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Abstract

Mobile devices have become an integral part of daily life and their applications are

becoming increasingly necessary for people. The rapid growth and the great importance of

Android in the world involves a continuous research to ensure that these apps are of high

quality and safe for the users. As Android mobile applications (both malicious and benign)

become more and more complex, efficient and effective techniques and tools are essential

to assure the development, maintenance and vetting of secure and high-quality apps.

The thesis introduces a non-invasive automatic black-box testing technique for An-

droid mobile applications able to interact with an Android app on most devices without

modifying the operating system or instrument the app, so that it can be used also in par-

ticular scenarios such as malware analysis. Our research focuses on a model-learning tech-

nique based on a GUI Ripping approach, able to examine and test the application while

inferring a model of the application under test, considering the need to operate as trans-

parently as possible, and taking into account possible interactions across multiple apps.
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1 Introduction

The last few years have been revolutionary for mobile devices. The increasing number of
mobile users in the global market has led to a huge rise of mobile applications (or simply,
"apps") that consumers use on their smartphones. According to the market research report
from Statista [25, 26], the Apple App Store boasts close to 2.2 million of these apps while
Google Play remained the first-largest app store with 2.8 million available apps.

Figure 1.1: Number of apps available for download in leading app stores as of March 2017 [25]

In 2016, consumers downloaded 149.3 billion mobile apps to their connected devices. In 2021,
the following figure is projected to grow to 352.9 billion app downloads. However, 2016 data
establish that many downloaded apps are not used more than once in the first six months.
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1.1. Motivation

Figure 1.2: Forecast for the number of mobile app downloads worldwide in 2016, 2017 and 2021 [26]

The incredible growth of the mobile business has reinforced the need for greater software
quality, in terms of reliability, usability, performance and security. To cope with this growing
demand for high quality applications, developers need to pay close attention to the software
development processes: the use of well-defined software engineering techniques becomes
indispensable and mobile application testing and analysis play a strategic role in ensuring
the success of an app.

1.1 Motivation

Software testing is generally one of the most critical and expensive activities in the software
lifecycle, but for mobile applications, it may be an even more complex activity due to the spe-
cific features and problems that characterize these applications, such as compatibility issues
due to platform, operating system (OS) and device fragmentation, network diversity and
mobile connectivity troubles, location-dependence and limited processing capability [51, 64].
For this reason, automated testing has become an important topic of research in this area. In
particular, a large amount of research has focused on automatic input generation techniques
for Android applications [1, 30, 31, 32, 34, 37, 43, 47, 48, 49, 50, 63], for multiple reasons.
Firstly, Android has the largest share of the mobile market, which makes this platform ex-
tremely appealing to industry practitioners. Secondly, due to fragmentation of devices and
operating system releases, Android applications often suffer from cross-platform and cross-
version incompatibilities, making manual testing of these apps particularly expensive and,
therefore, worthwhile to automate. Thirdly, the open source nature of the Android platform
and its technologies makes it a more suitable target for academic researchers who can have
full access to the underlying applications and operating system.

On the other hand, the huge amount of sensitive data held by mobile applications scares
the world of users as much as the developer world, because malicious apps could thus ac-
quire or use such information without user consent. We have seen how mobile applications
have had a widespread adoption in the recent years, but at the same time users of Android de-
vices are also subject to a fast-growing quantity of malware. Based on a report from security
specialists F-Secure [41], there are over 19 million malware programs developed especially
for Android, of which 4 million new ones only in the year 2016, making Google’s mobile op-
erating system the main target for mobile malware. For this reason, it has become essential
to analyze mobile applications as fully as possible in order to detect any unwanted behavior.
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1.1. Motivation

Table 1.1: Overview of existing tools and techniques for automated Android app testing [38, 47]

Instrumentation
Tool

Platform App
Approach Testing strategy Emulator Real device

A3E-Depth-first [34] ✗ ✓ Model-based Black-box ✗ ✓

A3E-Targeted [34] ✗ ✓ Model-based Grey-box ✗ ✓

ACTeve [32] ✓ ✓ Program analysis White-box ✓ ✗

AndroidRipper [31] ✗ ✓ Model-based Black-box ✓ ✗

DroidBot [47] ✗ ✗ Model-based Black-box ✓ ✓

Dynodroid [48] ✓ ✗ Random Black-box ✓ ✗

EvoDroid [49] ✗ ✓ Search-based White-box ✓ ✗

Monkey [1] ✗ ✗ Random Black-box ✓ ✓

ORBIT [63] ? ? Model-based Grey-box ✓ ✗

PUMA [43] ✗ ✓ Model-based Black-box ✓ ✓

Sapienz [50] ✗ ✓ Search-based Grey-box ✓ ✓

SwiftHand [37] ✗ ✓ Model-based Black-box ✓ ✓

In this work, we focus on fully automatic on-line techniques, able to both auto-
matically generate test cases and to execute them following an active learning strategy.
A first noteworthy technique, implemented in the AndroidRipper tool, is based on the con-
cept of GUI Ripping, a reverse engineering process that aims to build a GUI model of an
existing software application by dynamically interacting with its user interface. It fires pre-
defined events [28, 31] allowing exploration of the GUI (Graphical User Interface) according
to a systematic and well-defined GUI traversal strategies (such as breadth-first, depth-first)
[29]. For this purpose, it rebuilds and maintains a GUI Tree model of the graphical user in-
terface. This type of traversal is interrupted when all the distinct GUI states of the app are
considered visited. The authors propose two different heuristics to determine when a GUI
state can be considered equivalent to an already explored one. The first heuristic considers
two equivalent GUI states if they belong to the same Activity. Activities are one of the main
components of Android apps and can be simplistically seen as screens that an application
can present to its users. This is not always true because multiple screens are likely to be-
long to the same Activity (see Section 2.1.2). For this reason, the second heuristic is more
restrictive: Two GUI states are considered equivalent only if they include the same set of GUI
components (widgets).
Two other systematic testing techniques have been implemented in the A3E tool [34]. One of
these requires a preliminary static analysis of the bytecode in order to infer a model of the
GUI. The second technique automatically explores the Activities and the GUI components in
a depth-first manner. The technique is able to infer a model, consisting of nodes representing
the app Activities and edges representing actual transitions between Activities.
A further active learning testing technique, implemented in the SwiftHand tool [37], exploits
execution traces generated during the testing process to learn an approximate model of the
GUI. The model is used to choose inputs that may lead the application to unexplored states;
when new inputs are started and new screens are displayed, the model is refined.
Finally, a grey-box active learning approach, implemented in the Orbit tool [63], allows to
extract the set of user actions supported by each widget in the GUI performing a preliminary
static analysis of the AUT source code.

Collectively, these techniques cover several important testing objectives but, even without
getting into the details, it is possible to highlight two fundamental aspects that motivate the
writing of this thesis:

1. A superficial and nowadays often inadequate comparison criterion is frequently used to
determine the equality between two GUI states: An Activity-level GUI model is in fact
too abstract to represent dynamically constructed GUIs in recent Android apps (e.g.,
because they use dynamic Fragments [2]);
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2. The exploration of a mobile application often relies on invasive or, in some cases, unre-
liable techniques: According to a recent survey [38], most testing approaches use app
instrumentation or system modification to get enough information to drive the tests.
However, while effective in some cases, these techniques are less suited in some scenar-
ios such as compatibility testing or malware analysis. Since many malicious applica-
tions are obfuscated, it may be difficult, or sometimes impossible, to use this practice.
In addition, some malware apply sandbox detection or use other advanced anti-analysis
techniques that could allow them to hide their malicious behavior, or tamper with the
environment, if they identify that they are operating under “non-standard” conditions
[58].

1.2 Aim

The aim of the thesis is to design a model-learning automatic black-box UI testing technique,
able to infer a model and generate input without relying on bytecode instrumentation or other
invasive (and therefore easily detectable) techniques, in order to work also on obfuscated or
malicious apps. Achieving this goal will thus provide a good starting point for further studies
focusing on malware analysis and detection.

1.3 Research Questions

The aim of this work is to find transparent, effective and efficient ways to retrieve structural
information about the GUI, for exploration and testing of Android mobile applications. To
this end, the following questions are investigated:

RQ1. Which GUI exploration techniques are most suitable for testing/analyzing closed-
source, obfuscated and/or malicious apps?

a) What could be suitable precautions in order to try to avoid that malicious appli-
cations detect the activity of a testing/analysis tool?

RQ2. Which could be an effective GUI abstraction of GUI states?

a) How can GUI-related information be retrieved from closed-source apps?

b) What GUI information is most useful for characterizing the GUI state?

c) Taking into account the need to operate on devices with limited resources, how
can GUI states be represented in an efficient way?

RQ3. Which could be an effective comparison criterion to distinguish GUI states?

a) What information needs to be considered to evaluate the equality between two
GUI states?

b) How shall apps that start other apps be handled?

c) How can GUI state comparisons be implemented in an efficient and scalable way?

RQ1 is the main question to be asked to begin to evaluate options on how it is possible
to analyze applications when the source code is unavailable (as is often in the real world) or
unreachable through reverse engineering without risking inconsistencies between the tested
and the original version. At the same time, during the discussion of the subject, some analysis
behaviors which might be detected by malicious applications will be highlighted.

RQ2 concerns model building achieved by using the GUI Ripping technique. In this case,
the two main aspects to be considered will be how to retrieve information without relying
on the internal implementation details of the target app and what should be the most useful
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information to characterize a GUI state. In this regard, another important aspect is to find an
efficient way to represent the GUI state, considering that we want to be able to work directly
on real devices to prevent malware from detecting an emulated environment.

Lastly, for RQ3, we seek to develop a criterion on which to base the exploration and,
therefore, to generate the GUI model. Since test cases are generated based on the underlying
model, accurate (but efficient) GUI modeling of an application under test is a crucial factor
in order to generate effective test inputs. To address this problem, a GUI model abstraction
must be defined, which also takes into account the possible interactions across multiple apps
(when the user flow crosses into other apps or into the system UI). In this case, both the need
to work on devices with limited resources and the real possibility to operate on applications
mapped into models with a large number of GUI states must be considered.

6



2 Background

2.1 Android

Android is a platform targeted mainly towards mobile devices. Back in 2007, Google ‘s Andy
Rubin [24] described it as follows:

"Android is the first truly open and comprehensive platform for mobile devices. It includes
an operating system, user-interface and applications – all of the software to run a mobile
phone, but without the proprietary obstacles that have hindered mobile innovation."

It is currently developed by Google Inc. and launched on the market for the first time in 2008.
Since then, the success of the Android platform has grown steadily, becoming the world’s
most popular mobile operating system in 2011. Unlike major competing systems such as
iOS (Apple) and Windows Phone (Microsoft), Android rests on an open-source framework,
based on the consolidated Linux kernel.

This section is based on the information available on the Android official web pages [3, 4]
and describes the main aspects and the structure of Android.

2.1.1 Platform architecture

Android is an open source, Linux-based layered software stack created for an increasingly
wide range of hardware and devices. The following figure illustrates the high-level architec-
ture of the Android platform.

7



2.1. Android

Figure 2.1: The Android software stack [5]

The Linux Kernel

The foundation of the Android is a version of the Linux kernel with a few special and impor-
tant additions for a mobile embedded platform. The use of a Linux kernel allows Android
to inherit the Linux operating system’s capabilities, to take advantage of the major security
features, and enables device manufactures to develop hardware drivers for a well-known
kernel.

Hardware Abstraction Layer

The hardware abstraction layer (HAL) provides standard interfaces that expose device hard-
ware capabilities to the higher-level Java API (Application Programming Interface) frame-
work, thus allowing Android to be agnostic about lower-level driver implementations.
The HAL consists of multiple library modules typically developed using native technology
(C/C++ and shared libraries), each of which implements an interface for a specific type of
hardware component. When a framework API makes a call to access device hardware, the
Android system loads the library module for that hardware component.

Android Runtime

Android Runtime or, shortened, ART is the runtime that was introduced experimentally in
Android 4.4, and later with Android 5.0 became officially used by the Android applications.
Prior to Android 5.0, Android applications ran on the top of the Dalvik Virtual Machine (VM).

The idea behind Dalvik’s JIT (just-in-time) execution was to profile the applications while
they were being executed and dynamically compile the most used segments of the bytecode
into native machine code. Differently, ART re-introduces the concept of AOT (ahead-of-time)
compilation. It compiles the whole application code into the native machine code, without
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2.1. Android

interpreting bytecode at all. This takes some time, but it is done only once during the instal-
lation of the application. This enables the application code to later be executed directly by the
device’s runtime environment.
Other important improvements of ART include an optimized garbage collection (GC) and an
improved debugging support, including a dedicated sampling profiler, detailed diagnostic
exceptions and crash reporting, and the ability to set watchpoints to monitor specific fields.

Although ART is now the official runtime for the Android platform starting from Android
5.0, Android needs to ensure compatibility with all those apps that are already on the mar-
ket. All those devices that are running an older version of the Android platform rely on the
Dalvik VM. Therefore, for backward compatibility reasons, Android application packages are
still prepared based on Dalvik specifications. As it was optimized for mobile environments,
the Dalvik VM understands only a special type of bytecode designed specially for Android,
known as Dalvik Executable (DEX), which provides lots of advantages compared to standard
Java bytecode. The Android SDK (Software Development Kit) comes with tools that can
translate standard Java bytecode into DEX bytecode during the packaging of the Android
application. ART does an automatic conversion from Dalvik’s DEX format into ART’s OAT
format on-the-fly as soon as an application is installed on the device.

Android also includes a set of core runtime libraries that provide most of the functionality
of the Java programming language, including some Java 8 language features, that the Java
API framework uses.

Native C/C++ Libraries

Many core Android system components and services, such as ART and HAL, are built from
native code that require native libraries written in C and C++. The Android platform pro-
vides Java framework APIs to expose the functionality of some of these native libraries to
apps. Using Android NDK (Native Development Kit) gives the developers the opportunity
to access some of these native platform libraries calling native C, and partially C++, code
directly from an Android Java application.

Java API Framework

The entire feature-set of the Android OS is available through APIs written in the Java lan-
guage. The application framework provides a plethora of managers that allow to Android
applications to interact with the Android platform and the device, which include the follow-
ing:

• A rich and extensible View System that allows to build an app’s user interface

• A Resource Manager, providing access to non-code resources contained in the apps

• A Notification Manager that enables all apps to display custom alerts in the status bar

• An Activity Manager that provides a common navigation back stack and manages the
Android Activity lifecycle

• Content Providers that provides a common approach to share data between different
apps

System Apps

Android comes with a set of core apps. Apps included with the platform have no special
status among the apps the user chooses to install, although software provided by manufac-
turers typically uses a read-only memory area to be sure that these applications will always
be installed. The system apps function both as apps for users and to provide key capabilities
that developers can access from their own app.
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2.1.2 Application components

The Android framework provides a set of building blocks to enable the development of con-
sistent and interoperable mobile apps. There are four main components of an Android appli-
cation: Activities, Services, Broadcast Receivers, and Content Providers. These components can
contact each other using Intents which is Android’s mechanism for inter-process communica-
tion. Application components, the manifest file (see Section 2.1.3), and application resources
are packaged in an application package .apk file format, which is the only format that Android
system recognizes for packages that need to be installed on the Android device.

Activity

Activities are one of the fundamental building blocks of apps on the Android platform. They
serve as the entry point for a user’s interaction with an app. Almost all activities require in-
teraction with the user, and for that reason, the activity takes care of providing the window
in which the app draws its UI. This window is typically full screen, but may be smaller than
the screen and float on top of other windows. Each activity can contain a set of Views and
even Fragments presenting information, and allows users to interact with the application.
Fragments were introduced in Android 3.0 to address the issue of different screen sizes
and represent behaviors or portions of user interface in an activity. Fragments and threads
spawned by an activity run in the context of the activity itself. So, if the activity is destroyed,
the fragments and threads associated with it will be destroyed as well.

One globally defined Android intent allows an activity to be displayed as an icon on the
launcher (the main app list on an Android device). Because the vast majority of apps want
to appear on the main app list, they provide at least one activity that is defined as capable
of responding to that intent. To be used, the application’s activities information must be
properly registered in the App Manifest.
Usually, the user starts from a particular activity and move through other ones creating a
stack of activities all related to the one originally launched; This stack of activities is called
task. The user can then switch to another task by clicking the HOME button and starting
another activity stack from the launcher.
Since there can be only one activity on the screen at a time, when a new one is started, the
previous activity pauses and the operating system keeps it in a stack (back stack), while the
new one comes to the foreground. When operations on the current activity are ended or
the BACK button is pressed on the device, the current activity is removed from the stack
(and destroyed) and the previous one return to the foreground. The Activity Manager is
concerned with stack and activity lifecycle management. Stop of an activity due to the launch
of a new one is notified by the callback methods of the activity lifecycle (Figure 2.2) that allow
to adequately manage the transition state of the activity.
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Service

The Android framework provides an application component, known as Service, to enable
applications to perform longer-running operations in the background. A Service component
does not provide a user interface. Services can be used within the same application or can
also be made available to components outside an app. Another component can start the
service and let it run or bind to it in order to interact with it. There are three different types
of services:

• Scheduled: characterized by jobs and requirements for network and timing. The system
gracefully schedules the jobs for execution at the appropriate times.

• Started: can run in the background indefinitely, even if the component that started it is
no longer executing.

• Bound: offers a client-server interface that allows components to interact with the ser-
vice, send requests, receive results, and even do so across processes with interprocess
communication (IPC). A bound service runs only as long as another application com-
ponent is bound to it. Multiple components can bind to the service at once, but when
all of them unbind, the service is destroyed.

All services must be declared in the application’s manifest file, just as activities and other
components.

Content Provider

The Android platform provides an application component, known as the Content Provider,
that manages access to a structured set of data, and provide a way to share data with other
apps. The content provider achieves this by providing proper data encapsulation and also
security. A content provider supports a variety of data storage sources, including both struc-
tured data, such as a SQLite relational database, or unstructured data such as image files, and
can also return standard or MIME types. The content provider needs to be declared like other
application components in the manifest file.

Broadcast Receiver

The Android platform provides a system-wide message bus facility called broadcast mes-
sages , similar to the publish-subscribe design pattern. This facility enables applications and
the Android system to propagate events and state change information to the interested par-
ties by broadcasting an Intent as a message. When an event of interest occurs, a Broadcast
Receiver is triggered to handle that event on the app’s behalf. Even if the application is not
running, it still receives intents that can trigger further events. In addition, Broadcast Receiver
permissions restrict who can send broadcasts to the associated receiver. An application can
declare a receiver in the manifest file.

2.1.3 App Manifest

The Android App Manifest is an indispensable XML (eXtensible Markup Language) file that
must reside at the root directory of the app’s sources as AndroidManifest.xml (with precisely
that name). When the application is compiled, the manifest is transformed into a binary
format.
The manifest file provides essential information about the app to the Android system, which
the system must have before it can run any of the app’s code. Basically, it declares the applica-
tion components, their visibility, the capabilities required to run the app, the minimum level
of the API required, the list of permissions required, any hardware requirements, libraries,
which icon to use on the Application menu, and a lot of other configurations.
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2.1.4 Intents

Intents are Android’s asynchronous mechanism for inter-component communication (within
the same application or among different applications). They are used by the Android system
for starting an Activity or Service, for communicating with a Service, to broadcast events
or state changes, for receiving notifications using pending intents, and to query the Content
Provider.
Intents themselves are objects containing information on operations to be performed or, in the
case of Broadcast Receivers, on details of an event that occurred. Once the intent is created
and dispatched through the Android framework, the Android platform resolves the intent
to find candidates that can provide the requested action. There are two types of intents that
define how they get resolved and dispatched:

• Explicit intents: provide the component to start by name (the fully-qualified class name).

• Implicit intents: do not specify a component, but instead declare a general action to
perform, which allows a component of another app (capable to perform this action) to
handle the request.

Implicit intents rely on the system to find an appropriate available component to be started.
For this to be possible, each component can provide Intent Filters (structures in the app’s
manifest file that specifies the type of Intents a component is willing to handle). Likewise, if a
component does not have any intent filters, then it can only receive explicit intents. When an
implicit intent is created, the system then compares contents of the intent to the intent filters
declared in the manifest file of other apps on the device. If the intent matches an intent filter,
the system starts that component and delivers it the Intent object. If multiple intent filters are
compatible, the system displays a dialog so the user can pick which app to use.

2.2 GUI Testing

The GUI (Graphical User Interface) is the means that allows users to interact with the soft-
ware; It responds to user-generated events by executing the code behind. One of the com-
monly used methods to detect defects in a software is to exercise its GUI. Unlike other test
approaches where test-suites consist of test cases that invoke software system methods and
capture the returned value, the GUI-based approach provides methods for detecting and rec-
ognizing GUI components, exercising events on the GUI (e.g., click), providing inputs to GUI
components (e.g., fill in text fields), and checking the representations of the GUI to see if they
are consistent with the expected ones. This makes the GUI-based testing particularly difficult
and its implementation strictly dependent on the technology used. On the other hand, this
testing technique is easily executable and automated. GUI testing techniques can be divided
into:

• Model-based testing: based on an existing model (formal description of the application
under test, in particular its GUI) that is sufficiently detailed to allow automatic test cases
generation.

• Random testing: in the absence of a model, the application is tested randomly, or pseudo-
randomly, in search of any failures (caused by unmanaged exceptions).

• Model-learning testing: starting without an available model, the application is exercised
methodically, following a specific exploration strategy. This approach allows to detect
any failures and, in addition, to build a model (usable for test cases generation).

In the GUI testing context, the model plays an essential role; In fact, an appropriate user
interface model allows automatic test case generation and makes testing automation feasible.
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Realizing a formal model could be an expensive process. The GUI must allow the users to
use all software features and must respond properly to all possible user interactions. Usually,
the GUI has a proportional complexity (often comparable) to that of the code behind; This
means that the model will be just as complex. In addition, it could be updated both when
a bug is discovered and when a new feature is added implying that the model needs to be
updated continuously. A significant reason of complexity is introduced by the fact that GUI
tests must be done by observing the AUT’s behaviors following specific input events in order
to provide reliable information about the tested software. Adopting a shallow test strategy
could lead to a model that does not correspond with the software’s behavior and, hence,
is invalid. In all this, the GUI model must be sufficiently detailed to distinguish between
different types of user inputs and different types of GUI components. As a result, a technique
that automatically generates a GUI model is crucial for effective test automation.

2.2.1 GUI Ripping technique

GUI Ripping is a reverse engineering technique that aims to build a GUI model of an existing
software application by dynamically interacting with its user interface. It is based on an
automatic exploration of the application’s graphical interface performed by simulating real
user inputs. This exploration allows detecting any failures due to unmanaged exceptions
and deriving a GUI model. This model is used for test case generation, which can then be
automatically performed for different purposes (e.g., crash or regression tests).
The purpose of the GUI ripping technique is to discover as much structural information about
the GUI as possible using automated algorithms and eventually some human input (e.g.,
password). Thus, the current user interface is analyzed by getting information needed to
characterize it: All the widgets and their properties are extracted from the GUI. Properties
also include information about events that can be fired on the widgets.

This technique is generally implemented by means of an algorithm which, once the cur-
rent GUI state is described, involves generating tasks (sequences of inputs on GUI widgets)
that are added to a task list. If the task list contains a task to be executed, it is extracted (ac-
cording to the used traversal strategy) and performed, otherwise the process ends. After the
task is executed, the reached GUI state is analyzed, described and compared with the already
visited states. If the state has already been visited, the next task is extracted, otherwise the
current state is analyzed in order to generate new tasks. The exploration of the application is
thus performed methodically and the information obtained is used in subsequent iterations
with the aim of reaching previously unexplored states. In general, the exploration terminates
when all GUI states are considered covered.

2.3 Testing in Android

Google provides an Android Testing Framework that is part of the Android SDK and is built
on top of JUnit (a framework to write repeatable tests) extended with an Instrumentation
Framework and Android-specific testing classes. Instrumentation allows to control all the
interactions of the application under test with the surrounding environment and also permits
the injection of mock components1.
There are two types of tests to be created in an Android application:

• Local unit tests: these tests run locally on the Java Virtual Machine (JVM) without access-
ing to functional Android framework APIs. This testing approach is efficient because it
avoids the overhead of deploying the target app and unit test code onto a physical de-
vice or emulator every time the test is run. Consequently, their execution time is greatly
reduced. With this approach, it is normally used a mocking framework, like Mockito [7],
to fulfill any dependency relationships.

1Mock objects are fake objects that simulate the behavior of real objects, but are totally controlled by the test.
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• Instrumented tests: these are tests that must run on an Android hardware device or an
Android emulator as they need to exploit Android APIs. Instrumented tests are built
into an APK that runs on the device alongside the app under test. The system runs the
test APK and the AUT in the same process, so that tests can invoke methods, modify
fields, and automate user interaction with the app.

Figure 2.3: Android Test types [8]

However, the local unit tests and instrumented tests described above are just terms that help
distinguish the tests that run on a local JVM from the tests that run on the Android platform
(on a hardware device or emulator). A more refined testing categorization is described in the
following table.

Table 2.1: Android test types [8]

Type Subtype Description

Local Unit Tests

Unit tests that run on the local JVM. It is useful to use this type
of test to minimize execution time when tests have no Android
framework dependencies or when it is possible to use mock ob-
jects for simulating real objects behaviors.

Unit tests

Instrumented
unit tests

Unit tests that run on an Android device or emulator. These tests
have access to Instrumentation information, such as the Context of
the app under test. They are needed when mock objects cannot
satisfy Android dependencies required by the tests.

Intra-app
Components

They have the objective to verify that the target app behaves as
expected when a user performs specific inputs. UI testing frame-
works like Espresso allow to programmatically simulate user ac-
tions and test intra-app user interactions.

Integration Tests

Cross-app
Components

They have the objective to verify the correct behavior of interac-
tions between different apps. UI testing frameworks that support
cross-app interactions, such as UI Automator, allow to create tests
for such scenarios.

The Android Testing Support Library provides an extensive framework for testing An-
droid apps by providing APIs that allow to build and run tests for Android applications. The
library includes the following instrumentation-based APIs:

• AndroidJUnitRunner

A JUnit 4-compatible test runner for Android that allows to run JUnit 3- or JUnit 4-style
test classes on Android devices, including those using the Espresso and UI Automator
testing frameworks. The test runner handles loading the test package and the app under
test to a device, running tests, and reporting test results.

15



2.4. UI Automator 2.0

• Espresso

A UI testing framework suitable for functional UI testing within a single app. The
Espresso testing framework provides a set of APIs to build UI tests for testing user
flows within an app. These APIs allow to write automated UI tests that are concise
and that run reliably. Espresso is well-suited for writing white box-style automated
tests, where the test code utilizes implementation code details from the app under test.
Espresso tests require running on devices provided with Android 2.2 (API level 8) or
higher.

• UI Automator

A UI testing framework suitable for cross-app functional UI testing across both system
and installed apps. The UI Automator testing framework provides a set of APIs to build
UI tests that perform interactions on user and system apps. The UI Automator testing
framework is well-suited for writing black box-style automated tests, where the test
code does not rely on internal implementation details of the target app. UI Automator
tests require running on devices provided with Android 4.3 (API level 18) or higher.

2.4 UI Automator 2.0

UI Automator is a black-box testing framework suitable for cross-app functional UI testing.
It provides a set of APIs to create UI tests that perform interactions on user apps and system
apps, and uses its execution engine to automate and run those tests on Android devices. The
UI Automator testing framework includes:

• APIs that support cross-app UI testing;

• An API able to retrieve state information and perform operations on the target device;

• A viewer able to inspect the layout hierarchy of Android apps.

The UI Automator testing framework is an instrumentation-based API and works with the
AndroidJUnitRunner test runner. It requires Android 4.3 (API level 18) or higher.

2.4.1 UI Automator APIs

The UI Automator APIs allow to write robust tests without needing to know about the im-
plementation details of the app under test. These APIs allow to capture and manipulate UI
components also across multiple apps by exploiting UiAutomation2 [9].
Exploiting UI Automator APIs, tests can look up UI components by using convenient de-
scriptors such as the text displayed in that component or its content description. An element
can also be targeted by its location in a layout hierarchy. In fact, UI Automator automatically
analyzes the screen of the Android device, and constructs the relative widget hierarchy tree,
where widget nodes have parents-children or sibling relationships with each other. These
relationships are encoded in an index3 property and, thus, by using index values, each wid-
get can be uniquely identified as a cumulative (from the root node to the target node) index
sequence.

2UiAutomation is a low-level testing API that allows Instrumentation tests to test across application boundaries.
It supports full-screen introspection, taking screenshots, changing device orientation and injection of raw input.

3Google emphasizes in the official documentation that using the index could be unreliable. Instead, it is advis-
able to use the instance property.
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3 Theory

The main purpose of this chapter is to provide information on the state-of-art of mobile GUI
testing approaches for Android applications. These techniques will be categorized and de-
scribed, emphasizing, in the case of model-based testing, the importance of an appropriate rep-
resentation of the GUI and of an effective comparison criterion to determine the equivalence
between multiple GUI states. During the discussion of these topics, security-related issues
will also be addressed and, in particular, some techniques that might be used by malware to
evade automated runtime analysis will be highlighted.

3.1 State-of-the-art approaches for automated GUI testing of Android

applications

Regardless of the scope for which they are designed, the primary objective of each testing
process is to verify that the applications under test do not exhibit unexpected behaviors. For
this purpose, automated testing techniques exercise as much behaviors of the AUT as possi-
ble by exploiting inputs generation that can be obtained randomly or following a systematic or
a model-based approach. In this latter case, exploration is driven by a model of the AUT, which
can be built statically or dynamically. Testing tools can generate these events by using either
black-box testing methods or white-box testing methods. In the first case, the automated tests
are performed without relying on implementation details of the application. In the second
case, the investigation process is based on internal logic and structure of the code; In white-
box testing it is necessary a full knowledge of the source code. Finally, a grey-box approach is
also possible. It represents a hybrid testing based on limited knowledge of the internal details
of the AUT. In particular, in Android testing may be possible extract high-level properties of
the app, such as the list of Activities. Two essential APK components for Android static anal-
ysis used in grey-box tests are the Android manifest, which describes permissions, package
name, version, referenced libraries, and app components, and DEX classes, which contains
all Android classes compiled into a Dalvik compatible file format.

Previously introduced in Introduction Chapter, the Table 1.1 provides an overview of the
main existing Android testing tools presented in the literature and in the following sections
we will describe these techniques in more detail.
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3.1.1 Random-based exploration strategy

A first category of automated testing techniques, also known as fuzz testing, use a black-
box approach employing a random selection of events from a set of possible ones, such as
GUI or system events. This approach is unsuitable for generating highly specific inputs that
control the app’s functionality, but on the other hand, it is easy to implement robustly. Input
generators based on a random exploration strategy can efficiently generate a large number of
events and, for this reason, are widely used in stress testing. However, tools that implement
a random-based strategy are not aware of how much behavior space of the app has already
been covered and might therefore generate redundant events that do not help achieving a
satisfactory exploration. Finally, a random input generator does not have a stop criterion
for determining the success of the exploration, but usually it relies on a manually specified
timeout or threshold value of generated events.

The Android platform includes a fuzz testing tool, called Monkey [1], able to generate and
perform, in a mobile emulator or device, a pseudo-random stream of user events, which in-
clude both UI events such as clicks and gestures, and system-level events such as screenshot
capture and volume adjustment, in a random yet repeatable manner. In fact, although the
interactions are random, Monkey is based on a seeding system and therefore the use of the
same seed involves the generation of the same sequence of actions. It is the most popular
tool to perform black-box stress tests on Android apps, in part because it is Google’s offi-
cial testing tool and does not require any additional installation effort, since it is part of the
Android developer toolkit. Moreover, the tester can configure the Monkey tool for selecting
event types and its frequencies, or for specifying the number of events to attempt or other
operational constraints (e.g., restricting the test to a single package).

DynoDroid [48] generates randomized inputs in a mobile device emulator, but it has sev-
eral features that make its exploration more efficient compared to Monkey. The implementa-
tion supports the generation of both UI and system events and allows to manually provide
inputs (e.g., for authentication) when the exploration is stalling.
Dynodroid exploits the Hierarchy Viewer, a tool packaged with the Android platform able to
infer a UI model at runtime, for determining a layout’s hierarchy of the current screen. How-
ever, it needs to modify Android framework (SKD) for gathering information about broadcast
receivers and system services for which the app is currently registered.
Dynodroid is based on an observe-select-execute cycle. It first observes which are the relevant
events in the current app state. An event is relevant to an app, if the app has registered a
listener for that event. In the selection phase, one of the observed events is randomly selected
to be executed in the final step. The authors propose three different selection strategies: Fre-
quency, UniformRandom and BiasedRandom. The Frequency strategy has a bias towards least
recently used events. The UniformRandom strategy selects an event uniformly at random.
The BiasedRandom strategy randomly select an event also by considering the contexts the
events belong. The context for an event at a particular instant is the set of all relevant events
at that instant: The chance that an event will be selected for execution in a context depends
on the number of times that it has been chosen (or not chosen) in the past (or in the current)
selection stages.

3.1.2 Systematic exploration strategy

Since some application behaviors can only be revealed after providing specific input se-
quences, some Android testing tools address this problem by using more sophisticated tech-
niques, such as symbolic execution and evolutionary algorithms, to guide the exploration towards
previously uncovered states. Implementing a systematic strategy involves benefits in explor-
ing behavior that would be hard to reach with random techniques. Compared to random
techniques, however, these tools are difficult to scale due to the path explosion problem (ex-
ponential growth of possible paths with increasing program size).
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The key idea of symbolic execution is to systematically explore feasible paths of the program
under analysis by reducing the search space from an infinite number of possible data inputs
to a finite number of data domains (represented by symbolic inputs). So, instead of executing
a program on a set of sample inputs, the program is symbolically executed for a set of classes
of inputs. This implies that each symbolic execution result may be equivalent to a large
number of normal test cases. This approach avoids generating redundant inputs and allows
to generate highly specific inputs. Moreover, symbolic execution is not black-box and requires
instrumenting of, at least, the app under test.

ACTEve [32] is a concolic-testing tool that symbolically tracks events from the point where
they originate to the point where they are ultimately handled in the app.
Concolic testing is a hybrid software testing technique combining concrete execution of a
program (random or given inputs, along specific paths) with symbolic execution (that aims
to generate new concrete inputs that forces the program to take unexplored paths).
The key concept (though simplified) of the algorithm implemented by ACTEve lies in the
fact that, if an event sequence en is subsumed by another event sequence e1

n that ends with
an event that have no effect (i.e., the state remains unchanged), then the algorithm prevents
extensions of en (which will not be considered in any future iteration).
To fulfill this task, ACTEve needs to instrument the app in addition to the Android SDK. It
supports the generation of both system and UI events.

Evodroid [49] is the first evolutionary approach for system testing of Android apps. Evolu-
tionary testing is a form of search-based testing that exploits a population-based metaheuris-
tic optimization algorithm, where an individual corresponds to a sequences of test inputs,
and a population composed of many individuals evolves according to certain heuristics, for
automatically generating the tests.
Evodroid automatically extracts from the code of the application two models: The Interface
Model (based on static analysis of Manifest and XML configuration files) and the Call Graph
Model (based on code analysis by using MoDisco [36]). The Call Graph Model extends a
typical app’s call graph (representation of explicit method call relationships) enriched with
information about the implicit call relationships caused by Intents. EvoDroid uses this model
to determine the parts of the code that can be searched independently, and evaluate the qual-
ity (fitness) of different test cases, based on the paths they cover through the graph, thus
guiding the search. EvoDroid executes the test cases in parallel, possibly on the cloud, and
the results are then evaluated using a fitness function evaluated by considering code coverage
and uniqueness of the covered paths.

A3E-Targeted [34] has as its main objective to reach a rapid exploration of activities. To
achieve this goal, it relies on a component that, by means of a preliminary static bytecode
analysis, extracts information about valid Activity transitions and builds a Static Activity
Transition Graph of the app, which is then used for systematically exploring the running app.
In this way, it can list all the Activities which can be called from other apps or background
services directly without user intervention, and generates calls to invoke those Activities di-
rectly. The Targeted Exploration strategy is useful in the situations where not all Activities
can be invoked through user interaction. In this regard, the so called Exported Activities are
characterized by Intent Filters, and can be accessed only with special request from within or
outside the application. They are marked as such by setting the parameter exported=true in
the Manifest file.

SAPIENZ [50] is a multi-objective tool for Android testing that seeks to maximize code
coverage and fault revelation, while minimizing the length of fault-revealing test sequences.
It combines random fuzzing, systematic grey-box and search-based testing techniques.
SAPIENZ employs both static analysis of the APK and multi-level instrumentation in order
to perform a search-based testing approach. In particular, it uses fine-grained instrumenta-
tion at the statement-level (white-box). In case only the binary APK file is available, it uses
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repackaging1 to instrument the app at method-level (grey-box). However, if repackaging is
disallowed, it proceeds in a non-invasive manner for calculating an activity-level coverage,
also called “skin coverage” by the authors (black-box). Moreover, SAPIENZ also uses evo-
lutionary algorithms to find new interesting combinations of events that may allow reaching
parts of the application not previously visited.

3.1.3 Model-based exploration strategy and Model-learning techniques

The idea behind model-based testing is to create a suitable set of user input sequences starting
from the model of the target program. This approach uses human and framework knowledge
to abstract the input space of a program’s GUI, thus reducing redundancy and improving
efficiency. In general, a model-based testing approach requires testers to provide a model of
the AUT, though automated GUI model inference tools exist (e.g., GUITAR [53]) and some
static and dynamic analysis techniques could be used for inferring this model. The main
limitation of model-based testing tools with an active learning approach (i.e., model-learning
techniques) lies in the state representation they use, as most of them represent new states
only when some event triggers changes in the GUI. However, some events may change the
internal state of the application without affecting the GUI. In such situations, these techniques
would miss the change and continue the exploration considering the event as irrelevant. A
common scenario in which this problem occurs is in the presence of services, as services do
not have any user interface.

AndroidRipper [31], successor of GUI Ripper [29], which subsequently became MobiGUI-
TAR [30], dynamically analyses the application’s GUI with the aim of obtaining sequences of
events fireable through the widgets.
Starting from an initial state (the GUI state shown at the beginning, when the ripper starts
exercising the AUT) and employing a well-defined GUI traversal strategy, it builds a GUI Tree,
which is a graph whose nodes represent the states of the GUI and edges describe event-based
transitions between consecutive states encountered during the ripping process. For each new
state found during the execution, AndroidRipper keeps a list of unfired widgets belonging to
the current GUI state, generates related fireable events, and systematically triggers them; The
exploration is stopped when all the GUI states are considered explored. The authors propose
two different heuristics to determine when a GUI state can be considered as equivalent to
an already visited one. The first heuristic considers two GUI states equivalent if they belong
to the same Activity class. The second heuristic is more restrictive since two GUI states are
considered as equivalent only if they contain the same set of widgets.

ORBIT [63] uses a grey-box model-learning approach based on a combination of a prelim-
inary static analysis of the AUT source code, for extracting a set of UI events triggerable from
each Activity, and a dynamic GUI ripping process, for inferring a model of the AUT.
ORBIT implements an optimized depth-first strategy, which tries to exploit the BACK button
as much as possible in order to reach a previously seen state without restarting the app, as
restarting is a significantly expensive operation. In this regard, it is important to note that this
button is context-sensitive and, therefore, it is not a reliable mechanism that leads to exactly
the previous state. In fact, the BACK button can allow to reach any ancestor states (or also
to the initial screen) and, for that reason, it should be used with caution. The tool is able
to model the GUI behavior of an Android app as a finite-state machine (FSM), where nodes
are the GUI states (also called visual observable states by the authors) and transitions among
these states are constituted by the user-actions fired at runtime. A visual observable state
is composed of a hierarchy tree of GUI components (classified by the authors in executable
components and display components), as well as of a set of attributes characterizing each
executable component (which support the user actions detected during the static analysis).
The execution is stopped when ORBIT no longer detects new states to be explored.

1It is a process through which the application is reverse engineered, some specific payloads are added, and the
modified application is rebuilt.
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A further model-learning testing technique has been implemented by SwiftHand [37]. It
aims to achieve code coverage quickly by learning and exploring an abstraction of the model
of the GUI of the app. It seeks to optimize the exploration strategy to minimize the restarts of
the app trying to extend the current execution path by selecting a user input enabled at the
state.
SwiftHand implements traversal strategies of the model based on the Angluin’s L* learning
algorithm [33] and uses execution traces generated during the testing process to infer a model
of the GUI, represented by what the authors call Extended Deterministic Labeled Transition Sys-
tem (structure consisting of states connected by transitions labeled with actions). The model
is exploited to choose user inputs that would take the app to previously unexplored states.
As SwiftHand triggers the newly generated user inputs and visits new screens, it expands
the learned model, and it also refines the model when it detects discrepancies between the
model learned so far. During the learning process of the model, a comparison criterion is
required to determine the equivalence between user interface states. For this purpose, Swift-
Hand considers two GUI states equivalent if they have the same set of enabled (available for
triggering) user inputs. An enabled user input is only considered according to its type and
the bounding box coordinates within the screen where it is enabled, without caring about the
content of GUI components such as colors or text content.

PUMA [43] is a programmable framework containing a generic UI automation capability
(often called Monkey) that exposes high-level events for which users can define handlers.
The novelty of this tool, in fact, is not in its exploration strategy, but rather in its design.
Since programmable, PUMA can be extended to implement different dynamic analysis on
Android apps. It provides a programmable finite-state machine representation of the AUT,
thus allowing the testers to implement different exploration strategies. Additionally, it al-
lows redefining the state representation and the logic to generate events. PUMA exposes a
set of configurable hooks that can be programmed with a high-level event-driven scripting
language, called PUMAScript. This language separates analysis logic from exploration logic,
allowing to specify exploration strategies and separately specify the logic for app property
analysis. This system relies on the instrumentation of app binaries.

DroidBot [47] is an input test generator that is able to interact with an Android applica-
tion without instrumentation, making malware analysis a possible field of application. In
fact, since many malware encrypts their code or verifies their signature before doing mali-
cious actions, it may be impossible to instrument them or ensure consistency between the
instrumented application and the original one. DroidBot models the explored states, as a
state transition graph built on-the-fly, exploiting a set of Android-integrated test/debugging
utilities. It maintains the information of the current state and monitors the state changes after
sending a test input to the device. If changes are detected, the test input and the new state are
added to the graph, as a new edge and a new node. Currently, DroidBot uses a content-based
comparison, where two states with different UI contents are considered as different nodes.
DroidBot can generate the call stack trace for each test input, which contains the methods
of the app and the system methods triggered by the test input. It uses the call stack as an
approximate metric to quantify the effectiveness of test inputs.

3.2 Runtime analysis detection: techniques and countermeasures

According to Tam et al. [58] and Wei et al. [62], Android malware are increasingly using anti-
analysis techniques, such as native code invocation, dynamically-loaded code, Java reflection,
and code obfuscation, which often render both human inspections and static analyses inef-
fective. In this regard, the use of dynamic analyses can overcome such limitations, allowing
to detect those app’s behaviors that only manifest at runtime.
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Figure 3.1: Anti-analysis malware techniques trends [57]

Because the malware is running during analysis, the choice of a suitable testing environ-
ment is a crucial factor for the success of the analysis itself: If the analysis operates at the
same permission level as a malicious software, the malware could detect and bypass it. On
the other hand, if the analysis was to work at a lower level (e.g., at kernel level), then it would
increase security, but make it more difficult to intercept the AUT’s data and communications.
To cope with these complications, several methods have been proposed in the literature [55]
that use simulated system environments (such as virtual machines or emulators) for facilitat-
ing the analysis process and providing greater control over the execution of processes.
Nevertheless, malware frequently refrain from malicious behavior if they detect running in
an emulated environment [44, 54, 61]. As countermeasures to anti-emulation techniques,
recent research proves the effectiveness of using real devices [40, 52] and tailored emulated
environments [42]. Despite this, other aspects should be taken into account during dynamic
analyses to counter the detection of an analysis environment.

Since Android malware, as mobile applications, are event-driven systems (EDS), their
malicious behaviors could be triggered only after specific user input sequences or system
events. For this reason, automated exploration techniques are often used in conjunction with
dynamic analysis in order to examine as much of an app’s behaviors as possible without
user intervention. However, this approach might be identified by a malware: In fact, by
monitoring interaction patterns, it may be possible to determine whether the application is
used by a human user or by an automated testing tool. Hence, simulating a behavior as
much human-like as possible in automated exploration strategies could be a crucial aspect to
be considered in the analysis tools in order to not be detected. Furthermore, the effectiveness
of dynamic analysis frameworks heavily depends on the input generation strategy adopted
and how much it is capable of exploring the runtime behaviors of the application under test.
Model-based testing aims to generate events based on specific patterns or on a model of the
AUT which could be derived by analyzing the app’s code or by exploring its GUI. Test cases
generated with this approach are usually more effective and efficient for triggering malicious
activities than the ones generated with fuzzing-based techniques. For this purpose, Android
black-box testing automation frameworks can be used in order to inspect the layout hierarchy
and extract the meaningful UI properties, thereby avoiding generating invalid actions.

However, the use of these frameworks can lead to generate predictable input events, fired
at regular and short interval, in order to seek covering all potential UI paths in limited time.
This modus operandi significantly differs from a human utilization and therefore provides a
feasible criterion for evading dynamic analysis.
On the basis of this principle, Diao et al. [40] design a mechanism for capturing such pro-
grammed interactions to distinguish human users from testing platforms. In this way, before
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name, current state, or textual content). Once a View has been selected, Espresso allows the
execution of user actions on it: It is possible to fill text fields, perform actions, and even
analyze outputs and changes to verify that they are as expected.
The framework uses synchronization mechanisms, and is capable of automatically checking
whether the application is in a stable state (i.e., the main thread is idle) before performing
operations on widgets.

UI Automator is an Android framework suitable for cross-app functional UI black-box
testing. It provides a set of APIs that allow to perform interactions both on user apps and on
system applications, but requires an API level of 18 (i.e., Android 4.3) or higher. The ability
to build tests that span over multiple applications is a really important feature characteriz-
ing this framework, since the Android architecture encourages the switch between different
applications (by means of Intents) to handle particular user requests. In addition to the func-
tionalities provided by Espresso (i.e access to the UI), UI Automator enables the access to the
device status, in order to retrieve device properties (e.g., orientation, screen resolution or dis-
play size), and perform user actions on the device (e.g., pressing the Back or Home buttons,
or taking screenshots).
The framework does not wait for the application to be in the steady state like the Espresso
framework: the test developer has to be careful that the application is in a stable state before
continuing the test run.

UI Automator framework also includes a tool (uiautomatorviewer [10]) which allows to
inspect the layout hierarchy and retrieve the information about all the visible UI components
currently displayed on the Android device connected to the development machine. This
information can help developers to create application-specific tests using UI Automator.

3.3.2 Monkeyrunner

Monkeyrunner [15] provides an API for writing scripts that control an Android device or
emulator. It is included in the Android SDK, developed by Google, and can be extended
by developing Python-based modules. Its scripts (written in Jython, an implementation of
Python which is designed to run on the JavaTM Platform) can be used for installing Android
apps, sending user inputs, and taking and comparing screenshots. Monkeyrunner also allows
to apply test suites to multiple devices or emulators.
Unlike other frameworks, it seems to lack high-level methods for retrieving screen items,
making code maintenance and its reuse complicated. In particular, UI object selection is
based on the object’s location (x, y coordinates), which can change when the user interface
of the tested application is subject to changes, and then the scripts may require continuous
adjustments.

3.3.3 Robotium

Robotium [16] is the most popular 3rd party open-source Android testing framework, suitable
for automatic black-box UI testing for Android applications. It offers APIs to directly interact
with UI components based on attributes such as index, textual contents, element’s name,
or resource ID. Unlike UI Automator, it supports both native and hybrid application tests:
Native applications are the ones which are developed for a specific platform. On the other
hand, hybrid applications are combinations of native and web apps (i.e., they require the
HTML to be rendered in the browser).
Robotium tests are written in the Java programming language and can be executed on a single
real device or on emulator at a time. Like Espresso, Robotium is able to test only the AUT,
meaning that there is no way of testing outside this application.
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The comparison model is structured on 5 levels of detail (C-Lv) and it provides 3 types of out-
puts according to the comparison result: T (Terminated) for an out-of-the-scope GUI state, S

(Same) for a GUI state already discovered, or N (New) for a GUI state previously unexplored.
It is also possible to modify the maximum comparison level (Max C-Lv) if the tester wants to
adjust the abstraction level of the GUI model.

C-Lv1: Compare Package Names

The first level criterion is based on comparing the application package, in order to avoid
exploration outside of the application boundary. If the device-focused screen belongs to the
AUT’s package, the information on the next level (C-Lv2) will be compared, otherwise the
terminated status will be assigned to the current GUI state of the application in foreground.

C-Lv2: Compare Activity Names

Since each Activity has a lifecycle that is independent of the other Activities and is imple-
mented separately (i.e., on different source code files) from the other ones, the Activity name
is a legitimate criterion (widely used in literature) to certainly distinguish between different
GUI states. If the name of the Activity in the foreground does not appear among the Activ-
ity names of the already visited GUI states, then the current screen will be considered as a
new GUI state. On the contrary, if the current screen belongs to an Activity already explored,
next-level comparisons will be performed.

C-Lv3, C-Lv4: Compare Widget Composition

By analyzing the widget tree, extractable for example by using UI Automator, it is possible
to distinguish between executable widgets and (non-executable) layout widgets: A widget is
considered executable if at least one property that determine whether it can react to certain
events (e.g., clickable) has “true” value.
Some UI testing tools (e.g., uiautomatorviewer) encode the relationships between the widgets
by means of an index property which numbers the tree nodes in an orderly manner. By using
index values, each widget can thus be uniquely identified as a cumulative (from the root node
to the target node) index sequence (CIS).

At C-Lv3, the layout CISs are used as GUICC of GUI state distinction. If the current GUI
state has the same set of layout CISs of a visited GUI state, then the executable CISs will be
compared at C-Lv4 (e.g., by comparing the set of event handlers [37]). Otherwise, the current
screen is considered as a new GUI state.
GUI states with different executable widgets should be characterized by a different set of
triggerable events and, therefore, may lead to discover new behaviors; For this reason, a
screen whit a different set of executable CISs is considered as a new GUI state.

C-Lv5: Compare Contents

A final level of comparison could be used in case it is necessary to differentiate separated
contexts on screens featuring the same widget tree. For this purpose, also concrete contents
(e.g., textual contents or descriptions) of each screen should be considered.

An additional need for a further comparison level may arise as a result of scroll events
performed on lists of widgets (e.g., ListView4 and GridView5). In this case, if the first element
of the list is altered after a scroll event, it means that some previously non-visible child items
become visible (and then triggerable).

4Android ListView is a ViewGroup, that is a special View (basic building block for UI components) that can
contain other Views, which contains several items and displays them in a vertically-scrollable list.

5Android GridView is a ViewGroup that can contains items and displays them in a two-dimensional scrollable
grid.
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However, such an accurate comparison criterion rarely works as expected, as, due to the
complexity of today’s applications, it might run into the state explosion problem during exe-
cution.
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4 Method

4.1 An Active Learning Approach

In this section, we consider the problem of automatically testing Android apps considered
as black boxes and for which we do not have an existing model of the GUI. The goal is to
explore as many behaviors of the AUT as possible by learning at runtime a GUI model of the
app. For this purpose, we propose a novel active learning algorithm designed for limiting
redundant actions and minimizing the number of restarts of the AUT in order to reduce
the computational cost of the algorithm (fewer state transitions to cross) and increase the
implementation efficiency (as restarting is a significantly expensive operation).

4.1.1 E-LTS Model

An intuitive way to describe event-driven systems is to consider that the system transits
from one state to another depending on the action performed by the environment or by the
system itself. A transition system [45] is a conceptual model consisting of states connected
by transitions that can be represented as a directed graph where vertices are the states of the
system and edges represent transitions between the states. In a labeled transition system
(LTS), each transition is labeled with the action that triggers the state change.

Figure 4.1: Multiroot deterministic labeled transition system representation
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Inspired by Choi, Necula, and Sen [37], but by considering also state labeling (which
specifies the values of some variables in the state), we defined an extended version of a deter-
ministic1 labeled transition system (E-LTS) to model an app’s GUI. Each E-LTS’s state is then
labeled with:

1. An immutable set of available inputs (or actions);

2. An editable set of inputs (or actions) considered previously triggered;

3. The first transition that led to it (excluding initial states).

Formally, an E-LTS M is a 7-uple

M = (S, A, R, I, σ, δ, λ)

where

• S is a finite set of states;

• A is a finite set (alphabet) of inputs (or actions);

• R Ď S ˆ A ˆ S is the transition relation: Given a transition (s, a, s1) P R (denoted by

s
a

ÝÑ s1), s P S is called the source, s1 P S the target and a P A the label of the transition;

• I Ď S is the set of initial states;

• σ : S Ñ R is a state labeling function: Given a state s P S, σ(s) represents the first
transition that led to the state s. A transition is defined as the first transition if it is
learned at the same time that its target state is learned;

• δ : S Ñ P(A) is a state labeling function representing the set of inputs that are available
at state s. P(A) denotes the power set of A;

• λ : S Ñ P(A) is a state labeling function representing the set of inputs considered
previously triggered on state s: for any s P S and a P A, if there exists a s1 P S such that
(s, a, s1) P R, then a P λ(s).

N.B. If exists a s P S such that δ(s) ‰ λ(s), then the model is incomplete.

4.1.2 The Learning Algorithm

Assumptions

Suppose that it is possible to compare the state of the system with states that are already part
of the learned model (based on a feasible comparison criterion).
Suppose that it is possible to inspect the state of the system to determine the set of available
inputs.
Suppose that it is possible to send inputs to the system and waiting for the system to become
stable after performing an action.
Suppose that it is possible to bring the system under learning (SUL) back to an initial state
through the ρ R A action.
Suppose that, starting from any state s P SzI, it is possible to bring the SUL back to some
previous (i.e., an ancestor) state through the β R A action.
To ensure the algorithm’s determinism, suppose that each action a P A has different priority
over each other so that, given a subset of actions E Ď A, the Pop(E) operation returns the
action with the highest priority.

1An LTS is deterministic if s
a

ÝÑ s1 and s
a

ÝÑ s2 imply that s1 = s2, for all s P S and for all a P A.
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Description of the algorithm

The Algorithm 4.1 (described in pseudo-code) maintains five local variables:

1. s denotes the state considered in the current iteration, instead s0 represents the current
state at any time

2. p denotes the state considered in the previous iteration

3. a denotes the last action performed

4. r denotes whether or not a restart operation (i.e., the ρ action) has been performed in
the previous iteration

5. M denotes the E-LTS model learned so far

Algorithm 4.1: E-LTS learning

1 M Ð (ts0u, A,∅, ts0u, ts0 ÞÑ σ(s0)u, ts0 ÞÑ δ(s0)u, ts0 ÞÑ λ(s0)u) //s0 is the current (fresh) state
2

3 r Ð f alse //r is a boolean flag
4 s Ð null //s is the current state
5 a Ð null //a is the last action performed
6

7 while STOP_CONDITION do
8 p Ð s //Save previous state
9 s Ð s0 //Retrieve current state

10

11 i f s R S then
12 add s to S //Add a new state to M
13 end i f
14

15 i f r is true then
16 r Ð f alse
17 i f s R I then
18 add s to I //Add a new initial state to M
19 end i f
20 e l s e
21 i f p is not null then

22 i f p
a

ÝÑ s R R then

23 add p
a

ÝÑ s to R //Add a transition relation to M
24 end i f
25 end i f
26 end i f
27

28 i f δ(s) ‰ ∅ ^ δ(s) ‰ λ(s) then //Not fully explored
29 a Ð Pop(δ(s)zλ(s))
30 EXECUTE( s , a ) //Perform an action a P δ(s)zλ(s) on state s
31 end i f
32

33 i f δ(s) ‰ ∅ ^ δ(s) ‰ λ(s) then //Still not fully explored
34 i f s R I then
35 UNLOCK( σ(s) ) //"Pave the first way" towards s
36 end i f
37 e l s e //Fully explored state
38 i f s P I then
39 i f s0 R S _ δ(s0)zλ(s0) ‰ ∅ then //New or not fully explored current state s0

40 remove a from λ(s) //Remove a from the set of inputs triggered on s
41 e l s e
42 r e tu r n M //End
43 end i f
44 e l s e //New current state s0

45 i f s0 ‰ s then //State unchanged
46 i f s0 P S ^ δ(s0) = λ(s0) then //Reached old and fully explored state s0

47 EXECUTE( s0 , ρ ) //Restart
48 r Ð true
49 end i f
50 e l s e
51 EXECUTE( s0 , β ) //Go back
52 end i f
53 end i f
54 end i f
55 end while
56

57 r e tu rn M
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1 procedure UNLOCK( si
a

ÝÑ s f )
2 i f si P I then
3 remove a from λ(si) //Remove a from the set of inputs triggered on si

4 r e tu rn //An initial state has no incoming transitions
5 end i f
6

7 UNLOCK( σ(si) ) //Recursion on the first transition towards si

8 remove a from λ(si) //Remove a from the set of inputs triggered on si

9 end procedure

The E-LTS learning algorithm restarts the AUT sparingly compared to other standard
learning algorithms such as L*: It attempts to extend the current execution path by perform-
ing an action that is available but not yet triggered on the current state or by using an ap-
propriate feature (the BACK button in Android devices) to go back to a previous (though not
well defined) state.
Starting from an installation from scratch, the first state (as well as the first initial state) is
discovered as soon as the system (the AUT in our case) reaches the steady state after the first
boot (line 1). After the first boot, a state is recognized to be an initial state if and only if the
last action performed has been a restart action (lines 15-18).
At each state, the algorithm stores (if necessary) information about new states (both initial
and non-initial) or new transitions (lines 12, 18 and 23).
After updating the model, the algorithm verifies if some action can still be executed on the
current state (line 28). If there is any action still available to be executed, the algorithm selects
and performs the one with the highest priority (lines 29-30). It is important that actions are
executed respecting a certain order to ensure a proper depth-first search strategy.
If no action has been performed on the current state, the algorithm terminates its execution
if the current state is identified as being an initial state (i.e., it belongs to I) in which it is no
longer possible to trigger events (line 42), otherwise a restart action is performed (line 47).
Conversely, if an action has been executed, the algorithm checks if the state s on which it
has been performed still has actions available for execution (line 33). In this case, a recursive
function ensures that all those actions that have led to the state s from the initial state are
made available for next iterations (line 35). In particular, for each first transition si

a
ÝÑ si+1,

starting from the s state back to the initial state, the algorithm will exclude from the set of
actions already performed on each intermediate state the action a that triggered the state
change between si and si+1.
Instead, if after the action execution, the state s is fully explored (all available actions have
been triggered), it is possible that:

1. the state s is an initial state: In that case, if the previous action caused a state change
and the current state s0 is new or not fully explored then will re-enable the a action just
executed on state s (line 40) . Otherwise, the algorithm terminates (line 42).

2. the state s is not an initial state and the action caused a state change: If the reached
(current) state s0 is fully explored then a restart action is performed (line 47). Otherwise,
the current state will be considered in the next iteration.

3. the state s is not an initial state and it remains unchanged: In this case the algorithm go
back to a previous (ancestor) state (line 51).
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4.2.2 Implementation details

We have implemented the E-LTS learning algorithm for Android apps in a tool written in Java
called PoLiUToDroid. Since developed as an Instrumented Unit Test (see Section 2.3), PoLiU-
ToDroid can test Android apps running both on emulators and on physical Android devices
connected to the development/testing machine through ADB (Android Debug Bridge)2.

The tool is able to inspect all the UI components currently visible on the device screen and
interact with them even if they do not belong to the application under test without relying on
source code or bytecode instrumentation.
Both the GUI ripping operation and event injection phases are non-invasive because they are
based on UiAutomation, UI Automator framework, and existing Android debugging/testing
utilities, which are embedded within Android. The information gathered from the connected
device can be classified into three sets:

1. GUI information. For each UI, PoLiUToDroid takes the screenshot and records the UI
hierarchy dumped using an its own module based on UiAutomation;

2. Process information. PoLiUToDroid can access the app-level process status by using
the dumpsys3 tool in Android.

3. Logs. Logs include the actions performed by each test input, the traces produced by the
AUT and screen-based CPU/memory performance log. They can be retrieved from the
Android profiling tool and logcat4.

PoLiUToDroid implements a model-learning technique, that is, by starting only with the
name of the application package to be tested, it is capable of on-the-fly learning a model
that in the meantime it exploits to visit the AUT itself. The model is a state transition graph
(more precisely an E-LTS), in which each node represents a different GUI state, and each edge
between two nodes represents the test input event that triggered the state transition. A state
node contains GUI information and state variables (e.g., already executed user inputs), and
an event edge contains details about the start (source) and the arrival (target) GUI state, the
widget on which the test input has been injected, and the performed action.
PoLiUToDroid retains the information of all the visited GUI states in a graph data structure
(GUI Graph) where each vertex is a GUI State object, and each edge is GUI Event object.
For exploring the application under test PoLiUToDroid follows a depth-first search approach
on the dynamically built GUI Graph. In particular, the algorithm implemented by PoLiUTo-
Droid allows to avoid redundant test input choices and to minimize the number of restarts of
the AUT.

The principle we use to distinguish between different GUI States is based on the Multi-
level GUI Comparison Criteria (see Section 3.4) and implemented through a GUI State signa-
ture (made as in Code 4.2). It allows to achieve an appropriate (user-configurable) abstraction
level of the GUI model in order to avoid both to represent fewer app’s behaviors than those
that can actually be manifested and to incur to state explosion problems.
We extended the multi-level comparison model to handle the cases where the AUT delegates
to other apps the task of certain actions (e.g., taking photos by camera), making the imple-
mentation capable of acting on apps with different packages than the one of the test’s target
application. In this regard, relying on a configurable parameter (i.e., the maximum depth of
the graph reachable outside the target package), PoLiUToDroid restricts the exploration of
apps that do not belong to the AUT’s package.

2adb is a command-line tool, delivered with Android SDK, that provides communication between a development
machine and an Android device.

3dumpsys is a tool that runs on Android devices and provides diagnostic information about system services.
4logcat is a command-line tool able to dump the internal log of the Android operating system, including appli-

cation traces.
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In the following (simplified) Java code snippet 4.2, it is shown how, depending on the max-
imum comparison level considered (line 4), each GUI State build its signature (line 32) by
concatenating (from the highest to lowest level) the information related to:

5: textual and descriptive contents related to the widgets that are in the layout5,

4: the executable features of each executable widget (lines 5-12),

3: the layout widget CISs (lines 13-20),

2: the name of the Activity (lines 24-26),

1: and the package to which the GUI State belongs (lines 27-29).

Code 4.2: Multi-level GUI comparison criteria implemented as signature

1 p r i v a t e void parseSignature ( ) {
2 S t r i n g B u i l d e r s t r i n g B u i l d e r = new S t r i n g B u i l d e r ( " " ) ;
3

4 switch ( Config . sComparisonLevel ) {
5

6 case 5 :
7 // Contents comparison l e v e l
8

9 f o r ( GuiWidget guiWidget : executableWidgets ) {
10 S t r i n g t e x t = getTextFromWidget ( guiWidget ) ;
11 S t r i n g desc = getContentDescriptionFromWidget ( guiWidget ) ;
12

13 s t r i n g B u i l d e r . append ( t e x t ) . append ( desc ) ;
14 }
15

16 case 4 :
17 // Executable widget comparison l e v e l
18

19 S t r i n g execSignature = " " ;
20 // Concat executab le property values
21 f o r ( GuiWidget guiWidget : executableWidgets )
22 execSignature += guiWidget . getExecPropertyValue ( ) ;
23

24 s t r i n g B u i l d e r . i n s e r t ( 0 , " : " + execSignature ) ;
25

26 case 3 :
27 // Layout widget comparison l e v e l
28

29 s t r i n g B u i l d e r . i n s e r t ( 0 , " : " + layoutCIS . t o S t r i n g ( ) ) ;
30

31 case 2 :
32 // A c t i v i t y activityName comparison l e v e l
33

34 s t r i n g B u i l d e r . i n s e r t ( 0 , " : " + activityName ) ;
35

36 case 1 :
37 // Package comparison l e v e l
38

39 s t r i n g B u i l d e r . i n s e r t ( 0 , pkg ) ;
40 }
41

42 s i gnatu re = s t r i n g B u i l d e r . t o S t r i n g ( ) ;
43 }

Each GUI State is essentially a detailed widget tree (GUI State-related hierarchical layout
representation) where each widget is uniquely distinguished within a GUI State by its CIS.
PoLiUToDroid is able to test the widgets by click, long click and check actions in order to
explore the app; In future work, we would like to implement scroll, swipe, and screen rotation
actions as well.

Each widget is characterized by a set of actions that are available on it (the δ function 4.1.1)
and another set that represents the inputs that have not yet been tested on it (the λ function
4.1.1).

5For reasons of efficiency, we decided to consider only the contents of the executable widgets.
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We decided to implement these features by using a method similar to the mechanism used by
Unix systems to determine its file system permissions. In particular, each executable action is
represented by a distinct number such that each mixed sum represents, without ambiguity, a
specific set of actions. Hence, when added together for defining δ and λ, it is always possible
to exactly determine which actions have to be considered on the widget.

Table 4.1: Widget executable values

Action Value

CLICK 1

LONG CLICK 2

CHECK 4

Furthermore, all GUI components currently visible on the device screen that have type Edit-
Text (i.e., textual input fields) will be randomly filled with predefined strings.
The BACK button will only be used in the cases provided by the algorithm. Instead, the
launch of the AUT will be performed in cases where the algorithm expects to perform the
restart operation either when the screen in the foreground is the launcher (e.g., when the
BACK button exits the application).
After each input injection, PoLiUToDroid exploits the UI Automator APIs for waiting until
the app reaches a stable state and monitors the state changes and then updates the model. If
the GUI state is changed, it adds a GUI Event edge and the new GUI State to the GUI Graph;
Otherwise, it updates the state variables of the involved GUI states.

Motivated by the concepts outlined in the Section 3.2, we implemented the input send-
ing so that the exploration, however automatic, is as much human-like as possible (to avoid
being detected by malware). In this regard, we perform tap touch operations on random
coordinates within the target widget’s surface and wait a random, but reasonable, timeout
between one action and the other. Moreover, each widget will be tagged as NAF (Not Ac-
cessibility Friendly) if it is not "humanly accessible" (e.g., as tiny). In addition to check if the
widget presents text or content description (as done by UI Automator framework), PoLiUTo-
Droid checks whether the widget has a higher size than a threshold. In particular, a widget is
considered NAF if it has a surface that is less than a certain percentage of the entire screen.

Code 4.3: Function for determining the human visibility of a widget

1 p r i v a t e boolean isHumanVisible ( GuiWidget guiWidget ) {
2

3 // Rectangle c h a r a c t e r i z i n g the widget ’ s s u r f a c e
4 Rect r e c t = guiWidget . getVisibleBounds ( ) ;
5

6 // P i x e l area of the r e c t a n g l e ( i . e . , of the widget ) on the screen
7 i n t pixelWidgetSurface = r e c t . width ( ) ∗ r e c t . height ( ) ;
8

9 // Percentage screen widget ’ s occupancy
10 f l o a t widgetOccupancy = pixelWidgetSurface / ( f l o a t ) Config . sDisplayResolution ;
11

12 // Check i f the widget ’ s s u r f a c e i s g r e a t e r or equal to a v i s i b i l i t y threshold
13 i f ( widgetOccupancy >= Config . sMinWidgetSurfacePercentage ) {
14 // Humanly v i s i b l e
15 re turn true ;
16 } e l s e {
17 // Not humanly v i s i b l e
18 re turn f a l s e ;
19 }
20 }
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Table 5.1: PoLiUToDroid: code coverage

Package AUT Time (s) Class coverage (%) Class coverage Method coverage (%) Method coverage Block coverage (%) Block coverage

ch.hgdev.toposuite 2197 18% 101/573 12% 419/3609 10% 6952/72032

com.achep.acdisplay 176 39% 252/639 28% 848/3038 25% 20472/82898

com.gladis.tictactoe 7 26% 36/141 18% 157/896 9% 3136/36434

com.glanznig.beepme 187 29% 44/152 24% 227/929 21% 6374/30203

com.khuttun.notificationnotes 96 41% 12/29 65% 43/66 35% 1037/2926

com.luk.timetable2 129 7% 41/583 3% 129/5006 2% 2473/116559

com.pindroid 59 17% 35/204 11% 107/970 8% 2012/24161

com.secuso.privacyFriendlyCodeScanner 89 30% 123/409 22% 522/2353 12% 17202/145921

com.secuso.torchlight2 31 15% 3/20 37% 16/43 17% 264/1547

com.yasfa.views 1589 22% 36/165 17% 104/628 18% 6199/34283

cx.hell.android.pdfview 297 16% 11/67 12% 49/395 16% 2061/12765

de.markusfisch.android.shadereditor 781 72% 72/100 67% 438/649 60% 7705/12908

fr.mobdev.goblim 1088 39% 22/57 35% 56/160 19% 935/4903

fr.xtof54.scrabble 579 39% 13/33 42% 58/139 76% 10535/13904

jp.takke.cpustats 119 81% 17/21 79% 89/112 30% 2142/7131

me.anuraag.grader 10 19% 10/52 11% 19/174 10% 381/3762

net.olejon.spotcommander 626 29% 65/225 23% 265/1171 24% 7267/29708

net.sourceforge.opencamera 858 48% 80/166 41% 555/1342 37% 15922/42936

org.androidsoft.games.memory.tux 139 48% 21/44 75% 161/214 76% 2388/3157

org.mumod.android 237 15% 45/306 9% 164/1761 6% 2914/48276

org.openintents.notepad 253 48% 50/104 46% 213/465 40% 5215/13041

org.petero.droidfish 421 48% 181/377 47% 985/2118 57% 56715/100020

org.pyneo.maps 197 31% 113/363 26% 544/2131 24% 15987/66423

org.scoutant.blokish 809 41% 24/58 39% 93/241 40% 3571/8986

org.tmurakam.presentationtimer 93 100% 11/11 88% 66/75 86% 1262/1463

org.zamedev.gloomydungeons1hardcore.opensource 45 82% 90/110 67% 402/596 63% 18476/29199

ru.valle.btc 1126 14% 135/992 7% 507/6853 7% 20675/285754

se.tube42.drum.android 8 69% 191/276 48% 824/1730 38% 19819/52636

se.tube42.kidsmem.android 7 67% 186/277 46% 795/1732 36% 18999/53340
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Table 5.2: DroidBot: code coverage (with equal testing time of Table 5.1)

Package AUT Time (s) Class coverage (%) Class coverage Method coverage (%) Method coverage Block coverage (%) Block coverage

ch.hgdev.toposuite 2197 13% 75/573 8% 297/3609 10% 7530/72032

com.achep.acdisplay 176 31% 196/639 20% 599/3038 18% 15165/82898

com.gladis.tictactoe 7 26% 36/141 18% 158/896 9% 3152/36434

com.glanznig.beepme 187 29% 44/152 23% 216/929 20% 6058/30203

com.khuttun.notificationnotes 96 31% 9/29 48% 32/66 28% 815/2926

com.luk.timetable2 129 7% 41/583 2% 109/5006 2% 2144/116559

com.pindroid 59 15% 30/204 9% 92/970 7% 1785/24161

com.secuso.privacyFriendlyCodeScanner 89 30% 123/409 23% 537/2353 13% 18753/145921

com.secuso.torchlight2 31 15% 3/20 37% 16/43 17% 260/1547

com.yasfa.views 1589 44% 73/165 34% 214/628 29% 9921/34283

cx.hell.android.pdfview 297 16% 11/67 10% 41/395 15% 1913/12765

de.markusfisch.android.shadereditor 781 49% 49/100 46% 298/649 41% 5336/12908

fr.mobdev.goblim 1088 39% 22/57 38% 60/160 21% 1031/4903

fr.xtof54.scrabble 579 N/A N/A N/A N/A N/A N/A

jp.takke.cpustats 119 71% 15/21 64% 72/112 23% 1651/7131

me.anuraag.grader 10 0% 0/52 0% 0/174 0% 0/3762

net.olejon.spotcommander 626 29% 66/225 23% 273/1171 27% 7985/29708

net.sourceforge.opencamera 858 34% 57/166 36% 489/1342 31% 13186/42936

org.androidsoft.games.memory.tux 139 48% 21/44 75% 161/214 76% 2387/3157

org.mumod.android 237 11% 34/306 6% 114/1761 4% 1847/48276

org.openintents.notepad 253 50% 52/104 46% 213/465 42% 5530/13041

org.petero.droidfish 421 39% 147/377 35% 740/2118 27% 27205/100020

org.pyneo.maps 197 23% 85/363 18% 384/2131 17% 11331/66423

org.scoutant.blokish 809 41% 24/58 37% 88/241 37% 3341/8986

org.tmurakam.presentationtimer 93 82% 9/11 61% 46/75 71% 1039/1463

org.zamedev.gloomydungeons1hardcore.opensource 45 79% 87/110 66% 392/596 63% 18332/29199

ru.valle.btc 1126 N/A N/A N/A N/A N/A N/A

se.tube42.drum.android 8 70% 192/276 50% 865/1730 39% 20619/52636

se.tube42.kidsmem.android 7 0% 0/277 0% 0/1732 0% 0/53340
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Table 5.3: DroidBot: code coverage (with max testing time of Table 5.1)

Package AUT Time (s) Class coverage (%) Class coverage Method coverage (%) Method coverage Block coverage (%) Block coverage

ch.hgdev.toposuite 2197 16% 90/573 10% 345/3609 11% 7948/72032

com.achep.acdisplay 2197 41% 263/639 28% 865/3038 25% 20690/82898

com.gladis.tictactoe 2197 N/A N/A N/A N/A N/A N/A

com.glanznig.beepme 2197 N/A N/A N/A N/A N/A N/A

com.khuttun.notificationnotes 2197 41% 12/29 70% 46/66 37% 1088/2926

com.luk.timetable2 2197 7% 41/583 2% 113/5006 2% 2262/116559

com.pindroid 2197 N/A N/A N/A N/A N/A N/A

com.secuso.privacyFriendlyCodeScanner 2197 30% 124/409 23% 541/2353 13% 18589/145921

com.secuso.torchlight2 2197 15% 43891 40% 17/43 18% 275/1547

com.yasfa.views 2197 44% 72/165 34% 213/628 29% 9899/34283

cx.hell.android.pdfview 2197 N/A N/A N/A N/A N/A N/A

de.markusfisch.android.shadereditor 2197 N/A N/A N/A N/A N/A N/A

fr.mobdev.goblim 2197 39% 22/57 36% 58/160 19% 921/4903

fr.xtof54.scrabble 2197 N/A N/A N/A N/A N/A N/A

jp.takke.cpustats 2197 81% 17/21 79% 89/112 31% 2231/7131

me.anuraag.grader 2197 31% 16/52 21% 37/174 17% 651/3762

net.olejon.spotcommander 2197 29% 66/225 23% 273/1171 27% 7985/29708

net.sourceforge.opencamera 2197 41% 68/166 40% 541/1342 33% 14303/42936

org.androidsoft.games.memory.tux 2197 45% 20/44 72% 155/214 73% 2301/3157

org.mumod.android 2197 N/A N/A N/A N/A N/A N/A

org.openintents.notepad 2197 N/A N/A N/A N/A N/A N/A

org.petero.droidfish 2197 38% 143/377 34% 713/2118 26% 26233/100020

org.pyneo.maps 2197 N/A N/A N/A N/A N/A N/A

org.scoutant.blokish 2197 48% 28/58 39% 94/241 38% 3417/8986

org.tmurakam.presentationtimer 2197 82% 9/11 63% 47/75 74% 1088/1463

org.zamedev.gloomydungeons1hardcore.opensource 2197 81% 89/110 68% 404/596 64% 18617/29199

ru.valle.btc 2197 N/A N/A N/A N/A N/A N/A

se.tube42.drum.android 2197 N/A N/A N/A N/A N/A N/A

se.tube42.kidsmem.android 2197 N/A N/A N/A N/A N/A N/A
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Table 5.4: Monkey: code coverage (with equal event count of Table 5.1)

Package AUT Event count Class coverage (%) Class coverage Method coverage (%) Method coverage Block coverage (%) Block coverage

ch.hgdev.toposuite 999 3% 20/573 2% 59/3609 2% 1392/72032

com.achep.acdisplay 141 24% 152/639 14% 422/3038 12% 9709/82898

com.gladis.tictactoe N/A N/A N/A N/A N/A N/A N/A

com.glanznig.beepme 101 12% 19/152 9% 82/929 5% 1658/30203

com.khuttun.notificationnotes 57 17% 5/29 24% 16/66 8% 232/2926

com.luk.timetable2 92 2% 11/583 1% 40/5006 1% 656/116559

com.pindroid 23 15% 30/204 9% 90/970 7% 1757/24161

com.secuso.privacyFriendlyCodeScanner 51 1% 3/409 0% 10/2353 0% 160/145921

com.secuso.torchlight2 14 10% 2/20 14% 6/43 9% 141/1547

com.yasfa.views 392 26% 43/165 15% 92/628 14% 4955/34283

cx.hell.android.pdfview 216 13% 9/67 9% 37/395 14% 1793/12765

de.markusfisch.android.shadereditor 415 29% 29/100 30% 196/649 28% 3649/12908

fr.mobdev.goblim 999 39% 22/57 31% 49/160 18% 865/4903

fr.xtof54.scrabble 263 36% 12/33 35% 49/139 75% 10461/13904

jp.takke.cpustats 65 62% 13/21 43% 48/112 12% 873/7131

me.anuraag.grader N/A N/A N/A N/A N/A N/A N/A

net.olejon.spotcommander 222 15% 33/225 9% 101/1171 5% 1464/29708

net.sourceforge.opencamera 686 28% 47/166 29% 386/1342 25% 10634/42936

org.androidsoft.games.memory.tux 66 23% 10/44 23% 50/214 26% 814/3157

org.mumod.android 114 10% 32/306 6% 98/1761 4% 1723/48276

org.openintents.notepad 172 16% 17/104 7% 31/465 4% 535/13041

org.petero.droidfish 140 37% 140/377 32% 671/2118 24% 23979/100020

org.pyneo.maps 142 23% 84/363 17% 357/2131 15% 10212/66423

org.scoutant.blokish 289 29% 17/58 28% 67/241 35% 3187/8986

org.tmurakam.presentationtimer 50 45% 5/11 32% 24/75 41% 600/1463

org.zamedev.gloomydungeons1hardcore.opensource 26 27% 30/110 11% 66/596 5% 1485/29199

ru.valle.btc 426 0% 0/992 0% 0/6853 0% 0/285754

se.tube42.drum.android N/A N/A N/A N/A N/A N/A N/A

se.tube42.kidsmem.android N/A N/A N/A N/A N/A N/A N/A
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Table 5.5: Monkey: code coverage (with equal testing time of Table 5.1)

Package AUT Event count Class coverage (%) Class coverage Method coverage (%) Method coverage Block coverage (%) Block coverage

ch.hgdev.toposuite 43960 12% 70/573 7% 262/3609 9% 6766/72032

com.achep.acdisplay 1920 39% 250/639 28% 838/3038 25% 20644/82898

com.gladis.tictactoe 2580 0% 0/141 0% 0/896 0% 0/36434

com.glanznig.beepme 15620 19% 29/152 14% 128/929 8% 2275/30203

com.khuttun.notificationnotes 21760 17% 5/29 26% 17/66 9% 251/2926

com.luk.timetable2 12540 7% 40/583 2% 99/5006 2% 2050/116559

com.pindroid 8440 17% 35/204 11% 106/970 8% 1974/24161

com.secuso.privacyFriendlyCodeScanner 16200 30% 123/409 23% 543/2353 13% 18892/145921

com.secuso.torchlight2 22520 15% 3/20 40% 17/43 18% 274/1547

com.yasfa.views 3540 N/A N/A N/A N/A N/A N/A

cx.hell.android.pdfview 160 13% 9/67 11% 43/395 15% 1917/12765

de.markusfisch.android.shadereditor 3740 48% 48/100 44% 287/649 42% 5366/12908

fr.mobdev.goblim 1180 39% 22/57 38% 60/160 20% 982/4903

fr.xtof54.scrabble 1800 N/A N/A N/A N/A N/A N/A

jp.takke.cpustats 640 81% 17/21 75% 84/112 29% 2096/7131

me.anuraag.grader 31800 21% 11/52 12% 21/174 12% 464/3762

net.olejon.spotcommander 5940 29% 65/225 20% 238/1171 22% 6634/29708

net.sourceforge.opencamera 11600 30% 50/166 31% 414/1342 29% 12272/42936

org.androidsoft.games.memory.tux 2380 45% 20/44 73% 156/214 73% 2298/3157

org.mumod.android 220 12% 38/306 7% 129/1761 5% 2182/48276

org.openintents.notepad 17180 38% 39/104 32% 149/465 31% 4022/13041

org.petero.droidfish 2780 44% 164/377 38% 813/2118 29% 29224/100020

org.pyneo.maps 4740 27% 97/363 22% 473/2131 20% 12982/66423

org.scoutant.blokish 5060 41% 24/58 43% 103/241 45% 4069/8986

org.tmurakam.presentationtimer 3940 91% 10/11 77% 58/75 78% 1146/1463

org.zamedev.gloomydungeons1hardcore.opensource 1860 79% 87/110 66% 395/596 65% 19036/29199

ru.valle.btc 920 N/A N/A N/A N/A N/A N/A

se.tube42.drum.android 160 70% 193/276 49% 855/1730 40% 21074/52636

se.tube42.kidsmem.android 160 N/A N/A N/A N/A N/A N/A
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Table 5.6: Monkey: code coverage (with max testing time of Table 5.1)

Package AUT Event count Class coverage (%) Class coverage Method coverage (%) Method coverage Block coverage (%) Block coverage

ch.hgdev.toposuite 43960 12% 70/573 7% 262/3609 9% 6766/72032

com.achep.acdisplay 43960 39% 250/639 28% 838/3038 25% 20644/82898

com.gladis.tictactoe 43960 0% 0/141 0% 0/896 0% 0/36434

com.glanznig.beepme 43960 19% 29/152 14% 128/929 8% 2275/30203

com.khuttun.notificationnotes 43960 17% 5/29 26% 17/66 9% 251/2926

com.luk.timetable2 43960 7% 40/583 2% 99/5006 2% 2050/116559

com.pindroid 43960 17% 35/204 11% 106/970 8% 1974/24161

com.secuso.privacyFriendlyCodeScanner 43960 30% 123/409 23% 543/2353 13% 18892/145921

com.secuso.torchlight2 43960 15% 3/20 40% 17/43 18% 274/1547

com.yasfa.views 43960 N/A N/A N/A N/A N/A N/A

cx.hell.android.pdfview 43960 13% 9/67 11% 43/395 15% 1917/12765

de.markusfisch.android.shadereditor 43960 48% 48/100 44% 287/649 42% 5366/12908

fr.mobdev.goblim 43960 39% 22/57 38% 60/160 20% 982/4903

fr.xtof54.scrabble 43960 N/A N/A N/A N/A N/A N/A

jp.takke.cpustats 43960 81% 17/21 75% 84/112 29% 2096/7131

me.anuraag.grader 43960 21% 11/52 12% 21/174 12% 464/3762

net.olejon.spotcommander 43960 29% 65/225 20% 238/1171 22% 6634/29708

net.sourceforge.opencamera 43960 30% 50/166 31% 414/1342 29% 12272/42936

org.androidsoft.games.memory.tux 43960 45% 20/44 73% 156/214 73% 2298/3157

org.mumod.android 43960 12% 38/306 7% 129/1761 5% 2182/48276

org.openintents.notepad 43960 38% 39/104 32% 149/465 31% 4022/13041

org.petero.droidfish 43960 44% 164/377 38% 813/2118 29% 29224/100020

org.pyneo.maps 43960 27% 97/363 22% 473/2131 20% 12982/66423

org.scoutant.blokish 43960 41% 24/58 43% 103/241 45% 4069/8986

org.tmurakam.presentationtimer 43960 91% 10/11 77% 58/75 78% 1146/1463

org.zamedev.gloomydungeons1hardcore.opensource 43960 79% 87/110 66% 395/596 65% 19036/29199

ru.valle.btc 43960 N/A N/A N/A N/A N/A N/A

se.tube42.drum.android 43960 70% 193/276 49% 855/1730 40% 21074/52636

se.tube42.kidsmem.android 43960 N/A N/A N/A N/A N/A N/A
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5.2 PoLiUToDroid vs DroidBot

This section compares the best results achieved by PoLiUToDroid with the best results ob-
tained by DroidBot; The first data is always related to the tool to which the best results are
considered in that context.

Table 5.7: Block coverage PoLiUToDroid top 10: comparison with DroidBot

PoLiUToDroid DroidBot
Package AUT Time (s)

Block coverage (%) Block coverage Block coverage (%) Block coverage

org.tmurakam.presentationtimer 93 86% 1262/1463 71% 1039/1463

org.androidsoft.games.memory.tux 139 76% 2388/3157 76% 2387/3157

fr.xtof54.scrabble 579 76% 10535/13904 N/A N/A

org.zamedev.gloomydungeons1hardcore.opensource 45 63% 18476/29199 63% 18332/29199

de.markusfisch.android.shadereditor 781 60% 7705/12908 41% 5336/12908

org.petero.droidfish 421 57% 56715/100020 27% 27205/100020

org.openintents.notepad 253 40% 5215/13041 42% 5530/13041

org.scoutant.blokish 809 40% 3571/8986 37% 3341/8986

se.tube42.drum.android 8 38% 19819/52636 39% 20619/52636

net.sourceforge.opencamera 858 37% 15922/42936 31% 13186/42936

Table 5.8: Block coverage DroidBot top 10: comparison with PoLiUToDroid

DroidBot PoLiUToDroid
Package AUT Time (s)

Block coverage (%) Block coverage Block coverage (%) Block coverage

org.androidsoft.games.memory.tux 139 76% 2387/3157 76% 2388/3157

org.tmurakam.presentationtimer 93 71% 1039/1463 86% 1262/1463

org.zamedev.gloomydungeons1hardcore.opensource 45 63% 18332/29199 63% 18476/29199

org.openintents.notepad 253 42% 5530/13041 40% 5215/13041

de.markusfisch.android.shadereditor 781 41% 5336/12908 60% 7705/12908

se.tube42.drum.android 8 39% 20619/52636 38% 19819/52636

org.scoutant.blokish 809 37% 3341/8986 40% 3571/8986

net.sourceforge.opencamera 858 31% 13186/42936 37% 15922/42936

com.yasfa.views 1589 29% 9921/34283 18% 6199/34283

com.khuttun.notificationnotes 96 28% 815/2926 35% 1037/2926

Table 5.9: Block coverage DroidBot top 10 (with max testing time): comparison with PoLiUToDroid

DroidBot PoLiUToDroid
Package AUT Time (s)

Block coverage (%) Block coverage Block coverage (%) Block coverage

org.tmurakam.presentationtimer 2197 74% 1088/1463 86% 1262/1463

org.androidsoft.games.memory.tux 2197 73% 2301/3157 76% 2388/3157

org.zamedev.gloomydungeons1hardcore.opensource 2197 64% 18617/29199 63% 18476/29199

org.scoutant.blokish 2197 38% 3417/8986 40% 3571/8986

com.khuttun.notificationnotes 2197 37% 1088/2926 35% 1037/2926

net.sourceforge.opencamera 2197 33% 14303/42936 37% 15922/42936

jp.takke.cpustats 2197 31% 2231/7131 30% 2142/7131

com.yasfa.views 2197 29% 9899/34283 18% 6199/34283

net.olejon.spotcommander 2197 27% 7985/29708 24% 7267/29708

org.petero.droidfish 2197 26% 26233/100020 57% 56715/100020
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5.3 PoLiUToDroid vs Monkey

This section compares the best results achieved by PoLiUToDroid with the best results ob-
tained by Monkey; The first data is always related to the tool to which the best results are
considered in that context.

Table 5.10: Block coverage PoLiUToDroid top 10: comparison with Monkey (based on event count)

PoLiUToDroid Monkey
Package AUT Event count

Block coverage (%) Block coverage Block coverage (%) Block coverage

org.tmurakam.presentationtimer 50 86% 1262/1463 41% 600/1463

org.androidsoft.games.memory.tux 66 76% 2388/3157 26% 814/3157

fr.xtof54.scrabble 263 76% 10535/13904 75% 10461/13904

org.zamedev.gloomydungeons1hardcore.opensource 26 63% 18476/29199 5% 1485/29199

de.markusfisch.android.shadereditor 415 60% 7705/12908 28% 3649/12908

org.petero.droidfish 289 57% 56715/100020 35% 3187/8986

org.openintents.notepad 172 40% 5215/13041 4% 535/13041

org.scoutant.blokish 289 40% 3571/8986 35% 3187/8986

se.tube42.drum.android N/A 38% 19819/52636 N/A N/A

net.sourceforge.opencamera 686 37% 15922/42936 25% 10634/42936

Table 5.11: Block coverage PoLiUToDroid top 10: comparison with Monkey (based on testing time)

PoLiUToDroid Monkey
Package AUT Time (s)

Block coverage (%) Block coverage Block coverage (%) Block coverage

org.tmurakam.presentationtimer 93 86% 1262/1463 78% 1146/1463

org.androidsoft.games.memory.tux 139 76% 2388/3157 73% 2298/3157

fr.xtof54.scrabble 579 76% 10535/13904 N/A N/A

org.zamedev.gloomydungeons1hardcore.opensource 45 63% 18476/29199 65% 19036/29199

de.markusfisch.android.shadereditor 781 60% 7705/12908 42% 5366/12908

org.petero.droidfish 421 57% 56715/100020 29% 29224/100020

org.openintents.notepad 253 40% 5215/13041 31% 4022/13041

org.scoutant.blokish 809 40% 3571/8986 45% 4069/8986

se.tube42.drum.android 8 38% 19819/52636 40% 21074/52636

net.sourceforge.opencamera 858 37% 15922/42936 29% 12272/42936

Table 5.12: Block coverage Monkey top 10 (with max testing time): comparison with PoLiUToDroid

Monkey PoLiUToDroid
Package AUT Time (s)

Block coverage (%) Block coverage Block coverage (%) Block coverage

org.tmurakam.presentationtimer 2197 78% 1146/1463 86% 1262/1463

org.androidsoft.games.memory.tux 2197 73% 2298/3157 76% 2388/3157

org.zamedev.gloomydungeons1hardcore.opensource 2197 65% 19036/29199 63% 18476/29199

org.scoutant.blokish 2197 45% 4069/8986 40% 3571/8986

de.markusfisch.android.shadereditor 2197 42% 5366/12908 60% 7705/12908

se.tube42.drum.android 2197 40% 21074/52636 38% 19819/52636

org.openintents.notepad 2197 31% 4022/13041 40% 5215/13041

jp.takke.cpustats 2197 29% 2096/7131 30% 2142/7131

net.sourceforge.opencamera 2197 29% 12272/42936 37% 15922/42936

org.petero.droidfish 2197 29% 29224/100020 57% 56715/100020
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5.4. Average overall coverage rates

5.4 Average overall coverage rates

In this section, we show average results (of all apps with a valid coverage) achieved by each
tool, grouped by testing session.

Table 5.13: PoLiUToDroid: average overall coverage rates

Number of apps with valid coverage Class coverage Method coverage Block coverage

29 39,67% 36,02% 31,09%

Table 5.14: DroidBot: average overall coverage rates (with equal testing time of Table 5.1)

Number of apps with valid coverage Class coverage Method coverage Block coverage

25 36,90% 33,40% 27,50%

Table 5.15: DroidBot: average overall coverage rates (with max testing time of Table 5.1)

Number of apps with valid coverage Class coverage Method coverage Block coverage

17 41,72% 40,15% 31,61%

Table 5.16: Monkey: average overall coverage rates (with equal event count of Table 5.1)

Number of apps with valid coverage Class coverage Method coverage Block coverage

28 24,34% 19,31% 19,04%

Table 5.17: Monkey: average overall coverage rates (with equal testing time of Table 5.1)

Number of apps with valid coverage Class coverage Method coverage Block coverage

24 36,03% 32,89% 26,92%

Table 5.18: Monkey: average overall coverage rates (with max testing time of Table 5.1)

Number of apps with valid coverage Class coverage Method coverage Block coverage

21 35,21% 34,59% 27,72%
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5.4. Average overall coverage rates

Figure 5.6: Class coverage of the best available results

Figure 5.7: Method coverage of the best available results

Figure 5.8: Block coverage of the best available results
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5.5. PoLiUToDroid: CPU/Memory performance

5.5 PoLiUToDroid: CPU/Memory performance

In order to address RQ2.c and RQ3.c and, hence, demonstrate the efficiency (i.e., low resource
use) of our implementation, we reported in this section the performance of PoLiUToDroid
measured for the longest test run (that is, the test of TopoSuite).

Table 5.19: TopoSuite screen-based performance: top 10 CPU

Activity name Time elapsed (hh:mm) CPU usage Memory usage (KB)

MainActivity 00:00 11,2% 10868

MainActivity 00:01 12,1% 12417

CheminementOrthoActivity 00:08 9,8% 19027

OrthogonalImplantationActivity 00:10 9,9% 20731

CheminementOrthoActivity 00:23 20,5% 26935

PolarImplantationActivity 00:23 9,4% 27907

MainActivity 00:28 11,2% 29883

MainActivity 00:30 13,6% 30912

MainActivity 00:30 9,8% 31977

CheminementOrthoActivity 00:35 9,7% 29374

Table 5.20: TopoSuite screen-based performance: top 10 memory

Activity name Time elapsed (hh:mm) CPU% Memory (KB)

AxisImplantationActivity 00:34 3,7% 36131

LeveOrthoActivity 00:35 3,8% 36659

LeveOrthoActivity 00:35 2,4% 36683

CheminementOrthoActivity 00:35 3,7% 36406

CheminementOrthoActivity 00:35 3,6% 36418

LineCircleIntersectionActivity 00:35 6,3% 36574

PolarImplantationActivity 00:36 3,3% 36850

LineCircleIntersectionActivity 00:36 6,0% 36098

LineCircleIntersectionActivity 00:36 3,4% 36914

MainActivity 00:36 3,9% 36182

Figure 5.9: TopoSuite overall performance
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6 Discussion

In this chapter we discuss about our achievement. For an objective interpretation of these
results, we have also taken into account the criteria suggested by Choudhary, Gorla, and
Orso [38] for a general evaluation of an automatic input generation tools.

Main evaluation criteria

1. Ease of use. Usability is certainly a key factor for all tools, especially if they are just
research prototypes, as it highly affects their reuse.

2. Android framework compatibility. One of the major problems that Android develop-
ers have to constantly deal with is the fragmentation. Test input generation tools for
Android should therefore ideally run on devices that have different hardware charac-
teristics and use different releases of the Android framework, so that developers could
assess how their apps behave in different environments.

3. Code coverage achieved. The aim of test input generators should be to cover as much
behavior as possible of the app under test. Since code coverage is a commonly used
criterion for evaluating behavior coverage, we measured the statement (i.e., basic block)
coverage that each tool achieved on each benchmark and then compared the results of
the different tools.

4. Fault detection ability. The primary goal of testing tools is to expose existing faults
and, for this reason, it is convenient that they implement failure detection features.

6.1 Results

In general, code coverage is unable to give normalized information about the effectiveness
of test cases, but it can provide meaningful statistics when comparing different test cases on
the same app. Since the most critical resource for an input generator is the time, these tools
should be evaluated on the basis of how much coverage they can achieve within a certain
time limit. For this reason, in the Sections 5.2 and 5.3, we compared PoLiUToDroid’s results
with the best 10 benchmarks (in terms of block coverage percentage) obtained by running
DroidBot and Monkey with different time and event count (for Monkey) constraints.
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6.2. Method

In the first case, we limit the execution time by using the time that PoLiUToDroid spent to
test the same app. In this situation, we are able to extract information (reported in the Section

5.1.1) about the coverage/time ratio r. More precisely, it aims to represent the percentage of
code coverage per second that a testing tool is able to achieve. Even though slightly, PoLiU-
ToDroid obtains the best achievement.
In another case, we limit the execution time by using the maximum time spent by PoLiUTo-
Droid among all its tests, enabling each tool to achieve maximum results. Despite this, it is
rare that other tools get better results than PoLiUToDroid.
In the last case, only for Monkey, we limited the event count by using the number of events
generated by PoLiUToDroid to test the same app. As expected, we obtained results that
highlight the effectiveness of a systematic technique compared to a random one.

For each testing session, we calculated, and reported in the Section 5.4, the average of all
apps with a valid coverage. This information shows that PoLiUToDroid achieves on average
higher code coverage than other tools. We would like to point out that, albeit higher, the aver-
age code coverage rates in Table 5.15 are strongly influenced by the fact that it was impossible
to retrieve the code coverage information from most of the tested applications.

The graphs reported in Figures 5.3, 5.4 and 5.5 show the trend relationship between test
execution time and block coverage achieved. These data prove that our novel approach for
inferring the model and generating events can lead to better results in less time, particularly
if PoLiUToDroid will be enriched with other missing user inputs.

To further investigate these results, Figures 5.6, 5.7 and 5.8 present the boxplots (for which
an X indicates the mean) of the coverage results for apps. This analysis reveals that in most
applications there was no meaningful difference in code coverage between tools, but PoLiU-
ToDroid achieved the highest mean coverage across all available results, despite not imple-
menting some important features like scroll, swipe, and screen rotation.
We conclude that there is evidence that PoLiUToDroid can efficiently attain superior coverage
and, thus, discover a higher number of AUT’s behaviors.

Finally, in order to answer RQ2.c and RQ3.c, we analyze the performance of PoLiUTo-
Droid (and then of the active learning and exploration techniques) measured for the longest
test run (that is, the test of TopoSuite).
As can be seen from Table 5.20, the information retained for identifying a GUI state is largely
within the reach of any mobile device. Most information is expressed in the form of Strings
and tree structures or graphs, which are definitely efficient in both search and comparison.
Monitoring data presented in the Figure 5.9 shows a very low use of resources. In fact, by
deciding to map all the properties of a GUI state into a signature, the comparison method has
been reduced to the simple comparison between Strings, making the comparison operation
itself and the information retention simple and efficient. This mechanism allows to PoLiUTo-
Droid to be used in applications with a large number of screens.

6.2 Method

PoLiUToDroid implements a non-invasive automatic black-box UI testing technique for An-
droid mobile applications using a novel active learning approach. It is able to retrieve system
and application information and to inject user inputs to the device connected through ADB.
Both the monitoring and input phases are non-invasive because they are based on UiAutoma-
tion, UI Automator framework, and existing Android debugging/testing utilities, which are
embedded within Android. Nevertheless, the fact that PoLiUToDroid must be started via
ADB could provide malware a policy to decide not to manifest its malicious behavior and,
for this reason, this aspect should be considered for future work.

While exploring the application, PoLiUToDroid infers a model of the AUT based on the
information retrieved at runtime. The model leads the input generation to avoid redundant
test input choices thus aiming to optimize the strategy with which exploring the AUT itself.
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6.3. The work in a wider context: Testing & Security Awareness

The reason for this ineffectiveness may be that malware could require users to touch a
specific sequence of actions before getting into a malicious state.
In addition, PoLiUToDroid, as well as being easy to use like Monkey, is also more effective
in exploring applications as it uses a model-based strategy. PoLiUToDroid can also simulate
a human-like usage as well as generating events that refer to real device information (i.e.,
non-dummy) so that it can not be distinguished from a human user.

Finally, a feature present in PoLiUToDroid, but that should be improved, is that of error
detection and reporting. Currently, it is able to detect and manage "Application Not Re-
sponding" (ANR) dialog and crash and provides to the user human reproducible steps log.
According to studies conducted by Choudhary, Gorla, and Orso [38], "none of the Android
tools can identify failures other than runtime exceptions"; For this reason, we believe that this
may be one of the testing topics to be addressed in the future, with particular attention to the
generation of test cases for easily reproducing the identified failures.

6.3 The work in a wider context

Testing & Security Awareness

Cybersecurity is very important in a world such as today, where the network and mobile
devices dominate most of the social, business, economic, and political relationships.
With more than 2 billion monthly active users [23] and 2.8 million applications available on
Google’s digital market [25], the Android mobile world is faced with ever-growing volumes
of ever-evolving threats.
Nowadays, cybersecurity is critical to protect everyday life. Since people rely on technolog-
ical devices every day, their protection is really crucial to avoid that sensitive information
(such as bank, financial, personal and confidential information) could be acquired by third
parties without user consent.

Cybercrime is widespread, and is generally aimed at attacking software or devices in or-
der to trap sensitive information. Every day, companies and individuals are unknowingly
subject to various cyber attacks. More and more sophisticated threats emerge, while cyber-
criminals develop new techniques to bypass traditional security technologies. Traditional
security solutions such as anti-virus, firewall and intrusion prevention systems are no longer
able to provide complete protection, as well as often not being applicable to devices with lim-
ited capabilities such as smartphones. To overcome these gaps in security, new detection and
protection techniques are needed for new malware, and security has become a core concern
for the mobile business.

Vulnerabilities might occur due to various reasons, and more and more recent attacks are
associated with the way the mobile applications are used. Moreover, there is no doubt that
the software industry is experiencing a historic moment in which the quality is vital. In fact,
consumer and business users are constantly within an application-driven digital universe,
enabling them to benefit from services capable to determine the success of a company and
service.
In this scenario, automatic testing, combined with malware analysis techniques, could prove
to be both an effective threat detection technique, able to highlight malicious behaviors hid-
den in the apps, and, at the same time, a time-optimized method to ensure software quality.
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7 Conclusion

In this thesis we described a non-invasive automatic black-box UI testing technique for
Android mobile applications based on a novel active learning approach and presented PoLi-
UToDroid as a GUI Ripping-based implementation.

Our work started with the evaluation of the state-of-the-art approaches for automated GUI
testing of Android applications. This study has highlighted some shortcomings in the testing
techniques presented in the literature, both in terms of adequacy and versatility. To cope with
these limitations, we focused our studies on achieving a triple objective:

1. Investigate on a model-learning approach able to properly distinguish the different An-
droid apps GUI states;

2. Design a black-box testing technique that is not limited to analyze a single application,
but is therefore capable of interacting with, ideally, any app started by the AUT;

3. Realize a testing tool capable of operating as transparently as possible on limited ca-
pacity real devices, so that malicious applications can be analyzed avoiding that they
detect that they are operating in a testing environment.

Since a superficial and nowadays often inadequate comparison criterion (i.e., Activity-
based) is frequently used to determine the equality between two GUI states, we decided to
found our comparison mechanism on a multi-level GUI abstraction model.

We defined an extended version of a deterministic labeled transition system (E-LTS) to
describe event-driven systems such as Android applications, and a novel model learning al-
gorithm that aims to avoid redundant test input choices and minimize the number of restarts
of the system (e.g., a mobile app) under test.

Finally, since PoLiUToDroid was also intended for use in software security analysis, we
considered the evolution of Android malware in order to find appropriate countermeasures
to allow our tool to work without being detected.

In the rest of the chapter, we recap the research questions and give them a clear and concise
answer based on the studies carried out and the results obtained. Finally, we will announce
some possible future prospects.
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7.1. Answers to Research Questions

7.1 Answers to Research Questions

RQ1: Which GUI exploration techniques are most suitable for testing/analyzing closed

source, obfuscated and malicious apps?

After extensive research, we decided to base our Android mobile apps GUI exploration ap-
proach exclusively on dynamic techniques, both to avoid invasive (and therefore easily de-
tectable) operations on tested applications and to ensure bypassing certain types of honeypots
(e.g., feasible through exported Activities).

In particular, a black-box approach, usable in most cases, is based on the GUI ripping
technique; In this regard, we have relied on the UI Automator framework, which provides
simple APIs to detect and interact with UI graphical components, and on UiAutomation for
injecting ad hoc (human-like) user events on the connected device.
The use of these frameworks is in fact well-suited for developing automated tests without re-
lying on internal implementation details of the target app, so as to be able to test applications
regardless of whether their source code is unavailable or obfuscated.

By using UiAutomation, we can also generate event objects containing non-dummy val-
ues, so that malicious apps are not able to classify PoLiUToDroid as a testing/analysis tool.

RQ1.a: What could be the precautions to try to avoid that malicious applications detect

the activity of a testing/analysis tool?

Some precautions, implemented by PoLiUToDroid, that can be taken to avoid being identified
as an automatic testing tool are:

• Introduction of a reasonable random delay between performing consecutive inputs;

• Identification of NAF (Not Accessibility Friendly) components so that, if requested,
they will not be triggered by actions so as to avoid GUI honeypots;

• Injection of events characterized by real information (unlike those that are obtained by
using standard UI Automator APIs);

• Not relying on static techniques (e.g., parsing the Android Manifest or bytecode analy-
sis) in order to avoid honeypots.

RQ2: Which could be an effective GUI abstraction of GUI States?

The development of increasingly complex applications has led to the fact that the
ActivityØGUI state mapping being no longer enough to differentiate the various screens of a
GUI; In today’s applications, an Activity can in fact be characterized by multiple screens by
using dynamic Fragments.

For this reason, we are convinced that a multi-level GUI abstraction is necessary and suit-
able to characterize the different mobile app GUI states. With this approach it is possible
to take into account various AUT’s components, in order to avoid to represent fewer app’s
behaviors than those that can actually be manifested. At the same time, a configurable multi-
level GUI abstraction model makes the tester capable to adjust the level of abstraction with
which to analyze the app so as to avoid state explosion problems.

RQ2.a: How can GUI-related information be retrieved from closed-source apps?

Like many testing frameworks, UI Automator allows to retrieve information about any
graphic component on the screen of the connected device. Its APIs simply allow to identify
and interact with the GUI of the AUT without relying on invasive techniques. UI Automator
framework is in fact well-suited for writing black box-style automated tests and also provides
useful tools and features (e.g., cross-app UI testing) which make it appealing.
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7.1. Answers to Research Questions

RQ2.b: What GUI information is most useful for characterizing the GUI state?

For an event generation tool, it is crucial to distinguish all the graphical components that
make up a GUI, but also to identify the actions that can be triggered on each widget: The UI
Automator framework allows to access this information. However, we also want to be able
to operate on devices with limited resources and that is why we need to pay attention to the
amount of information we hold.

A GUI state can be identified by the information described in the Multi-level GUI com-
parison criteria section and implemented as described in the Method chapter. In particular,
we believe that a good trade-off of GUI abstraction level lies in the C-Lv4 of that model,
where the AUT’s package, Activity name, layout CISs and executable widget’s properties are
considered to characterize a GUI state.
To avoid redundant test inputs in the exploration strategy, it is also important to enrich each
GUI state with appropriate state variables. We decided to introduce the E-LTS model to de-
scribe an event-driven system like an Android mobile application, where such state variables
are the set of available actions and the set of inputs considered previously triggered on the
state; They play a key role in the proposed learning algorithm.

RQ2.c: Taking into account the need to operate on devices with limited resources, how

can GUI States be represented in an efficient way?

A suitable solution to minimize the use of embedded system resources and at the same time
maintain good efficiency in both search and comparison, is to represent much of the informa-
tion as strings and manage them in tree structures or graphs.
As we expected, the information kept by PoLiUToDroid is largely within the memory capac-
ity of any mobile device and also the CPU usage is minimal.

RQ3: Which could be an effective comparison criterion to distinguish the GUI States?

Based on the fact that Android applications have a hierarchical structure where a package can
include many Activities and each Activity can provide a hierarchical layout with multiple UI
components, we decided to consider multi-level comparison criteria to distinguish the GUI
states. In fact, a layered comparison model meets the needs to identify different screens
that belong to the same Activity, but also give the user the possibility to determine which
abstraction level is best suited to test the target application.

RQ3.a: What information needs to be considered to evaluate the equality between two

GUI States?

PoLiUToDroid identifies each GUI state by means of a signature, built on the basis of the
multi-level GUI abstraction model, which can then consider, depending on the user’s needs,
graphical contents and properties of executable widgets, as well as package and Activity to
which the screen belongs.

RQ3.b: How shall apps that start other apps be handled?

UI Automator testing framework allows to capture and manipulate UI components across
multiple apps. PoLiUToDroid, as it exploits UI Automator APIs, offers the ability to interact
with any application started by the target app. Therefore, this feature enable to manage all
those cases where the AUT delegates to external applications for accomplishing tasks (e.g.,
take a picture). Despite this being a common behavior in Android, we are not aware of other
testing tools able to handle it.
Moreover, to avoid state explosion problems, PoLiUToDroid can be configured by the user in
order to limit the depth reachable outside of the AUT package.
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7.2. Future work

RQ3.c: How can GUI state comparisons be implemented in an efficient and scalable way?

By deciding to map all the properties of a GUI state into a signature, the comparison method
is reduced to the simple verification of the equality of strings, making the comparison oper-
ation itself and the maintenance of the information simple and efficient. For these reasons,
the proposed mechanism allows to scale even on applications made up of a large number of
screens without compromising performance.

7.2 Future work

In future work we plan to extend PoLiUToDroid both to enrich it with other features and to
better integrate it into a security environment and malware analysis.

Firstly, we intend to consider other types of events (e.g., scroll, swipe and screen rotation)
in the exploration process, in order to trigger even more behaviors in Android applications.
For our own purposes, all actions performed by PoLiUToDroid must be characterized by
input objects containing real information (i.e., information regarding the hardware onboard),
and for this reason, it is not enough to implement them by using standard UI Automator
APIs.

Useful features that could be implemented are the generation of the learned model (us-
able by other model-based testing tools) and of test cases (in order to easily reproduce the
identified failures); For this purpose, the error detection capability should also be improved.

We also contemplate to improve the capability to identify not accessibility friendly UI
components by integrating a mechanism (e.g., image-based) to certainly determine the wid-
gets visibility from a human’s-eye point of view (e.g., if a widget has the same color as the
nearby pixels of background, it would be unrecognizable by a user).

Last but not least, the fact that PoLiUToDroid must be started via ADB provides malware
a policy to decide not to manifest its malicious behavior. For this reason, a security topic to
be discussed in the future should include masking this behavior (e.g., via system hooks) or
finding an alternative way to transparently run the tool.
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A Appendix

A.1 Workstation details and test settings

A.1.1 PoLiUToDroid configuration

• max-steps: 999

• max-depth: 30

• max-foreign-depth: 0

• max-runtime: 3600

• comparison-level: 4

• min-sleep-action: 0

• max-sleep-action: 0

• min-widget-percentage: 1

• test-naf: true

A.1.2 DroidBot configuration

droidbot ´a APK_PATH ´o OUTPUT_DIR
´keep_app ´keep_env
´i s_emulator ´grant_perm ´t imeout TIMEOUT

A.1.3 Monkey configuration

adb s h e l l monkey ´p PACKAGE ´́ t h r o t t l e 50 ´v
´́ ignore´crashes ´́ ignore´t imeouts
´́ ignore´s e c u r i t y ´except ions COUNTS
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A.1. Workstation details and test settings

A.1.4 Testing environment information

All tests has been performed in the following environment:

• Linux distribution: Ubuntu 17.04

• CPU details:

– Architecture: x86_64

– CPU op-mode(s): 32-bit, 64-bit

– Byte Order: Little Endian

– CPU(s): 4

– On-line CPU(s) list: 0-3

– Thread(s) per core: 2

– Core(s) per socket: 2

– Socket(s): 1

– NUMA node(s):1

– Vendor ID: GenuineIntel

– CPU family: 6

– Model: 142

– Model name: Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz

– Stepping: 9

– CPU MHz:819.165

– CPU max MHz: 3500,0000

– CPU min MHz: 400,0000

– BogoMIPS: 5808.00

– Virtualization: VT-x

– L1d cache: 32K

– L1i cache: 32K

– L2 cache: 256K

– L3 cache: 4096K

– NUMA node0 CPU(s):0-3

• Android Emulator:

– Device: Nexus 5X (Google)

– Target: Google APIs (Google Inc.)

– Based on: Android 7.0 (Nougat) Tag/ABI: google_apis/x86

– Skin: nexus_5x

– Sdcard: 100M
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