for Unit Commitment [40], and all of them agree in choosing to formulate 

the optimization as a Mixed-Integer Linear Programming (MILP) problem. Indeed all of the cited 

applications share the necessity to deal with electric devices of well time-defined power pattern.  

In the DSM case for instance, this means that some electrical appliances have necessarily to 

consume, according to their working patterns, quantities of power stepwise constant [38] (as a 

remind we refer to section 2.4).  As some of the decision variables are integers values and some 

can evolve linearly in time, MILP ensues the best adequate optimization method. 

5.1.1 Linear, Integer and Mixed-Integer Linear programming 

The objective function is generally defined on a domain that can be either finite or infinite. When 

the optimization problem is constrained it can be formulated as follows: 

 

 𝑚𝑖𝑛{𝑓(𝒙) ∶   𝒉(𝒙) = 0, 𝒈(𝒙) ≤ 0} ( 5-1) 
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where 𝒙 ∈ 𝑅𝑛 represents the finite set of variables which vary on the domain of the objective 

function  𝑓 ∶  𝑅𝑛 →  𝑅1. The dimension of such a domain is ‘𝑛’.   

Yet  𝒉 ∶  𝑅𝑛 →  𝑅𝑚 and 𝒈 ∶  𝑅𝑛 →  𝑅𝑞 constitute respectively the equality and inequality 

constraints set of functions.  When 𝑓(𝒙), 𝒉(𝒙) and 𝒈(𝒙) are linear on 𝒙  then the model is 

definable as a Linear Program (LP) [41].  

In this sense Integer Programming (IP) represents a subset of LP. This is due to the fact that IP 

maintains all the characteristics of the linear case except for one point: the solution of LP has to 

be constrained to integer values. Therefore, in IP 𝒙 is exclusively composed by integers. The 

advantages in using IP are in terms of flexibility and capability of rigorous constraints modeling 

[42]. The drawback instead is due to the precision of the findable solution: the best integer 

programming solution can only place near the best linear one.  

So, as an example, in case of the 2 dimension optimization problem shown in Fig.28, where 𝑥1 

and 𝑥2 are the decision variables and the grey zone represents the feasible region, the best IP 

solution (green point) can only approximate the best LP solution (red square) since it has to be 

integer. 

 

Figure 28: an example of IP and LP best solutions[43] 

 

However, by means of Lagrangian Relaxation it is possible to ‘relax’ the integer variables as 

continuous ones, allowing finding the best LP solution starting from the corresponding IP 

problem[44][45]. 
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Hence, finally mixed-integer linear programming relates to problems where a part of variables 

are restricted to be integers, whereas another part is not. In matrix notation (𝑓(𝒙) = 𝑐𝒙) it can 

be formulated as follows [41] 

 

 min 𝑐𝒙 + ℎ𝒚  

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐴𝒙 + 𝐺𝒚 ≤ 𝑏 ( 5-2) 

 𝑥 ≥ 0  

 𝑦 ≥ 0 𝑎𝑛𝑑 𝑦 ∈  ℤ  

where  

- 𝑐 is a row vector of dimension n,  ℎ is a row vector of dimension p 

- A and G are respectively an m by n and an m by p matrices 

- 𝒙 is a column vector of dimension n including non-integer variables and unknowns 

- 𝒚 is a p-dimension columns vector of integer variables 

- 𝑏 is a column vector of dimension m. 

5.1.2 YALMIP - CPLEX 

The Matlab toolbox used to conduct the optimization is YALMIP. This was originally aimed for 

semi-definite programming (SDP) and linear matrix inequalities (LMI). Thanks to successive 

developments the toolbox has been made adequate to support many mathematical control 

problems, among which the MILPs [46]. To accomplish its calculations YALMIP makes use of 

different solvers, and, depending on the type of problem it has to deal with it, it is able to select 

automatically the best suitable one. In case of MILP the most fitting solver results to be CPLEX. 

 

5.2 Bilevel optimization problem formulation 

A bilevel optimization problem is characterized by having an outer problem which contains an 

inner one. The external level refers to the upper level task, whereas the internal level points to 

the lower level task [6].  
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A generic formulation for bilevel optimization problem can be done as [41][6]: 

   

                 min 𝐹(𝑥𝑢, 𝑥𝑙) 

                𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐺𝑘(𝑥𝑢, 𝑥𝑙) ≤ 0,    𝑘 ∈  𝐾 

min 𝑓(𝑥𝑢, 𝑥𝑙) 

                                     𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑔𝑗(𝑥𝑢, 𝑥𝑙)  ≤ 0,   𝑗 ∈  𝐽                         

                                                  𝑥𝑢 ∈ 𝑋𝑢  , 𝑥𝑙 ∈ 𝑋𝑙  

 

 

( 5-3) 

 

 

 

where  

- 𝑥𝑢 and 𝑥𝑙  are respectively the upper and the lower level decision variables vectors 

- 𝐹 and 𝑓 represent the objective functions of the upper and lower level respectively 

- 𝐺𝑘 and 𝑔𝑗 are the inequality constraints again at the external and internal level 

- 𝑋𝑢 and 𝑋𝑙  represent the sets of bound constraints respectively for the outer and inner 

level decision vectors. 

5.2.1 Decision variables  

The decision variables of the problem are substantially related to the behavior of the EVs’ 

recharges. Since the model is built in discrete time they are easily determined as: 

 

- 𝐸𝑏𝑎𝑡  ∈  ℜ :   quantity of energy stored in EV’s battery 

- 𝑃𝑐ℎ𝑔  ∈  ℜ :   charging power 

- 𝑥𝑖 ∈  {0,1} :  binary variable denoting the charging state On/Off  . 

5.2.2 Parameters 

A set of parameters have been set in order to proper configure the optimization problem. 

Hereunder a list of those is reported: 

1)   Time slots: it is a vector that establishes the timing of the simulation 

𝐽 = [𝑗1, 𝑗2, … , 𝑗𝑇]          𝑗𝑖+1 = 𝑗𝑖 + 1, 𝑇 = 180 
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As the time is discretized in slots of 15 minutes every 𝑡𝑖 represents a specific quarter 

hour of a day, starting from 00:00. It is to note that the length of J is T > 96, which is the 

number of time slots contained in a day. This has been done to include the optimizations 

which start late and extend till the following day;  

2) Block areas: they are three matrices that group the households power profile of each 

block area for a specific day. They can be described as 

𝐵𝑖 = [

𝑃𝑖,1
1 ⋯ 𝑃𝑖,𝐻

1

⋮ ⋱ ⋮
𝑃𝑖,1

𝑇 ⋯ 𝑃𝑖,𝐻
𝑇

]          𝑖 = 1,2,3            𝐻 = 64 

where 𝐻 is the number of households in a block and 𝑖 is the block area index. Every term 

of the matrix is the sum of the power consumed and generated [𝑘𝑊] by a specific home 

in a specific time slot;  

3) Cost of electricity: it is a vector containing the electricity price profile [𝑐€/𝑘𝑊ℎ] of a 

day, according to the criterium introduced in section 4.4.5 

𝐶 = [𝑐1, 𝑐2, … , 𝑐𝑇] 

5.2.3 Lower level objective function 

The lower level objective function to be minimized is, for every household, the price of the 

energy needed to recharge the EV’s battery. It can be formulated as follows [6]: 

𝐵𝐼𝐿𝐿𝑖,𝑘 = min ∑ 𝑐𝑡(𝑃𝑖,𝑘
𝑡 )∆𝑡

𝑇𝑖,𝑘

𝑡=1

                  1 ≤ 𝑇𝑖,𝑘 ≤ 𝑁 

where 𝑘 is the index of the household of the block area 𝑖, 𝑡 the index of the time slot and ∆𝑡 is 

the time slot duration. 𝑇𝑖,𝑘 is the number of time slots the user 𝑖, 𝑘 makes available to recharge 

the battery. 

5.2.4 Upper level objective function 

The upper level objective function to be minimized is the PAR. A mathematical formulation of 

PAR can be stated as the standard deviation of the power profile supplied by the transformer. 

Furthermore, this global optimization must respect the results of the lower level optimization, 
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which will constitute an additional constraint to the problem. Since the latter could be too 

restrictive, as discussed in 4.5.2, a parameter ẟ is introduced to relax such a constraint in case 

the solver fails in finding an optimal solution to the problem. Therefore, the global objective 

function is 

 

min ∑ { ∑ [∑ 𝑃𝑖,𝑘
𝑡  ∆𝑡

𝐾𝑖

𝑘=1

]

2𝑇ℎ𝑜𝑟

𝑡=1

}

3

𝑖=1

− (𝑃𝑎𝑣𝑔 ∆𝑡)
2

           1 ≤ 𝐾𝑖 ≤ 𝐻, 1 ≤ 𝑇ℎ𝑜𝑟 ≤ 𝑇   

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜     ∑ 𝑐𝑡(𝑃𝑖,𝑘
𝑡 )∆𝑡

𝑇ℎ𝑜𝑟

𝑡=1

 ≤ 𝐵𝐼𝐿𝐿𝑖,𝑘 + ẟ              ∀ 𝑖, 𝑘 

 

where  

- 𝑇ℎ𝑜𝑟 is the time horizon set by the EV that lasts the recharge the latest 

- 𝐾𝑖 is the number of EVs in charge during  𝑇ℎ𝑜𝑟 in the block area 𝑖 

- 𝑃𝑎𝑣𝑔 is the average power delivered by the transformer during  𝑇ℎ𝑜𝑟 

- 𝐵𝐼𝐿𝐿𝑖,𝑘  is the electricity bill of household  𝑖, 𝑘  which is recalculated, at each iteration, 

from the current time slot till  𝑇𝑖,𝑘. 

 

It is worth to remember that the global optimization is performed every time new EVs’ requests 

arrive to the coordinator. The latter has been designed to update, at each iteration, the 

parameters, the objective functions and the constraints related to each household, in order to 

properly take into account only the EVs which are actually on state of charge from the current 

time till their end of charge.  

5.2.5 Constraints 

In this paragraph they are described all the constraints of the optimization problem. It is to 

notice that the set of constraints apply equally to the lower and the upper level functions. For 

the sake of simplicity and clarity they are formulated solely for one household. Hence, the set 

of constraints is listed below: 
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1) Power constraints: they are two limits and they refer both to the household and the 

transformer level. For what concerns the domestic power, it must not exceed the 

maximum value allowed by the electric installation (𝑃𝑚𝑎𝑥). Indeed, for safety reasons 

the rated power of all the security circuits (i.e. breakers, cables) must be respected.  

Thus, one has: 

 

𝑃𝑖,𝑘
𝑡 ≤ 𝑃𝑚𝑎𝑥           ∀𝑡, 𝑖, 𝑘 

 

The same considerations are valid for the transformer. Though, the power constraint on 

the transformer applies only to the global function: 

 

∑ [∑ 𝑃𝑖,𝑘
𝑡

𝐾𝑖

𝑘=1

]

3

𝑖=1

≤ 𝑃𝑡𝑟,𝑚𝑎𝑥           ∀𝑡 

 

where 𝑃𝑡𝑟,𝑚𝑎𝑥 is the rated power of the transformer. 

 

2) State of charging: this is the constraint that reflects the user preferences in terms of 

charge timing. Wherefore, it bounds de decision variable 𝑥𝑖 to the user selected time 

slots for charging: 

 

𝑥𝑖,𝑡 ≤ 𝑈𝑖,𝑡           ∀𝑖, 𝑡 

 

with 𝑈𝑖  being the vector of the preferences. Its components are 1 where the user 

decides to be available to the recharge and 0 otherwise 

 

3) Energy constraints:  for each EV these constraints impose the final energy recharged in 

battery to be equal ‘at least’ to the one requested by the user. For the upper level 

function one has: 
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𝐸𝑟𝑒𝑞𝑖,𝑘
≤ ∑ 𝑃𝑖,𝑘

𝑡  ∆𝑡

𝑇𝑖,𝑘

𝑡=1

≤ 𝐸𝑟𝑒𝑞𝑖,𝑘
(1 + 𝛼)              ∀𝑖, 𝑘 

 

where 𝐸𝑟𝑒𝑞𝑖,𝑘
 is the energy request of the EV  𝑘 of the fleet 𝑖, whereas 𝛼 is a maximum 

margin the solver can take to minimize PAR. This margin is chosen by the user, which 

could accept to charge a little more its vehicle to support the EM operations. It would 

constitute a service the customers may provide to the grid, for which economic 

agreement can be foreseen. This do not applies to the lower level function where the 

constraint is simply: 

 

𝐸𝑟𝑒𝑞𝑖,𝑘
≤ ∑ 𝑃𝑖,𝑘

𝑡  ∆𝑡

𝑇𝑖,𝑘

𝑡=1

              ∀𝑖, 𝑘 

 

4) Evolution of energy: this constraint fixes the evolution with which the energy supplied 

to the batteries can evolve: 

 

𝐸𝑖,𝑘
𝑡+1 = 𝐸𝑖,𝑘

𝑡 + 𝑃𝑖,𝑘
𝑡  ∆𝑡 𝜂𝑖,𝑘           ∀𝑖, 𝑘      ∀𝑡 ∈  {𝑡𝑐 + 1, … , 𝑇𝑖,𝑘 } 

 

where 𝜂𝑖,𝑘  is the efficiency of the charger and 𝐸𝑖,𝑘
𝑡  is the quantity of energy stored in 

the battery of the EV 𝑘 of the fleet 𝑖 at the time 𝑡. Yet, 𝑡𝑐 indicates the current time slot 

of the simulation and corresponds to the start-charging time slot, for a generic 𝑖, 𝑘 EV, 

only for the first level optimization and for the first iteration of the second level one. 

Note that the energy evolution begins always from the second time slot with respect to 

𝑡𝑐 and ends at the last time slot set by the user (𝑇𝑖,𝑘) 

 

5) Charging power: this constraint reflects the fact that the charging rate can neither 

exceed the maximum power fixed by the type of connection nor going below a certain 

threshold. The latter agrees with the standard IEC 61851 [47] which states that when an 

EV is in charge there is a minimum value of current that must be supplied:  
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𝑥𝑖,𝑘
𝑡  𝑃𝑐ℎ,𝑚𝑖𝑛 ≤ 𝑃𝑖,𝑘

𝑡 ≤ 𝑥𝑖,𝑘
𝑡  𝑃𝑐ℎ,𝑚𝑎𝑥        ∀𝑡, 𝑖, 𝑘 

 

where 𝑃𝑐ℎ,𝑚𝑖𝑛 and 𝑃𝑐ℎ,𝑚𝑎𝑥 are the minimum and maximum charging power rate allowed 

by the specific charging station. 

 

Lastly, it is to mention that no constraints have been set on the state of charge of the batteries, 

since the users are supposed to require autonomously proper quantities of energy not harmful 

for the state of health of the cells.  

5.3 A simulation example 

In this paragraph they are reported and commented the processes and results of an 

optimization. Before that, a description of the hardware components utilized to realize the TB is 

given. 

5.3.1 Hardware description 

The simulations have been run on a Intel®  Core™ i7-7500U CPU @2.70GHz  2.90GHz, 8 GB RAM 

computer with Windows 10 Home, 64-bit  as operating system. 

The network created is a WPAN, whereas the radio modules used are XBee Series 1, from Digi 

International [25]. 

The four radios supporting the operations of the Coordinator and the Aggregators are connected 

to the computer through serial ports and USB cables. 

Simulations are performed on Matlab R2016a and optimizations are computed by the Matlab 

tool YALMIP, through its solver CPLEX. 

5.3.2 Process and results 

The first step to start the TB is to run the Coordinator. After being started, Coordinator loads the 

SLP, the wholesale market prices and the irradiance profile for the whole year 2014. 

Subsequently, it asks the user to set its preferences for what regards the pricing method (CP, 
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DAP, TOU, Bi-hourly). Once set the tariff program, the Coordinator randomly selects a day of the 

year 2014 and creates the vectors of price and power consumption for all the households of the 

area. Furthermore, it creates the time vector (we remind that each day is subdivided in 96 time 

slots of 15 minutes each) and the parameters for the post processing part. 

At this point Coordinator enters in ‘receiving mode’, and keeps waiting for messages arrivals. 

The second step to do is running the 3 Aggregators. This action should be done synchronously, 

since the aggregators update the current time slot everywhen the Matlab internal clock marks 

a time multiple of 30 seconds (as already said, this interval is modifiable though).   

The first action each Aggregator performs is the creation of the matrix of the fleet 

characteristics, following the criteria discussed in 4.2. An example of fleet generated is shown in 

Fig.29 

 

 

Figure 29: an example of fleet characteristics creation. It is actually one only matrix, it has been split in two parts for 
graphic needs 

 

As it can be noticed it is a 4x64 matrix, each row representing a specified EV of the fleet.  
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The first column represents the EV identification index, the second the arrival time (in time 

slots), the third the time made available for the charge (again in time slots) and the fourth the 

quantity of energy needed (kWh). Now, as aforementioned, the Aggregators update the current 

time slot every 30 seconds, starting from 1. If in the arrivals time column of the matrix ‘fleet’ it 

is found a correspondence with the current time slot, then that EV is included in the set of the 

energy requests to be sent to the Coordinator. 

This process keeps iterating for the whole day simulated, within which they are performed all 

the algorithms described in Chapter 4 (e.g. transmission failure management (4.3.1) and two 

level optimization management (4.5.2)). At the end of every iteration the Coordinator shows to 

the user the updates on the transformer power profile. 

At the end of the day, once all the power profiles of all the EVs have been set, the Coordinator 

shows the last resulting transformer power profile. Furthermore it depicts for every EV: 

-  the data relating to the charge: arrival/departure time, energy requested/energy 

actually recharged 

- the comparison between the two levels of optimizations: the bill resulting from Par 

optimization is compared with the one resulting from Bill optimization. 

Results coming from the simulation on October 24 are shown in the following figures: 

• Electricity prices: 

  

Figure 30: electricity price profiles in days 24-25 October 2014 
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To remember the meaning of the various curves in Fig. 30  we refer to the section 4.4.5.  

• Transformer power profile: 

 

 

Figure 31:MV/LV transformer power profiles. In light blue the baseload, in green the profile obtained with the first 
level of optimization (cost optimization), in dark blue the profile obtained with the second level of optimization (PAR 

optimization) and in orange its average value. 

 

By comparing Fig.31 and Fig.30 it can be noticed how the cost optimization actually pushes the 

recharge to be done during the hours of minimum cost (green curve of Fig.31). Then the second 

level of optimization flattens the cost-optimized profile, aiming the PAR reduction (dark blue 

curve in Fig.31). The light blue curve in Fig.31 instead represents the baseload profile, namely 

the sum of the power profiles of every household in the area which does not take into account 

the recharge of the EVs. Note also that the parameter ẟ (section 4.5.2) has increased until 9.5. 

This is due to the fact that, in a particular iteration within the day simulated, CPLEX did not 

succeed in finding a solution to PAR optimization with a lower value of delta. So it has been 

operated the constraint relaxation discussed in section 4.5.2. Although this value seems to be 

high, as often has happened in these cases, the addition of the following energy requests from 

the EVs arrived later has permitted a wider opportunity of rescheduling for PAR optimization. 

Indeed, the arrival of new EVs constitutes itself a constraint relaxation for the problem, as the 
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time slots number available to operate the rescheduling increases. Hence finally, despite the 

fact that ẟ has assumed a high value during the iterations, the costs of the recharge resulting 

from the two levels of optimization are maintained close, being the rate of increase of the bill 

equal to 5% at most (Fig.33).  

However, experimental trials have revealed that it could happen that a particularly unlucky 

combination of fleets’ recharge requests and baseload profile led to a larger difference of bills 

between the two levels of optimization, even 100% or more! Although it has happened rarely in 

the simulations performed, this is surely an aspect that can be further cared and investigated in 

future possible developments of the TB. 

Yet, they are interesting the results showed to the user by the Aggregators during the iterations 

Fig.32: 

 

 

Figure 32: Aggregator displayed results. The time is expressed in time slots (section 4.4.2) 

 

In Fig. 32 it is visible how one Aggregator displays the result of the transmission failure 

management algorithm discussed in section 4.3.1. 

Finally, in Fig.33 they are worth to be shown the results displayed by the Coordinator at the end 

of the day of simulation. 
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Figure 33: results displayed by the EM at the end of a day of simulation for fleet 1 and fleet 2. The rates of bill 
increase between the two levels of optimization are underlined 

 

From the above figure it can be noticed how the EM reports the information about the EVs’ 

recharge and the rates of increase on the bill caused by the second level of optimization, with 

respect to the optimal cost solution. 
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6 Conclusions and future works 

The integration of small-size distributed generation and the increase of electricity consumption 

have made very challenging the operations of the power system. In this regard, the actuation of 

price-based DR programs in residential areas can considerably assist the DSO in its function of 

real-time balancing demand and production. Nevertheless, the implementation of DR programs 

necessitates the development of new communication infrastructures which, contrary to the 

existing ones, could reliably guarantee a tight interoperability between the various elements of 

the system. 

The objective of this thesis was to design a test bench able to emulate the control of smart 

electrical loads within a price-based DR program. The aim were firstly the investigation of the 

possible communication protocols suitable for residential areas DSM programs and, secondly, 

the physical and real-time implementation of the optimization principles developed in the work 

of B. Mattlet in [6]. The latter implementation has involved in a first step the creation of a 

communication network and, successively, the programming of a software able to emulate, in 

continuous time and in a stand-alone fashion, the operations of an Energy Management System. 

For what concerns the hardware part, the adoption of the ZigBee communication protocol and 

the compliant Xbee radio modules has constituted a valuable solution. 

Moreover, for what regards the software, satisfactory results have been obtained considering 

that: 

- test bench realized represents a valid tool to support the simulations of DSM scenarios. 

Indeed, even if  the software has been exclusively developed for emulate the recharge 

of EVs’ fleets, the same hardware structure and control philosophy can be implemented 

for any type of smart load. However, if in the case of other SI loads the adaptation is 

straightforward, in case of SNI loads the code necessitates to be adjusted accordingly 

with the specificities of the particular application 
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- the problem of the transmission failure has been appropriately tackled by exploiting the 

study of the working principle of XBee modules in an algorithm created on purpose. 

Indeed, the experimental trials reveal a very low rate of fails in communication even 

when the system is stressed by the velocity of the iterations 

- the test bench operations have been scaled in time in order to permit a fast execution 

of the simulations. The ways to opportunely select the scaling factor, avoiding 

misfunctioning of the code, have been discussed as well 

- the optimization principles developed in [6] have been profitably implemented in real-

time. The way to configure all the settings, parameters, constrains and variables has 

been transformed  from static to dynamic, in order to adapt them during the succession 

of the iterations in time. 

 

Future developments of the software are foreseen. First of all the optimization philosophy can 

be changed from deterministic to stochastic, as it would make the EM usable in reality. Indeed, 

in the current version of the EM optimizations are based on a previously acquired knowledge of 

the future consumption profiles. A stochastic approach could instead make a prevision of those 

profiles based on statistical data on the consumer behaviour collected in the past. 

Secondly, the emulator effectiveness could be enhanced by including models of other appliances 

in the scenario. Additionally, new ways to compute the optimizations in case YALMIP fails to find 

a solution within a reasonably small value of ẟ (section 4.5.2) can be explored. 

Lastly, other interesting developments could arise in case the working philosophy of the test 

bench would apply to the other levels of the power system. 

 

Looking to the next future, it is clear that the energy world is evolving towards a more and 

more effective exploitation of renewable resources. For this reason the power network is 

going to incorporate a huge number of decentralised, unpredictable and small-size production 

units. In this framework, the field of DSM clearly deserves further commitment and research.  
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Annex A : Coordinator_Xbee 

clc 

close all 

clear all 

6.1 Set up configuration 

load_config = 0; 

switch load_config 

    case 0 

            load WP_2014;   % Whole Sale Price EUR/MWh from Belpex webiste, 

                            % hourly based (24) for one year (365 or 366) 

                            % Matrix [365x24] 

            load SLP_2014;  % SLP curves from webiste Synergrid quarter 

                            % based : 96 sample/day*365 days = Matrix [35040x1] 

            load I_2014;    % Irradiance (W/m²) at Uccle from the IRM 

                            % quarter based : 96 sample/day*365 days = 

                            % Matrix [35040x1] 

            WP              = WP_2014; 

            SLP             = SLP_2014; 

            Irr             = I_2014; 

            Cost.tariffs = readtable('Electrabel_tariffs_09_2015.dat'); 

            Cost.pricing = input ('Choice of pricing method: 0 = Constant (or Free), 1 = 

DAP, 2 = ToU, 3 = Bihourly\n'); 

 

            Date.day = datenum('2014,1,1')+round((datenum('2014,12,31')-

datenum('2014,1,1'))*rand);  % it generates randomly the number of a day of year 2014. 

            Date_str = datestr(Date.day);     % It generates a string in format 

day/month/year  hour/minutes/seconds 

            Date_day = Date_str(1:11); 

            fprintf('Optimization starts running from %s \n', Date_day); 

            Date.day = Date.day - datenum(2014,1,0); 

 

     % Set Parameters % 

        Set_Time_Parameters 

        Set_blocks_parameters 

        Set_Electricity_Price 

        Set_Figure_Parameters 
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        save parameters; 

    case 1 

        load parameters; 

end 

6.2 Coordinator 

delete(instrfindall); 

c = serial('com4'); 

set(c,'BaudRate', 9600); 

set(c,'DataBits' , 8 ); 

set(c,'StopBits', 1); 

set(c,'InputBufferSize',1000); 

set(c, 'Terminator', ''); 

set(c, 'FlowControl', 'none'); 

fopen(c); 

 

Set_Matrices_Vectors_Xbee 

Plot_Electricity_Price 

Elapsed_time = []; 

6.3 Optimize bill 

delta =0.5; 

 

while run==0; 

% Inquiring if new EV are connected 

    message = []; 

 

    if c.BytesAvailable ~= 0 

      tic 

        receiving = []; 

        pause(0.5); 

        receiving = [receiving;fread(c,c.BytesAvailable)]; 

 

        pack1 = []; 

        pack2 = []; 

        pack3 = []; 

        if length(receiving)>= 13              % to avoid to consider bad messages who 

are shorter than the minimum length of 13 

        message = [message, receiving]; 

        start_delimiter = find (message==126); % It may happen more messages arrive at 
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same time! 

 

        Number_of_requests = length (start_delimiter); 

        if message(length(message))== 126      % It may happen that the checksum is 

equal to the stard delimiter 

            Number_of_requests = Number_of_requests-1; 

        end 

        if Number_of_requests > 1 

            for j = 1:(Number_of_requests-1) 

                split_message = message(start_delimiter(j):start_delimiter(j+1)-1); 

                identifier = split_message (6); 

                switch identifier 

                    case 1 

                           for i = 9:4:(length(split_message)-4) 

                                pointer = split_message(i); 

                                if Fleet1 (pointer,1)==0   % It may happen that 

                                %the message is arrived although the aknowledgment 

                                %frame is not sent back to the sender, so 

                                %it sends twice.In this way the message is 

                                %stored only if the slot is vacant 

                                Fleet1 (pointer,:) = split_message (i:(i+3)); 

                                pack1 = [pack1; Fleet1(pointer,:)]; 

                                end 

                            end 

                    case 2 

                            for i = 9:4:(length(split_message)-4) 

                                pointer = split_message(i); 

                                if Fleet2 (pointer,1)==0 

                                Fleet2 (pointer,:) = split_message (i:(i+3)); 

                                pack2 = [pack2; Fleet2(pointer,:)]; 

                                end 

                            end 

                    case 3 

                            for i = 9:4:(length(split_message)-4) 

                                pointer = split_message(i); 

                                if Fleet3 (pointer,1)==0 

                                Fleet3 (pointer,:) = split_message (i:(i+3)); 

                                pack3 = [pack3; Fleet3(pointer,:)]; 

                                end 

                            end 

                end 

            end 

            split_message = 

message(start_delimiter(Number_of_requests):length(message)); 

            identifier = split_message (6); 

                    switch identifier 

                            case 1 

                                    for i = 9:4:(length(split_message)-4) 

                                        pointer = split_message(i); 

                                        if Fleet1 (pointer,1)==0 

                                        Fleet1 (pointer,:) = split_message (i:(i+3)); 
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                                        pack1 = [pack1; Fleet1(pointer,:)]; 

                                        end 

                                    end 

                            case 2 

                                    for i = 9:4:(length(split_message)-4) 

                                        pointer = split_message(i); 

                                        if Fleet2 (pointer,1)==0 

                                        Fleet2 (pointer,:) = split_message (i:(i+3)); 

                                        pack2 = [pack2; Fleet2(pointer,:)]; 

                                        end 

                                    end 

                            case 3 

                                    for i = 9:4:(length(split_message)-4) 

                                        pointer = split_message(i); 

                                        if Fleet3 (pointer,1)==0 

                                        Fleet3 (pointer,:) = split_message (i:(i+3)); 

                                        pack3 = [pack3; Fleet3(pointer,:)]; 

                                        end 

                                    end 

                        end 

 

 

        else 

        identifier = message(6); 

        switch identifier 

            case 1 

                    for i = 9:4:(length(message)-4) 

                        pointer = message(i); 

                        if Fleet1 (pointer,1)==0 

                        Fleet1 (pointer,:) = message (i:(i+3)); 

                        pack1 = [pack1; Fleet1(pointer,:)]; 

                        end 

                    end 

            case 2 

                    for i = 9:4:(length(message)-4) 

                        pointer = message(i); 

                        if Fleet2 (pointer,1)==0 

                        Fleet2 (pointer,:) = message (i:(i+3)); 

                        pack2 = [pack2; Fleet2(pointer,:)]; 

                        end 

                    end 

            case 3 

                    for i = 9:4:(length(message)-4) 

                        pointer = message(i); 

                        if Fleet3 (pointer,1)==0 

                        Fleet3 (pointer,:) = message (i:(i+3)); 

                        pack3 = [pack3; Fleet3(pointer,:)]; 

                        end 

                    end 

        end 
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        end 

        end 

%Fleet1 

        if ~isempty (pack1) 

             for p = 1:size(pack1,1) 

                h = pack1(p,1); 

                current_time = pack1(p,2); 

                Full_charge_time_1(h) = pack1(p,2)+ pack1(p,3); 

                if Full_charge_time_1(h)>= time_horizon 

                    time_horizon = Full_charge_time_1(h); % Time horizon in slot 

                end 

               Occupancy_1(h,Fleet1(h,2):Full_charge_time_1(h)) = 1; 

               [Aggregator.house_1(h).bill, Aggregator.house_1(h).EV_x, 

Aggregator.house_1(h).EV_E, Aggregator.house_1(h).EV_P]= 

Optimization_bill(Fleet1(h,:),Time, Cost, Aggregator.house_1(h)); 

 

               % Create the profile for the whole time span 

 

               Before_arrival_1 = zeros(1,Fleet1(h,2)-1); 

               After_arrival_1 = zeros(1,Time.span-Full_charge_time_1(h)); 

               Aggregator.house_1(h).EV_E = [Before_arrival_1, 

Aggregator.house_1(h).EV_E, After_arrival_1] ; 

               Aggregator.house_1(h).EV_P = [Before_arrival_1, 

Aggregator.house_1(h).EV_P, After_arrival_1] ; 

               Power_profile_bill_1(h,:) = Aggregator.house_1(h).EV_P; 

               Energy_profile_bill_1(h,:)= Aggregator.house_1(h).EV_E; 

               Bill_cost_optimization_1(h) = Aggregator.house_1(h).bill; 

 

               % Reiterate in case of failure 

 

               if Energy_profile_bill_1(h,Full_charge_time_1(h))==0 

                 fprintf('Bill optimization failure fleet 1 for EV num %d \n', h); 

                 pause (1); 

                 while Energy_profile_bill_1(h,Full_charge_time_1(h))==0 

                      [Aggregator.house_1(h).bill, Aggregator.house_1(h).EV_x, 

Aggregator.house_1(h).EV_E, Aggregator.house_1(h).EV_P]= 

Optimization_bill(Fleet1(h,:),Time, Cost, Aggregator.house_1(h)); 

                       Aggregator.house_1(h).EV_E = [Before_arrival_1, 

Aggregator.house_1(h).EV_E, After_arrival_1] ; 

                       Aggregator.house_1(h).EV_P = [Before_arrival_1, 

Aggregator.house_1(h).EV_P, After_arrival_1] ; 

                       Power_profile_bill_1(h,:) = Aggregator.house_1(h).EV_P; 

                       Energy_profile_bill_1(h,:)= Aggregator.house_1(h).EV_E; 

                       Bill_cost_optimization_1(h) = Aggregator.house_1(h).bill; 

                 end 

               end 

               pause (1); 

       end 

 

             end 

% Fleet 2 
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        if ~isempty (pack2) 

 

                for p = 1:size(pack2,1) 

                h = pack2(p,1); 

                current_time = pack2(p,2); 

                Full_charge_time_2(h) = pack2(p,2)+ pack2(p,3); 

                if Full_charge_time_2(h)>= time_horizon 

                    time_horizon = Full_charge_time_2(h); % time horizon in slot 

                end 

               Occupancy_2(h,Fleet2(h,2):Full_charge_time_2(h)) = 1; 

               [Aggregator.house_2(h).bill, Aggregator.house_2(h).EV_x, 

Aggregator.house_2(h).EV_E, Aggregator.house_2(h).EV_P]= 

Optimization_bill(Fleet2(h,:),Time, Cost, Aggregator.house_2(h)); 

 

               % Create the profile for the whole time span 

 

               Before_arrival_2 = zeros(1,Fleet2(h,2)-1); 

               After_arrival_2 = zeros(1,Time.span-Full_charge_time_2(h)); 

               Aggregator.house_2(h).EV_E = [Before_arrival_2, 

Aggregator.house_2(h).EV_E, After_arrival_2] ; 

               Aggregator.house_2(h).EV_P = [Before_arrival_2, 

Aggregator.house_2(h).EV_P, After_arrival_2] ; 

               Power_profile_bill_2(h,:) = Aggregator.house_2(h).EV_P; 

               Bill_cost_optimization_2(h) = Aggregator.house_2(h).bill; 

 

               % Reiterate in case of failure 

 

               if Energy_profile_bill_2(h,Full_charge_time_2(h))==0 

                 fprintf('Bill optimization failure fleet 2 for EV num %d \n', h); 

                 pause (1); 

                 while Energy_profile_bill_2(h,Full_charge_time_2(h))==0 

                      [Aggregator.house_2(h).bill, Aggregator.house_2(h).EV_x, 

Aggregator.house_2(h).EV_E, Aggregator.house_2(h).EV_P]= 

Optimization_bill(Fleet2(h,:),Time, Cost, Aggregator.house_2(h)); 

                       Aggregator.house_2(h).EV_E = [Before_arrival_2, 

Aggregator.house_2(h).EV_E, After_arrival_2] ; 

                       Aggregator.house_2(h).EV_P = [Before_arrival_2, 

Aggregator.house_2(h).EV_P, After_arrival_2] ; 

                       Power_profile_bill_2(h,:) = Aggregator.house_2(h).EV_P; 

                       Energy_profile_bill_2(h,:)= Aggregator.house_2(h).EV_E; 

                       Bill_cost_optimization_2(h) = Aggregator.house_2(h).bill; 

                 end 

               end 

               pause (1); 

                end 

         end 

% Fleet 3 

        if ~isempty (pack3) 

 

                for p = 1:size(pack3,1) 

                h = pack3(p,1); 
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                current_time = pack3(p,2); 

                Full_charge_time_3(h) = pack3(p,2)+ pack3(p,3); 

                if Full_charge_time_3(h)>= time_horizon 

                    time_horizon = Full_charge_time_3(h); % Time horizon in slot 

                end 

               Occupancy_3(h,Fleet3(h,2):Full_charge_time_3(h)) = 1; 

               [Aggregator.house_3(h).bill, Aggregator.house_3(h).EV_x, 

Aggregator.house_3(h).EV_E, Aggregator.house_3(h).EV_P]= 

Optimization_bill(Fleet3(h,:),Time, Cost, Aggregator.house_3(h)); 

 

               % Create the profile for the whole time span 

 

               Before_arrival_3 = zeros(1,Fleet3(h,2)-1); 

               After_arrival_3 = zeros(1,Time.span-Full_charge_time_3(h)); 

               Aggregator.house_3(h).EV_E = [Before_arrival_3, 

Aggregator.house_3(h).EV_E, After_arrival_3] ; 

               Aggregator.house_3(h).EV_P = [Before_arrival_3, 

Aggregator.house_3(h).EV_P, After_arrival_3] ; 

               Power_profile_bill_3(h,:) = Aggregator.house_3(h).EV_P; 

               Energy_profile_bill_3(h,:)= Aggregator.house_3(h).EV_E; 

               Bill_cost_optimization_3(h) = Aggregator.house_3(h).bill; 

 

               % Reiterate in case of failure 

 

               if Energy_profile_bill_3(h,Full_charge_time_3(h))==0 

                 fprintf('Bill optimization failure fleet 3 for EV num %d \n', h); 

                 pause (1); 

                 while Energy_profile_bill_3(h,Full_charge_time_3(h))==0 

                      [Aggregator.house_3(h).bill, Aggregator.house_3(h).EV_x, 

Aggregator.house_3(h).EV_E, Aggregator.house_3(h).EV_P]= 

Optimization_bill(Fleet3(h,:),Time, Cost, Aggregator.house_3(h)); 

                       Aggregator.house_3(h).EV_E = [Before_arrival_3, 

Aggregator.house_3(h).EV_E, After_arrival_3] ; 

                       Aggregator.house_3(h).EV_P = [Before_arrival_3, 

Aggregator.house_3(h).EV_P, After_arrival_3] ; 

                       Power_profile_bill_3(h,:) = Aggregator.house_3(h).EV_P; 

                       Energy_profile_bill_3(h,:)= Aggregator.house_3(h).EV_E; 

                       Bill_cost_optimization_3(h) = Aggregator.house_3(h).bill; 

                 end 

               end 

               pause (1); 

               end 

        end 
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6.4 Optimize Fleet 

           EV_in_charge_1 = find(Occupancy_1(:,current_time)==1); 

           EV_connected_1 = []; 

 

           if ~ isempty (EV_in_charge_1) 

                   for n = 1:length(EV_in_charge_1) 

                    if Occupancy_1(EV_in_charge_1(n),current_time+1)~=0    % Last time 

slot is excluded 

                       EV_connected_1 = [EV_connected_1;Fleet1(EV_in_charge_1(n),:)]; 

                    end 

                   end 

 

                   % Compute the bill for the reamining time. 

 

                   for y = 1:size(EV_connected_1,1) 

                    h = EV_connected_1(y,1); 

                    Aggregator.house_1(h).bill = 

sum((Power_profile_bill_1(h,current_time:Full_charge_time_1(h))+ 

Aggregator.house_1(h).p_baseload(current_time:Full_charge_time_1(h)))*Cost.c(current_tim

e:Full_charge_time_1(h))*Time.tau/60); 

 

                   end 

 

           end 

 

           EV_in_charge_2 = find(Occupancy_2(:,current_time)==1); 

           EV_connected_2 = []; 

 

           if ~ isempty (EV_in_charge_2) 

                   for n = 1:length(EV_in_charge_2) 

                    if Occupancy_2(EV_in_charge_2(n),current_time+1)~=0    % Last time 

slot is excluded 

                       EV_connected_2 = [EV_connected_2;Fleet2(EV_in_charge_2(n),:)]; 

                    end 

                   end 

 

                   % Compute the bill for the reamining time. 

 

                   for y = 1:size(EV_connected_2,1) 

                    h = EV_connected_2(y,1); 

                    Aggregator.house_2(h).bill = 

sum((Power_profile_bill_2(h,current_time:Full_charge_time_2(h))+ 

Aggregator.house_2(h).p_baseload(current_time:Full_charge_time_2(h)))*Cost.c(current_tim

e:Full_charge_time_2(h))*Time.tau/60); 

                   end 

           end 
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           EV_in_charge_3 = find(Occupancy_3(:,current_time)==1); 

           EV_connected_3 = []; 

 

           if ~ isempty (EV_in_charge_3) 

                   for n = 1:length(EV_in_charge_3) 

                    if Occupancy_3(EV_in_charge_3(n),current_time+1)~=0    % Last time 

slot is excluded 

                       EV_connected_3 = [EV_connected_3;Fleet3(EV_in_charge_3(n),:)]; 

                    end 

                   end 

 

                   % Compute the bill for the reamining time. 

 

                   for y = 1:size(EV_connected_3,1) 

                    h = EV_connected_3(y,1); 

                    Aggregator.house_3(h).bill = 

sum((Power_profile_bill_3(h,current_time:Full_charge_time_3(h))+ 

Aggregator.house_3(h).p_baseload(current_time:Full_charge_time_3(h)))*Cost.c(current_tim

e:Full_charge_time_3(h))*Time.tau/60); 

 

                   end 

 

           end 

 

 

             optimization_failure = 0 ; 

            [Diff, EV_x_1, EV_E_1, EV_P_1, EV_x_2, EV_E_2, EV_P_2, EV_x_3, EV_E_3, 

EV_P_3] = Optimization_PAR(EV_connected_1, EV_connected_2, EV_connected_3, Time, Cost, 

Aggregator, delta, current_time, time_horizon, Occupancy_1, Occupancy_2, Occupancy_3); 

             pause (2); 

 

             if ~isempty(EV_E_1) && any (EV_E_1(:,time_horizon+1-

current_time)==0)||~isempty(EV_E_2) && any (EV_E_2(:,time_horizon+1-

current_time)==0)||~isempty(EV_E_3) && any (EV_E_3(:,time_horizon+1-current_time)==0) 

                 fprintf ('Optimization failure with delta = %.1f \n', delta); 

                 optimization_failure = 1; 

                     while optimization_failure == 1 

                         [Diff, EV_x_1, EV_E_1, EV_P_1, EV_x_2, EV_E_2, EV_P_2, EV_x_3, 

EV_E_3, EV_P_3] = Optimization_PAR(EV_connected_1, EV_connected_2, EV_connected_3, Time, 

Cost, Aggregator, delta, current_time, time_horizon, Occupancy_1, Occupancy_2, 

Occupancy_3); 

                         pause(2); 

                             if ~isempty(EV_E_1) && any (EV_E_1(:,time_horizon+1-

current_time)==0)||~isempty(EV_E_2) && any (EV_E_2(:,time_horizon+1-

current_time)==0)||~isempty(EV_E_3) && any (EV_E_3(:,time_horizon+1-current_time)==0) 

                                 optimization_failure = 1; 

                                 fprintf ('Optimization failure with delta = %.1f \n', 

delta); 

                                 delta = delta + 3;           % Increasing delta to 

lighten the burden of contraints 

                                 else 
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                                     optimization_failure = 0; 

                             end 

                     end 

 

             end 

 

             for d=1:size(EV_connected_1,1) 

                 j=EV_connected_1(d,1); 

                 Energy_arrival_time_1(j) = Aggregator.house_1(j).EV_E(Fleet1(j,2)); 

                 fprintf('Fleet 1 : EV number %d arrived at %d:%d and leaves at %d:%d, 

with initial energy=%d and energy request=%d, has final energy= %f \n', Fleet1(j,1), 

floor(Fleet1(j,2)/4),(Fleet1(j,2)/4-

floor(Fleet1(j,2)/4))*60,floor(Full_charge_time_1(j)/4),(Full_charge_time_1(j)/4-

floor(Full_charge_time_1(j)/4))*60,Energy_arrival_time_1(j), Fleet1(j,4), 

EV_E_1(d,Full_charge_time_1(j)+1-current_time)); 

                 Aggregator.house_1(j).EV_E(current_time:Full_charge_time_1(j)) = 

EV_E_1(d,1:(Full_charge_time_1(j)+1-current_time)); 

                 Aggregator.house_1(j).EV_P(current_time:Full_charge_time_1(j)) = 

EV_P_1(d,1:(Full_charge_time_1(j)+1-current_time)); 

                 Power_profile_PAR_1 (j,EV_connected_1(d,2):Full_charge_time_1(j)) =  

Aggregator.house_1(j).EV_P(EV_connected_1(d,2):Full_charge_time_1(j)); 

                 Energy_profile_PAR_1 (j,EV_connected_1(d,2):Full_charge_time_1(j)) = 

Aggregator.house_1(j).EV_E(EV_connected_1(d,2):Full_charge_time_1(j)); 

             end 

 

             for d=1:size(EV_connected_2,1) 

                 j=EV_connected_2(d,1); 

                 Energy_arrival_time_2(j) = Aggregator.house_2(j).EV_E(Fleet2(j,2)); 

                 fprintf('Fleet 2 : EV number %d arrived at %d:%d and leaves at %d:%d, 

with initial energy=%d and energy request=%d, has final energy= %f \n', Fleet2(j,1), 

floor(Fleet2(j,2)/4),(Fleet2(j,2)/4-

floor(Fleet2(j,2)/4))*60,floor(Full_charge_time_2(j)/4),(Full_charge_time_2(j)/4-

floor(Full_charge_time_2(j)/4))*60,Energy_arrival_time_2(j), Fleet2(j,4), 

EV_E_2(d,Full_charge_time_2(j)+1-current_time)); 

                 Aggregator.house_2(j).EV_E(current_time:Full_charge_time_2(j)) = 

EV_E_2(d,1:(Full_charge_time_2(j)+1-current_time)); 

                 Aggregator.house_2(j).EV_P(current_time:Full_charge_time_2(j)) = 

EV_P_2(d,1:(Full_charge_time_2(j)+1-current_time)); 

                 Power_profile_PAR_2 (j,EV_connected_2(d,2):Full_charge_time_2(j)) =  

Aggregator.house_2(j).EV_P(EV_connected_2(d,2):Full_charge_time_2(j)); 

                 Energy_profile_PAR_2 (j,EV_connected_2(d,2):Full_charge_time_2(j)) = 

Aggregator.house_2(j).EV_E(EV_connected_2(d,2):Full_charge_time_2(j)); 

             end 

 

             for d=1:size(EV_connected_3,1) 

                 j=EV_connected_3(d,1); 

                 Energy_arrival_time_3(j) = Aggregator.house_3(j).EV_E(Fleet3(j,2)); 

                 fprintf('Fleet 3 : EV number %d arrived at %d:%d and leaves at %d:%d, 

with initial energy=%d and energy request=%d, has final energy= %f \n', Fleet3(j,1), 

floor(Fleet3(j,2)/4),(Fleet3(j,2)/4-

floor(Fleet3(j,2)/4))*60,floor(Full_charge_time_3(j)/4),(Full_charge_time_3(j)/4-
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floor(Full_charge_time_3(j)/4))*60,Energy_arrival_time_3(j), Fleet3(j,4), 

EV_E_3(d,Full_charge_time_3(j)+1-current_time)); 

                 Aggregator.house_3(j).EV_E(current_time:Full_charge_time_3(j)) = 

EV_E_3(d,1:(Full_charge_time_3(j)+1-current_time)); 

                 Aggregator.house_3(j).EV_P(current_time:Full_charge_time_3(j)) = 

EV_P_3(d,1:(Full_charge_time_3(j)+1-current_time)); 

                 Power_profile_PAR_3 (j,EV_connected_3(d,2):Full_charge_time_3(j)) =  

Aggregator.house_3(j).EV_P(EV_connected_3(d,2):Full_charge_time_3(j)); 

                 Energy_profile_PAR_3 (j,EV_connected_3(d,2):Full_charge_time_3(j)) = 

Aggregator.house_3(j).EV_E(EV_connected_3(d,2):Full_charge_time_3(j)); 

             end 

 

 

           tfo_total_power = 

sum(Power_profile_PAR_1(:,1:time_horizon))+sum(Power_profile_PAR_2(:,1:time_horizon))+su

m(Power_profile_PAR_3(:,1:time_horizon)) + Aggregator.tfo.p_baseload(1:time_horizon); 

           Not_optimized_PAR = 

sum(Power_profile_bill_1(:,1:time_horizon))+sum(Power_profile_bill_2(:,1:time_horizon))+

sum(Power_profile_bill_3(:,1:time_horizon)) + Aggregator.tfo.p_baseload(1:time_horizon); 

           Aggregator.tfo.p_average = mean(tfo_total_power); 

           Aggregator.tfo.PAR = max(tfo_total_power)/Aggregator.tfo.p_average; 

           pause(1); 

           Plot_Power 

           Elapsed_time = [Elapsed_time;toc]; 

           Elapsed_time 

        end 

6.5 Verify new day 

    if ~any (Fleet1(:,1)==0) && ~any (Fleet2(:,1)==0) && ~any (Fleet3(:,1)==0) 

 

            Date.day = Date.day + 1; 

            Date_str = datestr(Date.day); 

            Date_day = Date_str(1:11); 

            fprintf('Optimization continues running in %s \n', Date_day); 

            if Date.day >365 

                 fprintf('Last day of the year! End program. \n', current_time);  % /!\ 

The possibility to change year is not implemented! 

                 return 

            else 

 

                % Comparing the bill variations from both optimization 

 

                for f = 1: Aggregator.H 

                

Difference_bills_1(f)=(Power_profile_PAR_1(f,Fleet1(f,2):Full_charge_time_1(f))+Aggregat

or.house_1(f).p_baseload(Fleet1(f,2):Full_charge_time_1(f)))*Cost.c(Fleet1(f,2):Full_cha
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rge_time_1(f))/4-Bill_cost_optimization_1(f); 

                

Percentage_difference_1(f)=((Power_profile_PAR_1(f,Fleet1(f,2):Full_charge_time_1(f))+Ag

gregator.house_1(f).p_baseload(Fleet1(f,2):Full_charge_time_1(f)))*Cost.c(Fleet1(f,2):Fu

ll_charge_time_1(f))/4)/Bill_cost_optimization_1(f); 

                fprintf('Fleet 1: EV number %d arrived at %d:%d and leaves at %d:%d, 

with initial energy=%d and energy request=%d, has final energy= %f \n Its bill has 

changed by a factor of %.2f with rescpect to the bill optimum \n', Fleet1(f,1), 

floor(Fleet1(f,2)/4),(Fleet1(f,2)/4-floor(Fleet1(f,2)/4))*60, 

floor(Full_charge_time_1(f)/4),(Full_charge_time_1(f)/4-

floor(Full_charge_time_1(f)/4))*60,Energy_arrival_time_1(f), Fleet1(f,4), 

Energy_profile_PAR_1 (f,Full_charge_time_1(f)),Percentage_difference_1(f)); 

 

                end 

 

             for f = 1: Aggregator.H 

                

Difference_bills_2(f)=(Power_profile_PAR_2(f,Fleet2(f,2):Full_charge_time_2(f))+Aggregat

or.house_2(f).p_baseload(Fleet2(f,2):Full_charge_time_2(f)))*Cost.c(Fleet2(f,2):Full_cha

rge_time_2(f))/4-Bill_cost_optimization_2(f); 

                

Percentage_difference_2(f)=((Power_profile_PAR_2(f,Fleet2(f,2):Full_charge_time_2(f))+Ag

gregator.house_2(f).p_baseload(Fleet2(f,2):Full_charge_time_2(f)))*Cost.c(Fleet2(f,2):Fu

ll_charge_time_2(f))/4)/Bill_cost_optimization_2(f); 

                fprintf('Fleet 2: EV number %d arrived at %d:%d and leaves at %d:%d, 

with initial energy=%d and energy request=%d, has final energy= %f \n Its bill has 

changed by a factor of %.2f with rescpect to the bill optimum \n', Fleet2(f,1), 

floor(Fleet2(f,2)/4),(Fleet2(f,2)/4-floor(Fleet2(f,2)/4))*60, 

floor(Full_charge_time_2(f)/4),(Full_charge_time_2(f)/4-

floor(Full_charge_time_2(f)/4))*60,Energy_arrival_time_2(f), Fleet2(f,4), 

Energy_profile_PAR_2 (f,Full_charge_time_2(f)),Percentage_difference_2(f)); 

             end 

 

             for f = 1: Aggregator.H 

                

Difference_bills_3(f)=(Power_profile_PAR_3(f,Fleet3(f,2):Full_charge_time_3(f))+Aggregat

or.house_3(f).p_baseload(Fleet3(f,2):Full_charge_time_3(f)))*Cost.c(Fleet3(f,2):Full_cha

rge_time_3(f))/4-Bill_cost_optimization_3(f); 

                

Percentage_difference_3(f)=((Power_profile_PAR_3(f,Fleet3(f,2):Full_charge_time_3(f))+Ag

gregator.house_3(f).p_baseload(Fleet3(f,2):Full_charge_time_3(f)))*Cost.c(Fleet3(f,2):Fu

ll_charge_time_3(f))/4)/Bill_cost_optimization_3(f); 

                fprintf('Fleet 3 : EV number %d arrived at %d:%d and leaves at %d:%d, 

with initial energy=%d and energy request=%d, has final energy= %f \n Its bill has 

changed by a factor of %.2f with rescpect to the bill optimum \n', Fleet3(f,1), 

floor(Fleet3(f,2)/4),(Fleet3(f,2)/4-floor(Fleet3(f,2)/4))*60, 

floor(Full_charge_time_3(f)/4),(Full_charge_time_3(f)/4-

floor(Full_charge_time_3(f)/4))*60,Energy_arrival_time_3(f), Fleet3(f,4), 

Energy_profile_PAR_3 (f,Full_charge_time_3(f)),Percentage_difference_3(f)); 

             end 
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            Set_blocks_parameters 

            Set_Electricity_Price 

            Set_Figure_Parameters 

            Set_Matrices_Vectors_Xbee 

            delta = 0.5; 

            Plot_Electricity_Price 

            Elapsed_time = []; 

            end 

    end 

end 

 

fclose(c); 

delete(c) 

clear c 
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Annex B : Aggregator 

6.6 Aggregator2 

delete(instrfindall); 

s = serial('com3'); 

fopen(s); 

 

Start_delimiter = '7E';      % It indicates the beginning of a data frame 

MSB = '00';                  % Most and Least significant bytes are used to 

                             % compute the length of the API frame 

Frame_type = '00';           % Tx transmit request frame 

Frame_ID = '01';             % The sender asks for a 'Transmit Status' frame 

Coordinator_address = ['00';'13';'A2';'00';'40';'C3';'41';'2E']; 

Option = '00';               % Supported transmission option, when '00' no options are 

selected 

 

new_day = 0; 

Set_Time_Parameters 

P_charge_max = 3.68; 

Fleet_Characteristics_Xbee_2; 

Fleet 

Number_of_EV = size(Fleet(:,1),1); 

while new_day == 0 

 

last_EV_day = max(Fleet(:,2)); 

time_slot = 35; 

interval_check = tic; 

time_division = 20;           % To make real 15 minutes last in 'time_division' seconds 

while time_slot <= last_EV_day 

    tic 

        b = datevec(now); 

        c = floor(b(6)); 

        if  floor(c/time_division)==ceil(c/time_division) % so that 15 min corresponds 

with 20 sec 

            toc(interval_check) 

            pause (0.5); % needed to avoid enter in the next time slot 

            EV_plugged_in = any (Fleet(:,2) == time_slot); 

            switch EV_plugged_in 

                case 0 

                    fprintf('Fleet_2:No new vehicles are plugged at %d\n',time_slot); 
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                    time_slot = time_slot + 1; 

                case 1 

                    RF_data = []; 

                    for j = 1: Number_of_EV 

                        if Fleet(j,2)== time_slot 

                            RF_data = [RF_data; 

dec2hex(Fleet(j,1),2);dec2hex(Fleet(j,2),2);dec2hex(Fleet(j,3),2);dec2hex(Fleet(j,4),2)]

; 

                        end 

                    end 

                        % Compute and add checksum to frame 

                        sum=0; 

                        n = size(RF_data,1); 

                        LSB = dec2hex(n + 11,2);     % in the length calculation are 

included all the bytes of the API frames, 

                                                     % except for the star delimiter, 

MSB and LSB and the checksum 

                        API_frame = [Start_delimiter ;MSB ;LSB;Frame_type; Frame_ID; 

Coordinator_address; Option; RF_data]; 

                        for j=4:n+14 

                              sum = sum + hex2dec(API_frame(j,:)); 

                        end 

                        sum = dec2hex(sum); 

                        m = length(sum); 

                        if m > 2 

                            last_2_bytes_of_sum = sum(m-1:end); 

                            API_frame(n+15,:) = dec2hex(hex2dec('FF')-

hex2dec(last_2_bytes_of_sum)); 

                        else 

                            API_frame(n+15,:) = dec2hex(hex2dec('FF')-hex2dec(sum(m-

1:m))); 

                        end 

6.7 Sending message 

                         pause(2.5);       % create a delay among the three aggragator 

                      while s.BytesAvailable ==0 && toc <= 10 

                            API_frame; 

                          % L'API frame lo invia tante volte fintanto che bytesav è 0 e 

timeout<50. 

                          % e in queste condizioni non si entra dentro gli if. 

                            for x=1:n+15 

                              fwrite(s,hex2dec(API_frame(x,:)),'uint8'); 

                            end 

 

                        pause(0.1);   % a proper time is needed to receive the 

aknowledge frame. 
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                              if s.BytesAvailable ~= 0 

                                  Get_aknowledge_frame = 

dec2hex(fread(s,s.BytesAvailable)); 

                                  if Get_aknowledge_frame (6,:) == '00'                       

% Delivery status 'success' 

                                     fprintf ('Energy request correctly sent at %d \n', 

time_slot);           % The message has been correctly sent 

                                  break 

                                  end 

                              end 

 

                      if toc >= 10 

                        fprintf (' Aggregator 2: no acknowledgement received in 10 

seconds at time slot %d \n It will be delayed in the next quarter of hour \n', 

time_slot); 

                        % If the request is not correctly sent it is stored in the next 

quarter 

                        % of a hour message 

                        for h = 1: Number_of_EV 

                            if Fleet(h,2)== time_slot 

                                % The time available to get charged is lowered by 15 

minutes. It 

                                % should be verified that this time is still compatible 

with the power of the charger 

                                if (Fleet(h,4)/((Fleet(h,3)-1)*(Time.tau/60))) <= 

P_charge_max 

                                Fleet(h,2)=time_slot + 1;      % the message is set to 

be stored on the next quarter of hour 

                                else 

                                    fprintf(' Warning! Aggregator 2: the request of 

vehicle %d cannot been accomplished!\n', Fleet(h,1)); 

                                end 

                            end 

                        end 

                      end 

                      end 

                      time_slot = time_slot + 1; 

            end 

        end 

        pause (0.5); 

        end 

    new_day = input('Press 0 to continue the optimization for the next day \n'); 

    if new_day ~=0 

        break 

    else 

Fleet_Characteristics_Xbee_2; 

    end 

end 

fclose(s) 
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delete(s) 

clear s 
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Annex C : Fleet_characteristics 

6.8 Defining EV fleet characteristics 

%function [Fleet,Full_charge_time,P_charge_max]= Fleet_Characteristics 

% Battery parameters. The charger is supposed to be the same for all fleet's vehicles 

P_charge_min = 1.38;   % kW 

P_charge_max = 3.68;   % kW 

Eff_ch = 0.9;          % charging efficiency 

SoC_min = 0.2; 

SoC_max = 0.9; 

 

% Every EV has to send: 1) 

% energy needed, 2) time to get charged, 3) time of start charging/plug in 

% and 4) idendification index 

% Therefore every EV sends 4 bytes 

 

Number_of_EV = 64;                           % number of EVs in the fleet 

 

Fleet = zeros (Number_of_EV,4);              % initialize the fleet matrix 

% (col 1: index; col 2: start charging time;  col 3:time available to charge;  col 4: 

energy request) 

Fleet(1:Number_of_EV,1) = (1:Number_of_EV);  % indexing 

 

 

Fleet (1:Number_of_EV,4)= round(abs(6 + 3*randn(Number_of_EV,1)));     % Energy request 

(kWh) 

 

% Defining the time range allowed to charge by every EV 

for i = 1:Number_of_EV 

 

    Minimum_time_frame_needed = Fleet(i,4)/P_charge_max;                 % hours 

    Minimum_time_slots_needed = ceil (Minimum_time_frame_needed * 4);    % minimum time 

slots needed to charge 

    % time slots allowed to charge, it is a minimum time due to the 

    % charger capacity + a time related to user's preference (randomly 

    % chosen in a range of 10 hours: 40 time slots) + two hours of extra time 

    % considering that max power is not always available. The extra time is 

    % up to 10 hours. 

    Fleet(i,3) = Minimum_time_slots_needed + 8 + ceil(rand(1)*(32)); 
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end 

% Defining the start charging time: 

% Assuming that most of the EVs come back home at 7 pm and some at 1 pm, I can assume 

that 

% the start charging/plug in time will have a bimodal distribution with a 

% peak at 7 pm and  another peak at 1pm, both with standard deviation of 2 hours. 

 

Earlier_plug_in = randi ([0,(Number_of_EV/2)]);   % it generates a random 

% number from 0 to 32, this will represent the number of vehicles arriving home at about 

1 pm 

Fleet (1:Earlier_plug_in,2)= abs(13 + 2*randn(Earlier_plug_in,1));        % A random 

number (up to 32) of EV arrive at about 13 h 

Fleet ((Earlier_plug_in + 1):Number_of_EV,2)= abs(19 + 2*randn((Number_of_EV - 

Earlier_plug_in),1)); 

 

% Start charging time in time slots, every plug in instant is rounded to the subsequent 

time slot 

Fleet (1:Number_of_EV,2)= ceil(Fleet(1:Number_of_EV,2)*4);  % 4 = 60/Time.tau 

 

% Full charge time scheduled 

Full_charge_time = zeros (Number_of_EV,1); 

for i=1:Number_of_EV 

    Full_charge_time (i) = Fleet(i,2)+Fleet(i,3); 

end 

Full_charge_time; 

max(Full_charge_time); 
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