
Hardware Acceleration of Image
Processing Algorithms on Low-Power

Embedded Platforms

By

FRANCESCO BUTTAFUOCO

Master in Embedded Systems, Computer Engineering
POLYTECHNIC UNIVERSITY OF TURIN

Defence Committee:
Prof Andrea Calimera, Polytechnic University of Turin, Italy
Prof Iris Bahar, School of Engineering at Brown, USA

DECEMBER 2017

ABSTRACT

T
his paper describes the implementation of two main algorithms based on hardware-

software co-design. The aim of the two algorithms is to identify some features from

particular images. The first algorithm is used for Iris Recognition. The algorithm was

developed by [1] for recognizing person by their iris patterns. We propose hardware accelerators

for the most timing consuming part of the algorithm. Next, we identify overall eight parameters

at both the algorithmic and hardware levels to trade-off accuracy with runtime. To identify

the optimal values for these parameters, we identify different novel design space exploration

techniques including Gradient Based Local Search. The second algorithm is called Gradient-

Based Cross-Spectral Stereo Matching [3] and it is used to identify visual stereo matching when

weather conditions offer zero visibility. The aim of this part was to implement the hardware

architecture on an UltraScale FPGA.

i

ACKNOWLEDGEMENTS

F
irstly, I would like express my gratitude to my supervisor, Prof. Andrea Calimera, who

offered me this amazing experience at the Brown School of Engineering. I would like to

thank the other supervisor, Prof. Iris Bahar, whose motivation and encouragement have

been essential during these months; she has always been present, supporting me to overcome all

the difficulties and giving me precious suggestions. I would like to thank the other guys I have

worked with: Soheil Hashemi, Tann Hokchhay, Prof. Sherief Reda and Christopher Picardo. I

need to thank my parents too, supporting me in many ways. A final thanks to my girlfriend, who

help and support me in this journey.

iii

TABLE OF CONTENTS

Page

List of Tables vii

List of Figures ix

1 Introduction 1

I Iris Recognition 3

2 Algorithm review 4

2.1 Briefly description . 4

2.2 Iris Segmentation . 6

2.3 Focus Assessment . 8

3 System Architecture Overview and SW/HW Partitioning 10

3.1 System Architecture Overview . 10

3.2 SW/HW Partitioning . 13

4 Scale Analysis 16

5 Hardware accelerator for the segmentation part 18

5.1 Sofware-C code side . 18

5.2 Hardware-Verilog side . 25

6 Hardware accelerator for the focus assessment 29

v

TABLE OF CONTENTS

7 Methodology for Approximate Computing based on Iris Scanning 33

7.1 Introduction . 33

7.2 Methodology . 36

7.3 Results . 38

II GBCSSM-Pinggera 41

8 Algorithm review 42

8.1 Introduction . 42

8.2 The Gradient Based Cross-Spectral Stereo Matching Algorithm 43

9 Architecture 45

9.1 System Architecture Setup . 45

9.2 System Generator Implementation . 48

9.2.1 Convolution . 49

9.2.2 Sum of Squares . 52

9.2.3 Square Root . 52

9.2.4 L2 Unit Normalization . 54

9.2.5 Division (Final HOG Matrix) . 55

9.3 Hardware Implementation using Vivado . 55

9.4 Conclusion . 60

Bibliography 61

vi

LIST OF TABLES

TABLE Page

3.1 Available resources on Spartan-6 XC6SLX45T-3FGG484 FPGA. 11

7.1 The list of parameters evaluated in the design space exploration. Values in brackets

show the possible values. 35

7.2 The formulation used to model the runtime behavior as a function of the design

space parameters. Note that as we do not modify any parameters in the encoding

components, we consider its runtime as a constant. 35

7.3 The components chosen for hardware acceleration, the corresponding speedups, and

the hardware utilization of each accelerator. 38

7.4 Parameter provided by the gradient descent method . 39

7.5 The hardware characteristics of the end-to-end system. 39

9.1 Available resources in Virtex UltraScale XCVU095-2FFVA2104E FPGA. 46

vii

LIST OF FIGURES

FIGURE Page

2.1 The components of an iris recognition system. 4

2.2 Example of an iris pattern. 5

2.3 Flowchart of the iris segmentation stage. 6

2.4 Integrodifferential operator. 7

2.5 The (8 x 8) convolution kernel for fast focus assessment. 9

3.1 Picture of a Spartan-6 SP605 development board. 11

3.2 Overview architecture for Iris Code implementation. 12

3.3 Percentage of runtime used by various algorithms in the iris scanning pipeline. 14

4.1 The distribution of the candidates and mean Error Pixel with respect to the scales factor. 17

4.2 Iris segmentation using different scale factors. 17

5.1 Contour integral. 23

5.2 Fields of the register 7. 23

5.3 Overview of the integrodifferential operator. 25

5.4 1st Layer State Machine for Integrodifferential Operator. 26

5.5 2nd Layer State Machine for Integrodifferential Operator. 27

5.6 Fields of register in fixed precision. 27

5.7 The schematics of the convolution circuit. 28

6.1 Architecture of the Convolution Accelerator. 30

6.2 State Machine for Focus Assessment Module. 32

ix

LIST OF FIGURES

7.1 Architecture of the Convolution Accelerator. 38

7.2 The camera and FPGA board Setup. 40

8.1 Cost Matrix and Disparity Map generation. 43

8.2 Cost Matrix and Disparity Map generation. 44

9.1 Picture of a Xilinx Virtex UltraScale FPGA VCU108 development board. 45

9.2 Vivado IDE on the left, SDK on the right. 46

9.3 Architecture for Testing. 47

9.4 Architecture of the design-in-board. 48

9.5 Flow of testing. 48

9.6 GBCSSM Design implemented in System Generator. 49

9.7 First Step of the pipeline. 50

9.8 Convolution Module. 51

9.9 2D Convolution. 51

9.10 Sum of Squares Module. 52

9.11 Square Root Module. 54

9.12 Square Root Module. 54

9.13 Overview architecture for GBCSS implementation. 56

9.14 Flow of the GBCSS implementation. 57

9.15 Top Conv Module. 58

9.16 Square Root Module. 59

9.17 PRE WRITE Module. 60

x

C
H

A
P

T
E

R

1
INTRODUCTION

F
or real time large-scale application, image processing algorithms have to be imple-

mented in embedded systems because powerful systems, that run at GHz, cannot be

used due to the high price components, high power consumption, scalability, ecc. For

this reason, architectures based on hardware−software co-design combine the advantages of

both hardware and software solutions. Such systems contain an embedded microprocessor and

several dedicated hardware units connected via a communication bus. The advantage of using

hardware accelerators is to provide high speed and low power consumption. The purpose of this

paper is to describe the implementation of an iris recognition and GB-CSSM algorithms based

on a hardware−software co-design system, suitable for integration in a FPGA. In both projects,

I worked with Xilinx software and Xilinx FPGA. This paper is organised in 2 main parts. The

part I reviews the basic principles of the iris recognition algorithm, the scale analysis on the

segmentation part, the HW accelerator of the segmentation part, the HW accelerator of the focus

assessment part and a novel design space exploration technique used in the paper [2]. The part

II reviews the basic idea about the GB-CSSM algorithm and the hardware architecture.

1

Part I

Iris Recognition

3

C
H

A
P

T
E

R

2
ALGORITHM REVIEW

2.1 Briefly description

T
he iris recognition is a kind of the biometrics technologies based on the physiological

characteristics of human body and, compared with the feature recognition based on

the fingerprint, palm-print, face, etc, the iris has some advantages such as uniqueness,

stability, high recognition rate. Iris patterns have now been tested in many field and laboratory

trials, producing no false matches in several million comparison tests. The iris pattern is unique

to each person and to each eye, and is essentially stable during an entire lifespan.

A typical iris recognition system uses a pipeline of four components that takes input images from

a camera and produce as output the 2048 bit encoding of the iris. Fig 2.1 shows the flowchart

used for our experiments. At the front-end, a camera with an infrared sensitive sensor captures

FIGURE 2.1. The components of an iris recognition system.

4

2.1. BRIEFLY DESCRIPTION

multiple frames of an iris illuminated with infrared LEDs as given in Fig 2.1.a. The ideal image

is taken at a distance of about 35 cm by ensuring a minimum of 70 pixels in iris radius, letting

to capture the rich details of iris patterns. The focus assessment stage captures the sharpest

frame from the previous sequence of frames as illustrated in 2.1.b. The degree of focus for each

frame is computed convolving a 8x8 kernel with each frame. The segmentation stage extract the

the center points and the radius for the iris and the pupil. In this work, the integrodifferential

algorithm is utilized to compute the center points. This stage is shown in 2.1.c. The output of

the segmentation algorithm is then fed to the normalization algorithm where the iris pixels

are subsampled and organized in a Cartesian coordination system. This is achieved by simply

spacing the angular resolution and the radial resolution equally, based on the segmentation

results. Figure 2.1.d and 2.1.e show the subsampling process and the resulting 2-D output of the

normalization respectively. Finally, the normalized pixels are encoded into 2048 bits using a 2-D

Gabor demodulation as shown in Figure 2.1.f. These 2048 bits are the iris signature. The encode

sequence is illustrated for one iris by the bit stream shown graphically in Figure 2.2. Since the

FIGURE 2.2. Example of an iris pattern.

goal is to minimize the response time to the user, the runtime of the system is the prime objective

5

CHAPTER 2. ALGORITHM REVIEW

for iris scanning systems. After profiling the entire flow, the most time consuming stages are Iris

Segmentation and Focus Assessment. Before going deeply in the hardware implementation, it is

better focusing on the algorithms behind these stages.

2.2 Iris Segmentation

The Segmentation is the process of locating the iris in the image. The flowchart shown in Figure

2.3 shows the steps required for the segmentation assessment. The first step is scale the image.

FIGURE 2.3. Flowchart of the iris segmentation stage.

We use 480x640 as the original size input frames, however, as the segmentation is the most

computationally demanding part of the algorithm, to speedup the runtime, a resized image

is used. As will be described more fully in the Chapter 4, after some explorations, we use a

120x160 (scale factor of 4) resized image as our input. The algorithm chosen to compute the

rescaling is the Nearest-neighbor interpolation, that consist in sub-sampling the original image

6

2.2. IRIS SEGMENTATION

with a offset of 4 pixels. Comparing the different resizing algorithms typically used in rescaling

processes, the Nearest-neighbor interpolation is the simplest and fastest solution. The rmin and

rmax, shown in the flowchart, are the minimum and maximum possible radius used for iris search.

We set these parameters to be equal to 60 and 180 respectively, because are closely related to

the dimension of the eye captured by the camera. The rescaling stage returns the resized image,

the resized minimum and the maximum radius as well. Another parameter that is used in the

integrodifferential algorithm is the Npoints, a value that devises for how many points the contour

integral is to be computed. This parameter is scaled too. The initial value is 600, and after the

scaling is equal to 150.

Next, the integrodifferential algorithm is utilized to compute the center points. The coarse search

and fine search for the iris and pupil use the same operator, with some variations. The formula of

the integrodifferential operator is shown in Figure 2.5. The operator searches over the image for

FIGURE 2.4. Integrodifferential operator.

the maximum value computed convolving a Gσ(r) Gaussian function of scale σ with a contour

integrator along a circular arc ds of radius r and center x0, y0. The symbol ∗ denotes convolution

and Gσ(r) is a smoothing function. The complete operator behaves as a circular edge detector,

searching iteratively for the maximal contour integral derivative.

The first step is the coarse search. It is required to identify the possible area to look for the iris

center point. In this stage, instead of apply the integrodifferential operator for all the points,

some filtering techniques are applied. Firstly, the candidates are searched in a restricted region

delimited by the minimum radius along all the directions. The possible center point is expected

to have a minimum radius rmin, so points with a position that have a distance from the borders

lower than rmin are discarded. Among all the possible candidates, only the local minima are

chosen. A 3x3 window is used for this purpose: if the candidate, located in the middle of this

window, has the lower value, is selected. Further, for each pixel out of the boundary off the image,

7

CHAPTER 2. ALGORITHM REVIEW

the pixel is assumed to be candidate if the intensity of the pixel is darker than a predefined

threshold and it is a local minima. The center point is expected to be inside the pupil, the darkest

region of the image. The value of the threshold is set to be 50. Only for these candidates is

computed the integrodifferential operator. In this stage the Gσ(r) smoothing function uses a

σ=∞, that transforms the gaussian curve in a costant function equal to 1. The convolution is

computed using 7 discrete elements of Gσ(r).

The center point returned by the coarse search is used as input for the next stage. The fine

search for the iris applies the integrodifferential operator in a window 15x15 centred in the

previous center point. The maximum contour integral identifies the center point and radius of

the iris. These value are passed to the next stage, the fine search for the pupil. It again applies

the integrodifferential operator in a window 15x15 centred in the iris coordination. Finally,

this stage returns the center point of the pupil. In fine iris and pupil search, a σ= 0.5 is used,

smoothing the derivative. This approach reduces the counter integral because an high value for

a particular radius, due to an interference in the image (for example reflection of the infrared

LED), is smoothed to the nearest low counter integrals.

2.3 Focus Assessment

In our implementation, the focus assessment is performed in real time on 10 frame per second by

measuring the power in middle and upper frequency bands of the 2-D Fourier spectrum. In the

image domain, the defocus is normally represented as convolution of an in-focus image by the 2-D

function modelled as a Gaussian. The kernel suggested by the paper [1] is shown in the Figure

?? In frequency domain, the convolution is represented as a 2-D Fourier transformation. The

convolution with this kernel amplifies the higher frequencies. Thus, an effective way to estimate

the focus of an image is to measure the total power of the result of the convolution. The frame

with higher energy is passed to the next stage. The formulation of this step can be expressed as

maxi(f rame i ∗kernel)

An optimization adopted to improve the runtime was to perform the convolution not on the entire

frame, but only in a particular region of interest (ROI). After some exploration, by choosing a

8

2.3. FOCUS ASSESSMENT

FIGURE 2.5. The (8 x 8) convolution kernel for fast focus assessment.

ROI of 50%, the runtine decreases by one half without any impact on the final result.

9

C
H

A
P

T
E

R

3
SYSTEM ARCHITECTURE OVERVIEW AND SW/HW PARTITIONING

T
his project has been realized in collaboration with the Videology Imaging Solutions

company. The latter asks to realize the implementation of iris detection and encoding

on the Spartan-6 SP605 development board requiring a runtime of few seconds. In

addiction, to validate the performance and to compare against industry standards, the MMU

open source dataset and live feeds captured from the camera system are used.

3.1 System Architecture Overview

The board that we used was a Spartan-6 SP605 development board, as shown in Figure 3.1. The

SP605 provides many board features, the main features used in this project are:

• Spartan-6 XC6SLX45T-3FGG484 FPGA

• 128 MB DDR3 Component Memory

• Linear BPI Flash

• USB JTAG

• Clock generator at fixed 200Mhz

10

3.1. SYSTEM ARCHITECTURE OVERVIEW

FIGURE 3.1. Picture of a Spartan-6 SP605 development board.

• USB UART

• User I/O

The main resources of the FPGA are in the Table 3.1. For further information about the fpga

itself [6] and [5]. The entire project was entire deployed on the FPGA without any external

Table 3.1: Available resources on Spartan-6 XC6SLX45T-3FGG484 FPGA.

Device Logic Cells Flip-Flops Max Distributed RAM Kb Blocks RAM of 18 Kb
XC6SLX45T 43661 54576 401 116

processor unit or resource. To capture the pictures, we used a infrared camera 5MP USB3 camera

24B5.0XUSB3, provided by Videlogy. The company provided a camera interface module already

adjusted for iris capture which plugs into the SP605 development board and outputs raw YUV

video. The overview of the architecture is shown in Figure 3.2. The design uses a microblaze

softcore processor as the main controller and for software-side computations. The processor runs

at 100 MHz with floating point unit enabled.

Three main buses are used AXI, AXI-lite, and Xilinx LMB (local memory bus). The AXI bus runs

at 100 MHz. allows high throughput communications necessary for accessing the onboard DDR3

memory, which is the only slave of this bus. The four masters for the bus are the microblaze

and the camera interface running at 100 MHz and the convolution accelerator and line integral

accelerator running at 30 MHz. The AXI-lite bus operates at 50 MHz and allows for lower speed,

single transfer communications. This bus allows the microblaze to send control signals to the

11

CHAPTER 3. SYSTEM ARCHITECTURE OVERVIEW AND SW/HW PARTITIONING

FIGURE 3.2. Overview architecture for Iris Code implementation.

accelerators as well as reading from the IO module such as the push buttons. The LMB is used for

transactions between microblaze and the on-chip block RAM, which is responsible for instruction

and data caching.

The linear flash stores the FPGA configuration bitstream with a bootloader and the iris code

software. At boot time, after the FPGA is configured, the bootloader copies the software to the

DDR3 memory and starts the execution.

Next, a description of all main component present in the architecture. The main processor is

a Microblaze. MicroBlaze is the Xilinx FPGA-based, 32-bit RISC Harvard architecture soft

processor. It supports advanced architecture options such as AXI interface, Memory Management

Unit (MMU), instruction and data-side cache, configurable pipeline depth and Floating-Point

unit (FPU). The soft processor core is included with the Xilinx software tools. The UART-LITE

module is used to interact with the external word. It is used to send informations and status

of the board to the user and to return the encode of the iris as well. The Push Button is used

to kick start the process of frame capturing and encode pattern generation. The MCB (memory

controller block) is the interface used by the Microblaze and the accelerators to access to the

DDR3. It is connected to the AXI protocol that support the BURST transfer mode, used to the

frame capturing. The MCB-Based Camera Interface Module performs asynchronous data transfer

from a FIFO buffer to the DDR3 memory on the Xilinx SP605 board. The FIFO unit used in

the development of this module is the RAM FIFO clock domain converter. The unit has a slave

12

3.2. SW/HW PARTITIONING

and a master port connected to AXI-4 Lite and AXI-4 interconnect respectively. The slave port

receives control signals from the Microblaze module such as destination address and number of

frames to be transferred. The master port sends pixel data as well as control signals to the MCB.

The slave port of the camera interface module follows AXI-4 Lite protocol, which supports only

single transfer of 32-bit data. The master port follows AXI-4 Burst protocol. The burst length

is configured to be 128 words where each word is 32 bits. The Convolution and Integrointegral

Accelerator perform the focus assessment and the integrointegral operator respectively. Both

modules will be described deeply in the next chapters.

Finally, the entire project was built with Xilinx’s EDK 14.6 (Embedded Development Kit), a

development package provided by Xilinx that collects different tools useful for the development.

The project manager consists of two separate environments: ISE, XPS and SDK. Xilinx ISE

(Integrated Synthesis Environment) is a software tool for synthesis and analysis of HDL designs.

It was used to build and test all the accelerators present in the architecture. XPS (Xilinx Platform

Studio) to configure and build the hardware specification of their embedded system (processor core,

memory-controller, I/O peripherals, etc.) The XPS converts the designer’s platform specification

into a synthesizable RTL description, and writes a set of scripts to automate the implementation

of the embedded system (from RTL to the bitstream-file.) For the MicroBlaze core, the EDK

normally generates an encrypted (non human-readable) netlist. The SDK (Software Development

Kit) is the Integrated Design Environment for creating embedded applications built on Eclipse.

Our code was written in C and compiled using SDK.

3.2 SW/HW Partitioning

As an initial step, we profile the pipeline, running entirely in software, to measure the runtime

of its different algorithmic components. To minimize the runtime, we then synthesize the most

computational intensive modules into hardware accelerators until we reach the resource limit of

our programmable logic device.

The pie chart in Figure 3.3 summarizes the runtime profiling results when running the flow in

software. As shown in the graph, the overwhelming majority of the runtime is spent in the focus

13

CHAPTER 3. SYSTEM ARCHITECTURE OVERVIEW AND SW/HW PARTITIONING

FIGURE 3.3. Percentage of runtime used by various algorithms in the iris scanning
pipeline.

assessment and the segmentation components, while the encoding component consumes less

than 1% of the total runtime. Therefore, we choose to maps these two components into custom

hardware accelerators.

To measure the runtime for each step, an AXI timer is adopted. Next, is shown the C code used to

use the module. The timer is set up using macros defined in the library xtmrctr.h, allowing to

reset, start and stop it. The timer stores the result in 2 register of 32 bits. For this reason, the

number of clock cycles measured is printed out concatenating the 2 registers in hexadecimal. The

run time in second is computed dividing the clock cycles by the clock frequency of the timer, in

our case is et to 50Mhz.

XTmrCtr timer1 ;

Xint32 t1_L , t1_H , t2_L , t2_H ;

. . .

void t i c () {

XTmrCtr_SetResetValue(&timer1 , 0 , 0) ;

XTmrCtr_SetResetValue(&timer1 , 1 , 1) ;

XTmrCtr_SetOptions(&timer1 , 0 , XTC_CASCADE_MODE_OPTION) ;

XTmrCtr_Start(&timer1 , 0) ;

t1_L = XTmrCtr_GetValue(&timer1 , 0) ;

t1_H = XTmrCtr_GetValue(&timer1 , 1) ;

14

3.2. SW/HW PARTITIONING

}

void toc () {

t2_L = XTmrCtr_GetValue(&timer1 , 0) ;

t2_H = XTmrCtr_GetValue(&timer1 , 1) ;

x i l _ p r i n t f ("%x%x , " , t2_H−t1_H , t2_L−t1_L) ;

XTmrCtr_SetResetValue(&timer1 , 0 , 0) ;

XTmrCtr_SetResetValue(&timer1 , 1 , 1) ;

}

. . .

t i c () ;

focus_analysis () ;

toc () ;

t i c () ;

image_rescaling () ;

toc () ;

t i c () ;

segmentation () ;

toc () ;

t i c () ;

normal ise ir is () ;

toc () ;

t i c () ;

encode () ;

toc () ;

. . .

15

C
H

A
P

T
E

R

4
SCALE ANALYSIS

T
o reduce the runtime of the iris segmentation, we tried to reduce the dimension the size

of the input image. The segmentation part doesn’t require an high resolution to identify

the center point. Moreover, the run time is affected by the number of the candidates,

indeed the coarse search computes the integrodifferencial operator in all the candidates that

pass the constraints defined in the Section 2.2. On the other hand, in the fine search the number

of candidates is always fixed because the search window is equal to 6x6. The original size of

the frame is 640x480 pixels, consequently providing a huge number of possible candidates. To

determine the scale factor that identifies the best trade-off between runtime and error, the

algorithm was executed multiple times using different scale factors. The scale factors used are

shown below

scale_ f actor = [0.1 0.2 0.25 0.3 0.4 0.5 1]

The experiment collects for each factor the number of candidates in which the integrodifferencial

operator is executed and the mean error of pixels with respect to the scale equal to 1. The results

are shown in Figure 4.1(a) and Figure 4.1(b). The two graph-bar show an exponential relationship

among the two metrics. Looking at the 4.1(b) it possible identify a huge gap between scale 0.2

and 0.25. The mean error introduced by the scale 0.25 is 30 times lower than 0.2 scale and only

6 times higher than scale 1. Moreover, the scale 0.25 reduces the number of candidates to 51,

16

(a) (b)

FIGURE 4.1. The distribution of the candidates and mean Error Pixel with respect to
the scales factor.

reducing by 32 times the candidates identified using scale equal to 1. This information allows us

to choose as ideal scale factor 0.25 to be applied to the input image used by the iris segmentation.

The Figure 4.2 shows the iris segmentation in two images using different factors. The runtime

shown is provided by MATLAB.

FIGURE 4.2. Iris segmentation using different scale factors.

17

C
H

A
P

T
E

R

5
HARDWARE ACCELERATOR FOR THE SEGMENTATION PART

A
lthough the optimization of the scale factor described in the Section 4 provide a 32X

speed-up, the run time of the entire system is still higher than the required one. The

main run-time improvement is provided by the HW-SW co-design’s introduction. The

first part of the algorithm implemented in hardware is the integrodifferential operator.

5.1 Sofware-C code side

The macros, defined to read and write the registers in the peripheral, are used to access the pe-

ripheral by the C program. The algorithm’s implementation is defined in the library segment.c.The

wrapper function is called segmentation(). The body is partitioned in:

• coarse search

• search maximum

• iris search

• search maximum

• pupil search

18

5.1. SOFWARE-C CODE SIDE

• search maximum

As explained in Section 2.2, the coarse search is the first step to identify the points in which

there is an high probability to find the iris’s center point. The search has place in a sub-portion of

the image, focusing only in the part of an image with an offset greater or equal to the minimum

radius of the iris in each direction. For each pixel with intensity lower than a threshold value, the

integrodifferential computation can start. The threshold value was empirically defined after some

exploration in order to apply a first coarse filter, so that the operator is computed for only the point

that are more likely the center point. The threshold was fixed to 50. Just as reminder, the center

point is expected to be in the pupil, the dark region of the image. The black is encoded in RGB as

0 and white as 255. For this reason are selected only the pixel with an intensity lower than 50.

Before running the accelerator on that pixel, the latter has to be the minimum local in a window

3x3 centred on it. This avoid to call the accelerator for each near point that satisfy the threshold

constraint. If the pixel satisfies all the previous constraints, the integrodifferential value can

be computed. The results of the the accelerator are stored in two matrices, the maxblurSCH

that stores the integrodifferential value, and the maxradSCH that stores the associated radius.

When all the values are computed and stored in the matrices, the search of the maximum in

the maxblurSCH matrix is performed. That one provides the point where the iris’s center point

is located. Next, the integrodifferential operator is performed in a window 6x6 centred in the

center point computed previously. Again, the results are stored in the previous two matrices and

finally the maximum is identified. The coordination of the maximum identifies the center point of

the iris, and the value in the maxradSCH matrix at the same location is the radius. Finally, the

integrodifferential operator is performed once again in a window 6x6 centred in the iris center

point. Unlike the previous cases, in which the integrodifferential operator worked in a range from

pre-defined minimum and maximum radius (related to the physically dimension of the capture

eye), the range is computed dynamically, assigning the 10% of the iris’s radius to the minimum

radius and the 80% to the maximum radius. The final maximum research identifies the pupil’s

center point and the radius as well. Next the segmentation() implementation

void segmentation () {

//////////////////////// coarse search ////////////////////////

19

CHAPTER 5. HARDWARE ACCELERATOR FOR THE SEGMENTATION PART

memset (maxradSCH, 0 , sizeof (maxradSCH)) ;

memset (maxblurSCH , 0 , sizeof (maxblurSCH)) ;

for (center_x = rmin_t ; center_x < ROWS−rmin_t ; center_x ++)

for (center_y = rmin_t ; center_y < COLS−rmin_t ; center_y ++)

i f (image [center_x] [center_y]<th)

i f ((image [center_x] [center_y]<=image [center_x −1][center_y−1])&&

(image [center_x] [center_y]<=image [center_x −1][center_y])&&

(image [center_x] [center_y]<=image [center_x −1][center_y+1])&&

(image [center_x] [center_y]<=image [center_x] [center_y−1])&&

(image [center_x] [center_y]<=image [center_x] [center_y])&&

(image [center_x] [center_y]<=image [center_x] [center_y+1])&&

(image [center_x] [center_y]<=image [center_x +1][center_y−1])&&

(image [center_x] [center_y]<=image [center_x +1][center_y])&&

(image [center_x] [center_y]<=image [center_x +1][center_y + 1]))

part ia ld_acc (

center_x ,

center_y ,

0 , //sigma

&maxradSCH[center_x] [center_y] ,

&maxblurSCH[center_x] [center_y] ,

I r i s ,

rmin_t ,

rmax_t) ;

//search maximum

max_matrix (maxblurSCH , &x_max , &y_max) ;

//

//////////////////////// i r i s search ////////////////////////

memset (maxradSCH, 0 , sizeof (maxradSCH)) ;

memset (maxblurSCH , 0 , sizeof (maxblurSCH)) ;

for (center_x = x_max−5; center_x <= x_max+5; center_x ++)

for (center_y = y_max−5; center_y <= y_max+5; center_y ++)

part ia ld_acc (

center_x ,

center_y ,

20

5.1. SOFWARE-C CODE SIDE

1 , //sigma

&maxradSCH[center_x] [center_y] ,

&maxblurSCH[center_x] [center_y] ,

I r i s ,

rmin_t ,

rmax_t) ;

//search maximum

max_matrix (maxblurSCH , &CIX , &CIY) ;

RI = maxradSCH[CIX] [CIY] ;

//

//////////////////////// pupil search ////////////////////////

memset (maxradSCH, 0 , sizeof (maxradSCH)) ;

memset (maxblurSCH , 0 , sizeof (maxblurSCH)) ;

for (center_x = CIX−5; center_x <= CIX+5; center_x ++)

for (center_y = CIY−5; center_y <= CIY+5; center_y ++)

part ia ld_acc (

center_x ,

center_y ,

1 , //sigma

&maxradSCH[center_x] [center_y] ,

&maxblurSCH[center_x] [center_y] ,

Pupil ,

(int) round (0 .1* RI) ,

(int) round (0 .8* RI)) ;

//search maximum

max_matrix (maxblurSCH , &CPX, &CPY) ;

RP = maxradSCH[CPX] [CPY] ;

}

Every time the integrodifferential operator has to be performed in a pixel, the partiald_acc is

called. The function wraps all the macros to set-up the peripheral. It receives as parameters:

• coordinate x pixel

21

CHAPTER 5. HARDWARE ACCELERATOR FOR THE SEGMENTATION PART

• coordinate y pixel

• sigma

• pointer to the array that handle the radius output

• pointer to the array that handle the integrodifferential output

• type of search

• minimum radius

• maximum radius

The coordinates identify the point in which the operation is computed. The sigma is a parameter

related to the convolution performed in the integrodifferential operator. It sets the accelerator

to compute the convolution with a constant function or a Gaussian function. The two pointers

are used to store the values returned by the accelerator. The type of search sets the computation

using the iris or the pupil contour integral. The minimum and maximum radius define the range

of the partial derivative. The first part of the function configures the peripheral. To set-up the

accelerator, the function uses some macros that access to internal registers. Each register has

its own purpose. The first step is to reset the accelerator. XPS assigns for each module in the

design a base address that allows to control and monitor each module. The accelerator has a

pre-built software reset, a feature that allows to reset the module writing in a specific register in

the space address of the accelerator. The macro AC_mReset receives as input the base address

of the accelerator and sets to 1 the register located at the offset 0x00000030. Then, the base

address of the input image is written in the register 8. Accordantly to the type of search, two

different base address are written in the register. The iris and pupil search don’t perform the

same circular integral. This choose is driven by some optimization due to the physiology of the

edge between sclera and iris, and between iris and pupil. If we look closely a typical eye image,

it’s possible to see that the border of the iris is more pronounced in the lateral contour of the iris.

The upper and bottom parts are more subjected to noise due to the eyelids. For this reason only a

partial contour integral is computed. On the other hand, a fully contour integral is computed for

22

5.1. SOFWARE-C CODE SIDE

the pupil. The Figure 5.1 shows in green the iris’s contour integral, in blue the pupil’s contour

integral. To compute the contour integral, the accelerator requires polar coordination to locate

FIGURE 5.1. In green the iris’s contour integral, in blue the pupil’s contour integral.

the different points in the border. To improve the performance of the module, the coordination are

not every time computed by the module itself, but are pre-computed through MATLAB and stored

in an header file. In this way, the accelerator has to simply access to the arrays to access to any

point on the contour. Two array are used to store polar coordination: one for the cosine and one

for sine. Each of them provides the corresponding Cartesian coordinate x and y to access to each

pixel. Going back to the code, the type input parameter specifies which polar coordination bases

address have to be passed to the accelerator. Finally, the coordination x and y of the selected

point, the rmin, rmax, sigma parameters are written in dedicated registers. At this point the

set-up stage ends and the accelerator is started writing 1 in the register 0. After the start, the

function waits until the module finishes to compute the results, checking if the register 7 is equal

to 4. The figure shows the fields of the register 7. When the module terminates the computation,

FIGURE 5.2. Fields of the register 7.

23

CHAPTER 5. HARDWARE ACCELERATOR FOR THE SEGMENTATION PART

the integrodifferential and radius results are read from registers 3 and 4 and stored in the

corresponding pointers. Next the partiald_acc function

void part ia ld_acc (int center_x , int center_y , int sigma , int* rad_max ,

int* conv_max , int type , int rmin , int rmax) {

AC_mReset (XPAR_AC_0_BASEADDR) ;

AC_mWriteReg (XPAR_AC_0_BASEADDR, AC_SLV_REG8_OFFSET, image) ;

i f (type==Pupil) {

AC_mWriteReg (XPAR_AC_0_BASEADDR, AC_SLV_REG9_OFFSET, sin_coord_pupil) ;

AC_mWriteReg (XPAR_AC_0_BASEADDR, AC_SLV_REG10_OFFSET, cos_coord_pupil) ;

}

else i f (type== I r i s) {

AC_mWriteReg (XPAR_AC_0_BASEADDR, AC_SLV_REG9_OFFSET, s in_coord_ i r i s) ;

AC_mWriteReg (XPAR_AC_0_BASEADDR, AC_SLV_REG10_OFFSET, cos_coord_ i r i s) ;

}

AC_mWriteReg (XPAR_AC_0_BASEADDR, AC_SLV_REG1_OFFSET, center_x) ;

AC_mWriteReg (XPAR_AC_0_BASEADDR, AC_SLV_REG2_OFFSET, center_y) ;

AC_mWriteReg (XPAR_AC_0_BASEADDR, AC_SLV_REG5_OFFSET, rmin) ;

i f (rmin>=rmax) {

*rad_max=rmin ;

*conv_max=0;

}

else

{

AC_mWriteReg (XPAR_AC_0_BASEADDR, AC_SLV_REG6_OFFSET, rmax) ;

AC_mWriteReg (XPAR_AC_0_BASEADDR, AC_SLV_REG14_OFFSET, (Xuint32) (sigma)) ;

AC_mWriteReg (XPAR_AC_0_BASEADDR, AC_SLV_REG11_OFFSET, type) ;

AC_mWriteReg (XPAR_AC_0_BASEADDR, AC_SLV_REG0_OFFSET, (Xuint32) (1)) ;

while (! (AC_mReadReg (XPAR_AC_0_BASEADDR, AC_SLV_REG7_OFFSET) == 4)) ;

*rad_max=AC_mReadReg (XPAR_AC_0_BASEADDR, AC_SLV_REG3_OFFSET) ;

*conv_max=AC_mReadReg (XPAR_AC_0_BASEADDR, AC_SLV_REG4_OFFSET) ;

}

}

24

5.2. HARDWARE-VERILOG SIDE

5.2 Hardware-Verilog side

The peripheral is made by three main blocks. The slave interface, the master interface and the

main core, that implements the computation. The figure 5.3 shows the main overview of the

peripheral. The slave and master interfaces are generic template, provided by Xilinx, handling

FIGURE 5.3. Overview of the integrodifferential operator.

the protocol for write and read operations. A detail explanation of the two interfaces is out of

this project because it will require too much time. In this paper, I’m going to describe only the

remarkable changes on them. The slave interface allows the processor to send and receive data

to/from the module. The AXI-LITE protocol is used for this interconnection. The communication is

achieved by reading and writing registers in the slave interface. The control signals are connected

between the main core and the slave interface in order to set-up and start the computation.

The master interface implements the read from the space address of the DRAM in which is

defined the input image and polar coordination. The communication is performed through the

AXI protocol, that achieves higher performance with respect to AXI-LITE.

The hardware accelerator is comprised of two levels of state machines. The first layer generates

the line integral of the curve for a given center coordinates and radius, while the second layer

generates the values from rmin-rmax and passes those to the first layer state machine. The second

layer also stores the integral values, generates the differentials and calculates the 1D convolution

as required by Dougman et. al. [1]. Figures 5.4 and 5.5 below show the structure of the state

machines implemented in the hardware accelerator. The first layer receives from the 2nd layer

25

CHAPTER 5. HARDWARE ACCELERATOR FOR THE SEGMENTATION PART

the center point’s coordination x and y and the radius as well. To computes the coordination in

the line integral, the FSM uses three steps in which requires the polar coordination x and y and

finally grabs the pixel from the image at that coordination. The FSM repeats the request of the

coordination to the memory for all the N points. All the values received during the state wait_v

are accumulated and finally sent back to the layer 2. The 2nd layer starts and waits the the 1st

layer’s results and send them to the convolution unit. It also saves, in a dedicated register, the

maximum value computed by the convolution unit. When the accelerator ends the entire process,

it sends the END signal, the maximum convolved value and the radius related (connected to

the registers 7, 4 and 3 respectively) to the slave interface. Figure 5.7 shows the hardware

FIGURE 5.4. 1st Layer State Machine for Integrodifferential Operator.

structure for the convolution implementation. As shown in the figure, the result from the lower

level state machine is pushed through a shift register while any given time, the subtraction, the

multiplication, and the accumulation are carried out for the current state of the shift register.

For storing the value of the filters on the other hand, a register is utilized. The hardware ad-hoc

convolution unit ha the big advantage to be less time consuming with respect to the software

approach. This improvement is provided by giving up the use of the floating point precision by

26

5.2. HARDWARE-VERILOG SIDE

FIGURE 5.5. 2nd Layer State Machine for Integrodifferential Operator.

using the processor. In order to maintain a decimal precision in the result, a fixed point precision

is adopted. To maintain a good trade-off between integer range and decimal precision, a deep

exploration has been carried out. The figure shows the final arrangement, in which a thirty-two

bits register is split in two fields, three bits are dedicated to the integer part and the remaining

twenty-nine bits to the decimal part.

FIGURE 5.6. Fields of register in fixed precision.

27

CHAPTER 5. HARDWARE ACCELERATOR FOR THE SEGMENTATION PART

FIGURE 5.7. The schematics of the convolution circuit.

28

C
H

A
P

T
E

R

6
HARDWARE ACCELERATOR FOR THE FOCUS ASSESSMENT

A
s shown in the Figure 3.3, the second algorithm more time consuming is the focus

assessment. The focus assessment identifies the best focused frame in a steam captured

at frame-rate equal to 10. The fastest solution adopted in this case, to identify the

more focused frame, is to compute the convolution with a pre-defined kernel as suggested by

Dougman et. al. [?]. To further run-time’s reduction, the convolution is computed in a restricted

portion of the frame, called ROI (Region Of Interest). After some exploration, a ROI of 50% is

chosen guaranteeing the same results, cutting of one half the runtime. To reduce drastically the

run-time, a co-design SW/HW is adopted. The unit has a slave and a master port connected to

AXI-4 Lite and AXI-4 interconnect respectively. The slave port receives the destination address

from the Microblaze module. The master port is devoted to the communication with the DDR3.

The energy computed by the accelerator is 64 bits width, so it is stored in two slave registers. The

MCB retrieves the energy reading those two registers through the slave port.

The function that controls the focus assessment accelerator is called focus_assessment_by_accelerator.

It updates the base address so that the module starts from the first position in the ROI. Then it

resets the module through the software reset feature provided by the accelerator. It writes the

base address in the register 8 and starts the module setting to 1 the register 0. Then, it ways that

the module ends checking the register 7. Finally stores the energy computed in the two variables

29

CHAPTER 6. HARDWARE ACCELERATOR FOR THE FOCUS ASSESSMENT

devoted to keep the highest and lowest part of the 64 bits result. Next, the function

void focus_assessment_by_accelerator (int* image , Xuint32 *sumH, Xuint32 *sumL) {

Xuint32 address ;

address =(Xuint32) image ;

address +=((ROWS)*COLS_ORIG + COLS) * 4 ;

CONV_mReset(XPAR_CONV_0_BASEADDR) ;

CONV_mWriteReg (XPAR_CONV_0_BASEADDR, CONV_SLV_REG8_OFFSET, address) ;

CONV_mWriteReg (XPAR_CONV_0_BASEADDR, CONV_SLV_REG0_OFFSET, (Xuint32) (1)) ;

while (! (CONV_mReadReg (XPAR_CONV_0_BASEADDR, CONV_SLV_REG7_OFFSET) == 4)) ;

*sumH=CONV_mReadReg (XPAR_CONV_0_BASEADDR, CONV_SLV_REG1_OFFSET) ;

*sumL=CONV_mReadReg (XPAR_CONV_0_BASEADDR, CONV_SLV_REG2_OFFSET) ;

}

FIGURE 6.1. Architecture of the Convolution Accelerator.

The accelerator is operating at 30 MHz. The energy computation takes 0.08s for each

frame. The Figure 6.1 shows the architecture of the module. It receives the data from

the master port and fed the data in a linear buffer to maintain the consistence between

30

the rows of the frame. The column of FIFOs that receives the data from the master port is

updated every time the DDR3 provides the data. The Convolution module works at each clock

cycle. For this reason, it requires an interface that exploits the second column of FIFOs that fed

the module every clock cycle.

Figure 6.2 below shows the structure of the state machines implemented in the hardware

accelerator. The first FSM manages the read request and the FIFO read and write. Going deeply,

the two states get_x and wait_x are devoted to retrieve the data from the DRAM3. Meanwhile

the values are fed in the linear FIFOs. As soon as all the FIFOs contain entire rows, the start

signal for the convolution module is asserted. The last finish states are used to conclude the

calculation of the convolution. The second FSM manages the convolution module. To compute the

convolution in pipeline, the first process computes the convolution between the columns 1st and

8th, the second process between the 2nd and 9th, and so on. So that after 8 clock cycles the first

result is ready and can start to compute the convolution between the columns 9th and 17th. A

multiplexer provides the right result at each clock cycle according to the ready signal asserted by

each process.

31

CHAPTER 6. HARDWARE ACCELERATOR FOR THE FOCUS ASSESSMENT

FIGURE 6.2. State Machine for Focus Assessment Module.
32

C
H

A
P

T
E

R

7
METHODOLOGY FOR APPROXIMATE COMPUTING BASED ON IRIS

SCANNING

7.1 Introduction

T
he realization of the co-design SW/HW implementation allows us to provide an architec-

ture developed on the Spartan6 that satisfies successfully the constraints required by

the company. Next, we decide to explore the error resilience of the design and identify

some methodologies to minimize the response time. In this chapter I’m going to expose only my

contributions on the paper, skipping the part in which I was less focused.

Approximate computing promotes the introduction of small degrees of inaccuracy into computing

systems to achieve disproportionately significant reduction in computing resources such as power,

design area, runtime or energy keeping the correctness of the output. We identify overall eight

parameters at both the algorithmic and hardware levels to trade-off accuracy with runtime. The

work integrates the use of approximate computing within the SW/HW flow, while performing a

novel design space exploration of the SW/HW design parameters to identify their optimal settings.

While many advances have been made in the approximate computing paradigm, most of the

work evaluates the quality-energy trade-offs of a single module or algorithm in isolation. The

goal is to minimize the response time to the user from the time of image capture to the encoding

33

CHAPTER 7. METHODOLOGY FOR APPROXIMATE COMPUTING BASED ON IRIS
SCANNING

of the iris, under the constraints that (1) the encoding is accurate by industry standards, e.g.

ISO/IEC 19794-6 consider an iris encoding which is represented 2048 bits as high quality even

if the quality drops by 25% compared to the ideal case, because there is 1 in 13 billion chance

to have a Hamming distance less than 25% between the irises of two different individuals, and

(2) the resultant SoC can fit in the given resources of the logic device. Next, are listed the three

main blocks that make up the design and the parameter identified in each of them.

• Focus assessment: As the energy of each frame is computed as a convolution of a kernel filter

with the image, one obvious accuracy trade-off is the kernel size of the filter. Furthermore,

instead of computing the focus assessment on entire frames, we can only compute the

energy for a subset of the image; i.e., a region of interest (ROI), to further reduce the

runtime.

• Iris segmentation: We identify six more accuracy knobs in iris segmentation stage. Here,

Npoints in the number of points used to compute the differential in each circle; Scale is the

resizing factor used to reduce the segmentation image resolution; Thresh represents the

threshold beyond which a point is considered to be dark enough to be a candidate; Rmin

and Rmax define the range of radiuses for which the integration is performed; and Search

Window Size gives the size of the window around which the local iris and pupil searches

are performed.

• Encoding: Lastly, in the encoding step, as the parameters providing accuracy vs. runtime

trade-offs also affect the signature specification, in order to stay consistent, we refrain from

changing any parameters in this step.

Table 7.1 summarizes the parameters evaluated in the design space exploration as

well as their possible value sets. The proposed parameters result in a design space of

648,270 design corners. Clearly a brute force exploration of the design space in not

possible and a design space methodology is required for effective exploration. As evaluating

all of the corners on hardware is not an option, we simulate and formulate the accuracy and

the runtime re- spectively. Since the accuracy performance of one component in the pipeline

greatly affects the other components and the final results, we have to estimate the accuracy of

34

7.1. INTRODUCTION

Table 7.1: The list of parameters evaluated in the design space exploration. Values in brackets
show the possible values.

Pipeline
Accelerator Parameters [List of values]

Focus Kernel Size [8,6,4]
Assessment RoI [1,0.78,0.50,0.33,0.20]
Iris Npoints [600,400,200,150,100,75,50]
Segmentation Scale [1,0.85,0.75,0.50,0.25,0.20]

Thresh [102,90,77,64,51,35,26]
Rmin [45,55,65,75,85,95,100]
Rmax [180,170,160,150,140,130,120]
Search Window Size [11×11, 7×7, 3×3]

a set of parameters using the entire flow through simulation. Thus, to compute the accuracy,

we run a SW/HW co-simulation of the entire flow. To speed up the computationally demanding

co-simulation, we use Verilator [?] to compile the Verilog-based hardware accelerators into

C-based simulators, and then use gcc to compile all the components in software. Verilator is

the fast free Verilog HDL simulator. It compiles synthesizable Verilog into C++ code and uses

a test-bench in C++. Verilator is about 100 times faster than interpreted ISIM, the simulator

provided by Xilinx.

Unlike accuracy, the runtime of the pipeline flow can be readily decomposed. To that end, we

mathematically formulate the runtime based on the input parameter set. A summary of the

runtime models is shown in Table 7.2. With the runtime formulated, we profiled some training

sets of parameters to quantify the coefficients. We verified the formulation on another set of

parameters demonstrating a modelling errors of less than 5%. Note that this runtime merely

guides the design space exploration and will not translate into inaccuracies. The script devoted

Table 7.2: The formulation used to model the runtime behavior as a function of the design space
parameters. Note that as we do not modify any parameters in the encoding components, we
consider its runtime as a constant.

Pipeline Component Runtime Model

Focus Assessment ∝ RoI2.K ernelSize2

Iris Segmentation = RCoarse +RIris +RPupil
–Coarse Search ∝ Scale3.Thresh.N points.(Rmax−Rmin)
–Iris Local Search ∝WindowSize2.N points.(Rmax−Rmin)
–Pupil Local Search ∝WindowSize2.N points.rIris
Total = RFocusAssessment +RResize+

RSegmentation +REncoding

35

CHAPTER 7. METHODOLOGY FOR APPROXIMATE COMPUTING BASED ON IRIS
SCANNING

to compute the runtime is written in python. After analysing the equations to determine the run

time for each step, we identified four parameters to use to compute quickly the run-times. Next,

the python script used.

. . .

RMAX_RMIN=(RMAX−RMIN) / (RMAX_ORG−RMIN_ORG)

A=161.974

B=20.740

C=11.562

D=2.990

R1=A*(pow(SCALE, 3)) * (THRESH) * (NPOINTS) * (RMAX_RMIN)

R2=B*(NPOINTS) * (RMAX_RMIN) * (pow(SEARCH_WINDOWS, 2))

R3=C*(NPOINTS) * (pow(SEARCH_WINDOWS, 2))

runtime=R1+R2+R3+D

. . .

7.2 Methodology

With an accuracy co-simulation flow and runtime models in place, the methodologies are exploited

to navigate the exponential design space of the parameter set. One of them, used to identify

the best approximate parameters, is the gradient descent model. The gradient descent is a very

handy method for optimization. While gradient descent is often not the most efficient method, it

is an absolutely essential tool to prototype optimization algorithms and for preliminary testing

of models. Once the model formulation is stable, one might wants to invest more in considering

better optimization methods.

For the gradient descent approach, we iteratively change each quality knob individually by one

in order to generate a new design point. The design point with the highest gradient, where the

gradient is defined by

max
k

∂ runtime(k)
∂ quality(k)

where k ∈ {K ernelSize,ROI, N points, ...}

36

7.2. METHODOLOGY

Algorithm 1: Gradient Descent Method

✴✴ P❛r❛♠s✿ ▲✐st ♦❢ t✉♥❛❜❧❡ ♣❛r❛♠❡t❡rs ✇✐t❤ t❤❡✐r ♣♦ss✐❜❧❡ ✈❛❧✉❡s✳

✴✴ ❆♣♣r♦①❴P❛r❛♠s✿ ❚❤❡ s❡t ♦❢ r❡s✉❧t✐♥❣ ♣❛r❛♠❡t❡rs✳

Input :Params
Output :Approx_Params

1 Initialize(Gradient Descent method);
2 while acc_curr < acc_tresh do
3 for time_step = 1 to Number of Parameters do
4 ACC = getAccuracy();
5 RUN = getSimulatedRuntime();
6 GRADtime_step = getGradient(ACC, RUN);
7 end
8 BEST = getMax(GRAD);
9 if max_err <THRESHOLD and runtime < best_rutime then

10 best_RUN = RUN;
11 best_ACC = ACC;
12 Approx_Params = params;
13 end
14 end
15 return Approx_Params

is chosen as the parent for the next iteration. The algorithm 1 describes the parameter sampling

and gradient descent method. Firstly, the parameters are initialized. Then, for each time step,

a new knob is chosen and computed the gradient. There are eight time steps, each one corre-

sponding to a different knob. Once the parameters are chosen, we compute the runtime using the

model and error rates through simulation. According to the highest gradient, the knob selected

in that time step is selected and used for the next iteration. The algorithm is repeated until the

error introduced is lower than the maximum threshold error.In order to assess accuracy, we cross

validate the signature of each image in the dataset, using the approximated parameters, against

all of the signatures of the same eye in the repository when computed with full quality. To ensure

100% accuracy in the design, if at any point the maximum hamming distance error of any two

images from the same eye goes above 0.35%, the design is discarded.

37

CHAPTER 7. METHODOLOGY FOR APPROXIMATE COMPUTING BASED ON IRIS
SCANNING

7.3 Results

The first analysis is to evaluate the benefits achieved from mapping part of the computing

pipeline into custom hardware accelerators. The results of the comparison between the runtime

and hardware utilization of implementations full SW and HW/SW using the highest value

parameters are shown in the Table table:runtime. Next, the gradient descent method was used

Table 7.3: The components chosen for hardware acceleration, the corresponding speedups, and
the hardware utilization of each accelerator.

Pipeline Component Speedup HW utilization (%)

Focus Assessment 1234× 25.71
Iris Segmentation 6.8× 13.24
System 15.42

to discover sets of parameters that achieve better performance. Figure 7.1 shows the design

points evaluate using the gradient method methodology. The method requires going through 100

FIGURE 7.1. Architecture of the Convolution Accelerator.

exploration points before finding the best set of parameters that satisfies the error rate constraint.

The run time achieved is 6.42 seconds, obtaining a 4921X speed-up in focus assessment module

and 217X in the segmentation iris. The parameters obtained are shown in the Table 7.4. Finally,

38

7.3. RESULTS

Table 7.4: Parameter provided by the gradient descent method

NPOINTS SCALE ROWS COLS THRESH RMIN RMAX S_W K_S ROI
100 0.5 240 320 26 45 120 5 6 0.5

we highlight the immense benefits of exploring the hardware/software co-design domain in

conjugation with the approximate parameter exploration. Table 7.5 summarizes the results. As

shown in the table, significant benefits are achieved in terms of both runtime, and the total

energy. Compared to a pure SW implementation, the approximate SW/HW pipeline is able to

achieve a speed-up of 378× while meeting the industry standard accuracy requirements. For the

Table 7.5: The hardware characteristics of the end-to-end system.

Runtime HW (%) Energy Memory
Design (s) Utilization (kJ) (MB)

Pure SW 2419 .6 15.42 47.9 0.69
HW/SW 198.3 54.37 3.94 2.2
Approx. HW/SW 6.4 46.42 0.12 0.89

experiments we use a Spartan6 Xilinx development board interfaced to a 5 MP Videology camera

with infrared optical filter and infrared LEDs for illumination. We also use an Agilent 34410A

multimeter to monitor the current and measure power consumption accordingly. Figure 7.2 shows

our camera and FPGA setup.

39

CHAPTER 7. METHODOLOGY FOR APPROXIMATE COMPUTING BASED ON IRIS
SCANNING

Figure 7.2: The camera and FPGA board Setup.

40

Part II

GBCSSM-Pinggera

41

C
H

A
P

T
E

R

8
ALGORITHM REVIEW

I
n this is second part I’m going to describe another project that I have started working

after three months from my arrive. The scope of this project was to develop an hardware

architecture of the Gradient-Based Cross-Spectral Stereo Matching Algorithm published

in [3]. The scope of this work was to start a first implementation to be published in a next paper

showing the advantage of using a custom hardware design that can be mount in system that

require high performance al low power consumes.

8.1 Introduction

The Gradient-Based Cross-Spectral Stereo Matching technique is used to generate disparity

maps that allow to identify main features given 2 similar images. The goal of the algorithm is to

recognize a particular context providing two images capturing the same scenario but in different

conditions. Typical application are aircraft search rescue and all other application in which

is required recognize the context from captured images. The visual stereo matching provides

low level of detail comparing images in weather condition really different. Pixel-based stereo

matching of visual input images is a well known process that offers good matching results but

when attempting to perform pixel-based comparisons among visual and full-infrared images,

42

8.2. THE GRADIENT BASED CROSS-SPECTRAL STEREO MATCHING ALGORITHM

the results are poor at best due to the variable nature of pixel intensities. To exploit a visual

and full-infrared stereo matching, a gradient-based cross-spectral stereo matching (GB-CSSM)

algorithm introduced by Pinggera provides reliable results.

8.2 The Gradient Based Cross-Spectral Stereo Matching

Algorithm

The Pinggera’s algorithm converts the input images in HOG (Histogram of Oriented Gradients),

that extracts the relevant information, and then, compared through a Distance Operator, produces

a result that keep only the significant features. The Figure 8.1 shows the main overview of the

algorithm. The two HOG fed the Distance Operator that extracts the Cost Matrix from which

we obtain a disparity map. Finally is applied a Optimization Step (SGM) that highlights the

features of the Cost Matrix. The Figure 8.2 shows all the components required to generate a

Figure 8.1: Cost Matrix and Disparity Map generation.

HOG descriptor per input image. A magnitude gradient is the basic element in every HOG.

Mathematically, it refers to the result obtained by the square root of the sum of squared gradient

components, where the number of gradient components varies depending on the number of

coordinate axes under evaluation. Each of the gradient components is obtained convolving every

pixel in the input image I with kernels h. The final HOG is obtained dividing the magnitude

matrix by the norm of entire matrix. All the steps the algorithm are related to some input

paramenters that directly affect the output disparity maps produced. These parameteters are

reletated to different parts of the flow, such as the type of kernel used, the number of coordinations,

43

CHAPTER 8. ALGORITHM REVIEW

Figure 8.2: Cost Matrix and Disparity Map generation.

the kind of magnetude and ect. The main goal of the paper [3] was to identify a set of input

parameters able to produce the more meaningful disparity maps. The task of my work was to

use one set of input parameters that produces the most meaningful disparity map and build an

hardware implementation embedding those in the architecture.

44

C
H

A
P

T
E

R

9
ARCHITECTURE

9.1 System Architecture Setup

T
he board used in this project was Xilinx Virtex UltraScale FPGA VCU108 shown in

Figure 9.1. The main features of this development board are listed below.

FIGURE 9.1. Picture of a Xilinx Virtex UltraScale FPGA VCU108 development board.

45

CHAPTER 9. ARCHITECTURE

• Virtex UltraScale XCVU095-2FFVA2104E FPGA

• Zynq XC7Z010 based system controller

• Two 2.5 GB DDR4 component memory interfaces

• 1 GB BPI flash memory

• USB JTAG interface with micro-B USB connector

• USB-to-UART bridge with micro-B USB connector

The main resources of the FPGA are in the Table 9.1. For further information about the

fpga itself [7] and [4]. The project was built using Vivado 2017.2, a bunch of tools that

Table 9.1: Available resources in Virtex UltraScale XCVU095-2FFVA2104E FPGA.

Device Logic Cells (K) Flip-Flops Max Distributed RAM (Kb) Blocks RAM of 36 Kb
XCVU095 1,176 1,075,200 4,800 3,456

provides specific flows for programming. The Vivado IDE uses the IP integrator with

graphic connectivity screens to specify the device, select peripherals, and configure hardware

settings. Xilinx provides integration between a hardware design and the software development

with an integrated flow called Software Development Kit (SDK). Figure 9.2 shows the main tools

with GUI used in this project. The system is tested in two steps. The entire work-directory is

FIGURE 9.2. Vivado IDE on the left, SDK on the right.

split in two folders, one that contains the entire design, the second only the custom peripheral.

46

9.1. SYSTEM ARCHITECTURE SETUP

The latter project is used to develop and test only the peripheral. To test it, the project uses

the AXI Verification IP (VIP) core, that has been developed by Xilinx to support the simulation

of customer designed AXI-based IP. It is a handy tools to simulate modules connected to AXI

bus. The custom peripheral has two ports, the slave one connected to AXI-LITE, the master one

to AXI. The Figure 9.3 shows the architecture used to test the custom peripheral. The custom

FIGURE 9.3. Architecture for Testing.

peripheral is highlighted with a green box. Its master port is connected to the block memory

generator that simulates the DRAM. The AXI_master simulates the processor interface. The

test-bench initializes all these blocks and sets the commands that the AXI_master will execute.

About the entire design’s project, it contains all the modules that are synthesized in the board.

This project cannot be simulated due to the component in board constraints. Moreover, every time

the bit-stream has to be created, the process requires more or less one hour, that doesn’t allow a

feasible test procedure. The Figure 9.4 shows the main architecture’s overview. The design uses a

Microblaze softcore processor as the main controller. It runs at 100MHz. The clock is generated

by the System Reset Module, that manages the reset signals for all the modules and creates the

clocks used in the design. In fact, the system receives a clock at 300Mhz and from it are generated

two different clocks: one that drives the Memory controller Interface at 307MHz, the other one

connected to the other components in the design at 100Mhz. The Memory Controller Interface

translates all the requests read/write from the AXI-protocol to DDRAM transfers. The custom

peripheral that implements the GBCSSM algorithm is connected to the Microblaze through the

AXI-Lite interconnect module and to the MCI through a AXI interconnect module. The UART

47

CHAPTER 9. ARCHITECTURE

FIGURE 9.4. Architecture of the design-in-board.

interface uses a bit-rate of 234000 and it is used to return in a console the final Disparity Map.

The Figure 9.4 shows the flow of testing.

FIGURE 9.5. Flow of testing.

9.2 System Generator Implementation

The first hardware implementation of the algorithm was developed using System Generator

Vivado. System Generator is a DSP design tool from Xilinx that enables the use of the MathWorks

model-based Simulink design environment for FPGA design. Designs are captured in the DSP

48

9.2. SYSTEM GENERATOR IMPLEMENTATION

friendly Simulink modeling environment using a Xilinx specific blockset. These blocks include

the common DSP building blocks such as adders, multipliers and registers. This tool simplified

the design’s implementation because it provides Matlab’s tools that speed-up the time devoted

in the realization of the design. In this way, the efforts were spent on the implementation of

the modules in Verilog, meanwhile the collateral modules and interconnections were built in

Simulink. The Figure 9.6 shows the design implemented in System Generator. The operations

FIGURE 9.6. GBCSSM Design implemented in System Generator.

performed by the pipeline are:

• Convolution in Two Coordinate Axes

• Magnitude Matrix

– Sum of squared convolution results x2 + y2

– square root

• L2 Unit Norm

• HOG matrix computation

9.2.1 Convolution

The image is firstly converted to a grey scale image and then fed two convolution modules with

kernel h and hT respectively. The size of the sample image is 288x340 but, for simulation time

49

CHAPTER 9. ARCHITECTURE

constraints, only the first 10 rows are used. The simulation time, for the entire image, is about

16 minutes. For this reason a limited number of rows are used. The results are compared with

a Matlab script at each step of the pipeline to be sure to compute a consistent result with the

original algorithm. The Figure 9.7 shows this first step. The Input From Image and Colour Space

Conversion are modules provided by Simulink. The Convolution Module is aa wrappers that

contain the interface to fed correctly the data for the convolution unit. The Figure 9.8 shows the

FIGURE 9.7. First Step of the pipeline.

internal implementation of the Convolution Module. The image received as a matrix is passed to

Padding Module that adds a padding of zeros around the image. This step is required to replicate

the result obtained by the convolution function used in the original algorithm. Next, the image

is flatted to replicate the stream receive by the hardware implementation. In fact, the image is

stored as a long array in the memory and the module receives only the base address, so that it

has to manage the index processing. To compute the convolution, a kernel of 3x3 is used. To keep

the module pipelined, a linear buffer is used. In each buffer is stored one entire row, made up of

288 pixels. As soon as all the FIFOs are full, the start signal is asserted. In this case, the signal

is generated through the Step signal Simulink’s module. The values from the FIFOs fed the

Convolution Unit, that contains the implementation in Verilog of the convolution unit. The unit

receives also the nine kernel’s parameters as Constant Simulink’s components. The unit has 3

main processes and each of them, every 3 clock cycles, computes the result for three corresponding

set of input values. The Figure 9.9 shows how the convolution is performed. The three rows are fed

50

9.2. SYSTEM GENERATOR IMPLEMENTATION

FIGURE 9.8. Convolution Module.

in parallel to the module, multiplied by the corresponding kernel’s parameters and accumulated.

After three clock cycles, all the nine multiplications are performed and accumulated, providing

the result and asserting the ready signal. Due to the pipeline architecture, each process computes

the convolution using input values shifted by one position, providing a new result every clock

cycle.

FIGURE 9.9. 2D Convolution.

51

CHAPTER 9. ARCHITECTURE

9.2.2 Sum of Squares

The next step is the sum of the results computed by the two Convolution Modules. The Figure

9.10 shows the Sum of Square Module. It receives the input values and the relative ready signal.

The module is a combination process that perform the following operation:

x2 + y2

The module computes the result if both ready signals are asserted. The module has two output

signals: the result and the ready signal.

FIGURE 9.10. Sum of Squares Module.

9.2.3 Square Root

The Square Root Module computes the Square Root for each values provided by the Sum of

Squares module. The Figure shows the architecture of this step. The Verilog implementation of

the Square Root requires 65 clock cycles to compute the result. It is an successive approximation

process that identifies the square root which its square is closest to the input. The main section

of the Verilog code that performs the root square is shown below.

. . .

reg [3 1 : 0] root_x = 32 ’ b0000000000000000_0000000000000000 ; // binary point at b i t 16

reg [3 1 : 0] t r i a l _ r o o t = 32 ’ b1000000000000000_0000000000000000 ; // binary at at b i t 16

assign x_test = { 2 ’ d0 , x , 30 ’d0 } ;

assign x_less_than_trial_root_squared = (x_test < tr ia l_root_squared) ? 1 ’ b1 : 1 ’ b0 ;

52

9.2. SYSTEM GENERATOR IMPLEMENTATION

. . .

always @ (posedge clk)

begin

i f (! ce || ! s tart)

begin

t r i a l _ r o o t <= 32 ’ b1000000000000000_0000000000000000 ;

f in i sh <= 0;

end

else

begin

i f (count ==6 ’b111111)

begin

f in i sh <= 1;

root_x <= t r i a l _ r o o t ;

t r i a l _ r o o t <= 32 ’ b1000000000000000_0000000000000000 ;

end

else

begin

f in i sh <= 0;

i f (x_less_than_trial_root_squared)

t r ia l _ roo t <= t r i a l _ r o o t ^(32 ’ b11000000000000000000000000000000>>count) ;

else

t r ia l _ roo t <= t r i a l _ r o o t ^(32 ’ b01000000000000000000000000000000>>count) ;

end

end

end

. . .

The register trial_root is loaded with value 32’b1000000000000000_0000000000000000 on the

rising edge that makes count = 6’b111111. Durring the time count = 6’b111111 it is determined

whether or not bit 31 (the MSB) of root-x should be 1 or 0. The register trial_root is updated on

the next rising edge of clk and at that time has the correct bit 31 (MSB) and bit 30 is set to one in

anticipation of the test for bit test on the next rising clock edge. On each subsequent clock edge

one more bit is determined.

53

CHAPTER 9. ARCHITECTURE

The input values is encoded using 32 bits. The result is a 32 bits value with 16 bits for the

fractional part. Due to this delay, a queue is used to keep all the values provided by the Sum of

Squares Module. A pulse Generator asserts the queue’s pop signal every 65 clock cycles.

FIGURE 9.11. Square Root Module.

9.2.4 L2 Unit Normalization

The L2 Unit Norm performs the L2 Normalization of all the Sum of Squares results. The Figure

9.12 shows the module present in the design. The module performs the following operation

rX
i

xi

Actually, the equation shown above is different from the typical L2 Norm equation because,

in this case, the x is not squared. In this architecture the square x is extracted and computed

separately because it is shared among multiple modules. This choice achieve higher speed/lower

area occupied having modules less complex. The module is internally split in two process. The

FIGURE 9.12. Square Root Module.

54

9.3. HARDWARE IMPLEMENTATION USING VIVADO

first one is devoted to accumulate the input values, the second one computes the square root of it.

The latter uses the same successive approximation process described in the Section 9.2.3, but the

result is stored in 64 bits. In this case the fractional part used is 32 bits. The module requires

rows_im∗ cols_im+128 clock cycles to finish.

9.2.5 Division (Final HOG Matrix)

The final step computes the HOG Matrix performing a division between root square value (16.16)

and the norm L2 value (32.32). The result preserves the 30 bits precision for the fractional part.

To compute a division on 32 bits, from the norm value, expressed in 64 bits, are extracted the

first 16 bits for the integer part and the first 16 bits for the fractional part, obtaining a 16.16

format. This reduction in size was possible by some exploration of the integer and fractional

ranges. To obtain a result with 30 bits for fractional part, the root square value is left-shifted by

30 positions, then divided by the norm L2 value. The shift step is required because in the division,

by definition, the result’s format will contain the difference of the bits in the operands’ format.

Next, the steps to obtained the desired resolution are shown.

(16.16 << 30) /16.16⇒ 18.46/16.16⇒ 2.30

The final resolution satisfies all the possible values in the HOG matrix because the values are

always between 0 and 2.

9.3 Hardware Implementation using Vivado

The architecture implemented using System-Generator allows to test all the modules in Verilog

and to replicate the original algorithm without focusing on the interfaces. The advantage of

this step was to focus on the functionalities of the module and don’t take in account problems

related to memory allocation, bus transfer, clock constraints, etc. After testing the correctness of

the architecture, the next step was to implement a custom peripheral and create a design that

runs in the FPGA. The architecture is made up by 3 main cores: a soft processor Microblaze

that controls the entire system, a Memory Controller Unit that performs transfer transactions

with the external DDRAM and a custom peripheral that generates the HOG matrix. The last

55

CHAPTER 9. ARCHITECTURE

version developed had the entire flow to create the HOG matrix. This part was the most complex

to develop, because the GBCSS algorithm requires two HOG matrices and a Distance operator,

easier to develop with respect to the HOG pipeline.

The Figure 9.13 shows the architecture implemented. Three main bus are used: AXI-4, AXI-4 Lite

and LMB (local memory bus). The LMB bus is used for transactions between Microblaze and the

FIGURE 9.13. Overview architecture for GBCSS implementation.

on-chip block RAM, responsible for data and instruction caching. The AXI and AXI-Lite runs at

100MHz. The AXI-Lite bus is used for single transfer communications, used for communications

with the peripherals. The AXI bus allows high throughput communications necessary for accessing

the DDR4. It provides the Transfer Burst mode, that allows to transfer multiple data in a single

transaction. To achieve high performance, the protocol defines independent transaction channels

for address and data in write and read modes. Read and write transactions have their own

address channel. The appropriate address channel carries all of the required address and control

information for a transaction. The data channel carries both the read/write data and the read

response information.

The overview of the architecture of the custom peripheral is shown in Figure 9.14. The peripheral

has the slave and master interfaces devoted to the communication with the Microblaze and MCB

respectively. The architecture is close to that one developed in System Generator environment. It

reuses most of the module developed in the previous section, adapted to this design.

The peripheral receives as input, through the slave interface, the base address of the image, the

base address of the output HOG array and the start signal. The base address of the two arrays

are assigned during the execution of the C code by the Microblaze. It coordinates the initialization

of the variables, sets-up the peripheral and starts it. After starting the peripheral, the C-code

56

9.3. HARDWARE IMPLEMENTATION USING VIVADO

FIGURE 9.14. Flow of the GBCSS implementation.

pulls the end-signal that the peripheral sends as soon as his task is completed.

The first module in the flow is the Top Conv. The Figure 9.15 shows its internal architecture and

FSM. The Module is devoted to request the data from the Memory and computes the convolution.

The data is stored in Linear Buffers of 3 FIFOs to keep consistency among rows of the image and

to prevent data loss. Each row is made by 288 values of 32 bits each. For this reasons, FIFOs

of 512 length are used. To receive the data, the Burst read transfer is exploited. Every time the

FIFOs are empty and the last row is not reached, the module sends a read request to the master

interface. The master, as soon receive the start signal asserted, starts a read burst transfer of

512 values, the minimum number of values to read one row from the memory. Going deeply,

the master actually requires 16 values of 32 bits at the time, updating the base address every

time. To transfer 512 values, the master repeat this transfer 32 times. Because the DDRAM

is an asynchronous resource, it requires some clock cycles before providing the data that fed

the linear buffer. On the other hand, the Unit that performs the convolution is pipelined and,

when started, requires new values at each clock cycle. To solve this time-related problem, 3

buffers are introduced to collect the data and when each of them contains one entire row, the

convolution process can start. This solution is adopted to reduce the complexity of this module

57

CHAPTER 9. ARCHITECTURE

FIGURE 9.15. Top Conv Module.

because the idea was to build a flow that works, and then optimize it. The FSM is illustrated in

the Figure 9.15. It handles the read requests through the three states get_data, BURST_START

and wait_BURST_end. It repeats these steps until all the rows are loaded. Meanwhile, the control

signals for the FIFOs and Convolution Unit are controlled. Finally, the finally_stage steps are

used to conclude the last convolutions without requesting new data to the master interface. The

Convolution Unit is the same one used in the System Generator design. The kernel parameters

of the two Top Conv Modules are hard-encoded in the design. The output values, expressed in

32 bits, and relative ready signals are sent to the SQUARE POWER Module that implements

the sum of the input squared. This is a combinational circuit that maintains the result in 32

bits. This result is sent to the SQUARE ROOT and the NORM L2 modules. The former is shown

in Figure 9.16. The main core of this module is the Square Root Unit, already explained in the

previous section. It requires, for each input, 65 clock cycles to provide the result. It is fed by

a Buffer that contains all input values. This solution is adopted because the module starts to

compute the square root for each value in the buffer, when the norm value is computed. The norm

L2 computation requires less time than computing the square root for each value. The result is in

the 16.16 fixed point form.

58

9.3. HARDWARE IMPLEMENTATION USING VIVADO

FIGURE 9.16. Square Root Module.

The next two modules are the same described to the previous section, so I will only cite them. The

NORM L2 Module sums all the results from the SQUARE POWER module and then computes

the L2 norm. The result is in the 32.32 fixed point form. The DIVISION module computes the

division between the SQUARE ROOT output and NORM L2 output. The final result is expressed

in 2.30 fixed point form.

The PRE WRITE Module is the last component devoted to store the result in the DDRAM.

The Figure 9.17 shows its architecture. Every value of the final HOG is computed each 65

clock cycles. To store the data in the memory through a Burst transfer, the Master needs 512

values consecutively. The PRE WRITE module collects all the results in a buffer long 512 values

and, as soon the buffer is full, the master can perform the BURST write transfer. The FSM

handles the requests of write transfers though the states get_values, that wait the buffer full,

and wait_end_trans that wait the master end the write transaction.

59

CHAPTER 9. ARCHITECTURE

FIGURE 9.17. PRE WRITE Module.

9.4 Conclusion

The design was tested and produces the same HOG matrix of the original algorithm in MATLAB

using same input image and input parameters. The next step will introduce two HOG_MODULEs

fed with visual and IR images and compare the generated HOG matrices using a distance

operator, that I couldn’t developed due to time limit. The are some improvement that can be

applied to the developed design to reduce the run-time:

• Improve memory utilization by storing 4 pixels values/word instead of 1 pixel value/word.

This should improve the convolution module by 4X.

• Use two Memory Interfaces to access in parallel to the two banks of DDR4.

Moreover, there are some possible trade-off between precision and runtime that can be exploited:

• To obtain a HOG with the same size of the input images, it is required add a padding of 0

around the input image. Removing this step will reduce the run-time.

• Reducing the fixed point precision will increase the runtime. It will affect the norm l2 and

square root modules.

60

BIBLIOGRAPHY

[1] J. DAUGMAN, How iris recognition works, 1, 14 (2014), pp. 1–10.

[2] S. HASHEMI, T. HOKCHHAY, F. BUTTAFUOCO, AND S. REDA, Approximate computing for

biometric security systems: A case study on iris scanning, (2017), pp. 1–5.

[3] C. B. PICARDO AND J. G. R. DELVA, Comprehensive comparison of gradient-based cross-

spectral stereo matching generated disparity maps, (2016), pp. 1–5.

[4] XILINX, Ultrascale fpga product tables and product selection guide.

[5] , Xilinx ds160 spartan6 family overview.

[6] , Xilinx ug526 sp605 hardware user guide.

[7] , Xilinx virtex ultrascale fpga vcu108 user guide.

61

	List of Tables
	List of Figures
	Introduction
	Iris Recognition
	Algorithm review
	Briefly description
	Iris Segmentation
	Focus Assessment

	System Architecture Overview and SW/HW Partitioning
	System Architecture Overview
	SW/HW Partitioning

	Scale Analysis
	Hardware accelerator for the segmentation part
	Sofware-C code side
	Hardware-Verilog side

	Hardware accelerator for the focus assessment
	Methodology for Approximate Computing based on Iris Scanning
	Introduction
	Methodology
	Results

	GBCSSM-Pinggera
	Algorithm review
	Introduction
	The Gradient Based Cross-Spectral Stereo Matching Algorithm

	Architecture
	System Architecture Setup
	System Generator Implementation
	Convolution
	Sum of Squares
	Square Root
	L2 Unit Normalization
	Division (Final HOG Matrix)

	Hardware Implementation using Vivado
	Conclusion

	Bibliography

		Politecnico di Torino
	2017-12-06T12:27:54+0000
	Politecnico di Torino
	Andrea Calimera
	Tesi 225046

