
Politecnico di Torino

Department of Control and Computer Engineering

Master’s degree in Computer Engineering

Data Mining in the Automotive
Industry for Predictive Maintenance

Analysis of the Oxygen Sensor Clogging Phenomenon

Supervisor

Elena Baralis

Co-supervisor

Tania Cerquitelli

Flavio Giobergia

Academic Year 2016-2017

2

Summary

The work presented in this thesis is focused on the topic of predictive mainte-

nance, or prognostics, approached with a data-driven perspective. Models that

use a data-driven approach to prognostics learn models directly from the data,

rather than using a hand-build model based on human expertise [1]. The topic

of prognostics has become particularly interesting in recent years: the arrival of

Internet-enabled everyday devices (the so-called Internet of Things) allows for the

automatic collection of data large amounts of data which can in turn be processed

and used for inferring the health conditions of the object being monitored.

This monitoring process suits particularly well the automotive industry: nowa-

days, vehicles are being loaded with sensors monitored with smarter, connected

Engine Control Units and, in a not-so-distant future, these vehicles will become

smarter still, with self-driving capabilities and even greater data-collection func-

tionalities. All this data being collected represents a precious resource that can

be used to extract insightful information and, as such, it should not go unused.

Predicting a vehicle’s malfunctionings is of vital importance for both the health of

the vehicle itself and for the safety of the passengers.

Given these premises, it follows naturally that all this data being collected

should be put to use in order to improve the maintenance operations on the vehi-

cle, in order to minimize possible risks. This is precisely the ambitious goal that

has been set for this work of thesis. The goal gets even more ambitious when con-

sidering that the problem is being approached with no expertise in the automotive

domain. This proved to be an advantage in that it did not introduce any kind of

bias in the elaboration of the results: these, though, have been evaluated by the

domain experts that collaborated on this project, helping consolidate or discard

conclusions.

The study started from some previously collected test bench data provided

by an automobile manufacturer, and with a problem the company was interested

in tackling using a data-driven approach. This problem concerns the oxygen (or

lambda) sensor which, if malfunctioning, degrades the performance of the vehicle,

with the excessive pollution and fuel consumption problems that come with it.

The data available has been studied using different data mining techniques in

3

order to gain insightful information from it and, from this, different predictive

models have been built. Their performance have been evaluated in different situa-

tions using different criteria to better understand the limitations and the potential

available.

A process comprised of three essential parts has been identified: these parts are

the labelling, the data preprocessing and the training of the classification models.

Each of these high-level parts contains different steps, based on the operations

required by the dataset. The data available is in the form of cycles, with each

one of them lasting approximately 1 hour and containing a collection of variables

measured on-board. Of particular interest is the fact that the labelling and the

data preprocessing operations are done on different datasets, given the structure

of the data available.

The training and the classification operations make use of different machine

learning models with complementary advantages and disadvantages. The results

have been measured in terms of accuracy, precision, recall and, in particular, of

F1 score, allowing for an estimation of the potential performance of the models

trained. The results are satisfactory, with high values in terms of the different

metrics used.

On top of this experiment, many others have been built. Many consist in the

redefinition of some components of the presented process in order to better un-

derstand which parts could be improved and which are the most robust. Other

experiments change the definition of the labels used for the dataset: the initial def-

inition provided has been discussed and changed: this helped better understanding

the rationale behind the decisions taken by the classifiers.

Finally, additional explorations of the dataset have been carried out: although

not strictly relevant to the goals of the project, these analyses uncovered inter-

esting information regarding the dataset and some problems contained within.

These problems consisted in the apparently unjustified existence of clusters of val-

ues within the dataset. This exploration first highlighted the existence of these

clusters, then tried to provide a description of them and, finally, it attempted to

provide a domain-agnostic explanation for their existence.

This work tackled a prognostics problem that has not been found to be covered

elsewhere in the literature, using a novel process tailored to the kind of data

available, but easily adaptable to different scenarios. Some of the limitations of

the datasets (e.g. the homogeneity of the tracks used) only allowed for limited

testing of the proposed solution: additional experimentations would be required

using real-world data instead of data collected from a test bench. This is scheduled

be done in the upcoming future.

This pilot project helped getting a better understanding of the potentials and

4

the limitations of data mining applied in an automotive context. It should be

mentioned that, for this work of thesis, only a “small” amount of data has been

used. As such, this work cannot be classified as a “big data” one. Despite that,

the scaling up of this work to handle the real-time data collected from millions of

vehicles undoubtedly requires a big data approach, with the benefits and problems

that come with it.

5

6

Acknowledgements

Almost exactly a year ago I started working on this thesis. Much has happened

since then, many doors opened and many others closed. Now the time has come

for me to close the “thesis” door as well, and what a door it is: to say that this

thesis has taught me a lot would be an understatement and, for that, I certainly

have to thank a lot of people. So, here comes.

First and foremost, my biggest thanks goes to professor Elena Baralis. She has

proven to be an excellent supervisor (not that I had doubts about it), extremely

pleasurable to work with, particularly insightful and always ready to help out when

I found myself in a tight spot (which occurred more times than I’m proud to admit).

An equally important acknowledgement goes to professor Tania Cerquitelli, who

first introduced me to the beauties of the DataBase and Data Mining Group and

saw to this project all the way to the end when others would have probably opted

for a more relaxing alternative in her stead (congratulations on the arrival of

Lorenzo, by the way!). Additional acknowledgements should go to professor Marco

Mellia for his involvement in the project (and I’d like to wish him the best of luck

for the ambitious endeavors he is currently working on) and to professor Letizia

Tanca for her kind availability as external supervisor for this thesis. I should also

immensely thank the people from the automotive company who took part in this

project: I could not have asked for a better group with whom to collaborate.

While this work of thesis took a good chunk of my time during this last year, I

would be remiss if I did not thank the people who surrounded me in my day-to-day

life. A huge, huge thanks goes to my parents, who had to put up with me not

only this past year, but the previous twenty-something ones as well, as did my

sister, who probably is the one person who got more stressed out than I did for

this thesis: an enormous thanks to her is definitely well deserved.

And last, I would like to thank all my friends and those who have been close

to me during this past year and the years before this. Many and more names

come to mind; writing them all here would significantly increase the length of

these Acknowledgements, which is already considerable. Despite that, I cannot

help but thank the one person who I felt closer than anybody else this past year,

who inspired me and helped me stay motivated, whose presence was enough to

7

motivate me to always strive for excellence.

The list of people could go on, but I guess this is a good moment to cut it

short. All the people I mentioned have changed my life for the better and I hope

that they are and will be, even slightly, proud of me. I know I am.

8

Contents

1 Introduction 17

1.1 Clogging of the oxygen sensor . 17

1.2 Prognostics . 17

1.3 Objectives . 18

1.4 Contents overview . 19

2 Literature review 21

3 Dataset overview 25

3.1 Dataset overview . 25

3.1.1 Test bench cycles . 25

3.1.2 Dual recording approach . 26

3.1.3 Variables overview . 29

3.1.4 Other considerations . 30

4 Process identification 31

4.1 Domain knowledge available . 31

4.2 Data mining process . 32

4.3 High-level process . 33

5 Label assignment 35

5.1 Response time measurement . 35

5.2 Labelling . 39

5.2.1 Definition of the number of classes 39

5.2.2 Definition of the threshold values 39

5.2.3 Smoothing of the response times 41

6 Data preprocessing 45

6.1 Feature selection . 45

6.1.1 Correlation-based feature selection 46

6.1.2 Tuning of the rmin parameter 49

6.1.3 Selection outcomes . 50

9

6.2 Data transformation . 51

6.2.1 Summarization of the signals 52

6.2.2 Summary statistics definition 52

6.2.3 Introduction of the derivatives 53

6.3 Mapping ProgramA to ProgramB 53

6.3.1 ProgramA timestamping . 54

6.3.2 ProgramB timestamping . 54

6.3.3 Overlapping ProgramA and ProgramB 54

7 Classification 55

7.1 Classification . 55

7.1.1 Classifiers used . 55

7.1.2 Validation . 59

7.1.3 Performance evaluation . 59

7.1.4 Results . 61

8 Process explorations 65

8.1 Feature selection process . 65

8.1.1 Category-ful feature selection 65

8.1.2 Feature selection in ProgramB 66

8.2 Response time measurement . 68

8.3 Exclusion of the smoothing process 71

8.4 Downsampling of the signals . 74

8.5 Exclusion of strong predictors . 75

8.5.1 Derivatives . 77

8.5.2 Oxygen variable . 77

8.6 Processing the Model2 dataset . 80

8.7 Precision-based tuning of the parameters 81

9 Labelling explorations 83

9.1 Red and green binary classifier . 83

9.2 Yellow cycles classification by binary classifier 84

9.3 Re-labelling of yellow cycles . 86

9.3.1 Yellow cycles as green . 87

9.3.2 Yellow cycles as red . 89

10 Clusters analysis 91

10.1 Anomalous variables grouping . 91

10.2 Consistency throughout the features 92

10.2.1 Definition of the clusters . 93

10

10.2.2 Inter-feature analysis . 94

10.2.3 Clusters definition through time 95

10.3 Description of the clusters . 96

10.3.1 Generation of buckets of values 96

10.3.2 FP growth and frequent itemsets 98

10.4 Possible causes . 104

11 Implementation details 107

11.1 Hardware . 107

11.2 Software . 107

12 Findings 109

12.1 Classification results . 109

12.1.1 Misclassifications . 109

12.1.2 Classifiers’ rationale . 110

12.2 Process manipulation outcomes . 112

12.2.1 Removal of the smoothing process 112

12.2.2 Effects of downsampling . 113

12.2.3 Exclusion of strong predictors 114

12.2.4 Application of the process to the Model2 dataset 115

12.3 Labelling experiments discussion . 115

12.3.1 Binary classifier . 116

12.3.2 Labelling of yellow cycles with the binary classifiers 117

12.3.3 Yellow cycles as green/red 117

12.4 Dataset clustering comments . 118

13 Conclusions 121

13.1 Novelty of the study . 122

13.2 Limitations . 123

13.3 Future work . 124

Bibliography 125

11

12

List of Figures

2.1 Trend for data-driven vs model-based prognostics in Google Scholar 22

3.1 Acceleration pedal signal, recorded with ProgramA (entire cycle) . . 27

3.2 Acceleration pedal signal, recorded with ProgramB (final 300 seconds) 28

3.3 Acceleration pedal signal, recorded with both ProgramA (in blue)

and ProgramB (in green) . 29

4.1 A visual representation of the typical data mining process 32

4.2 Block diagram for the identified process 33

4.3 Block diagram for the classification of unseen data 34

5.1 Oxygen level, as measured in ProgramB 36

5.2 Response time measurement process 36

5.3 Cut-off oxygen ramp, with sliding standard deviation 37

5.4 Response time trend throughout the experiment 38

5.5 Distribution of response times: the colors represent the assigned

classes based on the defined thresholds 40

5.6 Response time trend throughout the experiment. The horizontal

lines show the positions of the thresholds 42

5.7 Number of label switches occurring as k increases 42

5.8 Response time trend smoothed with different k values 43

6.1 Heatmap for the correlation matrix for a given cycle. The variable

names have been replaced with numbers for visualization’s sake . . 47

6.2 Number of features selected as rmin increases 50

7.1 Explanation of the k-fold validation procedure 60

7.2 Decision tree built using the available dataset 63

7.3 Confusion matrices for the three classifiers 64

7.4 Prediction bars for the three available classifiers. The topmost bar

represents the correct values, the following bars are gray if the pre-

diction made was correct, or green/yellow/red depending on the

(erroneous) prediction the classifier made 64

13

8.1 Original ramp approximated with 4 segments (represented using

different colors) . 70

8.2 Identification of the four segments 71

8.3 Comparison of the response times as measured using the two pro-

posed methods . 72

8.4 Prediction bars for the classifier using labels assigned without the

smoothing process . 73

8.5 F1 score for the classifiers evolution as the sampling frequency de-

creases . 74

8.6 Jensen-Shannon divergence between the original and the downsam-

pled distributions . 76

8.7 F1 score for the classifiers evolution as the sampling frequency de-

creases . 79

9.1 Decision tree built for the binary classifier 85

9.2 90th percentile of the derivative of the oxygen, by label. The vertical

line indicates the split chosen by the decision tree. The vertical jitter

has been introduced for visualization purposes 85

9.3 Precision bars for the binary classifier 86

9.4 Prediction bars for yellow cycles, as classified by the binary predictor 87

9.5 Prediction bars for the “yellow as green” binary classification problem 88

9.6 Prediction bars for the “yellow as red” binary classification problem 90

10.1 Scatter plot of mean and standard deviation of the cycles for the

variable variable temperature exh gas 1 92

10.2 Scatter plot of mean and standard deviation for 2 variables 92

10.3 Assignment of the clusters based on the mean and standard devia-

tion for the variable temperature exh gas 1 variable 93

10.4 Scatter plot of mean and standard deviation for 2 variables, colored

based on the clusters of Figure 10.3 94

10.5 Scatter plot of mean and standard deviation for the oxygen variable

and its derivative, colored based on the clusters of Figure 10.3 . . . 94

10.6 Distribution of the labels (top bar) and clusters (bottom bar) through-

out the cycles . 95

10.7 Bucketing of two of the variables using 1D k-means 98

10.8 Number of maximal frequent itemsets found for each cluster de-

pending on the minsup threshold 99

10.9 Mean and standard deviation trend of the gas pedal signal through-

out the cycles . 105

14

List of Tables

3.1 Differences between ProgramA and ProgramB 26

5.1 Ranges defined for the three classes 41

5.2 Cardinalities for the three identified classes 43

6.1 Features selected from ProgramA 51

7.1 Results for the classification problem 62

8.1 Features selected using a category-ful feature selection, by category 66

8.2 Features selected from ProgramB 67

8.3 Matching of features selected in ProgramA with those selected in

ProgramB . 69

8.4 Performance results for the classifiers trained with the dataset la-

belled without applying the smoothing process 73

8.5 Results for the classifier trained without the derivatives as inputs . 78

8.6 Results for the classifier trained without the oxygen variable as input 78

8.7 Cardinalities for the three identified classes 80

8.8 Performance results for the classifiers trained on the Model2 dataset 81

8.9 Performance results for the classifier optimized using precision as

the evaluation metric . 82

9.1 Results for the binary classification problem 84

9.2 Results for the “yellow as green” binary classification problem . . . 88

9.3 Results for the “yellow as red” binary classification problem 89

10.1 Description for cluster A . 100

10.2 Description for cluster B . 101

10.3 Description for cluster C . 102

10.4 Description for cluster D (outliers) 103

11.1 Server specifications . 107

15

16

Chapter 1

Introduction

1.1 Clogging of the oxygen sensor

In an automotive setting, the oxygen (or lambda) sensor is a device used to measure

the proportion of oxygen in the exhaust gas of an internal combustion engine. This

information is used to regulate the fuel injection so as to achieve optimal efficiency

and to determine whether the catalytic converter is performing properly.

This oxygen sensor is subject to clogging due to the accumulation of soot

contained in the exhaust gas the sensor is constantly exposed to. The clogging of

this sensor results in a slower measurement of the oxygen level.

In turn, this slower response implies a suboptimal behavior in terms of ef-

ficiency: the engine control unit (ECU) cannot determine the right combustion

mixture, resulting in an increase in the vehicle’s fuel consumption. Additionally,

given the sensor’s relevance for the catalytic converter, more harmful emissions are

released in the environment.

The situation is exacerbated by the fact that slower readings for the oxygen

sensor cannot be easily detected by the ECU: this implies that the clogging of the

lambda sensor is usually only detected when it is already too late, i.e. when (and

if, in many cases) the driver notices a significant increase in fuel consumption. This

happens because the slower response time cannot be noticed in a straightforward

manner by the ECU.

1.2 Prognostics

The typical way problems are detected is through diagnostics, whereby failures and

malfunctions are detected after they occur, possibly through the support of the

ECU itself (on-board diagnostics). Given the hard-to-notice nature of the lambda

sensor clogging, a different approach to the problem is in order.

17

The activity of prognostics consists in using the available information on a

system to make predictions on the problems that might occur in the near future.

This discipline is usually declined in either of two approaches:

• Model-based: this type of prognostics uses the available domain knowledge

to produce a physical model of the system of interest. The model can be

developed on different levels of detail, depending on the desired trade-off

between accuracy and simplicity

• Data-driven: this type of prognostics uses pattern recognition and machine

learning techniques to build agnostic predictive models

It is unlikely for a purely data-driven model to exist since, expertise in the domain

is required to some extent for both preparation of the data and interpretation of

the results. Even for model-based approaches, a data-driven component may exist.

The right term for these approaches would be “hybrid” but, since either of the two

is typically predominant, a distinction can be made between the two.

1.3 Objectives

This thesis will approach the oxygen sensor clogging problem with a data-driven

approach to prognostics, exploring the decisions made throughout the process

definition and implementation, as well as highlighting strengths and weaknesses

of this methodology. Finally, the results of the predictive model will be discussed

and conclusions about the overall work will be drawn.

The identified process will be presented in its final form after multiple revisions

and improvements. Alternative process choices, along with additional data explo-

rations will be presented in Chapters 8 through 10. Some of these explorations

are preparatory for a future extension of the project to a real-life scenario: while

this study focused on test bench datasets, the final goal of the project is that

of deploying the solution to millions of vehicles. This scaling up requires further

research that has only partly been covered by this study: despite that, this study

provides the foundations for further, more relevant experiments.

The decision of using a data-driven approach, rather than the traditional

model-based one, comes from the ever-increasing quantity of data available nowa-

days. ECUs collect data from hundreds of sensors dislocated all around the vehicle,

with extremely high sampling frequencies. If this amount of data is collected for

all the hundreds of millions of vehicles around the world, a big data opportunity

ensues. On top of that, there is an ever-increasing interest in autonomous vehicles:

this new technology would come with an even larger amount of data from all the

additional sensors that these vehicles require.

18

Getting ready for all of this is a cumbersome and daunting task, but the sooner

the first step in this direction is taken, the better. Working on a prognostics project

centered around the oxygen sensor is one of the ways a company can get exposure

to this new, data-driven world.

1.4 Contents overview

Chapter 1 provided an overview of the problem that will be faced in this work

of thesis, explaining the topic at hand and stating the objectives set. Chapter 2

offers a review of the literature found that is relevant to the topic of predictive

maintenance: this defines the state of the art and, by the end, an attempt to

highlight the main novel points of this work is made. Chapter 4 presents the

domain knowledge available and the standard data mining process: based on these

and on the initial objectives, an overview of the high-level process identified is

provided. Chapter 3 introduces the dataset available, highlighting the way this was

collected and the way it is structured: these considerations will be used throughout

the rest of the thesis to make considerations.

Chapter 5 offers an in-depth analysis of the first part of the identified process:

in particular, it covers the labelling process and the components it is comprised of

(response time measurement, smoothing, class definition and assignment). Chap-

ter 6 covers the data preprocessing operations, dividing them into feature selection

and data transformation. Chapter 7 presents the machine learning models used for

the classification of the dataset based on the clogginess and the evaluation metrics

and techniques used.

Chapter 8 shows how many of the assumptions made a priori based on some

rationale can and have been modified to support alternative approaches: when

available, the a posteriori results will be presented so as to compare the presented

solution with possible alternatives. Chapter 9 offers additional experiments, this

time based on the change in decisions made when defining the classes of values:

this highlights how changing these classes influences the performance of the mod-

els, with the interesting conclusions that come with it. Chapter 10 covers an

initially unscheduled further data exploration, aimed at uncovering an unexpected

behavior that led to the formation of well-defined clusters of data: these clusters

are analyzed, described and a possible cause for their existence is then proposed.

Chapter 11 provides a quick overview of the implementation details, specifying

the hardware and software tools and libraries used for this project. Chapter 12

shows the findings of this work of thesis, with comments concerning the most

interesting of the results achieved. Finally, Chapter 13 contains the conclusions of

this work, highlighting the most interesting takeaways, explaining the main points

19

of novelty and the major limitations, with final considerations on the possible

future outcomes for the project.

20

Chapter 2

Literature review

As everyday objects get smarter, the potential for early fault detection increases:

rather than waiting for a component to break down, an early detection might allow

for immediate intervention. This results in lower costs, less time wasted and more

satisfied customers. It is not surprising, then, that the interest in prognostics (at

times referred to as predictive maintenance) has grown significantly in the last

few years. The most common types of prognostics are the model-based and the

data-driven ones, along with hybrid approaches that leverage the advantages of

both. Figure 2.1 shows both how the topic of predictive maintenance has been

trending in recent years and how model-based prognostics is more recurring, when

compared to the more recently introduced data-driven one. The presented graph

is not intended to be exhaustive (additional keywords should have been used), but

it provides a clear idea of the increasing interest in the subject.

The topic of prognostics is often paired with that of health management, so

much so that the Prognostics and Health Management (PHM) is a recurring theme

in articles and conferences. The IEEE organizes every year the International Con-

ference on Prognostics and Health Management, while the PHM Society is an

organization solely dedicated to the promotion of the topic. Many of the publi-

cations that have been analyzed are from these two sources. Additionally, given

the current trend that has been observed in the prognostics-related publications,

these two sources are expected to provide insightful material for the years to come

and, as such, are worth keeping an eye on.

The topic of prognostics is too widespread and heterogeneous to be thoroughly

explored for understanding what the current state of the art in the automotive

industry is: many of the applications of PHM are found in fields that are only

weakly – if at all – related to the automotive field and can be safely left out in

order to narrow the research down to a more manageable number. The literature

review has been based on Scopus, a database of peer-reviewed research literature.

The initial research was based on the title, the abstract and the keywords,

21

1990 1995 2000 2005 2010 2015
year

0

1000

2000

3000

4000

5000

6000

G
oo

gl
e

S
ch

ol
ar

 r
es

ul
ts

modelbased prognostics
datadriven prognostics

Figure 2.1: Trend for data-driven vs model-based prognostics in Google Scholar1

using the words “prognostics” and “automotive”: this yielded 135 results. Of

these results, 16 have been excluded because of conflicting keywords that implied

scarce relevance to the topic of interest. The remaining 119 have been further

filtered, iteratively removing irrelevant material based on the contents of the ti-

tle, the abstract and finally the document itself. Most of the discarded contents

where either too general in nature (with the automotive setting being only briefly

mentioned), or too detailed (many of the prognostics documents discarded where

focusing on particularly narrow applications that were not significantly relevant,

such as the study of solder joints longevity). The final number of articles and

conference papers kept is of 30.

Of these documents, 5 are overviews covering different possible approaches to

prognostics: some of these approaches are model-based, while others are data-

driven. In some cases, these overviews briefly cover the “prognostics” topic as a

whole, providing possible algorithms for tackling the problems: this is the case

with “A review of recent trends in machine diagnosis and prognosis algorithms”,

where different approaches (among the others, Artificial Neural Networks and Ge-

netic Algorithms) are proposed, along with references to successful case studies for

each candidate. Other documents provide overviews of more specific systems and

analyze possible faults that might occur: this occurs, for example, in “Diagnostics

1Data from Google Scholar trends collected from https://csullender.com/scholar/

22

and prognostics needs and requirements for electrified vehicles powertrains”, where

Electric Vehicle (EV) powertrains are introduced, along with a series of possible

faults that might occur in it (in rotors, bearings, inverters and so on). This type of

documents provides interesting high-level insights of the prognostics field, either

concerning possible approaches, or presenting possible problems to tackle.

The rest of the articles are PHM case studies, similar in nature to the one that

is approached in this thesis. The parts (or subsystems) that have been studied

in these publications are many, although two intertwined targets appear to be of

major interest: batteries (6 documents) and electric vehicles (7 documents) are the

most recurring themes. These papers are mostly concerned with estimating the

State of Health (SoH) and the State of Charge (SoC) of batteries: for example, the

conference paper “A machine learning approach to predict future power demand

in real-time for a battery operated car” proposes a data-driven approach to the

estimation of the SoC in EVs that overcomes some of the problems that are part

of the limitations of the model-based solution.

Other problems that are tackled in literature concern the engine oil quality

[5], injector cylinders misfiring [6] and many others. Of these documents, only 4

expressly state that the predictive maintenance aspect can be carried out on-board,

that is without requiring the dismounting of the component or running specific

tests. Of the others, it is not trivial – given the lack of specific domain knowledge –

to understand whether an on-board implementation would be feasible, since many

of the publications either use simulators (such as “Estimation of damage behaviour

for model-based prognostic”, which simulates the suspensions of a vehicle) or, as

is the case with the already mentioned “A machine learning approach to predict

future power demand in real-time for a battery operated car”, miniaturized cars

are used instead of real ones. Despite the uncertainty due to the lack of domain

expertise, the clear takeaway from these considerations is that there is only a

limited number of works that are backed by real data and that can be easily run

on-board, thus providing a major strength for this work of thesis.

As far as algorithms are concerned, the most recurring one used (with 4 of the

30 papers analyzed using it) is the Kalman filter [8]. This filter is used to make

estimates of variables that cannot be measured directly, or variables that can be

measured using multiple, inaccurate (e.g. due to noise) sensors. In the study

proposed in “Remaining useful life prediction based on noisy condition monitor-

ing signals using constrained Kalman filter”, the authors use Kalman filtering to

estimate the remaining useful life (RUL) of lead-acid batteries: the problem that

the Kalman filter helped solving was the presence of noise affecting the signals

examined.

This chapter presented a portion of the literature available regarding prog-

23

nostics applied to the automotive industry. Some of the trends and approaches

have been shown, with some of the limitations identified. The research project

presented in this thesis will attempt to contribute to the existing literature by ap-

plying a data-driven approach to the oxygen sensor clogging problem: the dataset

used has been collected from a real engine (with all the advantages and drawbacks

of the case) and the model will be developed, if possible, so as to be online-ready

for actual vehicles (and not limited to simulators or mock-ups). The goal for the

model construction is that of making it as interpretable as possible, in order to

allow the domain experts to understand the reasoning behind the choices made.

The oxygen sensor has not been found to be in the available literature. Despite the

decision of approaching a single problem, but the study will attempt to identify a

methodology that can be adapted to different situations.

24

Chapter 3

Dataset overview

The study has been carried out in collaboration with an automobile manufacturer.

This company provided a large collection of previously collected test bench data,

along with the domain expertise required to validate intermediate and final results,

and the provision of feedback and support as needed.

3.1 Dataset overview

The dataset provided was collected in 2016 for other unrelated activities and was

repurposed for this study. The decision of using an already available dataset

resulted in a series of advantages: the collection of new data would have resulted

in significant additional costs and a delay in the start of the activity. On the other

hand, the collection activity was designed with a different purpose in mind and by

different engineers from the ones involved in this project: this complicated parts

of the study and affected some of the results. Considering that this was a pilot

project, these nuisances have been deemed more than acceptable.

3.1.1 Test bench cycles

The data available has been recorded in a controlled environment within the com-

pany. This controlled environment, called test bench, consists in a dedicated room

containing an engine continuously running: the ECU reads data from the sensors

and dedicated software collects it and stores it for later use. Other external sen-

sors (only available in this ad-hoc environment, but not “on the road”) are also

measured and stored.

The engines are controlled using a predefined track for the gas pedal (or acceler-

ator): this track simulates different driving conditions, depending on the purposes

of the test in place. The track used for this dataset was approximately 1 hour (3750

seconds) long. Each of these 1-hour runs is called a cycle. Cycles are executed one

25

after the other throughout the day.

Different contiguous groups of cycles for the same engine (which will be referred

to as “experiments”) were provided as part of the initial dataset. Of these experi-

ments, only a subset was deemed useful by the domain experts for this study: the

others, either because of underlying technicalities in the measurements, or because

of the scarce evidence of the clogging problem, have been set aside.

The remaining datasets contained the recordings for the engines of two different

vehicles, which will be referred to as Model1 and Model2. Other technical names

used for the data collection activities are not relevant to this study and have been

ignored: as such they will not be reported in this work.

For each cycle, different signals have been recorded: each of these signal (also

referred to, throughout the document, as variables) are either the output of sensors

dislocated throughout the engine, or are computed from other existing variables

using internal models.

3.1.2 Dual recording approach

The Model1 and Model2 datasets have been recorded using two different software,

ProgramA and ProgramB. These two tools have different characteristics and have

been used for similar – yet complementary – purposes. The main differences be-

tween ProgramA and ProgramB are reported in Table 3.1. The two tools worked

in parallel, collecting data on the same exact cycles, but while ProgramA covered

its entirety, ProgramB only focused on the final part. This final part, as it will

be explained in more detail in Section 5.1, will be used to understand whether a

cycle should be considered as clogged or not.

ProgramA ProgramB
Duration (s) 3750 300
Sampling frequency (Hz) 1 320
Number of variables1 50 440
Number of Model1 cycles 400 390
Number of Model2 cycles 186 184

Table 3.1: Differences between ProgramA and ProgramB

Although ProgramA and ProgramB theoretically recorded the same exact cy-

cles, the actual number of available cycles differs between the two: possible mal-

functionings of the tools might have resulted in some of the recordings being lost or

not stored at all (although this is little more than speculation, having the datasets

been recorded by people not involved in this project).

1This is the most common number of variables recorded by each tool. Some cycles contained
a different number variables, depending on decisions and events that occurred at recording time

26

The following are in depth explanation of the two tools based on the information

reported in Table 3.1.

ProgramA

ProgramA records the entire 3750 seconds cycle, using a 1 Hz sampling frequency.

This results in approximately2 3750 samples for each of the 50 variables recorded.

Figure 3.1 shows the accelerator signal used as the track for each cycle. The

figure shows how the engine is stressed with an high frequency accelerator signal,

which is not usually found in normal driving conditions. Given that all datasets

available followed the same predefined track, the results obtained from this study

are not directly scalable to an “on-the-road” scenario, but it would require some

adjustments.

0 500 1000 1500 2000 2500 3000 3500
Time (s)

0

5

10

15

20

25

30

35

va
ria

bl
e_

ac
c_

po
s

(%
)

Figure 3.1: Acceleration pedal signal, recorded with ProgramA (entire cycle)

The theoretical track used is supposedly (see Chapter 10) the same for all cycles,

but slight variations between cycles exist due to the fallibility of measurements.

While this statement may be obvious, this fact should be kept into account when

working with some of the signals.

2The actual duration of the cycle varies slightly between cycles

27

ProgramB

ProgramB is the second software tool used to collect engine data. It samples 440

signals3 with a sampling frequency of 320 Hz. Of the entire cycle, ProgramB only

records the final 300 seconds: this is the part where the cut-off occurs. The cut-off

is the moment when the gas pedal is released after a particularly intense and steady

acceleration. This part of the cycle is of particular interest as the cut-off will be

used to understand whether the cycles are clogged (i.e. the sensor is clogged) or

not.

0 50 100 150 200 250 300
Time (s)

0

5

10

15

20

25

30

va
ria

bl
e_

ac
c_

po
s

(%
)

Figure 3.2: Acceleration pedal signal, recorded with ProgramB (final 300 seconds)

Figure 3.2 shows the accelerator behavior for the final 300 seconds of a given

cycle. The cut-off is clearly highlighted by the step that occurs around the 250th

second. To get a better sense of what portion of the cycle ProgramB records,

Figure 3.3 displays both the ProgramA and ProgramB recordings for the same

cycle.

As already mention (and as it will be explained in further detail in Subsection

5.1), the cut-off phase is used understand to what degree the clogging problem is

occurring: as such, having a more frequently sampled signal is necessary. On the

other hand, sampling the entire cycle with a 320 Hz sampling frequency would

have resulted in significantly larger datasets, without particularly benefiting the

3As mentioned, some of the signals may actually be derived from others using existing models:
440 is the total number of signals returned by ProgramB

28

0 500 1000 1500 2000 2500 3000 3500
Time (s)

0

5

10

15

20

25

30

35

va
ria

bl
e_

ac
c_

po
s

(%
)

Program1
Program2

Figure 3.3: Acceleration pedal signal, recorded with both ProgramA (in blue) and
ProgramB (in green)

overall study (it would have actually gone the opposite direction, since the future

steps require lowering the sampling frequency, as explained in Section 8.4).

3.1.3 Variables overview

ProgramA and ProgramB collect a significant amount of signals, with some of these

signals being exclusive to either tool. These signals (also referred to as variables)

can be divided in two main categories:

• ECU variables: these variables are measured by the Engine Control Unit

and are therefore available on any vehicle with that ECU

• Test bench variables: these variables are measured using external sensors

only available during the test bench and are not available outside of it (e.g.

during on-road tests, or in real-life scenarios)

The final purpose of this study is that of applying the prognostics system to off-

the-shelf vehicles: as such, using signals originating from additional sensors added

in the test bench is not particularly useful and, on the contrary, it might result in

hard-to-scale results (given the lack of those sensors in the subsequent steps).

The ECU variables, on the other hand, are readily available on all vehicles.

These variables are grouped in different categories based on the type of value

29

monitored. Each of these categories is identified by a 3-letters string.

Given the lack of automotive expertise, these variables and categories have

been treated with an unbiased approach. The support provided by the company’s

domain experts helped understanding the results obtained and whether these were

meaningful and relevant.

3.1.4 Other considerations

Table 3.1 highlighted how the number of cycles available for Model1 is significantly

larger (more than twice in size) than that of Model2. Given the data-driven

approach of the study, a larger amount of data is preferred: for this reason, the

entirety of the study has been carried out using Model1. Model2 has been later

introduced to test the process on a brand new dataset (see Section 8.6).

Finally, to get a sense of the overall size of the dataset (for further consider-

ations on the tools used for the study), the average size for a single ProgramA

cycle was roughly of 1.6 MB, while the average ProgramB file was 43.7 MB large.

Given the cardinalities for the two Model1 datasets, the overall size was roughly

1.6 MB · 400 + 43.7 MB · 390 ≈ 17.3 GB. This kind of data can be handled

using a large enough main memory and certainly on a single machine: as such, big

data techniques will not be used. Despite that, the final goal requires processing

data from millions of vehicles: when scaling up to that size, the big data paradigm

will be necessary.

30

Chapter 4

Process identification

Given the dataset and given the company’s requirements, a process going from

raw data to clogging identification needs to be established. This process needs to

consider the domain knowledge already available as a starting point and integrate

it into the data mining process.

4.1 Domain knowledge available

The domain knowledge available for the clogging problem allows for the correct

identification of clogged situations in the available cycles. As already mentioned in

the introduction, a clogged lambda sensor results in a slower response. The cut-off

operation that occurs at the end of each cycle is a good moment for measuring

the response time: given that roughly all cycles go through the same cut-off,

the response times measured are comparable between one another. This should

give an idea of how clogged each cycle is when compared to the others. The

other important notion learned was that the soot was expected to cumulate in the

lambda sensor: as a consequence, the clogging was expected to increase as the

cycles went on.

Given the importance of what happens during the cut-off, it makes sense that

a higher sampling frequency (on ProgramB) was used during this phase, while the

entirety of the cycle is recorded, with ProgramA, at a lower rate. Since ProgramB

only contains a few minutes’ worth of data out of each hour, the ProgramA in-

formation should be used as input to model in order to provide it with recordings

that span the entire period of time available.

31

4.2 Data mining process

The problem at hand can be identified as a “classification” one: given a cycle, the

goal is that of classifying it as either clogged or not (and possibly “almost clogged”,

since the clogging of the sensor happens gradually). For the cycles available, the

information on the clogging status can be extracted from the ProgramB dataset,

while the data required to make the classification is provided by ProgramA. The

typical mining process shown in Figure 4.1, often referred to as Knowledge Dis-

covery in Databases [10], goes through the phases of data selection, preprocessing,

transformation, mining and evaluation/interpretation: these are the phases will

be applied to the case at hand.

Data

Target data

Preprocessed
data

Patterns/
Models

Transformed
data

Knowledge

Figure 4.1: A visual representation of the typical data mining process

• Data selection: in this phase, only the necessary data is kept. For this

study, only the data about Model1 has been kept. Some additional cycles

have been discarded during the mapping phase

• Data preprocessing: in this phase, operations such as feature selection and

labeling are carried out. In particular, only a subset of the available signals

will be kept and the ProgramB cycles will be analyzed so as to measure the

response time

• Data transformation: in this phase, the variables available are trans-

formed so as to become more suitable inputs for the classifier

• Data mining: this is the phase where different machine learning algorithms

are used to extract information from the available datasets. More precisely,

32

this kind of problem requires the classification of the cycles (as either clogged

or not clogged)

• Evaluation/interpretation: this is the phase where the results of the clas-

sifiers are analyzed (when meaningful) and the models are evaluated based

on their performance

While the above list describes how the different phases identified during the study

fit the typical data mining process, the peculiarities of the scenario available cannot

be highlighted properly. Since these peculiar aspects required a tailored process

to be developed, the next part will provide a high-level description of it.

4.3 High-level process

Figure 4.2 contains a block diagram of the high-level model identified for the

process. For each block, a brief description is provided in the following list and

will be described in more detail in the following chapters. The diagram clearly

highlights how the dual dataset is approached by first working on the separate files

to extract the required information, with the results only being merged afterwards.

ProgramB

Response time
measurement

Labelling

ProgramA

Feature
selection

Data
transformation

Mapping

Classifier
model

Training

Dataset

Figure 4.2: Block diagram for the identified process

• Response time measurement: in order to understand whether a cycle

is clogged or not, the response time after the cut-off needs to be measured,

using the definition provided by the domain experts on the ProgramB dataset

• Labelling: based on the response time, cycles are labelled as either clogged

or not (or, to predict future clogging situations, as “almost clogged”)

• Feature selection: in order to reduce the number of ProgramA variables

used, any existing redundancies have been removed through a feature selec-

tion process

33

• Data transformation: given the large number of possible inputs (i.e.

nvariables · nsamples, with nsamples = 3750) compared to the low number of

cycles (≈ 390), some kind of transformation is required for the classifier to

properly handle the problem

• Mapping: the unlabelled dataset resulting from the data transformation

step receives the labels computed at the labelling step, producing the final

dataset

• Training: the final dataset is used to train a model for later use on unseen

data

A trained classifier is the output of this process. This classifier can then be

used on previously unseen data, as shown in Figure 4.3. In this case only the

simil-ProgramA data is available (since transmitting the more frequently sampled

ProgramB data to a central server would pose problems in terms of bandwidth

required): after the extraction of the relevant variables and their transformation,

the existing model is applied to make a prediction on the state of the lambda

sensor.

Unseen
dataset

Feature
extraction

Data
transformation

Prediction

Classification

Classifier
model

Figure 4.3: Block diagram for the classification of unseen data

34

Chapter 5

Label assignment

This section provides a detailed description for the steps of the process that com-

prise the labelling operation. These are the steps performed on the ProgramB

dataset, and consist in response time measurement, smoothing and assignment

of the class label. As shown in Figure 4.2, the initial steps taken for the Pro-

gramA and ProgramB datasets can be executed in parallel: the order proposed for

the presentation, therefore, does not reflect an order in the execution of the two

sub-processes.

5.1 Response time measurement

During the final part of each cycle, the gas pedal is first kept at a steady level for

a set period of time, then it is released: this releasing of the accelerator is referred

to as cut-off. The oxygen level measured in the exhaust gas is directly influenced

by the acceleration pedal state (i.e. the oxygen level depends on the engine load).

After the pedal is released, the oxygen level will start rising until it reaches the

final 21% value. The time it takes for the oxygen level to reach this value (as

measured by the lambda sensor) is referred to as response time.

Figure 5.1a shows the oxygen level as reported throughout the final 300 seconds

by ProgramB. It has been observed that the ramp following the cut-off is always

contained between the seconds 245 and 260 of the ProgramB recording: thus, in

order to simplify the process, only this range will be considered while discussing

the measurement operation. The zoomed version of the ramp is represented in

Figure 5.1b

Defining when the ramp reaches the 21% value is not trivial, as the value

might be overshot, or never actually reached. For this reason, the domain experts’

definition of response time is slightly different from the previously provided one and

is defined as the time it takes for the oxygen level to reach 63% of the transitory

35

0 50 100 150 200 250 300
Time (s)

6

8

10

12

14

16

18

20
va

ria
bl

e_
pe

rc
en

t_
ox

yg
en

 (
%

)

(a) 0s÷ 300s

246 248 250 252 254 256 258 260
Time (s)

10

12

14

16

18

20

va
ria

bl
e_

pe
rc

en
t_

ox
yg

en
 (

%
)

(b) 245s÷ 260s

Figure 5.1: Oxygen level, as measured in ProgramB

from the initial value to 21%, as explained in Equation 5.1

tr = t(O2 = 0.63 · (O2end −O2start))− t(O2 = O2start) (5.1)

With O2end = 21% being the expected O2 concentration found in the atmosphere.

Figure 5.2 provides a visual interpretation of what the response time represents.

Since O2end is already known, O2start is needed to compute the response time for

a given cycle. The start time (i.e. t(O2 = O2start)) can be intuitively identified in

Response
time

O2start

O2end
= 21%

O2start
+ 0.63 ∙ (O2end

– O2start
)

Figure 5.2: Response time measurement process

Figure 5.1a as the moment when the ramp starts rising after the “flat” part. When

36

using an algorithm, though, the identification of this moment is not trivial due to

the noise present. In order to solve this problem, a sliding window starting in the

flat part on the left-hand side of the signal and spanning 20 samples is used and the

standard deviation of the values in the window is computed. When this standard

deviation exceeds a threshold value, it means that the ramp has started, as the

rightmost values in the window significantly differ from the leftmost ones. Figure

5.3 shows both the oxygen level, and the sliding standard deviation computed

using a sliding window of 20 samples. The threshold value has been defined so

as to match the start of the ramp and not previous noise. Both oxygen level and

sliding standard deviation have been normalized to the 0 ÷ 1 range for graphical

reasons.

246 248 250 252 254 256 258 260
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0 Sliding std (normalized)
Oxygen level (normalized)
Threshold

Figure 5.3: Cut-off oxygen ramp, with sliding standard deviation

A similar approach is that of computing the moving average of the oxygen level

values and select as starting point the first one exceeding a different threshold: both

approaches avoid false triggering due to noisy points by “smoothing” the curve

(i.e. by introducing operations on a window of values, rather than basing the

considerations on a single one). Of these two approaches, the standard-deviation-

based one has been selected as the threshold defined did not depend on the average

oxygen level, which might differ between cycles.

After applying the aforementioned process to all ProgramB cycles, a measure-

ment of the response time is available for each cycle. Since the timestamp of each

37

cycle was known, a graph representing the response time trend from the beginning

to the end of the experiments could be plotted and is shown in Figure 5.4a. This

plot highlights different interesting aspects, that will be illustrated below.

20160806 20160813 20160820 20160827 20160903
Time (YYYYMMDD)

0.8

1.0

1.2

1.4

1.6

1.8

2.0

R
es

po
ns

e
tim

e
(s

)

(a) Dates on x axis

0 50 100 150 200 250 300 350 400
Cycle number

0.8

1.0

1.2

1.4

1.6

1.8

2.0

R
es

po
ns

e
tim

e
(s

)

(b) Cycle number on x axis

Figure 5.4: Response time trend throughout the experiment

First, some small plateaus, and a larger one, can be immediately noticed. These

represent the moments where the experiment was not being carried out and, be-

cause of that, no cycles were available: the plotting tool interpolates that part by

connecting the leftmost and rightmost points available by the gap. Since the engine

is not altered during these pauses, its state should remain unchanged between the

last cycle preceding a pause and the first one following it. Given this assumption,

the pauses can be removed (this is easily achieved by changing the time dimension

to represent the cycle number instead of a date and time), resulting in the graph

shown in Figure 5.4b.

Second, and most importantly, the response time trend is not monotonic, as

one would expect given the nature of the clogging (i.e. due to the accumulation of

soot within the sensor). Instead, the general trend is that of an increasing response

time, followed by a rather abrupt “reset” where the response time plummets, only

to start raising up once again. This behavior has been interpreted by the domain

experts as the soot “crystallizing” only to be shaken off the sensor upon turning the

engine on. Based on the data and the domain knowledge available, this explanation

could neither be corroborated nor contradicted but, since it did not affect the rest

of the study, this notion was not considered any further.

Additionally, some spikes are easily noticeable in the plot. These spikes may

either be due to problems with the measuring technique, or be the result of cycles

with particularly different cut-offs. These cycles could be removed, but instead

they have been kept, since no rationale has been provided as to what makes a

measurement “out of range”. Subsection 12.1.1 explains how these spikes affect

the results of the classifiers: in light of these considerations, a different approach

38

that discards these cycles could be introduced.

A final consideration concerns the values of the response times, which range

anywhere between 1 and 2 seconds. Measuring these responses using the 1 Hz

sampling frequency provided by ProgramA would have yielded useless results:

this justifies the utilization of the ProgramB dataset for this operation.

An independent method of measuring the response time has been tested to

validate the results derived from the domain experts’ measurement process. The

method and the results are discussed in Section 8.2.

5.2 Labelling

Given the response time for each cycle, the next step is that of inferring whether

the given cycle is clogged or not. The clogging condition results in the response

time being slower, but no formal thresholds defining the meaning of “clogged”

were available. Thus, this section will explore the process used for the definition

of these values and the problems and solutions found during this process.

5.2.1 Definition of the number of classes

A seemingly trivial decision is that of the number of different classes to be used to

divide the dataset. This decision, though, will heavily influence the performance

of the classifiers, as these models need the dataset to be partitioned so that classes

are internally cohese and well separated from one another.

The understanding of the clogging problem available, though, did not allow

for a definite separation in classes. The first decision that has been pursued (and

that will be adopted throughout the definition of the process) is that of defining

three classes of “clogginess” referred to as ‘green’ (for unclogged cycles), ‘yellow’

(for cycles that are starting to clog) and ‘red’ (for clogged cycles).

This number of classes has been agreed upon with the domain experts and

allows for a tangible understanding of the results of the classifier (by contrast,

defining a large number of classes would have introduced confusion as to what

each class is representative of). This decision of adopting three classes will be

changed in some of the further explorations presented in Chapter 9.

5.2.2 Definition of the threshold values

The following step is that of defining the threshold values for each of the defined

classes. Given the physical constraints of the response time, it is reasonable to

assume the lower bound of the green class to be 0 and the upper bound of the red

class to be +∞. This leaves the definition of two additional thresholds (i.e. the

39

ones defining the yellow class bounds, thereby defining the missing bounds for the

red and green ones).

As it happened with the definition of the number of classes, this decision was

not significantly aided by the domain knowledge available, resulting in the neces-

sity of making a decision based only on the information available. The piece of

information that drove the definition of the thresholds was the fact that the red

class (i.e. clogged situations) was expected to be a minority when compared to

the other situations.

For the green and yellow classes, on the other hand, there is not much that

can be said, particularly in light of the reset events that sometimes occur and that

do not strongly correlate the cardinalities of the yellow and red classes. Without

any additional information, these two classes may be divided so as to have similar

cardinalities.

A final driver for this decision could be qualitative analysis of the distribution

of response time values. The distribution is presented in Figure 5.5, which already

represents the final decisions made for the response time values.

0.8 1.0 1.2 1.4 1.6 1.8 2.0
Response time (s)

0

5

10

15

20

25

30

35

40

F
re

qu
en

cy

Figure 5.5: Distribution of response times: the colors represent the assigned classes
based on the defined thresholds

The response time ranges chosen for the three classes are reported in Table 5.1.

As already explained, the labels assigned to the cycles have a significant influence

on the performance of the classifiers. Since both the number of classes and the

thresholds defined have been assigned based on heuristics that might change as the

40

Label Range (s)
Green [0, 1.3)
Yellow [1.3, 1.66)

Red [1.66, +∞)

Table 5.1: Ranges defined for the three classes

domain knowledge on the matter increases, these decisions have been introduced

in the process as parameters to be tuned at a later time and, indeed, Chapter 9

explores possible alternatives in the definition of the classes.

5.2.3 Smoothing of the response times

The logical step following the definition of the classes would be that of labeling

each cycle based on the class the response time belongs to: there is a problem,

though, with this straightforward reasoning. Figure 5.6 illustrates the (already

presented) response time evolution throughout the cycles of the experiment. The

horizontal lines represent the upper and lower bounds for the yellow class. The

problem is with the jagged profile of the curve: if labels were to be assigned based

on the simple comparison against the defined thresholds, sequences of subsequent

cycles that are crossing the thresholds would be alternatively assigned different

labels. This behavior is counterintuitive and undesired, as the accumulation of

soot is expected to occur gradually.

The approach used to lessen the entity of this problem is based on the as-

sumption that subsequent cycles should have similar response times, based on the

earlier considerations. Thus, in order to smooth the curve, values have been re-

placed using a moving average. For the ith value, a moving window is centered in

that value and encompasses the surrounding k right and k left elements, resulting

in a window of 2k + 1 total elements. k is a parameter that needs to be config-

ured based on the desired result. Intuitively, low values of k result in a limited

smoothing effect (at its extreme, k = 0 leaves the curve unaltered); instead large

values of k lead to an exceedingly smoothed curve, with a loss in local significance

(k = ncycles transforms the curve into a constant function).

An acceptable trade-off has been found using both quantitative and qualitative

approaches. Since the problem that is being solved is that too many changes in

label occur, a plot of the number of total changes of label as k increases (Figure

5.7) has been analyzed. The knee of the curve is located around k = 2 (i.e. a

window size of 5 elements).

Although the identified value for k is intuitively small, a visual inspection of

the profile of the smoothed curve with this value helps understand whether the

resulting alteration in values is acceptable or not. Figure 5.8 shows the results for

41

0 50 100 150 200 250 300 350 400
Cycle number

0.8

1.0

1.2

1.4

1.6

1.8

2.0

R
es

po
ns

e
tim

e
(s

)

Figure 5.6: Response time trend throughout the experiment. The horizontal lines
show the positions of the thresholds

0 2 4 6 8 10 12 14
k

10

20

30

40

50

N
um

be
r

of
 la

be
l s

w
itc

he
s

Figure 5.7: Number of label switches occurring as k increases

42

4 different values of k (0 through 3): the vertical bands are colored based on the

assigned label for each cycle. In general, the profile of the curve for k = 2 has been

deemed acceptable from this perspective as well.

0 50 100 150 200 250 300 350 400
Cycle number

0.8

1.0

1.2

1.4

1.6

1.8

2.0

R
es

po
ns

e
tim

e
(s

)

(a) k = 0

0 50 100 150 200 250 300 350 400
Cycle number

1.0

1.2

1.4

1.6

1.8

2.0

R
es

po
ns

e
tim

e
(s

)

(b) k = 1

0 50 100 150 200 250 300 350 400
Cycle number

1.2

1.4

1.6

1.8

R
es

po
ns

e
tim

e
(s

)

(c) k = 2

0 50 100 150 200 250 300 350 400
Cycle number

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

R
es

po
ns

e
tim

e
(s

)

(d) k = 3

Figure 5.8: Response time trend smoothed with different k values

From the smoothed values, the labels can be assigned to each ProgramB cycle:

the cardinalities for the three classes are reported in Table 5.2. The ones pro-

posed are the values derived from those ProgramB values that have a ProgramA

counterpart: as explained in Section 6.3, some ProgramB cycles are missing the

ProgramA counterpart (or vice versa), thus reducing the total number of data

points available.

Class Cardinality
Green 164
Yellow 163

Red 61

Table 5.2: Cardinalities for the three identified classes

43

44

Chapter 6

Data preprocessing

The data that will be processed by the classifiers is the one coming from ProgramA.

This data, though, is not in a shape that can be easily digested and used by the

classifiers. This chapter will explain why, along with the decisions made in order

to improve the situation.

6.1 Feature selection

The feature selection process is required in order to remove redundancy from the

description of the system (i.e. the cycle) available. Some of the advantages that

come with a reduction in the number of variables are:

• More concise representation of each cycle: this makes the entire problem

easier for the classifiers to handle, particularly in light of the limited number

of cycles available

• Easier understandability of the classifier: some of the classification models

tested are interpretable. If a lower number of variables is provided, the

generated output will consequently be more concise and understandable

• Better collection of data on the field: considering the long-term applications

of this process, collecting a lower number of signals would result in a re-

duction in terms of both costs required for the sensors used and bandwidth

needed for the transmission of the signals to a centralized server

Some of the common approaches used for dimensionality reduction that consist in

combining available features to produce new ones (e.g. the Principal Component

Analysis [11]) are not suitable for this kind of problem; since the available insights

provided by the domain experts would be difficult to translate to the new set of

combined variables. As a result, the feature selection applied needs to preserve

45

the existing features and discard the redundant ones: because of that, the desired

output of this operation is a subset of the original variables.

6.1.1 Correlation-based feature selection

The first step in this direction is that of defining a method for determining the

similarity between any two signals in a given cycle. The most straightforward ap-

proach is that of using the Pearson correlation coefficient, defined (for two datasets

x = {x1, ..., xn} and y = {y1, ..., yn} by Equation 6.1.

r =

n∑
i=1

(xi − x̄)(yi − ȳ)√
n∑

i=1

(xi − x̄)2
√

n∑
i=1

(yi − ȳ)2
(6.1)

The main advantages of this coefficient is that it represents the similarity using

a scalar number and, additionally, this number is bounded between -1 and +1.

Values close to -1 indicate strong negative correlations, while positive correlations

have coefficient values approaching +1. Values close to 0, instead, represent no

linear correlation.

In order to understand whether actual redundancy exists within the variables

available, the correlation coefficient between each pair of variables has been com-

puted for a cycle, using a subset of variables: the resulting correlation matrix has

then been plotted as a heatmap. Figure 6.1 represents the correlation matrix for

one of the cycles available. At a glance, the correlations between variables are

evident.

Before the definition of the feature selection process, some variables can be

discarded a priori. The first significant pruning occurs when removing all the test

bench variables: these, as explained, are not available on vehicles and, as such,

should not be considered (as requested by the company). The second elimination

regards discrete variables: these have been set aside as they are hardly comparable

with continuous signals. Dropping these variables also discards constant signals,

which contain no information expected to be relevant and complicates the compu-

tation of the correlation coefficients (introducing Not a Number – or NaN – values).

An entire category of variables (the one containing information on the fault status

of the system) has been ignored upon instructions. The number of variables that

made it this far varies from 31 to 37. The final pruning occurs because ProgramA

cycles contain a variable number of signals: the reasons for this are unknown, but

the result is that only a subset of all signals is shared among all cycles. The feature

selection process should only be applied to this subset of variables since, if any of

these non-ubiquitous features were to be selected, the following steps would have

46

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

30

28

26

24

22

20

18

16

14

12

10

8

6

4

2

0

0.8

0.4

0.0

0.4

0.8

Figure 6.1: Heatmap for the correlation matrix for a given cycle. The variable
names have been replaced with numbers for visualization’s sake

to deal with missing values, adding complexity instead of reducing it. The total

number of features kept, therefore, is of 31.

The selection algorithm has been designed so as to iteratively extract the most

representative variables from the initial pool of available signals, so as to finally

have a list of independent (where “independent” can be defined in terms of cor-

relation) variables ordered by descending degree of representativeness of the other

signals. The following are the steps of the algorithms.

1. For each cycle k, the correlation coefficient between each pair of variables i

and j is computed and stored as rk,ij = rk,ji.

2. For each pair of variables i and j, the overall correlation coefficient rij = rji

is computed as the average correlation coefficient for that pair of variables

over all the cycles: rij = 1
n

n∑
k=1

rk,ij

3. The list of “remaining variables” L is initialized with all the variables avail-

able

4. For each variable i in L, the sum of squared correlation coefficients si is

computed: si =
∑
j∈L

r2ij

47

5. The variable

b = argmax
i∈L

si

is extracted from L as the most representative of the variables left

6. All variables v ∈ L such that rvb > rmin are extracted from L in that they

are well represented by b

7. If L is empty, the algorithm terminates, otherwise it continues with Step 4

Algorithm 1 contains the pseudocode that implements these steps.

Algorithm 1 Correlation-based feature selection

1: function FeatureSelection(C, V)

2: Rk ← {}
3: R← {}
4: for k ← C do

5: Rk[c]← {}
6: for i← V do

7: for j ← V do

8: Rk[k][i][j]← corr(get(k, i), get(k, j))

9: end for

10: end for

11: end for

12: for v ← V do

13: for w ← V do

14: R[v][w]← 0

15: for k ← C do

16: R[v][w]← R[v][w] + Rk[k][v][w]

17: end for

18: R[v][w]← R[v][w]/|C|
19: end for

20: end for

21: L← V

22: B ← {}
23: while |L| > 0 do

24: b← null

25: sb ← 0

26: for v ← V do

27: s← 0

28: for w ← V do

48

29: s← s + R[v][w]2

30: end for

31: if s > sb then

32: s← sb

33: b← v

34: end if

35: end for

36: append(B, b)

37: for v ← V do

38: if |R[v][b]| > rmin then

39: drop(L, v)

40: end if

41: end for

42: end while

43: return B

44: end function

6.1.2 Tuning of the rmin parameter

The correlation-based feature selection algorithm presented requires a single pa-

rameter rmin to be selected. This parameter represents the minimum correlation

coefficient below which two signals are considered as not strongly correlated: the

selected features will all be correlated with a coefficient smaller than rmin. Redun-

dant features that are dropped by the algorithm, on the other hand, are correlated

with only one of the “representative” features with a coefficient larger than or

equal to rmin.

The selection of this value requires making a trade-off between the number

of selected features and their ability to well represent the discarded variables.

The value can be selected either by setting an a priori constraint on the desired

representativeness of the selected features, or by studying the evolution of the

number of selected features as the coefficient changes.

Since the algorithm takes the absolute value of each correlation coefficient

(because negative correlations are correlations nonetheless), it makes sense to only

analyze values for rmin ∈ [0, 1]. Intuitively, rmin = 0 implies that the lowest

number of variables is selected (possibly only 1), given that each selected feature

“covers” all others that are not completely independent from it (i.e. correlation

coefficient not 0). By contrast, setting rmin = 1 results in the largest number of

features selected, as each selected feature only covers for the completely correlated

ones.

49

0.0 0.2 0.4 0.6 0.8 1.0
rmin

0

5

10

15

20

25

30

N
um

be
r

of
 fe

at
ur

es
 s

el
ec

te
d

Figure 6.2: Number of features selected as rmin increases

Figure 6.2 illustrates how the number of features selected grows as rmin in-

creases. The elbow of the curve occurs slightly below the 0.8 value: in order to

“play it safe”, 0.8 has been chosen for rmin. Using this large correlation thresh-

old guarantees that all discarded signals have a very strong correlation with the

selected ones, keeping the amount of discarded information to a minimum.

6.1.3 Selection outcomes

The described feature selection algorithm was applied to the available ProgramA

cycles, in order to reduce the overall number of features to be further processed.

The algorithm selected the 14 features shown in Table 6.1.

The feature selection algorithm presented is the result of an iterative refine-

ment process, with intermediate results that provide interesting insights on the

dataset. Furthermore, even though the selection process is only required to lower

the number of features used, the results yield useful information (e.g. which fea-

tures are being monitored redundantly): because of this, and in order to validate

the results of the ProgramA feature selection, the algorithm has been tested on

the ProgramB cycles as well. Since this chapter is dedicated to the description of

the identified process, these additional experiments do not belong here: as such,

they will be presented in Subsection 12.1.1.

50

Variable name
variable concentration NOx B

variable pressure rail
variable angle fuel AD

variable quantity fuel C
variable temp engine

variable quantity reductant
variable percent oxygen A
variable quantity fuel A
variable quantity fuel B
variable valve position A

variable temperature exh gas 1
variable temperature exh gas 3
variable temperature manifold
variable NOxCatalist Storage

Table 6.1: Features selected from ProgramA

6.2 Data transformation

The feature selection process narrowed the number of ProgramA variables from 50

down to 14. Since ProgramA collects approximately 3750 samples for each variable

for each cycle, the number of potential inputs for the classifier is 14 ·3750 = 52500.

While this number of features is not, by itself, unapproachable, it is when backed by

a limited number of instances (i.e. cycles). Even the most generous of estimates for

the adequate features/instances ratio is far from considering 390 cycles as enough

to handle 52500 features.

As a consequence, the number of features needs to be somehow lowered to a

more manageable number. The most intuitive approach would be that of sampling

the signals with an adequate sampling frequency. After analyzing the spectra of

the variables, this option has been discarded, as a sampling frequency lower than

the one already adopted would result in a significant loss of data. Furthermore, in

order to get the number of features down to a manageable number (approximately

1000, a similar order of magnitude to that of the instances), the sampling frequency

required would have had to be that of Equation 6.2, where nfeatures is the number of

desired features (1000), nvars is the number of variables available after the feature

selection process (14), and Tcycle is the duration of the cycle, in seconds (3750).

fs =
nfeatures

nvars · Tcycle

(6.2)

The resulting sampling frequency is approximately 0.02 Hz, equivalent to a pe-

riod of 50 seconds, an unacceptable value. As a consequence, a different approach

is needed.

51

6.2.1 Summarization of the signals

An alternative to sampling is that of summarizing each signal using a limited

number of statistics: since this number is independent of the number of samples,

the total number of features used can be tuned based on the necessities. Defining

the right statistics to use is not trivial, and can be done by iteratively evaluating

subsets of statistics in terms of performance of the resulting classifier. As will

be shown, the initial choice for the statistics results in a satisfying classifier and

is stable in certain situations of interest. Because of that, and because of the

significantly time-consuming operations that would be required in re-training and

re-tuning the classifiers, the initial decision for the summary statistics has been

kept, knowing that possible alternatives can be explored and evaluated quantita-

tively.

6.2.2 Summary statistics definition

Given the significant consumption of time that comes with testing each group of

summary statistics, an attempt at defining meaningful ones was made. The fol-

lowing considerations stem from previous experience and from the understanding

of the problem at hand.

Mean and standard deviation

The first two summary statistics introduced are the mean and the standard devi-

ation for each of the sampled signals. These two values allow to identify behaviors

where the signal is offset by a positive or negative amount (mean) and the entity

of the oscillations around the mean, summarizing the entity of the amplitude of

the signals (standard deviation).

Percentiles

The mean and the standard deviation are enough to describe a gaussian distribu-

tion, but this assumption of normality does not hold for the distribution of samples

for the signals. As such, additional information is required. One such piece of in-

formation chosen are the percentiles: a percentile indicates the value below which

a given percentage of samples fall.

Given the potentially infinite number of percentiles available (though the lim-

ited number of samples is an upper bound), a meaningful subset of these needs

to be identified. A first visual approach was that of plotting the cumulative dis-

tribution functions for each variable of a subset of green and red cycles1, and

1Note that this requires already having defined the label for each ProgramA cycle. This will

52

draw conclusions on the most meaningful percentiles based on where the curves

differed the most (the CDF maps values in the distribution to their percentile).

This approach has been attempted, but a visual inspection only took into account

a limited number of cycles and did not yield overall meaningful results.

The second approach has been that of sampling the 0 ÷ 100 interval evenly,

drawing a posteriori conclusions on whether this sampling needs to be changed.

The initial percentiles used are from 10 to 90 with increments of 10, for a total of

9 percentiles.

6.2.3 Introduction of the derivatives

For each of the 14 variables, 9 + 2 = 11 statistics are used, for a total of 154

features. This number is significantly lower than the initial 52500. The price

paid for this reduction is that the time component is no longer represented: the

statistics summarize the distribution of values, not their evolution over time.

In order to partially reintroduce this lost components, the 11 summary statistics

have been computed for the “derivatives” of each signal, thus doubling the overall

number of features, but still keeping it down to a manageable number.

The “derivative” of a signal is computed as the difference between subsequent

samples: as such, a more accurate definition would be that of difference quotient.

For practical reasons, the terms will be used interchangeably throughout the text.

The introduction of the distribution of the derivatives’ values partially models

the time component: slower signals will have a distribution of derivatives shifted

towards lower absolute values and vice versa.

Since the difference quotient can be easily computed from the available data

and does not impact too greatly the total number of features, all derivatives have

been kept throughout the definition of the process. Adding the derivatives, though,

doubles the number of features, from 154 to 308: this might affect the performance

of the classifier. Because of this, additional experiments where the derivatives have

been discarded are available in Subsection 8.5.1.

6.3 Mapping ProgramA to ProgramB

The pairing of ProgramA and ProgramB cycles is required in order to assign the

right labels to the ProgramA cycles available. The two systems have different

approaches to recording the date and time. While seemingly trivial, some imple-

mentation details are noteworthy.

be explained in Section 6.3, but the information required for the operation makes it feasible at
this point in the process

53

6.3.1 ProgramA timestamping

The naming convention adopted for the recording of the ProgramA files required

the final part to be YYYYMMDD hhmmss (Year, Month, Day, hour, minutes, seconds).

This represents the date and time the recording was started. The master variable

represented the time (in seconds) throughout the cycle, starting from 0. With the

information available, the Unix timestamp (i.e. the number of seconds elapsed

from the midnight of January 1st, 1970) for the beginning and the end of each

ProgramA cycle can be computed (the end timestamp is the initial timestamp

plus the final value for master).

6.3.2 ProgramB timestamping

For ProgramB, the situation is more straightforward: one of the variables available

as part of each ProgramB file is called TASTimeStamp and, as the name suggests,

it contains the Unix timestamp, in microseconds, for each sample. The minimum

and the maximum values for this variable provide the initial and final timestamps

for the final part of the cycle.

6.3.3 Overlapping ProgramA and ProgramB

Despite the intuition that the ProgramB recording is the final portion of the Pro-

gramA cycle, pairing ProgramA and ProgramB files based on the latter’s times-

tamps being included in the former does not successfully match all cycles. This

happens because, in many cases, the ProgramB recording was stopped after the

ProgramA one. Additionally, the fact that the number of ProgramA and Pro-

gramB cycles available is not the same implies that there may be ProgramA files

without an ProgramB counterpart, and possibly vice versa. Because of this sec-

ond consideration, both initial and final timestamps need to be considered when

matching the cycles.

The approach used is that of allowing some “slack” time after the ProgramA

cycle ends: in other words, the final ProgramA timestamp is increased of a small

number of seconds ts (10 seconds has been found to be enough) before finding the

match. The match between the ProgramA cycle with start and end timestamps

Ts,c, Te,c and the ProgramB cycle with Ts,i, Te,i occurs if Ts,c < Ts,i < Te,i < Te,c+ts.

After the introduction of the slack time, 388 out of the 390 ProgramA cycles

available were matched with their ProgramB counterpart. The result is signifi-

cantly better than an earlier attempt that did not factor in this detail: while not

significantly important from the theoretical point of view, it is still an detail that

should be kept into account when replicating the study.

54

Chapter 7

Classification

7.1 Classification

The data available is now labelled and partially transformed. Some additional

transformation (to normalize the dataset) will be used for the classifiers that are

sensible to this kind of operation. This section will be concerned with the ex-

ploration of different classification models, selected based on their strengths and

weaknesses. Each classifier will be tuned and evaluated based on specific perfor-

mance metrics. Finally, the best results achieved will be presented.

7.1.1 Classifiers used

In literature, a myriad of classifiers have been presented, each with its strengths

and weaknesses: there is no classifier that is overall preferable to others. In order

to get the best results, different classifiers with different pros and cons have been

tested. The study has been carried out with two purposes in mind: the first one

is that of learning what is that actually drives the problem, the second is that of

building a performant classifying algorithm. Because of this, the chosen algorithms

leverage either of these two aspects. The models used are proposed below.

Decision tree

Decision trees are a classification model based on a tree structure [12]: the training

phase builds the tree, while the classification phase requires, for each input, to

traverse the tree from the root to one of the leaves. Each leaf contains a label

that is assigned to the input being processed upon landing on the given leaf. Each

node of the tree contains a test on one of the features of the input: based on the

outcome of the test, one of the branches is followed and new tests are performed,

until a leaf is reached.

55

Many advantages of the decision trees have made them a successful classifica-

tion model. Upon these, their interpretability is one of the most important ones.

Unlike most classifiers that act like black boxes, decision trees provide clear ex-

planations for the choices made, since each decision is in the form of a test on

the input features. This does not happen with other classifiers such as neural

network or Support Vector Machines: precisely for this reason, and because the

company was interested in understanding the reasoning behind the classifications

made, decision trees have been introduced as part of the proposed classifiers.

Another advantage of decision trees is the rapid training time. This is allowed

by the greedy approach used for the construction of the tree structure. At each

node, the split introduced is chosen basing the decision only on local optimality,

measured in terms of homogeneity (or purity) of the splits (using indicators such

as the Gini index [13]). The classification is even faster, since assigning a label is

a matter of traversing the tree.

Each root-to-leaf path in the decision tree can be rewritten as a rule to be

followed to label new data: in short, the label of the leaf is assigned if the logical

AND of the tests of the nodes on the root-to-leaf path is verified.

On the other hand, decision trees have some limitations that render them

inadequate for complex problem. Some problems are intrinsic in the nature of the

model, while others can be partially overcome.

One such problem is the tendency of decision trees to overfit the dataset: the

generation process keeps expanding the tree until all the training points are per-

fectly labelled: when small groups of points need to be split, the criteria used for

the split may not be significant at all, and only be relevant to the points being

used. Because of this, the model naturally tends to overfit the training set, yield-

ing unsatisfactory results for new predictions. This problem can be mitigated by

introducing an early stop in the expansion of the tree: when a set depth is reached

(or the split has reached a set purity), the splitting process is halted and the label

assigned to the leaf is that of the majority class present. A classification model

that stems from decision trees and overcome this problem is the random forest:

a number of decision trees are created using different subsets of the training set

and decisions are made based on the predictions of the totality of the trees. This

approach has not been pursued for this project because of the low number of data

points available.

Another harder-to-overcome problem is that due to the type of separation made

by the algorithm. The tests made by decision trees only use one variable at a time:

considering the input space, decision trees can only split points using hyperplanes

that are orthogonal to the dimensions available. As such, simple problems (such as

that of splitting points on a 2D plane using the y = x function) cannot be solved

56

efficiently.

The interpretability of decision trees has been valued beyond these limitations

and, as it will be later discussed, the overall results of this classifier have been sat-

isfying. As part of the proposed results, Figure 7.2 shows one of the decision trees

built using the available dataset: in this case, the hyperparameters optimization

made it so that trees deeper than a certain value are truncated, thus reducing the

effect of overfitting (if this is not the case and the tree is expanded until all leaf

nodes are pure, the leaves are very fragmented, with one or two samples each and

with test nodes that base their decisions on “noise” contained in the dataset).

Neural networks

Neural networks are one of the most popular machine learning algorithm, with

many applications in the most diverse fields. Of the different types of neural

networks available (each with different applications, implementations, advantages

and limitations), the one used for this classification problem has been the Multi-

Layer Perceptrons (MLP) one [14].

An MLP uses a base unit called a perceptron: this perceptron has a list of

inputs and a single output. The inputs are taken into account for the decision

of the output based on weights learned during the training phase: a weighted

sum of the inputs is then passed through a so-called activation function to get

the output. This activation function is typically non-linear: the non-linearity is

what makes the perceptron interesting when combined in layers (as it is the case

with MLP). A single perceptron can handle problems where the input space can

be separated using a single hyperplane. For more complex problems, multiple

perceptrons organized in multiple layers can be used.

The training phase requires iterating multiple times through the inputs avail-

able, so as to tune the weights according to the desired outputs. At each iteration,

the weights of each neuron are adjusted based on how well the network behaved

(when compared to the expected result) using algorithms such as the backpropa-

gation one. After a fixed number of iterations, or when the weights are no longer

updated (because a local optimum has been reached) the training stops, and the

network is ready to be used. The fact that the training iterates multiple times over

the inputs available makes the model robust against noise, but the process is par-

ticularly time consuming (particularly when the number of neurons to be trained

is large). Additionally, neural networks are characterized by a large number of

hyperparameters that need to be tuned: as explained in Subsection 7.1.2, the tun-

ing of these values require generating and evaluating a large number of classifiers:

given the long time required for training each neural network, the overall training

time may at times be prohibitive. Trade-offs between the size of the network or the

57

number of hyperparameters tuned and the time required often need to be made.

Neural networks can tackle complex problems, but they are not free from some

limitations that prevent them from being a universal solution (as they are some-

times portrayed to be). One of these limitations is that of the time-consuming

training: despite that, the training is done sporadically and pre-trained models

can be exported to low-performance devices. Once trained, new predictions re-

quire little time and computing power.

Neural networks, differently from decision trees, are a non-interpretable model:

matrices of weights are all that can be analyzed. While some inferences can be

made based on the weights of some networks, this model is generally referred to

as being a black box. While this is not a problem when getting a prediction,

some scenarios may require valid reasons to support the decisions taken by an

algorithm: neural network do not provide this kind of explanation. Because of

this, and because – as already stated – the company requested some insights on

the functioning of the models, neural networks could not be selected as the only

model proposed.

Support Vector Machine

A third model used is the Support Vector Machine (SVM) [15]. Unlike other

models (such as neural networks) that try to find one possible hyperplane (or

more complex functions), an SVM finds a plane so as to maximize the distance

between the clusters of points for each class and the plane. This is a convex

optimization problem and, as such, the solution found is guaranteed to be a global

optimum, rather than a local one: this represents one of the best features of SVM.

Another advantage is that SVM can separate both linearly separable and non-

linearly separable classes, depending on how the classifier if configured.

SVM share the same significant disadvantage neural networks have: they are

not interpretable and, additionally, they do not even provide the confidence of

the prediction, which may in some cases be considered desirable. This negative

aspect has been mitigated, as already mentioned, by introducing decision trees as

an additional classifier.

Classification rules

Classification rules (and, in particular, RIPPER [16]) have been tested as an al-

ternative to decision trees. Like decision trees, this classification model is inter-

pretable, with the additional advantage of reducing the complexity of the extracted

rules when possible: decision trees, due to their root-to-leaf path, do not have this

property (in some cases, some of the tests may be redundant but cannot be omit-

58

ted, as they are part of the already-build tree).

Despite this advantage, the preliminary results obtained with the classification

rules were not promising, often worse than those obtained with the decision trees.

For this reason, this classification model has been set aside.

7.1.2 Validation

Each classifier has a series of parameters that need to be set a priori : these are

called hyperparameters, to separate them from the parameters that are tuned

during the training.

Different combinations of hyperparameters need to be tested, in order to find

the best configuration. Using the entire dataset to first train and then assess the

quality of classifier would result in overfitting, since the hyperparameters would

be tuned to best suit the dataset. On the other hand, splitting the dataset in a

training set and a test set would result in smaller datasets: given the already small

size of the original dataset, this option should not be pursued.

This problem is solved by using the k-fold cross-validation technique. It requires

splitting the dataset in k equal parts, or folds. Then, k different classifiers are

trained: for each one of them, k − 1 parts are used for training and 1 for testing.

The operation is repeated k times, until all folds have been used once as test set.

The results of each classifier (in terms of the metrics defined in Subsection 7.1.3)

are combined to obtain an overall performance index. Figure 7.1 explains how this

process occurs.

Typically, the k folds are selected randomly from the dataset. Given the low

cardinality of the “red” class, forming random folds may result in some folds

containing no red cycles at all, thus resulting problematic in terms of efficiency.

For this reason, a variation of the k-fold technique, called stratified k-fold, has

been used instead: in this case, the samples for each fold are selected so as to

preserve the original distribution of labels.

Basing the evaluation of each hyperparameters configuration on cross-validation,

a grid search for the best configuration has been carried out: for each hyperpa-

rameter a set of possible values has been defined, then each possible combination

of values has been tested and evaluated. Eventually, the most promising configu-

ration has been selected.

7.1.3 Performance evaluation

A performance index needs to be defined in order to understand how well a given

classifier is behaving. All the indices proposed in this study require the computa-

tion of the confusion matrix C, an n×n matrix, with n being the number of labels.

59

The cell at the ith row and jth column Cij contains the number of elements that

belong to the ith class and have been assigned, by the classifier, to the jth one.

As such, the elements on the main diagonal are those that have been correctly

assigned, the others are not.

Original dataset, k = 5 folds

Tr
ai

n
in

g
se

t
Te

st
 s

et

Classifier 1 Classifier 2 Classifier 3 Classifier 4 Classifier 5

Performance 1 Performance 2 Performance 3 Performance 4 Performance 5

Overall performance

Figure 7.1: Explanation of the k-fold validation procedure

The first metric used is the accuracy: this is defined as the fraction of elements

that have been assigned correctly to their class. Equation 7.1 defines the accuracy

in terms of confusion matrix values.

accuracy =

n∑
i=1

Cii

n∑
i=1

n∑
j=1

Cij

(7.1)

While accuracy is a useful metric in some cases, it presents a significant flaw

that makes it unreliable in particular scenarios such as the one at hand. When the

classes are unbalanced (i.e. there are minorities and majorities), a classifier that

predicts all elements as belonging to the majority classes will get large accuracy

scores, given the small impact that the minority classes have on this metric.

Unfortunately, the minority classes are most often the ones that are of most

interest, as it happens with the clogging problem: the ultimate goal of the project

is that of detecting the presence of soot. Consequently, the classifier needs to be

good at recognizing minority elements.

For this reason, other metrics, called precision and recall, have been introduced.

These metrics are defined for a class k according to Equations 7.2 and 7.3. For

a given class, the precision represents the fraction of correctly assigned samples

60

among all the samples assigned to that class, while recall represents the fraction

of correctly assigned samples among all the samples that are known to belong to

that class. Precision and recall, for this classification problem, have been defined

for all classes, but the focus was on the red one, being this the one considered as

the most interesting.

precision =
Ckk
n∑

i=1

Cik

(7.2)

recall =
Ckk
n∑

i=1

Cki

(7.3)

These two metrics are in “conflict” between one another: maximizing the pre-

cision implies only classifying those elements that are certainly part of the red

class, thus missing out on the “dubious” ones, resulting in a low recall, and vice

versa. Because of this, the harmonic mean of the two metrics, called the F1 score,

has been taken instead. Equation 7.4 defines the F1 score in terms of precision

and recall.

F1 score = 2 · precision · recall
precision + recall

(7.4)

The F1 score for the red class has been used as the main criteria for evaluating

the classifiers in order to assess how balanced they are. From the collaboration

with the manufacturer, though, it was pointed out that, since having the oxygen

sensor checked is a hassle for the car owner, precision should be preferred over

recall: in this way, the number of false positives is reduced to a minimum. Section

8.7 will consider this alternative option.

7.1.4 Results

The results are proposed in terms of accuracy, precision, recall and F1 score for

the green, yellow and red classes. Although all these metrics are reported in the

presented tables, the ones of most interest are those concerning the red class: as

explained, this is the minority – yet most interesting – class.

Table 7.1a contains the results for the decision tree classifier, Table 7.1b the

ones for the neural network and Table 7.1c the ones for the SVM.

The overall scores are satisfactory, significant of the fact that the classifiers can

actually handle the red class well, despite the low cardinality. The decision tree, as

expected, performed slightly worse than the alternatives. This underperformance

is compensated by the interpretability of the model. Indeed, the tree is the only

61

Green Yellow Red
Precision 0.8365 0.7529 0.8475

Recall 0.8110 0.7853 0.8197
F1 score 0.8235 0.7688 0.8333
Accuracy 0.8015

(a) Decision tree results

Green Yellow Red
Precision 0.8869 0.8679 0.9016

Recall 0.9085 0.8466 0.9016
F1 score 0.8976 0.8571 0.9016
Accuracy 0.8814

(b) Neural network results

Green Yellow Red
Precision 0.9026 0.8303 0.8261

Recall 0.8476 0.8405 0.9344
F1 score 0.8742 0.8354 0.8769
Accuracy 0.8582

(c) SVM results

Table 7.1: Results for the classification problem

model for which the internal representation can be meaningful: Figure 7.2 shows

the decision tree build using the available cycles.

An already mentioned different way of visualizing the performance for each of

the classes is that of the confusion matrices. These matrices are reported in Figure

7.3 for each of the three classifiers. The main diagonals of the matrices contain

the large bulk of cycles: this means that most green, yellow and red cycles have

been classified correctly by the three models, in accordance with the large values

of precision, recall and F1 score obtained.

On top of the already presented tables, the results have been processed so as

to provide a visual representation of which cycles are predicted wrong by each

classifier. These prediction bars are presented in Figure 7.4. For any of the bars,

each vertical line represents the label for a single cycle. The topmost bar shows

the correct labels (referred to as truth), as defined by Figure 5.8c. The lines of the

following bars, one for each classifier, are gray when the prediction made is correct,

and either green, yellow or red depending on the erroneous prediction made.

Additional considerations regarding the results achieved, and how they com-

pare to those obtained during additional experiments, will be made in Chapter

12.

62

d
er

iv
 v

ar
ia

b
le

_
p
er

ce
n
t_

o
x
y
g
en

_
A

 1
0
%

 <
=

 -
0
.8

7
6
3

g
in

i
=

 0
.6

2
0
1

sa
m

p
le

s
=

 3
8
8

v
al

u
e

=
 [

1
6
4
,
1
6
3
,
6
1
]

d
er

iv
 v

ar
ia

b
le

_
te

m
p
er

at
u
re

_
m

an
if

o
ld

 1
0
%

 <
=

 -
0
.9

9
2
9

g
in

i
=

 0
.2

5
5
8

sa
m

p
le

s
=

 1
7
4

v
al

u
e

=
 [

1
4
8
,
2
5
,
1
]

T
ru

e

d
er

iv
 v

ar
ia

b
le

_
p
er

ce
n
t_

o
x
y
g
en

_
A

 9
0
%

 <
=

 0
.7

2
2
2

g
in

i
=

 0
.5

sa
m

p
le

s
=

 2
1
4

v
al

u
e

=
 [

1
6
,
1
3
8
,
6
0
]

F
al

se

d
er

iv
 v

ar
ia

b
le

_
v
al

v
e_

p
o
si

ti
o
n
_
A

 9
0
%

 <
=

 3
.2

5
3
3

g
in

i
=

 0
.1

0
5
6

sa
m

p
le

s
=

 1
4
3

v
al

u
e

=
 [

1
3
5
,
8
,
0
]

d
er

iv
 v

ar
ia

b
le

_
p
er

ce
n
t_

o
x
y
g
en

_
A

 6
0
%

 <
=

 0
.0

9
7
9

g
in

i
=

 0
.5

2
2
4

sa
m

p
le

s
=

 3
1

v
al

u
e

=
 [

1
3
,
1
7
,
1
]

g
in

i
=

 0
.3

7
5

sa
m

p
le

s
=

 4
v

al
u

e
=

 [
1

,
3

,
0

]

g
in

i
=

 0
.0

6
9
4

sa
m

p
le

s
=

 1
3
9

v
al

u
e

=
 [

1
3
4
,
5
,
0
]

d
er

iv
 v

ar
ia

b
le

_
q
u
an

ti
ty

_
re

d
u
ct

an
t

9
0
%

 <
=

 4
.8

7
1
7

g
in

i
=

 0
.1

9
7
5

sa
m

p
le

s
=

 9
v

al
u

e
=

 [
8

,
1

,
0

]

d
er

iv
 v

ar
ia

b
le

_
an

g
le

_
fu

el
_
A

D
 5

0
%

 <
=

 0
.0

0
2
5

g
in

i
=

 0
.4

1
7
4

sa
m

p
le

s
=

 2
2

v
al

u
e

=
 [

5
,

1
6

,
1

]

g
in

i
=

 0
.0

sa
m

p
le

s
=

 8
v

al
u

e
=

 [
8

,
0

,
0

]

g
in

i
=

 0
.0

sa
m

p
le

s
=

 1
v

al
u

e
=

 [
0

,
1

,
0

]

v
ar

ia
b
le

_
N

O
x
C

at
al

is
t_

S
to

ra
g
e

2
0
%

 <
=

 0
.4

5
2
1

g
in

i
=

 0
.2

1
4
5

sa
m

p
le

s
=

 1
7

v
al

u
e

=
 [

1
,

1
5

,
1

]

d
er

iv
 v

ar
ia

b
le

_
q
u
an

ti
ty

_
fu

el
_
A

 3
0
%

 <
=

 -
0
.0

1
2
1

g
in

i
=

 0
.3

2
sa

m
p
le

s
=

 5
v

al
u

e
=

 [
4

,
1

,
0

]

g
in

i
=

 0
.5

sa
m

p
le

s
=

 2
v

al
u

e
=

 [
1

,
0

,
1

]

g
in

i
=

 0
.0

sa
m

p
le

s
=

 1
5

v
al

u
e

=
 [

0
,

1
5

,
0

]

g
in

i
=

 0
.0

sa
m

p
le

s
=

 1
v

al
u

e
=

 [
0

,
1

,
0

]

g
in

i
=

 0
.0

sa
m

p
le

s
=

 4
v

al
u

e
=

 [
4

,
0

,
0

]

d
er

iv
 v

ar
ia

b
le

_
p
er

ce
n
t_

o
x
y
g
en

_
A

 1
0
%

 <
=

 -
0
.7

8
4
7

g
in

i
=

 0
.1

6
2

sa
m

p
le

s
=

 4
5

v
al

u
e

=
 [

0
,

4
,

4
1

]

d
er

iv
 v

ar
ia

b
le

_
p
er

ce
n
t_

o
x
y
g
en

_
A

 5
0
%

 <
=

 0
.0

4
7
6

g
in

i
=

 0
.3

4
9
7

sa
m

p
le

s
=

 1
6
9

v
al

u
e

=
 [

1
6
,
1
3
4
,
1
9
]

d
er

iv
 v

ar
ia

b
le

_
te

m
p
er

at
u
re

_
m

an
if

o
ld

 6
0
%

 <
=

 0
.0

6
2
9

g
in

i
=

 0
.4

8
9
8

sa
m

p
le

s
=

 7
v

al
u

e
=

 [
0

,
4

,
3

]

g
in

i
=

 0
.0

sa
m

p
le

s
=

 3
8

v
al

u
e

=
 [

0
,

0
,

3
8

]

g
in

i
=

 0
.0

sa
m

p
le

s
=

 4
v

al
u

e
=

 [
0

,
4

,
0

]

g
in

i
=

 0
.0

sa
m

p
le

s
=

 3
v

al
u

e
=

 [
0

,
0

,
3

]

v
ar

ia
b
le

_
co

n
ce

n
tr

at
io

n
_
N

O
x
_
B

 9
0
%

 <
=

 2
.1

8
9
5

g
in

i
=

 0
.2

3
3
7

sa
m

p
le

s
=

 1
4
4

v
al

u
e

=
 [

1
6
,
1
2
5
,
3
]

d
er

iv
 v

ar
ia

b
le

_
N

O
x
C

at
al

is
t_

S
to

ra
g
e

2
0
%

 <
=

 -
0
.0

0
0
8

g
in

i
=

 0
.4

6
0
8

sa
m

p
le

s
=

 2
5

v
al

u
e

=
 [

0
,

9
,

1
6

]

g
in

i
=

 0
.0

sa
m

p
le

s
=

 4
v

al
u

e
=

 [
4

,
0

,
0

]

v
ar

ia
b
le

_
te

m
p
er

at
u
re

_
ex

h
_
g
as

_
1
 1

0
%

 <
=

 1
6
9
.0

8
8
7

g
in

i
=

 0
.1

9
5

sa
m

p
le

s
=

 1
4
0

v
al

u
e

=
 [

1
2
,
1
2
5
,
3
]

g
in

i
=

 0
.0

sa
m

p
le

s
=

 3
v

al
u

e
=

 [
3

,
0

,
0

]

g
in

i
=

 0
.1

6
2
7

sa
m

p
le

s
=

 1
3
7

v
al

u
e

=
 [

9
,
1
2
5
,
3
]

v
ar

ia
b
le

_
te

m
p
er

at
u
re

_
ex

h
_
g
as

_
1
 7

0
%

 <
=

 2
2
6
.2

5
8
4

g
in

i
=

 0
.1

9
7
5

sa
m

p
le

s
=

 1
8

v
al

u
e

=
 [

0
,

2
,

1
6

]

g
in

i
=

 0
.0

sa
m

p
le

s
=

 7
v

al
u

e
=

 [
0

,
7

,
0

]

g
in

i
=

 0
.0

sa
m

p
le

s
=

 2
v

al
u

e
=

 [
0

,
2

,
0

]

g
in

i
=

 0
.0

sa
m

p
le

s
=

 1
6

v
al

u
e

=
 [

0
,

0
,

1
6

]

F
ig

u
re

7.
2:

D
ec

is
io

n
tr

ee
b
u
il
t

u
si

n
g

th
e

av
ai

la
b
le

d
at

as
et

63

Green Yellow Red

Green 133 31 0

Yellow 26 128 9

Red 0 11 50

Predicted

A
ct
u
al

(a) Decision tree

Green Yellow Red

Green 149 15 0

Yellow 19 138 6

Red 0 6 55

Predicted

A
ct
u
al

(b) Neural network

Green Yellow Red

Green 139 24 1

Yellow 15 137 11

Red 0 4 57

Predicted

A
ct
u
al

(c) SVM

Figure 7.3: Confusion matrices for the three classifiers

SV
M

NN
Tr
ee

Tr
ut
h

Figure 7.4: Prediction bars for the three available classifiers. The topmost bar
represents the correct values, the following bars are gray if the prediction made was
correct, or green/yellow/red depending on the (erroneous) prediction the classifier
made

64

Chapter 8

Process explorations

The process presented in Chapters 5 through 7 is the polished result of a more

complex exploration of the data available and the possible experiments that can

be derived from it. Many of these explorations have yielded interesting results:

this chapter is a collection of these, along with the motivations for each one and

results achieved.

8.1 Feature selection process

Multiple options have been explored for the feature selection process, both in terms

of algorithm used and data processed with it. The result proposed in Subsection

6.1.1 is the one considered to be the most suitable for the process. Some alternative

options will be proposed in this section.

8.1.1 Category-ful feature selection

The variables available belong to a number of different categories, depending on

their role in the functioning of the engine. While these categories have been con-

sidered as opaque, since the domain knowledge available was limited, the variables

belonging to each category are expected to be correlated, given the commonalities

shared.

As a consequence, an alternative to the feature selection process proposed is

the one where, instead of applying it to the entirety of the variables available, the

algorithm is applied separately to each set of features belonging to each category.

The expected result is that a larger number of features is kept as significant, since

inter-classes correlations (expected to exist) are not considered by the selection

algorithm, thus introducing some redundancy in the filtered features.

This algorithm was discarded because it does not guarantee the independency

(below a set threshold) of the selected features. It has been implemented, and will

65

be proposed in this section, because it highlights the existing correlations between

signals belonging to the same categories, thus providing useful insights on which

sensors are actually needed and which are not. This is useful because, as it happens

for the original feature selection, it provides insights about which features should

be recorded when additional costs occur for each additional recorded variable (as

is the case when deploying this solution on a larger scale).

The features selected using this revised version of the algorithm are available

in Table 8.1. The overall number of features is at least the same as the number of

categories.

Category Variable
press sensors variable press sens

oxygen sensors variable percent oxygen A
temp sensors man variable temperature manifold

acc variable acc pos
manifold sens variable engair flowflowFilt

eng s variable eng speed

exh temp sensors
variable temperature exh gas 2
variable temperature exh gas 3

eng temp variable temp engine
DTC variable DTC A
EGR variable valve position A
NOX variable concentration NOx B

Fuel Inj

variable fuel quan 1
variable quantity fuel C
variable quantity fuel B
variable angle fuel AD

variable quantity fuel A
Fuel rail variable pressure rail

air variable pres boost

Catal
variable NOxCatalist Storage
variable quantity reductant

Table 8.1: Features selected using a category-ful feature selection, by category

8.1.2 Feature selection in ProgramB

The entire feature selections done so far has only been applied to the ProgramA

cycles available, with no consideration for ProgramB. This makes sense from a

process-centric perspective, since the features that need to be processed by the

classifiers are those of the ProgramA cycles.

Despite that, the feature selection algorithm can provide useful information

about the features available in ProgramB: on the one hand, it provides the same

kind of insights it did for ProgramA; on the other, if the features selected are

66

consistent with the ones selected by ProgramA, it gives validation for the features

selected during the process.

Since the number of features in ProgramB is significantly larger than that of

ProgramA (440 versus 50) and since the ProgramA features are a subset of the

ProgramB ones, a larger number of features is intuitively expected to be extracted

from the ProgramB selection with respect to that in ProgramA. These selected

features may not be the same as those of ProgramA, since the larger number of

features also provides a larger selection pool but, despite that, the features selected

by ProgramA should all be represented by those selected in ProgramB.

Table 8.2 shows the list of features extracted in ProgramB, using the feature

selection algorithm and the parameters described in Subsection 6.1.1.

Variable
variable Torque

variable NOxCatalist Storage
variable AirFlow

variable time fuel A
variable percent oxygen B

variable Temp coolant
variable battery

variable air intake
variable angle fuel CD

variable DTC B
variable temperature manifold

variable Vflow DPF
variable temp Induct

variable concentration NOx A
variable concentration NOx B

variable percent oxygen C
variable valve position B

variable press oil
variable press amb

variable time fuel corr3
variable Mflow DPF

variable DTC A
variable percent oxygen D

variable temperature exh gas 2
variable afr A

variable quantity reductant
variable ResFlow
variable model

variable valve position C

Table 8.2: Features selected from ProgramB

Since the ProgramA variables are a subset of those in ProgramB, as mentioned,

67

it is expected that all the variables selected in ProgramA are well represented by

those selected in ProgramB. This, though, is not the case. Table 8.3 shows the

matching between the variables from the two datasets. Some of the variables,

such as variable concentration NOx B, are selected for both cases as most repre-

sentative. In other cases, such as with variable pressure rail, a different variable is

selected in ProgramB (variable air intake), but the correlation between the two is

still strong: since ProgramB has a larger number of variables available, it makes

sense that different variables are selected. In still other cases (the ones highlighted

in italic), the variables did not even make it through the “correlation matrix gener-

ation” phase: this is because these variables were not present in all the ProgramB

cycles and have thus been discarded. Since, in these cases, the aggregate correla-

tion coefficients were not available, a different approach has been used to figure out

whether the variables were represented by others among the selected ones: a single

ProgramB cycle has been selected and the correlation matrix has been computed

between the variables of this cycle. Then, the correlation between the ProgramA

variable and any of the ones selected in ProgramB is checked. Since this approach

only considers single cycles, the results are not as global in nature as the previous

one: the result is that, with the threshold of 0.8 for the minimum correlation, none

of the three “not found” variables is covered but, by the decreasing this threshold

to 0.75, there is a match for all of them. In two of the cases, multiple variables are

found to be representative: this can only happen because the feature selection on

ProgramB was carried out with a larger minimum threshold (0.8).

8.2 Response time measurement

The initial definition of response time provided was that of the time needed to

reach the final 21% oxygen level after the cut-off. This definition is ambiguous

since, in many of the available cycles, the 21% level is reached asymptotically,

yielding meaningless measurements. On top of this, the high frequency noise on

the signals make it hard to detect the exact start of the cut-off.

Because of these reasons, an independent approach to the measurement of

the response time has been introduced, as a form of validation of the method

proposed by the company’s domain experts (reported in Subsection 5.1). This

made it possible to verify whether the techniques used yield similar results and,

if not, further investigations could be made to figure out what was causing the

problem, and which approached behaved the best.

The oxygen level behavior when the cut-off occurs has already been presented

in Figure 5.1b. The behavior is approximately that of a ramp. The proposed

approach to measuring the response time is that of approximating this ramp with

68

P
ro

g
ra

m
A

v
a
ri

a
b
le

P
ro

g
ra

m
B

v
a
ri

a
b
le

(s
)

va
ri

ab
le

co
n
ce

n
tr

at
io

n
N

O
x

B
va

ri
ab

le
co

n
ce

n
tr

at
io

n
N

O
x

B
va

ri
ab

le
p
re

ss
u
re

ra
il

va
ri

ab
le

ai
r

in
ta

ke
va

ri
ab

le
q
u
an

ti
ty

fu
el

A
va

ri
ab

le
T

or
q
u
e

va
ri

ab
le

qu
an

ti
ty

fu
el

C
va

ri
ab

le
T

or
qu

e
va

ri
ab

le
te

m
p

en
gi

n
e

va
ri

ab
le

T
em

p
co

ol
an

t
va

ri
ab

le
q
u
an

ti
ty

re
d
u
ct

an
t

va
ri

ab
le

q
u
an

ti
ty

re
d
u
ct

an
t

va
ri

ab
le

p
er

ce
n
t

ox
y
ge

n
A

va
ri

ab
le

T
or

q
u
e

va
ri

ab
le

te
m

p
er

at
u
re

m
an

if
ol

d
va

ri
ab

le
te

m
p

er
at

u
re

m
an

if
ol

d

va
ri

ab
le

qu
an

ti
ty

fu
el

B
va

ri
ab

le
pr

es
s

oi
l

va
ri

ab
le

qu
an

ti
ty

re
du

ct
an

t

va
ri

ab
le

va
lv

e
po

si
ti

on
A

va
ri

ab
le

co
n

ce
n

tr
at

io
n

N
O

x
A

va
ri

ab
le

co
n

ce
n

tr
at

io
n

N
O

x
B

va
ri

ab
le

te
m

p
er

at
u
re

ex
h

ga
s

1
va

ri
ab

le
ai

r
in

ta
ke

va
ri

ab
le

te
m

p
er

at
u
re

ex
h

ga
s

3
va

ri
ab

le
V

fl
ow

D
P

F
va

ri
ab

le
an

gl
e

fu
el

A
D

va
ri

ab
le

an
gl

e
fu

el
C

D
va

ri
ab

le
N

O
x
C

at
al

is
t

S
to

ra
ge

va
ri

ab
le

N
O

x
C

at
al

is
t

S
to

ra
ge

T
ab

le
8.

3:
M

at
ch

in
g

of
fe

at
u
re

s
se

le
ct

ed
in

P
ro

gr
am

A
w

it
h

th
os

e
se

le
ct

ed
in

P
ro

gr
am

B

69

four segments and measuring the response time on the approximated signal. Two

of the segments used are constants, approximating the initial and final oxygen

level. The other two segments are used to approximate the rising of the ramp.

248 249 250 251 252 253 254 255 256
Time (s)

10

12

14

16

18

20

va
ria

bl
e_

pe
rc

en
t_

ox
yg

en
 (

%
)

Figure 8.1: Original ramp approximated with 4 segments (represented using dif-
ferent colors)

Figure 8.1 shows the original ramp (in blue) and the four segments using dif-

ferent colors. The identification of these four segments is done following these

steps:

1. The bounds where the ramp is contained are identified, as already explained

in Subsection 5.1: the ramps for all cycles are required to be in this 245÷260

seconds time slot

2. The initial and final constant values are computed as the average the initial

and final N samples (with N selected so as not to be too large and include

parts of the ramp, nor too small and only represent a local subset of samples)

3. Given the initial and final constant values, a step signal is built, and it is

made slide over the ramp signal. The similarity (measured as the Sum of

Squared Errors) between the two signals is computed for each shift. The

shift that yields the smallest SSE is selected (Figure 8.2a)

4. The point where the constant value of the step changes is selected as the

center of the ramp: this will be referred to as the ith value for the signal

70

5. The definition of the second (green) segment occurs by iteratively building

a line that connects the ith point to the (i− j)th one, with j starting from 1

and increasing until the red (first) segment exists no more. For each different

segment, the SSE is computed

6. The first and second segments selected are those that result as having the

lowest SSE (Figure 8.2b)

7. Steps 5 and 6 are repeated for the definition of the third and fourth segments,

connecting the ith point to the (i + j)th one (Figure 8.2c)

248 249 250 251 252 253 254 255 256
Time (s)

10

12

14

16

18

20

va
ria

bl
e_

pe
rc

en
t_

ox
yg

en
 (

%
)

(a) Centering the step function

248 249 250 251 252 253 254 255 256
Time (s)

10

12

14

16

18

20

va
ria

bl
e_

pe
rc

en
t_

ox
yg

en
 (

%
)

(b) Second segment

248 249 250 251 252 253 254 255 256
Time (s)

10

12

14

16

18

20

va
ria

bl
e_

pe
rc

en
t_

ox
yg

en
 (

%
)

(c) Third segment

Figure 8.2: Identification of the four segments

Applying this process to all the cycles available then returns a new response

time as measured on the approximated signal. This response time, when com-

pared to the original one measured in Subsection 5.1, is expected to be higher:

this method measures the entire rise, while the other one stops when 63% of the

transition is reached. Figure 8.3 compares the response times measured using the

two different approaches. Intuitively, the results are consistent and, by measuring

the correlation between the two series of numbers, the resulting coefficient is 0.82:

this implies a strong correlation between the two methods.

Only one method is required during the process, and since the company ex-

pressed its preference in using the “63%” one, the method described in this sub-

section has been set aside and only used as a validation of the results obtained.

The additional advantage of the original method over this segment-based one is in

the reduced entity of the noise introduced: since the original process only focuses

on the initial part of the rise (more uniform throughout the cycles), the resulting

response times are less subject to uncertain measurements.

8.3 Exclusion of the smoothing process

The smoothing process described in Subsection 5.2.3 transforms the response times

measured so as to render them more consistent between adjacent cycles. This

71

0 50 100 150 200 250 300 350 400
Cycle number

1.0

1.5

2.0

2.5

3.0

3.5
R

es
po

ns
e

tim
e

(s
)

Original method
Segments method

Figure 8.3: Comparison of the response times as measured using the two proposed
methods

operation is based on the assumption of continuity between cycles as far as the

clogging problem is concerned, but it is true nonetheless that this operation is

actually changing the measured values.

In order to assess whether the results of this operation are actually helping

towards better classifiers, a separate experiment where the response times have

not been smoothed has been carried out (in other words, the k parameter of the

smoothing process has been set to 0).

The results of this experiment are proposed in Table 8.4, and the prediction bars

are shown in Figure 8.4. The red-related performance of the classifiers are worse

when compared to the original problem, while the green-related ones improve. The

bars show that the classifier attempts (and fails) to classify as red a large number

of cycles: this possibly happens because the cycles labelled as red upon which the

classifiers based their trainings were not actually red (notice how some scattered

red cycles can now be be found), thus providing unreliable information upon which

the classifiers base their knowledge.

The conclusion that can be drawn from this experiment is that the smoothing

process is indeed useful in order to improve the classifiers’ performance. The

effectiveness of the selection of the parameter k could be discussed in terms of

influence on the performance of the classifiers. This, as many of the other possible

further experiments, would result in a larger number of classifiers being trained,

72

Green Yellow Red
Precision 0.8855 0.7744 0.7586

Recall 0.8750 0.7987 0.7213
F1 score 0.8802 0.7864 0.7395
Accuracy 0.8196

(a) Decision tree results

Green Yellow Red
Precision 0.9226 0.8354 0.7581

Recall 0.9226 0.8302 0.7705
F1 score 0.9226 0.8328 0.7642
Accuracy 0.8608

(b) Neural network results

Green Yellow Red
Precision 0.9250 0.8239 0.7681

Recall 0.8810 0.8239 0.8689
F1 score 0.9024 0.8239 0.8154
Accuracy 0.8557

(c) SVM results

Table 8.4: Performance results for the classifiers trained with the dataset labelled
without applying the smoothing process

SV
M

NN
Tr
ee

Tr
ut
h

Figure 8.4: Prediction bars for the classifier using labels assigned without the
smoothing process

73

with significant time being consumed for the purpose. Because of this, many of

the possible further explorations will not be pursued unless deemed of particular

relevance (many additional experiments that did not yield useful results have not

been reported).

8.4 Downsampling of the signals

The ProgramA cycles available have been sampled with a frequency of 1 Hz: while

this is an acceptable value for a local (and possibly test bench) measurement, it

gets unfeasible when this information needs to be sent on the cloud for remote

processing: this is the idea behind the scaling up and, in order to even consider

having the ECU send the data to a server, the sampling frequency needs to be

lowered.

This downsampling is expected to degrade the quality of the signals acquired

and, as a natural consequence, this should degrade the performance of the classifier.

Starting from this assumption, the F1 score for each classifier has been computed

as the sampling frequency decreases. The result is shown in Figure 8.5, and it is

evident that the results are not compatible with the expected degradation.

0 5 10 15 20 25 30
Sampling period (s)

0.0

0.2

0.4

0.6

0.8

1.0

F
1

sc
or

e

SVM
Neural network
Decision tree

Figure 8.5: F1 score for the classifiers evolution as the sampling frequency decreases

This may be counterintuitive, but the decision of transforming the input space

from a time-based one to one of summary statistics rendered the classifiers robust

74

to this process of downsampling. The reason for this robustness is easily explained:

when the distribution of values is taken into account, the time component is no

longer relevant and neither is the total number of samples used. If sampling the

signal results in a downsampled signal with approximately the same distribution

of values as the original one, the overall distribution that is being considered when

extracting the summary statistics does not change significantly, and nor do the

summary statistics.

The assumption that the distributions of variables do not significantly change

when downsampling should be tested. In order to do this, the original distribution

of values has been compared with the distribution of values for the downsampled

signals. This comparison has been carried out using the Jensen-Shannon diver-

gence, a symmetric statistical measure based on the Kullback-Leibler divergence.

The Jensen-Shanno divergence, defined for two discrete distributions of probabili-

ties p and q by Equation 8.1, is 0 for identical distributions and saturates to ln 2

for completely different ones.

JSdiv(p, q) =
1

2

∑
i

[
pi ln

(
2 pi

pi + qi

)
+ qi ln

(
2 qi

pi + qi

)]
(8.1)

For each of the 14 selected variables, Figure 8.6a shows how the Jensen-Shannon

divergence evolves as the sampling period increases. Given the boundaries of

this coefficient, the distributions do not diverge significantly from the original

one. This comparison can be extended all the way to significantly larger sampling

periods (e.g. 1000 seconds, with the resulting signals being comprised of three or

so samples). Figure 8.6b shows precisely this (the curve has been smoothed using

a LOWESS – locally weighted scatterplot smoothing – regression [17], in order to

reduce the entity of the oscillations). In this case, as expected, the degradation

is much more noticeable. This graph allows, after defining the maximum allowed

degradation of the distributions, to decide a suitable sampling frequency.

8.5 Exclusion of strong predictors

So far, all variables available have been used as inputs for the classifiers. This,

as shown in some experiments (see Subsection 9.1) introduces variables that are

strong predictors, i.e. variables that easily separate the classes. While this is an

excellent way of building reliable classifiers, the three problems listed below arise.

The first one is that, since one of the goals of this project is that of under-

standing the reasoning behind the classifications made (i.e. figuring out which are

the variables that are mostly connected to the problem), having a strong predictor

may conceal other weaker – yet important variables.

75

0 5 10 15 20 25 30
Period (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Je
ns

en
S

ha
nn

on
 d

iv
er

ge
nc

e

(a) Sampling period range: 1÷ 31 seconds

0 200 400 600 800 1000
Period (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Je
ns

en
S

ha
nn

on
 d

iv
er

ge
nc

e

(b) Sampling period range: 1÷ 1001 seconds

Figure 8.6: Jensen-Shannon divergence between the original and the downsampled
distributions

76

The second problem is that building a classifier that bases its decisions upon

a low number of variables (as shown, even just one) may be problematic if the

given variable is not available for some reason (also known as the “single point of

failure” problem).

The third problem, which concerns the introduction of the derivatives as part

of the inputs to the classifier is that, when deployed on a larger scale on actual

vehicles, the sampling frequency will be significantly lower (problem described in

Subsection 8.4) and, as such, the computation of the discrete derivatives cannot

be done1 with the data available. Since programming ECUs to perform custom

tasks (such as the computation of the derivative of the signal locally) is not a

guaranteed option, the assumption that derivatives will be available may not hold

in the future.

Because of the above, the original three-classes experiment has been carried out

excluding first all the derivatives, and then the oxygen variable from the features

used as input. These operations are expected to degrade the classifiers in terms of

performance; the entity of these degradations will be presented next.

8.5.1 Derivatives

The exclusion of the derivatives from the pool of features available halves the total

number of features used to train the classifier. This, on the one hand, reduces the

entity of the original “large number of variables” problem but, as shown, derivatives

heavily help during the classification process. The latter factor is significantly more

influent on the overall results, as is shown by the degradation in performance of

the classifiers trained without the derivatives in Table 8.5.

While lower than the original scores, the performance of the classifiers can still

be considered acceptable overall, meaning that even the case where the derivatives

cannot be computed could be handled satisfactorily.

8.5.2 Oxygen variable

The scenario where the oxygen variable is removed from the inputs is possibly

the worst one, since the strongest of predictors is being taken away and the input

dimensionality does not decrease significantly (from 208 down to 206 – since the

oxygen and its derivative are no longer available). The results are those of Table 8.6

and, as expected, the values are significantly lower than the previously proposed

cases. This is representative of the lack of existence of other strong predictors:

weaker ones may still exist (given the better-than-random performance achieved),

1While it could, the results would yield no significance given the high frequency of most all
signals

77

Green Yellow Red
Precision 0.8537 0.7562 0.6563

Recall 0.8537 0.7423 0.6885
F1 score 0.8537 0.7492 0.672
Accuracy 0.7809

(a) Decision tree results

Green Yellow Red
Precision 0.8647 0.8239 0.8305

Recall 0.8963 0.8037 0.8033
F1 score 0.8802 0.8137 0.8167
Accuracy 0.8428

(b) Neural network results

Green Yellow Red
Precision 0.8302 0.648 0.697

Recall 0.8049 0.7791 0.377
F1 score 0.8173 0.7075 0.4894
Accuracy 0.7268

(c) SVM results

Table 8.5: Results for the classifier trained without the derivatives as inputs

but a combination of them needs to be considered. The decision tree generated,

shown in Figure 8.7, shows the predictors identified other than the oxygen level.

Green Yellow Red
Precision 0.7949 0.6089 0.4906

Recall 0.7561 0.6687 0.4262
F1 score 0.775 0.6374 0.4561
Accuracy 0.6675

(a) Decision tree results

Green Yellow Red
Precision 0.8485 0.7673 0.6563

Recall 0.8537 0.7485 0.6885
F1 score 0.8511 0.7578 0.672
Accuracy 0.7835

(b) Neural network results

Green Yellow Red
Precision 0.898 0.6699 0.6875

Recall 0.8049 0.8589 0.3607
F1 score 0.8489 0.7527 0.4731
Accuracy 0.7577

(c) SVM results

Table 8.6: Results for the classifier trained without the oxygen variable as input

78

d
er

iv
 v

ar
ia

b
le

_
te

m
p
er

at
u
re

_
m

an
if

o
ld

 9
0
%

 <
=

 0
.8

7
6
9

g
in

i
=

 0
.6

2
0
1

sa
m

p
le

s
=

 3
8

8
v
al

u
e

=
 [

1
6
4
,
1
6
3
,
6
1
]

d
er

iv
 v

ar
ia

b
le

_
v
al

v
e_

p
o
si

ti
o
n
_
A

 3
0
%

 <
=

 -
0
.6

8
4
3

g
in

i
=

 0
.5

6
8
2

sa
m

p
le

s
=

 2
2

5
v
al

u
e

=
 [

3
9
,
1
3
2
,
5
4
]

T
ru

e

d
er

iv
 v

ar
ia

b
le

_
N

O
x
C

at
al

is
t_

S
to

ra
g
e

6
0
%

 <
=

 0
.0

0
0
2

g
in

i
=

 0
.3

7
3
9

sa
m

p
le

s
=

 1
6

3
v
al

u
e

=
 [

1
2
5
,
3
1
,
7
]

F
al

se

v
ar

ia
b
le

_
co

n
ce

n
tr

at
io

n
_
N

O
x
_
B

 3
0
%

 <
=

 1
8
1
.3

3
6
1

g
in

i
=

 0
.5

3
3
9

sa
m

p
le

s
=

 3
5

v
al

u
e

=
 [

2
1
,
1
1
,
3
]

d
er

iv
 v

ar
ia

b
le

_
N

O
x
C

at
al

is
t_

S
to

ra
g
e

4
0
%

 <
=

 -
0
.0

0
0
6

g
in

i
=

 0
.5

1
3
4

sa
m

p
le

s
=

 1
9

0
v
al

u
e

=
 [

1
8
,
1
2
1
,
5
1
]

d
er

iv
 v

ar
ia

b
le

_
p
re

ss
u
re

_
ra

il
 2

0
%

 <
=

 -
1
.8

3
7
9

g
in

i
=

 0
.3

5
5

sa
m

p
le

s
=

 2
6

v
al

u
e

=
 [

2
0

,
6

,
0

]

v
ar

ia
b
le

_
q
u
an

ti
ty

_
fu

el
_
A

 7
0
%

 <
=

 1
.4

7
7
5

g
in

i
=

 0
.5

6
7
9

sa
m

p
le

s
=

 9
v

al
u

e
=

 [
1

,
5

,
3

]

g
in

i
=

 0
.0

sa
m

p
le

s
=

 2
v

al
u

e
=

 [
0

,
2

,
0

]

d
er

iv
 v

ar
ia

b
le

_
te

m
p
_
en

g
in

e
m

ea
n
 <

=
 -

0
.0

0
1
9

g
in

i
=

 0
.2

7
7
8

sa
m

p
le

s
=

 2
4

v
al

u
e

=
 [

2
0

,
4

,
0

]

g
in

i
=

 0
.0

sa
m

p
le

s
=

 2
v

al
u

e
=

 [
0

,
2

,
0

]

g
in

i
=

 0
.1

6
5
3

sa
m

p
le

s
=

 2
2

v
al

u
e

=
 [

2
0

,
2

,
0

]

g
in

i
=

 0
.0

sa
m

p
le

s
=

 5
v

al
u

e
=

 [
0

,
5

,
0

]

g
in

i
=

 0
.3

7
5

sa
m

p
le

s
=

 4
v

al
u

e
=

 [
1

,
0

,
3

]

v
ar

ia
b
le

_
te

m
p
_
en

g
in

e
2
0
%

 <
=

 8
8
.9

4
8
3

g
in

i
=

 0
.3

9
2
2

sa
m

p
le

s
=

 1
1

3
v
al

u
e

=
 [

1
4
,
8
6
,
1
3
]

v
ar

ia
b
le

_
v
al

v
e_

p
o
si

ti
o
n
_
A

 4
0
%

 <
=

 3
0
.7

2
9
9

g
in

i
=

 0
.5

4
7
1

sa
m

p
le

s
=

 7
7

v
al

u
e

=
 [

4
,
3
5
,
3
8
]

d
er

iv
 v

ar
ia

b
le

_
te

m
p
er

at
u
re

_
ex

h
_
g
as

_
1
 6

0
%

 <
=

 0
.0

2
3
1

g
in

i
=

 0
.3

4
4
5

sa
m

p
le

s
=

 1
0

8
v
al

u
e

=
 [

9
,
8
6
,
1
3
]

g
in

i
=

 0
.0

sa
m

p
le

s
=

 5
v

al
u

e
=

 [
5

,
0

,
0

]

g
in

i
=

 0
.2

1
7
6

sa
m

p
le

s
=

 9
2

v
al

u
e

=
 [

6
,

8
1

,
5

]

g
in

i
=

 0
.6

1
7
2

sa
m

p
le

s
=

 1
6

v
al

u
e

=
 [

3
,

5
,

8
]

d
er

iv
 v

ar
ia

b
le

_
te

m
p
er

at
u
re

_
ex

h
_
g
as

_
1
 7

0
%

 <
=

 0
.4

7
4
4

g
in

i
=

 0
.4

5
1
9

sa
m

p
le

s
=

 5
2

v
al

u
e

=
 [

1
,
1
6
,
3
5
]

v
ar

ia
b
le

_
te

m
p
er

at
u
re

_
m

an
if

o
ld

 2
0
%

 <
=

 5
1
.1

2
5
5

g
in

i
=

 0
.3

9
3
6

sa
m

p
le

s
=

 2
5

v
al

u
e

=
 [

3
,

1
9

,
3

]

g
in

i
=

 0
.1

9
7
5

sa
m

p
le

s
=

 9
v

al
u

e
=

 [
0

,
8

,
1

]

g
in

i
=

 0
.3

3
9
6

sa
m

p
le

s
=

 4
3

v
al

u
e

=
 [

1
,

8
,

3
4

]

g
in

i
=

 0
.6

1
2
2

sa
m

p
le

s
=

 7
v

al
u

e
=

 [
3

,
1

,
3

]

g
in

i
=

 0
.0

sa
m

p
le

s
=

 1
8

v
al

u
e

=
 [

0
,

1
8

,
0

]

d
er

iv
 v

ar
ia

b
le

_
te

m
p
er

at
u
re

_
ex

h
_
g
as

_
1
 m

ea
n
 <

=
 -

0
.0

6
1

g
in

i
=

 0
.2

8
3
2

sa
m

p
le

s
=

 1
4

7
v
al

u
e

=
 [

1
2
3
,
1
8
,
6
]

d
er

iv
 v

ar
ia

b
le

_
te

m
p
er

at
u
re

_
ex

h
_
g
as

_
1
 9

0
%

 <
=

 2
.2

1
3
4

g
in

i
=

 0
.3

2
0
3

sa
m

p
le

s
=

 1
6

v
al

u
e

=
 [

2
,

1
3

,
1

]

d
er

iv
 v

ar
ia

b
le

_
te

m
p
er

at
u
re

_
ex

h
_
g
as

_
1
 9

0
%

 <
=

 2
.2

5
4

g
in

i
=

 0
.2

1
6

sa
m

p
le

s
=

 1
3

8
v
al

u
e

=
 [

1
2
1
,
1
7
,
0
]

d
er

iv
 v

ar
ia

b
le

_
co

n
ce

n
tr

at
io

n
_
N

O
x
_
B

 8
0
%

 <
=

 1
0
.8

8
7

g
in

i
=

 0
.4

9
3
8

sa
m

p
le

s
=

 9
v

al
u

e
=

 [
2

,
1

,
6

]

g
in

i
=

 0
.0

6
1
2

sa
m

p
le

s
=

 9
5

v
al

u
e

=
 [

9
2

,
3

,
0

]

d
er

iv
 v

ar
ia

b
le

_
co

n
ce

n
tr

at
io

n
_
N

O
x
_
B

 3
0
%

 <
=

 -
3
.6

3
4
7

g
in

i
=

 0
.4

3
9
2

sa
m

p
le

s
=

 4
3

v
al

u
e

=
 [

2
9
,
1
4
,
0
]

g
in

i
=

 0
.1

7
4
8

sa
m

p
le

s
=

 3
1

v
al

u
e

=
 [

2
8

,
3

,
0

]

g
in

i
=

 0
.1

5
2
8

sa
m

p
le

s
=

 1
2

v
al

u
e

=
 [

1
,

1
1

,
0

]

d
er

iv
 v

ar
ia

b
le

_
te

m
p
_
en

g
in

e
4
0
%

 <
=

 -
0
.0

0
2
3

g
in

i
=

 0
.2

4
4
9

sa
m

p
le

s
=

 7
v

al
u

e
=

 [
0

,
1

,
6

]

g
in

i
=

 0
.0

sa
m

p
le

s
=

 2
v

al
u

e
=

 [
2

,
0

,
0

]

g
in

i
=

 0
.0

sa
m

p
le

s
=

 6
v

al
u

e
=

 [
0

,
0

,
6

]

g
in

i
=

 0
.0

sa
m

p
le

s
=

 1
v

al
u

e
=

 [
0

,
1

,
0

]

g
in

i
=

 0
.4

4
4
4

sa
m

p
le

s
=

 3
v

al
u

e
=

 [
2

,
0

,
1

]

g
in

i
=

 0
.0

sa
m

p
le

s
=

 1
3

v
al

u
e

=
 [

0
,

1
3

,
0

]

F
ig

u
re

8.
7:

F
1

sc
or

e
fo

r
th

e
cl

as
si

fi
er

s
ev

ol
u
ti

on
as

th
e

sa
m

p
li
n
g

fr
eq

u
en

cy
d
ec

re
as

es

79

8.6 Processing the Model2 dataset

The entirety of the experiments and considerations made so far have been using

the Model1 dataset because of the reasons explained in Subsection 3.1.4. The

Model2 dataset is intrinsically similar to the Model1 one and, as such, it poses as

the perfect candidate for the validation of the entire process.

Despite the similarities between the two datasets, the Model2 one has a lower

number of records and, when keeping the same thresholds defined for Model1,

the number of red cycles is only of 15. Changing the thresholds allows having a

slightly larger cardinality for the red class: thresholds at 1.1 and 1.35 seconds have

been set. This has significantly changed the proportions of the classes: Table 8.7

contains the number of cycles available for each of the three classes, as defined by

the new thresholds.

Class Cardinality
Green 31
Yellow 79

Red 74

Table 8.7: Cardinalities for the three identified classes

Given the large number of red cycles available (compared to the green and yel-

low ones) the performance of the classifier are expected to be acceptable, despite

the lower number of overall cycles. The intermediate results (such as those pre-

sented while describing the process in the previous chapters) will not be reported

for the Model2 dataset in order to avoid redundancy. Instead, only the results

achieved are presented in Table 8.8.

As already mentioned for the previous experiments, the hyperparameters used

are those already defined for the original classifiers: as such, the reported metrics

could be slightly improved: despite that, given the low fcardinalities at play, the

results are already satisfactory.

There are two important takeaways from this experiment: the first is that

the defined process can be replicated on new data without any major change

(with further considerations on the replicability and its limitations pointed out

in Subsection 12.2.2). The second key point is that, as already stated multiple

times, the definition of the classes is crucial: when keeping the original thresholds

set for Model1, the cardinality of the red class was so low that it did not allow

the classifiers to learn anything useful about the clogging problem, with the low

performance that came with it.

80

Green Yellow Red
Precision 0.7353 0.7711 0.8060

Recall 0.8065 0.8101 0.7297
F1 score 0.7692 0.7901 0.7660
Accuracy 0.7772

(a) Decision tree results

Green Yellow Red
Precision 0.7647 0.7952 0.8507

Recall 0.8387 0.8354 0.7703
F1 score 0.8000 0.8148 0.8085
Accuracy 0.8098

(b) Neural network results

Green Yellow Red
Precision 0.8929 0.7556 0.8333

Recall 0.8065 0.8608 0.7432
F1 score 0.8475 0.8047 0.7857
Accuracy 0.8043

(c) SVM results

Table 8.8: Performance results for the classifiers trained on the Model2 dataset

8.7 Precision-based tuning of the parameters

So far, the metric that has been used to evaluate classifiers has been the F1 score

for the red class. This measure is often proposed as a valid metric upon which

to base considerations, as it represents the harmonic mean between precision and

recall. Despite this theoretical predilection, real-life scenarios may have specific

requirements that collide with the standard approaches.

This is the case with the clogging problem: the exchanges with the domain

experts brought up the fact that, for the company, it would be preferable to avoid

recalling vehicles that do not actually present any problem, as that would be an

unnecessary burden for both the customer and the producer. Since this requires

increasing the confidence of each “red” prediction, it naturally follows that some

“red” cases (the ones where the classifier is not “entirely sure”) may not be cor-

rectly identified: this, though, can be considered as acceptable, as it would most

likely only introduce a delay in the detection of the problem (as the clogging gets

worse, the classifier is expected to increase in confidence of the prediction).

The description of this requirement can be translated, in technical terms, to the

fact that the classifier should focus on increasing the precision metric, accepting a

lower recall score as a result. This requires re-tuning the hyperparameters of the

classifiers using, as evaluation function, the precision.

This kind of optimization could result in classifiers that achieve a significantly

81

high precision but unacceptably low recall scores (e.g. by only predicting as “red”

an incredibly small fraction of the actual red cycles, for which the classifier is

certain about the outcome): as a consequence, the recall should be treated with

an eye of regard despite the initial statement about the lower importance of this

metric.

After re-tuning the hyperparameters, the results of the cross-validation are

those shown in Table 8.9. The precision is, as expected, higher when compared to

the original values. This comes, for the decision tree, with a significant decrease

in recall score: this should be kept into account when deciding whether this is the

option to with. For the other classifiers the recall has not decreased drastically.

Green Yellow Red
Precision 0.843 0.7572 0.8605

Recall 0.8841 0.8037 0.6066
F1 score 0.8631 0.7798 0.7115
Accuracy 0.8067

(a) Decision tree results

Green Yellow Red
Precision 0.903 0.8659 0.9153

Recall 0.9085 0.8712 0.8852
F1 score 0.9058 0.8685 0.9
Accuracy 0.8892

(b) Neural network results

Green Yellow Red
Precision 0.8704 0.8059 0.875

Recall 0.8598 0.8405 0.8033
F1 score 0.865 0.8228 0.8376
Accuracy 0.8428

(c) SVM results

Table 8.9: Performance results for the classifier optimized using precision as the
evaluation metric

82

Chapter 9

Labelling explorations

The thresholds for the green/yellow/red classes have been defined in Subsection

5.2.2 mostly based on the distribution of response time values, without accounting

for any domain knowledge. This implies that the decisions made may not be the

best for this problem: changing thresholds and labels would generate different clas-

sifiers, which in turn perform differently. An exhaustive exploration of the entire

space of possible classes is not feasible, since the response time domain is continu-

ous. Instead, experiments where the already defined classes have been manipulated

have been carried out. These experiments show how important the definition of the

classes is and how setting different goals result in different classifiers. Re-tuning

the hyperparameters for all classifiers is an excessively time-consuming operation,

as such the configurations already found for the original classifiers of Chapter 7

will be used instead.

9.1 Red and green binary classifier

A first, “radical” experiment is that of discarding the cycles belonging to the

yellow class. This means discarding 163 cycles and training the classifiers using

the remaining 225 ones. This substantially impacts the dataset size, but since

yellow cycles are the ones that render the problem ill-defined, this experiment

has been carried out anyway. The red and green classes are expected to be well

separated, since they represent completely clogged cycles and completely unclogged

ones, whereas yellow cycles are an intermediate stage that may be difficult for the

classifier to label.

Given this uncertainty for the yellow subset, the performance for this experi-

ment are expected to be higher than the ones already achieved in the original one.

Indeed, Table 9.1 shows how the three classifiers achieve almost perfect scores.

Understanding why the results are this good is straightforward, since one of

the models adopted (namely, the decision tree) is highly interpretable. Figure 9.1

83

Green Red
Precision 0.9939 1.0000

Recall 1.0000 0.9836
F1 score 0.9970 0.9917
Accuracy 0.9956

(a) Decision tree results

Green Red
Precision 0.9939 1.0000

Recall 1.0000 0.9836
F1 score 0.9970 0.9917
Accuracy 0.9956

(b) Neural network results

Green Red
Precision 0.9879 0.9833

Recall 0.9939 0.9672
F1 score 0.9909 0.9752
Accuracy 0.9867

(c) SVM results

Table 9.1: Results for the binary classification problem

shows the tree built for this simplified problem. The first split, based on the 90th

percentile of the derivative of variable percent oxygen A, already partitions the

dataset excellently, thus implying that the other models, being capable of even

more complex separations, can handle the problem equally well. Figure 9.2 shows

the values for the 90th percentile of the derivative of the oxygen for the cycles in

each class, with the threshold value identified marked by the vertical line. The red

and green classes are indeed well separated by this threshold, as detected by the

decision tree.

The already introduced prediction bars showing the position in time of the

mispredicted cycles are proposed for this experiment in Figure 9.3.

The meaningfulness of the results of this and of the rest of the experiments

will be further discussed in Section 12.3, where overall conclusions will be drawn

considering the problem at hand, the results achieved and the methodology that

has been laid out.

9.2 Yellow cycles classification by binary classi-

fier

Given the binary classifiers of Subsection 9.1, the yellow, never-before-seen cycles

can be classified to the already trained models. Based on Figure 9.2, the intuition is

84

deriv variable_percent_oxygen_A 90% <= 0.8018
gini = 0.3952
samples = 225

value = [164, 61]

gini = 0.0
samples = 60

value = [0, 60]

True

gini = 0.012
samples = 165

value = [164, 1]

False

Figure 9.1: Decision tree built for the binary classifier

0.6 0.7 0.8 0.9 1.0 1.1
deriv variable_percent_oxygen 90% (%/s)

Green

Yellow

Red

La
be

l

Figure 9.2: 90th percentile of the derivative of the oxygen, by label. The vertical
line indicates the split chosen by the decision tree. The vertical jitter has been
introduced for visualization purposes

85

SV
M

NN
Tr
ee

Tr
ut
h

Figure 9.3: Precision bars for the binary classifier

that yellow cycles are classified based on their position with respect to the already

identified threshold. In fact, this is precisely what happens for the decision tree,

while the other models use more complex functions. Figure 9.4 illustrates the

prediction bars for the re-labelled yellow cycles: since the “true” (yellow) label

is not known (more precisely, it cannot be known to the classifiers, since they

have been trained only using two classes), no mispredictions are shown (and do

not exist). Despite that, the prediction bars show how neural networks and SVM

roughly make the same predictions as the decision tree, meaning that these more

sophisticated models are likely to be basing their decisions on a similar split as

that identified by the tree.

9.3 Re-labelling of yellow cycles

The fact that no “true” labels exist for the yellow cycles for the previous experiment

can be resolved by introducing a label that is either red or green for each cycle. This

new label assignment could be made with the aid of the classifiers of Subsection

9.1 and in particular based on Figure 9.2, but the resulting classifiers would be,

by construction, perfect predictors. Instead, the same label could be assigned to

all the yellow cycles, with the performance of the trained classifiers as a measure

86

S
V
M

N
N

T
re
e

T
ru
th

Figure 9.4: Prediction bars for yellow cycles, as classified by the binary predictor

of how good the change in label was. Since these cycles could be assigned either a

red or a green label, both approaches have been tested.

9.3.1 Yellow cycles as green

Labelling all yellow cycles as green implies lowering the fraction of red cycles

even further, rendering the problem a binary classification one with the red class

significantly smaller that the dominant, green one. This makes it easier for the

classifier to improve the green-related performance, while building a narrower,

possibly better defined description of the red cycles. The red-related performance

metrics (as reported by Table 9.2) are particularly promising and so are the green-

related ones.

The prediction bars are illustrated in Figure 9.5. The number of mispredicted

cycles is low (as expected, given the high values of accuracy reported) and, as it

often occurs, the points of highest uncertainty are those transitioning from green

to red and vice versa. This highlights, once again, how crucial the definition of

the thresholds is.

87

Green Red
Precision 0.9602 0.7869

Recall 0.9602 0.7869
F1 score 0.9602 0.7869
Accuracy 0.9330

(a) Decision tree results

Green Red
Precision 0.9785 0.8571

Recall 0.9725 0.8852
F1 score 0.9755 0.8710
Accuracy 0.9588

(b) Neural network results

Green Red
Precision 0.9844 0.8358

Recall 0.9664 0.9180
F1 score 0.9753 0.8750
Accuracy 0.9588

(c) SVM results

Table 9.2: Results for the “yellow as green” binary classification problem

SV
M

NN
Tr

ee
Ne

w
tru

th
Tr

ut
h

Figure 9.5: Prediction bars for the “yellow as green” binary classification problem

88

9.3.2 Yellow cycles as red

Labelling all yellow cycles as red changes the balance of the two remaining classes,

with the red one now becoming the majority one. The conclusions that can be

drawn from this are the same as those of Subsection 9.3.1, with the labels inverted

(although the entity of the effect is lessened by the similar cardinalities of the

green and red classes – 164 and 224 cycles respectively): the majority class is more

easily identified and, indeed, the results in Table 9.3 support this assumption: the

classifiers can now predict a larger number of red cycles accurately (as shown by

the red-related performance) but the overall accuracy is lower when compared to

the “yellow as green” scenario. This might be an indication of the fact that the

yellow cycles are more similar in nature to the green, rather than the red ones

(Figure 9.2 shows indeed, based on the derivative of the oxygen, why this is the

case).

Green Red
Precision 0.8457 0.8805

Recall 0.8354 0.8884
F1 score 0.8405 0.8844
Accuracy 0.8660

(a) Decision tree results

Green Red
Precision 0.8706 0.9266

Recall 0.9024 0.9018
F1 score 0.8862 0.9140
Accuracy 0.9021

(b) Neural network results

Green Red
Precision 0.9211 0.8983

Recall 0.8537 0.9464
F1 score 0.8861 0.9217
Accuracy 0.9072

(c) SVM results

Table 9.3: Results for the “yellow as red” binary classification problem

The prediction bars are shown in Figure 9.6. As expected, the number of

mispredictions is larger than that of the other binary classifiers, but the situation

is still better than that of the original problem. Once again, the mispredicted

cycles are roughly the same for all classifiers, with the decision tree performing

worse still, and the neural network and SVM making similar mistakes.

89

SV
M

NN
Tr

ee
Ne

w
tru

th
Tr

ut
h

Figure 9.6: Prediction bars for the “yellow as red” binary classification problem

90

Chapter 10

Clusters analysis

The data exploration required by this project (and some additional ones) have

been presented as part of the previous chapters. This chapter will cover some final

analyses that have been carried out following the discovery of peculiar behaviors

in the available cycles. The results and the conclusions that can be drawn from

this section are not relevant to the project per se, but are of interest nonetheless

and, as such, will be included as part of this thesis.

10.1 Anomalous variables grouping

As already mentioned, only those explorations that have yielded meaningful results

have been reported as part of this thesis, with many others (those leading to dead

ends or that have been carried out to answer side questions) have been omitted.

One such analysis, initially intended to shed light on a problem concerning some

faulty readings of a specific sensor, brought up the existence of well-defined clusters

within the available Model1 dataset.

This analysis consisted in plotting, for all the available signals (as selected by

the correlation-based feature selection algorithm defined in Subsection 6.1.1), mean

and standard deviation on a 2D plane. The result is that clusters of similar signals

(as represented by the signal’s summary statistics used) can be visually identified.

Figure 10.1 represents one of these plots for the variable temperature exh gas 1

variable. While some weak clustering might have been expected based on different

conditions, the clusters that show up are actually highly cohese, indicating that

some cycles are strongly similar to some others, but further away from the rest.

This same behavior shows up for other variables as well, as shown by the

plots in Figure 10.2. Different hypotheses can be made regarding the origin of

these clusters but, without the required domain expertise and, most importantly,

without any direct interaction with the engineers that carried out the experiments,

these hypotheses cannot be easily tested. Despite that, Section 10.4 will attempt

91

200 220 240 260 280 300
Mean

30

40

50

60

70

80

90

100
S

ta
nd

ar
d

de
vi

at
io

n

variable_temperature_exh_gas_1

Figure 10.1: Scatter plot of mean and standard deviation of the cycles for the
variable variable temperature exh gas 1

to find a plausible explanation.

1.30 1.35 1.40 1.45 1.50 1.55 1.60 1.65
Mean

0.55

0.60

0.65

0.70

0.75

0.80

S
ta

nd
ar

d
de

vi
at

io
n

variable_quantity_fuel_C

(a)

4.0 3.5 3.0 2.5 2.0 1.5 1.0
Mean

2.0

2.5

3.0

3.5

4.0

S
ta

nd
ar

d
de

vi
at

io
n

variable_angle_fuel_AD

(b)

Figure 10.2: Scatter plot of mean and standard deviation for 2 variables

10.2 Consistency throughout the features

As shown in Figure 10.2, some clusters show up for different variables and, by

trying the same approach on different summary statistics available (e.g. plotting

the same 2D plot but using percentiles), clusters keep showing up. Before trying to

92

find possible explanations for their existence, it is first useful to figure out whether

the clusters that keep showing up are comprised of the same cycles as the variables

change: this section will precisely test this.

10.2.1 Definition of the clusters

A possible approach to deciding whether the clusters are consistent is that of

running a clustering algorithm on the available dataset, and draw conclusions

based on how cohese the resulting clusters are. This approach, though, presents

some problems and does not directly answer the question of whether the initial

2D clusters are consistently the same (the clusters identified would then have to

be compared to the initial ones, not really solving the initial problem).

A different solution is that of hand-assigning a label to each of the cycles based

on the cluster they visually belong to for a given variable and, after that, visualizing

how these cycles are spread for other variables. Since the variable shown in Figure

10.1 already presents well separated clusters, this very plot will be used to define

the clusters. Figure 10.3 shows the lines that have been used for their definition.

The clusters have been color-coded to make them easier to identify. The top-most,

blue “cluster” contains those cycles that might be defined as outliers, as they do

not belong to any of the identified clusters.

Figure 10.3: Assignment of the clusters based on the mean and standard deviation
for the variable temperature exh gas 1 variable

93

10.2.2 Inter-feature analysis

Figure 10.4 shows the scattering of the cycles for some of the variables. It over-

all appears that the clusters do show up throughout the different variables con-

sistently. The least clustered variable is variable temp engine, shown in Figure

10.4b. The rest of the variables all visually appear to be consistent, with some sin-

gle points (or cycles) behaving as exceptions: this might be due to the rudimentary

label assignment process.

26 28 30 32 34 36 38
Mean

8

10

12

14

16

18

20

S
ta

nd
ar

d
de

vi
at

io
n

variable_valve_position_A

(a)

88.8 88.9 89.0 89.1 89.2 89.3 89.4
Mean

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

S
ta

nd
ar

d
de

vi
at

io
n

variable_temp_engine

(b)

Figure 10.4: Scatter plot of mean and standard deviation for 2 variables, colored
based on the clusters of Figure 10.3

9.5 10.0 10.5 11.0 11.5 12.0 12.5
Mean

3.0

3.5

4.0

4.5

5.0

5.5

S
ta

nd
ar

d
de

vi
at

io
n

variable_percent_oxygen

(a)

0.05 0.04 0.03 0.02 0.01
Mean

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

S
ta

nd
ar

d
de

vi
at

io
n

deriv variable_percent_oxygen

(b)

Figure 10.5: Scatter plot of mean and standard deviation for the oxygen variable
and its derivative, colored based on the clusters of Figure 10.3

This is significant of the fact that, regardless of the reason behind this behavior,

the overall system is influenced. Figure 10.5 show the scatter of the oxygen level

and its derivative, with the color representing the predefined clusters. The oxygen

variable appears to be well clustered. As for the derivative, other than the outliers

(and, partially, the fuchsia cycles), the rest of the clusters present limited clustering

and actually significantly overlap (even more so when only considering the mean).

94

This serves to show that the derivatives of the signals are not as affected by the

clusters as the signal themselves: a possible explanation for this reason is given as

part of the discussion of the results, in Section 12.4.

Other than this, the existence of these clusters and the consistency throughout

the variables allows for the definition of a unique label for each cycle, allowing

for further considerations to be drawn. One such consideration, covered in the

following section, is about the distribution of the labels through time.

10.2.3 Clusters definition through time

Each cycle, as explained, can be assigned a unique label depending on the cluster it

belongs to. Cycles, additionally, can be sorted based on the moment in time they

were recorded (remember that each cycle lasts an hour and that all cycles were

recorded in a 2-months period). The already introduced “prediction bars” can be

repurposed in this context to display the distribution in time for the clusters. Fig-

ure 10.6 shows precisely this. The distribution of the original (red/yellow/green)

labels has also been included in order to allow for additional considerations.

C
lu
st
er
s

La
be

ls

Figure 10.6: Distribution of the labels (top bar) and clusters (bottom bar) through-
out the cycles

This figure is of particular interest, highlighting the importance of the time

component in the characterization of the type of cycle (as represented by the cluster

assigned). Cycles belonging to the same cluster were recorded during similar time

95

periods, with the exception of the “outliers” (blue) cluster, whose cycles mostly

occur at regular intervals.

When compared to the distribution of the original, clogging-related labels, no

particular correlations can be inferred. This helps excluding clogging as the cause

of this clustering phenomenon. Since no plausible explanation for this behavior

has been found by the domain experts based on the already presented work, the

following section will focus on providing a better description of the profile of the

clusters and the characterizing aspects of the cycles comprising them.

10.3 Description of the clusters

A possible approach to describing the various groups is that of identifying the

list of most recurrent characteristics for the cycles belonging to each cluster. The

typical way of doing this is by finding the so-called frequent itemsets of a dataset.

This allows for the extraction of the sets of values that co-occur the most often.

The values available for each cycle can be, for example, the features extracted

(i.e. the summary statistics – using only the signals and not their derivatives: the

behavior has already be shown to be perfectly described by the signals themselves,

with no need to introduce the derivatives, which are not as well clustered as the

original signals, and would double the number of variables to be analyzed).

The problem with the features extracted is that they are continuous in nature,

while the frequent itemsets extraction algorithms work on discrete sets (since the

items are expected to be present multiple times within the dataset, which is hardly

the case with continuous values).

The values available can be discretized by bucketing them: the continuous

domain is divided into ranges and, based on the range a value belongs to, a discrete

bucket is assigned. This introduces some problems, which will be addressed in the

following subsection. After having described each cycle with discrete values, the

frequent itemset extraction algorithm (called FP growth) is applied, and the results

will be proposed as part of Subsection 10.3.2.

10.3.1 Generation of buckets of values

While the discretization of a continuous range of values may, at a first glance,

appear to be a trivial task, the decision of how the ranges should be defined requires

some careful considerations. Dividing the range into n sub-ranges of equal width,

or so as to have same-cardinality buckets is problematic in that the divisions do

not account for possible clusters existing within the range, thus possibly separating

cycles that were meant to be clustered together. A possible alternative is that of

96

using a clustering algorithm on each of the features, so as to correctly group points

that are supposed to be clustered together.

Of the many clustering algorithms available, k-means [18] has been chosen

because of its simplicity and suitability for this problem: this algorithm clusters

the dataset into k clusters by initially randomly assigning k centroids, and then

having the centroids move until they reach the center of a cluster. Other algorithms

may better suit this 1D clustering problem [19], but since k-means has proven to

yield satisfactory results, it has been kept as the method of choice. K-means

requires the a priori definition of the number k of clusters to be identified, and

this is not immediate: although the overall number of clusters identified has been

of 4 (3 plus the outliers), not all variables are well grouped using this number of

clusters. Since the number of buckets each variable is divided into is not required

to be the same, a different number of buckets has been introduced for each variable,

depending on the suitable number identified.

This suitable number of clusters is decided based upon the silhouette coefficient

[20], a score that ranges between -1 and +1 that indicates, for each sample, how

similar it is to the ones in its own cluster, and how far from the others. The

silhouette can be computed for each sample but, as an overall coefficient, the

average silhouette for all samples can be computed, in order to assess how good

an overall configuration is. With this method of evaluating how good a clustering

configuration is, each variable is clustered using k-means with a value for k ranging

from 2 to 5. For each result the silhouette score is then evaluated.

The most intuitive approach to selecting the best number of clusters is that of

selecting the number k that produced the largest silhouette score. This, though,

has been observed to favour a small number of buckets, even when the result is

visually not the desired one (one of the advantages of clustering on a low number

of dimensions is that the results can be visually inspected). Because of this, a

heuristic that favors a larger number of buckets has been introduced: instead of

selecting the clustering k with the largest silhouette, the highest value for k for

which the clustering exceeds the 0.8 silhouette score1 is selected instead. If the 0.8

threshold value is not exceeded by any k, the largest silhouette achieved is chosen.

Figure 10.7 shows the clustering of some of the features, based on the algorithms

and heuristics described in this subsection.

1The value has been selected considering the available clustering outcomes. A silhouette mean
value of 0.8 is, in most cases, exceedingly high but it is often achieved in this scenario because
of the low dimensionality of the problem

97

55.0 57.5 60.0 62.5 65.0 67.5 70.0 72.5
value

variable_pressure_rail 90%

0
1
2
3
4

(a)

26 28 30 32 34 36 38
value

variable_valve_position_A mean

0
1
2

(b)

Figure 10.7: Bucketing of two of the variables using 1D k-means

10.3.2 FP growth and frequent itemsets

With the bucketization, each cycle can be described in terms of a small number of

discrete items (one for each feature). For each cluster of cycles available, the list

of frequent itemsets (i.e. the sets of items that occur frequently, where frequently

is defined by a minimum number of occurrences) can be extracted using the FP

growth algorithm [21]. The algorithm builds the so-called FP tree and, from this,

it extracts all itemsets that show up with a frequency above a threshold one.

The itemsets identified by the FP growth algorithm are all those that occur

in a given fraction of the entries available (this fraction is referred to as minimum

support, or minsup for short). This means that, if a given itemset of length N is

found, all 2N−1 combinations of the items of the original itemset will be extracted

as well. This is not ideal: smaller itemsets do not bring any additional information

that is not contained in the larger one and, since the number of itemsets found

grows exponentially with the length of the largest itemset found, the problem

grows quickly. Because of these reasons, only the maximal frequent itemsets are

kept. The maximal frequent itemsets are all those itemsets that are identified as

frequent and that are not a subset of another frequent itemset.

The only parameter that needs to be defined is the minsup. This can be

defined based on different considerations. The domain may at times offer a good

definition of what “frequent” means. Alas, this is not the case. Another approach

is that of deciding what a meaningful number of itemsets is, and adjust the minsup

accordingly.

Figure 10.8 shows how the number of maximal frequent itemsets identified

changes as the minsup varies between the values of 0.7 and 1.0. While intuition

dictates that the number of itemsets found should decrease as minsup increases,

this is not the case: in fact, even though a given itemset might not be considered

frequent above a certain minsup, some subsets of it might still be, thus “generat-

98

ing” multiple frequent itemsets from a single one.

0.70 0.75 0.80 0.85 0.90 0.95 1.00
minsup

1

2

3

4

5

6

7

M
ax

im
al

 fr
eq

ue
nt

 it
em

se
ts

 e
xt

ra
ct

ed

A
C
B
D

Figure 10.8: Number of maximal frequent itemsets found for each cluster depend-
ing on the minsup threshold

In order to provide less confusing results, each cluster should be described by

a single itemset: this occurs around the value 0.85: consequently, this will be

selected as minimum support. With this value defined, the single most frequent

itemset can be extracted for each of the clusters: Tables 10.1, 10.2, 10.3 and 10.4

represent the maximal frequent itemsets for the fuchsia, orange, azure and blue

clusters.

The three main clusters (fuchsia, orange, azure) are all represented by long

(approximately 20 items) itemsets, meaning that, despite the large minsup, the

discretized values often occur simultaneously. The outliers have a significantly

smaller shared description: this is because, due to their heterogeneity, there are

not many characteristics in common. In italic are the entries that are shared

among clusters (with the exception of the outliers): these can be considered as

values that are not as relevant when searching for unique characteristics in the

clusters.

The contents of the itemsets are not of particular interest when maintaining

the domain-unaware approach kept so far. On the other hand, the length of the

itemsets themselves is significant once again of the strong similarities between

clusters, and the low number of items shared across clusters indicates that these

are well separated from one another. While these conclusions could already be

99

F
e
a
tu

re
R

a
n
g
e

(b
u
ck

e
t)

variable
tem

p
en

gin
e

std
[0.24;

0.5]
variab

le
q
u
an

tity
fu

el
B

m
ean

[1.09;
1.31]

variab
le

q
u
an

tity
fu

el
B

std
[1.72;

1.84]
variab

le
q
u
an

tity
fu

el
A

m
ean

[1.29;
1.3]

variab
le

q
u
an

tity
fu

el
A

std
[0.26;

0.29]
variab

le
an

gle
fu

el
A

D
m

ean
[-4.13;

-3.07]
variab

le
an

gle
fu

el
A

D
std

[3;
3.24]

variab
le

valve
p

osition
A

m
ean

[24.7;
30.26]

variab
le

valve
p

osition
A

std
[12.61;

19.44]
variab

le
tem

p
eratu

re
ex

h
gas

1
m

ean
[199.28;

201.49]
variable

tem
peratu

re
exh

gas
1

std
[31.7;

57.25]
variab

le
tem

p
eratu

re
ex

h
gas

3
m

ean
[175.11;

218.1]
variab

le
tem

p
eratu

re
ex

h
gas

3
std

[36.23;
61.19]

variab
le

tem
p

eratu
re

m
an

ifold
m

ean
[47.42;

52.08]
variab

le
tem

p
eratu

re
m

an
ifold

std
[5.08;

5.86]
variab

le
p
ressu

re
rail

m
ean

[35.9;
36.66]

variab
le

p
ressu

re
rail

std
[13.29;

13.78]
variab

le
con

cen
tration

N
O

x
B

m
ean

[231.86;
239.9]

variab
le

con
cen

tration
N

O
x

B
std

[102.59;
107.97]

variable
percen

t
oxygen

A
m

ean
[11.37;

12.69]
variable

percen
t

oxygen
A

std
[2.86;

3.99]
variab

le
q
u
an

tity
red

u
ctan

t
m

ean
[2.22;

5.46]

T
ab

le
10.1:

D
escrip

tion
for

clu
ster

A

100

F
e
a
tu

re
R

a
n
g
e

(b
u
ck

e
t)

va
ri

ab
le

te
m

p
en

gi
n

e
st

d
[0

.2
4;

0.
5]

va
ri

ab
le

q
u
an

ti
ty

fu
el

B
m

ea
n

[1
.3

6;
1.

6]
va

ri
ab

le
q
u
an

ti
ty

fu
el

B
st

d
[1

.7
2;

1.
84

]
va

ri
ab

le
q
u
an

ti
ty

fu
el

A
m

ea
n

[1
.3

1;
1.

32
]

va
ri

ab
le

q
u
an

ti
ty

fu
el

A
st

d
[0

.2
6;

0.
29

]
va

ri
ab

le
an

gl
e

fu
el

A
D

m
ea

n
[-

2.
96

;
-2

.2
7]

va
ri

ab
le

an
gl

e
fu

el
A

D
st

d
[1

.9
2;

2.
37

]
va

ri
ab

le
va

lv
e

p
os

it
io

n
A

m
ea

n
[3

0.
97

;
35

.0
8]

va
ri

ab
le

va
lv

e
p

os
it

io
n

A
st

d
[8

.1
7;

10
.7

9]
va

ri
ab

le
te

m
p

er
at

u
re

ex
h

ga
s

1
m

ea
n

[2
10

.6
1;

23
5.

75
]

va
ri

ab
le

te
m

pe
ra

tu
re

ex
h

ga
s

1
st

d
[3

1.
7;

57
.2

5]
va

ri
ab

le
te

m
p

er
at

u
re

ex
h

ga
s

3
m

ea
n

[1
75

.1
1;

21
8.

1]
va

ri
ab

le
te

m
p

er
at

u
re

ex
h

ga
s

3
st

d
[2

7.
22

;
32

.0
3]

va
ri

ab
le

te
m

p
er

at
u
re

m
an

if
ol

d
st

d
[3

.3
;

3.
99

]
va

ri
ab

le
p
re

ss
u
re

ra
il

m
ea

n
[3

6.
81

;
37

.9
]

va
ri

ab
le

p
re

ss
u
re

ra
il

st
d

[1
5.

24
;

15
.8

7]
va

ri
ab

le
pe

rc
en

t
ox

yg
en

A
m

ea
n

[1
1.

37
;

12
.6

9]
va

ri
ab

le
pe

rc
en

t
ox

yg
en

A
st

d
[2

.8
6;

3.
99

]
va

ri
ab

le
q
u
an

ti
ty

re
d
u
ct

an
t

m
ea

n
[2

.2
2;

5.
46

]
va

ri
ab

le
q
u
an

ti
ty

re
d
u
ct

an
t

st
d

[6
.1

3;
7.

04
]

va
ri

ab
le

N
O

x
C

at
al

is
t

S
to

ra
ge

m
ea

n
[1

.8
8;

2.
02

]
va

ri
ab

le
N

O
x
C

at
al

is
t

S
to

ra
ge

st
d

[0
.2

3;
0.

28
]

T
ab

le
10

.2
:

D
es

cr
ip

ti
on

fo
r

cl
u
st

er
B

101

F
e
a
tu

re
R

a
n
g
e

(b
u
ck

e
t)

variable
tem

p
en

gin
e

std
[0.24;

0.5]
variab

le
q
u
an

tity
fu

el
B

std
[1.59;

1.71]
variab

le
q
u
an

tity
fu

el
A

m
ean

[1.32;
1.34]

variab
le

q
u
an

tity
fu

el
A

std
[0.24;

0.26]
variab

le
an

gle
fu

el
A

D
std

[2.51;
2.97]

variab
le

valve
p

osition
A

m
ean

[35.49;
37.56]

variab
le

valve
p

osition
A

std
[8.17;

10.79]
variab

le
tem

p
eratu

re
ex

h
gas

1
m

ean
[246.41;

260.8]
variable

tem
peratu

re
exh

gas
1

std
[31.7;

57.25]
variab

le
tem

p
eratu

re
ex

h
gas

3
m

ean
[227.55;

261.17]
variab

le
tem

p
eratu

re
ex

h
gas

3
std

[20.56;
22.56]

variab
le

tem
p

eratu
re

m
an

ifold
m

ean
[56.52;

60.02]
variab

le
tem

p
eratu

re
m

an
ifold

std
[4.17;

5.01]
variab

le
p
ressu

re
rail

std
[15.97;

16.83]
variable

percen
t

oxygen
A

m
ean

[11.37;
12.69]

variable
percen

t
oxygen

A
std

[2.86;
3.99]

variab
le

q
u
an

tity
red

u
ctan

t
m

ean
[5.58;

9.29]
variab

le
q
u
an

tity
red

u
ctan

t
std

[5.08;
6.09]

variab
le

N
O

x
C

atalist
S
torage

m
ean

[2.18;
2.23]

variab
le

N
O

x
C

atalist
S
torage

std
[0.06;

0.16]

T
ab

le
10.3:

D
escrip

tion
for

clu
ster

C

102

F
e
a
tu

re
R

a
n
g
e

(b
u
ck

e
t)

va
ri

ab
le

te
m

p
en

gi
n
e

st
d

[0
.2

4;
0.

5]
va

ri
ab

le
va

lv
e

p
os

it
io

n
A

st
d

[1
2.

61
;

19
.4

4]
va

ri
ab

le
te

m
p

er
at

u
re

ex
h

ga
s

1
st

d
[6

4.
89

;
10

0.
86

]
va

ri
ab

le
p
re

ss
u
re

ra
il

st
d

[1
7.

09
;

18
.2

5]
va

ri
ab

le
p

er
ce

n
t

ox
y
ge

n
A

m
ea

n
[9

.3
7;

11
.3

1]
va

ri
ab

le
p

er
ce

n
t

ox
y
ge

n
A

st
d

[4
.0

4;
5.

45
]

va
ri

ab
le

N
O

x
C

at
al

is
t

S
to

ra
ge

st
d

[0
.6

5;
0.

84
]

T
ab

le
10

.4
:

D
es

cr
ip

ti
on

fo
r

cl
u
st

er
D

(o
u
tl

ie
rs

)

103

drawn for the single variable, the extraction of the itemsets allowed to infer a

more general correlation between variables, while providing a succinct description

of the clusters. Building on the information gathered so far, the next section will

attempt to find an explanation for the existence of these clusters.

10.4 Possible causes

All the analyses carried out so far seem to indicate that the cycles belonging to the

same cluster have all been affected in a similar way. The driver of this influence,

though, has yet to be discovered. It should be noted that, when performing the

same kind of analysis on different datasets (e.g. the Model2 one), these clusters

were not present.

A possible approach to discovering this driver is that of starting from the

independent variables (i.e. those variables that are controlled by the engineers

recording and piloting the cycle) and figuring out whether these already present

the observed behavior. If so, the reason for this clustering is that whoever ran the

experiments (note that these people did not, at any time, work on this project,

so asking them was not an option) deliberately decided to run them in different

ways, although such a behavior has been deemed unlikely by those experts that

did work on this project. Otherwise, those variables that are directly influenced

by the independent variables should be analyzed next, thus exploring the graph

of dependencies until all variables are extracted: when the first clustered variable

appears, the cause behind the clusters can be pinpointed to it.

This would theoretically work, but without the required domain expertise,

building the graph of dependencies is not feasible. As a consequence, only the

variable that is already known to be independent will be analyzed. This indepen-

dent variable is the status of the accelerator pedal: a predefined track (shown in

Figure 3.1) is used to pilot each cycle and, since this variable is fed as input, it

can be considered as being the driver of the entire cycle.

The assumption that has been made a priori is that all tracks used in the

available cycles are identical. Because of this, if the mean and the standard devi-

ation of the accelerator pedal signal are extracted for each cycle, the expectation

is that no particular difference should be found among them. The mean and the

standard deviation have been chosen because they well represent the behavior of

the signal: the mean indicates the “offset” the signal has, while the standard devi-

ation provides an indication of the amplitude of the peaks of the signal throughout

the cycle (a larger standard deviation indicates that the pedal has diverged more

significantly from the mean). Figure 10.9 shows the results for the two statistics

measured for all the cycles. It is clear that some anomaly is already present in the

104

accelerator signal and, when overlapping this result with the identified clusters (as

shown by the background colors), the match is perfect.

0 50 100 150 200 250 300 350 400
Cycle number

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

va
ria

bl
e_

ac
c_

po
s

Mean
Std

Figure 10.9: Mean and standard deviation trend of the gas pedal signal throughout
the cycles

In conclusion, the cause of this clustering can be found in the driver of the

cycles. The implications that this finding has on the already presented results will

be discussed as part of the findings in Section 12.4, along with some additional

conclusions that can be drawn from this side exploration that has been carried out

to get to the bottom of this situation.

105

106

Chapter 11

Implementation details

Given the information available on the dataset, the objectives of the study and

the constraints in place, the hardware and software required for the study can be

defined.

11.1 Hardware

A machine is required in order to process the dataset. Given the constraints

introduced by the automobile manufacturer, the data needed to be stored on a

dedicated server: as a consequence, a machine provided by the DBDMG (DataBase

and Data Mining Group) has been used for the purpose. The specifications for

the machine are listed in Table 11.1. While the specifications would allow for the

entire dataset to be loaded onto the main memory (based on the considerations of

Subsection 3.1.4), this operation has been avoided throughout the work, in order

to allow for the solution to scale to larger datasets (though the leap to big data

techniques will still be necessary at some point).

Main memory 32 GB
Storage 5 × 3 TB
Number of cores 12
Clock frequency 2.67 GHz
Operating System Ubuntu 16.04

Table 11.1: Server specifications

11.2 Software

The programming language selected for this project was Python. This language

is interpreted, thus allowing for rapid prototyping, which is essential given the

exploratory nature of the study. Python offers an incredibly rich ecosystem of

107

libraries and modules available, particularly in the data science field. The following

is a list of the libraries and packages used most extensively (all of them are widely

used in the scientific community):

• Matplotlib [22]: a 2D plotting library which produces publication quality

figures in a variety of hardcopy formats and interactive environments

• seaborn [23]: a visualization library based on matplotlib, which provides a

high-level interface for drawing statistical graphics

• NumPy [24]: the fundamental package for scientific computing

• pandas [25]: a library providing high-performance, easy-to-use data struc-

tures and data analysis tools

• scikit-learn [26]: a simple and efficient tool for data mining and data anal-

ysis

108

Chapter 12

Findings

This chapter will focus on the discussion of the outcomes of the experiments,

highlighting the most interesting aspects of the study and the most important

takeaways. These considerations regard both the original and the additional ex-

periments carried out (Chapters 7, 8 and 9), plus some comments regarding the

clusters identified in Chapter 10.

12.1 Classification results

The original process, as defined in Chapters 5, 6 and 7, achieved satisfactory

results in terms of precision, recall and accuracy. The numeric values can be

found in Table 7.1. Other than this general observation, other considerations can

be made when comparing the different classifiers and metrics.

As expected, the decision tree performs generally worse than neural networks

and SVM: this was expected, given the limitations that come with the simplicity

and interpretability of the model. Despite that, the difference is not abyssal, with

many of the metrics being less than 10% lower than those of the other classifiers.

The precision, recall and F1 score for the three classes are comparable for the

three models meaning that, although the hyperparameters were tuned so as to

maximize the red-related performance, the other classes did not suffer particularly.

The accuracy metric shows how the three classifiers correctly assign the labels for

80 to 90% of the cycles available.

12.1.1 Misclassifications

The way these labels are assigned is shown in Figure 7.4. This kind of visualization

has been introduced to provide better insights on how the classifiers behave and

where the classifiers are most often mistaken. Most notably, the three classifiers

all get wrong a group of 5-6 cycles on the left-hand side of the bars (around cycle

109

340, based on Figure 5.8c and 5.6), with all the classifiers making the same mistake

(predicting green cycles instead of yellow). This can either be because all three

classifiers learned the wrong patterns or, possibly, because the labelling used is

incorrect and those cycles should actually be green. The labelling procedure used

introduces uncertainty: first because it is based on the measurement of a signal

(with the problems that come with it, as already discussed in Sections 5.1 and

8.2 and, second, because the classes introduced to label the cycles are not perfect

and could be improved (as attempted in the labelling experiments of Chapter 9).

This uncertainty means that not all the mistakes made by the classifiers should

actually be considered as mistakes, but instead they could provide insights on

how to tune the classes: this, though, would result in a classifier biased by the

dataset: without any separate test set to verify the classifiers’ true performance,

this operation could lead to overfitting. Since the number of cycles available is

low, this kind of experiment has not been carried out.

Another interesting group of 2 cycles mispredicted by the three classifiers is

the one around 270, where two yellow cycles exist in the middle of a long sequence

of green cycles. These two cycles are predicted as green by all the classifiers:

upon inspection of Figure 5.6, the reason can be found: the response time of a

single value spiked and, when introducing the smoothing, the neighboring cycles

got affected as well, becoming yellow. This is one of the negative aspects that led

to the decision of running an experiment without applying the smoothing process.

The results will be discussed in Section 12.2.1.

A final note of interest concerning the mistakes made by the classifiers regards

the types of mistakes made: in almost no circumstance (except for one case, for the

SVM) have the classifiers predicted a green cycle as a red one, or vice versa. This

can be deduced from the bars and it is clearer still when checking the confusion

matrices of Figure 7.3. This means that the classifiers actually managed to infer

an order among classes, with the green being the furthest away from the red one,

and the yellow one in between: if this was not the case, and the classifiers were

assigning labels “randomly” (or using other unrelated criteria), cycles would be

misclassified in each of the other classes with similar frequencies.

12.1.2 Classifiers’ rationale

The decision tree offers insights on the rationale behind the labels assigned. It

has been mentioned that the decision tree is a simple classification model but, as

already shown, it fares so well that its results are comparable with those of more

complex models. Because of this, the variables considered as relevant by the tree

can be expected to be approximately the same used by the black box models.

110

The most relevant variables are typically the ones used near the root of the

tree: these represent the variables that best split the initial dataset. As the path

gets deeper, the splits made by the tree concern a smaller number of cycles, thus

not being quite as insightful (and possibly leading to overfitting – hence the early

pruning often introduced). The most interesting variable that is being used by

the root and some of the highest nodes in the decision tree of Figure 7.2 is the

derivative of variable percent oxygen A (with various percentiles being taken into

account).

Since the proposed decision tree grows rather large. A simpler – yet leading to

the same conclusions – case is that of the binary decision tree classifier represented

in Figure 9.1. In this case, the decision tree only uses a single test. This test once

again uses the derivative of the oxygen variable (more precisely, the 90th percentile):

if this quantity is below the identified value of 0.8018 the cycle is labelled as red,

otherwise green. The meaning of this simple test is the following: if the majority

of the values of the derivative of the oxygen is “low” (with low defined by that

threshold), the cycle is red. This means that those cycles where the oxygen level

changes slowly are identified as red: as shown in Figure 9.2, the variable identified

by the binary model splits red and green cycles well, with the yellow ones being

in between. The fact that this variable (or set of variables, when considering the

other statistics of that derivative) is a strong predictor might appear trivial, but

it is actually significant.

The clogging problem, as already mentioned, slows the oxygen level read by the

sensor: in order to understand how clogged each cycle is, a cut-off that occurred

in approximately the same conditions for all cycles has been used to measure the

response time. The longer the response time, the slower the reading of the oxygen

sensor and the stronger the clogging problem. Therefore, it might seem trivial

that the classifier identifies the clogged cycles as the ones having a generally slower

signal. The reason why this is not trivial at all and, actually, it provides interesting

information is that the response time has been measured using a sampling rate of

320 Hz, while the inputs provided were sampled at the much lower frequency of 1

Hz. This lower sampling frequency did not allow for a significant measurement of

the response time, but the classifiers still managed to infer useful information from

it. This decouples the identification of clogged cycles from the particular cut-off

maneuver and from the high sampling frequency.

This decoupling is particularly relevant when considering that this project

serves as a feasibility study for a larger version where data is collected from mil-

lions of vehicles and processed in real time: high sampling frequencies are unfea-

sible (even 1 Hz is too high, hence the downsampling study) and the drivers will

not be required to perform any particular maneuver. By collecting enough data

111

from a fleet of vehicles, new distributions can be computed for the derivative of

the oxygen variable in normal conditions (perhaps only collecting data in partic-

ular conditions, so as to reduce the variability of the signals). Once this data is

collected, along with the actual conditions of the lambda sensor, new models can

be built to better adapt to real driving conditions (as opposed to the conditions

used for the cycles).

Additional considerations regarding the scalability of this project will be made,

as part of the conclusions, in Section 13.2.

12.2 Process manipulation outcomes

The original process presented different opportunities for alternative choices. These

choices have been taken while devising the process based on considerations that

resulted in some decisions being taken rather than others. On top of that, the fea-

sibility analysis of the scaling-up project imposed additional constraints (namely

on the sampling frequency used for the signals): this required additional experi-

ments in order to assess the degradation of the results. This section will cover the

main results regarding some of these matters. In some cases, the conclusions to be

drawn have already been presented as part of the presentation of the work: when

that is the case, no additional considerations will be added here.

12.2.1 Removal of the smoothing process

The smoothing process has been assumed to be introducing some mislabellings (see

Subsection 12.1.1). It is only natural, therefore, to wonder whether the decision

of using this labels manipulation led to any improvement at all. In order to

answer this question, the entire process has been run with no smoothing (note

that, because of the nature of the parameter k, this is equivalent to running the

experiment setting k = 0). The results are presented in Table 8.4.

The results in terms of accuracy are comparable, if not better, to those of the

original experiment. The same goes for the green-related performance, while the

red-related ones actually degrade noticeably. While a brief comment regarding

this behavior has already been included when presenting the experiment, further

coverage may be needed in order to explain this behavior.

Figure 5.8 shows how the response times change as the size of the sliding window

of the smoothing process gets larger. Of particular interest are the red “bands”:

these bands are shrinking, thus effectively reducing the number of red cycles as k

gets larger. It might seem counterintuitive that the performance metrics for the

minority class improve as the cardinality of the class gets smaller. But, as the

112

class gets smaller, only the “most clogged” cycles (i.e. those cycles that still have

a slow response time despite the smoothing) get assigned to the red class: this

increases the purity of the red class, excluding those cycles that can be considered

as borderline yellow. This helps providing a better definition of “red”, with the

improvement in performance that comes with it.

When comparing the prediction bars of Figure 8.4 with those of the original

experiment (Figure 7.4), some interesting considerations can be made. Two of the

situations that were highlighted in Subsection 12.1.1 are those around cycles 270

and 340. The yellow cycles in the middle of the green cluster are still mispredicted

by this new classifier. This means that the smoothing process only marginally

influenced the labels here: those cycles are actually considered by the classifiers as

being green and the problem here might be with the way the labels were assigned

in the first place.

The situation around cycle 340, instead, improved for the neural network and

the SVM, while still being partially problematic for the decision tree. This might

be part of the reason why the green-related performance improved.

12.2.2 Effects of downsampling

The deployment of this project on a larger scale imposes some constraints due

to the limited network capabilities. The data exchanged between the vehicles’

ECU and the central server should be reduced to a minimum: on the one hand,

the feature selection applied managed to narrow the number of variables used

(and that therefore should be sent over to the server) down to 14; on the other,

the sampling frequency should be reduced even further. This renders the 320 Hz

sampling frequency used for ProgramB completely useless, and even the 1 Hz rate

of ProgramA is still much to high. The experts reckon that a more feasible rate

would be in the order of the minutes, thus reducing the sampling rate by a couple

of orders of magnitude.

Section 8.4 analyzed how much the downsampling influences both the classi-

fiers’ performance (in terms of F1 score) and in terms of degradation of the inputs.

The main result was that the classifiers were not significantly affected by a mod-

est downsampling: the reason for this can be found in the degradation of the

distributions of values. These distributions of values remain approximately the

same (as indicated by the Janson-Shannon divergence) for modest reductions in

the sampling frequency. Since the classifiers receive as input a series of summary

statistics that can be extracted from the distribution of values of each signal, the

low degradation implies a low alteration of the inputs, with the resulting stability

that comes in terms of classifiers’ performance.

113

Thus, the decision of using summary statistics instead of the single values as

inputs helped both in terms of reduction on the number of inputs (necessary given

the low number of cycles available) and in terms of robustness to downsampling.

Additionally, building a classifier that uses the original signal samples as inputs

could have resulted in models that cannot be deployed in the real world, where

the vehicles are not subject to a pre-established gas pedal track.

Additionally, Figures 8.6a and 8.6b provide a way of deciding different sampling

rates for the different signals, based on the maximum degradation acceptable. This

could help with an even further reduction of the data exchanged between vehicle

and server: signals that do not degrade significantly when downsampled can be

recorded using lower frequencies. Since the inputs of the classifiers are based on

the distribution of values, the process allows for signals to be sampled at different

rates.

A final consideration is that downsampling might not even be needed under

certain assumptions. If the ECU can be programmed as desired, the signals could

be sampled locally and then stored for a given amount of time. Then, the ECU

could compute the summary statistics required on the densely sampled signals,

thus sending the server only a low number of already-computed features. This as-

sumption on the ECU availability for programming, though, has not been verified:

making sure that the system can handle downsampled signals is still extremely

useful.

12.2.3 Exclusion of strong predictors

The comments regarding the classifiers trained without using those variables that

can be considered as strong predictors are heavily related to the observations made

in Subsection 12.1.2. In other words, the classifiers all heavily rely on the deriva-

tive of the oxygen level signal: removing this significantly affects the classifiers.

Removing the derivatives affects the results the least, since the classifier still has

access to the oxygen variable, managing to extract useful information from it. In-

stead, when the oxygen variable is removed, its derivative is not available either,

thus significantly lowering the classifiers’ performance.

The conclusion that can be drawn from this experiment is that no other signif-

icant variables other than the oxygen level have been found to be correlated to the

clogging problem. While these variables might be there, the classifiers used were

not able to identify and exploit them to improve in performance. Those variables

that actually where used might be weakly correlated to the clogginess of the sensor

but, given the poor performance of the classifiers, they should not be relied upon

(other than when presenting the results to the domain experts, thus offering some

114

of the data-driven, domain-unaware insights).

The (discrete) derivatives used have been computed starting from the signals

sampled at a 1 Hz rate. A possible concern, when scaling up to real-world cases,

is that lowering the sampling frequency (so as to meet the constraints imposed by

the communication with a remote server) might lead to meaningless derivatives,

as they are computed as the difference quotient between subsequent values and

lowering the sampling rate implies increasing the denominator of the quotient.

This, though, might not be the case: the ECUs already require reprogramming in

order to transmit the necessary data; the update could introduce the “sampling”

of the derivative of the signals (e.g. by sampling the signal twice in a short period

of time and computing the difference quotient on it). The measurement of a

meaningful derivative should not be a problem, thus the degradations imposed by

the lack of this kind input should not be of any significant concern.

12.2.4 Application of the process to the Model2 dataset

The application of the process to the Model2 dataset does not present any partic-

ularly significant surprise and, as such, it will not be commented in depth. Despite

that, there are two important takeaways that come with it.

The first one is that the devised process can be applied to new datasets easily

and without significant adjustments. This was one of the aims of the project and

it can be considered as achieved. The second one is that the low number of cycles

affects the results of the models: the more inputs are available, the better the

classifier can learn.

12.3 Labelling experiments discussion

The labelling process presented is comprised of three parts: the measurement of the

response times, their smoothing and the assignment of a label based on predefined

classes. The first two steps have already been analyzed and commented, with

some alternatives presented to show if and how different approaches could yield

better results. The response time measurement is expected to introduce some

uncertainty in the labelling process, since a wrong reading of the time influences

the label assigned. When smoothing is introduced, this uncertainty propagates to

the neighboring cycles.

The third and final step, that of the definition of classes and the assignment of

the labels, introduces even further uncertainty: no quantitative definition of the

clogginess of a cycle was available in terms of response time ranges, so an educated

guess was needed in order to continue with the process. The definition of these

115

ranges has been accepted as plausible by the domain experts that worked on this

project but with the catch that, since this sensor was not their particular field of

expertise, the classes could require some refinements and were not guaranteed to

be accurate. Because of this, the entire process – and its implementation – have

been designed so as to accommodate for future changes in classes’ ranges (and all

of the parameters discussed in this thesis).

The lower and upper bounds for the response time are respectively 0 and +∞,

thus effectively requiring two parameters in order to define three ranges (namely

the thresholds between green and yellow, and the one between yellow and red).

Exploring the resulting bidimensional space (so as to find the optimal range values)

has been deemed to be unfeasible (when exploring the range 0 ÷ 2 seconds with

increments of 0.01 seconds would result in approximately 1
2
· (2s−0s

0.01s
)2 = 20, 000

possible values (the number of options has been halved since the second threshold

is required to be lower than the first one). Exploring this many possibilities is not

currently feasible and, as such, this option has been discarded.

Despite that, some alternative experiments have been devised: for these ex-

periments, the labels assigned to the cycles have been changed based on some

considerations. These experiments have been presented as part of Chapter 9. This

section will comment some of the most interesting results.

12.3.1 Binary classifier

The introduction of the binary classifiers (i.e. classifiers that does not consider

the yellow cycles) comes from the decision of trying to simplify the problem and

observe how the models behave for this different, easier problem.

The binary classifiers are the best performing models produced as part of this

study. The reason behind this excellent performance has already been covered in

detail and can be summarized by saying that red and green cycles are significantly

different when it comes to the distribution of the derivative of the oxygen signal.

All three classification algorithms can separate these two categories of cycles well,

thus explaining the performance measured.

Introducing the yellow cycles complicates the situation (as shown in Figure

9.2), making it harder to separate green from red cycles. Since any real-world

application naturally presents yellow conditions, this binary classifier might seem

like a simplification that does not lead to any meaningful results. Despite that,

this experiment (along with the decision of using an interpretable model) helped

identifying the best predictor available. In order to understand how the yellow

condition would be handled, all the yellow cycles available (that had been taken

away when building the classifiers) have been fed to the models, in order to be

116

assigned a binary label.

12.3.2 Labelling of yellow cycles with the binary classifiers

This experiment introduces a third class in a binary classifier: since this classifier

does not know about the existence of this third class, it will attempt to assign

each of these never-before-seen cycles to either of the two known classes. Since

the yellow cycles are neither red nor green, it does not make sense to talk about

performance of the classifiers. What makes sense, instead, is showing how each

cycle is labelled. This is shown in the prediction bars of Figure 9.4.

Interestingly, the three classifiers mostly agree on the decisions taken and, since

the rationale of the decision tree is known, it is reasonable to assume that the other

two classifiers heavily rely on the same information. Based on the decision tree,

the information used is shown in Figure 9.2: those cycles on the left-hand side of

the threshold are labelled as red, the others green.

Since the majority of the yellow cycles are on the right-hand side of the thresh-

old, most of them are labelled as green. The yellow cycles that are labelled as red

are mostly those that, in the prediction bars, are surrounding the cycles that are

known to be red. This, when paired with the knowledge that the soot cumulates

(thus resulting in continuous cycles having similar clogginess), is reassuring of the

fact that the rationale used by these classifiers (and, by extension, by the others)

is consistent: if it was not, red and green cycles would be scattered randomly, with

no relation to the position of the established green and red ones.

12.3.3 Yellow cycles as green/red

Relabelling the yellow cycles as either red or green transforms the original problem

in a new binary one, where all the cycles are considered during the training. The

results of the two experiments have already been presented in Tables 9.2 and 9.3

and Figures 9.5 and 9.6. Comments regarding the results have already been made

when presenting them.

This particular one can be seen as a different way of approaching the “playing it

safe” approach that has been deemed to be the best one when making a prediction

about the sensor’s conditions: in other words, the experts asserted that, in their

opinion, it would be best to only alert the car owner about the problem when

it is sure that the problem exists or, using yet a different phrasing, the model

should try to minimize the false positives. This is because offering this prognostics

service is an extra, non-vital (yet) feature: if not alerted, the owner will be none

the wiser and will keep using the vehicle as they would have, had this system not

been in place; but, if the owner is asked to bring the car in for a problem that

117

does not really exist, this could be seen as a waste of time and resources. The

already presented solution proposed to solve this problem is that of optimizing the

classifiers using the precision as the performance evaluation metric, instead of the

F1 score. This approach led to more precise models, but with a lower recall.

Another approach to this problem is given by these two proposed experiments.

When the yellow cycles are labelled as green, what is really happening is that

those “borderline” cases are demoted to “alright” while, when considering them as

red, they are promoted to “clogged”1. This represents the two possible approaches

to the alerting of the customer: the first case is the one where the owner is only

alerted when the system is particularly sure about the existence of the problem;

the second case is the one where the owner is immediately alerted about anything

that remotely resembles a clogged sensor.

Based on the “playing it safe” policy, the “yellow as green” scenario is the

one that best suits the requirements. The advantages and disadvantages of this

experiment over the “yellow as red” one have already been presented as part of

Subsections 9.3.1 and 9.3.2: in short, the “yellow as green” experiment achieves

better accuracy and green-related performance (being the green class the majority

one), while the “yellow as red” experiment produced better red-related scores

(being this the new majority class).

12.4 Dataset clustering comments

The discovery of three well-defined clusters in the dataset required revising all of

the considerations made thus far, in order to account for the existence of these

clusters. The main conclusion is that these clusters have not significantly af-

fected the results of the classification: there is no clear correlation between the

green/yellow/red labels and the identified clusters and, given the good results

achieved by the classifiers, the logical conclusion is that they managed to discard

the information that differentiates the clusters and, instead, focused on the one

that helped figuring out the existence of a clogging situation.

This conclusion can be corroborated by two pieces of evidence. The first is

given by Figure 9.2, which clearly shown how the 90th percentile of the oxygen

derivative is well distributed between the three classes: if this was not the case,

and the clusters actually influenced the oxygen derivative, the three clogging classes

would not be as well distributed. The second piece of evidence is that, as shown

by Figure 10.5, the derivatives seem to be less affected by the clusters than are

the original variables. This holds true, as shown, for the oxygen. In particular,

1The terms “demoting” and “promoting” are of course used loosely in this situation

118

the “mean” derivative values seem to be affected the least as far as the azure and

orange cycles go, and these include the vast majority of the dataset.

This lower influence of the clusters on the derivatives can be explained basing

the considerations on Figure 10.9. Here, mean and standard deviation of the gas

pedal are shown to change consistently with the clusters and, since the rest of the

variables are affected by the gas pedal, similar graphs can be expected for these as

well. In particular, the mean has been explained to be somewhat representative

of the (constant) offset each variable has: since adding a constant to a function

does not alter its derivative, this offset does not influence it significantly. The

same considerations cannot be made for the standard deviation, but the overall

conclusion is that derivatives are not heavily affected by the clusters.

This is fortunate, because the classifiers significantly rely on the derivatives.

Fortune, though, should not have any role in a research project. Having a dataset

with such a bias could have affected the entire work and, had the existence of these

clusters not been discovered, the results would have been completely inaccurate

and nobody could have figured it out. Since the domain experts that worked on

this project were not aware of the existence of this problem and did not work on the

collection of the data, two important lessons can be learned. The first one is that

the data provided should not be assumed to be fine without thoroughly exploring

it first (in this case, a classification problem proved to require clustering as well).

The second one is that communication with the experts that actually gathered

the data is fundamental: other reasons that back this assertion have already been

provided but, even in this case, an explanation might have been available for the

existence of these clusters. These are two (of the many) valuable lessons learned

from this pilot project and that will prove useful for the projects to come.

Additional comments can be made about the identified clusters. The first one is

that, for some variables, smaller “sub-clusters” could be identified. These smaller

clusters, though, could not be easily spotted for all the variables and, because

of that, only the three (plus outliers) main clusters have been reported. Figure

10.9, though, shows how these subclusters can be once again explained in terms of

different gas pedal tracks used: the mean of the cycles 100 through 170 and 230

through 260 are slightly higher than the surrounding ones, although the standard

deviation is not. This explains why these smaller clusters were not as well defined

as the others.

A final comment regarding the reason for the existence of the clusters can and

should be made. Chapter 10 identified the different gas pedal tracks used as the

cause for the existence of the clusters, as shown in Figure 10.9. It is not known,

though, whether this behavior was intentional or not, since different considerations

seem to point in different directions. The Model2 dataset did not present any of

119

these clusters, making it hard to believe that the people who collected the data

decided to fiddle with one engine and not the other, but the similarity of the cycles

belonging to each cluster make it hard to believe that the result was due to chance.

Unfortunately, no definite answer can be provided in this thesis.

120

Chapter 13

Conclusions

This work of thesis started with the goal of finding a data-driven approach to

the predictive maintenance of the oxygen sensor. An already recorded test bench

dataset has been made available by the collaborating company along with the

availability of different domain experts, who provided the necessary feedback and

support throughout the work. Starting from the high-level data mining process,

an ad-hoc procedure has been devised so as to account for the peculiarities that

came with the dataset available. This process has been implemented and tested,

achieving satisfactory results. Many of the choices made during the definition of

the process were supported by a priori considerations and assumptions. A part

of the presented work consisted in verifying whether these assumptions held a

posteriori, i.e. when the classifiers’ results were available. This kind of validation

provided better insights on the dataset and on the rationale used by the classifiers

in order to make decisions.

The most interesting result regards the usage by the classifiers of the derivative

of the oxygen level signal. This signal was not, at the beginning, thought to be

accurate enough (in terms of samples available) in order to draw meaningful con-

clusions on the clogginess state of the sensor (so much so that a separate dataset,

sampled at 320 times the original frequency was used to assign the labels).

Other interesting experiments provided information that can be used when

scaling up this project to a larger scale, where the conditions are not as pristine

as the ones currently available.

Finally, an extensive exploration of the dataset showed the existence of anoma-

lous clusters of cycles that were not expected to be found: the final part of this

work consisted in analyzing this phenomenon, trying to characterize the clusters

and aiming to find an explanation that could justify such a behavior. These anal-

yses traced the origin of the problem back to gas pedal track used to drive the test

bench: whether the decision of changing the cycles’ track was made by the experts

who ran the experiments or if some external factor influenced the track, it cannot

121

be known.

This chapter wraps up the work by covering the novelty aspects of this study

first, then focusing on the limitations that this work has encountered and, finally,

an overview of the work that lies ahead of this pilot project will be presented.

13.1 Novelty of the study

When compared to the relevant literature found, this work of thesis presented

different aspects covered seldom, if at all. The first important difference is that

this study is based on real data collected from real test bench engines: most studies

available either provide overviews on possible techniques that can be adopted, or

are based on synthetic data generated from simulations or the likes of it. The

availability of real data allowed to better assess the feasibility of the project and

of its future developments, while providing an early validation of the models that

is not available for “synthetic data”-based models until deployed in real scenarios

(if that is even an option).

The effort of keeping the process as interpretable as possible led to meaning-

ful contributions. For starters, the correlation-based feature selection algorithm

proposed helps with the reduction of the number of input variables using intuitive

criteria and without transforming the original features (operation that most always

renders the features meaningless at the eyes of the experts).

Other than this feature selection algorithm, even the rest of the devised process

shows elements of novelty. This is necessary, given the characteristics of the data

used: having to work with two different datasets, one for the labelling and one for

the training is not a typical scenario. This duality requires splitting the typical

data mining process in two. Another element of interest is the duality of the

time component. This component is, in fact, present on two different levels: the

time within a cycle and, on a larger scale, the ordered sequence of cycles, which

were recorded continuously (except for those pauses shown in Figure 5.4a). This

required making considerations on two levels of time.

On top of the novelties introduced by the process, even the problem approached

is new: in literature, no other oxygen sensor-related predictive maintenance case

study (neither data-driven, nor model-based) has been found. In fact, the liter-

ature has been shown to be particularly wanting of articles other than electric

vehicles/battery-related case studies.

Finally, in addition to the already mentioned novel aspects, this project was

a pilot one and will be followed by other collaborations aimed at strengthening

the data-driven approach to the automotive industry in the company. This means

that all the lessons learned will be used for devising new experiments, changing

122

the relationship between domain and data experts and more. As for this particular

project, in the near future, it will be scaled and tested on a larger fleet of vehicles.

In conclusion, this work of thesis paved the way for a number of different projects

potentially capable of pushing the boundaries of prognostics further and further

still.

13.2 Limitations

Despite the satisfactory results achieved by this work, it has not been without

difficulties that hindered the potential achievements. The major problem found

was with the dataset available: the size of it was small, limiting the potential

of the algorithms used and preventing the usage of others1. The other problem

with the dataset was the presence of anomalous clusters: this might have yielded

unreliable results. Another problem encountered was the difficulty in defining the

classes for the clogginess of the sensor: as shown, this decision is crucial and needs

to be taken with care.

These problems are obviously nobody’s fault and are to be expected when

taking up a pilot project: the fact that some meaningful results were achieved

should by itself be a success. These limitations due to the dataset should be

overcome when new data is acquired for the upcoming projects. In these cases,

the data is being collected for the specific data mining projects and none of the

encountered problems should present anymore (and, if they do, they will most

definitely be of lesser entity).

Other than these technical limitations, other more significant ones exist and

might prove to be difficult to overcome. All of these limitations might be prob-

lematic when scaling up to vehicles driven in the real world. The main one is

the assumption that, over large amounts of data, the distribution of values for any

given variable for a single vehicle is consistent with the overall data available. This

was the case for the cycles used thus far because each cycle approximately followed

the same track (although not entirely, as explained in Chapter 10), but it might

not be in other situations, where different drivers might have different styles and

be in different settings (e.g. weather conditions, road type). If the distributions

cannot be generalized over large amounts of data, the situation might be problem-

atic and the process might require additional steps. These steps would be targeted

at identifying the “context” the car is in and, based on that, build macro clusters.

Then, for each of these clusters, different models are built and, when new data

needs to be labelled, the system first selects the best-matching cluster and then

1A random forest, for example, might have been an excellent choice, were it not for the small
number of samples available

123

applies the respective model.

Another significant limitation is the fact that the classifiers rely on the deriva-

tive of a signal: this requires being able to measure it (as a difference quotient)

by the ECU on board of the vehicle. This is not a computationally expensive task

to perform, but the constraint might be on the degrees of freedom allowed by the

ECU. If it only supports limited additional functionalities, the derivative might

not be computed and the classification results would degrade as shown in one of

the experiments. This, though, is a less worrying problem since ECUs, as many

other intelligent devices, can often be programmed easily.

Another (less significant) problem is the large number of parameters that needs

to be configured in order to get the process to work: valid default values have

already been provided, along with the rationale behind the decisions, so as to

allow for future adjustments. Manipulating these parameters, though, requires

some knowledge of the underlying process and the steps it is comprised of. Given

the documentation and the modular implementation provided, along with the

intense participation of the domain experts throughout the entire project, this

should not be a significant problem.

A final problem involves the collection of data for the training of the classifiers.

This can be done through an actual vehicle (and possibly a fleet of them), but

the main concern regards the accurate identification of the clogging situation. For

this project, sampling the signals using a high sampling rate was an option, but

it might not be in the future. This, though, is a limitation that is not dependent

on the proposed approach: on the contrary, the defined process is design so as to

accept labels from a source other than the original dataset. Given the modularity

of the process, changing the labelling blocks with the new ones (depending on

the approach found to measure the clogginess) is enough. It is up to the domain

experts to find a suitable alternative to label the new data to be used for the

training.

13.3 Future work

The project covered in this thesis will continue beyond the presented work, with

the goal of deploying a working version offered to those customers whose vehicles

are Internet-enabled or will be in the years to come. The road to this final goal

is long and has several milestones to be reached before the final one. A first one

is that of collecting the data from a fleet of vehicles. Depending on the quantity

of data collected, one or more servers should be deployed to store and process

the data (depending on the volume and velocity, a big data approach might be in

order). Then, the data is processed using the proposed process (or a variation of it,

124

based on the needs and constraints in place), thus producing a working classifier.

This classifier is then evaluated based on the metrics of interest: if it is not deemed

acceptable, the introduction of “contexts” (as proposed in Section 13.2) might be

in order. Once the classifiers are working well enough, data from new vehicles

can be processed and labelled, thus effectively providing the customers with a

prognostics service.

This project was only the first one of a possibly longer series of data mining

applications in this automotive context. Additional projects are being defined

given the interest of the company in pursuing the topic of prognostics even further.

These new projects will build on top of the work already presented, using similar

methodologies, approaches and tools. In this sense, this work of thesis is only the

beginning of an hopefully strong involvement of the company in what is becoming

a more data-driven future of the automotive industry.

125

126

Bibliography

[1] Mark Schwabacher. “A survey of data-driven prognostics”. In: Proceedings

of the AIAA Infotech at Aerospace Conference. 2005, pp. 1–5.

[2] Annamalai Pandian and Ahad Ali. “A review of recent trends in machine

diagnosis and prognosis algorithms”. In: Nature & Biologically Inspired Com-

puting, 2009. NaBIC 2009. World Congress on. IEEE. 2009, pp. 1731–1736.

[3] Andrea Cordoba-Arenas, Jiyu Zhang, and Giorgio Rizzoni. “Diagnostics and

prognostics needs and requirements for electrified vehicles powertrains”. In:

IFAC Proceedings Volumes 46.21 (2013), pp. 524–529.

[4] Somnath Pradhan and Joydeb Roychaudhury. “A machine learning approach

to predict future power demand in real-time for a battery operated car”. In:

IMpact of E-Technology on US (IMPETUS), 2014 International Conference

on the. IEEE. 2014, pp. 49–56.

[5] S Jagannathan and GVS Raju. “Remaining useful life prediction of automo-

tive engine oils using MEMS technologies”. In: American Control Confer-

ence, 2000. Proceedings of the 2000. Vol. 5. IEEE. 2000, pp. 3511–3512.

[6] Mitchell Lebold et al. Detecting injector deactivation failure modes in diesel

engines using time and order domain approaches. Tech. rep. PENNSYLVA-

NIA STATE UNIV STATE COLLEGE, 2012.

[7] David Gucik-Derigny, Rachid Outbib, and Mustapha Ouladsine. “Estima-

tion of damage behaviour for model-based prognostic”. In: IFAC Proceedings

Volumes 42.8 (2009), pp. 1444–1449.

[8] Rudolph Emil Kalman et al. “A new approach to linear filtering and predic-

tion problems”. In: Journal of basic Engineering 82.1 (1960), pp. 35–45.

[9] Junbo Son et al. “Remaining useful life prediction based on noisy condition

monitoring signals using constrained Kalman filter”. In: Reliability Engineer-

ing & System Safety 152 (2016), pp. 38–50.

[10] Gregory Piateski and William Frawley. Knowledge discovery in databases.

MIT press, 1991.

127

[11] Harold Hotelling. “Analysis of a complex of statistical variables into principal

components.” In: Journal of educational psychology 24.6 (1933), p. 417.

[12] Leo Breiman et al. “Classification and decision trees”. In: Wadsworth, Bel-

mont 378 (1984).

[13] Corrado Gini. “Variabilità e mutabilità”. In: Reprinted in Memorie di metodolog-

ica statistica (Ed. Pizetti E, Salvemini, T). Rome: Libreria Eredi Virgilio

Veschi (1912).

[14] Sankar K Pal and Sushmita Mitra. “Multilayer perceptron, fuzzy sets, and

classification”. In: IEEE Transactions on neural networks 3.5 (1992), pp. 683–

697.

[15] Corinna Cortes and Vladimir Vapnik. “Support vector machine”. In: Ma-

chine learning 20.3 (1995), pp. 273–297.

[16] William W Cohen. “Fast effective rule induction”. In: Proceedings of the

twelfth international conference on machine learning. 1995, pp. 115–123.

[17] William S Cleveland. “LOWESS: A program for smoothing scatterplots

by robust locally weighted regression”. In: The American Statistician 35.1

(1981), pp. 54–54.

[18] John A Hartigan and Manchek A Wong. “Algorithm AS 136: A k-means

clustering algorithm”. In: Journal of the Royal Statistical Society. Series C

(Applied Statistics) 28.1 (1979), pp. 100–108.

[19] Haizhou Wang and Mingzhou Song. “Ckmeans. 1d. dp: optimal k-means

clustering in one dimension by dynamic programming”. In: The R journal

3.2 (2011), p. 29.

[20] Peter J Rousseeuw. “Silhouettes: a graphical aid to the interpretation and

validation of cluster analysis”. In: Journal of computational and applied

mathematics 20 (1987), pp. 53–65.

[21] Jiawei Han, Jian Pei, and Yiwen Yin. “Mining frequent patterns without

candidate generation”. In: ACM sigmod record. Vol. 29. 2. ACM. 2000, pp. 1–

12.

[22] J. D. Hunter. “Matplotlib: A 2D graphics environment”. In: Computing In

Science & Engineering 9.3 (2007), pp. 90–95. doi: 10.1109/MCSE.2007.55.

[23] Michael Waskom et al. seaborn: v0.7.1 (June 2016). June 2016. doi: 10.

5281/zenodo.54844. url: https://doi.org/10.5281/zenodo.54844.

[24] NumPy. Online. 2017. url: http://www.numpy.org/.

[25] pandas: Python Data Analysis Library. Online. 2012. url: http://pandas.

pydata.org/.

128

[26] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal

of Machine Learning Research 12 (2011), pp. 2825–2830.

129

		Politecnico di Torino
	2017-11-30T13:34:48+0000
	Politecnico di Torino
	Elena Maria Baralis
	Tesi 224725

